
WebSphere® Application Server for Distributed Platforms, Version 6.1

Administering applications and their environment

���

Note

Before using this information, be sure to read the general information under “Notices” on page 2285.

Compilation date: May 18, 2006

© Copyright International Business Machines Corporation 2006. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

How to send your comments . xvii

Chapter 1. Overview and new features for administering applications and their environments . . 1

Introduction: System administration . 1

Introduction: Administrative console . 1

Introduction: Administrative scripting (wsadmin) . 2

Introduction: Administrative commands . 3

Introduction: Administrative programs . 3

Introduction: Administrative configuration data . 3

Introduction: Servers . 3

Introduction: Application servers . 3

Introduction: Web servers . 5

Introduction: Environment . 5

Variables . 6

Language versions offered by this product . 7

Chapter 2. How do I administer applications and their environments? 9

Chapter 3. Starting and stopping quick reference 11

Chapter 4. Backing up and recovering the application serving environment 13

Chapter 5. Class loading . 15

Class loaders . 15

Configuring class loaders of a server . 19

Class loader collection . 21

Class loader ID . 21

Class loader order . 21

Class loader settings . 21

Configuring application class loaders . 22

Configuring Web module class loaders . 23

Class loading: Resources for learning . 24

Chapter 6. Deploying and administering applications 27

Enterprise (J2EE) applications . 27

System applications . 27

Installing application files . 28

Installable module versions . 29

Ways to install applications or modules . 30

Installing application files with the console . 32

Example: Installing an EAR file using the default bindings 51

Installing J2EE modules with JSR-88 . 52

Customizing modules using DConfigBeans . 53

Enterprise application collection . 54

Name . 55

Application Status . 55

Startup order . 55

Enterprise application settings . 55

Configuring an application . 56

Application bindings . 58

Configuring application startup . 62

Configuring binary location and use . 64

Configuring the use of class loaders by an application 67

© Copyright IBM Corp. 2006 iii

Manage modules settings . 70

Mapping modules to servers . 72

Mapping virtual hosts for Web modules . 73

Mapping properties for a custom login configuration 75

Viewing deployment descriptors . 75

Starting or stopping applications . 77

Disabling automatic starting of applications . 78

Target specific application status . 78

Exporting applications . 79

Exporting DDL files . 80

Updating applications . 80

Ways to update application files . 81

Updating applications with the console . 83

Preparing for application update settings . 84

Hot deployment and dynamic reloading . 88

Uninstalling applications . 97

Removing a file . 97

Common deployment framework . 98

Deploying and administering applications: Resources for learning 98

Chapter 7. Web applications . 101

Task overview: Developing and deploying Web applications 101

Web applications . 101

web.xml file . 101

Default Application . 103

Servlets . 105

JavaServer Pages . 105

Web modules . 136

Troubleshooting tips for Web application deployment 137

Web applications: Resources for learning . 138

Tuning URL invocation cache . 139

Task overview: Managing HTTP sessions . 139

Sessions . 139

HTTP session migration . 140

Session security support . 140

Session management support . 141

Session tracking options . 142

Distributed sessions . 144

Session recovery support . 144

Clustered session support . 144

Session management tuning . 145

Best practices for using HTTP Sessions . 148

HTTP session manager troubleshooting tips . 151

Problems creating or using HTTP sessions . 152

HTTP sessions: Resources for learning . 155

Modifying the default Web container configuration . 156

Web container . 156

Web container settings . 157

Web container custom properties . 157

Web module deployment settings . 160

Context root for Web modules settings . 160

Environment entries for Web modules settings . 161

Web container troubleshooting tips . 161

Disabling servlet pooling: Best practices and considerations 162

Configuring session management by level . 163

Configuring session tracking . 163

iv Administering applications and their environment

Serializing access to session data . 164

Session management settings . 164

Cookie settings . 167

Session management custom properties . 168

Configuring session tracking for Wireless Application Protocol (WAP) devices 168

Configuring for database session persistence . 169

Switching to a multirow schema . 169

Configuring tablespace and page sizes for DB2 session databases 170

Database settings . 170

Multirow schema considerations . 171

Chapter 8. Portlet applications . 173

Task overview: Managing portlets . 173

Portlets . 173

Portlet container . 174

Portlet container settings . 174

Portlet aggregation using JavaServer Pages . 174

Portlet Uniform Resource Locator (URL) addressability 180

Portlet preferences . 181

Portlet deployment descriptor extensions . 183

Converting portlet fragments to an HTML document 183

Portlet and PortletApplication MBeans . 184

Chapter 9. SIP applications . 187

Providing real time collaboration with SIP applications 187

SIP applications . 187

SIP container . 187

Configuring the SIP container . 188

Configuring SIP timers . 188

Session Initiation Protocol (SIP) container settings 189

Deploying SIP applications . 191

Deploying SIP applications through the console . 191

Deploying SIP applications through scripting . 192

Chapter 10. EJB applications . 193

Task overview: Using enterprise beans in applications 193

Enterprise beans . 193

EJB modules . 194

EJB containers . 194

Enterprise beans: Resources for learning . 195

EJB method Invocation Queuing . 196

Enterprise bean and EJB container troubleshooting tips 197

Cannot access an enterprise bean from a servlet, a JSP file, a stand-alone program, or another

client . 198

Using access intent policies . 201

Access intent policies . 202

Access intent for both entity bean types . 207

Applying access intent policies to beans . 207

Configuring read-read consistency checking with the assembly tools 208

Access intent service . 209

Access intent design considerations . 210

Applying access intent policies to methods . 211

Using the AccessIntent API . 212

Access intent exceptions . 214

Access intent best practices . 214

Frequently asked questions: Access intent . 215

Contents v

Managing EJB containers . 216

EJB container settings . 216

EJB container system properties . 217

Changing enterprise bean types to initialize at application start time using the Application Server

Toolkit . 218

Changing enterprise bean types to initialize at application start time using the administrative

console . 218

Stateful session bean failover for the EJB container 219

Enabling or disabling stateful session bean failover with the EJB container panel 222

Enabling or disabling stateful session bean failover with the enterprise applications panel 223

Enabling or disabling stateful session bean failover with the EJB modules panel 223

EJB cache settings . 224

Container interoperability . 225

EJB Container tuning . 226

Deploying EJB modules . 230

Troubleshooting tips for EJBDEPLOY relationships 230

EJB module settings . 230

Chapter 11. Client applications . 233

Using application clients . 233

Application Client for WebSphere Application Server 233

Application client troubleshooting tips . 241

Running application clients . 246

launchClient tool . 248

Specifying the directory for an expanded EAR file 251

Java Web Start architecture for deploying application clients 251

Using Java Web Start . 252

Installing Application Client for WebSphere Application Server 267

Best practices for installing Application Client for WebSphere Application Server 270

Installing Application Client for WebSphere Application Server silently 271

Uninstalling Application Client for WebSphere Application Server 272

Deploying J2EE application clients on workstation platforms 273

Resource Adapters for the client . 273

Configuring resource adapters . 274

Resource adapter settings . 278

Starting the Application Client Resource Configuration Tool and opening an EAR file 279

Data sources for the Application Client . 279

Data source properties for application clients . 279

Configuring new data source providers (JDBC providers) for application clients 280

Configuring new data sources for application clients 282

Configuring mail providers and sessions for application clients 282

Configuring new mail sessions for application clients 285

URLs for application clients . 286

URL providers for the Application Client Resource Configuration Tool 286

Configuring new URL providers for application clients 286

Configuring new URLs with the Application Client Resource Configuration Tool 289

Asynchronous messaging in WebSphere Application Server using JMS 289

Java Message Service (JMS) providers for clients 290

Configuring Java messaging client resources . 290

Configuring new JMS connection factories for application clients 342

Configuring new Java Message Service destinations for application clients 343

Configuring new resource environment providers for application clients 343

Configuring new resource environment entries for application clients 344

Managing application clients . 345

Chapter 12. Web services . 351

vi Administering applications and their environment

Implementing Web services applications . 351

Web services . 353

Web Services for J2EE specification . 354

JAX-RPC . 354

SOAP . 356

SOAP with Attachments API for Java interface . 357

Web services SOAP/JMS protocol . 358

Web Services-Interoperability Basic Profile . 361

RMI-IIOP using JAX-RPC . 363

WS-I Attachments Profile . 363

Web services: Resources for learning . 363

Deploying Web services . 367 368

wsdeploy command . 369

Configuring Web service client bindings . 370

Web services client bindings . 371

Getting started with the UDDI registry . 373

Getting started for UDDI Administrators . 373

Getting started for UDDI users . 374

Using the UDDI registry user interface . 375

Displaying the UDDI registry user interface . 375

Finding an entity using the UDDI registry user interface 377

Publishing an entity using the UDDI registry user interface 377

Editing or deleting an entity using the UDDI registry user interface 378

Creating business relationships using the UDDI registry user interface 378

Example: Publishing a business, service and technical model using the UDDI registry user

interface . 379

Planning to use Web services . 381

Service-oriented architecture . 382

Web services approach to a service-oriented architecture 382

Web services business models supported . 384

Learning about the Web Services Invocation Framework (WSIF) 385

Goals of WSIF . 385

WSIF: Overview . 387

Setting up and deploying a new UDDI registry . 390

Database considerations for production use of the UDDI registry 391

Setting up a default UDDI node with a default datasource 391

Setting up a default UDDI node . 392

Setting up a customized UDDI node . 405

Using the UDDI registry Installation Verification Program (IVP) 419

Changing the UDDI registry application environment after deployment 419

Publishing WSDL files . 420

WSDL . 421

WSDL architecture . 421

Multipart WSDL best practices . 423

Configuring endpoint URL information for JMS bindings 423

Provide JMS and EJB endpoint URL information 424

Configuring the scope of a Web service port . 425

Web services implementation scope . 426

Configuring Web services applications with the wsadmin tool 427

WSIF system management and administration . 427

Maintaining the WSIF properties file . 427

Enabling security for WSIF . 428

Tips for troubleshooting the Web Services Invocation Framework 428

Using the UDDI registry . 435

Overview of the Version 3 UDDI registry . 436

UDDI registry terminology . 438

Contents vii

UDDI registry management interfaces . 441

Java API for XML Registries (JAXR) Provider for UDDI 475

Removing and reinstalling the UDDI registry . 481

Removing a UDDI registry node . 481

Reinstalling the UDDI registry application . 483

Applying an upgrade to the UDDI registry . 484

Configuring the UDDI registry application . 484

Configuring UDDI registry security . 485

Configuring SOAP API and GUI services . 490

Multiple language encoding support in UDDI . 492

Customizing the UDDI registry user interface (GUI) 492

Managing the UDDI registry . 492

UDDI node collection . 493

Overview of the UDDI registry Administrative Interface 507

Backing up and restoring the UDDI registry database 507

Chapter 13. Data access resources . 509

Task overview: Accessing data from applications . 509

Resource adapter . 509

Connection factory . 515

JDBC providers . 517

Data sources . 517

Data access beans . 518

Connection management architecture . 519

Cache instances . 535

Data access: Resources for learning . 535

Configuring data access with scripting . 537

Configuring a JDBC provider using scripting . 537

Configuring new data sources using scripting . 538

Configuring new connection pools using scripting 540

Changing connection pool settings with the wsadmin tool 540

Configuring new data source custom properties using scripting 547

Configuring new J2CAuthentication data entries using scripting 548

Configuring new WAS40 data sources using scripting 549

Configuring new WAS40 connection pools using scripting 550

Configuring new WAS40 custom properties using scripting 551

Configuring new J2C resource adapters using scripting 552

Configuring custom properties for J2C resource adapters using scripting 553

Configuring new J2C connection factories using scripting 554

Configuring new J2C authentication data entries using scripting 556

Configuring new J2C activation specifications using scripting 557

Configuring new J2C administrative objects using scripting 558

Testing data source connections using scripting . 560

Commands for the EventServiceDBCommands group of the AdminTask object 560

Commands for the JDBCProviderManagement group of the AdminTask object 606

Administering data access applications . 610

Installing a Resource Adapter Archive (RAR) file . 611

Configuring J2EE Connector connection factories in the administrative console 616

J2EE connector security . 633

Configuring a JDBC provider and data source . 636

Configuring data access for the Application Client 704

Resource references . 706

Performing platform-specific tasks for JDBC access 708

Pretesting pooled connections to ensure validity . 709

Passing client information to a database . 710

About Cloudscape v10.1.x . 713

viii Administering applications and their environment

Verifying the Cloudscape v10.1.x automatic migration 714

Upgrading Cloudscape manually . 717

Database performance tuning . 719

Tuning parameters for data access resources . 722

Managing resources through JCA lifecycle management operations 724

Cannot access a data source . 726

JDBC trace configuration . 752

Deploying data access applications . 753

Available resources . 754

1.x CMP bean data sources . 755

1.x entity bean data sources . 756

2.x CMP bean data sources . 757

2.x entity bean data sources . 759

Chapter 14. Messaging resources . 761

Using asynchronous messaging . 761

Learning about messaging with WebSphere Application Server 761

JMS providers . 761

Styles of messaging in applications . 763

JMS interfaces - explicit polling for messages . 763

Message-driven beans - automatic message retrieval 765

Asynchronous messaging - security considerations 770

Messaging: Resources for learning . 771

Installing and configuring a JMS provider . 771

Installing the default messaging provider . 772

JMS providers collection . 773

Select JMS resource provider . 773

Activation specification collection . 774

Connection factory collection . 774

Queue connection factory collection . 775

Queue collection . 776

Topic connection factory collection . 777

Topic collection . 778

Configuring messaging with scripting . 778

Configuring the message listener service using scripting 778

Configuring new JMS providers using scripting . 780

Configuring new JMS destinations using scripting 781

Configuring new JMS connections using scripting 782

Configuring new WebSphere queue connection factories using scripting 783

Configuring new WebSphere topic connection factories using scripting 784

Configuring new WebSphere queues using scripting 785

Configuring new WebSphere topics using scripting 786

Configuring new MQ connection factories using scripting 787

Configuring new MQ queue connection factories using scripting 788

Configuring new MQ topic connection factories using scripting 789

Configuring new MQ queues using scripting . 791

Configuring new MQ topics using scripting . 792

Commands for the JCA management group of the AdminTask object 793

Maintaining Version 5 default messaging resources 800

Listing Version 5 default messaging resources . 801

Configuring Version 5 default JMS resources . 825

Configuring authorization security for a Version 5 default messaging provider 828

JMS components on Version 5 nodes . 832

Using the JMS resources provided by WebSphere MQ 833

Installing and configuring WebSphere MQ as a JMS provider 834

Listing JMS resources for WebSphere MQ . 836

Contents ix

Configuring JMS resources for the WebSphere MQ messaging provider 906

Securing WebSphere MQ messaging directories and log files 916

Using JMS resources of a generic provider . 916

Defining a generic messaging provider . 917

Listing generic JMS messaging resources . 917

Configuring JMS resources for a generic messaging provider 923

Administering support for message-driven beans . 925

Configuring a J2C activation specification . 925

Configuring a J2C administered object . 929

Configuring message listener resources for message-driven beans 931

Important file for message-driven beans . 943

Chapter 15. Mail, URLs, and other J2EE resources 945

Using mail . 945

JavaMail API . 946

Mail providers and mail sessions . 947

JavaMail security permissions best practices . 947

Mail: Resources for learning . 948

JavaMail support for IPv6 . 948

Using URL resources within an application . 949

URLs . 949

URL provider collection . 950

URL provider settings . 950

URL collection . 951

URL configuration settings . 951

URLs: Resources for learning . 952

Resource environment entries . 952

Resource environment providers and resource environment entries 953

Resource environment provider collection . 953

Resource environment entries collection . 954

Referenceables collection . 956

Resource environment references . 957

Configuring mail providers and sessions . 958

Mail provider collection . 959

Mail provider settings . 959

Protocol providers collection . 959

Protocol providers settings . 960

Mail session collection . 960

Mail session settings . 961

JavaMail system properties . 963

Configuring mail, URLs, and resource environment entries with scripting 964

Configuring new mail providers using scripting . 964

Configuring new mail sessions using scripting . 965

Configuring new protocols using scripting . 966

Configuring new custom properties using scripting 967

Configuring new resource environment providers using scripting 968

Configuring custom properties for resource environment providers using scripting 969

Configuring new referenceables using scripting . 970

Configuring new resource environment entries using scripting 971

Configuring custom properties for resource environment entries using scripting 972

Configuring new URL providers using scripting . 973

Configuring custom properties for URL providers using scripting 974

Configuring new URLs using scripting . 975

Configuring custom properties for URLs using scripting 976

Commands for the provider group of the AdminTask object 977

x Administering applications and their environment

Chapter 16. Security . 981

Task overview: Securing resources . 981

Setting up and enabling security . 981

Migrating, coexisting, and interoperating – Security considerations 982

Preparing for security at installation time . 997

Enabling security . 999

Authenticating users . 1035

Selecting a registry or repository . 1036

Authentication mechanisms . 1140

Authentication protocol for EJB security . 1182

Configuring the Lightweight Third Party Authentication mechanism 1190

Integrating third-party HTTP reverse proxy servers 1197

Implementing single sign-on to minimize Web user authentications 1199

Propagating security attributes among application servers 1238

Configuring the authentication cache . 1240

Configuring IIOP authentication . 1241

Configuring RMI over IIOP . 1256

Java Authentication and Authorization Service . 1283

Authorizing access to resources . 1287

Authorization technology . 1288

Authorizing access to J2EE resources using Tivoli Access Manager 1319

Authorizing access to administrative roles . 1341

Securing communications . 1349

Secure communications using Secure Sockets Layer 1349

Creating a Secure Sockets Layer configuration . 1385

Creating a keystore configuration . 1422

Creating a self-signed certificate . 1428

Creating a certificate authority request . 1430

Extracting a signer certificate from a personal certificate 1441

Retrieving signers from a remote SSL port . 1447

Adding a signer certificate to a keystore . 1448

Exchanging signer certificates . 1451

Configuring certificate expiration monitoring . 1452

Key management for cryptographic uses . 1456

Creating a key set configuration . 1457

Creating a key set group configuration . 1462

Configuring security with scripting . 1469

Enabling and disabling administrative security using scripting 1470

Enabling and disabling Java 2 security using scripting 1472

Enabling authentication in the file transfer service using scripting 1472

Propagating security policy of installed applications to a JACC provider using wsadmin scripting 1473

Configuring the JACC provider for Tivoli Access Manager using the wsadmin utility 1474

Disabling embedded Tivoli Access Manager client using wsadmin 1476

Creating an SSL configuration at the node scope using scripting 1476

Creating self-signed certificates using scripting . 1478

Automating SSL configurations using scripting . 1479

Updating default key store passwords using scripting 1482

Commands for the IdMgrConfig group of the AdminTask object 1483

Commands for the IdMgrRepositoryConfig group of the AdminTask object 1487

Commands for the IdMgrRealmConfig group of the AdminTask object 1576

Commands for the WIMManagementCommands group of the AdminTask object 1584

Commands for the KeyStoreCommands group of the AdminTask object 1604

Commands for the SSLConfigCommands group of the AdminTask object 1613

Commands for the DescriptivePropCommands group of the AdminTask object 1626

Commands for the TrustManagerCommands group of the AdminTask object 1629

Commands for the keyManagerCommands group of the AdminTask object 1633

Contents xi

Commands for the SSLConfigGroupCommands group of the AdminTask object 1637

Commands for the DynamicSSLConfigSelections group of the AdminTask object 1642

Commands for the ManagementScopeCommands group of the AdminTask object 1646

Commands for the WSCertExpMonitorCommands group of the AdminTask object 1650

Commands for the KeySetGroupCommands group of the AdminTask object 1656

Commands for the KeySetCommands group of the AdminTask object 1662

Commands for the KeyReferenceCommands group of the AdminTask object 1668

Commands for the securityEnablement group of the AdminTask object 1672

Commands for the CertificateRequestCommands group of the AdminTask object 1678

Commands for the SignerCertificateCommands group of the AdminTask object 1682

Commands for the PersonalCertificateCommands group of the AdminTask object 1688

Commands for the SPNEGO TAI group of the AdminTask object 1698

Commands for the AuthorizationGroupCommands group of the AdminTask object 1705

Commands for the ChannelFrameworkManagement group of the AdminTask object 1719

Chapter 17. Naming and directory . 1725

Using naming . 1725

Naming . 1726

Name space logical view . 1726

Initial context support . 1728

Lookup names support in deployment descriptors and thin clients 1729

JNDI support in WebSphere Application Server 1731

Configured name bindings . 1731

Name space federation . 1733

Naming roles . 1734

Naming and directories: Resources for learning 1736

Configuring name servers . 1737

Name server settings . 1737

Configuring name space bindings . 1738

Name space binding collection . 1740

Specify binding type settings . 1740

String binding settings . 1741

EJB binding settings . 1742

CORBA object binding settings . 1743

Indirect lookup binding settings . 1744

Developing applications that use JNDI . 1744

Example: Getting the default initial context . 1746

Example: Getting an initial context by setting the provider URL property 1749

Example: Setting the provider URL property to select a different root context as the initial context 1751

Example: Looking up an EJB home with JNDI . 1753

Example: Looking up a JavaMail session with JNDI 1755

JNDI interoperability considerations . 1755

JNDI caching . 1756

JNDI cache settings . 1757

Example: Controlling JNDI cache behavior from a program 1758

JNDI name syntax . 1759

INS name syntax . 1759

JNDI to CORBA name mapping considerations 1759

Example: Setting the syntax used to parse name strings 1760

Chapter 18. Object Request Broker . 1761

Managing Object Request Brokers . 1761

Object Request Brokers . 1761

Logical pool distribution . 1762

Object Request Broker service settings . 1762

Object Request Broker custom properties . 1765

xii Administering applications and their environment

Object Request Broker communications trace . 1773

Client-side programming tips for the Java Object Request Broker service 1776

Character code set conversion support for the Java Object Request Broker service 1777

Object Request Brokers: Resources for learning 1779

Object request broker troubleshooting tips . 1780

Chapter 19. Transactions . 1795

Using the transaction service . 1795

Transaction support in WebSphere Application Server 1795

Use of local transactions . 1808

The business activity API . 1810

Transaction service exceptions . 1812

UserTransaction interface - methods available . 1813

Configuring transaction properties for an application server 1813

Transaction service settings . 1815

Managing active and prepared transactions . 1823

Managing transaction logging for optimum server availability 1824

Configuring transaction aspects of servers for optimum availability 1825

Moving a transaction log from one server to another 1826

Restarting an application server on a different host 1827

Interoperating transactionally between application servers 1828

Configuring an intermediary node for Web services transactions 1828

Enabling WebSphere Application Server to use an intermediary node for Web services transactions 1829

Configuring a server to use business activity support 1829

Compensation service settings . 1830

Chapter 20. Learn about WebSphere programming extensions 1833

ActivitySessions . 1833

Configuring the default ActivitySession timeout for an application server 1833

Disabling or enabling the ActivitySession service 1834

Application profiling . 1835

Task overview: Application profiling . 1835

Managing application profiles . 1843

Asynchronous beans . 1849

Using asynchronous beans . 1849

Configuring timer managers . 1860

Configuring work managers . 1863

Dynamic cache . 1867

Task overview: Using the dynamic cache service to improve performance 1867

Enabling the dynamic cache service . 1883

Configuring cacheable objects with the cachespec.xml file 1900

Configuring command caching . 1914

Configuring the Web services client cache . 1916

Using the DistributedMap and DistributedObjectCache interfaces for the dynamic cache 1922

Disabling template-based invalidations during JSP reloads 1931

Using object cache instances . 1931

Displaying cache information . 1931

Using servlet cache instances . 1936

Dynamic query . 1942

Using EJB query . 1942

Using the dynamic query service . 1967

Internationalization . 1973

Task overview: Globalizing applications . 1973

Task overview: Internationalizing interface strings (localizable-text API) 1976

Task overview: Internationalizing application components (internationalization service) 1977

Working with locales and character encodings . 1978

Contents xiii

Administering the internationalization service . 1979

Object pools . 1984

Using object pools . 1984

MBeans for object pool managers and object pools 1990

Scheduler . 1991

Using schedulers . 1991

Managing schedulers . 1995

Startup beans . 2021

Using startup beans . 2021

Enabling startup beans in the administrative console 2022

Work area . 2023

Task overview: Implementing shared work areas 2023

Managing the work area service - the UserWorkArea partition 2028

Configuring work area partitions . 2031

Chapter 21. Overview and new features for monitoring 2043

Performance: Resources for learning . 2043

Chapter 22. How do I monitor? . 2045

Chapter 23. Monitoring end user response time 2047

Chapter 24. Monitoring overall system health . 2049

Performance Monitoring Infrastructure (PMI) . 2050

PMI architecture . 2050

PMI and J2EE 1.4 Performance Data Framework 2051

PMI data classification . 2052

PMI data organization . 2054

PMI data collection . 2156

Custom PMI API . 2156

Custom PMI implementation - an example . 2157

Enabling PMI data collection . 2158

Enabling PMI using the administrative console . 2159

Enabling PMI using the wsadmin tool . 2161

Enabling the Java virtual machine profiler data . 2167

Developing your own monitoring applications . 2169

PMI client interface (deprecated) . 2169

Using PMI client to develop your monitoring application (deprecated) 2170

Performance servlet (PerfServlet) . 2182

Using the JMX interface to develop your own monitoring application 2185

Developing PMI interfaces (Version 4.0) (deprecated) 2202

Compiling your monitoring applications . 2203

Running your new monitoring applications . 2203

Monitoring performance with Tivoli Performance Viewer (TPV) 2204

Why use Tivoli Performance Viewer? . 2205

TPV topologies and performance impacts . 2205

Viewing current performance activity . 2206

Logging performance data with TPV . 2218

Third-party performance monitoring and management solutions 2219

Chapter 25. Monitoring application flow . 2221

Why use request metrics? . 2221

Example: Using request metrics . 2222

Data you can collect with request metrics . 2223

Getting performance data from request metrics . 2225

Request metrics . 2225

xiv Administering applications and their environment

Application Response Measurement . 2227

Isolating performance for specific types of requests 2234

Specifying how much data to collect . 2236

Regenerating the Web server plug-in configuration file 2238

Enabling and disabling logging . 2238

Request metric extension . 2240

Example: Using the correlation service interface 2241

Differences between Performance Monitoring Infrastructure and request metrics 2244

Chapter 26. Troubleshooting deployment . 2245

Errors or problems deploying, installing, or promoting applications 2245

Troubleshooting testing and first time run problems 2249

Errors starting an application . 2250

The application does not start or starts with errors 2254

A Web resource does not display . 2257

Cannot uninstall an application or remove a node or application server 2259

Chapter 27. Troubleshooting administration . 2261

Administration and administrative console troubleshooting 2261

Installation completes but the administrative console does not start 2264

Errors connecting to the administrative console from a browser 2266

When a single user that uses multiple instances of the Mozilla browser logs into the

administrative console, the first user ID that logs into the administrative console is the current

user. . 2266

A user on Mozilla browser Version 1.4 selects a check box on a collection table, presses Enter,

and receives an error. . 2266

A user on Mozilla browser Version 1.4 enters an invalid ID or password, presses Enter, and

receives an error message . 2267

Web server plug-in troubleshooting tips . 2267

The server process does not start or starts with errors 2269

The stopServer.sh hangs and creates a Java core dump (Red Hat Linux) 2270

Problems starting or using the wsadmin command 2270

Problems using command line tools . 2278

Problems using tracing, logging or other troubleshooting features 2279

Appendix. Directory conventions . 2281

Notices . 2285

Trademarks and service marks . 2287

Contents xv

xvi Administering applications and their environment

How to send your comments

Your feedback is important in helping to provide the most accurate and highest quality information.

v To send comments on articles in the WebSphere Application Server Information Center

1. Display the article in your Web browser and scroll to the end of the article.

2. Click on the Feedback link at the bottom of the article, and a separate window containing an e-mail

form appears.

3. Fill out the e-mail form as instructed, and click on Submit feedback .

v To send comments on PDF books, you can e-mail your comments to: wasdoc@us.ibm.com or fax

them to 919-254-0206.

Be sure to include the document name and number, the WebSphere Application Server version you are

using, and, if applicable, the specific page, table, or figure number on which you are commenting.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information

in any way it believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 2006 xvii

xviii Administering applications and their environment

Chapter 1. Overview and new features for administering

applications and their environments

Use the links provided in this topic to learn about the administrative features.

What is new for administrators

 This topic provides an overview of new and changed features of system administration.

“Introduction: System administration”

 This topic describes the administration of the product and the applications that runs on it.

 See also “Introduction: Environment” on page 5 and “Variables” on page 6.

Introduction: System administration

Note:

If you would prefer to browse PDF versions of this documentation using your Adobe Reader,

see the System Administration PDF files available from www.ibm.com/software/webservers/
appserv/infocenter.html.

A variety of tools are provided for administering the WebSphere Application Server product:

v Console

The administrative console is a graphical interface that provides many features to guide you through

deployment and systems administration tasks. Use it to explore available management options.

For more information, refer to “Introduction: Administrative console.”

v Scripting

The WebSphere administrative (wsadmin) scripting program is a powerful, non-graphical command

interpreter environment enabling you to run administrative operations in a scripting language. You can

also submit scripting language programs to run. The wsadmin tool is intended for production

environments and unattended operations.

For more information, refer to “Introduction: Administrative scripting (wsadmin)” on page 2.

v Commands

Command-line tools are simple programs that you run from an operating system command-line prompt

to perform specific tasks, as opposed to general purpose administration. Using the tools, you can start

and stop application servers, check server status, add or remove nodes, and complete similar tasks.

For more information, refer to “Introduction: Administrative commands” on page 3.

v Programming

The product supports a Java programming interface for developing administrative programs. All of the

administrative tools supplied with the product are written according to the API, which is based on the

industry standard Java Management Extensions (JMX) specification.

For more information, refer to “Introduction: Administrative programs” on page 3.

v Data

Product configuration data resides in XML files that are manipulated by the previously-mentioned

administrative tools.

For more information, refer to “Introduction: Administrative configuration data” on page 3.

Introduction: Administrative console

The administrative console is a graphical interface for performing deployment and system administration

tasks. It runs in your Web browser. Your actions in the console modify a set of XML configuration files.

You can use the console to perform tasks such as:

v Add, delete, start, and stop application servers

© Copyright IBM Corp. 2006 1

http://www.adobe.com/products/acrobat/readermain.html
http://www.ibm.com/software/webservers/appserv/infocenter.html
http://www.ibm.com/software/webservers/appserv/infocenter.html

v Deploy new applications to a server

v Start and stop existing applications, and modify certain configurations

v Add and delete Java 2 Platform, Enterprise Edition (J2EE) resource providers for applications that

require data access, mail, URLs, and so on

v Manage variables, shared libraries, and other configurations that can span multiple application servers

v Configure product security, including access to the administrative console

v Collect data for performance and troubleshooting purposes

v Find the product version information. It is located on the front page of the console.

Starting and logging off the administrative console helps you begin using the console so that you can

explore the available options. See also the Reference > Administrator > Settings section of the

information center navigation. It lists the settings or properties you can configure.

Introduction: Administrative scripting (wsadmin)

The WebSphere administrative (wsadmin) scripting program is a powerful, non-graphical command

interpreter environment enabling you to run administrative operations in a scripting language. The wsadmin

tool is intended for production environments and unattended operations. You can use the wsadmin tool to

perform the same tasks that you can perform using the administrative console.

The following list highlights the topics and tasks available with scripting:

v Getting started with scripting Provides an introduction to WebSphere Application Server scripting and

information about using the wsadmin tool. Topics include information about the scripting languages and

the scripting objects, and instructions for starting the wsadmin tool.

v Deploying applications Provides instructions for deploying and uninstalling applications. For example,

stand-alone Java archive files and Web archive files, the administrative console, remote enterprise

archive (EAR) files, file transfer applications, and so on.

v Managing deployed applications Includes tasks that you perform after the application is deployed. For

example, starting and stopping applications, checking status, modifying listener address ports, querying

application state, configuring a shared library, and so on.

v Configuring servers Provides instructions for configuring servers, such as creating a server, modifying

and restarting the server, configuring the Java virtual machine, disabling a component, disabling a

service, and so on.

v Configuring connections to Web servers Includes topics such as regenerating the plug-in, creating new

virtual host templates, modifying virtual hosts, and so on.

v Managing servers Includes tasks that you use to manage servers. For example, stopping nodes,

starting and stopping servers, querying a server state, starting a listener port, and so on.

v Configuring security Includes security tasks, for example, enabling and disabling administrative security,

enabling and disabling Java 2 security, and so on.

v Configuring data access Includes topics such as configuring a Java DataBase Connectivity (JDBC)

provider, defining a data source, configuring connection pools, and so on.

v Configuring messaging Includes topics about messaging, such as Java Message Service (JMS)

connection, JMS provider, WebSphere queue connection factory, MQ topics, and so on.

v Configuring mail, URLs, and resource environment entries Includes topics such as mail providers, mail

sessions, protocols, resource environment providers, referenceables, URL providers, URLs, and so on.

v Dynamic caching Includes caching topics, for example, creating, viewing and modifying a cache

instance.

v Troubleshooting Provides information about how to troubleshoot using scripting. For example, tracing,

thread dumps, profiles, and so on.

v Obtaining product information Includes tasks such as querying the product identification.

2 Administering applications and their environment

v Scripting reference material Includes all of the reference material related to scripting. Topics include the

syntax for the wsadmin tool and for the administrative command framework, explanations and examples

for all of the scripting object commands, the scripting properties, and so on.

Introduction: Administrative commands

Command line tools are simple programs that you run from an operating system command-line prompt to

perform specific tasks, as opposed to general purpose administration. Using the tools, you can start and

stop application servers, check server status, add or remove nodes, and complete similar tasks.

See Reference > Administrator > Commands in the information center navigation area for the names

and syntax of all the commands that are available with the product. A subset of these commands is

particular to system administration purposes.

Introduction: Administrative programs

The product supports a Java programming interface for developing administrative programs. All of the

administrative tools supplied with the product are written according to the API, which is based on the

industry standard Java Management Extensions (JMX) specification. You can write a Java program that

performs any of the administrative features of the WebSphere Application Server administrative tools. You

can also extend the basic WebSphere Application Server administrative system to include your own

managed resources.

Introduction: Administrative configuration data

Administrative tasks typically involve defining new configurations of the product or performing operations

on managed resources within the environment. IBM WebSphere Application Server configuration data is

kept in files. Because all product configuration involves changing the content of those files, it is useful to

know the structure and content of the configuration files.

The WebSphere Application Server product includes an implementation of the Java Management

Extension (JMX) specification. All operations on managed resources in the product go through JMX

functions. This setup means a more standard framework underlying your administrative operations as well

as the ability to tap into the systems management infrastructure programmatically.

Introduction: Servers

Application servers

Application servers provide the core functionality of the WebSphere Application Server product family. They

extend the ability of a Web server to handle Web application requests, and much more. An application

server enables a server to generate a dynamic, customized response to a client request.

For additional overview, refer to “Introduction: Application servers.”

Introduction: Application servers

Overview

An application server is a Java Virtual Machine (JVM) that is running user applications. The application

server collaborates with the Web server to return a dynamic, customized response to a client request.

Application code, including servlets, JavaServer Pages (JSP) files, enterprise beans and their supporting

classes, runs in an application server. Conforming to the Java 2 platform, Enterprise Edition (J2EE)

component architecture, servlets and JSP files run in a Web container, and enterprise beans run in an

Enterprise JavaBeans (EJB) container.

To begin creating and managing an application server, see Administering application servers.

Chapter 1. Overview and new features: Administering 3

You can define multiple application servers, each running its own JVM. Enhance the operation of an

application server by using the following options:

v Configure transport chains to provide networking services to such functions as the service integration

bus component of IBM service integration technologies, WebSphere Secure Caching Proxy, and the

high availability manager core group bridge service. See Configuring transport chains for more

information.

v Add an interface to an application server to define a hook point that runs when the server starts and

shuts down. See Developing custom services for more information.

v Define command-line information that passes to a server when it starts or initializes. See startServer

command for more information.

v Tuning application servers

v Enhance the performance of the application server JVM. See Configuring the JVM for more information.

v Use an Object Request Broker (ORB) for RMI/IIOP communication. See “Managing Object Request

Brokers” on page 1761 for more information.

Asynchronous messaging

The product supports asynchronous messaging based on the Java Message Service (JMS) of a JMS

provider that conforms to the JMS specification version 1.1.

The JMS functions of the default message service in WebSphere Application Server are served by one or

more messaging engines (in a service integration bus) that runs within application servers.

Generic Servers

A generic server is a server that is managed in the WebSphere administrative domain, although it is not a

server that is supplied by the WebSphere Application Server product. The generic server can be any

server or process that is necessary to support the Application Server environment.

For more information, refer to Creating generic servers.

 Related tasks

 Creating generic servers
A generic server is a server that is managed in the WebSphere administrative domain, although it is

not a server that is supplied by WebSphere Application Server. The WebSphere Application Server

generic servers function enables you to define a generic server as an application server instance within

the WebSphere Application Server administration, and associate it with a non-WebSphere server or

process.

 Programming to use JMS and messaging directly
Use these tasks to implement WebSphere J2EE applications that use JMS programming interfaces

directly.

 Administering application servers
An application server configuration provides settings that control how an application server provides

services for running applications and their components.

 Configuring transport chains
A transport chain consists of one or more types of channels, each of which supports a different type of

I/O protocol, such as TCP or HTTP. Network ports can be shared among all of the channels within a

chain. The channel framework function automatically distributes a request arriving on that port to the

correct I/O protocol channel for processing.

 Developing custom services
A custom service provides the ability to plug into a WebSphere Application Server application server to

define a hook point that runs when the server starts and shuts down. An application server

configuration provides settings that control how an application server provides services for running

applications and their components.

4 Administering applications and their environment

Tuning application servers
The WebSphere Application Server contains interrelated components that must be harmoniously tuned

to support the custom needs of your end-to-end e-business application.

 “Managing Object Request Brokers” on page 1761
Use this task to manage Object Request Brokers (ORB). An ORB manages the interaction between

clients and servers using the Internet InterORB Protocol (IIOP).

Introduction: Web servers

In the WebSphere Application Server product, an application server works with a Web server to handle

requests for dynamic content, such as servlets, from Web applications. SeeSupported Hardware and

Software for this product for the most current information about supported Web servers.

The application server and Web server communicate using Web server plug-ins. Communicating with Web

servers describes how to set up your Web server and Web server plug-in environment and how to create

a Web server definition. The Web server definition associates a Web server with an application server.

After you create a Web server definition, you can use the administrative console to perform the following

functions for that Web server:

v Check the status of the Web server

v Generate a plug-in configuration file for that Web server.

If the Web server is an IBM HTTP Server and the IBM HTTP Server Administration server is installed and

properly configured, you can also:

v Display the IBM HTTP Server Error log (error.log) and Access log (access.log) files.

v Start and stop the server.

v Display and edit the IBM HTTP Server configuration file (httpd.conf).

v Propagate the plug-in configuration file after it is generated.

You can not propagate a plug-in configuration file for a non-IBM HTTP Server. You must manually install

an updated plug-in configuration file on that Web server.

After you set up your Web server and Web server plug-in, whenever you deploy a Web application, you

must specify a Web server as the deployment target that serves as a router for requests to the Web

application. The configuration settings in the plug-in configuration file (plugin-cfg.xml) for each Web server

are based on the applications that are routed through that Web server. If the Web server plug-in

configuration service is enabled, a Web server plug-in’s configuration file is automatically regenerated

whenever a new application is associated with that Web server.

Note: Before starting the Web server, make sure you are authorized to run any Application Response

Measurement (ARM) agent associated with that Web server.

Refer to your Web server documentation for information on how to administer that Web server. For tips on

tuning your Web server plug-in, see Web server plug-in tuning tips.

Introduction: Environment

Your WebSphere Application Server product environment includes Web server plug-ins, WebSphere

Application Server variables, and other data objects. Configure values for settings in these categories

using the Environment section of the administrative console.

Web servers

In the WebSphere Application Server product, an application server works with a Web server to handle

requests for Web applications. The application Server and Web server communicate using a WebSphere

HTTP plug-in for the Web server.

Chapter 1. Overview and new features: Administering 5

http://www.ibm.com/support/docview.wss?rs=180&uid=swg27006921
http://www.ibm.com/support/docview.wss?rs=180&uid=swg27006921

For more information, refer to “Introduction: Web servers” on page 5.

Variables

A variable is a configuration property that can be used to provide a parameter for any value in the system.

A variable has a name and a value to use in place of that name wherever the variable name is located

within the system.

For more information, refer to “Variables.”

 Related concepts

 “Introduction: Web servers” on page 5

 “Variables”
Variables in the WebSphere Application Server environment come in many varieties. They are used to

control settings and properties relating to the server environment. Three main variable options that are

important for a WebSphere Application Server user to know and understand are environment variables,

and WebSphere Application Server variables, and custom properties.

Variables

Variables in the WebSphere Application Server environment come in many varieties. They are used to

control settings and properties relating to the server environment. Three main variable options that are

important for a WebSphere Application Server user to know and understand are environment variables,

and WebSphere Application Server variables, and custom properties.

Environment variables. Environment variables, also called native environment variables, are not specific

to WebSphere Application Server and are defined by other elements, such as UNIX, Language

Environment (LE), or third-party vendors, among others. Some of the UNIX-specific native variables are

LIBPATH and STEPLIB. These variables tend to be operating system-specific.

WebSphere Application Server variables

WebSphere Application Server variables are used for three purposes:

v Configuring WebSphere Application Server path names, such as JAVA_HOME, and

APP_INSTALL_ROOT

v Configuring certain cell-wide customization values

WebSphere Application Server variables are specified in the administrative console by clicking

Environment > Manage WebSphere variables. How the variable is set determines its scope.

A variable can apply to a node or a server.

If the variable is set:

v At the server level, it applies to the entire server.

v At the node level, it applies to all servers in the node, unless you set the same variable at the server

level. In that case, for that server, the setting that is specified at the server level overrides the setting

that is specified at the node level.

Custom properties

Custom properties are property settings meant for a specific functional component. Any configuration

element can have a custom property. Common configuration elements are cell, node, server, Web

container, and transaction service. A limited number of supported custom properties are available and

these properties can be set in the administrative console using the custom properties link that is

associated with the functional component.

6 Administering applications and their environment

For example, to set Web container custom properties, click Servers > Application Servers >

server_name > Web Container Settings > Web container > Custom Properties

Custom properties set from the Web container custom properties page apply to all transports that are

associated with that Web container; custom properties set from one of the Web container transport chain

or HTTP transport custom properties pages apply only to that specific HTTP transport chain or HTTP

transport. If the same property is set on both the Web container page and either a transport chain or

HTTP transport page, the settings on the transport chain or HTTP transport page override the settings that

are defined for the Web container for that specific transport.

Language versions offered by this product

This product is offered in several languages, as enabled by the operating platform on which the product is

installed.

The following language versions are available:

v Brazilian Portuguese

v Chinese (Simplified)

v Chinese (Traditional)

v English

v French

v German

v Italian

v Japanese

v Korean

v Spanish

Chapter 1. Overview and new features: Administering 7

8 Administering applications and their environment

Chapter 2. How do I administer applications and their

environments?

Hold your cursor over the task icon () to see a description of the task. The task preview feature is

unavailable for Mozilla Web browsers.

See also the overview:

v Version 6 topology and terminology

 Create

WebSphere

profiles

Documentation

Administer

configurations

Documentation

Administer

application

servers

Documentation:

v Console

v Scripting -

configure

v Scripting -

administer

Administer other

server types

Documentation:

v Generic servers

v Custom

services

 Guide me (Web

servers)

Administer the

UDDI registry

Documentation:

v Configure

v Administer

Administer

communication

with Web servers

(plug-ins)

Documentation:

v Console

v Scripting

 Guide me

Administer HTTP

sessions

Documentation:

v Console

v Scripting

Administer IBM

HTTP Server

Version 6.x

Provide access

to naming and

directory

resources (JNDI)

Documentation:

v Name server

v Bindings

Provide access

to relational

databases (JDBC

resources)

Documentation:

v Console

v Scripting

 Guide me

Provide access

to messaging

resources

(default

messaging

provider)

Documentation:

v Console

v Scripting

Use IBM service

integration

technologies

© Copyright IBM Corp. 2006 9

ftp://ftp.software.ibm.com/software/eod/WAS_6-0/BigPicture/Presentations/WASXv6_Topology_Terminology/playershell.swf

Access Service

Integration (SI)

bus resources

 Show me

Install

applications

Documentation

v Console

v Scripting

Start and stop

applications

Documentation:

v Console

v Scripting

Update

applications

Documentation:

v Console

v Scripting

Deploy and

administer Web

services

applications

Documentation

Choose an

administrative

client

Documentation

Use the

administrative

console

Documentation

Use scripting

(wsadmin)

See also:

v Start, stop,

monitor

processes

v Other

administrative

commands

Documentation

Troubleshoot

deployment

Documentation

Troubleshoot

administration

Documentation

Legend for ″How do I?...″ links

 Detailed steps Show me Tell me Guide me Teach me

Refer to the detailed

steps and reference

Watch a brief

multimedia

demonstration

View the presentation

for an overview

Be led through the

console pages

Perform the tutorial

with sample code

Approximate time:

Varies

Approximate time: 3

to 5 minutes

Approximate time:

10 minutes+

Approximate time:

1/2 hour+

Approximate time: 1

hour+

10 Administering applications and their environment

ftp://ftp.software.ibm.com/software/eod/WAS_6-0/WPM/Simulations/WASv6_WPM_Define_SIBus_Resource.viewlet/WASv6_WPM_Define_SIBus_Resource_viewlet_swf.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Presentations/WASv6_SM_StartStop_Monitor/playershell.swf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Presentations/WASv6_SM_StartStop_Monitor/playershell.swf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Presentations/WASv6_SM_StartStop_Monitor/playershell.swf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Presentations/WASv6_SM_Commands/playershell.swf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Presentations/WASv6_SM_Commands/playershell.swf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Presentations/WASv6_SM_Commands/playershell.swf

Chapter 3. Starting and stopping quick reference

Start and stop servers in your application serving environment, referring to this quick guide to the

administrative clients and several other tools that are provided with this product.

v Use commands to start and stop servers.

 Quick reference: Issuing commands to start and stop servers

These examples are for starting and stopping the default profile on a server. Otherwise, you might need to specify

-profileName profile_name when invoking the command.

Application server

Run the following command. See startServer command for details and variations

startServer server

where server is the application server that you want to start.

Stopping the servers

Use the same command as to start, except substitute stop for start. For example, to stop an application server, issue

the command:

stopServer server

v Use administrative clients and tools.

 Quick reference: Opening the administrative console

To open the console using the default port, enter this Web address in your Web browser:

http://your_fully_qualified_server_name:9060/ibm/console

Depending on your configuration, your Web address might differ. Other factors can affect your ability to access the

console. See Starting and logging off the administrative console for details, as needed.

– To launch a scripting client, see Starting the wsadmin scripting client.

– To learn about all available administrative clients, see Using the administrative clients.

– For performance monitoring, see “Monitoring performance with Tivoli Performance Viewer (TPV)” on

page 2204.

See the administrator commands that are listed in the Reference section of the information center.

v Use development and deployment tools. The following tools can be used to edit deployment descriptors.

A deployment descriptor is an Extensible Markup Language (XML) file that describes how to deploy a

module or application by specifying configuration and container options.

Assembly tools

The assembly tools and Rational Web Developer provide a graphical interface for developing

code artifacts, assembling the code artifacts into various archives (modules), and configuring

related Java 2 Platform, Enterprise Edition (J2EE) Version 1.2, 1.3 or 1.4-compliant deployment

descriptors.

 See Assembly tools for your tool options.

Application Client Resource Configuration Tool (ACRCT)

Use the ACRCT to configure deployment descriptors for client applications. See “Deploying

J2EE application clients on workstation platforms” on page 273.

Text editor

It is not recommended because it has no built-in error checking or validation, but you can edit

deployment descriptors with any text editor with which you can edit XML files.

© Copyright IBM Corp. 2006 11

v Use installation and customization tools. Use the following tools to find planning information, start the

product installation, and perform customization and other activities after installation.

Launchpad

A graphical interface for launching the product installation. It also provides links to information

you might need for installation.

 See Using the launchpad to start the installation.

First Steps

A desktop GUI from which you can start or stop the Application Server. It also provides access

to the administrative console.

 See firststeps command.

v Use troubleshooting tools.

See Working with troubleshooting tools.

12 Administering applications and their environment

Chapter 4. Backing up and recovering the application serving

environment

The product uses many operating system and application resources that you should consider adding to

your backup and recovery procedures.

WebSphere Application Server resources can be saved while the product environment is active. When

backing up database data, you may have to shut down some or all services if a snapshot cannot be

obtained. This would occur if there are requests which obtain locks or have open transactions against the

database being saved. In a distributed environment, you may need to consider how to get a consistent

backup across several systems. If the data on systems is not closely related to data on other systems, you

may be able to backup each system in isolation. If you need a snapshot across systems simultaneously,

you may need to stop activity on all systems while the snapshot is taken.

How often you back up resources depends largely on when or how often you expect them to change.

v Back up your product environment configuration.

This category covers the resources that define your WebSphere Application Server operating

environment. Once you have done initial setup, this information should change very infrequently. You

might backup this information only when you change these settings, and not include these resources in

regularly scheduled backups.

– Administrative configuration files

– HTTP configuration (see the documentation for your Web server)

v Back up your applications.

This category covers the applications you run using WebSphere Application Server. You should back

these up the same way you back up other applications on your system. You could backup these

resources every time you add or change an application, or include these resources in a regularly

scheduled backup.

– Application deployment configuration files

v Back up your application data.

This category covers the data stores used by your WebSphere Application Server applications. Unless

your applications serve only static information, these resources are usually quite dynamic. You should

back these up the same way you back up other business data on your system. These resources are

suited for inclusion in a regularly scheduled backup.

– Servlet session data

If your applications are using other resources or services that are external to the product, remember to

include those in your backup plan as well.

© Copyright IBM Corp. 2006 13

14 Administering applications and their environment

Chapter 5. Class loading

Class loaders are part of the Java virtual machine (JVM) code and are responsible for finding and loading

class files. Class loaders enable applications that are deployed on servers to access repositories of

available classes and resources. Application developers and deployers must consider the location of class

and resource files, and the class loaders used to access those files, to make the files available to

deployed applications. Class loaders affect the packaging of applications and the runtime behavior of

packaged applications of deployed applications.

This topic describes how to configure class loaders for application files or modules that are installed on an

application server.

To better understand class loaders in WebSphere Application Server, read “Class loaders.” The topic

“Class loading: Resources for learning” on page 24 refers to additional sources.

Configure class loaders for application files or modules that are installed on an application server using the

administrative console. You configure class loaders to ensure that deployed application files and modules

can access the classes and resources that they need to run successfully.

1. If an installed application module uses a resource, create a resource provider that specifies the

directory name of the resource drivers.

Do not specify the resource Java archive (JAR) file names. All JAR files in the specified directory are

added into the class path of the WebSphere Application Server extensions class loader. If a resource

driver requires a native library (.dll or .so file), specify the name of the directory that contains the

library in the native path of the resource configuration.

2. Specify class-loader values for an application server.

3. Specify class-loader values for an installed enterprise application.

4. Specify the class-loader mode for an installed Web module.

5. If your deployed application uses shared library files, associate the shared library files with your

application. Use a library reference to associate a shared library file with your application.

a. If you have not done so already, define a shared library instance for each library file that your

applications need.

b. Define a library reference instance for each shared library that your application uses.

After configuring class loaders, ensure that your application performs as desired. To diagnose and fix

problems with class loaders, refer to Troubleshooting class loaders.

Class loaders

Class loaders find and load class files. Class loaders enable applications that are deployed on servers to

access repositories of available classes and resources. Application developers and deployers must

consider the location of class and resource files, and the class loaders used to access those files, to make

the files available to deployed applications.

This topic provides the following information about class loaders in WebSphere Application Server:

v “Class loaders used and the order of use”

v “Class-loader isolation policies” on page 17

v “Class-loader modes” on page 19

Class loaders used and the order of use

The runtime environment of WebSphere Application Server uses the following class loaders to find and

load new classes for an application in the following order:

© Copyright IBM Corp. 2006 15

1. The bootstrap, extensions, and CLASSPATH class loaders created by the Java virtual machine

The bootstrap class loader uses the boot class path (typically classes in jre/lib) to find and load

classes. The extensions class loader uses the system property java.ext.dirs (typically jre/lib/ext) to

find and load classes. The CLASSPATH class loader uses the CLASSPATH environment variable to

find and load classes.

The CLASSPATH class loader loads the Java 2 Platform, Enterprise Edition (J2EE) application

programming interfaces (APIs) provided by the WebSphere Application Server product in the j2ee.jar

file. Because this class loader loads the J2EE APIs, you can add libraries that depend on the J2EE

APIs to the class path system property to extend a server class path. However, a preferred method of

extending a server class path is to add a shared library.

2. A WebSphere extensions class loader

The WebSphere extensions class loader loads the WebSphere Application Server classes that are

required at run time. The extensions class loader uses a ws.ext.dirs system property to determine the

path that is used to load classes. Each directory in the ws.ext.dirs class path and every Java archive

(JAR) file or ZIP file in these directories is added to the class path used by this class loader.

The WebSphere extensions class loader also loads resource provider classes into a server if an

application module installed on the server refers to a resource that is associated with the provider and

if the provider specifies the directory name of the resource drivers.

3. One or more application module class loaders that load elements of enterprise applications running in

the server

The application elements can be Web modules, enterprise bean (EJB) modules, resource adapter

archives (RAR files), and dependency JAR files. Application class loaders follow J2EE class-loading

rules to load classes and JAR files from an enterprise application. WebSphere Application Server

enables you to associate shared libraries with an application.

4. Zero or more Web module class loaders

By default, Web module class loaders load the contents of the WEB-INF/classes and WEB-INF/lib

directories. Web module class loaders are children of application class loaders. You can specify that an

application class loader load the contents of a Web module rather than the Web module class loader.

Java class loaders

WebSphere extensions
class loader

Application module class loader Application module class loader

Web module class loader Web module class loader

Each class loader is a child of the previous class loader. That is, the application module class loaders are

children of the WebSphere extensions class loader, which is a child of the CLASSPATH Java class loader.

Whenever a class needs to be loaded, the class loader usually delegates the request to its parent class

loader. If none of the parent class loaders can find the class, the original class loader attempts to load the

class. Requests can only go to a parent class loader; they cannot go to a child class loader. If the

WebSphere extensions class loader is requested to find a class in a J2EE module, it cannot go to the

application module class loader to find that class and a ClassNotFoundException error occurs. After a

class is loaded by a class loader, any new classes that it tries to load reuse the same class loader or go

up the precedence list until the class is found.

16 Administering applications and their environment

Class-loader isolation policies

The number and function of the application module class loaders depend on the class-loader policies that

are specified in the server configuration. Class loaders provide multiple options for isolating applications

and modules to enable different application packaging schemes to run on an application server.

Two class-loader policies control the isolation of applications and modules:

 Class-loader policy Description

Application Application class loaders load EJB modules, dependency JAR files, embedded resource

adapters, and application-scoped shared libraries. Depending on the application

class-loader policy, an application class loader can be shared by multiple applications

(Single) or unique for each application (Multiple). The application class-loader policy

controls the isolation of applications that are running in the system. When set to Single,

applications are not isolated. When set to Multiple, applications are isolated from each

other.

WAR By default, Web module class loaders load the contents of the WEB-INF/classes and

WEB-INF/lib directories. The application class loader is the parent of the Web module class

loader. You can change the default behavior by changing the Web application archive

(WAR) class-loader policy of the application.

The WAR class-loader policy controls the isolation of Web modules. If this policy is set to

Application, then the Web module contents also are loaded by the application class loader

(in addition to the EJB files, RAR files, dependency JAR files, and shared libraries). If the

policy is set to Module, then each Web module receives its own class loader whose parent

is the application class loader.

Tip: The console and the underlying deployment.xml file use different names for WAR

class-loader policy values. In the console, the WAR class-loader policy values are

Application or Module. However, in the underlying deployment.xml file where the policy is

set, the WAR class-loader policy values are Single instead of Application, or Multiple

instead of Module. Application is the same as Single, and Module is the same as

Multiple.

Note: WebSphere Application Server class loaders never load application client modules.

For each application server in the system, you can set the application class-loader policy to Single or

Multiple. When the application class-loader policy is set to Single, then a single application class loader

loads all EJB modules, dependency JAR files, and shared libraries in the system. When the application

class-loader policy is set to Multiple, then each application receives its own class loader that is used for

loading the EJB modules, dependency JAR files, and shared libraries for that application.

An application class loader loads classes from Web modules if the application’s WAR class-loader policy is

set to Application. If the application’s WAR class-loader policy is set to Module, then each WAR module

receives its own class loader.

The following example shows that when the application class-loader policy is set to Single, a single

application class loader loads all of the EJB modules, dependency JAR files, and shared libraries of all

applications on the server. The single application class loader can also load Web modules if an application

has its WAR class-loader policy set to Application. Applications that have a WAR class-loader policy set

to Module use a separate class loader for Web modules.

Server’s application class-loader policy: Single

Application’s WAR class-loader policy: Module

Application 1

 Module: EJB1.jar

 Module: WAR1.war

 MANIFEST Class-Path: Dependency1.jar

 WAR Classloader Policy = Module

Chapter 5. Class loading 17

Application 2

 Module: EJB2.jar

 MANIFEST Class-Path: Dependency2.jar

 Module: WAR2.war

 WAR Classloader Policy = Application

WebSphere extensions class loader

Application class loader

WAR class loader

Classpath:
WebSphere/AppServer/classes
WebSphere/AppServer/lib
WebSphere/AppServer/lib/ext

WAR1.war

Classpath:
Ejb1.jar
Dependency1.jar
Ejb2.jar
Dependency2.jar
WAR2.war (WEB-INF/classes, ...)

The following example shows that when the application class-loader policy of an application server is set

to Multiple, each application on the server has its own class loader. An application class loader also loads

its Web modules if the application WAR class-loader policy is set to Application. If the policy is set to

Module, then a Web module uses its own class loader.

Server’s application class-loader policy: Multiple

Application’s WAR class-loader policy: Module

Application 1

 Module: EJB1.jar

 Module: WAR1.war

 MANIFEST Class-Path: Dependency1.jar

 WAR Classloader Policy = Module

Application 2

 Module: EJB2.jar

 MANIFEST Class-Path: Dependency2.jar

 Module: WAR2.war

 WAR Classloader Policy = Application

18 Administering applications and their environment

WebSphere extensions class loader

Application class loader Application class loader

WAR class loader

Classpath:
WebSphere/AppServer/classes
WebSphere/AppServer/lib
WebSphere/AppServer/lib/ext

WAR1.war

Classpath:
Ejb1.jar
Dependency1.jar

Classpath:
Ejb2.jar
Dependency2.jar
WAR2.war (WEB-INF/classes, ...)

Class-loader modes

The class-loader delegation mode, also known as the class loader order, determines whether a class

loader delegates the loading of classes to the parent class loader. The following values for class-loader

mode are supported:

 Class-loader mode Description

Parent first

Also known as Classes

loaded with parent

class loader first.

The Parent first or Classes loaded with parent class loader first class-loader mode

causes the class loader to delegate the loading of classes to its parent class loader before

attempting to load the class from its local class path. This value is the default for the

class-loader policy and for standard JVM class loaders.

Parent last

Also known as Classes

loaded with

application class

loader first.

The Parent last or Classes loaded with application class loader first class-loader

mode causes the class loader to attempt to load classes from its local class path before

delegating the class loading to its parent. Using this policy, an application class loader can

override and provide its own version of a class that exists in the parent class loader.

The following settings determine the mode of a class loader:

v If the application class-loader policy of an application server is Single, the server-level mode value

defines the mode for an application class loader.

v If the application class-loader policy of an application server is Multiple, the application-level mode

value defines the mode for an application class loader.

v If the WAR class-loader policy of an application is Module, the module-level mode value defines the

mode for a WAR class loader.

Configuring class loaders of a server

You can configure the application class loaders for an application server. Class loaders enable applications

that are deployed on the application server to access repositories of available classes and resources.

This topic assumes that an administrator created an application server on a WebSphere Application Server

product.

Chapter 5. Class loading 19

Configure the class loaders of an application server to set class-loader policy and mode values which

affect all applications that are deployed on the server. Use the administrative console to configure the

class loaders.

1. Click Servers > Application Servers > server_name to access the settings page for an application

server.

2. Specify the application class-loader policy for the application server. The application class-loader policy

controls the isolation of applications that run in the system (on the server). An application class loader

groups enterprise bean (EJB) modules, shared libraries, resource adapter archives (RAR files), and

dependency Java archive (JAR) files associated to an application. Dependency JAR files are JAR files

that contain code which can be used by both enterprise beans and servlets. The application

class-loader policy controls whether an application class loader can be shared by multiple applications

or is unique for each application. Use the settings page for the application server to specify the

application class-loader policy for the server:

 Option Description

Single Applications are not isolated from each other. Uses a

single application class loader to load all of the EJB

modules, shared libraries, and dependency JAR files in

the system.

Multiple Applications are isolated from each other. Gives each

application its own class loader to load the EJB modules,

shared libraries, and dependency JAR files of that

application.

3. Specify the application class-loader mode for the application server. The application class loading

mode specifies the class-loader mode when the application class-loader policy is Single. On the

settings page for the application server, select either of the following values:

 Option Description

Parent first Causes the class loader to delegate the loading of

classes to its parent class loader before attempting to

load the class from its local class path. Parent first is

the default value for class loading mode.

Parent last Causes the class loader to attempt to load classes from

its local class path before delegating the class loading to

its parent. Using this policy, an application class loader

can override and provide its own version of a class that

exists in the parent class loader.

4. Specify the class-loader mode for the class loader.

a. On the settings page for the application server, click Java and Process Management > Class

loader to access the Class loader page.

b. On the Class loader page, click New to access the settings page for a class loader.

c. On the settings page for a class loader, specify the class loader order. The Classes loaded with

parent class loader first value causes the class loader to delegate the loading of classes to its

parent class loader before attempting to load the class from its local class path. The Classes

loaded with application class loader first value causes the class loader to attempt to load

classes from its local class path before delegating the class loading to its parent.

d. Click OK.

An identifier is assigned to a class-loader instance. The instance is added to the collection of class

loaders shown on the Class loader page.

Save the changes to the administrative configuration.

20 Administering applications and their environment

Class loader collection

Use this page to manage class-loader instances on an application server. A class loader determines

whether an application class loader or a parent class loader finds and loads Java class files for an

application.

To view this administrative console page, click Servers > Application servers > server_name > Java and

Process Management > Class loader.

Class loader ID

Provides a string that is unique to the server identifying the class-loader instance. The product assigns the

identifier.

Class loader order

Specifies whether the class loader searches in the parent class loader or in the application class loader

first to load a class. The standard for development kit class loaders and WebSphere Application Server

class loaders is Classes loaded with parent class loader first. By specifying Classes loaded with

application class loader first, your application can override classes contained in the parent class

loader, but this action can potentially result in ClassCastException or LinkageErrors if you have mixed use

of overridden classes and non-overridden classes.

Class loader settings

Use this page to configure a class loader for applications that reside on an application server.

To view this administrative console page, click Servers > Application servers > server_name > Java and

Process Management > Class loader > class_loader_ID.

Class loader ID

Provides a string that is unique to the server identifying the class-loader instance. The product assigns the

identifier.

 Data type String

Class loader order

Specifies whether the class loader searches in the parent class loader or in the application class loader

first to load a class. The standard for development kit class loaders and WebSphere Application Server

class loaders is Classes loaded with parent class loader first. By specifying Classes loaded with

application class loader first, your application can override classes contained in the parent class

loader, but this action can potentially result in ClassCastException or LinkageErrors if you have mixed use

of overridden classes and non-overridden classes.

The options are Classes loaded with parent class loader first and Classes loaded with application

class loader first. The default is to search in the parent class loader before searching in the application

class loader to load a class.

For your application to use the default configuration of Jakarta Commons Logging in WebSphere

Application Server, set this application class loader order to Classes loaded with parent class loader

first. For your application to override the default configuration of Jakarta Commons Logging in

WebSphere Application Server, your application must provide the configuration in a form supported by

Jakarta Commons Logging and this class loader order must be set to Classes loaded with application

class loader first. Also, to override the default configuration, set the class loader order for each Web

module in your application so that the correct logger factory loads.

 Data type String

Chapter 5. Class loading 21

Default Classes loaded with parent class loader first

Configuring application class loaders

You can set values that control the class-loading behavior of an installed enterprise application. Class

loaders enable an application to access repositories of available classes and resources.

This topic assumes that you installed an application on an application server.

Configure the class loaders of an enterprise application to set class-loader policy and mode values for this

application.

An application class loader groups enterprise bean (EJB) modules, shared libraries, resource adapter

archives (RAR files), and dependency Java archive (JAR) files associated to an application. Dependency

JAR files are JAR files that contain code which can be used by both enterprise beans and servlets.

An application class loader is the parent of a Web application archive (WAR) class loader. By default, a

Web module has its own WAR class loader to load the contents of the Web module. The WAR

class-loader policy value of an application class loader determines whether the WAR class loader or the

application class loader is used to load the contents of the Web module.

Use the administrative console to configure the class loaders.

1. Click Applications > Enterprise Applications > application_name > Class loading and update

detection to access the settings page for an application class loader.

2. Specify whether to reload application classes when the application or its files are updated.

By default, class reloading is not enabled. Select Reload classes when application files are

updated to choose to reload application classes. You might specify different values for EJB modules

and for Web modules such as servlets and JavaServer Pages (JSP) files.

3. Specify the number of seconds to scan the application’s file system for updated files.

The value specified for Polling interval for updated files takes effect only if class reloading is

enabled. The default is the value of the reloading interval attribute in the IBM extension

(META-INF/ibm-application-ext.xmi) file of the enterprise application (EAR file). You might specify

different values for EJB modules and for Web modules such as servlets and JSP files.

To enable reloading, specify an integer value that is greater than zero (for example, 1 to 2147483647).

To disable reloading, specify zero (0).

4. Specify the class loader order for the application.

The application class loader order specifies whether the class loader searches in the parent class

loader or in the application class loader first to load a class. The default is to search in the parent class

loader before searching in the application class loader to load a class.

Select either of the following values for Class loader order:

 Option Description

Classes loaded with parent class loader first Causes the class loader to search in the parent class

loader first to load a class. This value is the standard for

Development Kit class loaders and WebSphere

Application Server class loaders.

22 Administering applications and their environment

Option Description

Classes loaded with application class loader first Causes the class loader to search in the application class

loader first to load a class. By specifying Classes loaded

with application class loader first, your application

can override classes contained in the parent class loader.

Attention: Specifying the Classes loaded with

application class loader first value might result in

LinkageErrors or ClassCastException messages if you

have mixed use of overridden classes and non-overridden

classes.

5. Specify whether to use a single or multiple class loaders to load Web application archives (WAR files)

of your application.

By default, Web modules have their own WAR class loader to load the contents of the

WEB-INF/classes and WEB-INF/lib directories. The default WAR class loader value is Class loader

for each WAR file in application, which uses a separate class loader to load each WAR file. Setting

the value to Single class loader for application causes the application class loader to load the

Web module contents as well as the EJB modules, shared libraries, RAR files, and dependency JAR

files associated to the application. The application class loader is the parent of the WAR class loader.

Select either of the following values for WAR class loader policy:

 Option Description

Class loader for each WAR file in application Uses a different class loader for each WAR file.

Single class loader for application Uses a single class loader to load all of the WAR files in

your application.

6. Click OK.

Save the changes to the administrative configuration.

Configuring Web module class loaders

You can set values that control the class-loading behavior of an installed Web module.

This topic assumes that you installed a Web module on an application server.

Configure the class loader order value of an installed Web module. By default, a Web module has its own

Web application archive (WAR) class loader to load the contents of the Web module, which are in the

WEB-INF/classes and WEB-INF/lib directories.

An application class loader is the parent of a WAR class loader. The WAR class-loader policy value of an

application class loader determines whether the WAR class loader or the application class loader is used

to load the contents of the Web module. The default WAR class loader policy value is Class loader for

each WAR file in application. If the policy is set to Class loader for each WAR file in application,

then each Web module receives its own class loader whose parent is the application class loader. If the

policy is set to Single class loader for application on the settings page of an application class loader,

then the application class loader loads the Web module contents as well as the enterprise bean (EJB)

modules, shared libraries, resource adapter archives (RAR files), and dependency Java archive (JAR) files

associated to an application. Thus, the configuration of the parent application class loader affects the WAR

class loader.

Use the administrative console to configure the application and WAR class loaders.

1. If you have not done so already, configure the application class loader.

Chapter 5. Class loading 23

Settings such as Reload classes when application files are updated, Polling interval for updated

files and WAR class loader policy can affect Web module class loading.

If WAR class loader policy is set to Class loader for each WAR file in application, then the Web

module receives its own class loader and the WAR class-loader policy of the Web module defines the

mode for a WAR class loader. If the policy is set to Single class loader for application, then the

application class loader loads the Web module contents.

2. Specify the class loader order for the installed Web module.

The Web module class-loader mode specifies whether the class loader searches in the parent

application class loader or in the WAR class loader first to load a class. The default is to search in the

parent application class loader before searching in the WAR class loader to load a class.

Select either of the following values for Class loader order:

 Option Description

Classes loaded with parent class loader first Causes the class loader to search in the parent

application class loader first to load a class. This is the

standard for Development Kit class loaders and

WebSphere Application Server class loaders.

Tip: If classes and resources needed by the Web

module cannot be accessed by the application class

loader, but can be accessed by the WAR class loader,

specify Classes loaded with application class loader

first. If the application class loader cannot find a class,

the class loader delegates the request to find the class to

its parent, the WebSphere Application Server extensions

class loader. If the WebSphere Application Server

extensions class loader cannot find the class, the class

loader delegates the request to its parent, the bootstrap,

extensions, and CLASSPATH class loaders created by

the Java virtual machine. Requests can only go to a

parent class loader; they cannot go to a child class

loader. Thus, if Classes loaded with parent class

loader first is specified, the WAR class loader never

receives a request to load a class.

Classes loaded with application class loader first Causes the class loader to search in the WAR class

loader first to load a class. By specifying Classes loaded

with application class loader first, your WAR class

loader can override classes contained in the parent

application class loader.

Attention: Specifying the Classes loaded with

application class loader first value might result in

LinkageErrors or ClassCastException messages if you

have mixed use of overridden classes and non-overridden

classes.

3. Click OK.

Save the changes to the administrative configuration.

Class loading: Resources for learning

Additional information and guidance on class loading is available on various Internet sites.

Use the following links to find relevant supplemental information about class loaders. The information

resides on IBM and non-IBM Internet sites, whose sponsors control the technical accuracy of the

information.

24 Administering applications and their environment

These links are provided for convenience. Often, the information is not specific to the IBM WebSphere

Application Server product, but is useful all or in part for understanding the product. When possible, links

are provided to technical papers and Redbooks that supplement the broad coverage of the release

documentation with in-depth examinations of particular product areas.

Refer to Web resources for learning for links to information applicable to WebSphere Application Server

generally, such as lists of IBM technical papers, Redbooks and samples.

For current information available from IBM Support on known problems and their resolution, see the IBM

Support page. IBM Support has documents that can save you time gathering information that is needed to

resolve this problem. Before opening a PMR, see the IBM Support page.

View links to additional information about:

v “Programming model and decisions”

v “Programming instructions and examples”

v “Programming specifications”

Programming model and decisions

v Demystifying class loading problems, Part 1: An introduction to class loading and debugging tools -

Learn how class loading works and how your JVM can help you sort out class loading problems

(developerWorks, November 2005)

v Demystifying class loading problems, Part 2: Basic class loading exceptions - An in-depth look at some

simple class loading quirks and conundrums (developerWorks, December 2005)

v Demystifying class loading problems, Part 3: Tackling more unusual class loading problems -

Understand class loading and quash subtle exceptions (developerWorks, December 2005)

v J2EE Class Loading Demystified (developerWorks, August 2002)

v Java programming dynamics, Part 1: Classes and class loading - A look at classes and what goes on

as they’re loaded by a JVM (developerWorks, April 2003)

Programming instructions and examples

v WebSphere Application Server V6 System Management & Configuration Handbook

v IBM WebSphere Developer Technical Journal: Co-hosting multiple versions of J2EE applications

v Chapter 24 - J2EE Packaging and Deployment excerpted from Professional Java Server Programming

J2EE 1.3 Edition

Programming specifications

v J2EETM Platform Specification

v J2EETM Extension Mechanism Architecture

Chapter 5. Class loading 25

http://www-1.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCVRZU
http://www-1.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCVRZU
http://www-128.ibm.com/developerworks/java/library/j-dclp1/?S_TACT=106AH10W&S_CMP=NC
http://www.ibm.com/developerworks/java/library/j-dclp2.html?S_TACT=105AGX10&S_CMP=NC
http://www-128.ibm.com/developerworks/java/library/j-dclp3/?S_TACT=105AGX10&S_CMP=NC
http://www7b.boulder.ibm.com/wsdd/library/techarticles/0112_deboer/deboer.html
http://www-128.ibm.com/developerworks/java/library/j-dyn0429/
http://publib-b.boulder.ibm.com/abstracts/sg246451.html?Open
http://www-128.ibm.com/developerworks/websphere/techjournal/0405_poddar/0405_poddar.html
http://www.theserverside.com/articles/content/J2EE-Deployment/chapter.html
http://java.sun.com/j2ee/download.html#platformspec
http://java.sun.com/j2se/1.4/docs/guide/extensions/spec.html

26 Administering applications and their environment

Chapter 6. Deploying and administering applications

Deploying an application file consists of installing the application file on a server configured to hold

installable modules.

Before installing an enterprise application or other installable module on an application server, you must

develop the module, assemble the module, and configure the target server . Before choosing a

deployment target for the module, ensure that the target version is compatible with your module.

During installation, you can configure the module enough to enable it to run on the server. After

installation, you can configure the module further, start or stop the application, and otherwise manage its

activity.

The topics in this section describe how to deploy and administer applications or modules using the

administrative console. You can also use scripting or administrative programs (JMX).

v Install application files on an application server.

v Edit the administrative configuration for an application.

v Optional: View the deployment descriptor for an application or module.

v Start and stop the application.

v Export applications.

v Export DDL files.

v Update an application or module.

v Uninstall applications.

v Remove a file from an application or module.

After making changes to administrative configurations of your applications in the administrative console,

ensure that you save the changes.

Enterprise (J2EE) applications

Enterprise applications (or J2EE applications) are applications that conform to the Java 2 Platform,

Enterprise Edition, specification.

Enterprise applications can consist of the following:

v Zero or more EJB modules (packaged in JAR files)

v Zero or more Web modules (packaged in WAR files)

v Zero or more connector modules (packaged in RAR files)

v Zero or more Session Initiation Protocol (SIP) modules (packaged in SAR files)

v Zero or more application client modules

v Additional JAR files containing dependent classes or other components required by the application

v Any combination of the above

A J2EE application is represented by, and packaged in, an enterprise archive (EAR) file.

System applications

A system application is a J2EE enterprise application that is central to a WebSphere Application Server

product.

Examples of system applications include isclite, managementEJB and filetransfer.

© Copyright IBM Corp. 2006 27

Because a system application is an important part of a WebSphere Application Server product, a system

application is deployed when the product is installed and is updated only through a product fix or upgrade.

For some system applications, such as filetransfer, users cannot change the metadata for the system

application, unless the metadata assigns users and groups for security purposes. For these applications,

non-security related metadata such as its J2EE bindings or J2EE extensions must be updated through a

product fix or upgrade.

System applications are not shown in the list of installed applications on the console Enterprise

Applications page, or through wsadmin and Java application programming interfaces, to prevent users

from accidentally stopping, updating or removing the system applications.

Note that J2EE Samples are not system applications even though they are provided as part of a

WebSphere Application Server product. Similarly, applications that support changes to their metadata are

not system applications.

Installing application files

As part of deploying an application, you install application files on a server configured to hold installable

modules.

Before you can install your application files on an application server, you must configure the target

application server. As part of configuring the server, determine whether your application files can be

installed to your deployment targets.

Also, before you install the files, assemble modules as needed.

Installable modules include enterprise archive (EAR), enterprise bean (EJB), Web archive (WAR), Session

Initiation Protocol (SIP) module (SAR), resource adapter (connector or RAR), and application client

modules. Application client files can be installed in a WebSphere Application Server configuration but

cannot be run on a server. Complete the following steps to install your files.

1. Determine which method to use to install your application files. WebSphere Application Server provides

several ways to install modules.

2. Install the application files using

v Administrative console

v wsadmin scripts

v Java administrative programs that use JMX APIs

v Java programs that define a J2EE DeploymentManager object in accordance with J2EE Deployment

API Specification (JSR-88)

3. Start the deployed application files using

v Administrative console

v wsadmin startApplication

v Java programs that use ApplicationManager or AppManagement MBeans

v Java programs that define a J2EE DeploymentManager object in accordance with J2EE Deployment

API Specification (JSR-88)

Save the changes to your administrative configuration.

Next, test the application. For example, point a Web browser at the URL for a deployed application

(typically http://hostname:9060/Web_module_name, where hostname is your valid Web server and 9060 is

the default port number) and examine the performance of the application. If the application does not

perform as desired, edit the application configuration, then save and test it again.

28 Administering applications and their environment

Installable module versions

The contents of a module affect whether you can install the module on a WebSphere Application Server

Version 6.0 and later (6.x) deployment target, or if you must install the module on a Version 5.0 and later

(5.x) deployment target.

Installable application modules

You can install an application, enterprise bean (EJB) module, Session Initiation Protocol (SIP) module

(SAR), or Web module developed for a Version 5.x product on a 5.x or 6.x deployment target, provided the

module:

v Does not support Java 2 Platform, Enterprise Edition (J2EE) 1.4;

v Does not call any 6.x runtime application programming interfaces (APIs); and

v Does not use any 6.x product features.

If the module supports J2EE 1.4, then you must install the module on a 6.x deployment target. If the

module calls a 6.1.x API or uses a 6.1.x feature, then you must install the module on a 6.1.x deployment

target. Modules that call a 6.0.x API or use a 6.0.x feature can be installed on a 6.0.x or 6.1.x deployment

target.

Selecting options such as Precompile JavaServer Pages files, Use binary configuration, Deploy Web

services or Deploy enterprise beans during application installation indicates that the application uses

6.1.x product features. You cannot deploy such applications on a 5.x or 6.0.x deployment target. You must

deploy such applications on a 6.1.x deployment target.

Similarly, you must deploy an application that uses J2EE 1.4 features such as Java Authorization Contract

for Containers (JACC) provided by an application server on a 6.x deployment target.

Installable RAR files

You can install a standalone resource adapter (connector) module, or RAR file, developed for a Version

5.x product to a 5.x or 6.x deployment target, provided the module does not call any 6.x runtime APIs. If

the module calls a 6.x API, then you must install the module on a 6.x deployment target.

Deployment targets

A 5.x deployment target is a server on a WebSphere Application Server Version 5 product.

A 6.x deployment target is a server on a WebSphere Application Server Version 6 product.

 Table 1. Compatible deployment target versions for 5.x and 6.x modules

Module type Module Java

support

Module calls 6.x

runtime APIs or

uses 6.x features?

Client versions that

can install module

Deployment target

versions

Application, EJB,

Web, or client

J2EE 1.3 No 5.x or 6.x 5.x or 6.x

Chapter 6. Deploying and administering applications 29

Table 1. Compatible deployment target versions for 5.x and 6.x modules (continued)

Application, EJB,

Web, or client

J2EE 1.3 Yes 6.x 6.x

Modules that call

6.1.x runtime APIs or

use 6.1.x features

must be installed on a

6.1.x deployment

target. Modules that

call 6.0.x runtime

APIs or use 6.0.x

features can be

installed on any 6.x

deployment target.

Application, EJB,

SAR, Web, or client

J2EE 1.4 Yes or No 6.x 6.x

Resource adapter JCA 1.0 No 5.x or 6.x 5.x or 6.x

Resource adapter JCA 1.0 Yes 6.x 6.x

Modules that call

6.1.x runtime APIs

must be installed on a

6.1.x deployment

target. Modules that

call 6.0.x runtime

APIs can be installed

on any 6.x

deployment target.

Resource adapter JCA 1.5 Yes or No 6.x 6.x

Modules that call

6.1.x runtime APIs

must be installed on a

6.1.x deployment

target. Modules that

call 6.0.x runtime

APIs can be installed

on any 6.x

deployment target.

Ways to install applications or modules

The product provides several ways to install application files.

Installable files include enterprise archive (EAR), enterprise bean (EJB), Web archive (WAR), Session

Initiation Protocol (SIP) module (SAR), resource adapter (connector or RAR), and application client

modules. They can be installed on a server. Application client files can be installed in a WebSphere

Application Server configuration but cannot be run on a server.

30 Administering applications and their environment

Table 2. Ways to install application files

Option Method Modules Comments Starting after install

Administrative

console install wizard

See “Installing

application files with

the console” on page

32.

Click Applications >

Install New

Application in the

console navigation

tree and follow

instructions in the

wizard.

All EAR, EJB, WAR,

SAR, RAR, and

application client files

Provides one of the

easier ways to install

application files. See

“Preparing for

application installation

settings” on page 37

for guidance.

For applications that

do not require

changes to the default

bindings, select Show

me all installation

options and

parameters, select

Generate default

bindings, click the

Summary step, and

then click Finish.

Click Start on the

Enterprise

Applications page

accessed by clicking

Applications >

Enterprise

Applications in the

console navigation

tree.

wsadmin scripts Invoke AdminApp

object install

commands in a script

or at a command

prompt.

All EAR, EJB, WAR,

SAR, RAR, and

application client files

Getting started with

scripting provides an

overview of wsadmin.

v Invoke the

AdminApp

startApplication

command.

v Invoke the

startApplication

method on an

ApplicationManager

MBean using

AdminControl.

Java application

programming

interfaces

Install programs by

completing the steps

in Installing an

application through

programming.

All EAR files Use MBeans to install

the application.

Managing applications

through programming

provides an overview

of Java MBean

programming.

Start the application

by calling the

startApplication

method on a proxy.

WebSphere rapid

deployment

Refer to articles under

Rapid deployment of

J2EE applications in

this information

center.

Briefly, do the

following:

1. Update your J2EE

application files.

2. Set up the rapid

deployment

environment.

3. Create a free-form

project.

4. Launch a rapid

deployment session.

5. Drop your updated

application files into

the free-form project.

All J2EE modules,

including EAR files

and standalone EJB,

WAR, SAR, RAR, and

application client files

WebSphere rapid

deployment offers the

following advantages:

v You do not need to

assemble your J2EE

application files prior

to deployment.

v You do not need to

use other installation

tools mentioned in

this table to deploy

the files.

Use any of the above

options to start the

application. Clicking

Start on the

Enterprise

Applications page is

the easiest option.

Chapter 6. Deploying and administering applications 31

Table 2. Ways to install application files (continued)

Option Method Modules Comments Starting after install

Java programs Code programs that

use J2EE

DeploymentManager

(JSR-88) methods.

All J2EE modules,

including EAR files

and standalone EJB,

WAR, SAR, RAR, and

application client files

v Uses J2EE

Application

Deployment

Specification

(JSR-88).

v Can customize

modules using

DConfigBeans.

Call the J2EE

DeploymentManager

(JSR-88) method start

in a program to start

the deployed modules

when the module’s

running environment

initializes.

Installing application files with the console

Installing application files consists of placing assembled enterprise application, Web, enterprise bean

(EJB), or other installable modules on a server or cluster configured to hold the files. Installed files that

start and run properly are considered deployed.

Before installing enterprise application files, ensure that you are installing your application files onto a

compatible deployment target. If the deployment target is not compatible, select a different target.

To install new enterprise application files to a WebSphere Application Server configuration, you can use

the administrative console, the wsadmin tool, Java MBean programs, or Java programs that call J2EE

DeploymentManager (JSR-88) methods. This topic describes how to use the administrative console to

install an application, EJB component, Session Initiation Protocol (SIP) module (SAR), or Web module.

Important: After you start performing the steps below, click Cancel to exit if you decide not to install the

application. Do not simply move to another administrative console page without first clicking

Cancel on an application installation page.

1. Click Applications > Install New Application in the console navigation tree.

2. On the first Preparing for application installation page:

a. Specify the full path name of the source enterprise application file (.ear file otherwise known as an

EAR file). The EAR file that you are installing can be either on the client machine (the machine that

runs the Web browser) or on the server machine (the machine to which the client is connected). If

you specify an EAR file on the client machine, then the administrative console uploads the EAR file

to the machine on which the console is running and proceeds with application installation. You can

also specify a standalone Web application archive (WAR), SAR or Java archive (JAR) file for

installation.

b. If you are installing a standalone WAR or SAR file, specify the context root.

c. Select whether to view all installation options.

Prompt me only when additional information is required

Displays the module mapping step as well as any steps that require you to specify needed

information to install the application successfully.

Show me all installation options and parameters

Displays all installation options. To use Generate default bindings, which supplies default

values for incomplete bindings, select this option.

d. Click Next.

3. If you selected Show me all installation options and parameters, for the second Preparing for

application installation page:

a. Select whether to generate default bindings. Using the default bindings causes any incomplete

bindings in the application to be filled in with default values. Existing bindings are not altered. You

can customize default values used in generating default bindings. For example, you can specify a

Java Naming and Directory Interface (JNDI) prefix for EJB files in EJB modules, default data

32 Administering applications and their environment

source and connection factory settings for EJB modules, virtual host for Web modules, and so on.

“Preparing for application installation settings” on page 37 describes available customizations and

provides sample bindings.

b. Click Next. If security warnings are displayed, click Continue. The Install New Application pages

are displayed. If you chose to generate default bindings, you can proceed to the Summary step.

“Example: Installing an EAR file using the default bindings” on page 51 provides sample steps.

4. Specify values for installation options as needed.

You can click on a step number to move directly to that panel instead of clicking Next.

 Panel Description

Select installation options On the Select installation options panel, provide values for the settings specific

to WebSphere Application Server. Default values are used if you do not specify a

value.

Map modules to servers On the Map modules to servers panel, specify deployment targets where you

want to install the modules contained in your application. Modules can be installed

on the same deployment target or dispersed among several deployment targets.

Each module must be mapped to a target server. A deployment target can be an

application server or Web server.

Provide options to compile

JSPs

If the Precompile JavaServer Pages files setting is enabled on the Select

installation options panel and your application uses JavaServer Pages (JSP)

files, then you can specify JSP compiler options on the Provide options to

compile JSPs panel.

Provide JNDI names for beans If your application uses EJB modules, on the Provide JNDI names for beans

panel, specify a JNDI name for each enterprise bean in every EJB module. You

must specify a JNDI name for every enterprise bean defined in the application.

For example, for the EJB module MyBean.jar, specify MyBean.

Map default data sources for

modules containing 1.x entity

beans

If your application uses EJB modules that contain Container Managed Persistence

(CMP) beans that are based on the EJB 1.x specification, for Map default data

sources for modules containing 1.x entity beans, specify a JNDI name for the

default data source for the EJB modules. The default data source for the EJB

modules is optional if data sources are specified for individual CMP beans.

Map data sources for all 1.x

CMP beans

If your application has CMP beans that are based on the EJB 1.x specification, for

Map data sources for all 1.x CMP beans, specify a JNDI name for data sources

to be used for each of the 1.x CMP beans. The data source attribute is optional

for individual CMP beans if a default data source is specified for the EJB module

that contains CMP beans. If neither a default data source for the EJB module nor

a data source for individual CMP beans are specified, then a validation error

displays after you click Finish and the installation is cancelled.

Map EJB references to beans If your application defines EJB references, for Map EJB references to beans,

specify JNDI names for enterprise beans that represent the logical names

specified in EJB references. Each EJB reference defined in the application must

be bound to an EJB file before clicking Finish on the Summary panel.

Map resource references to

resources

If your application defines resource references, for Map resource references to

resources, specify JNDI names for the resources that represent the logical names

defined in resource references. You can optionally specify login configuration

name and authentication properties for the resource. After specifying

authentication properties, click OK to save the values and return to the mapping

step. Each resource reference defined in the application must be bound to a

resource defined in your WebSphere Application Server configuration before

clicking on Finish on the Summary panel.

Chapter 6. Deploying and administering applications 33

Panel Description

Map virtual hosts for Web

modules

If your application uses Web modules, for Map virtual hosts for Web modules,

select a virtual host from the list that should map to a Web module defined in the

application. The port number specified in the virtual host definition is used in the

URL that is used to access artifacts such as servlets and JSP files in the Web

module. Each Web module must have a virtual host to which it maps. Not

specifying all needed virtual hosts will result in a validation error displaying after

you click Finish on the Summary panel.

Map security roles to users or

groups

If the application has security roles defined in its deployment descriptor then, for

Map security roles to users or groups, specify users and groups that are

mapped to each of the security roles. Select Role to select all of the roles or

select individual roles. For each role, you can specify whether predefined users

such as Everyone or All authenticated users are mapped to it. To select specific

users or groups from the user registry:

1. Select a role and click Lookup users or Lookup groups.

2. On the Lookup users or groups panel displayed, enter search criteria to extract

a list of users or groups from the user registry.

3. Select individual users or groups from the results displayed.

4. Click OK to map the selected users or groups to the role selected on the Map

security roles to users or groups panel.

Map RunAs roles to users If the application has Run As roles defined in its deployment descriptor, for Map

RunAs roles to users, specify the Run As user name and password for every

Run As role. Run As roles are used by enterprise beans that must run as a

particular role while interacting with another enterprise bean. Select Role to select

all of the roles or select individual roles. After selecting a role, enter values for the

user name, password, and verify password and click Apply.

Ensure all unprotected 1.x

methods have the correct level

of protection

If your application contains EJB 1.x CMP beans that do not have method

permissions defined for some of the EJB methods, for Ensure all unprotected

1.x methods have the correct level of protection, specify if you want to leave

such methods unprotected or assign protection with deny all access.

Bind listeners for

message-driven beans

If your application contains message driven enterprise beans, for Bind listeners

for message-driven beans, provide a listener port name or an activation

specification JNDI name for every message driven bean.

Map default data sources for

modules containing 2.x entity

beans

If your application uses EJB modules that contain CMP beans that are based on

the EJB 2.x specification, for Map default data sources for modules containing

2.x entity beans, specify a JNDI name for the default data source and the type of

resource authorization to be used for the default data source for the EJB modules.

You can optionally specify a login configuration name and authentication

properties for the data source. When creating authentication properties, you must

click OK to save the values and return to the mapping step. The default data

source for EJB modules is optional if data sources are specified for individual

CMP beans.

Map data sources for all 2.x

CMP beans

If your application has CMP beans that are based on the EJB 2.x specification, on

the Map data sources for all 2.x CMP beans panel, for each of the 2.x CMP

beans specify a JNDI name and the type of resource authorization for data

sources to be used.

You can optionally specify a login configuration name and authentication

properties for the data source. When creating authentication properties, you must

click OK to save the values and return to the mapping step. The data source

attribute is optional for individual CMP beans if a default data source is specified

for the EJB module that contains CMP beans. If neither a default data source for

the EJB module nor a data source for individual CMP beans are specified, then a

validation error is displayed after you click Finish and installation is cancelled.

34 Administering applications and their environment

Panel Description

Ensure all unprotected 2.x

methods have the correct level

of protection

If your application contains EJB 2.x CMP beans that do not have method

permissions defined in the deployment descriptors for some of the EJB methods,

on the Ensure all unprotected 2.x methods have the correct level of

protection panel, specify whether you want to assign a specific role to the

unprotected methods, add the methods to the exclude list, or mark them as

unchecked. Methods added to the exclude list are marked as uncallable. For

methods marked unchecked no authorization check is performed prior to their

invocation.

Provide options to perform the

EJB Deploy

If the Deploy enterprise beans setting is enabled on the Select installation

options panel, then you can specify options for the EJB deployment tool on the

Provide options to perform the EJB Deploy panel. On this panel, you can

specify extra class paths, RMIC options, database types, and database schema

names to be used while running the EJB deployment tool.

Map shared libraries On the Shared library references and Shared library mapping panels, specify

shared library files for your application or Web modules to use. A defined shared

library must exist to associate your application or module to the library file.

Provide JSP reloading options

for Web modules

If your application uses Web modules, for Provide JSP reloading options for

Web modules, configure the class reloading of JavaServer Pages (JSP) files.

Map context roots for Web

modules

If your application uses Web modules, for Map context roots for Web modules,

specify a context root for each Web module in the application.

Initialize parameters for

servlets

If your application uses Web modules, for Initialize parameters for servlets,

specify or override initial parameters that are passed to the init method of Web

module servlet filters.

Map environment entries for

Web modules

If your application uses Web modules, for Map environment entries for Web

modules, configure the environment entries of Web modules such as servlets and

JSP files.

Map resource environment

entry references to resources

If your application contains resource environment references, for Map resource

environment entry references to resources, specify JNDI names of resources

that map to the logical names defined in resource environment references. If each

resource environment reference does not have a resource associated with it, after

you click Finish a validation error is displayed.

Correct use of system identity If your application defines Run-As Identity as System Identity, for Correct use of

system identity, you can optionally change it to Run-As role and specify a user

name and password for the Run As role specified. Selecting System Identity

implies that the invocation is done using the WebSphere Application Server

security server ID and should be used with caution as this ID has more privileges.

Correct isolation levels for all

resource references

If your application has resource references that map to resources that have an

Oracle database doing backend processing, for Correct isolation levels for all

resource references, specify or correct the isolation level to be used for such

resources when used by the application. Oracle databases support

ReadCommitted and Serializable isolation levels only.

Bind message destination

references to administered

objects

If your application uses message driven beans, for Bind message destination

references to administered objects, specify the JNDI name of the J2C

administered object to bind the message destination reference to the message

driven beans.

Attention: If multiple message destination references are linked to the same

message destination, only one JNDI name is collected. When a message

destination reference links to the same message destination as a message driven

bean and the destination JNDI name has been collected already, the destination

JNDI name for the message destination reference is not collected.

Provide JNDI names for JCA

objects

If your application contains an embedded .rar file, for Provide JNDI names for

JCA objects, specify the name and JNDI name of each J2C connection factory,

J2C administered object and J2C activation specification.

Chapter 6. Deploying and administering applications 35

Panel Description

Bind J2C activationspecs to

destination JNDI names

If your application contains an embedded .rar file, its activationSpec property has

the value Destination, and its introspected type is javax.jms.Destination, for

Bind J2C activationspecs to destination JNDI names, specify the jndiName

value for each activation bound to it.

Select current backend ID If your application has EJB modules for which deployment code has been

generated for multiple backend databases using an assembly tool, for Select

current backend ID, specify the backend ID representing the backend database

to be used when the EJB module runs.

This step is not shown if the Deploy enterprise beans setting is enabled on the

Select installation options panel and if a database type other than None is

specified on the Provide options to perform the EJB Deploy panel.

Provide options to perform the

Web services deployment

If the Deploy Web services setting is enabled on the Select installation options

panel and your application uses Web services, then you can specify wsdeploy

command options on the Provide options to perform the Web services

deployment panel. For information on this panel, refer to descriptions of the

wsdeploy -cp and -jardir options.

5. On the Summary panel, verify the cell, node, and server onto which the application modules will install:

a. Beside Cell/Node/Server, click Click here.

b. Verify the settings.

c. Return to the Summary panel.

d. Click Finish.

Several messages are displayed, indicating whether your application file is installing successfully.

If Validate input off/warn/fail on the Select installation options panel is set to warn, the default, several

validation warnings might be displayed. If the setting is fail, the validation warnings might cause errors.

If you receive an OutOfMemory exception and the source application file does not install, your system

might not have enough memory or your application might have too many modules in it to install

successfully onto the server. If lack of system memory is not the cause of the exception, package your

application again so the .ear file has fewer modules. If lack of system memory and the number of

modules are not the cause of the exception, check the options you specified on the Java Virtual Machine

page of the application server running the administrative console. Then, try installing the application file

again.

Windows

During installation certain application files are extracted in the directory represented by the

configuration session and, when the configuration is saved, these files are saved in the WebSphere

Application Server configuration repository. On Windows machines, there is a limit of 256 characters for

file paths. Therefore, the application installation might fail if the path for application files in the configuration

session or in the configuration repository exceeds the limit of 256 characters. You might see FileNotFound

exceptions with path name too long in the message. To overcome such problems, make application names

and module URI names shorter in length, which helps reduce the file path length. Then, try installing the

application file again.

After the application file installs successfully, do the following:

1. Save the changes to your configuration.

The application is registered with the administrative configuration and application files are copied to the

target directory, which is app_server_root/installedApps/cell_name by default or the directory that you

designate.

For a single-server installation, application files are copied to the destination directory when the

changes are saved.

36 Administering applications and their environment

2. Start the application.

3. Test the application. For example, point a Web browser at the URL for the deployed application and

examine the performance of the application. If necessary, edit the application configuration.

Preparing for application installation settings

Use this page to install an application (EAR file) or module (JAR, SAR or WAR file).

To view this administrative console page, click Applications > Install New Application.

Follow the steps on this page to install an application or module. You must complete, at minimum, the first

step; you must complete some or all of the later steps, depending on whether you are installing an

application, EJB module, SIP module or Web module.

Path to the new application:

Specifies the fully qualified path to the .ear, .jar, .sar, or .war file for the enterprise application.

 Use Local file system if the browser and application files are on the same machine (whether or not the

server is on that machine, too).

Use Remote file system if the application file resides on any node in the current cell context. Only .ear,

.jar, .sar, or .war files are shown during the browsing.

During application installation, application files typically are uploaded from a client machine running the

browser to the server machine running the administrative console, where they are deployed. In such

cases, use the Web browser running the administrative console to select EAR, WAR, SAR or JAR

modules to upload to the server machine.

In some cases, however, the application files reside on the file system of any of the nodes in a cell. To

have the application server install these files, use the Remote file system option.

Also use the Remote file system option to specify an application file already residing on the machine

running the application server. For example, the field value might be profile_root/installableApps/
test.ear. If you are installing a standalone WAR module, then specify the context root as well.

After the application file is transferred, the Remote file system value shows the path of the temporary

location on the deployment manager or server machine.

Context root:

Specifies the context root of the Web application (WAR)or a Session Initiation Protocol (SIP) module

(SAR).

 This field is used only to install a standalone WAR or SAR file. The context root is combined with the

defined servlet mapping (from the WAR file) to compose the full URL that users type to access the servlet.

For example, if the context root is /gettingstarted and the servlet mapping is MySession, then the URL is

http://host:port/gettingstarted/MySession.

How do you want to install the application?:

Specifies whether to show only installation options that require you to supply information or to show all

installation options.

 The Prompt me only when additional information is required option enables you to install your

application more easily because you do not need to examine all available installation options.

Chapter 6. Deploying and administering applications 37

However, to use the Generate default bindings option, which might be the quickest and easiest option for

installing your application, you must select the Show me all installation options and parameters and

then select Generate default bindings on the next panel.

Generate default bindings:

Specifies whether to generate default bindings. If you place a check mark in the check box, then any

incomplete bindings in the application are filled in with default values. Existing bindings are not altered.

 By choosing this option, you can directly jump to the Summary step and install the application if none of

the steps have a red asterisk (*) next to them. A red asterisk denotes that the step has incomplete data

and requires a valid value. On the Summary panel, verify the cell, node and server on which the

application is installed.

You must select Show me all installation options and parameters to view this option.

Bindings are generated as follows:

v EJB JNDI names are generated of the form prefix/ejb-name. The default prefix is ejb, but can be

overridden. The ejb-name is as specified in the deployment descriptors <ejb-name> tag.

v EJB references are bound as follows: If an <ejb-link> is found, it is honored. Otherwise, if a unique

enterprise bean is found with a matching home (or local home) interface as the referenced bean, the

reference is resolved automatically.

v Resource reference bindings are derived from the <res-ref-name> tag. Note that this action assumes

that the java:comp/env name is the same as the resource global JNDI name.

v Connection factory bindings (for EJB 2.0 JAR files) are generated based on the JNDI name and

authorization information provided. This action results in default connection factory settings for each EJB

2.0 JAR file in the application being installed. No bean-level connection factory bindings are generated.

v Data source bindings (for EJB 1.1 JAR files) are generated based on the JNDI name, data source user

name password options. This results in default data source settings for each EJB JAR file. No

bean-level data source bindings are generated.

v For EJB2.1 or EJB2.0 message-driven beans deployed as JCA 1.5-compliant resources, the JNDI

names corresponding to activationSpec instances are generated in the form eis/MDB_ejb-name.

Message Destination references are bound as follows: if a <message-destination-link> is found then

the JNDI name is set to ejs/message-destination-linkName. Otherwise the JNDI name is set to

eis/message-destination-refName.

v For EJB 2.0 message-driven beans deployed against a listener ports, the listener ports are derived from

the MDB <ejb-name> tag with the string Port appended.

v For .war files, the virtual host is set as default_host unless otherwise specified.

The default strategy suffices for most applications or at least for most bindings in most applications.

However, it does not work if:

v You want to explicitly control the global JNDI names of one or more EJB files.

v You need tighter control of data source bindings for container-managed persistence (CMP) beans. That

is, you have multiple data sources and need more than one global data source.

v You must map resource references to global resource JNDI names that are different from the

java:comp/env name.

In such cases, you can change the behavior with an XML document (a custom strategy). Use the Specific

bindings file field to specify a custom strategy and see the field’s help for examples.

Prefixes:

Specifies prefixes to use for generated JNDI names.

 You must select Show me all installation options and parameters to view prefix options.

38 Administering applications and their environment

Override:

Specifies whether generated bindings are to override existing bindings.

 If Override existing bindings is selected, the existing bindings are overridden by the generated ones.

You must select Show me all installation options and parameters to view override options.

EJB 1.1 CMP bindings:

Specifies the default data source JNDI name.

 If the Default bindings for EJB 1.1 CMPs radio button is selected, specify the JNDI name for the default

data source to be used with the container-managed persistence (CMP) 1.1 beans. Also specify the user ID

and password for this default data source.

You must select Show me all installation options and parameters to view EJB CMP binding options.

Data source bindings for 2.0 CMP beans:

Specifies the default data source JNDI name for 2.0 CMP beans.

 You must select Show me all installation options and parameters to view data source binding options.

Virtual host:

Specifies the virtual host for the Web module.

 You must select Show me all installation options and parameters to view virtual host options.

Specific bindings file:

Specifies a bindings file that overrides the default binding.

 You must select Show me all installation options and parameters to view this option.

Change the behavior of the default binding with an XML document (a custom strategy). Custom strategies

extend the default strategy so you only need to customize those areas where the default strategy is

insufficient. Thus, you only need to describe how you want to change the bindings generated by the

default strategy; you do not have to define bindings for the entire application.

Brief examples of how to override various aspects of the default bindings generator follow:

Controlling an EJB JNDI name

<?xml version="1.0"?>

<!DOCTYPE dfltbndngs SYSTEM "dfltbndngs.dtd">

<dfltbndngs>

 <module-bindings>

 <ejb-jar-binding>

 <jar-name>helloEjb.jar</jar-name>

 <ejb-bindings>

 <ejb-binding>

 <ejb-name>HelloEjb</ejb-name>

 <jndi-name>com/acme/ejb/HelloHome</jndi-name>

 </ejb-binding>

Chapter 6. Deploying and administering applications 39

</ejb-bindings>

 </ejb-jar-binding>

 </module-bindings>

</dfltbndngs>

Note: Ensure that the setting for <ejb-name> matches the ejb-name entry in the EJB JAR deployment

descriptor. Here the setting is <ejb-name>HelloEjb</ejb-name>.

Setting the connection factory binding for an EJB JAR file

<!DOCTYPE dfltbndngs SYSTEM "dfltbndngs.dtd">

<dfltbndngs>

 <module-bindings>

 <ejb-jar-binding>

 <jar-name>yourEjb20.jar</jar-name>

 <connection-factory>

 <jndi-name>eis/jdbc/YourData_CMP</jndi-name>

 <res-auth>Container</res-auth>

 </connection-factory>

 </ejb-jar-binding>

 </module-bindings>

</dfltbndngs>

Setting the connection factory binding for an EJB file

<?xml version="1.0">

<!DOCTYPE dfltbndngs SYSTEM "dfltbndngs.dtd">

<dfltbndngs>

 <module-bindings>

 <ejb-jar-binding>

 <jar-name>yourEjb20.jar</jar-name>

 <ejb-bindings>

 <ejb-binding>

 <ejb-name>YourCmp20</ejb-name>

 <connection-factory>

 <jndi-name>eis/jdbc/YourData_CMP</jndi-name>

 <res-auth>PerConnFact</res-auth>

 </connection-factory>

 </ejb-binding>

 </ejb-bindings>

 </ejb-jar-binding>

 </module-bindings>

</dfltbndngs>

Restriction: Ensure that the setting for <ejb-name> matches the ejb-name tag in the deployment

descriptor. Here the setting is <ejb-name>YourCmp20</ejb-name>.

Setting the message destination reference JNDI for a specific enterprise bean

Example XML extract in a custom strategy file for setting message-destination-refs for a specific enterprise

bean.

<?xml version="1.0">

 <!DOCTYPE dfltbndngs SYSTEM "dfltbndngs.dtd">

 <dfltbndngs>

 <module-bindings>

 <ejb-jar-binding>

 <jar-name>yourEjb21.jar</jar-name>

 <ejb-bindings>

 <ejb-binding>

 <ejb-name>YourSession21</ejb-name>

 <message-destination-ref-bindings>

 <message-destination-ref-binding>

 <message-destination-ref-name>jdbc/MyDataSrc</message-destination-ref-name>

 <jndi-name>eis/somAO</jndi-name>

 </message-destination-ref-binding>

40 Administering applications and their environment

</message-destination-ref-bindings>

 </ejb-binding>

 </ejb-bindings>

 </ejb-jar-binding>

 </module-bindings>

 </dfltbndngs>

Restriction: Ensure that the setting for <ejb-name> matches the ejb-name tag in the deployment

descriptor. Here the setting is <ejb-name>YourSession21</ejb-name>. Also ensure that the

setting for <message-destination-ref-name> matches the message-destination-ref-name tag

in the deployment descriptor. Here the setting is <message-destination-ref-name>jdbc/
MyDataSrc</message-destination-ref-name>.

Overriding a resource reference binding from a WAR, EJB JAR file, or J2EE client JAR file

Example code for overriding a resource reference binding from a WAR file follows. Use similar code to

override a resource reference binding from an enterprise bean (EJB) JAR file or a J2EE client JAR file.

<?xml version="1.0"?>

<!DOCTYPE dfltbndngs SYSTEM "dfltbndngs.dtd">

<dfltbndngs>

 <module-bindings>

 <war-binding>

 <jar-name>hello.war</jar-name>

 <resource-ref-bindings>

 <resource-ref-binding>

 <resource-ref-name>jdbc/MyDataSrc</resource-ref-name>

 <jndi-name>war/override/dataSource</jndi-name>

 </resource-ref-binding>

 </resource-ref-bindings>

 </war-binding>

 </module-bindings>

</dfltbndngs>

Restriction: Ensure that the setting for <resource-ref-name> matches the resource-ref tag in the

deployment descriptor. Here the setting is <resource-ref-name>jdbc/MyDataSrc</resource-
ref-name>.

Overriding the JNDI name for a message-driven bean deployed as a JCA 1.5-compliant resource

Example XML extract in a custom strategy file for overriding the JMS activationSpec JNDI name for an

EJB 2.1 or EJB 2.0 message-driven bean deployed as a JCA 1.5-compliant resource.

<?xml version="1.0"?>

 <!DOCTYPE dfltbndngs SYSTEM "dfltbndngs.dtd">

 <dfltbndngs>

 <module-bindings>

 <ejb-jar-binding>

 <jar-name>YourEjbJar.jar</jar-name>

 <ejb-bindings>

 <ejb-binding>

 <ejb-name>YourMDB</ejb-name>

 <activationspec-jndi-name>activationSpecJNDI</activationspec-jndi-name>

 </ejb-binding>

 </ejb-bindings>

 </ejb-jar-binding>

 </module-bindings>

 </dfltbndngs>

Overriding the JMS listener port name for an EJB 2.0 message-driven bean

Example XML extract in a custom strategy file for overriding the JMS listener port name for an EJB 2.0

message-driven bean deployed against a listener port.

Chapter 6. Deploying and administering applications 41

<?xml version="1.0"?>

<!DOCTYPE dfltbndngs SYSTEM "dfltbndngs.dtd">

<dfltbndngs>

 <module-bindings>

 <ejb-jar-binding>

 <jar-name>YourEjbJar.jar</jar-name>

 <ejb-bindings>

 <ejb-binding>

 <ejb-name>YourMDB</ejb-name>

 <listener-port>yourMdbListPort</listener-port>

 </ejb-binding>

 </ejb-bindings>

 </ejb-jar-binding>

 </module-bindings>

</dfltbndngs>

Overriding an EJB reference binding from an EJB JAR, WAR file, or EJB file

Example code for overriding an EJB reference binding from an EJB JAR file follows. Use similar code to

override an EJB reference binding from a WAR file or an EJB file.

<?xml version="1.0"?>

<!DOCTYPE dfltbndngs SYSTEM "dfltbndngs.dtd">

<dfltbndngs>

 <module-bindings>

 <ejb-jar-binding>

 <jar-name>YourEjbJar.jar</jar-name>

 <ejb-ref-bindings>

 <ejb-ref-binding>

 <ejb-ref-name>YourEjb</ejb-ref-name>

 <jndi-name>YourEjb/JNDI</jndi-name>

 </ejb-ref-binding>

 </ejb-ref-bindings>

 </ejb-jar-binding>

 </module-bindings>

</dfltbndngs>

Select installation options settings

Use this panel to specify options for the installation of an application onto a WebSphere Application Server

deployment target. Default values for the options are used if you do not specify a value. After application

installation, you can specify values for many of these options from an enterprise application settings page.

To view this administrative console panel, click Applications > Install New Application and then specify

values as needed for your application on the Preparing for application installation pages. The Select

installation options panel is the same for the application installation and update wizards.

Precompile JavaServer Pages files:

Specify whether to precompile JavaServer Pages (JSP) files as a part of installation. The default is not to

precompile JSP files.

 For this option, install only onto a 6.1 deployment target.

If you select Precompile JavaServer Pages files and try installing your application onto an earlier

deployment target such as version 5.x, the installation is rejected. You can deploy applications to only

those targets that have same WebSphere version as the deployment manager. If applications are targeted

to servers that have an earlier version than the deployment manager, then you cannot deploy to those

targets.

 Data type Boolean

Default False

42 Administering applications and their environment

Directory to install application:

Specifies the directory to which the enterprise application (EAR) file will be installed.

 The default value is the value of APP_INSTALL_ROOT/cell_name, where the APP_INSTALL_ROOT variable is

app_server_root/installedApps; for example, app_server_root/installedApps/cell_name.

You can specify an absolute path or use a pathmap variable such as ${MY_APPS}. You can use a pathmap

variable in any installation.

This Directory to install application field is the same as the Location (full path) setting on an

Application binaries page.

 Data type String

Units Full path name

Distribute application:

Specifies whether the product expands application binaries in the installation location during installation

and deletes application binaries during uninstallation. The default is to enable application distribution.

Application binaries for installed applications are expanded to the directory specified. The binaries are

deleted when you uninstall and save changes to the configuration, and, on the Network Deployment

product, synchronize changes.

 If you disable this option, then you must ensure that the application binaries are expanded appropriately in

the destination directories of all nodes where the application runs.

Important: If you disable this option and you do not copy and expand the application binaries to the

nodes, a later saving of the configuration or manual synchronization does not move the

application binaries to the nodes for you.

This Distribute application field is the same as the Enable binary distribution, expansion and cleanup

post uninstallation setting on an Application binaries page.

 Data type Boolean

Default true

Use binary configuration:

Specifies whether the application server uses the binding, extensions, and deployment descriptors located

with the application deployment document, the deployment.xml file (default), or those located in the

enterprise application resource (EAR) file. Select this setting for applications installed on 6.x deployment

targets only. This setting is not valid for applications installed on 5.x deployment targets.

 This Use binary configuration field is the same as the Use configuration information in binary setting

on an Application binaries page.

 Data type Boolean

Default false

Deploy enterprise beans:

Specifies whether the EJBDeploy tool runs during application installation.

Chapter 6. Deploying and administering applications 43

The tool generates code needed to run enterprise bean (EJB) files. You must enable this setting in the

following situations:

v The EAR file was assembled using an assembly tool such as Rational Application Developer, Rational

Web Developer or Application Server Toolkit (AST) and the EJBDeploy tool was not run during

assembly.

v The EAR file was not assembled using an assembly tool such as Rational Application Developer,

Rational Web Developer or AST.

v The EAR file was assembled using versions of the Application Assembly Tool (AAT) previous to Version

5.

For this option, install only onto a 6.1 deployment target.

If you select Deploy enterprise beans and try installing your application onto an earlier deployment target

such as version 5.x, the installation is rejected. You can deploy applications to only those targets that have

same WebSphere version as the deployment manager. If applications are targeted to servers that have an

earlier version than the deployment manager, then you cannot deploy to those targets.

Also, if you select Deploy enterprise beans and specify a database type on the Provide options to

perform the EJB Deploy panel, previously defined backend IDs for all of the EJB modules are overwritten

by the chosen database type. To enable backend IDs for individual EJB modules, set the database type to

″″ (null) on the Provide options to perform the EJB Deploy panel.

The default database type is DB2UDB_V81.

Enabling this setting might cause the installation program to run for several minutes.

 Data type Boolean

Default true

Application name:

Specifies a logical name for the application. An application name must be unique within a cell and cannot

contain an unallowed character.

 An application name cannot begin with a period (.), cannot contain leading or trailing spaces, and cannot

contain any of the following characters:

 Unallowed characters

/ forward slash $ dollar sign ’ single quote mark

\ backslash = equal sign ″ double quote mark

* asterisk % percent sign | vertical bar

, comma + plus sign < left angle bracket

: colon @ at sign > right angle bracket

; semi-colon # hash mark & ampersand (and sign)

? question mark]]> No specific name exists for this character combination

This Application name field is the same as the Name setting on an Enterprise application settings page.

 Data type String

Create MBeans for resources:

44 Administering applications and their environment

Specifies whether to create MBeans for resources such as servlets or JSP files within an application when

the application starts. The default is to create MBeans.

 This field is the same as the Create MBeans for resources setting on a Startup behavior page.

 Data type Boolean

Default true

Enable class reloading:

Specifies whether the WebSphere Application Server run time detects changes to application classes

when the application is running. If this setting is enabled and if application classes are changed, then the

application is stopped and restarted to reload updated classes.

 The default is not to enable class reloading.

This Enable class reloading field is the same as the Reload classes when application files are

updated setting on an Class loading and update detection page.

 Data type Boolean

Default false

Reload interval in seconds:

Specifies the number of seconds to scan the application’s file system for updated files. The default is the

value of the reloading interval attribute in the IBM extension (META-INF/ibm-application-ext.xmi) file of

the EAR file.

 The reloading interval attribute takes effect only if class reloading is enabled.

To enable reloading, specify a value greater than zero (for example, 1 to 2147483647). To disable

reloading, specify zero (0). The range is from 0 to 2147483647.

This Reload interval in seconds field is the same as the Polling interval for updated files setting on an

Class loading and update detection page.

 Data type Integer

Units Seconds

Default 3

Deploy Web services:

Specifies whether the Web services deploy tool wsdeploy runs during application installation.

 The tool generates code needed to run applications using Web services. The default is not to run the

wsdeploy tool. You must enable this setting if the EAR file contains modules using Web services and has

not previously had the wsdeploy tool run on it, either from the Deploy menu choice of an assembly tool or

from a command line.

For this option, install only onto a 6.1 deployment target.

If you select Deploy Web services and try installing your application onto an earlier deployment target

such as version 5.x, the installation is rejected. You can deploy applications to only those targets that have

same WebSphere version as the deployment manager. If applications are targeted to servers that have an

Chapter 6. Deploying and administering applications 45

earlier version than the deployment manager, then you cannot deploy to those targets.

 Data type Boolean

Default false

Validate input off/warn/fail:

Specifies whether WebSphere Application Server examines the application references specified during

application installation or updating and, if validation is enabled, warns you of incorrect references or fails

the operation.

 An application typically refers to resources using data sources for container managed persistence (CMP)

beans or using resource references or resource environment references defined in deployment descriptors.

The validation checks whether the resource referred to by the application is defined in the scope of the

deployment target of that application.

Select off for no resource validation, warn for warning messages about incorrect resource references, or

fail to stop operations that fail as a result of incorrect resource references.

This Validate input off/warn/fail field is the same as the Application reference validation setting on an

Enterprise Application settings page.

 Data type String

Default warn

Process embedded configuration:

Specifies whether the embedded configuration should be processed. An embedded configuration consists

of files such as resource.xml and variables.xml. When selected or true, the embedded configuration is

loaded to the application scope from the .ear file. If the .ear file does not contain an embedded

configuration, the default is false. If the .ear file contains an embedded configuration, the default is true.

 Data type Boolean

Default false

File permission:

Specifies access permissions for application binaries for installed applications that are expanded to the

directory specified.

 The Distribute application option must be enabled to specify file permissions.

You can specify file permissions in the text field. You can also set some of the commonly used file

permissions by selecting them from the drop-down list. Drop-down list selections overwrite file permissions

set in the text field.

You can set one or more of the following file permission strings in the drop-down list. Selecting multiple

options combines the file permission strings.

 Drop-down list option File permission string set

Allow all files to be read but not written to .*=755

Allow executables to execute .*\.dll=755#.*\.so=755#.*\.a=755#.*\.sl=755

46 Administering applications and their environment

Drop-down list option File permission string set

Allow HTML and image files to be read by

everyone

.*\.htm=755#.*\.html=755#.*\.gif=755#.*\.jpg=755

Instead of using the drop-down list to specify file permissions, you can specify a file permission string in

the text field. File permissions use a string that has the following format:

file_name_pattern=permission#file_name_pattern=permission

where file_name_pattern is a regular expression file name filter (for example, .*\\.jsp for all JSP files),

permission provides the file access control lists (ACLs), and # is the separator between multiple entries of

file_name_pattern and permission. If # is a character in a file_name_pattern string, use \# instead.

If multiple file name patterns and file permissions in the string match a uniform resource identifier (URI)

within the application, then the product uses the most stringent applicable file permission for the file. For

example, if the file permission string is .*\\.jsp=775#a.*\\.jsp=754, then the abc.jsp file has file

permission 754.

Tip: Using regular expressions for file matching pattern compares an entire string URI against the

specified file permission pattern. You must provide more precise matching patterns using regular

expressions as defined by Java programming API. For example, suppose the following directory and

file URIs are processed during a file permission operation:

 1 /opt/WebSphere/profiles/AppSrv01/installedApps/MyCell/MyApp.ear/MyWarModule.war

2 /opt/WebSphere/profiles/AppSrv01/installedApps/MyCell/MyApp.ear/MyWarModule.war/MyJsp.jsp

3 /opt/WebSphere/profiles/AppSrv01/installedApps/MyCell/MyApp.ear/MyWarModule.war/META-INF/
MANIFEST.MF

4 /opt/WebSphere/profiles/AppSrv01/installedApps/MyCell/MyApp.ear/MyWarModule.war/WEB-INF/classes/
MyClass.class

5 /opt/WebSphere/profiles/AppSrv01/installedApps/MyCell/MyApp.ear/MyWarModule.war/mydir/
MyClass2.class

6 /opt/WebSphere/profiles/AppSrv01/installedApps/MyCell/MyApp.ear/MyWarModule.war/META-INF

The file pattern matching results are:

v MyWarModule.war does not match any of the URIs

v .*MyWarModule.war.* matches all URIs

v .*MyWarModule.war$ matches only URI 1

v .*\\.jsp=755 matches only URI 2

v .*META-INF.* matches URIs 3 and 6

v .*MyWarModule.war/.*/.*\.class matches URIs 4 and 5

If you specify a directory name pattern for File permissions, then the directory permission is set based on

the value specified. Otherwise, the File permissions value set on the directory is the same as its parent.

For example, suppose you have the following file and directory structure:

/opt/WebSphere/profiles/AppSrv01/installedApps/MyCell/MyApp.ear/MyWarModule.war/MyJsp.jsp

and you specify the following file pattern string:

.*MyApp.ear$=755#.*\.jsp=644

The file pattern matching results are:

v Directory MyApp.ear is set to 755

v Directory MyWarModule.war is set to 755

v Directory MyWarModule.war is set to 755

Chapter 6. Deploying and administering applications 47

Important: Regardless of the operation system, always use a forward slash (/) as a file path separator in

file patterns.

Windows

You cannot unset read permission on a file on Windows platforms. With POSIX style permission

bits, the bit for denoting readable on a file is 4, writable is 2, and executable is 1. Thus, permission of a

file on a Windows platform is either 5 or 7. Also, in POSIX style there are user, group and world

permissions. You can only set the user permission for a file on Windows platforms. The group and world

permission bits are ignored.

Access permissions specified here are at the application level. You can also specify access permissions

for application binaries in the node level configuration. The node level file permissions specify the

maximum (most lenient) permissions that can be given to application binaries. Access permissions

specified here at application level can only be the same as or more restrictive than those specified at the

node level.

This setting is the same as the File permissions field on the Application binaries page.

 Data type String

Application build identifier:

Specifies an uneditable string that identifies the build version of the application.

 This Application build identifier field is the same as the Application build level field on the Application

binaries page.

 Data type String

Provide options to perform the EJB Deploy settings

Use this panel to specify options for the enterprise bean (EJB) deployment tool. The tool generates code

needed to run enterprise bean files. You can specify extra class paths, Remote Method Invocation

compiler (RMIC) options, database types, and database schema names to be used while running the EJB

deployment tool.

This administrative console panel is a step in the application installation and update wizards. To view this

panel, you must select Deploy enterprise beans on the Select installation options panel. Thus, to view

this panel, click Applications > Install New Application > application_path > Show me all installation

options and parameters > Next > Next > Deploy enterprise beans > Next > Step: Provide options to

perform the EJB Deploy.

You can specify the EJB deployment tool options on this panel only when installing or updating an

application that contains EJB modules.

The options that you specify set parameter values for the ejbdeploy command. The tool, and thus the

ejbdeploy command, is run on the enterprise archive (EAR) file during installation after you click Finish on

the Summary panel of the wizard.

Deploy EJB option - Class path:

Specifies the class path of one or more zipped or Java archive (JAR) files on which the Java archive

(JAR) or EAR file being installed depends.

 To specify the class paths of multiple zipped and JAR files, the zipped and JAR file names must be fully

qualified, separated by semicolons, and enclosed in double quotation marks. For example:

path\myJar1.jar;path\myJar2.jar;path\myJar3.jar

48 Administering applications and their environment

Deploy EJB option - Class path is the same as the ejbdeploy command parameter -cp class_path.

 Data type String

Default null

Deploy EJB option - RMIC:

Specifies whether the EJB deployment tool passes RMIC options to the Remote Method Invocation

compiler. Refer to RMI Tools documentation for information on the options.

 Separate options by a space and enclose them in double quotation marks. For example:

"-nowarn -verbose"

Deploy EJB option - RMIC is the same as the ejbdeploy command parameter -rmic ″options″.

 Data type String

Default null

Deploy EJB option - Database type:

Specifies the name of the database vendor, which is used to determine database column types, mapping

information, Table.sql, and other information. Select a database type or the empty choice from the

drop-down list. The list contains the names of valid database vendors. Selecting the empty choice sets the

database type to ″″ (null).

 If you specify a database type, previously defined backend IDs for all of the EJB modules are overwritten

by the chosen database type. To enable backend IDs for individual EJB modules, select the empty choice

to set the database type to null.

The backend IDs SQL92 (1992 SQL Standard) and SQL99 (1999 SQL Standard) are deprecated. Although

the SQL92 and SQL99 backend IDs are available in the list, they are deprecated.

Deploy EJB option - Database type is the same as the ejbdeploy command parameter -dbvendor name.

 Data type String

Default DB2UDB_V82

Deploy EJB option - Database schema:

Specifies the name of the schema that you want to create.

 The EJB deployment tool saves database information in the schema document in the JAR or EAR file,

which means that the options do not need to be specified again. It also means that when a JAR or EAR is

generated, the correct database must be defined at that point because it cannot be changed later.

If the name of the schema contains any spaces, the entire name must be enclosed in double quotes. For

example:

"my schema"

Deploy EJB option - Database schema is the same as the ejbdeploy command parameter -dbschema

″name″.

 Data type String

Default null

Chapter 6. Deploying and administering applications 49

Bind listeners for message-driven beans settings

Use this panel to specify bindings for message-driven beans in your application or module.

To view this administrative console panel, click Applications > Enterprise Applications >

application_name > Message Driven Bean listener bindings. This panel is the same as the Bind

listeners for message-driven beans panel on the application installation and update wizards.

Each message-driven bean must be bound to a listener port name or to an activation specification Java

Naming and Directory Interface (JNDI) name.

Provide a listener port name if your application uses any of the following Java Message Service (JMS)

providers:

v Version 5 default messaging

v WebSphere MQ

v Generic

Provide an activation specification JNDI name if your application’s resources are configured using the

default messaging provider or any generic J2C resource adapter that supports inbound messaging.

Not providing valid listener port names or activation specification JNDI names results in the following

errors:

v If neither a listener port name or an activation specification JNDI name is specified for a message

driven bean, then a validation error is displayed after you click Finish on the Summary panel.

v If the module containing the message-driven bean is deployed on a 5.x deployment target and a listener

port is not specified, then a validation error is displayed after you click Next.

v If multiple message driven beans are linked to the same destination, specify the same destination JNDI

name for each message driven bean. If you specify different destination JNDI names, a validation error

is displayed and all JNDI specifications after the first one are ignored.

To apply binding changes to multiple mappings:

1. In the list of mappings, select the Select check box beside each EJB module that you want mapped to

a particular binding.

2. Expand Apply Multiple Mappings.

3. Specify a listener port name or select a target resource JNDI name for an activation specification.

4. If you are defining a binding for an activation specification, optionally specify the following:

Destination JNDI name

For resource adapters that support JMS, specify javax.jms.Destinations so the resource

adapter can service messages from the JMS destination. A destination JNDI name set as part

of application deployment take precedence over properties set on an activation specification

administrative object.

ActivationSpec authentication alias

Specify an authentication alias that is used to access the user name and password that are set

on the configured J2C activation specification. Authentication alias properties set as part of

application deployment take precedence over properties set on an activation specification

administrative object.

5. Click Apply.

6. Click OK.

EJB module:

Specifies the name of the module that contains the enterprise bean.

EJB:

50 Administering applications and their environment

Specifies name of an enterprise bean in the application.

URI:

Specifies the location of the module relative to the root of the application EAR file.

Messaging type:

Specifies the type of message-driven bean.

Bindings:

Specifies a listener port name or an activation specification JNDI name for the message-driven bean.

When a message-driven enterprise bean is bound to an activation specification JNDI name you can also

specify the destination JNDI name and the authentication alias.

 Bindings specify JNDI names for the referenceable and referenced artifacts in an application. An example

JNDI name for a listener port to be used by a Store application might be StoreMdbListener. The binding

definition is stored in IBM bindings files such as ibm-ejb-jar-bnd.xmi.

Example: Installing an EAR file using the default bindings

If application bindings were not specified for all enterprise beans or resources in an application during

application development or assembly, you can select to generate default bindings. After application

installation, you can modify the bindings as needed using the administrative console.

An example of a simple .ear file installation using the default bindings follows:

1. Go to the Preparing for application install pages.

Click Applications > Install New Application in the console navigation tree.

2. For Path to the new application, specify the full path name of the .ear file.

For this example, the base file name is my_appl.ear and the file resides on a server at

C:\sample_apps.

3. For How do you want to install the application, select Show me all installation options and

parameters.

4. Click Next.

5. On the second Preparing for application installation page, select Generate default bindings and click

Next.

Using the default bindings causes any incomplete bindings in the application to be filled in with default

values. Existing bindings are not changed. By choosing this option, you can skip many of the steps on

the Install New Application page and go directly to the Summary step.

6. If application security warnings are displayed, read the warnings and click Continue.

7. On the Install New Application page, click step 2, Manage modules, and verify the cell, node, and

server onto which the application files will install.

a. On the Manage modules panel, select the server onto which the application files will install from

the Clusters and Servers list, click Module to select all of the application modules, and click Next.

On the Manage modules panel, you can map modules to other servers such as Web servers. If

you want a Web server to serve the application, use the Ctrl key to select an application server or

cluster and the Web server together in order to have the plug-in configuration file plugin-cfg.xml

for that Web server generated based on the applications which are routed through it.

8. On the Install New Application page, click the step number beside Summary, the last step.

9. On the Summary panel, click Finish.

Chapter 6. Deploying and administering applications 51

Examine the application installation progress messages. If the application installs successfully, save your

administrative configuration. You can now see the name of your application in the list of deployed

applications on the Enterprise Applications page accessed by clicking Applications > Enterprise

Applications in the console navigation tree.

If the application does not install successfully, read the messages to identify why the installation failed.

Correct problems with the application as needed and try installing the application again.

Installing J2EE modules with JSR-88

You can install Java 2 Platform, Enterprise Edition (J2EE) modules on an application server provided by a

WebSphere Application Server product using the J2EE Deployment API Specification (JSR-88).

JSR-88 defines standard application programming interfaces (APIs) to enable deployment of J2EE

applications and stand-alone modules to J2EE product platforms. The J2EE Deployment Specification

Version 1.1 is available at http://java.sun.com/j2ee/tools/deployment/reference/docs/index.html as part of

the J2EE 1.4 Application Server Developer Release.

Read about JSR-88 and APIs used to manage applications at http://java.sun.com/j2ee/tools/deployment/.

JSR-88 defines a contract between a tool provider and a platform that enables tools from multiple vendors

to configure, deploy and manage applications on any J2EE product platform. The tool provider typically

supplies software tools and an integrated development environment (IDE) for developing and assembly of

J2EE application modules. The J2EE platform provides application management functions that deploy,

undeploy, start, stop, and otherwise manage J2EE applications.

WebSphere Application Server is a J2EE 1.4 specification-compliant platform that implements the JSR-88

APIs. Complete the following steps to deploy (install) J2EE modules on an application server provided by

the WebSphere Application Server platform.

1. Code a Java program that can access the JSR-88 DeploymentManager class for WebSphere

Application Server.

a. Write code that finds the JAR manifest file key J2EE-DeploymentFactory-Implementation-Class.

Under JSR-88, your code finds the DeploymentFactory using the JAR manifest file key

J2EE-DeploymentFactory-Implementation-Class. For WebSphere Application Server, the application

management JAR file containing this key and providing support is app_server_root/lib/
wjmxapp.jar. After your code finds the DeploymentFactory, the deployment tool can create an

instance of the WebSphere DeploymentFactory and register the instance with its

DeploymentFactoryManager. For example:

import javax.enterprise.deploy.shared.factories.DeploymentFactoryManager;

import javax.enterprise.deploy.spi.DeploymentManager;

import javax.enterprise.deploy.spi.factories.DeploymentFactory;

import java.util.jar.JarFile;

// Get the DeploymentFactory implementation class from the MANIFEST.MF file.

JarFile wjmxappJar = new JarFile(new File(wasHome + "/lib/wjmxapp.jar"));

java.util.jar.Manifest manifestFile = wjmxappJar.getManifest();

Attributes attributes = manifestFile.getMainAttributes();

String key = "J2EE-DeploymentFactory-Implementation-Class";

String className = attributes.getValue(key);

// Get an instance of the DeploymentFactoryManager

DeploymentFactoryManager dfm = DeploymentFactoryManager.getInstance();

// Create an instance of the WebSphere Application Server DeploymentFactory.

Class deploymentFactory = Class.forName(className);

DeploymentFactory deploymentFactoryInstance =

 (DeploymentFactory) deploymentFactory.newInstance();

// Register the DeploymentFactory instance with the DeploymentFactoryManager.

dfm.registerDeploymentFactory(deploymentFactoryInstance);

52 Administering applications and their environment

http://java.sun.com/j2ee/tools/deployment/reference/docs/index.html
http://java.sun.com/j2ee/tools/deployment/

// Provide WebSphere Application Server URL, user ID, and password.

// For more information, see the step that follows.

wsDM = dfm.getDeploymentManager(

 "deployer:WebSphere:myserver:8880", null, null);

b. Write code that accesses the DeploymentManager instance for WebSphere Application Server. The

WebSphere Application Server URL for deployment has the format

"deployer:WebSphere:host:port"

The example in the previous step, ″deployer:WebSphere:myserver:8880″, tries to connect to host

myserver at port 8880 using the SOAP connector, which is the default.

The URL for deployment can have an optional parameter connectorType. For example, to use the

RMI connector to access myserver, code the URL as follows:

"deployer:WebSphere:myserver:2809?connectorType=RMI"

2. Optional: Code a Java program that can customize or deploy J2EE applications or modules using the

JSR-88 support provided by WebSphere Application Server.

3. Start the deployed J2EE applications or standalone J2EE modules using the JSR-88 API used to start

applications or modules.

Test the deployed applications or modules. For example, point a Web browser at the URL for a deployed

application and examine the performance of the application. If necessary, update the application.

Customizing modules using DConfigBeans

You can configure J2EE applications or standalone modules during deployment using the DConfigBean

class in the Java 2 Platform, Enterprise Edition (J2EE) Deployment API Specification (JSR-88).

This topic assumes that you are deploying (installing) J2EE modules on an application server provided by

the WebSphere Application Server platform using the WebSphere Application Server support for JSR-88.

Read about the JSR-88 specification and using the DConfigBean class at http://java.sun.com/j2ee/tools/
deployment/.

The DConfigBean class in JSR-88 provides JavaBeans-based support for platform-specific configuration of

J2EE applications and modules during deployment. Your code can inspect DConfigBean instances to get

platform-specific configuration attributes. The DConfigBean instances provided by WebSphere Application

Server contain a single attribute which has an array of java.util.Hashtable objects. The hashtable entries

contain configuration attributes, for which your code can get and set values.

1. Write code that installs J2EE modules on an application server using JSR-88.

2. Write code that accesses DConfigBeans generated by WebSphere Application Server during JSR-88

deployment. You (or a deployer) can then customize the accessed DConfigBeans instances. The

following pseudocode shows how a J2EE tool provider can get DConfigBean instance attributes

generated by WebSphere Application Server during JSR-88 deployment and set values for the

attributes:

import javax.enterprise.deploy.model.*;

import javax.enterprise.deploy.spi.*;

{

DeploymentConfiguration dConfig = ___; // Get from DeploymentManager

DDBeanRoot ddRoot = ___; // Provided by J2EE tool

// Obtain root bean.

DConfigBeanRoot dcRoot = dConfig.getDConfigBeanRoot(dr);

// Configure DConfigBean.

configureDCBean (dcRoot);

}

Chapter 6. Deploying and administering applications 53

http://java.sun.com/j2ee/tools/deployment/
http://java.sun.com/j2ee/tools/deployment/

// Get children from DConfigBeanRoot and configure each child.

method configureDCBean (DConfigBean dcBean)

{

 // Get DConfigBean attributes for a given archive.

 BeanInfo bInfo = Introspector.getBeanInfo(dcBean.getClass());

 IndexedPropertyDescriptor ipDesc =

 (IndexedPropertyDescriptor)bInfo.getPropertyDescriptors()[0];

 // Get the 0th table.

 int index = 0;

 Hashtable tbl = (Hashtable)

 ipDesc.getIndexedReadMethod().invoke

 (dcBean, new Object[]{new Integer(index)});

 while (tbl != null)

 {

 // Iterate over the hashtable and set values for attributes.

 // Set the table back into the DCBean.

 ipDesc.getIndexedWriteMethod().invoke

 (dcBean, new Object[]{new Integer(index), tbl});

 // Get the next entry in the indexed property

 tbl = (Hashtable)

 ipDesc.getIndexedReadMethod().invoke

 (dcBean, new Object[]{new Integer(++index)});

 }

}

Enterprise application collection

Use this page to view and manage enterprise applications.

This page lists installed enterprise applications. System applications, which are central to the product, are

not shown in the list because users cannot edit them. Examples of system applications include isclite,

managementEJB and filetransfer.

To view this administrative console page, click Applications > Enterprise Applications.

To view the values specified for an application’s configuration, click the application name in the list. The

displayed application settings page shows the values specified. On the settings page, you can change

existing configuration values and link to additional console pages that assist you in configuring the

application.

To manage an installed enterprise application, enable the Select check box beside the application name in

the list and click a button:

 Button Resulting action

Start Attempts to run the application. After the application starts up successfully, the state of

the application changes to Started if the application starts up on all deployment

targets, else the state changes to Partial Start.

Stop Attempts to stop the processing of the application. After the application stops

successfully, the state of the application changes to Stopped if the application stops on

all deployment targets, else the state changes to Partial Stop.

Install Opens a wizard that helps you deploy an application or a module such as a .jar, .war

or .rar file onto a server or a cluster.

Uninstall Deletes the application from the WebSphere Application Server configuration

repository and deletes the application binaries from the file system of all nodes where

the application modules are installed after the configuration is saved and synchronized

with the nodes.

54 Administering applications and their environment

Button Resulting action

Update Opens a wizard that helps you update application files deployed on a server. You can

update the full application, a single module, a single file, or part of the application. If a

new file or module has the same name as a file or module already existing on the

server, the new file or module replaces the existing file or module. If the new file or

module does not exist on the server, it is added to the deployed application.

Remove File Deletes a file of the deployed application or module. Remove File deletes a file from

the configuration repository and from the file system of all nodes where the file is

installed.

Export Accesses the Export Application EAR files page, which you use to export an enterprise

application to an EAR file at a location of your choice. Use the Export action to back

up a deployed application and to preserve its binding information.

Export DDL Accesses the Export Application DDL files page, which you use to export DDL files

(Table.ddl) in the EJB modules of an enterprise application to a location of your

choice.

These buttons are not available when this page is accessed from an application server settings page.

When this page is accessed from an application server settings page, it is entitled the Installed

applications page.

Name

Specifies the name of the installed (or deployed) application. Application names must be unique within a

cell and cannot contain an unallowed character.

Application Status

Indicates whether the application deployed on the application server is started, stopped, or unavailable.

Started Application is running.

Partial Start Application is in the process of changing from a Stopped state to a Started

state. Application is starting to run but is not fully running yet. Or, it cannot fully

start because a server mapped to one or more application modules is stopped.

Stopped Application is not running.

Partial Stop Application is in the process of changing from a Started state to a Stopped

state. Application has not stopped running yet.

Unavailable Status cannot be determined.

An application with an unavailable status might, in fact, be running but have an

unavailable status because the server running the administrative console

cannot communicate with the server running the application.

Not applicable Application does not provide information as to whether it is running.

Startup order

Specifies the order in which applications are started when the server starts. The application with the lowest

startup order is started first.

This table column is available only when this page is accessed from an application server settings page;

thus when this page is entitled the Installed applications page.

Enterprise application settings

Use this page to configure an enterprise application.

Chapter 6. Deploying and administering applications 55

To view this administrative console page, click Applications > Enterprise Applications >

application_name.

Name

Specifies a logical name for the application. An application name must be unique within a cell and cannot

contain an unallowed character.

An application name cannot begin with a period (.), cannot contain leading or trailing spaces, and cannot

contain any of the following characters:

 Unallowed characters

/ forward slash $ dollar sign ’ single quote mark

\ backslash = equal sign ″ double quote mark

* asterisk % percent sign | vertical bar

, comma + plus sign < left angle bracket

: colon @ at sign > right angle bracket

; semi-colon # hash mark & ampersand (and sign)

? question mark]]> No specific name exists for this character combination

 Data type String

Application reference validation

Specifies whether the product examines the application references specified during application installation

or updating and, if validation is enabled, warns you of incorrect references or fails the operation.

An application typically refers to resources using data sources for container managed persistence (CMP)

beans or using resource references or resource environment references defined in deployment descriptors.

The validation checks whether the resource referred to by the application is defined in the scope of the

deployment target of that application.

The resource can be defined on the server, its node, cell or the cluster if the server belongs to a cluster.

Select Don’t validate for no resource validation, Issue warnings for warning messages about incorrect

resource references, or Stop installation if validation fails to stop operations that fail as a result of

incorrect resource references.

This Application reference validation setting is the same as the Validate input off/warn/fail field on the

application installation and update wizards.

 Data type String

Default Issue warnings

Configuring an application

You can change the configuration of an application or module deployed on a server.

You can change the contents of and deployment descriptors for an application or module before

deployment, such as in an assembly tool. However, it is assumed that the module is already deployed on

a server.

Changing an application or module configuration consists of one or more of the following:

v Changing the settings of the application or module.

v Removing a file from an application or module.

56 Administering applications and their environment

v Updating the application or its modules.

This topic describes how to change the settings of an application or module using the administrative

console.

v View current settings of the application or module.

Click Applications > Enterprise Applications >application_name to access the settings page for the

enterprise application.

Many application or module settings are available on other console pages that you can access by

clicking links on the settings page for the enterprise application. For detailed information on the settings

and allowed values, examine the online help for the console pages. When you installed the application

or module, you specified most of the settings values.

v Map each module of your application to a target server.

Specify the application servers or Web servers onto which to install modules of your application.

v Change how quickly your application starts compared to other applications or to the server.

v Configure the use of binary files.

v Change how your application or Web modules use class loaders.

v Map a virtual host for each Web module of your application. Configuring virtual hosts provides

information on virtual hosts.

v Change application bindings or other settings of the application or module.

1. Click Applications > Enterprise Applications > application_name > property_or_item_name in the

console navigation tree. From the application settings page, you can access console pages for

further configuring of the application or module.

– Target specific application status

– Security role to user/group mapping

– View deployment descriptor

– Last participant support extension

– Application scope resources

– Resource references

– EJB references

– Shared library references

– Initial parameters for servlets

– Session management

– Context root for Web modules

– JSP reloading options for Web modules

– Environment entries for Web modules

– Virtual hosts

– Stateful session bean failover (applications)

– Stateful session bean failover (EJB modules)

– Application profiles

– 2.x CMP bean data sources

– 2.x entity bean data sources.

– EJB JNDI names

– Correct use of system identity

– Provide JMS and EJB endpoint URL information

– Publish WSDL files

– Provide HTTP endpoint URL information

– Web modules

– EJB modules

2. Change the values for settings as needed, and click OK.

v Optional: Configure the application so it does not start automatically when the server starts. By default,

an installed application starts when the server on which the application resides starts. You can configure

the target mapping for the application so the application does not start automatically when the server

starts. To start the application, you must then start it manually.

Chapter 6. Deploying and administering applications 57

v If the installed application or module uses a resource adapter archive (RAR file), ensure that the

Classpath setting for the RAR file enables the RAR file to find the classes and resources that it needs.

Examine the Classpath setting on the console Resource adapter settings page.

The application or module configuration is changed. The application or standalone Web module is

restarted so the changes take effect.

Save changes to your administrative configuration.

Application bindings

Before an application that is installed on an application server can start, all enterprise bean (EJB)

references and resource references defined in the application must be bound to the actual artifacts

(enterprise beans or resources) defined in the application server.

When defining bindings, you specify Java Naming and Directory Interface (JNDI) names for the

referenceable and referenced artifacts in an application. The jndiName values specified for artifacts must

be qualified lookup names. An example referenceable artifact is an EJB defined in an application. An

example referenced artifact is an EJB or a resource reference used by the application. Binding definitions

are stored in the ibm-xxx-bnd.xmi files of an application. The xxx can be ejb-jar, web, application or

application-client.

This topic provides the following information about bindings:

v “Times when bindings can be defined”

v “Required bindings” on page 59

v “Other bindings that might be needed” on page 62

Times when bindings can be defined

You can define bindings at the following times:

v During application development

An application developer can create binding definitions in ibm-xxx-bnd.xmi files using a tool such as an

IBM Rational developer tool. The developer then gives an enterprise application (.ear file) complete

with bindings to an application assembler or deployer. When assembling the application, the assembler

does not modify the bindings. Similarly, when installing the application onto a server supported by

WebSphere Application Server, the deployer does not modify or override the bindings or generate

default bindings unless changes to the bindings are necessary for successful deployment of the

application.

v During application assembly

An application assembler can define bindings when modifying deployment descriptors of an application.

Bindings are specified in the WebSphere Bindings section of a deployment descriptor editor. Modifying

the deployment descriptors might change the binding definitions in the ibm-xxx-bnd.xmi files created

when developing an application. After defining the bindings, the assembler gives the application to a

deployer. When installing the application onto a server supported by WebSphere Application Server, the

deployer does not modify or override the bindings or generate default bindings unless changes to the

bindings are necessary for successful deployment of the application.

v During application installation

An application deployer or server administrator can modify the bindings when installing the application

onto a server supported by WebSphere Application Server using the administrative console. New

binding definitions can be specified on the install wizard pages.

If the deployer or administrator selects to override any existing bindings or to generate default bindings

during application installation, default bindings are assigned to the application and new bindings might

need to be specified using the console.

58 Administering applications and their environment

Selecting Generate Default Bindings during application installation causes any incomplete bindings in

the application to be filled in with default values. Existing bindings are not changed.

Restriction: Bindings can be defined or overridden during application installation for all modules except

application clients. For clients, you must define bindings for application client modules

during assembly and store the bindings in the ibm-application-client-bnd.xmi file.

v During configuration of an installed application

After an application is installed onto a server supported by WebSphere Application Server, an

application deployer or server administrator can modify the bindings by changing values in

administrative console pages such as those accessed from the settings page for the enterprise

application.

Required bindings

Before an application can be successfully deployed, bindings must be defined for references to the

following artifacts:

EJB JNDI names

For each enterprise bean (EJB), you must specify a JNDI name. The name is used to bind an

entry in the global JNDI name space for the EJB home object. An example JNDI name for a

Product EJB in a Store application might be store/ejb/Product. The binding definition is stored in

the META-INF/ibm-ejb-jar-bnd.xmi file.

 If a deployer chooses to generate default bindings when installing the application, the install wizard

assigns EJB JNDI names having the form prefix/EJB_name to incomplete bindings. The default

prefix is ejb, but can be overridden. The EJB_name is as specified in the deployment descriptor

<ejb-name> tag.

 During and after application installation, EJB JNDI names can be specified on the Provide JNDI

names for beans panel. After installation, click Applications > Enterprise Applications >

application_name > EJB JNDI names in the administrative console.

Data sources for entity beans

Entity beans such as container-managed persistence (CMP) beans store persistent data in data

stores. With CMP beans, an EJB container manages the persistent state of the beans. You specify

which data store a bean uses by binding an EJB module or an individual EJB to a data source.

Binding an EJB module to a data source causes all entity beans in that module to use the same

data source for persistence.

 An example JNDI name for a Store data source in a Store application might be store/jdbc/store.

The binding definition is stored in IBM binding files such as ibm-ejb-jar-bnd.xmi. A deployer can

also specify whether authentication is handled at the container or application level.

 If a deployer chooses to generate default bindings when installing the application, the install wizard

generates the following for incomplete bindings:

v For EJB 2.x .jar files, connection factory bindings based on the JNDI name and authorization

information specified

v For EJB 1.1 .jar files, data source bindings based on the JNDI name, data source user name

and password specified

The generated bindings provide default connection factory settings for each EJB 2.x .jar file and

default data source settings for each EJB 1.1 .jar file in the application being installed. No

bean-level connection factory bindings or data source bindings are generated unless they are

specified in the custom strategy rule supplied during default binding generation.

 During and after application installation, data sources can be mapped to 2.x entity beans on the

2.x CMP bean data sources panel and on the 2.x entity bean data sources panel. After installation,

click Applications > Enterprise Applications > application_name in the administrative console,

then select 2.x CMP bean data sources or 2.x entity bean data sources. Data sources can be

Chapter 6. Deploying and administering applications 59

mapped to 1.x entity beans on the Map data sources for all 1.x CMP beans panel and on the

Provide default data source mapping for modules containing 1.x entity beans panel. After

installation, access console pages similar to those for 2.x CMP beans, except click links for 1.x

CMP beans.

Backend ID for EJB modules

If an EJB .jar file that defines CMP beans contains mappings for multiple backend databases,

specify the appropriate backend ID that determines which persister classes are loaded at run time.

 Specify the backend ID during application installation. You cannot select a backend ID after the

application is installed onto a server.

 To enable backend IDs for individual EJB modules:

1. During application installation, select Deploy enterprise beans on the Select installation

options panel. Selecting Deploy enterprise beans enables you to access the Provide

options to perform the EJB Deploy panel.

2. On the Provide options to perform the EJB Deploy panel, set the database type to ″″ (null).

During application installation, if you select Deploy enterprise beans on the Select installation

options panel and specify a database type for the EJB deployment tool on the Provide options to

perform the EJB Deploy panel, previously defined backend IDs for all of the EJB modules are

overwritten by the chosen database type.

 The default database type is DB2UDB_V81.

EJB references

An enterprise bean (EJB) reference is a logical name used to locate the home interface of an

enterprise bean. EJB references are specified during deployment. At run time, EJB references are

bound to the physical location (global JNDI name) of the enterprise beans in the target operational

environment. EJB references are made available in the java:comp/env/ejb Java naming

subcontext.

 For each EJB reference, you must specify a JNDI name. An example JNDI name for a Supplier

EJB reference in a Store application might be store/ejb/Supplier. The binding definition is stored

in IBM binding files such as ibm-ejb-jar-bnd.xmi. When the referenced EJB is also deployed in

the same application server, you can specify a server-scoped JNDI name. But if the referenced

EJB is deployed on a different application server or if ejb-ref is defined in an application client

module, then you should specify the global cell-scoped JNDI name.

 If a deployer chooses to generate default bindings when installing the application, the install wizard

binds EJB references as follows: If an <ejb-link> is found, it is honored. If the ejb-name of an EJB

defined in the application matches the ejb-ref name, then that EJB is chosen. Otherwise, if a

unique EJB is found with a matching home (or local home) interface as the referenced bean, the

reference is resolved automatically.

 During and after application installation, EJB reference JNDI names can be specified on the Map

EJB references to beans panel. After installation, click Applications > Enterprise Applications >

application_name > EJB references in the administrative console.

 For more information, refer to EJB references .

Resource references

A resource reference is a logical name used to locate an external resource for an application.

Resource references are specified during deployment. At run time, the references are bound to the

physical location (global JNDI name) of the resource in the target operational environment.

Resource references are made available as follows:

 Resource reference type Subcontext declared in

Java DataBase Connectivity (JDBC) data source java:comp/env/jdbc

JMS connection factory java:comp/env/jms

60 Administering applications and their environment

JavaMail connection factory java:comp/env/mail

Uniform Resource Locator (URL) connection factory java:comp/env/url

For each resource reference, you must specify a JNDI name. If a deployer chooses to generate

default bindings when installing the application, the install wizard generates resource reference

bindings derived from the <res-ref-name> tag, assuming that the java:comp/env name is the same

as the resource global JNDI name.

 During application installation, resource reference JNDI names can be specified on the Map

resource references to references panel. Specify JNDI names for the resources that represent the

logical names defined in resource references. You can optionally specify login configuration name

and authentication properties for the resource. After specifying authentication properties, click OK

to save the values and return to the mapping step. Each resource reference defined in an

application must be bound to a resource defined in your WebSphere Application Server

configuration. After installation, click Applications > Enterprise Applications > application_name

> Resource references in the administrative console to access the Resource references panel.

Virtual host bindings for Web modules

You must bind each Web module to a specific virtual host. The binding informs a Web server

plug-in that all requests that match the virtual host must be handled by the Web application. An

example virtual host to be bound to a Store Web application might be store_host. The binding

definition is stored in IBM binding files such as WEB-INF/ibm-web-bnd.xmi.

 If a deployer chooses to generate default bindings when installing the application, the install wizard

sets the virtual host to default_host for each .war file.

 During and after application installation, you can map a virtual host to a Web module defined in

your application. On the Map virtual hosts for Web modules panel, specify a virtual host. The port

number specified in the virtual host definition is used in the URL that is used to access artifacts

such as servlets and JSP files in the Web module. For example, an external URL for a Web

artifact such as a JSP file is http://host_name:virtual_host_port/context_root/jsp_path. After

installation, click Applications > Enterprise Applications > application_name > Virtual hosts in

the administrative console.

Message-driven beans

For each message-driven bean, you must specify a queue or topic to which the bean will listen. A

message-driven bean is invoked by a Java Messaging Service (JMS) listener when a message

arrives on the input queue that the listener is monitoring. A deployer specifies a listener port or

JNDI name of an activation specification as defined in a connector module (.rar file) under

WebSphere Bindings on the Beans page of an assembly tool EJB deployment descriptor editor.

An example JNDI name for a listener port to be used by a Store application might be

StoreMdbListener. The binding definition is stored in IBM bindings files such as

ibm-ejb-jar-bnd.xmi.

 If a deployer chooses to generate default bindings when installing the application, the install wizard

assigns JNDI names to incomplete bindings.

v For EJB 2.x message-driven beans deployed as JCA 1.5-compliant resources, the install wizard

assigns JNDI names corresponding to activationSpec instances in the form eis/MDB_ejb-name.

v For EJB 2.x message-driven beans deployed against listener ports, the listener ports are

derived from the message-driven bean <ejb-name> tag with the string Port appended.

During application installation using the administrative console, you can specify a listener port

name or an activation specification JNDI name for every message-driven bean on the panel Bind

listeners for message-driven beans. A listener port name must be provided when using the JMS

providers: Version 5 default messaging, WebSphere MQ, or generic. An activation specification

must be provided when the application’s resources are configured using the default messaging

provider or any generic J2C resource adapter that supports inbound messaging. If neither is

specified, then a validation error is displayed after you click Finish on the Summary panel. Also, if

Chapter 6. Deploying and administering applications 61

the module containing the message-driven bean is deployed on a 5.x deployment target and a

listener port is not specified, then a validation error is displayed after you click Next.

 After application installation, you can specify JNDI names and configure message-driven beans on

console pages under Resources > JMS Providers or under Resources > Resource Adapters.

For more information, refer to “Using asynchronous messaging” on page 761.

Message destination references

A message destination reference is a logical name used to locate an enterprise bean in an EJB

module that acts as a message destination. Message destination references exist only in J2EE 1.4

artifacts such as--

v J2EE 1.4 application clients

v EJB 2.1 projects

v 2.4 Web applications

If multiple message destination references are associated with a single message destination link,

then a single JNDI name for an enterprise bean that maps to the message destination link, and in

turn to all of the linked message destination references, is collected during deployment. At run

time, the message destination references are bound to the administered message destinations in

the target operational environment.

 If a message destination reference and a message-driven bean are linked by the same message

destination, both the reference and the bean should have the same destination JNDI name. When

both have the same name, only the destination JNDI name for the message-driven bean is

collected and applied to the corresponding message destination reference.

 If a deployer chooses to generate default bindings when installing the application, the install wizard

assigns JNDI names to incomplete message destination references as follows: If a message

destination reference has a <message-destination-link>, then the JNDI name is set to

ejs/message-destination-linkName. Otherwise, the JNDI name is set to eis/message-
destination-refName.

Other bindings that might be needed

Depending on the references in and artifacts used by your application, you might need to define bindings

for references and artifacts not listed in this article.

Configuring application startup

You can configure the startup behavior of an application. The values set affect how quickly an application

starts and what occurs when an application starts.

This topic assumes that your application or module is already deployed on a server.

This topic also assumes that your application or module is configured to start automatically when the

server starts. By default, an installed application starts when the server on which the application resides

starts.

This topic describes how to change the settings of an application or module using the administrative

console.

1. Click Applications > Enterprise Applications > application_name > Startup behavior in the console

navigation tree.

2. Specify the startup order for the application.

If your application starts automatically when its server starts, the value for Startup order controls how

quickly the application starts. Startup order specifies the order in which applications are started when

the server starts. The application with the lowest startup order, or starting weight, is started first.

3. Specify whether the application must initialize fully before its server is considered started.

62 Administering applications and their environment

If your application starts automatically when its server starts, Launch application before server

completes startup specifies whether the application must initialize fully before its server is considered

started. Background applications can be initialized on an independent thread, thus allowing the server

startup to complete without waiting for the application. This setting applies only if the application is run

on a Version 6 (or later) application server.

4. Specify whether to create MBeans for resources such as servlets or JavaServer Pages (JSP) files

within an application when the application starts.

The default for Create MBeans for resources is to create MBeans.

The application or module configuration is changed. The application or standalone Web module is

restarted so the changes take effect.

Save changes to your administrative configuration.

Startup behavior settings

Use this page to configure when an application starts compared to other applications and to the server,

and to configure whether MBeans for resources are created when an application starts.

To view this administrative console page, click Applications > Enterprise Applications >

application_name > Startup behavior.

Startup order:

Specifies the order in which applications are started when the server starts. The startup order is like a

starting weight. The application with the lowest starting weight is started first.

 Data type Integer

Default 1

Range 0 to 2147483647

Launch application before server completes startup:

Specifies whether the application must initialize fully before the server starts.

 The default setting of false indicates that server startup will not complete until the application starts.

A setting of true informs the product that the application might start on a background thread and thus

server startup might continue without waiting for the application to start. Thus, the application might not be

ready for use when the application server starts.

This setting applies only if the application is run on a Version 6 application server.

 Data type Boolean

Default false

Create MBeans for resources:

Specifies whether to create MBeans for various resources (such as servlets or JSP files) within an

application when the application starts. The default is to create MBeans.

 Data type Boolean

Default true

Chapter 6. Deploying and administering applications 63

Configuring binary location and use

You can designate where binary files (binaries) used by your application reside, whether the product

distributes binaries for you automatically, and otherwise configure the use of binaries.

This topic assumes that your application or module is already deployed on a server.

This topic describes how to change the settings of an application or module using the administrative

console.

1. Click Applications > Enterprise Applications > application_name > Application binaries in the

console navigation tree. The Application binaries page is displayed.

2. Specify the directory to hold the application binaries.

The default is APP_INSTALL_ROOT/cell_name, where the APP_INSTALL_ROOT variable is

app_server_root/installedApps. For example:

C:\WebSphere\AppServer\profiles\profile_name\installedApps\cell_name

Refer to “Application binary settings” for a detailed description of the Location (full path) setting.

3. Specify the bindings, extensions, and deployment descriptors that an application server uses.

By default, an application server uses the bindings, extensions, and deployment descriptors located

with the application deployment document, the deployment.xml file.

To specify that the application server use the bindings, extensions, and deployment descriptors located

in the application archive (EAR) file, select Use configuration information in binary. Select this

setting for applications installed on 6.x deployment targets only. This setting is not valid for applications

installed on 5.x deployment targets.

4. Specify whether the product distributes application binaries automatically to other nodes on the cell.

By default, Enable binary distribution, expansion and cleanup post uninstallation is selected and

binaries are distributed automatically.

If you disable this option, then you must ensure that the application binaries are expanded

appropriately in the destination directories of all nodes where the application runs.

Important: If you disable this option and you do not copy and expand the application binaries to the

nodes, a later saving of the configuration or manual synchronization does not move the

application binaries to the nodes for you.

5. Specify access permissions for binaries.

a. Ensure that the Enable binary distribution, expansion and cleanup post uninstallation option

is enabled. That option must be enabled to specify access permissions for binaries.

b. For File permissions, specify a string that defines access permissions for binaries that are

expanded in the named location.

You can specify file permissions in the text field. You can also set some of the commonly used file

permissions by selecting them from the drop-down list. Drop-down list selections overwrite file

permissions set in the text field.

For details on File permissions, refer to “Application binary settings.”

6. Click OK.

The application or module configuration is changed. The application or standalone Web module is

restarted so the changes take effect.

Save changes to your administrative configuration.

Application binary settings

Use this page to configure the location and distribution of application binary files.

64 Administering applications and their environment

To view this administrative console page, click Applications > Enterprise Applications >

application_name > Application binaries.

Location (full path):

Specifies the directory to which the application EAR file is installed. This Location setting is the same as

the Directory to install application field on the application installation and update wizards.

 The default value is the value of APP_INSTALL_ROOT/cell_name, where the APP_INSTALL_ROOT variable is

app_server_root/installedApps; for example, app_server_root/installedApps/cell_name.

You can specify an absolute path or use a pathmap variable such as ${MY_APPS}. You can use a pathmap

variable in any installation.

 Data type String

Units Full path name

Use configuration information in binary:

Specifies whether the application server uses the binding, extensions, and deployment descriptors located

with the application deployment document, the deployment.xml file (default), or those located in the

enterprise application resource (EAR) file.

 This Use configuration information in binary setting is the same as the Use binary configuration field

on the application installation and update wizards. Select this setting for applications installed on 6.x

deployment targets only. This setting is not valid for applications installed on 5.x deployment targets.

 Data type Boolean

Default false

Enable binary distribution, expansion and cleanup post uninstallation:

Specifies whether the product expands application binaries in the installation location during installation

and deletes application binaries during uninstallation. The default is to enable application distribution.

Application binaries for installed applications are expanded to the directory specified. The binaries are

deleted when you uninstall and save changes to the configuration, and, on the Network Deployment

product, synchronize changes.

 If you disable this option, then you must ensure that the application binaries are expanded appropriately in

the destination directories of all nodes where the application runs.

Important: If you disable this option and you do not copy and expand the application binaries to the

nodes, a later saving of the configuration or manual synchronization does not move the

application binaries to the nodes for you.

This Enable binary distribution, expansion and cleanup post uninstallation setting is the same as the

Distribute application field on the application installation and update wizards.

 Data type Boolean

Default true

File permissions:

Specifies access permissions for application binaries for installed applications that are expanded to the

directory specified.

Chapter 6. Deploying and administering applications 65

The Enable binary distribution, expansion and cleanup post uninstallation option must be enabled to

specify file permissions.

You can specify file permissions in the text field. You can also set some of the commonly used file

permissions by selecting them from the drop-down list. Drop-down list selections overwrite file permissions

set in the text field.

You can set one or more of the following file permission strings in the drop-down list. Selecting multiple

options combines the file permission strings.

 Drop-down list option File permission string set

Allow all files to be read but not written to .*=755

Allow executables to execute .*\.dll=755#.*\.so=755#.*\.a=755#.*\.sl=755

Allow HTML and image files to be read by

everyone

.*\.htm=755#.*\.html=755#.*\.gif=755#.*\.jpg=755

Instead of using the drop-down list to specify file permissions, you can specify a file permission string in

the text field. File permissions use a string that has the following format:

file_name_pattern=permission#file_name_pattern=permission

where file_name_pattern is a regular expression file name filter (for example, .*\\.jsp for all JSP files),

permission provides the file access control lists (ACLs), and # is the separator between multiple entries of

file_name_pattern and permission. If # is a character in a file_name_pattern string, use \# instead.

If multiple file name patterns and file permissions in the string match a uniform resource identifier (URI)

within the application, then the product uses the most stringent applicable file permission for the file. For

example, if the file permission string is .*\\.jsp=775#a.*\\.jsp=754, then the abc.jsp file has file

permission 754.

Tip: Using regular expressions for file matching pattern compares an entire string URI against the

specified file permission pattern. You must provide more precise matching patterns using regular

expressions as defined by Java programming API. For example, suppose the following directory and

file URIs are processed during a file permission operation:

 1 /opt/WebSphere/profiles/AppSrv01/installedApps/MyCell/MyApp.ear/MyWarModule.war

2 /opt/WebSphere/profiles/AppSrv01/installedApps/MyCell/MyApp.ear/MyWarModule.war/MyJsp.jsp

3 /opt/WebSphere/profiles/AppSrv01/installedApps/MyCell/MyApp.ear/MyWarModule.war/META-INF/
MANIFEST.MF

4 /opt/WebSphere/profiles/AppSrv01/installedApps/MyCell/MyApp.ear/MyWarModule.war/WEB-INF/classes/
MyClass.class

5 /opt/WebSphere/profiles/AppSrv01/installedApps/MyCell/MyApp.ear/MyWarModule.war/mydir/
MyClass2.class

6 /opt/WebSphere/profiles/AppSrv01/installedApps/MyCell/MyApp.ear/MyWarModule.war/META-INF

The file pattern matching results are:

v MyWarModule.war does not match any of the URIs

v .*MyWarModule.war.* matches all URIs

v .*MyWarModule.war$ matches only URI 1

v .*\\.jsp=755 matches only URI 2

v .*META-INF.* matches URIs 3 and 6

v .*MyWarModule.war/.*/.*\.class matches URIs 4 and 5

66 Administering applications and their environment

If you specify a directory name pattern for File permissions, then the directory permission is set based on

the value specified. Otherwise, the File permissions value set on the directory is the same as its parent.

For example, suppose you have the following file and directory structure:

/opt/WebSphere/profiles/AppSrv01/installedApps/MyCell/MyApp.ear/MyWarModule.war/MyJsp.jsp

and you specify the following file pattern string:

.*MyApp.ear$=755#.*\.jsp=644

The file pattern matching results are:

v Directory MyApp.ear is set to 755

v Directory MyWarModule.war is set to 755

v Directory MyWarModule.war is set to 755

Important: Regardless of the operation system, always use a forward slash (/) as a file path separator in

file patterns.

Windows

You cannot unset read permission on a file on Windows platforms. With POSIX style permission

bits, the bit for denoting readable on a file is 4, writable is 2, and executable is 1. Thus, permission of a

file on a Windows platform is either 5 or 7. Also, in POSIX style there are user, group and world

permissions. You can only set the user permission for a file on Windows platforms. The group and world

permission bits are ignored.

Access permissions specified here are at the application level. You can also specify access permissions

for application binaries in the node level configuration. The node level file permissions specify the

maximum (most lenient) permissions that can be given to application binaries. Access permissions

specified here at application level can only be the same as or more restrictive than those specified at the

node level.

This setting is the same as the File permission field on the application installation and update wizards.

 Data type String

Application build level:

Specifies an uneditable string that identifies the build version of the application.

 Data type String

Configuring the use of class loaders by an application

You can configure whether your application and Web modules use their own class loaders to load classes

or use different class loaders, as well as configure the reloading of classes when application files are

updated. Class loaders enable an application to access repositories of available classes and resources.

This topic assumes that your application or module is already deployed on a server.

Selection of class loaders to be used by an application and Web modules affects whether your application

and its modules find the resources that they need to run effectively. You can select whether your

application and Web modules use their own class loaders to load classes, or use a parent class loader.

Detailed information on class loaders is available in “Class loaders” on page 15, Chapter 5, “Class

loading,” on page 15 and Troubleshooting class loaders.

An application class loader groups enterprise bean (EJB) modules, shared libraries, resource adapter

archives (RAR files), and dependency Java archive (JAR) files associated to an application. Dependency

JAR files are JAR files that contain code which can be used by both enterprise beans and servlets.

Chapter 6. Deploying and administering applications 67

An application class loader is the parent of a Web application archive (WAR) class loader. By default, a

Web module has its own WAR class loader to load the contents of the Web module. The WAR

class-loader policy value of an application class loader determines whether the WAR class loader or the

application class loader is used to load the contents of the Web module.

You can also select whether classes are reloaded when application files are updated. For enterprise bean

(EJB) modules or any non-Web modules, enabling class reloading causes the application server run time

to stop and start the application to reload application classes. For Web modules such as servlets and

JavaServer Pages (JSP) files, a Web container reloads a Web module only when the IBM extension

reloadingEnabled in the ibm-web-ext.xmi file is set to true.

To configure use of class loaders by your application and Web modules, use the Class loading and update

detection page of the administrative console.

1. Click Applications > Enterprise Applications > application_name > Class loading and update

detection to access the settings page for an application class loader.

2. Specify whether to reload application classes when the application or its files are updated.

By default, class reloading is not enabled. Select Reload classes when application files are

updated to choose to reload application classes. You might specify different values for EJB modules

and for Web modules such as servlets and JavaServer Pages (JSP) files.

3. Specify the number of seconds to scan the application’s file system for updated files.

The value specified for Polling interval for updated files takes effect only if class reloading is

enabled. The default is the value of the reloading interval attribute in the IBM extension

(META-INF/ibm-application-ext.xmi) file of the enterprise application (EAR file). You might specify

different values for EJB modules and for Web modules such as servlets and JSP files.

To enable reloading, specify an integer value that is greater than zero (for example, 1 to 2147483647).

To disable reloading, specify zero (0).

4. Specify the class loader order for the application.

The application class loader order specifies whether the class loader searches in the parent class

loader or in the application class loader first to load a class. The default is to search in the parent class

loader before searching in the application class loader to load a class.

Select either of the following values for Class loader order:

 Option Description

Classes loaded with parent class loader first Causes the class loader to search in the parent class

loader first to load a class. This value is the standard for

Development Kit class loaders and WebSphere

Application Server class loaders.

Classes loaded with application class loader first Causes the class loader to search in the application class

loader first to load a class. By specifying Classes loaded

with application class loader first, your application

can override classes contained in the parent class loader.

Attention: Specifying the Classes loaded with

application class loader first value might result in

LinkageErrors or ClassCastException messages if you

have mixed use of overridden classes and non-overridden

classes.

5. Specify whether to use a single or multiple class loaders to load Web application archives (WAR files)

of your application.

By default, Web modules have their own WAR class loader to load the contents of the

WEB-INF/classes and WEB-INF/lib directories. The default WAR class loader value is Class loader

for each WAR file in application, which uses a separate class loader to load each WAR file. Setting

the value to Single class loader for application causes the application class loader to load the

68 Administering applications and their environment

Web module contents as well as the EJB modules, shared libraries, RAR files, and dependency JAR

files associated to the application. The application class loader is the parent of the WAR class loader.

Select either of the following values for WAR class loader policy:

 Option Description

Class loader for each WAR file in application Uses a different class loader for each WAR file.

Single class loader for application Uses a single class loader to load all of the WAR files in

your application.

6. Click OK.

The application or module configuration is changed. The application or standalone Web module is

restarted so the changes take effect.

Save changes to your administrative configuration.

Class loading and update detection settings

Use this page to configure use of class loaders by an application.

To view this administrative console page, click Applications > Enterprise Applications >

application_name > Class loading and update detection.

Reload classes when application files are updated:

Specifies whether to enable class reloading when application files are updated.

 Select Reload classes when application files are updated to set reloadEnabled to true in the

deployment.xml file for the application. If an application’s class definition changes, the application server

run time stops and starts the application to reload application classes.

For JavaServer Pages (JSP) files in a Web module, a Web container reloads JSP files only when the IBM

extension jspReloadingEnabled in the jspAttributes of the ibm-web-ext.xmi file is set to true. You can

enable JSP reloading during deployment on the JSP Reload Options panel.

 Data type Boolean

Default false

Polling interval for updated files:

Specifies the number of seconds to scan the application’s file system for updated files. The default is the

value of the reloading interval attribute in the IBM extension (META-INF/ibm-application-ext.xmi) file of

the EAR file.

 This Polling interval for updated files setting is the same as the Reload interval in seconds field on

the application installation and update wizards.

To enable reloading, specify a value greater than zero (for example, 1 to 2147483647). To disable

reloading, specify zero (0). The range is from 0 to 2147483647.

The reloading interval attribute takes effect only if class reloading is enabled.

 Data type Integer

Units Seconds

Default 3

Chapter 6. Deploying and administering applications 69

Class loader order:

Specifies whether the class loader searches in the parent class loader or in the application class loader

first to load a class. The standard for development kit class loaders and WebSphere Application Server

class loaders is Classes loaded with parent class loader first. By specifying Classes loaded with

application class loader first, your application can override classes contained in the parent class

loader, but this action can potentially result in ClassCastException or LinkageErrors if you have mixed use

of overridden classes and non-overridden classes.

 The options are Classes loaded with parent class loader first and Classes loaded with application

class loader first. The default is to search in the parent class loader before searching in the application

class loader to load a class.

For your application to use the default configuration of Jakarta Commons Logging in WebSphere

Application Server, set this application class loader mode to Classes loaded with parent class loader

first. For your application to override the default configuration of Jakarta Commons Logging in

WebSphere Application Server, your application must provide the configuration in a form supported by

Jakarta Commons Logging and this class loader mode must be set to Classes loaded with application

class loader first. Also, to override the default configuration, set the class loader mode for each Web

module in your application so that the correct logger factory loads.

 Data type String

Default Classes loaded with parent class loader first

WAR class loader policy:

Specifies whether to use a single class loader to load all WAR files of the application or to use a different

class loader for each WAR file.

 The options are Class loader for each WAR file in application and Single class loader for

application. The default is to use a separate class loader to load each WAR file.

 Data type String

Default Class loader for each WAR file in application

Manage modules settings

Use this panel to specify deployment targets where you want to install the modules contained in your

application. Modules can be installed on the same deployment target or dispersed among several

deployment targets. A deployment target can be an application server, cluster of application servers or

Web server.

To view this administrative console panel, click Applications > Enterprise Applications >

application_name > Manage modules. This panel is the similar to the Map modules to servers panel on

the application installation and update wizards.

On this panel, each Module must map to one or more desired targets, identified under Server. To change

a mapping:

1. In the list of mappings, select the Select check box beside each module that you want mapped to the

same target(s).

2. From the Clusters and Servers drop-down list, select one or more targets. Select only appropriate

deployment targets for a module. Modules that use WebSphere Application Server Version 6.x features

cannot be installed onto a Version 5.x target server.

70 Administering applications and their environment

Use the Ctrl key to select multiple targets. For example, to have a Web server serve your application,

press the Ctrl key and then select an application server or cluster and the Web server together. The

plug-in configuration file plugin-cfg.xml for that Web server will be generated based on the

applications which are routed through it.

3. Click Apply.

If this Manage modules panel was accessed from a console enterprise application page for an already

installed application, you can also use this panel to view and manage modules in your application.

To view the values specified for a module configuration, click the module name in the list. The displayed

module settings page shows the values specified. On the settings page, you can change existing

configuration values and link to additional console pages that assist you in configuring the module.

To manage a module, enable the Select check box beside the module name in the list and click a button:

 Button Resulting action

Remove Removes the selected module from the deployed application. The module is deleted

from the application in the configuration repository and also from all of the nodes

where the application is installed and running (or expected to run). If the application is

running on a node when the module file is deleted from the node as a result of

configuration synchronization then the application is stopped, the module file is deleted

from the node’s file system, and the application is restarted.

Update Opens a wizard that helps you update module in an application. If a module has the

same URI as a module already existing in the application, the new module replaces

the existing module. If the new module does not exist in the application, it is added to

the deployed application. If the application is running on a node when the module file

is updated on the node as a result of configuration synchronization then the application

is stopped, the module file is updated on the node’s file system, and the application is

restarted. If the application is running on a node when the module file is added as a

result of configuration synchronization then the newly added module is started without

stopping and restarting the running application.

Remove File Deletes a file from a module of a deployed application. The file is also deleted from all

the nodes where the module is installed after configuration is synchronized with nodes.

If the application is running on a node when the module file is updated on the node as

a result of configuration synchronization then the application is stopped, the module

file is updated on the node’s file system, and the application is restarted.

Clusters and Servers

Lists the names of available target servers and clusters. This list is the same for every application that is

installed in the cell.

From this list, select only appropriate deployment targets for a module. You can install an application,

enterprise bean (EJB) module or Web module developed for a Version 5.x product on a 5.x or 6.x

deployment target, provided the module--

v Does not support Java 2 Platform, Enterprise Edition (J2EE) 1.4;

v Does not call any 6.x runtime application programming interfaces (APIs); and

v Does not use any 6.x product features.

If the module supports J2EE 1.4, then you must install the module on a 6.x deployment target. If the

module calls a 6.1.x API or uses a 6.1.x feature, then you must install the module on a 6.1.x deployment

target. Modules that call a 6.0.x API or use a 6.0.x feature can be installed on a 6.0.x or 6.1.x deployment

target.

Module

Specifies the name of a module in the installed (or deployed) application.

Chapter 6. Deploying and administering applications 71

URI

Specifies the location of the module relative to the root of the application (EAR file).

Module type

Specifies the type of module, for example a Web module or EJB module.

This setting is shown on the Manage modules panel accessed from a console enterprise application page.

Server

Specifies the name of each server or cluster to which the module currently is mapped--that is, the

deployment targets.

To change the deployment targets for a module, select one or more targets from the Clusters and

Servers drop-down list and click Apply. The new mapping replaces the previous mapping.

Mapping modules to servers

Each module of a deployed application must be mapped to one or more target servers. The target server

can be an application server or Web server.

You can map modules of an application or standalone Web module to one or more target servers during or

after application installation using the console. This topic assumes that the module is already installed on a

server and that you want to change the mappings.

Before you change a mapping, check the deployment targets. You must specify an appropriate deployment

target for a module. Modules that use Version 6.x features cannot be installed onto a Version 5.x target

server.

During application installation, different deployment targets might have been specified.

You use the Manage modules panel of the administrative console to view and change mappings. This

panel is displayed during application installation using the console and, after the application is installed,

can be accessed from the settings page for an enterprise application.

On the Manage modules panel, specify target servers where you want to install the modules contained in

your application. Modules can be installed on the same application server or dispersed among several

application servers. Also, specify the Web servers as targets that will serve as routers for requests to your

application. The plug-in configuration file plugin-cfg.xml for each Web server is generated based on the

applications which are routed through it.

1. Click Applications > Enterprise Applications > application_name > Manage modules in the console

navigation tree. The Manage modules panel is displayed.

2. Examine the list of mappings. Ensure that each Module entry is mapped to the desired target(s),

identified under Server.

3. Change a mapping as needed.

a. Select each module that you want mapped to the same target(s). In the list of mappings, place a

check mark in the Select check boxes beside the modules.

b. From the Clusters and Servers drop-down list, select one or more targets. Use the Ctrl key to

select multiple targets. For example, to have a Web server serve your application, use the Ctrl key

to select an application server and the Web server together in order to have the plug-in

configuration file plugin-cfg.xml for that Web server generated based on the applications which

are routed through it.

c. Click Apply.

4. Repeat steps 2 and 3 until each module maps to the desired target(s).

5. Click OK.

72 Administering applications and their environment

The application or module configurations are changed. The application or standalone Web module is

restarted so the changes take effect.

Save changes to your administrative configuration.

Mapping virtual hosts for Web modules

A virtual host must be mapped to each Web module of a deployed application. Web modules can be

installed on the same virtual host or dispersed among several virtual hosts.

You can map a virtual host to a Web module during or after application installation using the console. This

article assumes that the Web module is already installed on a server and that you want to change the

mappings.

Before you change a mapping, check the virtual hosts definitions. You can install a Web module on any

defined virtual host. To view information on previously defined virtual hosts, click Environment > Virtual

Hosts in the administrative console. Virtual hosts enable you to associate a unique port with a module or

application. The aliases of a virtual host identify the port numbers defined for that virtual host. A port

number specified in a virtual host alias is used in the URL that is used to access artifacts such as servlets

and JavaServer Pages (JSP) files in a Web module. For example, the alias myhost:8080 is the

host_name:port_number portion of the URL http://myhost:8080/servlet/snoop.

During application installation, a virtual host other than the one you want mapped to your Web module

might have been specified.

The default virtual host setting usually is default_host, which provides several port numbers through its

aliases:

80 An internal, insecure port used when no port number is specified

9080 An internal port

9443 An external, secure port

Unless you want to isolate your Web module from other modules or resources on the same node (physical

machine), default_host is a suitable virtual host for your Web module.

In addition to default_host, WebSphere Application Server provides admin_host, which is the virtual host

for the administrative console system application. admin_host is on port 9060. Its secure port is 9043. Do

not select admin_host unless the Web module relates to system administration.

Use the Virtual hosts page of the administrative console to view and change mappings. This page is

displayed during application installation using the console and, after the application is installed, can be

accessed from the settings page for an enterprise application.

On the Virtual hosts page, specify a virtual host for each Web module. Web modules of an application can

be installed on the same virtual host or on different virtual hosts.

1. Click Applications > Enterprise Applications >application_name > Virtual hosts in the console

navigation tree. The Virtual hosts page is displayed.

2. Examine the list of mappings. Ensure that each Web module entry has the desired virtual host

mapped to it, identified under Virtual host.

3. Change the mappings as needed.

a. Select each Web module that you want mapped to a particular virtual host. In the list of mappings,

place a check mark in the Select check boxes beside the Web modules.

b. From the Virtual host drop-down list, select the desired virtual host. If you selected more than one

virtual host in step 1:

1) Expand Apply Multiple Mappings.

2) Select the desired virtual host from the Virtual host drop-down list.

Chapter 6. Deploying and administering applications 73

3) Click Apply.

4. Repeat steps 2 and 3 until a desired virtual host is mapped to each Web module.

5. Click OK.

The application or Web module configurations are changed. The application or standalone Web module is

restarted so the changes take effect.

After mapping virtual hosts, do the following:

1. Regenerate the plug-in configuration file.

a. Click Servers > Web servers.

b. Select the Web server for which you want to generate a plug-in.

c. Click Generate Plug-in.

2. Save changes to your administrative configuration.

Virtual hosts settings

Use this panel to specify virtual hosts for Web modules contained in your application. Web modules can

be installed on the same virtual host or dispersed among several virtual hosts.

To view this administrative console panel, click Applications > Enterprise Applications >

application_name > Virtual hosts. This panel is the same as the Map virtual hosts for Web modules

panel on the application installation and update wizards.

On this panel, each Web module must map to a previously defined virtual host, identified under Virtual

host. You can see information on previously defined virtual hosts by clicking Environment > Virtual

Hosts in the administrative console. Virtual hosts enable you to associate a unique port with a module or

application. The aliases of a virtual host identify the port numbers defined for that virtual host. A port

number specified in a virtual host alias is used in the URL that is used to access artifacts such as servlets

and JavaServer Pages (JSP) files in a Web module. For example, the alias myhost:8080 is the

host_name:port_number portion of the URL http://myhost:8080/servlet/snoop.

The default virtual host setting usually is default_host, which provides several port numbers through its

aliases:

80 An internal, insecure port used when no port number is specified

9080 An internal port

9443 An external, secure port

 Unless you want to isolate your Web module from other modules or resources on the same node (physical

machine), default_host is a suitable virtual host for your Web module.

In addition to default_host, the product provides admin_host, which is the virtual host for the

administrative console system application. admin_host is on port 9060. Its secure port is 9043. Do not

select admin_host unless the Web module relates to system administration.

To change a mapping:

1. In the list of mappings, select the Select check box beside each Web module that you want mapped to

a particular virtual host.

2. From the Virtual host drop-down list, select the desired virtual host. If you selected more than one

virtual host in step 1:

a. Expand Apply Multiple Mappings.

b. Select the desired virtual host from the Virtual Host drop-down list.

c. Click Apply.

3. Click OK.

Web module:

74 Administering applications and their environment

Specifies the name of a Web module in the application that you are installing or that you are viewing after

installation.

Virtual host:

Specifies the name of the virtual host to which the Web module is currently mapped.

 Expanding the drop-down list displays a list of previously defined virtual hosts. To change a mapping,

select a different virtual host from the list.

Do not specify the same virtual host for different Web modules that have the same context root and are

deployed on targets belonging to the same node even if the Web modules are contained in different

applications. Specifying the same virtual host causes a validation error.

Mapping properties for a custom login configuration

Use this page to view and manage the mapping properties for a custom login configuration.

To access the administrative console panel, complete the following steps:

1. Click Applications > Enterprise applications > application_name.

2. Under Enterprise Java Bean Properties, click 2.x entity bean data sources.

3. For Container authorization, modify the authorization type by selecting you rEJB module and selecting

Container from the Resource authorization menu.

4. Click Apply.

5. Under Specify authentication method, select Use custom login configuration and the name of the

application login configuration.

6. Select the name of your EJB module.

7. Click Apply.

8. Click Mapping properties in the Resource authorization column. This property is not available until

after you click apply in the previous step.

Name

Specifies the name for the mapping property.

Do not use the MAPPING_ALIAS property name because the name is reserved by the product.

Value

Specifies the value paired with the specified name.

Description

Provides additional information about the name and value pair.

Viewing deployment descriptors

A deployment descriptor is an extensible markup language (XML) file that specifies configuration and

container options for an application or module.

This topic assumes that you have installed an application or module on a server and that you want to view

its deployment descriptor.

When you create an application or module in an assembly tool such as the Application Server Toolkit

(AST) or Rational Application Developer, the assembly tool creates deployment descriptor files for the

application or module.

Chapter 6. Deploying and administering applications 75

You can edit a deployment descriptor file manually. However, it is preferable to edit a deployment

descriptor using an assembly tool deployment descriptor editor to ensure that the deployment descriptor

has valid properties and that its references contain appropriate values.

After an application or module is installed on a server, you can view its deployment descriptor in the

administrative console.

1. Access a deployment descriptor view.

Click the navigational option stated in Accessing a console view to view the deployment descriptor

for a given module:

 Module Deployment descriptor file Accessing a console view

Enterprise

application

application.xml Applications > Enterprise Applications > application_name >

View deployment descriptor

Web application WEB-INF/web.xml Applications > Enterprise Applications > application_name >

Manage Modules > module_name >

v View deployment descriptor

WEB-INF/portlet.xml Applications > Enterprise Applications > application_name >

Manage Modules > module_name >

v View portlet deployment descriptor

Enterprise bean ejb-jar.xml Applications > Enterprise Applications > application_name >

Manage Modules > module_name > View deployment

descriptor

Application client application-client.xml No console view

Web service webservices.xml Applications > Enterprise Applications > application_name >

Manage Modules > module_name >

v View Web services client deployment descriptor

extension

v View Web services server deployment descriptor

v View Web services server deployment descriptor

extension

Viewing Web services deployment descriptors in the

administrative console describes the views.

Resource adapter ra.xml Resource Adapters > Resource Adapters > module_name >

View deployment descriptor

2. Click Expand All to view the deployment descriptor contents.

A deployment descriptor such as the following for the product DefaultApplication is displayed:

<application id="Application_ID" >

 <display-name> DefaultApplication.ear</display-name>

 <description> This is the IBM WebSphere Application Server Default Application.</<description>

 <module id="WebModule_1" >

 <web>

 <web-uri> DefaultWebApplication.war</web-uri>

 <context-root> /</context-root>

 </web>

 </module>

 <module id="EjbModule_1" >

 <ejb> Increment.jar</ejb>

 </module>

 <security-role id="SecurityRole_1130344639273" >

 <description> All Authenticated users role.</description>

 <role-name> All Role</role-name>

 </security-role>

</application>

76 Administering applications and their environment

Verify the deployment descriptor contents, including any configurations that it has for bindings, security

roles, references to other resources, or Java Naming and Directory Interface (JNDI) names.

Change a deployment descriptor as needed in an assembly tool or using the console.

Starting or stopping applications

You can start an application that is not running (has a status of Stopped) or stop an application that is

running (has a status of Started).

This topic assumes that the application is installed on a server. By default, the application starts

automatically when the server starts.

You can start and stop applications manually using the following:

v Administrative console

v wsadmin startApplication and stopApplication commands

v Java programs that use ApplicationManager or AppManagement MBeans

This topic describes how to use the administrative console to start or stop an application.

1. Go to the Enterprise Applications page. Click Applications > Enterprise Applications in the console

navigation tree.

2. Select the check box for the application you want started or stopped.

3. Click a button:

 Option Description

Start Runs the application and changes the state of the application to Started. The status is

changed to partially started if not all servers on which the application is deployed are

running.

Stop Stops the processing of the application and changes the state of the application to

Stopped.

To restart a running application, select the application you want to restart, click Stop and then click

Start.

The status of the application changes and a message stating that the application started or stopped

displays at the top the page.

You can configure an application so it does not start automatically when the server on which it resides

starts. You then start the application manually using options described in this article.

If you want your application to start automatically when its server starts, you can adjust values that control

how quickly the application or its server starts:

1. Go the settings page for your enterprise application. Click Applications > Enterprise Applications >

application_name > Startup behavior.

2. Specify a different value for Startup order.

This setting specifies the order in which applications are started when the server starts. The default

value is 1 in a range from 0 to 2147483647. The application with the lowest starting weight is started

first.

3. Specify a different value for Launch application before server completes startup.

This setting specifies whether the application must initialize fully before its server starts. The default

value of false prevents the server from starting completely until the application starts. To reduce the

amount of time it takes to start the server, you can set the value to true and have the application start

on a background thread, thus allowing server startup to continue without waiting for the application

4. Save the changes to the application configuration.

Chapter 6. Deploying and administering applications 77

Disabling automatic starting of applications

You can enable and disable the automatic starting of an application. By default, an installed application

starts automatically when the server on which the application resides starts.

This topic assumes that the application is installed on an application server and that the application starts

automatically when the server starts.

This topic also assumes that you mapped the installed application to a server.

You might want an application to run only after you start it manually and not to run every time after the

server starts. The target mapping for an application controls whether an application starts automatically

when the server starts or requires you to start the application manually.

1. Go to the Target specific application status page for your application.

Click Applications > Enterprise Applications > application_name > Target specific application

status.

2. Select the target server on which the application resides.

3. Click Disable Auto Start.

4. Save changes to the administrative configuration.

The application does not start when its server starts. You must start the application manually.

To enable automatic starting of the application, do the following:

1. On the Target specific application status page for the application, select the target on which the

application resides.

2. Click Enable Auto Start.

3. Save changes to the configuration.

Target specific application status

Use this page to view mappings of deployed applications or modules to servers or clusters.

Also use this page to enable or disable the automatic starting of an application when the server on which

the application resides starts.

To view this administrative console page, click Applications > Enterprise Applications >

application_name > Target specific application status.

Target

States the name of the target server or cluster to which the application or module maps. You specify the

target on the Manage modules page accessed from the settings for an application.

Node

Specifies the node name if the target is a server.

Version

Specifies the version level of the target. The target can be a 5.x deployment target or a 6.x deployment

target.

A 5.x deployment target is a server or a cluster with at least one member on a WebSphere Application

Server Version 5 product.

A 6.x deployment target is a server or cluster with all members on a WebSphere Application Server

Version 6 product.

78 Administering applications and their environment

An application, enterprise bean (EJB) module Session Initiation Protocol (SIP) module (SAR), or Web

module developed for a Version 5.x product can reside on a 5.x or 6.x deployment target, provided the

module--

v Does not support Java 2 Platform, Enterprise Edition (J2EE) 1.4;

v Does not call any 6.x runtime application programming interfaces (APIs); and

v Does not use any 6.x product features.

Similarly, a resource adapter (connector) module, or RAR file, developed for a Version 5.x product can

reside on a 5.x or 6.x node, provided the module does not support Java Cryptography Architecture (JCA)

1.5 and does not call any 6.x runtime application programming interfaces (APIs). If the module supports

JCA 1.5 or calls a 6.x API, then the module must reside on a 6.x node.

If JavaServer Pages (JSP) precompilation, EJB deployment (ejbdeploy), or Web Services deployment

(wsdeploy) are enabled, then you can deploy applications to only those targets that have same product

version as the deployment manager. If applications are targeted to servers that have an earlier version

than the deployment manager, then you cannot deploy to those targets. Thus, if JSP precompilation,

ejbdeploy, or wsdeploy are enabled, then you can deploy applications to only a 6.1 target.

Auto Start

Specifies whether the application modules installed on the target server are started (or enabled) when the

server starts. This setting specifies the initial state of application modules. A Yes value indicates that the

corresponding modules are enabled and thus are accessible when the server starts. A No value indicates

that the corresponding modules are not enabled and thus are not accessible when the server starts.

By default, Auto Start is enabled. Thus, by default an installed application starts automatically when the

server on which the application resides starts.

You can enable and disable the automatic starting of the application. To disable the automatic starting of

the application, enable the Select check box beside the target server or cluster and click Disable Auto

Start. When automatic starting is disabled, the application does not start when its server starts. To enable

the automatic starting of the application, select the target and click Enable Auto Start.

Application Status

Indicates whether the application deployed on the application server is started, stopped, or unavailable.

Started Application is running.

Partial Start Application is in the process of changing from a Stopped state to a Started

state. Application is starting to run but is not fully running yet. The application

might be in the Partial Start state because one of its application servers is not

started.

Stopped Application is not running.

Partial Stop Application is in the process of changing from a Started state to a Stopped

state. Application has not stopped running yet.

Unavailable Status cannot be determined.

An application with an unavailable status might, in fact, be running but have an

unavailable status because the server running the administrative console cannot

communicate with the server running the application.

Not applicable Application does not provide information as to whether it is running.

Exporting applications

You can export an enterprise application to a location of your choice.

Chapter 6. Deploying and administering applications 79

Exporting applications enables you to back up your applications and preserve binding information for the

applications. You might export your applications before updating installed applications or migrating to a

later version of the WebSphere Application Server product.

1. Click Applications > Enterprise Applications in the console navigation tree to access the Enterprise

Applications page.

2. Select the check box beside the application and click Export.

3. On the Export Application EAR Files page, click on the link to download the exported EAR file.

4. Use the browser dialogue to specify a location at which to save the exported EAR file.

5. Click Back to return to the Enterprise Applications page.

The file containing binding information is exported to the specified node and directory, and has the name

enterprise_application_name.ear.

Exporting DDL files

You can export data definition language (DDL) files in the enterprise bean (EJB) modules of an

application.

Exporting DDL (Table.ddl) files in the EJB modules of an application downloads the DDL files to a

location of your choice.

1. Click Applications > Enterprise Applications in the administrative console navigation tree to access

the Enterprise Applications page.

2. Place a check mark in the check box beside the application and click Export DDL. If the application

has no DDL files in any of its EJB modules, then the message No DDL files were found is displayed at

the top of the page. If the application has DDL files in its EJB modules, then a page listing DDL files in

the format application_name.ear/_module.jar_Table.ddl is displayed.

3. Click on a file in the list and specify the location to which to download the file.

Tip: Mozilla browsers might display the contents of the Table.ddl file instead of saving the file to disk.

To save the file, edit the Helper Application preference settings of the Mozilla browser by adding

a new type for DDL and specifying that you want to save DDL files to disk. That is, set MIME type

= ddl and Extension = ddl.

The DDL file is downloaded to the specified location.

Updating applications

You can update application files deployed on a server.

Update your application or modules and reassemble them using an assembly tool. Typical tasks include

adding or editing assembly properties, adding or importing modules into an application, and adding

enterprise beans, Web components, and files.

Also, determine whether the updated files can be installed to your deployment targets. WebSphere

Application Server Version 6.x supports Java 2 Platform, Enterprise Edition (J2EE) 1.4 enterprise

applications and modules. If you are deploying J2EE 1.4 modules, ensure that the target server and its

node support Version 6.x. The administrative console Server collection pages show the versions for

servers. You can deploy J2EE 1.4 modules to Version 6.x servers only. You cannot deploy J2EE 1.4

modules to servers on Version 5.x nodes. See “Installable module versions” on page 29 for details.

Updating consists of adding a new file or module to an installed application, or replacing or removing an

installed application, file or module. After replacement of a full application, the old application is uninstalled.

After replacement of a module, file or partial application, the old installed module, file or partial application

is removed from the installed application.

80 Administering applications and their environment

1. Determine which method to use to update your application files. WebSphere Application Server

provides several ways to update modules.

2. Update the application files using

v Administrative console

v wsadmin scripts

v Java application programming interfaces

v WebSphere rapid deployment of J2EE applications

In some situations, you can update applications or modules without restarting the application server

using hot deployment. Do not use hot deployment unless you are an experienced user and are

updating applications in a development or test environment.

3. Start the deployed application files using

v Administrative console

v wsadmin startApplication

v Java programs that use ApplicationManager or AppManagement MBeans

Save the changes to your administrative configuration.

Next, test the application. For example, point a Web browser at the URL for a deployed application

(typically http://hostname:9060/Web_module_name, where hostname is your valid Web server and 9060 is

the default port number) and examine the performance of the application. If the application does not

perform as desired, edit the application configuration, then save and test it again.

Ways to update application files

You can update application files deployed on a server in several ways.

 Table 3. Ways to update application files

Option Method Comments Starting after update

Administrative

console update

wizard

See “Updating

applications

with the

console” on

page 83.

Briefly, do the following:

1. Go to the Enterprise Applications

page. Click Applications >

Enterprise Applications in the

console navigation tree.

2. Select the application to update

and click Update.

3. On the Preparing for application

update page, identify the application,

module or files to update and click

Next.

4. Complete steps in the update

wizard and click Finish.

On the Preparing for application

update page:

v Use Full application to update an

.ear file.

v Use Single module to update a

.war, .sar, enterprise bean .jar, or

connector .rar file.

v Use Single file to update a file

other than an .ear, .war, .sar, EJB

.jar, or .rar file.

v Use Partial application to update

or remove multiple files.

On the Enterprise

Applications page,

select the updated

application and click

Start.

wsadmin scripts Use the update command or the

updateInteractive command in a

script or at a command prompt. For

more information on the update and

updateInteractive commands, see

the Commands for the AdminApp

object topic.

Getting started with scripting

provides an overview of wsadmin.

Start the application

using the invoke

command and the

startApplication

attribute. For more

information about the

invoke command,

see the Commands

for the AdminControl

object topic.

Chapter 6. Deploying and administering applications 81

Table 3. Ways to update application files (continued)

Option Method Comments Starting after update

Java application

programming

interfaces

See Using

administrative

programs

(JMX).

Update deployed applications by

completing the steps in Managing

applications through programming.

Update an application in the

following ways:

v Update the entire application

v Add to, replace or delete multiple

files in an application

v Add a module to an application

v Update a module in an application

v Delete a module in an application

v Add a file to an application

v Update a file in an application

v Delete a file in an application

v Invoke the

AdminApp

startApplication

command.

v Invoke the

startApplication

method on an

ApplicationManager

MBean using

AdminControl.

WebSphere

rapid

deployment

See topics

under Rapid

deployment of

J2EE

applications in

this information

center.

Briefly, do the following:

1. Update your J2EE application

files.

2. Set up the rapid deployment

environment.

3. Create a free-form project.

4. Launch a rapid deployment

session.

5. Drop your updated application files

into the free-form project.

WebSphere rapid deployment offers

the following advantages:

v You do not need to assemble your

J2EE application files prior to

deployment.

v You do not need to use other

installation tools mentioned in this

table to deploy the files.

Use any of the above

options to start the

application. Clicking

Start on the

Enterprise

Applications page is

the easiest option.

Hot deployment

and dynamic

reloading

Briefly, do the following:

1. Update your application (.ear),

Web module (.war), enterprise bean

.jar or HTTP plug-in configuration

file.

2. Follow instructions in Hot

deployment and dynamic reloading

to update your file.

If you are new to WebSphere

Application Server, use the

administrative console to update

applications. That option is easier.

Hot deployment and dynamic

reloading is more difficult to

complete. You must directly

manipulate the application or module

file on the server where the

application is deployed.

Use any of the above

options to start the

application. Clicking

Start on the

Enterprise

Applications page is

the easiest option.

You can update .ear, enterprise bean .jar, Web module .war, Session Initiation Protocol (SIP) module

(.sar), connector .rar, application client .jar, and any other files used by an installed application.

If the application is updated while it is running, WebSphere Application Server automatically stops the

application, updates the application logic and restarts the application. If the application does not start

automatically, start it manually using one of the Starting options. For more information on the restarting of

updated applications, refer to Fine-grained recycle behavior in IBM WebSphere Developer Technical

Journal: System management for WebSphere Application Server V6 -- Part 5 Flexible options for updating

deployed applications.

82 Administering applications and their environment

http://www-128.ibm.com/developerworks/websphere/techjournal/0510_apte/0510_apte.html#sec4

Updating applications with the console

Updating applications consists of adding a new file or module to an installed application, or replacing or

removing an installed application, file or module.

Before you update the application files on a server, ensure that the files are assembled in deployable

modules.

Next, refer to “Ways to update application files” on page 81 and decide how to update your application

files. You can update enterprise applications or modules using the administrative console, the wsadmin

tool, or Java MBean programming. These ways provide similar updating capabilities.

Further, ensure that the updated files can be installed to your deployment targets.

This topic describes how to update deployed applications or modules using the administrative console.

1. Back up the installed application.

a. Go to the Enterprise Applications page of the administrative console. Click Applications >

Enterprise Applications in the console navigation tree.

b. Export the application to an EAR file. Select the application you want uninstalled and click Export.

Exporting the application preserves the binding information.

2. With the application selected on the Enterprise Applications page, click Update. The Preparing for

application update page is displayed.

3. Under Specify the EAR, WAR, SAR or JAR module to upload and install:

a. Ensure that Application to be updated refers to the application to be updated.

b. Under Application update options, select the installed application, module, or file that you want to

update.

The online help Preparing for application update settings provides detailed information on the

options.

4. If you selected the Replace the entire application or Replace or add a single module option:

a. Click Next to display a wizard for updating application files.

b. Complete the steps in the update wizard.

This update wizard, which is similar to the installation wizard, provides fields for specifying or

editing application binding information. Refer to information on installing applications and on the

settings page for application installation for guidance.

Note that the installation steps have the merged binding information from the new version and the

old version. If the new version has bindings for application artifacts such as EJB JNDI names, EJB

references or resource references, then those bindings will be part of the merged binding

information. If new bindings are not present, then bindings are taken from the installed (old)

version. If bindings are not present in the old version and if the default binding generation option is

enabled, then the default bindings will be part of the merged binding information.

You can select whether to ignore bindings in the old version or ones in the new version.

5. Click Finish.

6. If you did not use the Manage modules page of the update wizard, after updating the application, map

the installed application or module to servers.

Use the Manage modules page accessed from the Enterprise Applications page.

a. Go to the Manage modules page. Click Applications > Enterprise Applications >

application_name > Manage modules.

b. Specify the application server where you want to install modules contained in your application and

click OK.

You can deploy J2EE 1.4 modules to servers on Version 6.x nodes only.

Chapter 6. Deploying and administering applications 83

After replacement of a full application, the old application is uninstalled. After replacement of a module, file

or partial application, the old installed module, file or partial application is removed from the installed

application.

After the application file or module installs successfully, do the following:

1. Save the changes to your configuration.

When you update a full application in the single server (base) product, after you save the changes, the

old version of the application is uninstalled and the new version is installed into the configuration. The

application binaries for the old version are deleted from the destination directory and the new binaries

are copied to the directory.

2. If needed, restart the application manually so the changes take effect.

If the application is updated while it is running, WebSphere Application Server automatically stops the

application or only its changed components, updates the application logic, and restarts the stopped

application or its components. For more information on the restarting of updated applications, refer to

Fine-grained recycle behavior in IBM WebSphere Developer Technical Journal: System management

for WebSphere Application Server V6 -- Part 5 Flexible options for updating deployed applications.

3. If the application you are updating is deployed on a server that has its application class loader policy

set to Single, restart the server.

Preparing for application update settings

Use this page to update enterprise applications, modules or files already installed on a server.

To view this administrative console page, do the following:

1. Click Applications > Enterprise Applications.

2. Select the installed application or module that you want to update.

3. Click Update.

Clicking Update displays a page that helps you update application files deployed in the cell. You can

update the full application, a single module, a single file, or part of the application. If a new file or module

has the same relative path as a file or module already existing on the server, the new file or module

replaces the existing file or module. If the new file or module does not exist on the server, it is added to

the deployed application.

Application to be updated

Specifies the name of the installed (or deployed) application that you selected on the Enterprise

Applications page.

Replace the entire application

Under Application update options, specifies to replace the application already installed on the server

with a new (updated) enterprise application .ear file.

After selecting this option, do the following:

1. Specify whether the .ear file is on a local or remote file system and the full path name of the

application. The path provides the location of the updated .ear file before installation.

Use Local file system if the browser and the updated files or modules are on the same machine,

whether or not the server is on that machine too. Local file system is available for all update options.

Use Remote file system if the application file resides on any node in the current cell context. Only

.ear, .jar, .sar, or .war files are shown during the browsing.

Also use the Remote file system option to specify an application file already residing on the machine

running the application server. For example, the field value might be app_server_install_root/
installableApps/test.ear. If you are installing a standalone WAR module, then specify the context

root as well.

84 Administering applications and their environment

http://www-128.ibm.com/developerworks/websphere/techjournal/0510_apte/0510_apte.html#sec4

Tip: During application installation, application files typically are uploaded from a client machine

running the browser to the server machine running the administrative console, where they are

deployed. In such cases, use the Web browser running the administrative console to select .ear,

.war, .sar, or .jar modules to upload to the server machine. In some cases, however, the

application files reside on the file system of any of the nodes in a cell. To have the application

server install these files, use the Remote file system option.

2. If you are installing a standalone Web application (WAR) or a Session Initiation Protocol (SIP) module

(SAR), specify the context root of the WAR or SAR file.

The context root is combined with the defined servlet mapping (from the WAR file) to compose the full

URL that users type to access the servlet. For example, if the context root is /gettingstarted and the

servlet mapping is MySession, then the URL is http://host:port/gettingstarted/MySession.

3. Specify whether to show only installation options that require you to supply information or to show all

installation options.

The Prompt me only when additional information is required option enables you to install your

application more easily because you do not need to examine all available installation options.

However, to use the Generate default bindings option, which might be the quickest and easiest

option for installing your application, you must select the Show me all installation options and

parameters and then select Generate default bindings on the next panel.

4. Click Next to display a wizard for updating application files. The update wizard, which is similar to the

installation wizard, provides fields for specifying or editing application binding information. Complete the

steps in the update wizard as needed.

When the full application is updated, the old application is uninstalled and the new application is installed.

When the configuration changes are saved and subsequently synchronized, the application files are

expanded on the node where application will run. If the application is running on the node while it is

updated, then the application is stopped, application files are updated, and application is started.

Replace or add a single module

Under Application update options, specifies to replace a module in or add a module to an installed

application. The module can be a Web module (.war file), enterprise bean module (EJB .jar file), SIP

module (.sar file), or resource adapter module (connector .rar file).

After selecting this option, specify whether the module is on a local or remote file system and the full path

name of the module. The path provides the location of the updated module before installation. For

information on Local file system and Remote file system, refer to the description of Replace the entire

application above.

To replace a module, the specified relative path (module URI) must match the path of the module to be

updated in the installed application.

To add a new module to the installed application, the specified relative path must not match the path of a

module in the installed application. The value specifies the desired path for the new module.

If you are installing a standalone Web or SIP module, specify a value for Context root. The context root is

combined with the defined servlet mapping (from the .war file) to compose the full URL that users type to

access the servlet. For example, if the context root is /gettingstarted and the servlet mapping is

MySession, then the URL is http://host:port/gettingstarted/MySession.

Next, specify whether to show only installation options that require you to supply information or to show all

installation options.

After specifying the required information on the module, click Next to display a wizard for updating

application files. The update wizard, which is similar to the installation wizard, provides fields for specifying

or editing module binding information. Complete the steps in the update wizard as needed.

Chapter 6. Deploying and administering applications 85

After a single module is added or updated, when configuration changes are saved, the new or updated

module is stored in the deployed application in the WebSphere Application Server configuration repository.

When these changes are synchronized with the node, the module is added or updated to the node’s file

system. If the application is running on the node when the module is added or updated, then one of the

following occurs:

v For updates to a Web module, the running Web module is stopped, Web module files are updated, and

then the Web module is started.

v For module additions, the added module is started on the application servers where the application is

running after it is expanded on the node. An application restart is not necessary.

v If the class loader policy for the application is set to Single so that all modules share a class loader,

then the entire application is stopped and restarted for module level changes.

v If the security provider configured with WebSphere Application Server does not support dynamic

updates, then the entire application is stopped and restarted for module level changes.

v For all other updates to a module, the entire application is stopped, the module files are updated, then

the entire application is started.

Replace or add a single file

Under Application update options, specifies to replace a file in or add a file to an installed application.

Use this option to update a file used by the application that is not an .ear, .war, .sar, .rar or, in some

instances, a .jar file. You can use this option to add or update .jar files that are not defined as modules

in the application. To update an .ear, file use the Replace the entire application option. To update a .war

file, .sar file, .rar file, or .jar file that is defined as a module in the application, use the Replace or add

a single module option.

After selecting this option, specify whether the file is on a local or remote file system and the full path

name of the file. The path provides the location of the updated file before installation. For information on

Local file system and Remote file system, refer to the description of Replace the entire application

above.

For the relative path, specify a relative path to the file that starts from the root of the .ear file. For

example, if the file is located at com/company/greeting.class in module hello.jar, specify a relative path

of hello.jar/com/company/greeting.class.

To replace a file, the relative path must match the path of the file to be updated in the installed application.

To add a new file to the installed application, the relative path must not match the path of a file in the

installed application. The value specifies the desired path for the new file.

After you specify the file system and relative paths, click Next.

After a single file is added or updated, when configuration changes are saved, the new or updated file is

stored in the deployed application in the WebSphere Application Server configuration repository. When

these changes are synchronized with the node, the file is added or updated to the node’s file system. If

the application is running on the node when the file is added or updated, then one of the following occurs:

v When files are added at application metadata scope (META-INF directory) or updated at any application

scope or in non-Web modules, the entire application is stopped, the file is added or updated, and then

the entire application is restarted.

v When files are added at application non-metadata scope (outside of META-INF directory but not in any

module), the changes are saved in the file system without restarting the running application.

v When files are added or updated to Web module metadata (META-INF or WEB-INF directory), the running

Web module is stopped, the Web module file is added or updated, and then the Web module is started.

v For all other files in Web modules, the file is added or updated on the node’s file system without

stopping the application or any of its components.

86 Administering applications and their environment

Replace, add, or delete multiple files

Under Application update options, specifies to update multiple files of an installed application by

uploading a compressed file. Depending on the contents of the compressed file, a single use of this option

can replace files in, add new files to, and delete files from the installed application. Each entry in the

compressed file is treated as a single file and the path of the file from the root of the compressed file is

treated as the relative path of the file in the installed application.

After selecting this option, specify whether the compressed file is on a local or remote file system and the

full path name of the compressed file. You will likely use Local file system because you are uploading a

compressed file and remote browsing only works for .ear, .sar, .war or .jar files. Specify a valid

compressed file format such as .zip or .gzip. The path provides the location of the compressed file

before installation. This option unzips the compressed file into the installed application directory.

Use Local file system if the browser and the updated files or modules are on the same machine, whether

or not the server is on that machine too. Local file system is available for all update options.

To replace a file, a file in the compressed file must have the same relative path as the file to be updated in

the installed application.

To add a new file to the installed application, a file in the compressed file must have a different relative

path than the files in the installed application.

The relative path of a file in the installed application is formed by concatenation of the relative path of the

module (if the file is inside a module) and the relative path of the file from the root of the module

separated by /.

To remove a file from the installed application, specify metadata in the compressed file using a file named

META-INF/ibm-partialapp-delete.props at any archive scope. The ibm-partialapp-delete.props file must

be an ASCII file that lists files to be deleted in that archive with one entry for each line. The entry can

contain a string pattern such as a regular expression that identifies multiple files. The file paths for the files

to be deleted must be relative to the archive path that has the META-INF/ibm-partialapp-delete.props file.

 Level of files to delete Metadata .props file to include in compressed file

Application Include META-INF/ibm-partialapp-delete.props in the

compressed file. In the metadata .props file, list files to

be deleted. File paths are relative to the location of the

META-INF/ibm-partialapp-delete.props file.

For example, to delete a file named utils/config.xmi

from the root of the my.ear file, include the line

utils/config.xmi in the META-INF/ibm-partialapp-
delete.props file.

Chapter 6. Deploying and administering applications 87

Level of files to delete Metadata .props file to include in compressed file

Module Include module_uri/META-INF/ibm-partialapp-
delete.props in the compressed file.

To delete one file from a module, include the file path

relative to the module in the metadata .props file. For

example, to delete a/b/c.jsp from the my.jar module,

include a/b/c.class in my.jar/META-INF/ibm-partialapp-
delete.props file in the compressed file.

To delete multiple files within a module, list the files to be

deleted in the metadata .props file with one entry on

each line. For example, to delete all JavaServer Pages

(.jsp files) from the my.war file, include the line .*jsp in

the my.war/META-INF/ibm-partialapp-delete.props file.

The line uses a regular expression, .*jsp, to identify all

.jsp files in my.war.

You can use a single partial application file to add, delete and update multiple files.

After you specify a file system path, click Next.

After a partial application update, when configuration changes are saved, the new or updated application

file is stored in the deployed application in the WebSphere Application Server configuration repository.

When these changes are synchronized with the node, the files are added or updated to the node’s file

system. Because the partial application option updates multiple files, the application components that are

restarted are determined using individual files in the partial application.

An example of entries in a partial application compressed file follows:

util.jar

META-INF/ibm-partialapp-delete.props

foo.jar/com/mycomp/xyz.class

xyz.war/welcome.jsp

xyz.war/WEB-INF/web.xml

webmod.war/META-INF/ibm-partialapp-delete.props

For this example, the META-INF/ibm-partialapp-delete.props file contains the .*.dat and tools/test.jar

files. The webmod.war/META-INF/ibm-partialapp-delete.props file contains the com/test/.*.jsp and

WEB-INF/test.xmi files.

The partial application update option does the following:

v Adds or replaces util.jar in the deployed application.

v Adds or replaces com/mycomp/xyz.class inside the foo.jar file of the deployed application.

v Deletes *.dat files from the application, but not from any modules.

v Deletes tools/test.jar from the application.

v Adds or replaces welcome.jsp inside the xyz.war module of the deployed application.

v Replaces WEB-INF/web.xml inside the xyz.war module of the deployed application.

v Deletes com/test/*.jsp from the webmod.war module.

v Deletes WEB-INF/test.xmi from the webmod.war module.

Hot deployment and dynamic reloading

You can make various changes to applications and their modules without having to stop the server and

start it again. Making these types of changes is known as hot deployment and dynamic reloading.

This topic assumes that your application files are deployed on a server and you want to upgrade the files.

88 Administering applications and their environment

See “Ways to update application files” on page 81 and determine whether hot deployment is the

appropriate way for you to update your application files. Other ways are easier and hot deployment is

appropriate only for experienced users.

Hot deployment is the process of adding new components (such as WAR files, EJB Jar files, enterprise

Java beans, servlets, and JSP files) to a running server without having to stop the application server

process and start it again.

Dynamic reloading is the ability to change an existing component without needing to restart the server in

order for the change to take effect. Dynamic reloading involves:

v Changes to the implementation of a component of an application, such as changing the implementation

of a servlet

v Changes to the settings of the application, such as changing the deployment descriptor for a Web

module

As opposed to the changes made to a deployed application described in “Updating applications” on page

80, changes made using hot deployment or dynamic reloading do not use the administrative console or a

wsadmin scripting command. You must directly manipulate the application files on the server where the

application is deployed.

If the application you are updating is deployed on a server that has its application class loader policy set to

Single, you might not be able to dynamically reload your application. At minimum, you must restart the

server after updating your application.

1. Locate your expanded application files.

The application files are in the directory you specified when installing the application or, if you did not

specify a custom target directory, are in the default target directory, app_server_root/installedApps/
cell_name. Your EAR file, ${APP_INSTALL_ROOT}/cell_name/application_name.ear, points to the target

directory. The variables.xml file for the node defines ${APP_INSTALL_ROOT}.

It is important to locate the expanded application files because, as part of installing applications, a

WebSphere application server unjars portions of the EAR file onto the file system of the computer that

will run the application. These expanded files are what the server looks at when running your

application. If you cannot locate the expanded application files, look at the binariesURL attribute in the

deployment.xml file for your application. The attribute designates the location the run time uses to find

the application files.

For the remainder of this information on hot deployment and dynamic reloading, application_root

represents the root directory of the expanded application files.

2. Locate application metadata files. The metadata files include the deployment descriptors (web.xml,

application.xml, ejb-jar.xml, and the like), the bindings files (ibm-web-bnd.xmi, ibm-app-bnd.xmi,

and the like), and the extensions files (ibm-web-ext.xmi, ibm-app-ext.xmi, and the like).

Metadata XML files for an application can be loaded from one of two locations. The metadata files can

be loaded from the same location as the application binary files (such as application_root/META-INF)

or they can be loaded from the WebSphere configuration tree, ${CONFIG_ROOT}/cells/cell_name/
applications /application_EAR_name/deployments/application_name/. The value of the

useMetadataFromBinary flag specified during application installation controls which location is used. If

specified, the metadata files are loaded from the same location as the application binary files. If not

specified, the metadata files are loaded from the application deployment folder in the configuration

tree.

For the remainder of this information, metadata_root represents the location of the metadata files for

the specified application or module.

3. Optional: Examine the values specified for Reload classes when application files are updated and

Polling interval for updated files on the settings page for your application’s class loader.

If reloading of classes is enabled and the polling interval is greater than zero (0), the application files

are reloaded after the application is updated. For JavaServer Pages (JSP) files in a Web module, a

Web container reloads JSP files only when the IBM extension jspReloadingEnabled in the jspAttributes

Chapter 6. Deploying and administering applications 89

of the ibm-web-ext.xmi file is set to true. You can set jspReloadingEnabled to true when editing your

Web module’s extended deployment descriptors in an assembly tool.

4. Change or add the following components or modules as needed:

v Application files

v WAR files

v EJB Jar files

v HTTP plug-in configuration files

5. For changes to take effect, you might need to start, stop, or restart an application. “Starting or stopping

applications” on page 77 provides information on using the administrative console to start, stop, or

restart an application. Starting applications with scripting and Stopping applications with scripting

provide information on using the wsadmin scripting tool.

Changing or adding application files

You can change or add application files on application servers without having to stop the server and start it

again.

There are several changes that you can make to deployed application files without stopping the server and

starting it again.

Important: See “Ways to update application files” on page 81 and determine whether hot deployment is

the appropriate way for you to update your application files. Other ways are easier and hot

deployment is appropriate only for experienced users. You can use the update wizard of the

administrative console to make the changes without having to stop and restart the server.

This topic describes how to make the following changes by manipulating an application file on the server

where the application is deployed:

v Updating an existing application on a running server, providing a new enterprise application (EAR file)

v Adding a new application to a running server

v Removing an existing application from a running server

v Changing or adding files to existing enterprise bean (EJB) or Web modules

v Changing the application.xml file for an application

v Changing the ibm-app-ext.xmi file for an application

v Changing the ibm-app-bnd.xmi file for an application

v Changing a non-module Jar file contained in the EAR file

Updating an existing application on a running server (providing a new EAR file)

Reinstall an updated application using the administrative console or the wsadmin $AdminApp install

command with the -update option.

Both reinstallation methods enable you to update an existing application using any of the other steps listed

in this file, including changing classes, adding modules, removing modules, changing modules, or

changing metadata files. The application reinstallation methods detect the changes in your application and

prompt you for additional binding data that might be needed to install the application. The reinstallation

process automatically stops and restarts your application on the appropriate servers.

 Hot deployment Yes

Dynamic reloading Yes

Adding a new application to a running server

Install an application using the administrative console or the wsadmin install command.

 Hot deployment Yes

Dynamic reloading No

90 Administering applications and their environment

Removing an existing application from a running server

Stop the application and then uninstall it from the server. Use the administrative console to stop the

application and then uninstall it. Or run the wasadmin stopApplication command and then the uninstall

command.

 Hot deployment Yes

Dynamic reloading No

Changing or adding files to existing EJB or Web modules

1. Update the application files in the application_root location.

2. Restart the application. Use the administrative console to restart the application. Or run the wasadmin

stopApplication and startApplication commands.

 Hot deployment Yes

Dynamic reloading No

Changing the application.xml file for an application

Restart the application. Automatic reloading will not detect the change. Use the administrative console to

restart the application. Or run the wasadmin stopApplication and startApplication commands.

 Hot deployment Not applicable

Dynamic reloading Yes

Changing the ibm-app-ext.xmi file for an application

Restart the application. Automatic reloading will not detect the change. Use the administrative console to

restart the application. Or run the wasadmin stopApplication and startApplication commands.

 Hot deployment Not applicable

Dynamic reloading Yes

Changing the ibm-app-bnd.xmi file for an application

Restart the application. Automatic reloading will not detect the change. Use the administrative console to

restart the application. Or run the wasadmin stopApplication and startApplication commands.

 Hot deployment Not applicable

Dynamic reloading Yes

Changing a non-module Jar file contained in the EAR file

1. Update the non-module Jar file in the application_root location.

2. If automatic reloading is not enabled, restart the application. Use the administrative console to restart

the application. Or run the wasadmin stopApplication and startApplication commands.

If automatic reloading is enabled, you do not need to take further action. Automatic reloading will

detect the change.

 Hot deployment Yes

Dynamic reloading Yes

Chapter 6. Deploying and administering applications 91

Changing or adding WAR files

You can change Web application archives (WAR files) on application servers without having to stop the

server and start it again.

There are several changes that you can make to WAR files without stopping the server and starting it

again.

Important: See “Ways to update application files” on page 81 and determine whether hot deployment is

the appropriate way for you to update your WAR files. Other ways are easier and hot

deployment is appropriate only for experienced users. You can use the update wizard of the

administrative console to make the changes without having to stop and restart the server.

This topic describes how to make the following changes by manipulating a WAR file on the server where

the application is deployed:

v Changing an existing JavaServer Pages (JSP) file

v Adding a new JSP file to an existing application

v Changing an existing servlet class (editing and recompiling)

v Changing a dependent class of an existing servlet class

v Adding a new servlet using the Invoker (Serve Servlets by class name) facility or adding a dependent

class to an existing application

v Adding a new servlet, including a new definition of the servlet in the web.xml deployment descriptor for

the application

v Changing the web.xml file of a WAR file

v Changing the ibm-web-ext.xmi file of a WAR file

v Changing the ibm-web-bnd.xmi file of a WAR file

Changing an existing JSP file

Place the changed JSP file directly in the application_root/module_name directory or the appropriate

subdirectory. The change will be automatically detected and the JSP will be recompiled and reloaded.

 Hot deployment Not applicable

Dynamic reloading Yes

Adding a new JSP file to an existing application

Place the new JSP file directly in the application_root/module_name directory or the appropriate

subdirectory. The new file will be automatically detected and compiled on the first request to the page.

 Hot deployment Yes

Dynamic reloading Yes

Changing an existing servlet class (editing and recompiling)

1. Place the new version of the servlet .class file directly in the application_root/module_name/WEB-INF/
classes directory. If the .class file is part of a Jar file, you can place the new version of the Jar file

directly in application_root/module_name/WEB-INF/lib. In either case, the change will be detected, the

Web application will be shut down and reinitialized, picking up the new class.

2. If automatic reloading is not enabled, restart the application. Use the administrative console to restart

the application. Or run the wasadmin stopApplication and startApplication commands.

If automatic reloading is enabled, you do not need to take further action. Automatic reloading will

detect the change.

 Hot deployment Not applicable

Dynamic reloading Yes

92 Administering applications and their environment

Changing a dependent class of an existing servlet class

1. Place the new version of the dependent .class file directly in the application_root/module_name/WEB-
INF/classes directory. If the .class file is part of a Jar file, you can place the new version of the Jar

file directly in application_root/module_name/WEB-INF/lib. In either case, the change will be detected,

the Web application will be shut down and reinitialized, picking up the new class.

2. If automatic reloading is not enabled, restart the application. Use the administrative console to restart

the application. Or run the wasadmin stopApplication and startApplication commands.

If automatic reloading is enabled, you do not need to take further action. Automatic reloading will

detect the change.

 Hot deployment Not applicable

Dynamic reloading Yes

Adding a new servlet using the Invoker (Serve Servlets by class name) facility or adding a

dependent class to an existing application

1. Place the new .class file directly in the application_root/module_name/WEB-INF/classes directory. If

the .class file is part of a Jar file, you can place the new version of the Jar file directly in

application_root/module_name/WEB-INF/lib. In either case, the change will be detected, the Web

application will be shut down and reinitialized, picking up the new class.

This case is treated the same as changing an existing class. The difference is that adding the servlet

or class does not immediately cause the Web application to reload because the class has never been

loaded before. The class simply becomes available for execution.

2. If automatic reloading is not enabled, restart the application. Use the administrative console to restart

the application. Or run the wasadmin stopApplication and startApplication commands.

If automatic reloading is enabled, you do not need to take further action. Automatic reloading will

detect the change.

 Hot deployment Yes

Dynamic reloading Not applicable

Adding a new servlet, including a new definition of the servlet in the web.xml deployment

descriptor for the application

1. Place the new .class file directly in the application_root/module_name/WEB-INF/classes directory. If

the .class file is part of a Jar file, you can place the new version of the Jar file directly in

application_root/module_name/WEB-INF/lib.

You can edit the web.xml file in place or copy it into the application_root/module_name/WEB-INF/
classes directory. The new .class file will not trigger a reloading of the application.

2. Restart the application. Use the administrative console to restart the application. Or run the wasadmin

stopApplication and startApplication commands. After the application restarts, the new servlet is

available for service.

 Hot deployment Yes

Dynamic reloading Not applicable

Changing the web.xml file of a WAR file

1. Edit the web.xml file in place or copy it into the metadata_root/module_name/WEB-INF directory.

2. Restart the application. Use the administrative console to restart the application. Or run the wasadmin

stopApplication and startApplication commands.

 Hot deployment Yes

Dynamic reloading Yes

Changing the ibm-web-ext.xmi file of a WAR file

Chapter 6. Deploying and administering applications 93

Edit the extension settings as needed. You can change all of the extension settings. The only warning is if

you set the reloadInterval property to zero (0) or the reloadEnabled property to false, the application no

longer automatically detects changes to class files. Both of these changes disable the automatic reloading

function. The only way to re-enable automatic reloading is to change the appropriate property and restart

the application. See other task descriptions in this file for information on restarting an application.

 Hot deployment Not applicable

Dynamic reloading Yes

Changing the ibm-web-bnd.xmi file of a WAR file

1. Edit the bindings as needed. You can change all of the values but ensure that the entities you are

binding to are present in the configuration of the server.

2. Restart the application. Use the administrative console to restart the application. Or run the wasadmin

stopApplication and startApplication commands.

 Hot deployment Not applicable

Dynamic reloading Yes

Changing or adding EJB Jar files

You can change enterprise bean (EJB) Jar files on application servers without having to stop the server

and start it again.

There are several changes that you can make to EJB Jar files without stopping the server and starting it

again.

Important: See “Ways to update application files” on page 81 and determine whether hot deployment is

the appropriate way for you to update your EJB Jar files. Other ways are easier and hot

deployment is appropriate only for experienced users. You can use the update wizard of the

administrative console to make the changes without having to stop and restart the server.

This topic describes how to make the following changes by manipulating an EJB file on the server where

the application is deployed:

v Changing the ejb-jar.xml file of an EJB Jar file

v Changing the ibm-ejb-jar-ext.xmi or ibm-ejb-jar-bnd.xmi file of an EJB Jar file

v Changing the Table.ddl file for an EJB Jar file

v Changing the Map.mapxmi or Schema.dbxmi file for an EJB Jar file

v Updating the implementation class for an EJB file or a dependent class of the implementation class for

an EJB file

v Updating the Home/Remote interface class for an EJB file

v Adding a new EJB file to an existing EJB Jar file

Changing the ejb-jar.xml file of an EJB Jar file

Restart the application. Automatic reloading will not detect the change. Use the administrative console to

restart the application. Or run the wasadmin stopApplication and startApplication commands.

 Hot deployment Not applicable

Dynamic reloading Yes

Change the ibm-ejb-jar-ext.xmi or ibm-ejb-jar-bnd.xmi file of an EJB Jar file

Restart the application. Automatic reloading will not detect the change. Use the administrative console to

restart the application. Or run the wasadmin stopApplication and startApplication commands.

94 Administering applications and their environment

Hot deployment Not applicable

Dynamic reloading Yes

Changing the Table.ddl file for an EJB Jar file

Rerun the DDL file on the user database server. Changing the Table.ddl file has no effect on the

application server and is a change to the database table schema for the EJB files.

 Hot deployment Not applicable

Dynamic reloading Not applicable

Changing the Map.mapxmi or Schema.dbxmi file for an EJB Jar file

1. Change the Map.mapxmi or Schema.dbxmi file for an EJB Jar file.

2. Regenerate the deployed code artifacts for the EJB file.

3. Apply the new EJB Jar file to the server.

4. Restart the application. Use the administrative console to restart the application. Or run the wasadmin

stopApplication and startApplication commands.

 Hot deployment Not applicable

Dynamic reloading Yes

Updating the implementation class for an EJB file or a dependent class of the implementation

class for an EJB file

1. Update the class file in the application_root/module_name.jar file.

2. If automatic reloading is enabled, you do not need to take further action. Automatic reloading will

detect the change.

If automatic reloading is not enabled, restart the application of which the EJB file is a member. If the

updated module is used by other modules in other applications, restart those applications as well. Use

the administrative console to restart the application. Or run the wasadmin stopApplication and

startApplication commands.

 Hot deployment Not applicable

Dynamic reloading Yes

Updating the Home/Remote interface class for an EJB file

1. Update the interface class of the EJB file.

2. Regenerate the deployed code artifacts for the EJB file.

3. Apply the new EJB Jar file to the server.

4. If automatic reloading is enabled, you do not need to take further action. Automatic reloading will

detect the change.

If automatic reloading is not enabled, restart the application of which the EJB file is a member. Use the

administrative console to restart the application. Or run the wasadmin stopApplication and

startApplication commands.

 Hot deployment Not applicable

Dynamic reloading Yes

Adding a new EJB file to an existing EJB Jar file

1. Apply the new or updated Jar file to the application_root location.

2. If automatic reloading is enabled, you do not need to take further action. Automatic reloading will

detect the change.

Chapter 6. Deploying and administering applications 95

If automatic reloading is not enabled, restart the application. Use the administrative console to restart

the application. Or run the wasadmin stopApplication and startApplication commands.

 Hot deployment Yes

Dynamic reloading Yes

Changing the HTTP plug-in configuration

You can change the HTTP plug-in configuration without having to stop the server and start it again.

There are several change that you can make to the HTTP plug-in configuration without stopping the server

and starting it again.

Important: See “Ways to update application files” on page 81 and determine whether hot deployment is

the appropriate way for you to update your HTTP plug-in configuration. Other ways are easier

and hot deployment is appropriate only for experienced users.

This file describes--

v Changing the application.xml file to change the context root of a Web application archive (WAR file)

v Changing the web.xml file to add, remove, or modify a servlet mapping

v Changing the server.xml file to add, remove, or modify an HTTP transport or changing the

virtualhost.xml file to add or remove a virtual host or to add, remove, or modify a virtual host alias

Changing the application.xml file to change the context root of a WAR file

1. Change the application.xml file.

2. If the plug-in configuration property Automatically propagate plug-in configuration file is selected for this

plug-in, it is automatically regenerated whenever the application.xml file changes. (See Web server

plug-in properties settings for information on how to set this property.) You can also run the

GenPluginCfg.bat/sh script, or issue a wsadmin command to regenerate the plug-in configuration file.

 Hot deployment Yes

Dynamic reloading No

Changing the web.xml file to add, remove, or modify a servlet mapping

1. Change the web.xml file.

2. If the plug-in configuration property Automatically propagate plug-in configuration file is selected for this

plug-in, it is automatically regenerated whenever the web.xml file changes. (See Web server plug-in

properties settings for information on how to set this property.) You can also run the

GenPluginCfg.bat/sh script, or issue a wsadmin command to regenerate the plug-in configuration file.

If the Web application has file serving enabled or has a servlet mapping of /, the plug-in configuration

does not have to be regenerated. In all other cases a regeneration is required.

 Hot deployment Yes

Dynamic reloading Yes

Changing the server.xml file to add, remove, or modify an HTTP transport or changing the

virtualhost.xml file to add or remove a virtual host or to add, remove, or modify a virtual host alias

1. Change the server.xml file to add, remove, or modify an HTTP transport or change the

virtualhost.xml file to add or remove a virtual host or to add, remove, or modify a virtual host alias.

2. If the plug-in configuration property Automatically propagate plug-in configuration file is selected

for this plug-in, it is automatically regenerated whenever the server.xml file changes. (See Web server

plug-in properties settings for information on how to set this property.) You can also run the

GenPluginCfg.bat/sh script, or issue a wsadmin command to regenerate the plug-in configuration file.

 Hot deployment Yes

96 Administering applications and their environment

Dynamic reloading Yes

Uninstalling applications

After an application no longer is needed, you can uninstall it.

Uninstalling an application deletes the application from the WebSphere Application Server configuration

repository and it deletes the application binaries from the file system of all nodes where the application

modules are installed.

1. Click Applications > Enterprise Applications in the administrative console navigation tree to access

the Enterprise Applications page.

2. If you need to retain a copy of the application, back up the application.

a. Select the application you want uninstalled.

b. Click Export.

The application is exported to an enterprise application (.ear file), preserving the binding information.

3. Uninstall the application.

a. Select the application you want uninstalled.

b. Click Uninstall.

4. Save changes made to the administrative configuration.

In the single-server product, application binaries are deleted after you save the changes.

Removing a file

After a file is no longer needed, you can remove the file from an application or module deployed on a

server.

Removing a file deletes the file from the WebSphere Application Server configuration repository and it

deletes the file from the file system of all nodes where the file is installed.

v Remove a file from an application.

1. Go to the Enterprise Applications page. Click Applications > Enterprise Applications in the

console navigation tree.

2. Select the application that contains a file you want removed.

3. Click Remove File. The Remove a file page is displayed

4. Select the URI of the file that you want removed from the application.

5. Back up the application.

Under Export before removing file, select the application name and then specify the location to

which you want the file exported.

6. Click OK to remove the file.

v Remove a file from a module.

1. Go to the Manage modules page.

Click Applications > Enterprise Applications > application_name > Manage modules in the

console navigation tree.

2. Select the module from which you want to delete a file.

3. Click Remove File. The Remove a file from a module page is displayed.

4. Select the URI of the file that you want removed from the module.

5. Back up the application.

Chapter 6. Deploying and administering applications 97

Under Export before removing file, select the application name and then specify the location to

which you want the file exported.

6. Click OK to remove the file.

The file is exported to the designated location and removed from the application or module. The

application or standalone Web module that had a file removed is restarted so the changes take effect.

Save the changes to your administrative configuration. In the single-server product, application binaries are

deleted after you save the changes.

Common deployment framework

The common deployment framework enables you to implement plug-ins that add steps to default Java 2

Platform, Enterprise Edition (J2EE) application management operations such as install, uninstall, edit and

update.

Using the framework, you can implement management operations on specific types of deployable

contents. For example, the deployable contents might include EAR, WAR, JAR or other J2EE modules

and the management operations might include install and uninstall. Each operation is divided into a

number of steps. For example, the install operation has steps for EJBDeploy and JavaServer Pages (JSP)

compilation, among others. Using the common deployment framework, you can add steps to the default

logic for J2EE operations.

Version 6.1 supports framework plug-ins that extend deployment of EAR files. An EAR file has operations

such as createEarWrapper, installApplication, uninstallApplication and editApplication. Using a framework

plug-in, you can add steps to default install operations that support, for example, creating additional

configuration artifacts in a configuration session, modifying an input EAR file using code generation, or

additional validating of input parameters.

To extend application management operations using the framework, a plug-in must do the following:

v Implement each step.

A step runs logic that performs an operation. A step can access the deployment context and the

deployable object. The deployment context provides information such as the operation name, the

configuration session identifier, the temporary location for creating temporary files, operations

parameters, and the like. A step is added by the extension provider.

v Implement an extension provider that adds each implemented step.

An extension provider is a class that provides steps for an operation on a given type. For Version 6.1, it

is the EAR file type.

v Register the plug-in with a WebSphere Application Server server.

The plug-in is implemented as an Eclipse plug-in and is placed in app_server_root/plugins directory.

Add the extension point for the extension provider in the META-INF/plugin.xml file within the plug-in JAR

file.

For an example of these steps, refer to Extending application management operations through

programming.

Deploying and administering applications: Resources for learning

Use the following links to find relevant supplemental information about deploying and administering

applications using the administrative console. The information resides on IBM and non-IBM Internet sites,

whose sponsors control the technical accuracy of the information.

These links are provided for convenience. Often, the information is not specific to the IBM WebSphere

Application Server product, but is useful all or in part for understanding the product. When possible, links

98 Administering applications and their environment

are provided to technical papers and Redbooks that supplement the broad coverage of the release

documentation with in-depth examinations of particular product areas.

Refer to Web resources for learning for links to information applicable to WebSphere Application Server

generally, such as lists of IBM technical papers, Redbooks and samples.

View links to additional information about:

v “Programming model and decisions”

v “Programming instructions and examples”

v “Administration”

Programming model and decisions

v Designing Enterprise Applications with the JavaTM 2 Platform, Enterprise Edition, Second Edition

v The J2EETM Tutorial

v Building JavaTM Enterprise Applications Volume I: Architecture

v Recommended reading list: J2EE and WebSphere Application Server

Programming instructions and examples

v IBM WebSphere: Deployment and Advanced Configuration, Roland Barcia, et al., ISBN 0131468626

(Prentice Hall, 2004)

v IBM WebSphere Developer Technical Journal: Co-hosting multiple versions of J2EE applications

v Automated Deployment of Enterprise Application Updates: Part 1 - Basic concepts

v IBM WebSphere Developer Technical Journal: The top 10 (more or less) J2EE best practices

Administration

v IBM WebSphere Developer Technical Journal: System management for WebSphere Application Server

V6 -- Part 1 Overview of system management enhancements

v IBM WebSphere Developer Technical Journal: System management for WebSphere Application Server

V6 -- Part 5: Flexible options for updating deployed applications

v WebSphere Application Server V6 System Management & Configuration Handbook

v WebSphere Application Server V6 Migration Guide

v WebSphere Version 6 Web Services Handbook Development and Deployment

v Listing of all IBM WebSphere Application Server Redbooks

Chapter 6. Deploying and administering applications 99

http://java.sun.com/blueprints/guidelines/designing_enterprise_applications_2e/
http://java.sun.com/j2ee/1.4/docs/tutorial/doc/index.html
http://developer.java.sun.com/developer/Books/j2ee/bjeapps/
http://www.ibm.com/developerworks/websphere/library/techarticles/0305_issw/recommendedreading.html
http://www-128.ibm.com/developerworks/websphere/techjournal/0405_poddar/0405_poddar.html
http://websphere.sys-con.com/read/47889.htm
http://www.ibm.com/developerworks/websphere/techjournal/0405_brown/0405_brown.html
http://www-128.ibm.com/developerworks/websphere/techjournal/0501_williamson/0501_williamson.html
http://www-128.ibm.com/developerworks/websphere/techjournal/0501_williamson/0501_williamson.html
http://www-128.ibm.com/developerworks/websphere/techjournal/0510_apte/0510_apte.html
http://www-128.ibm.com/developerworks/websphere/techjournal/0510_apte/0510_apte.html
http://www.redbooks.ibm.com/abstracts/sg246451.html?Open
http://publib-b.boulder.ibm.com/abstracts/sg246369.html?Open
http://www.redbooks.ibm.com/abstracts/sg246461.html?Open
http://publib-b.boulder.ibm.com/Redbooks.nsf/Portals/WebSphere

100 Administering applications and their environment

Chapter 7. Web applications

Task overview: Developing and deploying Web applications

A developer creates the files comprising a Web application, and then assembles the Web application

components into a Web module. Next, the deployer (typically the developer in a unit-testing environment

or the administrator in a production environment) installs the Web application on the server.

1. (Optional) Migrate existing Web applications to run in the new version of WebSphere Application

Server.

2. Design the Web application and develop its code artifacts: Servlets, JavaServer Pages (JSP) files, and

static files, as for example, images and Hyper Text Markup Language (HTML) files. See the “Web

applications: Resources for learning” on page 138 topic for links to design documentation.

JavaServer Pages programming tips:

v Disable session state of JavaServer Pages files using <%@ page language="java"

contentType="text/html" session="false" %> instead of <%@ page language="java"

contentType="text/html" %>

v Replace setProperties calls in your JavaServer Pages files with direct calls to the appropriate setxxx

methods.

3. Develop the Web application, using WebSphere Application Server extensions to enhance its

functionality.

4. Assemble the Web application into a Web module using an assembly tool. Web module assembly

properties might include the ability to:

v Configure servlet page lists.

v Configure servlet filters.

v Serve servlets by class name.

v Enable file serving.

5. Deploy the Web module or application module that contains the Web application.

Following deployment, you might find it handy to use the tool that enables batch compiling of the JSP

files for quicker initial response times.

6. (Optional) Troubleshoot your Web application.

7. (Optional) Modify the default Web container configuration in the application server in which you

deployed the Web module or application module containing the Web application.

8. (Optional) Manage the deployed Web application.

Web applications

A Web application is comprised of one or more related servlets, JavaServer Pages technology (JSP files),

and Hyper Text Markup Language (HTML) files that you can manage as a unit.

The files in a Web application are related in that they work together to perform a business logic function.

For example, one of the WebSphere Application Server samples is a Simple Greeting Web application.

This application, comprised of a servlet and Web pages, greets new users when they access the

application.

The Web application is a concept supported by the Java Servlet Specification. Web applications are

typically packaged as .war files.

web.xml file

The web.xml file provides configuration and deployment information for the Web components that

comprise a Web application. Examples of Web components are servlet parameters, servlet and

JavaServer Pages (JSP) definitions, and Uniform Resource Locators (URL) mappings.

© Copyright IBM Corp. 2006 101

The Java Servlet 2.4 specification defines the web.xml deployment descriptor file in terms of an XML

schema document. For backwards compatibility of applications written to the Java Servlet 2.2

Specification, Web containers are also required to support the Java Servlet 2.2 specification. For

backwards compatibility of applications written to the Java Servlet 2.3 specification, Web containers are

also required to support the Java Servlet 2.3 specification.

If you use Rational Application Developer version 6 to create your portlets, you must remove the following

reference to the std-portlet.tld from the web.xml file:

<taglib id="PortletTLD">

 <taglib-uri>http://java.sun.com/portlet</taglib-uri>

 <taglib-location>/WEB-INF/tld/std-portlet.tld</taglib-location>

 </taglib>

Location

The web.xml file must reside in the WEB-INF directory under the context of the hierarchy of directories that

exist for a Web application.

For example, if the application is client.war, then the web.xml file is placed in the install_root/client

war/WEB-INF directory.

Usage notes

v Is this file read-only?

No

v Is this file updated by a product component?

This file is updated by the Application Server Toolkit.

v If so, what triggers its update?

The Application Server Toolkit updates the web.xml file when you assemble Web components into a

Web module, or when you modify the properties of the Web components or the Web module.

v How and when are the contents of this file used?

WebSphere Application Server functions use information in this file during the configuration and

deployment phases of Web application development.

Sample file entry

<?xml version="1.0" encoding="UTF-8"?>

<web-app id="WebApp_9" version="2.4" xmlns="http://java.sun.com/xml/ns/j2ee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd">

 <display-name>Servlet 2.4 application</display-name>

 <filter>

 <filter-name>ServletMappedDoFilter_Filter</filter-name>

 <filter-class>tests.Filter.DoFilter_Filter</filter-class>

 <init-param>

 <param-name>attribute</param-name>

 <param-value>tests.Filter.DoFilter_Filter.SERVLET_MAPPED</param-value>

 </init-param>

 </filter>

 <filter-mapping>

 <filter-name>ServletMappedDoFilter_Filter</filter-name>

 <url-patter>/DoFilterTest</url-pattern>

 <dispatcher>REQUEST</dispatcher>

 </filter-mapping>

 <filter-mapping>

 <filter-name>ServletMappedDoFilter_Filter</filter-name>

 <url-patter>/IncludedServlet</url-pattern>

 <dispatcher>INCLUDE</dispatcher>

 </filter-mapping>

 <filter-mapping>

 <filter-name>ServletMappedDoFilter_Filter</filter-name>

102 Administering applications and their environment

<url-patter>ForwardedServlet</url-pattern>

 <dispatcher>FORWARD</dispatcher>

 </filter-mapping>

 <listener>

 <listener-class>tests.ContextListener</listener-class>

 </listener>

 <listener>

 <listener-class>tests.ServletRequestListener.RequestListener</listener-class>

 </listener>

 <servlet>

 <servlet-name>welcome</servlet-name>

 <servlet-class>WelcomeServlet</servlet-class>

 </servlet>

 <servlet>

 <servlet-name>ServletErrorPage</servlet-name>

 <servlet-class>tests.Error.ServletErrorPage</servlet-class>

 </servlet>

 <servlet>

 <servlet-name>IncludedServlet</servlet-name>

 <servlet-class>tests.Filter.IncludedServlet</servlet-class>

 </servlet>

 <servlet>

 <servlet-name>ForwardedServlet</servlet-name>

 <servlet-class>tests.Filter.ForwardedServlet</servlet-class>

 </servlet>

 <servlet-mapping>

 <servlet-name>welcome</servlet-name>

 <url-pattern>/hello.welcome</url-pattern>

 </servlet-mapping>

 <servlet-mapping>

 <servlet-name>ServletErrorPage</servlet-name>

 <url-pattern>/ServletErrorPage</url-pattern>

 </servlet-mapping>

 <servlet-mapping>

 <servlet-name>IncludedServlet</servlet-name>

 <url-pattern>/IncludedServlet</url-pattern>

 </servlet-mapping>

 <servlet-mapping>

 <servlet-name>ForwardedServlet</servlet-name>

 <url-pattern>/ForwardedServlet</url-pattern>

 </servlet-mapping>

 <welcome-file-list>

 <welcome-file>hello.welcome</welcome-file>

 </welcome-file-list>

 <error-page>

 <exception-type>java.lang.ArrayIndexOutOfBoundsException</exception-type>

 <location>/ServletErrorPage</location>

 </error-page>

</web-app>

Default Application

WebSphere Application Server provides a default configuration that allows administrators to easily verify

that the Application Server is running. When the product is installed, it includes an application server called

server1 and an enterprise application called Default Application.

Default Application contains a Web module called DefaultWebApplication and an enterprise bean Java

archive (JAR) file called Increment. The Default Application provides a number of servlets, described

below. These servlets are available in the product.

For additional code examples, visit the Samples Gallery. Learn how to locate and install the Samples

Gallery by viewing the Samples Gallery reference page.

Chapter 7. Web applications 103

Snoop servlet

Use the Snoop servlet to retrieve information about a servlet request. This servlet returns the following

information:

v Servlet initialization parameters

v Servlet context initialization parameters

v URL invocation request parameters

v Preferred client locale

v Context path

v User principal

v Request headers and their values

v Request parameter names and their values

v HTTPS protocol information

v Servlet request attributes and their values

v HTTP session information

v Session attributes and their values

The Snoop servlet includes security configuration so that when WebSphere Security is enabled, clients

must supply a user ID and password to initiate the servlet.

The URL for the Snoop servlet is: http://localhost:9080/snoop/.

HelloHTML servlet

Use the HelloHTML pervasive servlet to exercise the PageList support provided by the WebSphere Web

container. This servlet extends the PageListServlet, which provides APIs that allow servlets to call other

Web resources by name or, when using the Client Type detection support, by type.

You can invoke the Hello servlet from an HTML browser, speech client, or most Wireless Application

Protocol (WAP) enabled browsers using the URL: http://localhost:9080/HelloHTML.jsp.

transition: The PageList Servlet custom extension is deprecated in WebSphere Application Server

Version 6.1 and will be removed in a future release. Re-architect your legacy applications to

use javax.servlet.filter classes instead of com.ibm.servlet classes. Starting from the Servlet 2.3

specification, javax.servlet.filter classes you can intercept requests and examine responses.

You can also use javax.servlet.filter classes to achieve chaining functionality, as well as

embellishing or truncating responses.

HitCount application

Use the HitCount demonstration application to demonstrate how to increment a counter using a variety of

methods, including:

v A servlet instance variable

v An HTTP session

v An enterprise bean

You can instruct the servlet to execute any of these methods within a transaction that you can commit or

roll back. If the transaction is committed, the counter is incremented. If the transaction is rolled back, the

counter is not incremented.

The enterprise bean method uses a container-managed persistence enterprise bean that persists the

counter value to a Cloudscape database. This enterprise bean is configured to use the Default

Datasource, which is set to the DefaultDB database.

When using the enterprise bean method, you can instruct the servlet to look up the enterprise bean, either

in the WebSphere global namespace, or in the namespace local to the application.

104 Administering applications and their environment

The URL for the HitCount application is: http://localhost:9080/HitCount.jsp.

Servlets

Servlets are Java programs that use the Java Servlet Application Programming Interface (API). You must

package servlets in a Web archive (WAR) file or Web module for deployment to the application server.

Servlets run on a Java-enabled Web server and extend the capabilities of a Web server, similar to the way

applets run on a browser and extend the capabilities of a browser.

Servlets can support dynamic Web page content, provide database access, serve multiple clients at one

time, and filter data.

For the purposes of WebSphere Application Server, discussions of servlets focus on Hyper Text Transfer

Protocol (HTTP) servlets, which serve Web-based clients.

With the introduction of Java Servlet 2.4 specification, you can define servlets as welcome files.

Non-servlet resources are served only when the FileServingEnabled attribute is set to true. Serving

welcome files is connected to serving static content, therefore fileServing enabled is set in the Web

module.

JavaServer Pages

JavaServer Pages (JSP) are application components coded to the JavaServer Pages Specification.

JavaServer Pages enable the separation of the Hypertext Markup Language (HTML) code from the

business logic in Web pages so that HTML programmers and Java programmers can more easily

collaborate in creating and maintaining pages.

JSP files support a division of roles:

HTML authors

Develop JSP files that access databases and reusable Java components, such as servlets and

beans.

Java programmers

Create the reusable Java components and provide the HTML authors with the component names

and attributes.

Database administrators

Provide the HTML authors with the name of the database access and table information.

 WebSphere Application Server Version 6.1 supports the JSP 2.0 specification. The sub-topics below

discuss WebSphere Application Server’s JSP 2.0 implementation, focusing on configuration, tools and

extensions.

JSP class file generation

At runtime, the WebSphere Application Server JavaServer Pages (JSP) engine loads JSP class files from

either the WebSphere Application Server temp directory or a Web module’s WEB-INF/classes directory. The

WebSphere Application Server temp directory is typically WAS_INSTALL_ROOT/AppServer/profiles/default/
temp/node_name/server_name. The JSP engine first searches for a class file in the temp directory and then

it searches in the Web module’s WEB-INF/classes directory. Figure 1 shows the processing logic of the

JSP engine at runtime.

Chapter 7. Web applications 105

http://jcp.org/aboutJava/communityprocess/final/jsr152/index.html

No No

No

Yes
Yes

Yes

Yes

Request for a JSP.

Is the class file found in

WebSphere Application Server

temp directory?

Is the class file found in

WEB-INF/classes

Is the class file outdated?

Generate the class file

into WebSphere

Application Server

temp directory.

Load the class file.

The batch compiler supports the generation of class files in both the WebSphere Application Server temp

directory and a Web module’s WEB-INF/classes directory, depending on the type of batch compiler target.

In addition, the batch compiler enables the generation of class files into any directory on the filesystem,

outside of the target application. Generating class files into a Web module’s WEB-INF/classes directory

enables you to deploy the Web module as a self-contained Web archive (WAR) file, or a WAR file inside

an enterprise archive (EAR) file. The following table shows the batch compiler’s behavior when compiling

class files.

 ear.path or war.path supplied enterpriseApp.name supplied

compileToDir not supplied;

compileToWebInf not

supplied, or is true

The class files are compiled into the

Web module’s WEB-INF/classes

directory.

The class files are compiled into the Web

module’s WEB-INF/classes directory.

compileToDir not supplied;

compileToWebInf is false

The class files are compiled into the

Web module’s WEB-INF/classes

directory.

The class files are compiled into the

WebSphere Application Server temp directory,

usually {WAS_ROOT}/profiles/profilename/temp

compileToDir is supplied;

compileToWebInf not

supplied, or is either true or

false

The class files are compiled into the

directory indicated by compileToDir.

The class files are compiled into the directory

indicated by compileToDir.

Packages and directories for generated .java and .class files

By default, the .java files for all JavaServer Pages (JSP) files are generated with the package statement,

package com.ibm._jsp;. The JSP engine’s class loader knows how to load JSP classes when they are all

in the same package. The .java files are located in the filesystem within a directory structure mirroring the

JSP source directory structure.

If the JSP engine configuration parameter useFullPackageNames is set to true, the .java files are

generated with the package statement

106 Administering applications and their environment

Package _ibmjsp.<directory structure in which the jsp is located>;

The usage of full package names enables the configuration of a JSP as a servlet in the web.xml file. See

“JSP class loading” on page 108 for more information. The table below gives examples of packages and

directory structures for generated .java and .class files.

 Java package Location of .java or .class files in file

system

JSP file default useFullPackageNames=true default useFullPackageNames=true

/myJsp.jsp com.ibm._jsp _ibmjsp / /_ibmjsp

/jspFiles/
jspOne.jsp

com.ibm._jsp _ibmjsp.jspFiles /jspFiles /_ibmjsp/jspFiles

/dir with

spaces/jspTwo.jsp

com.ibm._jsp _ibmjsp.dir_20_with_20_spaces /dir with

spaces

/_ibmjsp/
dir_20_with_20_spaces

Generated .java files: When the JSP engine’s keepgenerated configuration parameter is set to true, the

.java file that is generated for JavaServer Pages (JSP) is retained. This file contains information that is

useful in debugging.

Dependency information

In the .java file, immediately following the class declaration, an array of dependent files is defined, if the

source JSP has any dependencies. There are three types of files that are tracked as dependencies:

1. Files that are statically included in the JSP

2. Tag files that are used by the JSP, but only tag files that are not in Java Archive (JAR) files

3. TLD files that are used by the JSP, but only TLDs that are not in JAR files

This array is always generated, but the JSP engine uses it, in determining whether a JSP needs to be

recompiled, only when the trackDependencies parameter is set to true.

In the example below, three JSP fragments, one TLD and one tag file are dependencies of the JSP

jsp1.jsp. There are three parts to each array entry:

1. The path to the dependency, relative to the Web module’s context root. For example:

/dir1/frag1.jspf

2. The long value representing the time the file was last modified. For example: 1082407108000

3. The String representation of the long value. For example: Mon Apr 19 16:38:28 EDT 2004
public final class _jsp1 extends com.ibm.ws.jsp.runtime.HttpJspBase

 implements com.ibm.ws.jsp.runtime.JspClassInformation {

 private static String[] _jspx_dependants;

 static {

 _jspx_dependants = new String[5];

 _jspx_dependants[0] = "/Banner.jspf^1082407108000^Mon Apr 19 16:38:28 EDT 2004";

 _jspx_dependants[1] = "/Footer.jspf^1077657462000^Tue Feb 24 16:17:42 EST 2004";

 _jspx_dependants[2] = "/dir1/frag1.jspf^1035396680000^Wed Oct 23 14:11:20 EDT 2002";

 _jspx_dependants[3] = "/utility.tld^1080069938000^Tue Mar 23 14:25:38 EST 2004";

 _jspx_dependants[4] = "/WEB-INF/tags/top.tag^1065440490000^Mon Oct 06 07:41:30 EDT 2003";

 }

Version, JSP engine options, and WEB.XML information

The generated .java source contains a comment that lists information about the file which is located at the

bottom of the generated file. This information includes:

v The date and time the .java file was generated

Chapter 7. Web applications 107

v The version, build number and build date of the WebSphere Application Server on which the .java file

was generated

v The values of the JSP engine configuration parameters that were in effect when the file was generated

v The values of any <jsp-config> elements in the web.xml file that pertained to the source JSP file.
/*

profile_root/AppSrv01/installedApps/MyCell/sampleApp.ear/examples.war/WEB-INF/classes/_ibmjsp/_jsp1.java

was generated @ Wed May 03 10:05:56 EDT 2006IBM WebSphere Application Server - ND, 6.1.0.0

 Build Number: o0441.04

 Build Date: 05/01/06**

The JSP engine configuration parameters were set as follows:

classDebugInfo = [false]

debugEnabled = [false]

deprecation = [false]

compileWithAssert = [false]

jdkSourceLevel = [13]disableJspRuntimeCompilation =[false]

extendedDocumentRoot = [null]

ieClassId = [clsid:8AD9C840-044E-11D1-B3E9-00805F499D93]

keepGenerated = [true]

outputDir = [C:/WebSphere_6.0/AppServer/profiles/AppSrv01/installedApps/MyCell/

 sampleApp.ear/examples.war/WEB-INF/classes]

reloadEnabled = [true]

reloadEnabledSet = [true]

reloadInterval = [5000]

trackDependencies = [false]

usePageTagPool = [false]

useThreadTagPool = [true]

useImplicitTagLibs = [true]

verbose = [false]

looseLibMap = [null]

useJikes = [false]

useFullPackageNames = [true]

translationContextClass = [null]

extensionProcessorClass = [null]

javaEncoding = [UTF-8]

autoResponseEncoding = [false]

**

The following JSP Configuration Parameters were obtained from web.xml:

prelude list = [[]]

coda list = [[]]

elIgnored = [false]

pageEncoding = [null]

isXML = [false]

scriptingInvalid = [false]

*/

JSP class loading

You can configure a JavaServer Pages (JSP) class to be loaded by either the JSP engine’s class loader or

by the Web module’s class loader.

By default, a JSP class is loaded by a unique instance of the JSP engine’s class loader. The JSP engine’s

class loader enables reloading at runtime of a JSP class when the JSP source or one of its dependents is

modified. This allows you to reload a single JSP class when necessary, without affecting any other loaded

JSP classes.

JSP classes are loaded by the Web module’s class loader under either of the following scenarios.

108 Administering applications and their environment

1. 1. The JSP engine configuration parameter useFullPackageNames is set to true, and the JSP file is

configured as a servlet in the web.xml file using the <servlet-class> scenario in the table below.

2. 2. The JSP engine configuration parameters useFullPackageNames and

disableJspRuntimeCompilation are both set to true. In this case, you do not need to configure a JSP

file does as a servlet in the web.xml file.

Configuring JSP files as Servlets

You can configure a JSP file as a servlet in the web.xml file. There are two ways to do this. They are

described in the table below.

Before you configure a JSP file as a servlet, consider the following.

1. Reloading capability - If runtime reloading of JavaServer Pages files is desired, requests for

JavaServer Pages files must be handled by the JSP engine. The <servlet-class> scenario in the table

below disables runtime JSP file reloading, while the <jsp-file> scenario is compatible with reloading.

2. Reducing the number of class loaders - If you do not require runtime reloading of modified JSP pages

and you want to reduce the number of class loader instances, then you can use the <servlet-class>

scenario in the table below. Similarly, scenario 2 in section 1 above can be used without having to

configure a JSP file as a servlet.

 Scenario Example compatible

with runtime

reloading

multiple class

loaders used?

useFullPackageNames

<jsp-file> <servlet>

<servlet-name>jspOne</servlet-
name>

<jsp-file>jspOne.jsp</jsp-file>

</servlet>

Yes Yes Can be true or false

<servlet-class> <servlet>

<servlet-name>jspTwo</servlet-
name>

<servlet-class>_ibmjsp.jspTwo</
servlet-class>

</servlet>

No No Must be true

The JSP batch compiler tool helps you configure JavaServer Pages files as servlets. When

useFullPackageNames is true, the JSP batch compiler generates <servlet> and <servlet-mapping>

elements for each JSP file that it successfully translates and compiles. The elements are written to a

web.xml fragment file named generated_web.xml which is located in the binaries WEB-INF directory of a

Web module processed by the JSP file batch compiler (this directory is located within the deployed

application’s ear file). You can copy and paste all or some of these elements into the web.xml file to

configure JavaServer Pages files as servlets.

Take note of the location of the web.xml that is used by the application server. The application specific

configuration is obtained from either the application binaries (the application’s ear file) or from the

configuration repository. If an application is deployed into WebSphere Application Server with the flag Use

Binary Configuration set to true, then the WEB-INF/web.xml file is looked for in a Web module’s binaries

directory, not in the configuration repository. Below are examples of these two locations.

v An example of a configuration repository directory is {WAS_ROOT}/profiles/profilename/config/cells/
cellname/applications/enterpriseappname/deployments/deployedname/webmodulename

Chapter 7. Web applications 109

v An example of an application binaries directory is: {WAS_ROOT}/profiles/profilename/installedApps/
nodename/EnterpriseAppName/WebModuleName/

If the JSP batch compiler is executed on a pre-deployed application then the web.xml file is in the Web

module’s WEB-INF directory.

Configuring JSP run time reloading

JSP files can be translated and compiled at run time when the JSP file or its dependencies are modified.

This is known as JSP reloading. JSP reloading is enabled through the reloadEnabled JSP engine

parameter in the WEB-INF/ibm-web-ext.xmi file:

<jspAttributes xmi:id="JSPAttribute_1" name="reloadEnabled" value="true"/>

The following table contains the recommended reload settings for production and development

environments.

 Recommended settings

Configuration Attribute Production Environment Development Environment

reloadEnabled false true

reloadInterval n/a (ignored if reloadEnabled is

false)

approximately 5 seconds

trackDependencies n/a (ignored if reloadEnabled is

false)

true Alternatively, set this to false to

improve response time if

dependencies are not changing

disableJspRuntimeCompilation true - Alternatively, set this to false if

JSP files are not pre-compiled and

therefore need to be compiled on

the first request.

false

If the reloadEnabled parameter is set to true, a JSP file is reloaded at run time if the JSP file and its class

file do not have the same timestamp. In addition, if trackDependencies is set to true then the JSP file is

reloaded if the timestamp of any of its dependencies has changed since the JSP class file was last

generated. If the reloadEnabled parameter is set to false, a JSP file is still compiled if necessary on the

first request to it unless the parameter disableJspRuntimeCompilation is true. For example, when

disableJspRuntimeCompilation is false and reloadEnabled is false, a JSP file is compiled on the first

request if the class file is outdated. It would not compiled on subsequent requests even if the JSP source

file is modified or the class file is deleted unless reloadEnabled is true

Reload interval

The reload interval is set through the reloadInterval JSP engine parameter:

<jspAttributes xmi:id="JSPAttribute_1" name="reloadInterval" value="5"/>

If reloading is enabled, the reloadInterval parameter value determines the delay between checks to see if

a JSP file is outdated. For example, if reloadInterval is 5, the JSP engine checks to see if a JSP file is

outdated only when the last such check was done more than five seconds prior to the current request for

the JSP file. Once the reloadInterval is exceeded, reload checking is performed and the reload interval

timer is reset to 0 for that JSP file. The larger the reloadInterval, the less frequently the JSP engine

checks for the need to reload a JSP file.

Dependency tracking

Dependency tracking is set through the trackDependencies JSP engine parameter:

<jspAttributes xmi:id="JSPAttribute_1" name="trackDependencies" value="true"/>

110 Administering applications and their environment

If reloading is enabled, the trackDependencies parameter value determines whether the JSP engine

tracks modifications to the requested JSP file dependencies as well as to the JSP file itself. The three

types of dependencies tracked by the JSP engine are:

v files statically included in the JSP file

v tag files that are referenced in the JSP file (excluding tag files that are in JAR files)

v TLDs that are referenced in the JSP file (excluding TLDs that are in JAR files)

Dependency tracking information is always included in the generated class file even if trackDependencies

is false. The information is not used by the JSP engine or batch compiler unless the trackDependencies

parameter is true. This means that you can enable dependency tracking without having to recompile JSP

files.

For example, the toplevel.jsp file statically includes the footer.jspf file. When the toplevel.jsp file is

compiled, the path to the footer.jspf file and its timestamp are stored in the toplevel.jsp’s class file. As

a result, the footer.jspf file is modified and the toplevel.jsp file is requested. Now that the reload

interval for the toplevel.jsp file has been exceeded, the JSP engine compares the timestamp stored in

the class file with the footer.jspf file timestamp on disk. Because the timestamps are different, the

toplevel.jsp file is compiled, picking up the modification to the footer.jspf file. In order for dependency

tracking to work, the trackDependencies value must be set to true at the time a JSP file is requested at

run time or is processed by the batch compiler.

Disabling compilation

Disablement of run time compilation of JavaServer Pages is set via the disableJspRuntimeCompilation

JSP engine parameter:

<jspAttributes xmi:id="JSPAttribute_1" name="disableJspRuntimeCompilation" value="true"/>

If the disableJspRuntimeCompilation parameter is set to true, the JSP engine at run time does not

translate and compile JSP files; the JSP engine loads only precompiled class files. JSP source files do not

need to be present in order for the class files to be loaded. With this option set to true, an application can

be installed without JSP source, but must have precompiled class files. There is a Web container custom

property of the same name that can be used to determine the behavior of all web modules installed in a

server. If both the Web container custom property and the JSP engine option are set, the JSP engine

option takes precedence. Setting the disableJspRuntimeCompilation parameter to true automatically

sets reloadEnabled to false.

Reload processing sequence

The processing sequence pertaining to JSP file reloading when trackDependencies is false is shown in

Figure 1.

Chapter 7. Web applications 111

When trackDependencies is true, the JSP engine does additional file system processing to determine if

any of a JSP file’s dependencies have changed since the JSP file was last translated and compiled.

Figure 2 shows the additional processes that are performed on the ’No’ path of flow chart labeled ″is JSP

class file outdated?″. You can see that the path taken when disableJspRuntimeCompilation is true is the

most efficient path.

No

Request for a JSP.

disable

JspRuntime

Compilation?

First request to

this JSP?

No

Is reloadEnabled?

Classfile exists?

Yes
Attempt to

load classfile

Yes

Return error

to browser

No

Is reloadedInterval

exceeded?

Yes Is JSP

classfile

outdated?

Yes Yes
Translate and

compile JSP

Successful

translation

and

compilation?

Return error

to browser

No

Attempt to load

classfile

Yes

NoNo No

Figure 1. Reload processing sequence when trackDependencies is false.

112 Administering applications and their environment

JSP reload options for Web modules settings

Use this panel to configure the class reloading of Web modules such as JavaServer Pages (JSP) files

To view this administrative console panel, click Applications > Enterprise Applications >

application_name > JSP reload options for Web modules. This panel is the same as the Provide JSP

reloading options for Web modules panel on the application installation and update wizards.

Web module:

Specifies the name of a JSP file in the application.

URI:

Specifies the location of the module relative to the root of the application (EAR file).

JSP enable class reloading:

Specifies whether to enable class reloading when JSP files are updated.

 A Web container reloads JSP files only when the IBM extension jspReloadingEnabled in the jspAttributes

of the ibm-web-ext.xmi file is set to true.

JSP reload interval in seconds:

Specifies the number of seconds to scan the application’s file system for updated JSP files. The default is

the value of the reloading interval attribute in the IBM extension (META-INF/ibm-application-ext.xmi) file

of the EAR file.

 To enable reloading, specify a value greater than zero (for example, 1 to 2147483647). To disable

reloading, specify zero (0). The range is from 0 to 2147483647.

The reloading interval attribute takes effect only if class reloading is enabled.

No

Is JSP

classfile

outdated?

Has any

dependent

file been

modified?

No

Translate and

compile JSP

Attempt to load

classfile

Yes

Yes

Figure 2. Additional reload processing performed when trackDependencies is true.

Chapter 7. Web applications 113

Disabling JavaServer Pages run time compilation

By default, the JavaServer Pages (JSP) engine translates a requested JSP file, compiles the .java file,

and loads the compiled servlet into the run time environment. You can change the JSP engine default

behaviour by indicating a JSP file should never be translated or compiled at run time, even when a .class

file does not exist.

If run time compilation is disabled, you must precompile the JSP files, which provides the following

advantages:

v Reduces compilation related disk operations.

v Minimizes disk storage requirements necessary for handling temporary .java files generated during a

run time compilation.

v Allows you to not include the JSP source files in the application.

v Allows verification that a JSP file compiled successfully before deploying and installing the application in

WebSphere Application Server.

You can disable run time JSP file compilation on a global or an individual Web application basis:

v To disable the translation and compilation of JSP files for all Web applications, set the Web container

custom property disableJspRuntimeCompilation to true.

Set this property through the Web container Custom properties panel in the administrative console. To

view this administrative console page, click:

Servers > Application servers > server_name > Web container settings >

 Web container > Custom properties > property_name

Valid values for this setting are true or false. If this property is set to true, then translation and

compilation of the JSP files is disabled at run time for all Web applications.

v To disable the translation and compilation of JSP files for a specific Web application, set the JSP engine

initialization parameter disableJspRuntimeCompilation to true. This setting, if enabled, determines the

run time behavior of the JSP engine and overrides the Web container custom property setting.

Set this parameter through the JavaServer Pages attribute assembly settings panel in the

Assembling applications.

Valid values for this setting are true or false. If this parameter is set to true, then, for that specific Web

application, translation and compilation of the JSP files is disabled at run time, and the JSP engine only

loads precompiled files.

v If neither the Web container custom property nor the JSP parameter is set, the first request for a JSP

file results in the translation and compilation of the JSP file when the .class file does not exist or is

outdated. Subsequent requests for the file also result in translations and compilations, but only if the

following conditions are met:

– Translations are required because the .class file is outdated.

– Reloading is enabled for the Web module.

– Reload interval is exceeded.

If you disable run time compilation and a request arrives for a JSP file that does not have a matching

.class file, the JSP engine returns HTTP error 500 (Internal server error) to the browser. In this case, an

exception is written to the System Out (SYSOUT) and First Failure Data Capture (FFDC) logs.

If a JSP file has a matching .class file but that file is out of date, the JSP engine still loads the .class file

into memory.

Provide options to compile JavaServer Pages settings

Use this panel to specify options to be used by the JavaServer Pages (JSP) compiler.

This administrative console panel is a step in the application installation and update wizards. To view this

panel, you must select Precompile JavaServer Pages files on the Select Installation options panel.

Thus, to view this panel, click Applications > Install New Application > application_path > Show me all

installation options and parameters > Next > Next > Precompile JavaServer Pages files > Next >

Step: Provide options to compile JSPs.

114 Administering applications and their environment

You can specify the JSP compiler options on this panel only when installing or updating an application that

contains Web modules. After the application is installed, you must edit the JSP engine configuration

parameters of a Web module’s WEB-INF/ibm-web-ext.xmi file to change its JSP compiler options.

Web module:

Specifies the name of a module within the application.

URI:

Specifies the location of the module relative to the root of the application (EAR file).

JSP class path:

Specifies a temporary class path for the JSP compiler to use when compiling JSP files during application

installation. This class path is not saved when the application installation is complete and is not used when

the application is running. This class path is used only to identify resources outside of the application

which are necessary for JSP compilation and which will be identified by other means (such as shared

libraries) after the application is installed. In network deployment configurations, this class path is specific

to the deployment manager machine.

 To specify that multiple Web modules use the same class path:

1. In the list of Web modules, select the Select check box beside each Web module that you want to use

a particular class path.

2. Expand Apply Multiple Mappings.

3. Specify the desired class path.

4. Click Apply.

Use full package names:

Specifies whether the JSP engine generates and loads JSP classes using full package names.

 When full package names are used, precompiled JSP class files can be configured as servlets in the

web.xml file, without having to use the jsp-file attribute. When full package names are not used, all JSP

classes are generated in the same package, which has the benefit of smaller file-system paths.

When the options useFullPackageNames and disableJspRuntimeCompilation are both true, a single class

loader is used to load all JSP classes, even if the JSP files are not configured as servlets in the web.xml

file.

This option is the same as the useFullPackageNames JSP engine parameter.

JDK source level:

Specifies the source level at which the Java compiler compiles JSP Java sources. Valid values are 13, 14,

and 15. The default value is 13, which specifies source level 1.3.

Disable JSP runtime compilation:

Specifies whether a JSP file should never be translated or compiled at run time, even when a .class file

does not exist.

 When this option is set to true, the JSP engine does not translate and compile JSP files at run time; the

JSP engine loads only precompiled class files. JSP source files do not need to be present in order to load

class files. You can install an application without JSP source, but the application must have precompiled

class files.

Chapter 7. Web applications 115

For a single Web application class loader to load all JSP classes, this compiler option and the Use full

package names option both must be set to true.

This option is the same as the disableJspRuntimeCompilation JSP engine parameter.

JSP batch compilation

As an IBM enhancement to JavaServer Pages (JSP) support, IBM WebSphere Application Server provides

a batch JSP compiler that allows JSP page compilation before application deployment. The batch compiler

validates the syntax of JSP pages, translates the JSP pages into Java source files, and compiles the Java

source files into Java servlet class files. The batch compiler also validates tag files and generates their

Java implementation classes.

Batch compilation of JSP pages in a predeployed application simplifies the deployment process and

improves the runtime performance of JSP page by eliminating first-request compilations. The batch

compiler also operates on enterprise applications that have been deployed into WebSphere Application

Server.

The JSP batch compiler works on Web modules that support Servlet 2.2 and up through Servlet 2.4 The

batch compiler works on JSP pages written to the JSP 2.0 specification or previous specifications back to

JSP 1.0. It recognizes a Servlet 2.4 deployment descriptor, web.xml, and can use any jsp-config elements

that it may contain. In a Servlet 2.3 (JSP 1.2) or Servlet 2.2 (JSP 1.1) deployment descriptor the batch

compiler recognizes and uses any taglib elements that the descriptor may contain.

Batch compiling makes the first request for a JSP page much faster because the JSP page is already

translated and compiled into a servlet. Batch compiling is also useful as a fast way to resynchronize all of

the JSP pages for an application.

The batch compiler supports the generation of class files in both the WebSphere Application Server temp

directory and a Web module’s WEB-INF/classes directory, depending on the type of batch compiler target.

In addition, the batch compiler enables generation of class files into any directory on the filesystem,

outside the target application. Generating class files into a Web module’s WEB-INF/classes directory

enables the Web module to be deployed as a self-contained WAR file, or a WAR inside an EAR.

Also, you can use shared libraries with the JSP batch complier. When you use the JSP batch compiler,

you must either add the JAR to the WAR in the <WEB-INF>/lib directory, or add the JAR to the JVM class

path to use shared libraries.

JSP batch compiler tool: The batch compiler validates the syntax of JSP pages, translates the JSP

pages into Java source files, and compiles the Java source files into Java Servlet class files. The batch

compiler also validates tag files and generates their Java implementation classes. Use this function to

batch compile your JSP files and thereby enable faster responses to the initial client requests for the JSP

files on your production Web server.

The batch compiler can be executed against compressed or expanded enterprise archive (EAR) files and

Web application archive (WAR) files, as well as enterprise applications and Web modules that have been

deployed into WebSphere Application Server. When the target is a deployed enterprise application, the

server does not need to be running to execute the batch compiler. If the batch compiler is executed while

the target sever is running, the server is not aware of an updated class file and does not load that class

file unless the enterprise application is restarted. When the target is a compressed EAR file or WAR file,

the batch compiler must expand it before executing.

Processing of Web modules

The batch compiler operates on one Web module at a time. If the target is either an EAR file or an

installed enterprise application that contains more than one Web module, the batch compiler operates on

each Web module individually. This is done because JSP pages are configured on a Web module basis,

116 Administering applications and their environment

through the Web module’s web.xml deployment descriptor file. Within a Web module, the batch compiler

processes one directory at a time. It validates and translates each JSP page individually, and then invokes

the Java compiler for the entire group of generated Java sources files in that directory. If one JSP page

fails during the Java compilation phase, the Java compiler might not create class files for most or all of the

JSP pages that successfully compiled in that directory.

JSP file extensions

The batch compiler uses four things to determine what file extensions it should process:

1. Standard JSP file extensions

v *.jsp

v *.jspx

v *.jsw

v *.jsv

2. The url-pattern property of the jsp-property-group elements in the deployment descriptor file in Servlet

2.4 Web modules

3. The jsp.file.extensions JSP engine configuration parameter (for pre-Servlet 2.4 Web modules)

4. The batch compiler configuration parameter jsp.file.extensions

The standard extensions are always used by the batch compiler. If the Web module contains a Servlet 2.4

deployment descriptor, the batch compiler also processes any url-patterns found within the jsp-config

element. If the batch compiler target contains the JSP engine configuration parameter jsp.file.extensions,

then those extensions are also processed. If the batch compiler configuration parameter

jsp.file.extensions is present, the extensions given are also processed and will override the JSP engine

configuration parameter jsp.file.extensions.

It is a good idea to give JSP ’fragments’ an extension that is not processed by the batch compiler.

Statically-included fragments that do not stand alone generate translation or compilation errors if

processed. The JSP 2.0 Specification suggests that you use the extension .jspf for such files.

Batch compiler command

Both a Windows batch file, JspBatchCompiler.bat and UNIX shell script JspBatchCompiler.sh for running

the batch compiler from the command line are found in the {WAS_ROOT}/bin directory. An Ant task is also

available for executing the batch compiler using Ant. See the topic, Batch Compiler Ant Task for additional

information.

The batch compiler target is the only required parameter. The target is one of -ear.path, -war.path or

-enterpriseapp.name.

JspBatchCompiler -ear.path | -war.path | -enterpriseapp.name <name>

 [-response.file <filename>]

 [-webmodule.name <name>]

 [-filename <jsp name | directory name>

 [-recurse <true | false>]

 [-config.root <path>]

 [-cell.name <name>]

 [-node.name <name>]

 [-server.name <name>]

 [-profileName <name>]

 [-extractToDir <path>]

 [-compileToDir <path>]

 [-compileToWebInf <true | false>]

 [-translate <true | false>]

 [-compile <true | false>]

 [-removeTempDir <true | false>]

 [-forceCompilation <true | false>]

 [-useFullPackageNames <true | false>]

Chapter 7. Web applications 117

[-trackDependencies <true | false>]

 [-createDebugClassfiles <true | false>]

 [-keepgenerated <true | false>]

 [-keepGeneratedclassfiles <true | false>]

 [-usePageTagPool <true | false>]

 [-useThreadTagPool <true | false>]

 [-classloader.parentFirst <true | false>]

 [-classloader.singleWarClassloader <true | false>]

 [-additional.classpath <classpath to additional JAR files and classes>]

 [-verbose <true | false>]

 [-deprecation <true | false>]

 [-javaEncoding <encoding>

 [-jdkSourceLevel <13 | 14 | 15>]

 [-compilerOptions <space-separated list of java compiler options>]

 [-useJikes <true | false>]

 [-jsp.file.extensions <file extensions to process>]

 [-log.level <SEVERE | WARNING | INFO | CONFIG | FINE | FINER | FINEST | OFF>]

 *** See batchcompiler.properties.default in WAS_ROOT/bin for more information. ***

 *** See JspCBuild.xml in WAS_ROOT/bin for information about the public WebSphere Ant task JspC. ***

The batch compiler is aware of three groups of configuration parameters:

1. JSP engine configuration parameters for a Web module.

See the topic, JSP engine configuration parameters.

2. Batch compiler response file configuration parameters.

These are the parameters that are found in a batch compiler response file. See -response.file, below.

3. Batch compiler command line configuration parameters.

These are the parameters entered on the command line when running the batch compiler.

The batch compiler looks at all three groups of configuration parameters in order to determine which value

for a parameter is used when compiling JSP pages. When resolving the value for a given parameter, the

precedence is:

1. If the parameter is found on the command line, its value is used.

2. If the parameter is not found on the command line, the batch compiler looks for the parameter in a

response file named on the command line.

3. If no response file is named, or if the parameter is not found therein, the batch compiler looks for the

parameter in the Web module’s JSP engine configuration parameters.

If a configuration parameter is not found among these three groups, then a default value is used. The

default values for the configuration parameters are given below along with the description of the

parameters.

With one exception, these parameters are not case sensitive; -profileName is case sensitive. If the values

specified for these arguments are comprised of two or more words separated by spaces, you must add

quotation marks around the values.

The batch compiler does not create, or set the values of, equivalent JSP engine parameters. This means

that if a JSP page in a deployed Web module is modified and is recompiled by the JSP engine at run time,

the JSP engine’s configuration parameters will determine the engine’s behavior. For example, if you use

the batch compiler to compile a Web module and you use the -useFullPackageNames true option, the JSP

files will be compiled to support that option. But the JSP engine parameter useFullPackageNames must

also be set to true in order for the JSP runtime to be able to load the compiled JSP pages. If JSP pages

are modified in a deployed Web module, then the engine’s parameters should be set to the same values

used in batch compilation.

To use the JSP batch compiler, enter the following command on a single line at an operating system

command prompt.

118 Administering applications and their environment

v ear.path | war.path | enterpriseapp.name

Represents the full path to a single compressed or expanded enterprise application archive (EAR) file or

Web application archive (WAR) file, or the name of the deployed enterprise application that you want to

compile. For example:

– JspBatchCompiler -ear.path c:\myproject\sampleApp.ear

– JspBatchCompiler -war.path c:\myWars\examples.war

– JspBatchCompiler -enterpriseapp.name myEnterpriseApp -webmodule.name my.war -filename

aDir/main.jsp
v response.file

Specifies the path to a file that contains configuration parameters used by the batch compiler. The

response.file is used only if it is given on the command line; it is ignored if it is present in a response

file.

In a default installation, the template response file, batchcompiler.properties.default, is found in the

{WAS_ROOT}/bin directory. Copy this template to create your own response files containing defaults for

the parameters in which you are interested. All the required and optional parameters (except

response.file) can be configured in a response file. For example: JspBatchCompiler -response.file

c:\myproject\batchc.props

Default : null

v webmodule.name

Represents the name of the specific Web module that you want to batch compile. If this argument is not

set, all Web modules in the enterprise application are compiled. This parameter is used only when

ear.path or enterpriseapp.name is given. This parameter is useful when JSP pages in a specific Web

module within a deployed enterprise application need to be regenerated, because all shared library

dependencies are picked up.

Example: JspBatchCompiler -enterpriseApp.name sampleApp -webmodule.name myWebModule.war

Default: All Web modules in an EAR file or enterprise application are compiled if this parameter is not

given.

v filename

Represents the name of a single JSP file that you want to compile. If this argument is not set, all files in

the Web module are compiled. Alternatively, if filename is set to the name of a directory, only the JSP

files in that directory and that directory’s child directories are complied. The name is relative to the

context root of the Web module.

Example 1: If you want to compile the file, myTest.jsp, and it is found in /subdir/myJSPs, you would

enter -filename /subdir/myJSPs/myTest.jsp.

Example 2: If you want to compile all JSP files in /subdir/myJSPs and its child directories, you would

enter -filename subdir/myJSPs.

Default: All JSP files in the Web module are compiled. Entering -filename / is equivalent to the

default.

v recurse

Determines whether subdirectories beneath the target directory are processed. This parameter is used

only when the filename parameter is given. Set value to false to process only the directory named

filename parameter; and not its subdirectories.

Example: JspBatchCompiler -enterpriseApp.name sampleApp -filename /subdir1 -recurse false.

Default: true; All directories beneath the target directory are processed.

v config.root

Specifies the location of the WebSpehere Application Server configuration directory. This parameter is

used only when enterpriseapp.name is given.

Default: {WAS_ROOT}/profiles/profilename/config

v cell.name

Specifies the name of the cell in which the application is deployed. This parameter is used only when

enterpriseapp.name is given.

Chapter 7. Web applications 119

Default: The default is obtained from the profile script that is used. The symbolic name of this variable

is WAS_CELL.

v node.name

Specifies the name of the node in which the application is deployed. This parameter is used only when

enterpriseapp.name is given.

Default: The default is obtained from the profile script that is used. The symbolic name of this variable

is WAS_NODE.

v server.name

Represents the name of the server in which the application is deployed. This parameter is used only

when enterpriseapp.name is given.

Default: server1

v profileName

Specifies the name of the profile you want to use. This parameter is used only when

enterpriseapp.name is given.

Example: JspBatchCompiler -enterpriseApp.name sampleApp -profileName AppServer-3

Default: The default profile is used. This is obtained from the file setupCmdLine script in the

install_root/bin directory. The symbolic name is DEFAULT_PROFILE_SCRIPT.

v extractToDir

Specifies the directory into which predeployed enterprise archive (EAR) files and Web application

archive (WAR) files will be extracted before the batch compiler operates on them. This parameter is

ignored when enterpriseapp.name is given. The extractToDir parameter is used as described in the

table below.

Example: JspBatchCompiler -ear.path c:\myproject\sampleApp.ear -extractToDir c:\myTempDir.

Use-case: You must extract a compressed archive before it is batch compiled. You can also extract an

expanded archive to a new directory as well. In both cases, extraction leaves the original archive

untouched, which may be useful while development is underway.

Default values:

 Expanded archive Compressed archive

extractToDir supplied The batch compiler extracts the archive to extractToDir before operating on it.

If a file or directory of the same name as the archive already exists in the

extractToDir, the batch compiler removes the archive completely before

extracting that archive. If the batch compiler exits with no errors, it

compresses the archive in place in the extractToDir, even if the original EAR

file or WAR file was expanded. If errors are encountered during compilation,

the EAR file or WAR file is left in the expanded state even if the original EAR

file or WAR file was compressed.

extractToDir not supplied The batch compiler operates on the

EAR file or WAR file in place (does

not extract it to another directory) and

the archive remains expanded after

the batch compiler finishes.

The batch compiler extracts the

archive to the directory returned by

the JVM property ″java.io.tmpdir″. The

rest of the behavior described above,

when extractToDir is supplied, is the

same in this case.

The default is server1.

v compileToDir

Specifies the directory into which JSP pages are translated into Java source files and compiled into

class files. This directory can be anywhere on the filesystem, but the batch compiler’s default behavior

is usually adequate. The batch compiler’s behavior when compiling class files is described in the table

below

Example:: JspBatchCompiler -enterpriseApp.name sampleApp -compileToDir c:\myTargetDir

120 Administering applications and their environment

Use-case: This parameter enables you to generate the Java and class files into a directory outside of

the target, which may be useful if you want to compare the newly generated files with their previous

versions which remain untouched within the target.

Default values:

 ear.path or war.path supplied enterpriseApp.name supplied

compileToDir not supplied;

compileToWebInf not supplied, or is

true

The class files are compiled into the

Web module’s WEB-INF/classes

directory

The class files are compiled into the

Web module’s WEB-INF/classes

directory.

compileToDir not supplied;

compileToWebInf is false

The class files are compiled into the

Web module’s WEB-INF/classes

directory.

The class files are compiled into the

WebSphere Application Server temp

directory (usually {WAS_ROOT}/temp).

compileToDir is supplied;

compileToWebInf not supplied, or is

either true or false

The class files are compiled into the

directory indicated by compileToDir.

The class files are compiled into the

directory indicated by compileToDir.

v compileToWebInf

Specifies whether the target directory for the compiled JSP class files should be the Web module’s

WEB-INF/classes directory. This parameter is used only when enterpriseApp.name is given, and it is

overridden by compileToDir if compileToDir is given.

The batch compiler’s default behavior is to compile to the Web module’s WEB-INF/classes directory. The

batch compiler’s behavior when compiling class files is described in the table above.

Example: JspBatchCompiler -enterpriseApp.name sampleApp -compileToWebInf false.

Use-case: Set this parameter to false when enterpriseApp.name is supplied and you want the class

files to be compiled to the WebSphere Application Server temp directory instead of the Web module’s

WEB-INF/classes directory. Recommendation: if this parameter is set to false, set forceCompilation to

true if there are any JSP class files in the WEB-INF/classes directory.

Default: true; see the table above.

v forceCompilation

Specifies whether the batch compiler is forced to recompile all JSP resources regardless or whether the

JSP page is outdated.

Example: JspBatchCompiler -ear.path c:\myproject\sampleApp.ear -forceCompilation true.

Use-case: Especially useful when creating an archive for deployment, to make sure all JSP classes are

up to date.

Default: false

v useFullPackageNames

Specifies whether the batch compiler generates full package names for JSP classes. The default is to

generate all JSP classes in the same package. The JSP engine’s class loader knows how to load JSP

classes when they are all in the same package. The default has the benefit of generating smaller

file-system paths. Full package names have the benefit of enabling the configuration of precompiled

JSP class files as servlets in the web.xml file without use of the jsp-file attribute, resulting in a single

class loader (the Web application’s class loader) being used to load all such JSP classes. Similarly,

when the JSP engine’s configuration attributes useFullPackageNames and

disableJspRuntimeCompilation are both true, a single class loader is used to load all JSP classes,

even if the JSP pages are not configured as servlets in the web.xml file.

When useFullPackageNames is set to true, the batch compiler generates a file called

generated_web.xml in the Web module’s WEB-INF directory. This file contains servlet configuration

information for each JSP page that is successfully translated and compiled. The information can

optionally be copied into the Web module’s web.xml file so that the JSP pages are loaded as servlets by

the Web container. Note that if a JSP page is configured as a servlet in this way, no reloading of the

JSP page is done at run time if the JSP page is modified. This is because the JSP page is treated as a

regular servlet and requests for it do not pass through the JSP engine.

Example: JspBatchCompiler –enterpriseApp.name sampleApp –useFullPackageNames true

Chapter 7. Web applications 121

Use-case: Enables JSP classes to be loaded by a single class loader.

Default: false

v removeTempDir

Specifies whether the Web module’s temp directory is removed. The batch compiler by default

generates JSP class files into a Web module’s WEB-INF/classes directory. JSP class files are generated

into the temp directory at run time if a JSP page is modified and JSP reloading is enabled. By batch

compiling all the JSP pages in a Web module and also removing the temp directory, disk resources are

preserved. You can only use the removeTempDir parameter when -enterpriseApp.name is given.

Example: JspBatchCompiler -enterpriseApp.name sampleApp -removeTempDir true.

Use-case: Free up disk space by clearing out a Web application’s temp directory.

Default: false

v translate

Specifies whether JSP pages are translated and compiled. Set translate to false if you do not want JSP

pages to be translated and compiled. You must use this option in conjunction with -removeTempDir to tell

the batch compiler to remove only the temp directory and to do no further processing.

Example: JspBatchCompiler -enterpriseApp.name sampleApp -translate false -removeTempDir true.

Use-case: Free up disk space by clearing out a Web application’s temp directory, without invoking JSP

processing.

Default: true

v compile

Specifies whether JSP pages go through the Java compilation phase. Set compile to false if you do not

want JSP pages to go through the Java compilation phase.

Example: JspBatchCompiler -enterpriseApp.name sampleApp -compile false

Use-case: If you only want JSP pages to be syntax-checked, set -compile to false. You can set

-keepgenerated to true if you want to see the .java files that are generated during the translation

phase.

Default: true

v trackDependencies

Specifies whether the batch compiler recompiles a JSP page when any of its dependencies have

changed, even if the JSP page itself has not changed. Tracking dependencies incurs a significant

runtime performance penalty because the JSP Engine checks the filesystem on every request to a JSP

page to see if any of its dependencies have changed. The dependencies tracked by WebSphere

Application Server are :

1. Files statically included in the JSP page

2. Tag files used by the JSP page (excluding tag files that are in JAR files)

3. TLD files used by the JSP page (excluding TLD files that are in JAR files)

Example: JspBatchCompiler -ear.path c:\myproject\sampleApp.ear -trackDependencies true.

Use-case: Useful in a development environment.

Default: false

v createDebugClassfiles

Specifies whether the batch compiler generates class files that contain SMAP information, as per JSR

45, Debugging support for Other Languages.

Example: JspBatchCompiler -enterpriseApp.name sampleApp -createDebugClassfiles true

Use-case: Use this parameter when you want to be able to debug JSP pages in your JSR 45-compliant

IDE.

Default: false

v keepgenerated

Specifies whether the batch compiler saves or erases the generated Java source files created during

the translation phase.

122 Administering applications and their environment

If set to true, WebSphere Application Server saves the generated .java files used for compilation on

your server. By default, this argument is set to false and the .java files are erased after the class files

have compiled.

Example: JspBatchCompiler -ear.path c:\myproject\sampleApp.ear -keepgenerated true

Use-case: Use this parameter when you want to review the Java code generated by the batch compiler.

Default: false

v keepGeneratedclassfiles

Specifies whether the batch compiler saves or erases the class files generated during the compilation of

Java source files.

Example: JspBatchCompiler -ear.path c:\myproject\sampleApp.ear -keepGeneratedclassfiles false

-keepgenerated false

Use-case: Set this parameter to false if you only want to see if there are any translation or compilation

errors in your JSP pages. If paired with -keepgenerated false, this parameter results in all generated

files being removed before the batch compiler completes.

Default: true

v usePageTagPool

Enables or disables the reuse of custom tag handlers on an individual JSP page basis.

Example: JspBatchCompiler -ear.path c:\myproject\sampleApp.ear -usePageTagPool true

Use-case: Use this parameter to enable JSP-page-based reuse of tag handlers.

Default: false

v useThreadTagPool

Enables or disables the reuse of custom tag handlers on a per request thread basis per Web module.

Example: JspBatchCompiler -ear.path c:\myproject\sampleApp.ear -useThreadTagPool true

Use-case: Use this parameter to enable Web module-based reuse of tag handlers.

Default: false

v classloader.parentFirst

Specifies the search order for loading classes by instructing the batch compiler to search the parent

class loader prior to application class loader. This parameter is only used when ear.path or

enterpriseApp.name is given.

Example: JspBatchCompiler -ear.path c:\myproject\sampleApp.ear -classloader.parentFirst false

Use-case: Set this parameter to false when your Web module contains a JAR file that is also found in

the server lib directory, and you want your Web module’s JAR file to be picked up first.

Default: true

v classloader.singleWarClassloader

Specifies whether to use one class loader per enterprise archive (EAR) file or one class loader per Web

application archive (WAR) file. Used only when ear.path or enterpriseApp.name is given.

Example: JspBatchCompiler -ear.path c:\myproject\sampleApp.ear -classloader.singleWarClassloader

true

Use-case: Set this parameter to true when a Web module depends on JAR files and classes in another

Web module in the same enterprise application.

Default: false; One class loader is created per WAR file with no visibility of classes in other Web

modules.

v additional.classpath

Specifies additional class path entries to be used when parsing and compiling JSP pages. This

parameter is used only when war.path is given. When war.path is the target, WebSphere Shared

Libraries are not picked up by the batch compiler. Therefore, if your WAR file relies on, for example, a

JAR file that is configured in WebSphere Application Server as a shared library, then use this option to

point to that JAR file. In addition, if you give war.path and also use the -extractToDir parameter, then

any JAR files that are in the WAR file’s manifest class-path is not added to the class path (since the

Chapter 7. Web applications 123

WAR file has now been extracted by itself outside the EAR file in which it resides). Use

-additional.classpath in this case to point to the necessary JAR files. Add the full path to needed

resources, separated by your system-dependent path separator.

Example: JspBatchCompiler -war.path c:\myproject\examples.war -additional.classpath

c:\myJars\someJar.jar;c:\myClasses

Use-case: Use this parameter to add to the class path JAR files and classes outside of your WAR file.

At run time, these same JAR files and classes have to be made available through the standard

WebSphere Application Server configuration mechanisms.

Default: null

v verbose

Specifies whether the batch compiler should generate verbose output while compiling the generated

sources.

Example: JspBatchCompiler -war.path c:\myproject\examples.war -verbose true

Use-case: Set this parameter to true when you want to see Java compiler class loading and other

messages.

Default: false

v deprecation

Indicates the compiler should generate deprecation warnings while compiling the generated sources.

Example: JspBatchCompiler -war.path c:\myproject\examples.war -deprecation true

Use-case: Set this parameter to true when you want to see Java compiler deprecation messages.

Default: false

v javaEncoding

Specifies the encoding that will be used when the .java file is generated, and when it is compiled by the

Java compiler. When -javaEncoding is set, that encoding is passed to the java compiler via the

-encoding argument. Note that encoding is not supported by Jikes.

Example: JspBatchCompiler -war.path c:\myproject\examples.war -javaEncoding Shift-JIS

Use-case: Set this parameter when the page encoding of your JSP pages is not UTF-8 compatible.

Default value: UTF-8.

v jdkSourceLevel

This is a new JSP engine parameter which was introduced in WebSphere Application Server version 6.1

to support JDK 5. This parameter should be used instead of the compileWithAssert parameter, although

compile WithAssert still works in version 6.1.

The default value for this parameter is 13. This parameter requires regeneration of Java source. The

following are jdkSourceLevel paramater values:

– 13 (default) - This value will disable all new language features of JDK 1.4 and JDK 5.0.

– 14 - This value will enable the use of the assertion facility and will disable all new language features

of JDK 5.0.

– 15 - This value will enable the use of the assertion facility and all new language features of JDK 5.0.

Example: JspBatchCompiler -war.path c:\myproject\examples.war -jdkSourceLevel 14

Use-case: Set this parameter when you want to enable or disable the language features of JDK 1.4

and JDK 5.0

Default value: 13

v compilerOptions

Specifies a list of strings to be passed on the Java compiler command. This is a space-separated list of

the form ″arg1 arg2 argn″.

Example: JspBatchCompiler -war.path c:\myproject\examples.war -compilerOptions ″ -bootclasspath

<path>″

124 Administering applications and their environment

Use-case: Use this parameter if you need Java compiler arguments other than verbose, deprecation

and Assert facility support.

Default: null

v useJikes

Specifies whether Jikes should be used for compiling Java sources. NOTE: Jikes is not shipped with

WebSphere Application Server.

Example: JspBatchCompiler -ear.path c:\myproject\sampleApp.ear -useJikes true

Use-case: Set this parameter to true in order for the batch compiler to use Jikes as the Java compiler.

Default value: false

v jsp.file.extensions

Specifies the file extensions to be processed by the batch compiler. This is a semicolon- or

colon-separated list of the form ″*.ext1;*.ext2:*.extn″. Note that this parameter is not necessary for

Servlet 2.4 Web applications because the url-pattern property of the jsp-property-group elements in the

deployment descriptor can be used to identify extensions that should be treated as JSP pages.

Example: JspBatchCompiler -enterpriseApp.name sampleApp -jsp.file.extensions *jspz;*.jspt

Use-case: Use this parameter to add additional extensions to the be processed by the batch compiler.

Default: null. See section, ″JSP file extensions″, in this topic for additional information.

v log.level

Specifies the level of logging that is directed to the console during batch compilation. Values are

SEVERE | WARNING | INFO | CONFIG | FINE | FINER | FINEST | OFF

Example: JspBatchCompiler -enterpriseApp.name sampleApp -log.level FINEST

Use-case: Set this parameter higher or lower to control logging output. FINEST generates the most

output useful for debugging.

Default: CONFIG

Batch compiler ant task:

The ant task JspC exposes all the batch compiler configuration options. It executes the batch compiler

under the covers. It is backward compatible with the WebSphere Application Server 5.x version of the

JspC ant task. The following table lists all the ant task attribute and their batch compiler equivalents.

 JspC attribute Equivalent batch complier parameter

earPath -ear.path

warPath -war.path

src

Same as warPath, for backward compatiblity

-war.path

enterpriseAppName -enterpriseapp.name

responseFile -response.file

webmoduleName -webmodule.name

fileName -filename -config.root

configRoot -config.root

cellName -cell.name

nodeName -node.name

serverName -server.name

profileName -profileName

extractToDir -extractToDir

Chapter 7. Web applications 125

compileToDir

same as compileToDir, for backward compatibility

-compileToDir -compileToDir

compileToWebInf -compileToWebInf

compilerOptions -compilerOptions

recurse -recurse

removeTempDir -removeTempDir

translate -translate

compile -compile

forceCompilation -forceCompilation

useFullPackageNames -useFullPackageNames

trackDependencies -trackDependencies

createDebugClassfiles -createDebugClassfiles

keepgenerated -keepgenerated

keepGeneratedclassfiles -keepGeneratedclassfiles

usePageTagPool -usePageTagPool

useThreadTagPool -useThreadTagPool

classloaderParentFirst -classloader.parentFirst

classloaderSingleWarClassloader -classloader.singleWarClassloader

additionalClasspath -additional.classpath

classpath

same as additionalClasspath, for backward compatibility

-additional.classpath

verbose -verbose

deprecation -deprecation

javaEncoding -javaEncoding

compileWithAssert -compileWithAssert

useJikes -useJikes

jspFileExtensions -jsp.file.extensions

logLevel -log.level

wasHome none

Classpathref none

jdkSourceLevel -jdkSourceLevel

Below is an example of a build script with multiple targets, each with different attributes. The following

commands are used to execute the script:

On Windows:

ws_ant -Dwas.home=%WAS_HOME% -Dear.path=%EAR_PATH% -Dextract.dir=%EXTRACT_DIR%

ws_ant jspc2 -Dwas.home=%WAS_HOME% -Dapp.name=%APP_NAME% -Dwebmodule.name=%MOD_NAME%

ws_ant jspc3 -Dwas.home=%WAS_HOME% -Dapp.name=%APP_NAME% -Dwebmodule.name=%MOD_NAME% -Ddir.name=%DIR_NAME%

On UNIX or i5/OS:

ws_ant -Dwas.home=$WAS_HOME -Dear.path=$EAR_PATH -Dextract.dir=$EXTRACT_DIR

ws_ant jspc2 -Dwas.home=$WAS_HOME -Dapp.name=$APP_NAME -Dwebmodule.name=$MOD_NAME

ws_ant jspc3 -Dwas.home=$WAS_HOME -Dapp.name=$APP_NAME -Dwebmodule.name=$MOD_NAME -Ddir.name=$DIR_NAME

126 Administering applications and their environment

Example build.xml Using the JspC Task

<project name="JSP Precompile" default="jspc1" basedir=".">

 <taskdef name="wsjspc" classname="com.ibm.websphere.ant.tasks.JspC"/>

 <target name="jspc1" description="example using a path to an EAR, and extracting the EAR to a directory">

 <wsjspc wasHome="${was.home}"

 earpath="${ear.path}"

 forcecompilation="true"

 extractToDir="${extract.dir}"

 useThreadTagPool="true"

 keepgenerated="true"

 />

 </target>

 <target name="jspc2" description="example using an enterprise app and webmodule">

 <wsjspc wasHome="${was.home}"

 enterpriseAppName="${app.name}"

 webmoduleName="${webmodule.name}"

 removeTempDir="true"

 forcecompilation="true"

 keepgenerated="true"

 />

 </target>

 <target name="jspc3" description="example using an enterprise app, webmodule and specific directory">

 <wsjspc wasHome="${was.home}"

 enterpriseAppName="${app.name}"

 webmoduleName="${webmodule.name}"

 fileName="${dir.name}"

 recurse="false"

 forcecompilation="true"

 keepgenerated="true"

 />

 </target>

</project>

Batch compiler class path:

The batch compiler builds its class path as shown in the table below. When the batch compiler target is a

Web archive (WAR) file and war.path is supplied, the configuration additional.classpath parameter is used

to give extra class path information.

 Batch compiler target

Location added to class path enterpriseapp.name ear.path war.path

WebSphere Application Server

JAR files and classes

yes yes yes

JAR files listed in manifest class

path for a Web module

yes yes yes, when the target WAR is inside

an EAR and –extractToDir is not

used; otherwise, no.

Shared libraries yes no no

Web module JAR files and classes yes yes yes

additional.classpath parameter to

batch compiler

no no yes

Global tag libraries

JavaServer Pages (JSP) tag libraries contain classes for common tasks such as processing forms and

accessing databases from JSP files.

Chapter 7. Web applications 127

Tag libraries encapsulate, as simple tags, core functionality common to many Web applications. The Java

Standard Tag Library (JSTL) supports common programming tasks such as iteration and conditional

processing, and provides tags for:

v manipulating XML documents

v supporting internationalization

v using Structured Query Language (SQL)

Tag libraries also introduce the concept of an expression language to simplify page development, and

include a version of the JSP expression language.

A tag library has two parts - a Tag Library Descriptor (TLD) file and a Java archive (JAR) file.

tsx:dbconnect tag JavaServer Pages syntax (deprecated):

Use the <tsx:dbconnect> tag to specify information needed to make a connection to a database through

Java DataBase Connectivity (JDBC) or Open Database Connectivity (ODBC) technology.

 Support for tsx tags in the JavaServer Pages (JSP) engine are deprecated in WebSphere Application

Server Version 6.0. Instead of using the tsx tags, you should use equivalent tags from the JavaServer

Pages Standard Tag Library (JSTL).

The <tsx:dbconnect> syntax does not establish the connection. Use the <tsx:dbquery> and <tsx:dbmodify>

syntax instead to reference a <tsx:dbconnect> tag in the same JavaServer Pages (JSP) file to establish

the connection.

When the JSP file compiles into a servlet, the Java processor adds the Java coding for the

<tsx:dbconnect> syntax to the servlet service() method, which means a new database connection is

created for each request for the JSP file.

This section describes the syntax of the <tsx:dbconnect> tag.

<tsx:dbconnect id="connection_id"

 userid="db_user" passwd="user_password"

 url="jdbc:subprotocol:database"

 driver="database_driver_name"

 jndiname="JNDI_context/logical_name">

</tsx:dbconnect>

where:

v id

Represents a required identifier. The scope is the JSP file. This identifier is referenced by the

connection attribute of a <tsx:dbquery> tag.

v userid

Represents an optional attribute that specifies a valid user ID for the database that you want to access.

Specify this attribute to add the attribute and its value to the request object.

Although the userid attribute is optional, you must provide the user ID. See <tsx:userid> and

<tsx:passwd> for an alternative to hard coding this information in the JSP file.

v passwd

Represents an optional attribute that specifies the user password for the userid attribute. (This attribute

is not optional if the userid attribute is specified.) If you specify this attribute, the attribute and its value

are added to the request object.

Although the passwd attribute is optional, you must provide the password. See <tsx:userid> and

<tsx:passwd> for an alternative to hard coding this attribute in the JSP file.

v url and driver

Respresents a required attribute if you want to establish a database connection. You must provide the

URL and driver.

128 Administering applications and their environment

The application server supports connection to JDBC databases and ODBC databases.

– For a JDBC database, the URL consists of the following colon-separated elements: jdbc, the

subprotocol name, and the name of the database to access. An example for a connection to the

Sample database included with IBM DB2 is:

url="jdbc:db2:sample"

driver="com.ibm.db2.jdbc.app.DB2Driver"

– For an ODBC database, use the Sun JDBC-to-ODBC bridge driver included in their Java2 Software

Developers Kit (SDK) or another vendor’s ODBC driver.

The url attribute specifies the location of the database. The driver attribute specifies the name of the

driver to use in establishing the database connection.

If the database is an ODBC database, you can use an ODBC driver or the Sun JDBC-to-ODBC

bridge. If you want to use an ODBC driver, refer to the driver documentation for instructions on

specifying the database location with the url attribute and the driver name.

If you use the bridge, the url syntax is jdbc:odbc:database. An example follows:

url="jdbc:odbc:autos"

driver="sun.jdbc.odbc.JdbcOdbcDriver"

Note: To enable the application server to access the ODBC database, use the ODBC Data Source

Administrator to add the ODBC data source to the System DSN configuration. To access the ODBC

Administrator, click the ODBC icon on the Windows NT Control Panel.
v jndiname

Represents an optional attribute that identifies a valid context in the application server Java Naming and

Directory Interface (JNDI) naming context and the logical name of the data source in that context. The

Web administrator configures the context using an administrative client such as the WebSphere

Administrative Console.

If you specify the jndiname attribute, the JSP processor ignores the driver and url attributes on the

<tsx:dbconnect> tag.

An empty element (such as <url></url>) is valid.

dbquery tag JavaServer Pages syntax (deprecated):

Use the <tsx:dbquery> tag to establish a connection to a database, submit database queries, and return

the results set.

 Support for tsx tags in the JavaServer Pages (JSP) engine are deprecated in WebSphere Application

Server Version 6.0. Instead of using the tsx tags, you should use equivalent tags from the JavaServer

Pages Standard Tag Library (JSTL).

The <tsx:dbquery> tag does the following:

1. References a <tsx:dbconnect> tag in the same JavaServer Pages (JSP) file and uses the information

the tag provides to determine the database URL and driver. You can also obtain the user ID and

password from the <tsx:dbconnect> tag if those values are provided in the <tsx:dbconnect> tag.

2. Establishes a new connection

3. Retrieves and caches data in the results object.

4. Closes the connection and releases the connection resource.

This section describes the syntax of the <tsx:dbquery> tag.

<%-- SELECT commands and (optional) JSP syntax can be placed within the tsx:dbquery. --%>

<%-- Any other syntax, including HTML comments, are not valid. --%>

<tsx:dbquery id="query_id" connection="connection_id" limit="value" >

</tsx:dbquery>

where:

v id

Chapter 7. Web applications 129

Represents the identifier of this query. The scope is the JSP file. Use id to reference the query. For

example, from the <tsx:getProperty> tag, use id to display the query results.

The id is a tsx reference to the bean and can be used to retrieve the bean from the page contect. For

example, if id is named mySingleDBBean, instead of using:

– if (mySingleDBBean.getValue(″UISEAM″,0).startsWith(″N″))

use:

– com.ibm.ws.webcontainer.jsp.tsx.db.QueryResults bean =

(com.ibm.ws.webcontainer.jsp.tsx.db.QueryResults)pageContext. findAttribute(″mySingleDBBean″); if

(bean.getValue(″UISEAM″,0).startsWith(″N″)). . .

The bean properties are dynamic and the property names are the names of the columns in the results

set. If you want different column names, use the SQL keyword for specifying an alias on the SELECT

command. In the following example, the database table contains columns named FNAME and LNAME,

but the SELECT statement uses the AS keyword to map those column names to FirstName and

LastName in the results set:

Select FNAME, LNAME AS FirstName, LastName from Employee where FNAME=’Jim’

v connection

Represents the identifier of a <tsx:dbconnect> tag in this JSP file. The <tsx:dbconnect> tag provides the

database URL, driver name, and optionally, the user ID and password for the connection.

v limit

Represents an optional attribute that constrains the maximum number of records returned by a query. If

this attribute is not specified, no limit is used. In such a case, the effective limit is determined by the

number of records and the system caching capability.

v SELECT command and JSP syntax

Represents the only valid SQL command, SELECT. The <tsx:dbquery> tag must return a results set.

Refer to your database documentation for information about the SELECT command. See other articles

in this section for a description of JSP syntax for variable data and inline Java code.

dbmodify tag JavaServer Pages syntax (deprecated):

The <tsx:dbmodify> tag establishes a connection to a database and then adds records to a database

table.

 Support for tsx tags in the JavaServer Pages (JSP) engine are deprecated in WebSphere Application

Server Version 6.0. Instead of using the tsx tags, you should use equivalent tags from the JavaServer

Pages Standard Tag Library (JSTL).

The <tsx:dbmodify> tag does the following:

1. References a <tsx:dbconnect> tag in the same JavaServer Pages (JSP) file and uses the information

provided by that tag to determine the database URL and driver.

Note: You can also obtain the user ID and password from the <tsx:dbconnect> tag if those values are

provided in the <tsx:dbconnect> tag.

2. Establishes a new connection.

3. Updates a table in the database.

4. Closes the connection and releases the connection resource.

This section describes the syntax of the <tsx:dbmodify> tag.

<%-- Any valid database update commands can be placed within the DBMODIFY tag. -->

<%-- Any other syntax, including HTML comments, are not valid. -->

<tsx:dbmodify connection="connection_id">

</tsx:dbmodify>

where:

v connection

130 Administering applications and their environment

Represents the identifier of a <tsx:dbconnect> tag in this JSP file. The <tsx:dbconnect> tag provides the

database URL, driver name, and (optionally) the user ID and password for the connection.

v Database commands

Represents valid database commands. Refer to your database documentation for details

tsx:getProperty tag JavaServer Pages syntax and examples (deprecated):

The <tsx:getProperty> tag gets the value of a bean to display in a JavaServer Pages (JSP) file.

 Support for tsx tags in the JavaServer Pages (JSP) engine are deprecated in WebSphere Application

Server Version 6.0. Instead of using the tsx tags, you should use equivalent tags from the JavaServer

Pages Standard Tag Library (JSTL).

This IBM extension of the Sun JSP <jsp:getProperty> tag implements all of the <jsp:getProperty> function

and adds the ability to introspect a database bean created using the IBM extension <tsx:dbquery> or

<tsx:dbmodify>.

Note: You cannot assign the value from this tag to a variable. The value, generated as output from this

tag, displays in the browser window.

This section describes the syntax of the <tsx:getProperty> tag:

<tsx:getProperty name="bean_name"

 property="property_name" />

where:

v name

Represents the name of the bean declared by the id attribute of a <tsx:dbquery> syntax within the JSP

file. See <tsx:dbquery> for an explanation. The value of this attribute is case-sensitive.

v property

Represents the property of the bean to access for substitution. The value of the attribute is

case-sensitive and is the locale-independent name of the property.

Tag example:

<tsx:getProperty name="userProfile" property="username" />

tsx:userid and tsx:passwd tag JavaServer Pages syntax (deprecated):

With the <tsx:userid> and <tsx:passwd> tags, you do not have to hard code a user ID and password in the

<tsx:dbconnect> tag.

 Support for tsx tags in the JavaServer Pages (JSP) engine are deprecated in WebSphere Application

Server Version 6.0. Instead of using the tsx tags, you should use equivalent tags from the JavaServer

Pages Standard Tag Library (JSTL).

Use the <tsx:userid> and <tsx:passwd> tags to accept user input for the values and then add that data to

the request object. You can access the request object with a JavaServer Pages (JSP) file, such as the

JSPEmployee.jsp example that requests the database connection.

You must use <tsx:userid> and <tsx:passwd> tags within a <tsx:dbconnect> tag.

This section describes the syntax of the <tsx:userid> and <tsx:passwd> tags.

<tsx:dbconnect id="connection_id"

 <userid>

 <tsx:getProperty name="request" property=request.getParameter("userid") />

 </userid>

 <passwd>

Chapter 7. Web applications 131

<tsx:getProperty name="request" property=request.getParameter("passwd") />

 </passwd>

 url="protocol:database_name:database_table"

 driver="JDBC_driver_name">

</tsx:dbconnect>

where:

v <tsx:getProperty>

Represents the syntax as a mechanism for embedding variable data.

v userid

Represents a reference to the request parameter that contains the user ID. You must add the parameter

to the request object that passes to this JSP file. You can set the attribute and its value in the request

object, using an HTML form or a URL query string to pass the user-specified request parameters.

v passwd

Represents a reference to the request parameter that contains the password. Add the parameter to the

request object that passes to this JSP file. You can set the attribute and its value in the request object,

using an HTML form or a URL query string, to pass user-specified values.

tsx:repeat tag JavaServer Pages syntax (deprecated):

The <tsx:getProperty> tag repeats a block of HTML tagging.

 Support for tsx tags in the JavaServer Pages (JSP) engine are deprecated in WebSphere Application

Server Version 6.0. Instead of using the tsx tags, you should use equivalent tags from the JavaServer

Pages Standard Tag Library (JSTL).

Use the <tsx:repeat> syntax to iterate over a database query results set. The <tsx:repeat> syntax iterates

from the start value to the end value until one of the following conditions is met:

v The end value is reached.

v An exception is thrown.

If an exception of the types ArrayIndexOutOfBoundsException or NoSuchElementException is created

before a block completes, output is written only for the iterations up to and not including the iteration

during which the exception was created. All other exceptions results in no output being written for that tag

instance.

This section describes the syntax of the <tsx:repeat> tag:

<tsx:repeat index="name" start="starting_index" end="ending_index">

</tsx:repeat>

where:

v index

Represents an optional name used to identify the index of this repeat block. The scope of the index is

NESTED. Its type must be integer.

v start

Represents an optional starting index value for this repeat block. The default is 0.

v end

Represents an optional ending index value for this repeat block. The maximum value is 2,147,483,647.

If the value of the end attribute is less than the value of the start attribute, the end attribute is ignored.

Example: Combining tsx:repeat and tsx:getProperty JavaServer Pages tags (deprecated): Support

for tsx tags in the JavaServer Pages (JSP) engine are deprecated in WebSphere Application Server

Version 6.0. Instead of using the tsx tags, you should use equivalent tags from the JavaServer Pages

Standard Tag Library (JSTL).

132 Administering applications and their environment

The following code snippet shows you how to code these tags:

<tsx:repeat>

<tr>

 <td><tsx:getProperty name="empqs" property="EMPNO" />

 <tsx:getProperty name="empqs" property="FIRSTNME" />

 <tsx:getProperty name="empqs" property="WORKDEPT" />

 <tsx:getProperty name="empqs" property="EDLEVEL" />

 </td>

</tr>

</tsx:repeat>

Example: tsx:dbmodify tag syntax (deprecated): Support for tsx tags in the JavaServer Pages (JSP)

engine are deprecated in WebSphere Application Server Version 6.0. Instead of using the tsx tags, you

should use equivalent tags from the JavaServer Pages Standard Tag Library (JSTL).

In the following example, a new employee record is added to a database. The values of the fields are

based on user input from this JavaServer Pages (JSP) file and referenced in the database commands

using the <tsx:getProperty> tag.

<tsx:dbmodify connection="conn" >

insert into EMPLOYEE

 (EMPNO,FIRSTNME,MIDINIT,LASTNAME,WORKDEPT,EDLEVEL)

values

(’<tsx:getProperty name="request" property=request.getParameter("EMPNO") />’,

’<tsx:getProperty name="request" property=request.getParameter("FIRSTNME") />’,

’<tsx:getProperty name="request" property=request.getParameter("MIDINIT") />’,

’<tsx:getProperty name="request" property=request.getParameter("LASTNAME") />’,

’<tsx:getProperty name="request" property=request.getParameter("WORKDEPT") />’,

<tsx:getProperty name="request" property=request.getParameter("EDLEVEL") />)

</tsx:dbmodify>

Example: Using tsx:repeat JavaServer Pages tag to iterate over a results set (deprecated): Support

for tsx tags in the JavaServer Pages (JSP) engine are deprecated in WebSphere Application Server

Version 6.0. Instead of using the tsx tags, you should use equivalent tags from the JavaServer Pages

Standard Tag Library (JSTL).

The <tsx:repeat> tag iterates over a results set. The results set is contained within a bean. The bean can

be a static bean, for example, a bean created by using the IBM WebSphere Studio database wizard, or a

dynamically generated bean, for example, a bean generated by the <tsx:dbquery> syntax. The following

table is a graphic representation of the contents of a bean called, myBean:

 col1 col2 col3

row0 friends Romans countrymen

row1 bacon lettuce tomato

row2 May June July

Some observations about the bean:

v The column names in the database table become the property names of the bean. The <tsx:dbquery>

section describes a technique for mapping the column names to different property names.

v The bean properties are indexed. For example, myBean.get(Col1(row2)) returns May.

v The query results are in the rows. The <tsx:repeat> tag iterates over the rows, beginning at the start

row.

The following table compares using the <tsx:repeat> tag to iterate over a static bean, versus a dynamically

generated bean:

Chapter 7. Web applications 133

Static Bean Example <tsx:repeat> Bean Example

myBean.class

// Code to get a connection

// Code to get the data

 Select * from myTable;

// Code to close the connection

JSP file

<tsx:repeat index=abc>

 <tsx:getProperty name="myBean"

 property="col1(abc)" />

</tsx:repeat>

Notes:

v The bean (myBean.class) is a static bean.

v The method to access the bean properties is

myBean.get(property(index)).

v You can omit the property index, in which case the

index of the enclosing <tsx:repeat> tag is used. You

can also omit the index on the <tsx:repeat> tag.

v The <tsx:repeat> tag iterates over the bean properties

row by row, beginning with the start row.

JSP file

<tsx:dbconnect id="conn"

userid="alice"passwd="test"

url="jdbc:db2:sample"

driver="COM.ibm.db2.jdbc.app.DB2Driver">

</tsx:dbconnect >

<tsx:dbquery id="dynamic"

 connection="conn" >

 Select * from myTable;

</tsx:dbquery>

<tsx:repeat index=abc>

 <tsx:getProperty name="dynamic"

 property="col1(abc)" />

</tsx:repeat>

Notes:

v The bean (dynamic) is generated by the <tsx:dbquery>

tag and does not exist until the syntax executes.

v The method to access the bean properties is

dynamic.getValue(″property″, index).

v You can omit the property index, in which case the

index of the enclosing <tsx:repeat> tag is used. You

can also omit the index on the <tsx:repeat> tag.

v The <tsx:repeat> tag syntax iterates over the bean

properties row by row, beginning with the start row.

Implicit and explicit indexing

Examples 1, 2, and 3 show how to use the <tsx:repeat> tag. The examples produce the same output if all

indexed properties have 300 or fewer elements. If there are more than 300 elements, Examples 1 and 2

display all elements, while Example 3 shows only the first 300 elements.

Example 1 shows implicit indexing with the default start and default end index. The bean with the smallest

number of indexed properties restricts the number of times the loop repeats.

<table>

<tsx:repeat>

 <tr><td><tsx:getProperty name="serviceLocationsQuery" property="city" />

 </tr></td>

 <tr><td><tsx:getProperty name="serviceLocationsQuery" property="address" />

 </tr></td>

 <tr><td><tsx:getProperty name="serviceLocationsQuery" property="telephone" />

 </tr></td>

</tsx:repeat>

</table>

Example 2 shows indexing, starting index, and ending index:

<table>

<tsx:repeat index=myIndex start=0 end=2147483647>

 <tr><td><tsx:getProperty name="serviceLocationsQuery" property=city(myIndex) />

 </tr></td>

 <tr><td><tsx:getProperty name="serviceLocationsQuery" property=address(myIndex) />

 </tr></td>

 <tr><td><tsx:getProperty name="serviceLocationsQuery" property=telephone(myIndex) />

</tr></td>

</tsx:repeat>

</table>

134 Administering applications and their environment

Example 3 shows explicit indexing and ending index with implicit starting index. Although the index

attribute is specified, you can still implicitly index the indexed property city because the (myIndex) tag is

not required.

<table>

<tsx:repeat index=myIndex end=299>

 <tr><td><tsx:getProperty name="serviceLocationsQuery" property="city" /t>

 </tr></td>

 <tr><td><tsx:getProperty name="serviceLocationsQuery" property="address(myIndex)" />

 </tr></td>

 <tr><td><tsx:getProperty name="serviceLocationsQuery" property="telephone(myIndex)" />

 </tr></td>

</tsx:repeat>

</table>

Nesting <tsx:repeat> blocks

You can nest <tsx:repeat> blocks. Each block is separately indexed. This capability is useful for

interleaving properties on two beans, or properties that have subproperties. In the example, two

<tsx:repeat> blocks are nested to display the list of songs on each compact disc in the user’s shopping

cart.

<tsx:repeat index=cdindex>

 <h1><tsx:getProperty name="shoppingCart" property=cds.title /></h1>

 <table>

 <tsx:repeat>

 <tr><td><tsx:getProperty name="shoppingCart" property=cds(cdindex).playlist />

 </td></tr>

 </tsx:repeat>

 </table>

 </tsx:repeat>

JavaServer Pages migration best practices and considerations

The standard JavaServer Pages (JSP) tags from JSP 1.1 such as jsp:include, jsp:useBean, and <%@

page %>, a will migrate successfully to JSP 2.0. However, there are several areas that must be

considered when migrating JavaServer Pages. This topic discusses the areas that you must consider

when migrating JavaServer Pages.

Classes from the unnamed or default package

As of JSP 2.0, referring to any classes from the unnamed or default package is not allowed. This can

result in a translation error on some containers, specifically those that run in a JDK 1.4 or greater

environment which will also break compatibility with some older JSP applications. However, as of JDK 1.4,

importing classes from the unnamed package is not valid. See Java 2 Platform, Standard Edition Version

1.4.2 Compatibility with Previous Releases for details. Therefore, for forwards compatibility, applications

must not rely on the unnamed package. This restriction also applies for all other cases where classes are

referenced, such as when specifying the class name for a tag in a Tag Library Descriptor (TLD) file.

Page encoding for JSP documents

There have been noticeable differences in internationalization behavior on some containers as a result of

ambiguity in the JSP 1.2 specification. However, steps were taken to minimize the impact on backwards

compatibility and overall, the internationalization abilities of JSP files have been greatly improved.

In JSP specification versions prior to JSP 2.0, JSP pages in XML syntax, JSP documents, and those in

standard syntax determined their page encoding in the same fashion, by examining the pageEncoding or

contentType attributes of their page directive, defaulting to ISO-8859-1 if neither was present.

As of JSP 2.0, the page encoding for JSP documents is determined as described in section 4.3.3 and

appendix F.1 of the XML specification, and the pageEncoding attribute of those pages is only checked to

make sure it is consistent with the page encoding determined as per the XML specification. As a result of

Chapter 7. Web applications 135

http://java.sun.com/j2se/1.4/compatibility.html#source
http://java.sun.com/j2se/1.4/compatibility.html#source

this change, JSP documents that rely on their page encoding to be determined from their pageEncoding

attribute are no longer decoded correctly. These JSP documents must be changed to include an

appropriate XML encoding declaration.

Additionally, in JSP 1.2, page encodings are determined on translation unit basis whereas in JSP 2.0,

page encodings are determined on the basis of each file. Therefore, if the a.jsp file statically includes the

b.jsp file, and a page encoding is specified in the a.jsp file but not in the b.jsp file, in JSP 1.2 the encoding

for the a.jsp file is used for the b.jsp file, but in JSP 2.0, the default encoding is used for the b.jsp file.

web.xml file version

The JSP container uses the version of the web.xml file to determine whether you are running a JSP 1.2

application or a JSP 2.0 application. Various features can behave differently depending on the version of

the web.xml file. The following is a list of things JSP developers should be aware of when upgrading their

web.xml file from version Servlet 2.3 to version Servlet 2.4:

1. EL expressions are ignored by default in JSP 1.2 applications. When you upgrade a Web application to

JSP 2.0, EL expressions are interpreted by default. You can use the escape sequence \$ to escape EL

expressions that should not be interpreted by the container. Alternatively, you can use the isELIgnored

page directive attribute, or the <el-ignored> configuration element to deactivate EL for entire translation

units. Users of JSTL 1.0 must upgrade their taglib imports to the JSTL 1.1 uris or use the _rt versions

of the tags, for example, use c_rt instead of c or fmt_rt instead of fmt.

2. Web applications that contain files with an extension of .jspx will have those files interpreted as JSP

documents, by default. You can use the JSP configuration element <is-xml> to treat .jspx files as

regular JSP pages, but there is no way to disassociate .jspx from the JSP container.

3. The escape sequence \$ was not reserved in JSP 1.2. The output for any template text or attribute

value that appeared as \$ in JSP 1.2 was \$, however, the output now is just $.

jsp:useBean tag

WebSphere Application Server version 5.1 and later enforces more strict adherence to the specification for

the jsp:useBean tag: with type and class attributes. Specifically, you should use the type attribute should

be used to specify a Java type that cannot be instantiated as a JavaBean. For example, a Java type that

is an abstract class, interface, or a class with no public no-args constructor. If the class attribute is used

for a Java type that cannot be instantiated as a JavaBean, the WebSphere Application Server JSP

container produces a unrecoverable translation error at translation time.

Generated packages for JSP classes

Any reliance on generated packages for JSP classes will result in non-portable JSP files. Packages for

generated classes are implementation-specific and therefore you should not rely on these packages.

JspServlet class

Any reliance on the existence of a JspServlet class will cause unrecoverable error problems. WebSphere

Application Server version 6.0 and later no longer uses a JspServlet class.

Web modules

A Web module represents a Web application. A Web module is created by assembling servlets,

JavaServer Pages (JSP) files, and static content such as Hypertext Markup Language (HTML) pages into

a single deployable unit. Web modules are stored in Web archive (WAR) files, which are standard Java

archive files.

A Web module contains:

v One or more servlets, JSP files, and HTML files.

v A deployment descriptor, stored in an Extensible Markup Language (XML) file.

136 Administering applications and their environment

The file, named web.xml, declares the contents of the module. It contains information about the structure

and external dependencies of Web components in the module and describes how the components are

used at run time.

You can create Web modules as stand-alone applications, or you can combine Web modules with other

modules to create Java 2 Platform, Enterprise Edition (J2EE) applications. You install and run a Web

module in the Web container of an application server.

Troubleshooting tips for Web application deployment

Deployment of a Web application is successful if you can access the application by typing a Uniform

Resource Locator (URL) in a browser, or if you can access the application by following a link.

If you cannot access your application, follow these steps to eliminate some common errors that can occur

during migration or deployment.

Web module does not run in WebSphere Application Server Version 5.x or 6.x

 Symptom Your Web module does not run when you migrate it to Version 5.x or 6.x

Problem In Version 4.x, the classpath setting that affected visibility was Module Visibility Mode.

In Versions 5.x and 6.x, you must use class loader policies to set visibility.

Recommended response Reassemble an existing module, or change the visibility settings in the class loader

policies.

See “Class loaders” on page 15 and Chapter 5, “Class loading,” on page 15 for more

information.

Welcome page is not visible.

 Symptom You cannot access an application with a Web path of:

 /webapp/myapp

Problem The default welcome page for a Web application is assumed to be index.html. You

cannot access the default page of the myapp application unless it is named index.html.

Recommended response To identify a different welcome page, modify the properties of the Web module during

assembly, see the topic, Assembling Web applications for more information in the

Developing and deploying applications PDF book.

HTML files are not found.

 Symptom Your Web application ran successfully on prior versions, but now you encounter errors

that the welcome page (typically index.html), or referenced HTML files are not found:

Error 404: File not found: Banner.html

Error 404: File not found: HomeContent.html

Chapter 7. Web applications 137

Problem For security and consistency reasons, Web application URLs are now case-sensitive on

all operating systems.

Suppose the content of the index page is as follows:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 5.0 Frameset//EN">

<HTML>

<TITLE>

Insurance Home Page

</TITLE>

 <frameset rows="18,80">

 <frame src="Banner.html" name="BannerFrame" SCROLLING=NO>

 <frame src="HomeContent.html" name="HomeContentFrame">

 </frameset>

</HTML>

However the actual file names in the \WebSphere\AppServer\installedApps\...

directory where the application is deployed are:

banner.html

homecontent.html

Recommended response To correct this problem, modify the index.html file to change the names Banner.html

and HomeContent.html to banner.html and homecontent.html to match the names of

the files in the deployed application.

For current information available from IBM Support on known problems and their resolution, see the IBM

Support page.

IBM Support has documents that can save you time gathering information needed to resolve this problem.

Before opening a PMR, see the IBM Support page.

Web applications: Resources for learning

Use the following links to find relevant supplemental information about Web applications. The information

resides on IBM and non-IBM Internet sites, whose sponsors control the technical accuracy of the

information.

These links are provided for convenience. Often, the information is not specific to the IBM WebSphere

Application Server product, but is useful all or in part for understanding the product. When possible, links

are provided to technical papers and Redbooks that supplement the broad coverage of the release

documentation with in-depth examinations of particular product areas.

Programming model and decisions

v J2EE BluePrints for Web applications

v Redbook on the design and implementation of Servlets, JSP files, and enterprise beans

Programming instructions and examples

v WebSphere Studio Application Developer Programming Guide

v Sun’s JavaTM Tutorial on Servlets and JavaServer Pages

v Web delivered samples in the Samples Gallery

Programming specifications

v Java 2 Software Development Kit (SDK)

v Servlet 2.4 Specification

v JavaServer Pages 2.0 Specification

v Differences between JavaScript and ECMAScript

v ISO 8859 Specifications

v Java 2 Platform, Standard Edition (J2SE)

138 Administering applications and their environment

http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCR4XA
http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCR4XA
http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCR4XA&q=mustgather
http://java.sun.com/blueprints/guidelines/designing_enterprise_applications/web_tier/index.html
http://publib-b.boulder.ibm.com/Redbooks.nsf/RedbookAbstracts/sg245754.html?OpenDocument
http://www.redbooks.ibm.com/abstracts/SG246585.html?Open
http://java.sun.com/j2ee/1.4/docs/tutorial/doc/index.html
http://www7b.software.ibm.com/wsdd/library/samples/AppServer.html
http://java.sun.com/j2se/1.3/
http://www.jcp.org/en/jsr/detail?id=154
http://jcp.org/aboutJava/communityprocess/final/jsr152/index.html
http://www.webstandards.org/learn/resources/javascript/index.html
http://www.iso.org/iso/en/CatalogueListPage.CatalogueList
http://java.sun.com/j2se/index.jsp

Tuning URL invocation cache

The URL invocation cache holds information for mapping request URLs to servlet resources. A cache of

the requested size is created for each worker thread that is available to process a request. The default

size of the invocation cache is 50. If more than 50 unique URLs are actively being used (each JavaServer

Page is a unique URL), you should increase the size of the invocation cache.

A larger cache uses more of the Java heap, so you might also need to increase the maximum Java heap

size. For example, if each cache entry requires 2KB, maximum thread size is set to 25, and the URL

invocation cache size is 100; then 5MB of Java heap are required.

The invocation cache is now Web container based instead of thread-based, and shared for all Web

container threads.

To change the size of the invocation cache:

1. In the administrative console, click Servers > Application servers and select the application server

you are tuning.

2. Click Process Definition under Additional Properties.

3. Click Java Virtual Machine under Additional Properties.

4. Click Custom Properties under Additional Properties.

5. Specify invocationCacheSize in the Name field and the size of the cache in the Value field. The

default size for the invocation cache is 500 entries. Since the invocation cache is no longer

thread-based, the invocation cache size specified by the user is multiplied by ten to provide similar

function from previous releases. For example, if you specify an invocation cache size of 50, the Web

container will create a cache size of 500.

6. Click Apply and then Save to save your changes.

7. Stop and restart the application server.

The new cache size is used for the URL invocation cache.

Task overview: Managing HTTP sessions

IBM WebSphere Application Server provides a service for managing HTTP sessions: Session Manager.

The key activities for session management are summarized below.

Before you begin these steps, make sure you are familiar with the programming model for accessing

HTTP session support in the applications following the Servlet 2.4 API.

1. Plan your approach to session management, which could include session tracking and session

recovery.

2. Create or modify your own applications to use session support to maintain sessions on behalf of Web

applications.

3. Assemble your application.

4. Deploy your application.

5. Ensure the administrator appropriately configures session management in the administrative domain.

6. Adjust configuration settings and perform other tuning activities for optimal use of sessions in your

environment.

Sessions

A session is a series of requests to a servlet, originating from the same user at the same browser.

Sessions allow applications running in a Web container to keep track of individual users.

Chapter 7. Web applications 139

For example, a servlet might use sessions to provide ″shopping carts″ to online shoppers. Suppose the

servlet is designed to record the items each shopper indicates he or she wants to purchase from the Web

site. It is important that the servlet be able to associate incoming requests with particular shoppers.

Otherwise, the servlet might mistakenly add Shopper_1’s choices to the cart of Shopper_2.

A servlet distinguishes users by their unique session IDs. The session ID arrives with each request. If the

user’s browser is cookie-enabled, the session ID is stored as a cookie. As an alternative, the session ID

can be conveyed to the servlet by URL rewriting, in which the session ID is appended to the URL of the

servlet or JavaServer Pages (JSP) file from which the user is making requests. For requests over HTTPS

or Secure Sockets Layer (SSL), Another alternative is to use SSL information to identify the session.

HTTP session migration

There are no programmatic changes required to migrate from version 5.x to version 6.x. This article

describes features that are available after migration.

Migration from Version 5.x

Note: In Version 5 and later, default write frequency mode is TIME_BASED_WRITES, which is different

from Version 4.0.x default mode of END_OF_SERVICE.

When you migrate between releases of WebSphere Application Server Version 5.x and later and you are

using a database for session persistence, you can share the session database table between releases.

For example, if you are accessing applications that are on WebSphere Application Server version 5.x you

can share the session id with applications running on Version 6.x.

Session security support

You can integrate HTTP sessions and security in WebSphere Application Server. When security integration

is enabled in the session management facility and a session is accessed in a protected resource, you can

access that session only in protected resources from then on. You cannot mix secured and unsecured

resources accessing sessions when security integration is turned on. Security integration in the session

management facility is not supported in form-based login with SWAM.

Note: SWAM is deprecated in WebSphere Application Server Version 6.1 and will be removed in a future

release.

Security integration rules for HTTP sessions

Only authenticated users can access sessions created in secured pages and are created under the

identity of the authenticated user. Only this authenticated user can access these sessions in other secured

pages. To protect these sessions from unauthorized users, you cannot access them from an unsecured

page.

Programmatic details and scenarios

WebSphere Application Server maintains the security of individual sessions.

An identity or user name, readable by the com.ibm.websphere.servlet.session.IBMSession interface, is

associated with a session. An unauthenticated identity is denoted by the user name anonymous.

WebSphere Application Server includes the

com.ibm.websphere.servlet.session.UnauthorizedSessionRequestException class, which is used when a

session is requested without the necessary credentials.

140 Administering applications and their environment

The session management facility uses the WebSphere Application Server security infrastructure to

determine the authenticated identity associated with a client HTTP request that either retrieves or creates

a session. WebSphere Application Server security determines identity using certificates, LPTA, and other

methods.

After obtaining the identity of the current request, the session management facility determines whether to

return the session requested using a getSession call.

The following table lists possible scenarios in which security integration is enabled with outcomes

dependent on whether the HTTP request is authenticated and whether a valid session ID and user name

was passed to the session management facility.

 Unauthenticated HTTP request is

used to retrieve a session

HTTP request is authenticated, with

an identity of ″FRED″ used to

retrieve a session

No session ID was passed in for

this request, or the ID is for a

session that is no longer valid

A new session is created. The user

name is anonymous

A new session is created. The user

name is FRED

A session ID for a valid session is

passed in. The current session

user name is ″anonymous″

The session is returned. The session is returned. session

management changes the user name to

FRED

A session ID for a valid session is

passed in. The current session

user name is FRED

The session is not returned. An

UnauthorizedSessionRequestException

error is created*

The session is returned.

A session ID for a valid session is

passed in. The current session

user name is BOB

The session is not returned. An

UnauthorizedSessionRequestException

error is created*

The session is not returned. An

UnauthorizedSessionRequestException

error is created*

* A com.ibm.websphere.servlet.session.UnauthorizedSessionRequestException error is created to the

servlet.

Session management support

WebSphere Application Server provides facilities, grouped under the heading Session Management, that

support the javax.servlet.http.HttpSession interface described in the Servlet API specification.

In accordance with the Servlet 2.3 API specification, the session management facility supports session

scoping by Web modules. Only servlets in the same Web module can access the data associated with a

particular session. Multiple requests from the same browser, each specifying a unique Web application,

result in multiple sessions with a shared session ID. You can invalidate any of the sessions that share a

session ID without affecting the other sessions.

You can configure a session timeout for each Web application. A Web application timeout value of 0 (the

default value) means that the invalidation timeout value from the session management facility is used.

When an HTTP client interacts with a servlet, the state information associated with a series of client

requests is represented as an HTTP session and identified by a session ID. Session management is

responsible for managing HTTP sessions, providing storage for session data, allocating session IDs, and

tracking the session ID associated with each client request through the use of cookies or URL rewriting

techniques. Session management can store session-related information in several ways:

v In application server memory (the default). This information cannot be shared with other application

servers.

v In a database. This storage option is known as database persistent sessions.

v In another WebSphere Application Server instance. This storage option is known as

memory-to-memory sessions.

Chapter 7. Web applications 141

The last two options are referred to as distributed sessions. Distributed sessions are essential for using

HTTP sessions for the failover facility. When an application server receives a request associated with a

session ID that it currently does not have in memory, it can obtain the required session state by accessing

the external store (database or memory-to-memory). If distributed session support is not enabled, an

application server cannot access session information for HTTP requests that are sent to servers other than

the one where the session was originally created. Session management implements caching optimizations

to minimize the overhead of accessing the external store, especially when consecutive requests are routed

to the same application server.

Storing session states in an external store also provides a degree of fault tolerance. If an application

server goes offline, the state of its current sessions is still available in the external store. This availability

enables other application servers to continue processing subsequent client requests associated with that

session.

Saving session states to an external location does not completely guarantee their preservation in case of a

server failure. For example, if a server fails while it is modifying the state of a session, some information is

lost and subsequent processing using that session can be affected. However, this situation represents a

very small period of time when there is a risk of losing session information.

The drawback to saving session states in an external store is that accessing the session state in an

external location can use valuable system resources. session management can improve system

performance by caching the session data at the server level. Multiple consecutive requests that are

directed to the same server can find the required state data in the cache, reducing the number of times

that the actual session state is accessed in external store and consequently reducing the overhead

associated with external location access.

Session tracking options

There are several options for session tracking, depending on what sort of tracking method you want to

use:

v Session tracking with cookies

v Session tracking with URL rewriting

v Session tracking with Secure Sockets Layer (SSL) information

Session tracking with cookies

Tracking sessions with cookies is the default. No special programming is required to track sessions with

cookies.

Session tracking with URL rewriting

An application that uses URL rewriting to track sessions must adhere to certain programming guidelines.

The application developer needs to do the following:

v Program servlets to encode URLs

v Supply a servlet or JavaServer Pages (JSP) file as an entry point to the application

Using URL rewriting also requires that you enable URL rewriting in the session management facility.

Note: In certain cases, clients cannot accept cookies. Therefore, you cannot use cookies as a session

tracking mechanism. Applications can use URL rewriting as a substitute.

Program session servlets to encode URLs

Depending on whether the servlet is returning URLs to the browser or redirecting them, include either the

encodeURL method or the encodeRedirectURL method in the servlet code. Examples demonstrating what

to replace in your current servlet code follow.

142 Administering applications and their environment

Rewrite URLs to return to the browser

Suppose you currently have this statement:

out.println("catalog<a>");

Change the servlet to call the encodeURL method before sending the URL to the output stream:

out.println("<a href=\"");

out.println(response.encodeURL ("/store/catalog"));

out.println("\">catalog");

Rewrite URLs to redirect

Suppose you currently have the following statement:

response.sendRedirect ("http://myhost/store/catalog");

Change the servlet to call the encodeRedirectURL method before sending the URL to the output stream:

response.sendRedirect (response.encodeRedirectURL ("http://myhost/store/catalog"));

The encodeURL method and encodeRedirectURL method are part of the HttpServletResponse object.

These calls check to see if URL rewriting is configured before encoding the URL. If it is not configured, the

calls return the original URL.

If both cookies and URL rewriting are enabled and the response.encodeURL method or

encodeRedirectURL method is called, the URL is encoded, even if the browser making the HTTP request

processed the session cookie.

You can also configure session support to enable protocol switch rewriting. When this option is enabled,

the product encodes the URL with the session ID for switching between HTTP and HTTPS protocols.

Supply a servlet or JSP file as an entry point

The entry point to an application, such as the initial screen presented, may not require the use of

sessions. However, if the application in general requires session support (meaning some part of it, such as

a servlet, requires session support), then after a session is created, all URLs are encoded to perpetuate

the session ID for the servlet (or other application component) requiring the session support.

The following example shows how you can embed Java code within a JSP file:

<%

response.encodeURL ("/store/catalog");

%>

Session tracking with SSL information

No special programming is required to track sessions with Secure Sockets Layer (SSL) information.

To use SSL information, turn on Enable SSL ID tracking in the session management property page.

Because the SSL session ID is negotiated between the Web browser and HTTP server, this ID cannot

survive an HTTP server failure. However, the failure of an application server does not affect the SSL

session ID if an external HTTP server is present between WebSphere Application Server and the browser.

SSL tracking is supported for the IBM HTTP Server and iPlanet Web servers only. You can control the

lifetime of an SSL session ID by configuring options in the Web server. For example, in the IBM HTTP

Server, set the configuration variable SSLV3TIMEOUT to provide an adequate lifetime for the SSL session

ID. An interval that is too short can cause a premature termination of a session. Also, some Web browsers

might have their own timers that affect the lifetime of the SSL session ID. These Web browsers may not

leave the SSL session ID active long enough to serve as a useful mechanism for session tracking. The

internal HTTP Server of WebSphere Application Server also supports SSL tracking.

Chapter 7. Web applications 143

When using the SSL session ID as the session tracking mechanism in a cloned environment, use either

cookies or URL rewriting to maintain session affinity. The cookie or rewritten URL contains session affinity

information that enables the Web server to properly route a session back to the same server for each

request.

Distributed sessions

WebSphere Application Server provides the following session mechanisms in a distributed environment:

v Database session persistence, where sessions are stored in the database specified.

v Memory-to-memory Session replication, where sessions are stored in one or more specified

WebSphere Application Server instances.

When a session contains attributes that implement HttpSessionActivationListener, notification occurs

anytime the session is activated (that is, session is read to the memory cache) or passivated (that is,

session leaves the memory cache). Passivation can occur because of a server shutdown or when the

session memory cache is full and an older session is removed from the memory cache to make room for a

newer session. It is not guaranteed that a session is passivated in one application server prior to being

activated in another.

Session recovery support

For session recovery support, WebSphere Application Server provides distributed session support in the

form of database sessions. Use session recovery support under the following conditions:

v When the user’s session data must be maintained across a server restart

v When the user’s session data is too valuable to lose through an unexpected server failure

All the attributes set in a session must implement java.io.Serializable if the session requires external

storage. In general, consider making all objects held by a session serialized, even if immediate plans do

not call for session recovery support. If the Web site grows, and session recovery support becomes

necessary, the transition occurs transparently to the application if the sessions only hold serialized objects.

If not, a switch to session recovery support requires coding changes to make the session contents

serialized.

Clustered session support

A clustered environment supports load balancing, where the workload is distributed among the application

servers that compose the cluster. In a cluster environment, the same Web application must exist on each

of the servers that can access the session. You can accomplish this setup by installing an application onto

a cluster definition. Each of the servers in the group can then access the Web application

In a clustered environment, the session management facility requires an affinity mechanism so that all

requests for a particular session are directed to the same application server instance in the cluster. This

requirement conforms to the Servlet 2.3 specification in that multiple requests for a session cannot coexist

in multiple application servers. One such solution provided by IBM WebSphere Application Server is

session affinity in a cluster; this solution is available as part of the WebSphere Application Server plug-ins

for Web servers. It also provides for better performance because the sessions are cached in memory. In

clustered environments other than WebSphere Application Server clusters, you must use an affinity

mechanism (for example, IBM WebSphere Edge Server affinity).

If one of the servers in the cluster fails, it is possible for the request to reroute to another server in the

cluster. If distributed sessions support is enabled, the new server can access session data from the

database or another WebSphere Application Server instance. You can retrieve the session data only if a

new server has access to an external location from which it can retrieve the session.

144 Administering applications and their environment

Session management tuning

WebSphere Application Server session support has features for tuning session performance and operating

characteristics, particularly when sessions are configured in a distributed environment. These options

support the administrator flexibility in determining the performance and failover characteristics for their

environment.

The table summarizes the features, including whether they apply to sessions tracked in memory, in a

database, with memory-to-memory replication, or all. Click a feature for details about the feature. Some

features are easily manipulated using administrative settings; others require code or database changes.

 Feature or option Goal Applies to sessions in memory,

database, or memory-to-memory

Write frequency Minimize database write operations. Database and Memory-to-Memory

Session affinity Access the session in the same

application server instance.

All

Multirow schema Fully utilize database capacities. Database

Base in-memory session pool size Fully utilize system capacity without

overburdening system.

All

Write contents Allow flexibility in determining what

session data to write

Database and Memory-to-Memory

Scheduled invalidation Minimize contention between session

requests and invalidation of sessions

by the Session Management facility.

Minimize write operations to database

for updates to last access time only.

Database and Memory-to-Memory

Tablespace and row size Increase efficiency of write operations

to database.

Database (DB2 only)

Base in-memory session pool size

The base in-memory session pool size number has different meanings, depending on session support

configuration:

v With in-memory sessions, session access is optimized for up to this number of sessions.

v With distributed sessions (meaning, when sessions are stored in a database or in another WebSphere

Application Server instance); it also specifies the cache size and the number of last access time

updates saved in manual update mode.

For distributed sessions, when the session cache has reached its maximum size and a new session is

requested, the Session Management facility removes the least recently used session from the cache to

make room for the new one.

General memory requirements for the hardware system, and the usage characteristics of the e-business

site, determines the optimum value.

Note that increasing the base in-memory session pool size can necessitate increasing the heap sizes of

the Java processes for the corresponding WebSphere Application Servers.

Overflow in non-distributed sessions

By default, the number of sessions maintained in memory is specified by base in-memory session pool

size. If you do not wish to place a limit on the number of sessions maintained in memory and allow

overflow, set overflow to true.

Chapter 7. Web applications 145

Allowing an unlimited amount of sessions can potentially exhaust system memory and even allow for

system sabotage. Someone could write a malicious program that continually hits your site and creates

sessions, but ignores any cookies or encoded URLs and never utilizes the same session from one HTTP

request to the next.

When overflow is disallowed, the Session Management facility still returns a session with the

HttpServletRequest getSession(true) method when the memory limit is reached, and this is an invalid

session that is not saved.

With the WebSphere Application Server extension to HttpSession,

com.ibm.websphere.servlet.session.IBMSession, an isOverflow method returns true if the session is such

an invalid session. An application can check this status and react accordingly.

Tuning parameter settings

Use this page to set tuning parameters for distributed sessions.

To view this administrative console page, click Servers > Application servers > server_name > Web

container settings > Session management > Distributed environment settings > Custom tuning

parameters.

Tuning level:

Specifies that the session management facility provides certain predefined settings that affect

performance.

 Select one of these predefined settings or customize a setting. To customize a setting, select one of the

predefined settings that comes closest to the setting desired, click Custom settings, make your changes,

and then click OK.

Very high (optimize for performance)

 Write frequency Time based

Write interval 300 seconds

Write contents Only updated attributes

Schedule sessions cleanup true

First time of day default 0

Second time of day default 2

High

 Write frequency Time based

Write interval 300 seconds

Write contents All session attributes

Schedule sessions cleanup false

Medium

 Write frequency End of servlet service

Write contents Only updated attributes

Schedule sessions cleanup false

Low (optimize for failover)

 Write frequency End of servlet service

146 Administering applications and their environment

Write contents All session attributes

Schedule sessions cleanup false

Custom settings

 Write frequency default Time based

Write interval default 10 seconds

Write contents default All session attributes

Schedule sessions cleanup default false

Tuning parameter custom settings

Use this page to customize tuning parameters for distributed sessions.

To view this administrative console page, click Servers > Application servers > server_name Web

container settings > Session management > Distributed environment settings > Custom tuning

parameters > Custom settings.

Write frequency:

Specifies when the session is written to the persistent store.

 End of servlet service A session writes to a database or another WebSphere

Application Server instance after the servlet completes

execution.

Manual update A programmatic sync on the IBMSession object is required

to write the session data to the database or another

WebSphere Application Server instance.

Time based Session data writes to the database or another

WebSphere Application Server instance based on the

specified Write interval value. Default: 10 seconds

Write contents:

Specifies whether updated attributes are only written to the external location or all of the session attributes

are written to the external location, regardless of whether or not they changed. The external location can

be either a database or another application server instance.

 Only updated attributes Only updated attributes are written to the persistent store.

All session attribute All attributes are written to the persistent store.

Schedule sessions cleanup:

Specifies when to clean the invalid sessions from a database or another application server instance.

Chapter 7. Web applications 147

Specify distributed sessions cleanup schedule Enables the scheduled invalidation process for cleaning

up the invalidated HTTP sessions from the external

location. Enable this option to reduce the number of

updates to a database or another application server

instance required to keep the HTTP sessions alive. When

this option is not enabled, the invalidator process runs

every few minutes to remove invalidated HTTP sessions.

When this option is enabled, specify the two hours of a

day for the process to clean up the invalidated sessions in

the external location. Specify the times when there is the

least activity in the application servers. An external

location can be either a database or another application

server instance.

First Time of Day (0 - 23) Indicates the first hour during which the invalidated

sessions are cleared from the external location. Specify

this value as a positive integer between 0 and 23. This

value is valid only when schedule invalidation is enabled.

Second Time of Day (0 - 23) Indicates the second hour during which the invalidated

sessions are cleared from the external location. Specify

this value as a positive integer between 0 and 23. This

value is valid only when schedule invalidation is enabled.

Best practices for using HTTP Sessions

best-practices: Browse the following recommendations for implementing HTTP sessions.

v Enable Security integration for securing HTTP sessions

HTTP sessions are identified by session IDs. A session ID is a pseudo-random number generated at the

runtime. Session hijacking is a known attack HTTP sessions and can be prevented if all the requests

going over the network are enforced to be over a secure connection (meaning, HTTPS). But not every

configuration in a customer environment enforces this constraint because of the performance impact of

SSL connections. Due to this relaxed mode, HTTP session is vulnerable to hijacking and because of

this vulnerability, WebSphere Application Server has the option to tightly integrate HTTP sessions and

WebSphere Application Server security. Enable security in WebSphere Application Server so that the

sessions are protected in a manner that only users who created the sessions are allowed to access

them.

v Release HttpSession objects using javax.servlet.http.HttpSession.invalidate() when finished.

HttpSession objects live inside the Web container until:

– The application explicitly and programmatically releases it using the

javax.servlet.http.HttpSession.invalidate method; quite often, programmatic invalidation is part of an

application logout function.

– WebSphere Application Server destroys the allocated HttpSession when it expires (default = 1800

seconds or 30 minutes). The WebSphere Application Server can only maintain a certain number of

HTTP sessions in memory based on session management settings. In case of distributed sessions,

when maximum cache limit is reached in memory, the session management facility removes the

least recently used (LRU) one from cache to make room for a session.

.

v Avoid trying to save and reuse the HttpSession object outside of each servlet or JSP file.

The HttpSession object is a function of the HttpRequest (you can get it only through the req.getSession

method), and a copy of it is valid only for the life of the service method of the servlet or JSP file. You

cannot cache the HttpSession object and refer to it outside the scope of a servlet or JSP file.

v Implement the java.io.Serializable interface when developing new objects to be stored in the

HTTP session.

Serializability of a class is enabled by the class implementing the java.io.Serializable interface.

Implementing the java.io.Serializable interface allows the object to properly serialize when using

148 Administering applications and their environment

distributed sessions. Classes that do not implement this interface will not have their states serialized or

deserialized. Therefore, if a class does not implement the Serializable interface, the JVM cannot persist

its state into a database or into another JVM. All subtypes of a serializable class are serializable. An

example of this follows:

public class MyObject implements java.io.Serializable {...}

Make sure all instance variable objects that are not marked transient are serializable. You cannot cache

a non-serializable object.

In compliance with the Java Servlet specification, the distributed servlet container must create an

IllegalArgumentException for objects when the container cannot support the mechanism necessary for

migration of the session storing them. An exception is created only when you have selected

distributable.

v The HTTPSession API does not dictate transactional behavior for sessions.

Distributed HTTPSession support does not guarantee transactional integrity of an attribute in a failover

scenario or when session affinity is broken. Use transactional aware resources like enterprise Java

beans to guarantee the transaction integrity required by your application.

v Ensure the Java objects you add to a session are in the correct class path.

If you add Java objects to a session, place the class files for those objects in the correct class path (the

application class path if utilizing sharing across Web modules in an enterprise application, or the Web

module class path if using the Servlet 2.2-complaint session sharing) or in the directory containing other

servlets used in WebSphere Application Server. In the case of session clustering, this action applies to

every node in the cluster.

Because the HttpSession object is shared among servlets that the user might access, consider adopting

a site-wide naming convention to avoid conflicts.

v Avoid storing large object graphs in the HttpSession object.

In most applications each servlet only requires a fraction of the total session data. However, by storing

the data in the HttpSession object as one large object, an application forces WebSphere Application

Server to process all of it each time.

v Utilize Session Affinity to help achieve higher cache hits in the WebSphere Application Server.

WebSphere Application Server has functionality in the HTTP Server plug-in to help with session affinity.

The plug-in reads the cookie data (or encoded URL) from the browser and helps direct the request to

the appropriate application or clone based on the assigned session key. This functionality increases use

of the in-memory cache and reduces hits to the database or another WebSphere Application Server

instance

v Maximize use of session affinity and avoid breaking affinity.

Using session affinity properly can enhance the performance of the WebSphere Application Server.

Session affinity in the WebSphere Application Server environment is a way to maximize the in-memory

cache of session objects and reduce the amount of reads to the database or another WebSphere

Application Server instance. Session affinity works by caching the session objects in the server instance

of the application with which a user is interacting. If the application is deployed in multiple servers of a

server group, the application can direct the user to any one of the servers. If the users starts on server1

and then comes in on server2 a little later, the server must write all of the session information to the

external location so that the server instance in which server2 is running can read the database. You can

avoid this database read using session affinity. With session affinity, the user starts on server1 for the

first request; then for every successive request, the user is directed back to server1. Server1 has to

look only at the cache to get the session information; server1 never has to make a call to the session

database to get the information.

You can improve performance by not breaking session affinity. Some suggestions to help avoid breaking

session affinity are:

– Combine all Web applications into a single application server instance, if possible, and use modeling

or cloning to provide failover support.

– Create the session for the frame page, but do not create sessions for the pages within the frame

when using multi-frame JSP files. (See discussion later in this topic.)
v When using multi-framed pages, follow these guidelines:

Chapter 7. Web applications 149

– Create a session in only one frame or before accessing any frame sets. For example, assuming

there is no session already associated with the browser and a user accesses a multi-framed JSP file,

the browser issues concurrent requests for the JSP files. Because the requests are not part of any

session, the JSP files end up creating multiple sessions and all of the cookies are sent back to the

browser. The browser honors only the last cookie that arrives. Therefore, only the client can retrieve

the session associated with the last cookie. Creating a session before accessing multi-framed pages

that utilize JSP files is recommended.

– By default, JSP files get a HTTPSession using request.getSession(true) method. So by default

JSP files create a new session if none exists for the client. Each JSP page in the browser is

requesting a new session, but only one session is used per browser instance. A developer can use

<% @ page session=″false″ %> to turn off the automatic session creation from the JSP files that do

not access the session. Then if the page needs access to the session information, the developer can

use <%HttpSession session = javax.servlet.http.HttpServletRequest.getSession(false); %> to

get the already existing session that was created by the original session creating JSP file. This

action helps prevent breaking session affinity on the initial loading of the frame pages.

– Update session data using only one frame. When using framesets, requests come into the HTTP

server concurrently. Modifying session data within only one frame so that session changes are not

overwritten by session changes in concurrent frameset is recommended.

– Avoid using multi-framed JSP files where the frames point to different Web applications. This action

results in losing the session created by another Web application because the JSESSIONID cookie

from the first Web application gets overwritten by the JSESSIONID created by the second Web

application.
v Secure all of the pages (not just some) when applying security to servlets or JSP files that use

sessions with security integration enabled, .

When it comes to security and sessions, it is all or nothing. It does not make sense to protect access to

session state only part of the time. When security integration is enabled in the session management

facility, all resources from which a session is created or accessed must be either secured or unsecured.

You cannot mix secured and unsecured resources.

The problem with securing only a couple of pages is that sessions created in secured pages are

created under the identity of the authenticated user. Only the same user can access sessions in other

secured pages. To protect these sessions from use by unauthorized users, you cannot access these

sessions from an unsecured page. When a request from an unsecured page occurs, access is denied

and an UnauthorizedSessionRequestException error is created. (UnauthorizedSessionRequestException

is a runtime exception; it is logged for you.)

v Use manual update and either the sync() method or time-based write in applications that read

session data, and update infrequently.

With END_OF_SERVICE as write frequency, when an application uses sessions and anytime data is

read from or written to that session, the LastAccess time field updates. If database sessions are used, a

new write to the database is produced. This activity is a performance hit that you can avoid using the

Manual Update option and having the record written back to the database only when data values

update, not on every read or write of the record.

To use manual update, turn it on in the session management service. (See the tables above for location

information.) Additionally, the application code must use the

com.ibm.websphere.servlet.session.IBMSession class instead of the generic HttpSession. Within the

IBMSession object there is a sync method. This method tells the WebSphere Application Server to write

the data in the session object to the database. This activity helps the developer to improve overall

performance by having the session information persist only when necessary.

Note: An alternative to using the manual updates is to utilize the timed updates to persist data at

different time intervals. This action provides similar results as the manual update scheme.

v Implement the following suggestions to achieve high performance:

– If your applications do not change the session data frequently, use Manual Update and the sync

function (or timed interval update) to efficiently persist session information.

150 Administering applications and their environment

– Keep the amount of data stored in the session as small as possible. With the ease of using sessions

to hold data, sometimes too much data is stored in the session objects. Determine a proper balance

of data storage and performance to effectively use sessions.

– If using database sessions, use a dedicated database for the session database. Avoid using the

application database. This helps to avoid contention for JDBC connections and allows for better

database performance.

– If using memory-to-memory sessions, employ partitioning (either group or single replica) as your

clusters grow in size and scaling decreases.

– Verify that you have the latest fix packs for the WebSphere Application Server.
v Utilize the following tools to help monitor session performance.

– Run the com.ibm.servlet.personalization.sessiontracking.IBMTrackerDebug servlet. - To run this

servlet, you must have the servlet invoker running in the Web application you want to run this from.

Or, you can explicitly configure this servlet in the application you want to run.

– Use the WebSphere Application Server Resource Analyzer which comes with WebSphere Application

Server to monitor active sessions and statistics for the WebSphere Application Server environment.

– Use database tracking tools such as ″Monitoring″ in DB2. (See the respective documentation for the

database system used.)

HTTP session manager troubleshooting tips

This article provides troubleshooting tips for problems creating or using HTTP sessions with your Web

application hosted by WebSphere Application Server.

Here are some steps to take:

v See HTTP session aren’t getting created or are getting dropped to see if your specific problem is

discussed.

v View the JVM logs for the application server which hosts the problem application:

– first, look at messages written while each application is starting. They will be written between the

following two messages:

Starting application: application

.....................

Application started: application

– Within this block, look for any errors or exceptions containing a package name of

com.ibm.ws.webcontainer.httpsession. If none are found, this is an indication that the session

manager started successfully.

– Error ″SRVE0054E: An error occurred while loading session context and Web application″

indicates that SessionManager didn’t start properly for a given application.

– Look within the logs for any Session Manager related messages. These messages will be in the

format SESNxxxxE and SESNxxxxW for errors and warnings, respectively, where xxxx is a number

identifying the precise error. Look up the extended error definitions in the Session Manager message

table.
v See the Best practices for using HTTP Sessions section in the Developing and deploying applications

PDF books for more details.

v To dynamically view the number of sessions as a Web application is running, enable performance

monitoring for HTTP sessions. This will give you an indication as to whether sessions are actually being

created.

v To learn how to view the HTTP session counters as the application runs, read the Monitoring

performance with Tivoli Performance Viewer chapter of the Administering applications and their

environment PDF book.

v Alternatively, a special servlet can be invoked that displays the current configuration and statistics

related to session tracking. This servlet has all the counters that are in performance monitor tool and

has some additional counters.

– Servlet name: com.ibm.ws.webcontainer.httpsession.IBMTrackerDebug.

– It can be invoked from any Web module which is enabled to serve by class name. For example,

using default_app, http://localhost:9080/servlet/
com.ibm.ws.webcontainer.httpsession.IBMTrackerDebug.

Chapter 7. Web applications 151

– If you are viewing the module via the serve-by-class-name feature, be aware that it may be viewable

by anyone who can view the application. You may wish to map a specific, secured URL to the servlet

instead and disable the serve-servlets-by-classname feature.
v Enable tracing for the HTTP Session Manager component:

– Use the trace specification com.ibm.ws.webcontainer.httpsession.*=all=enabled. Follow the

instructions for dumping and browsing the trace output to narrow the origin of the problem.

– If you are using persistent sessions based on memory replication, also enable trace for

com.ibm.ws.drs.*.
v If you are using database-based persistent sessions, look for problems related to the data source

the Session Manager relies on to keep session state information. For details on diagnosing database

related problems see the Errors accessing a datasource or connection pool in the Administering

applications and their environment PDF book

Error message SRVE0079E Servlet host not found after you define a port

Error message SRVE0079E can occur after you define the port in WebContainer > HTTP Transports for a

server, indicating that you do not have the port defined in your virtual host definitions. To define the port,

1. On the administrative console, go to Environment > Virtual Hosts > default_host> Host Aliases> New

2. Define the new port on host ″*″

The application server gets EC3 - 04130007 ABENDs

To prevent an EC3 - 04130007 abend from occuring on the application server, change the HTTP Output

timeout value. The custom property ConnectionResponseTimeout specifies the maximum number of

seconds the HTTP port for an individual server can wait when trying to read or write data. For instructions

on how to set ConnectionResponseTimeout, see HTTP transport custom properties section of the

Administering applications and their environment PDF book.

If none of these steps fixes your problem, check to see if the problem has been identified and documented

by looking at the available online support (hints and tips, technotes, and fixes). If you don’t find your

problem listed there contact IBM support.

For current information available from IBM Support on known problems and their resolution, see the IBM

Support page.

IBM Support has documents that can save you time gathering information needed to resolve this problem.

Before opening a PMR, see the IBM Support page.

Problems creating or using HTTP sessions

This article provides troubleshooting information related to creating or using Hypertext Transfer Protocol

(HTTP) sessions.

To view and update the session manager settings discussed here, use the administrative console. Select

the application server that hosts the problem application, then under Additional properties, select Web

Container, then Session manager.

What kind of problem are you having?

v HTTP Sessions are not getting created, or are lost between requests.

v HTTP Sessions are not persistent (session data lost when application server restarts, or not shared

across cluster).

v Session is shared across multiple browsers on same client machine.

v Session is not getting invalidated immediately after specified session timeout interval.

v Unwanted sessions are being created by JavaServer Pages.

v Session data intended for one client is seen by another client.

152 Administering applications and their environment

http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCMPDS
http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCMPDS
http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCMPDS&q=mustgather

v A ClassCastException error occurs during failover of a session that contains an Enterprise JavaBeans

(EJB) reference.

If your problem is not described here, or none of these steps fixes the problem:

v Review “HTTP session manager troubleshooting tips” on page 151 for general steps on debugging

session-manager related problems.

v Review Task overview: Managing HTTP sessions in the Administering applications and their

environment PDF book for information on how to configure the session manager, and best practices for

using it.

v Check to see if the problem has been identified and documented by looking at the available online

support (hints and tips, technotes, and fixes).

v If you don’t find your problem listed there contact IBM support.

HTTP sessions are not getting created, or are lost between requests

By default, the session manager uses cookies to store the session ID on the client between requests.

Unless you intend to avoid cookie-based session tracking, ensure that cookies are flowing between

WebSphere Application Server and the browser:

v Make sure the Enable cookies check box is checked under the Session tracking Mechanism

property.

v Make sure cookies are enabled on the browser you are testing from or from which your users are

accessing the application.

v Check the Cookie domain specified on the SessionManager (to view the or update the cookie settings,

in the Session tracking mechanism->enable cookies property, click Modify).

– For example, if the cookie domain is set as ″.myCom.com″, resources should be accessed using that

domain name. Example: http://www.myCom.com/myapp/servlet/sessionservlet.

– If the domain property is set, make sure it begins with a dot (.). Certain versions of Netscape do not

accept cookies if domain name doesn’t start with a dot. Internet Explorer honors the domain with or

without a dot. For example, if the domain name is set to mycom.com, change it to .mycom.com so

that both Netscape and Internet Explorer honor the cookie.

Note: When the servers are on different hosts, ensure that session cookies flow to all the servers by

configuring a front-end router such as a Web server with the plug-in or setting the Cookie

domain.
v Check the Cookie path specified on the SessionManager. Check whether the problem URL is

hierarchically below the Cookie path specified. If not correct the Cookie path.

v If the Cookie maximum age property is set, ensure that the client (browser) machine’s date and time is

the same as the server’s, including the time zone. If the client and the server time difference is over the

″Cookie maximum age″ then every access would be a new session, since the cookie will ″expire″ after

the access.

v If you have multiple Web modules within an enterprise application that track sessions:

– If you want to have different session settings among Web modules in an enterprise application,

ensure that each Web module specifies a different cookie name or path, or

– If Web modules within an enterprise application use a common cookie name and path, ensure that

the HTTP session settings, such as Cookie maximum age, are the same for all Web modules.

Otherwise cookie behavior will be unpredictable, and will depend upon which application creates the

session. Note that this does not affect session data, which is maintained separately by Web module.
v Check the cookie flow between browser and server:

1. On the browser, enable ″cookie prompt″. Hit the servlet and make sure cookie is being prompted.

2. On the server, enable SessionManager trace. Enable tracing for the HTTP session manager

component, by using the trace specification ″com.ibm.ws.webcontainer.httpsession.*=all=enabled″.

After trace is enabled, exercise your session-using servlet or jsp, then follow the instructions for

dumping and browsing the trace output .

3. Access the session servlet from the browser.

4. The browser will prompt for the cookie; note the jsessionid.

5. Reload the servlet, note down the cookie if a new cookie is sent.

Chapter 7. Web applications 153

6. Check the session trace and look for the session id and trace the request by the thread. Verify that

the session is stable across Web requests:

– Look for getIHttpsession(...) which is start of session request.

– Look for releaseSesson(..) which is end of servlet request.
v If you are using URL rewriting instead of cookies:

– Ensure there are no static HTML pages on your application’s navigation path.

– Ensure that your servlets and JSP files are implementing URL rewriting correctly. For details and an

example see the Session tracking options section in the Developing and deploying applications PDF

book.
v If you are using SSL as your session tracking mechanism:

– Ensure that you have SSL enabled on your IBM HTTP Server or iPlanet HTTP server.

– Review the Session tracking options section in the Developing and deploying applications PDF

book..
v If you are in a clustered (multiple node) environment, ensure that you have session persistence

enabled.

HTTP Sessions are not persistent

If your HTTP sessions are not persistent, that is session data is lost when the application server restarts or

is not shared across the cluster:

v Check the data source.

v Check the session manager’s persistence settings properties:

– If you intend to take advantage of session persistence, verify that Persistence is set to Database.

– Persistence could also be set to Memory-to-Memory Replication.

– If you are using Database-based persistence:

- Check the JNDI name of the data source specified correctly on SessionManager.

- Specify correct userid and password for accessing the database.

Note that these settings have to be checked against the properties of an existing data source in

the administrative console. The session manager does not automatically create a session

database for you.

- The data source should be non-JTA, for example, non XA enabled.

- Check the JVM logs for appropriate database error messages.

- With DB2, for row sizes other than 4k make sure specified row size matches the DB2 page size.

Make sure tablespace name is specified correctly.

Session is shared across multiple browsers on same client machine

This behavior is browser-dependent. It varies between browser vendors, and also may change according

to whether a browser is launched as a new process or as a subprocess of an existing browser session (for

example by hitting Ctl-N on Windows).

The Cookie maximum age property of the session manager also affects this behavior, if cookies are used

as the session-tracking mechanism. If the maximum age is set to some positive value, all browser

instances share the cookies, which are persisted to file on the client for the specified maximum age time.

Session is not getting invalidated immediately after specified session timeout

interval

The SessionManager invalidation process thread runs every x seconds to invalidate any invalid sessions,

where x is determined based on the session timeout interval specified in the session manager properties.

For the default value of 30 minutes , x is around 300 seconds. In this case, it could take up to 5 minutes

(300 seconds) beyond the timeout threshold of 30 minutes for a particular session to become invalidated.

154 Administering applications and their environment

Unwanted sessions are being created by JavaServer Pages

As required by the JavaServer Pages (JSP) specification, JSP pages by default perform a

request.getSession(true), so that a session is created if none exists for the client. To prevent JSP pages

from creating a new session, set the session scope to false in the .jsp file using the page directive as

follows:

<% @page session="false" %>

Session data intended for one client is seen by another client

In rare situations, usually due to application errors, session data intended for one client might be seen by

another client. This situation is referred to as session data crossover. When the DebugSessionCrossover

custom property is set to true, code is enabled to detect and log instances of session data crossover.

Checks are performed to verify that only the session associated with the request is accessed or

referenced. Messages are logged if any discrepancies are detected. These messages provide a starting

point for debugging this problem. This additional checking is only performed when running on the

WebSphere-managed dispatch thread, not on any user-created threads.

For additional information on how to set this property, see article, Web container custom properties in the

Administering applications and their environment PDF book.

A ClassCastException error occurs during failover of a session that contains an

Enterprise JavaBeans (EJB) reference

If you run WebSphere® Application Server for z/OS® Version 6.0.1 and configure a session manager to

replicate EJB references, a session failover might trigger display of the following exception in the server

region job log:

java.lang.ClassCastException: cannot cast class

 org.omg.stub.java.rmi._Remote_Stub to interface javax.ejb.EJBObject

The log also displays a null pointer exception. The problem results from the session outbound request,

where WebSphere Application Server for z/OS issued a CORBA::COMM_FAILURE exception with a

C9C21355 minor code. This behavior occurs because your application server contains all of the following

configurations:

1. SAF is both the local operating system, as well as the user registry

2. Attribute propagation is enabled

3. An unauthenticated user initiated the session outbound request

To correct this problem apply the APAR PK06777 fix to WebSphere Application Server for z/OS V6.0.1.

You can retain the previously mentioned server configurations.

IBM Support has documents and tools that can save you time gathering information needed to resolve

problems as described in Troubleshooting help from IBM. Before opening a problem report, see the

Support page:

v http://www.ibm.com/software/webservers/appserv/was/support/

HTTP sessions: Resources for learning

Use the following links to find relevant supplemental information about HTTP sessions. The information

resides on IBM and non-IBM Internet sites, whose sponsors control the technical accuracy of the

information.

These links are provided for convenience. Often, the information is not specific to the WebSphere

Application Server product, but is useful all or in part for understanding the product. When possible, links

are provided to technical papers and Redbooks that supplement the broad coverage of the release

documentation with in-depth examinations of particular product areas.

Chapter 7. Web applications 155

http://www.ibm.com/software/webservers/appserv/was/support/

View links to additional information about:

Programming model and decisions

v Improving session persistence performance with DB2

v Persistent client state HTTP cookies specification

Programming instructions and examples

v Java Servlet documentation, tutorials, and examples site

Programming specifications

v Java Servlet 2.4 API specification download site

v J2EE 1.4 specification download site

Modifying the default Web container configuration

The Web container is created initially with default properties values suitable for simple Web applications.

However, these values might not be appropriate for more complex Web applications.

Your application is considered complex if it requires any of the following features:

v Virtual host

v Servlet caching

v Special client request loads

v Persistent HTTP session support

v Special HTTP transport settings

Make the following configuration changes if you have a complex application:

1. In the administrative console, click Servers > Application servers > server_name. Then under Web

container settings, click on one of the following:

a. Web container, if your Web application requires a virtual host, other than the default_host, or

requires servlet caching.

b. Web container transport chains, if you need to reconfigure your HTTP connections.

c. Session management, if your application requires persistent HTTP session support.

2. If your application handles special client request loads, in the administrative console, click Servers >

Application servers > server_name. Then under Additional Properties, click Thread Pools to modify

your thread pool settings.

3. If your application requires global settings for internal servlets for WAR files packaged by third-party

tools, iIn the administrative console, click Servers > Application servers > server_name > Web

container settings > Web container. Then under Additional Properties, click Custom Properties and

enter the appropriate custom property.

Web container

A Web container handles requests for servlets, JavaServer Pages (JSP) files, and other types of files that

include server-side code. The Web container creates servlet instances, loads and unloads servlets,

creates and manages request and response objects, and performs other servlet management tasks.

The Web server plug-ins, provided by the WebSphere Application Server, help supported Web servers

pass servlet requests to Web containers.

If the property to start servlets during application server startup is enabled, part of its startup process calls

the Servlet.init method on its servlets when you start the Web container. Therefore, when the Web

container starts and calls the init method, other components such as Naming and Work Load Management

may not be fully started yet. As a result, application server related calls may not work since all of the

156 Administering applications and their environment

http://www7b.software.ibm.com/dmdd/library/techarticle/0203kitchlu/0203kitchlu.html
http://www.netscape.com/newsref/std/cookie_spec.html
http://java.sun.com/products/servlet/docs.html
http://java.sun.com/products/servlet/download.html
http://java.sun.com/j2ee/download.html

application server components may not be ready yet. Once the application server is ’ready for e-business’,

it is completely ready. If application server related calls fail during Servlet.init method, you can either:

v Start the servlet manually when the server is ready for e-business instead of starting the servlet upon

startup or

v You can choose not to make application server related calls in the servlet’s init method.

Web container settings

Use this page to configure the Web container settings.

To view this administrative console page, click Servers > Application servers > server_instance > Web

Container Settings > Web container.

Default virtual host

Specifies a virtual host that enables a single host machine to resemble multiple host machines. Resources

associated with one virtual host cannot share data with resources associated with another virtual host,

even if the virtual hosts share the same physical machine.

Select a virtual host option:

default_host

The product provides a default virtual host with some common aliases such as the machine IP

address, short host name, and fully qualified host name. The alias comprises the first part of the

path for accessing a resource such as a servlet. For example, it is localhost:9080 in the request

http://localhost:9080/myServlet.

admin_host

This is another name for the application server; also known as server1 in the base installation.

This process supports the use of the administrative console.

proxy_host

The virtual host called proxy_host, includes default port definitions, port 80 and 443, which are

typically initialized as part of the proxy server initialization. Use this proxy host as appropriate with

routing rules associated with the proxy server.

Enable servlet caching

Specifies that if a servlet is invoked once and it generates output to be cached, a cache entry is created

containing not only the output, but also side effects of the invocation. These side effects can include calls

to other servlets or JavaServer Pages (JSP) files, as well as metadata about the entry, including timeout

and entry priority information.

Portlet fragment caching requires that servlet caching is enabled. Therefore, enabling portlet fragment

caching automatically enables servlet caching. Disabling servlet caching automatically disables portlet

fragment caching.

Disable servlet request and response pooling

Specifies to disable the pooling of servlet request and servlet response objects that are pooled by the Web

container. When you disable pooling of servlet request and servlet response objects, new servlet request

and servlet response objects that are created for each request.

 Default False

Web container custom properties

You can configure name-value pairs of data, where the name is a property key and the value is a string

value that you can use to set internal system configuration properties. Defining a new property enables

you to configure a setting beyond that which is available in the administrative console. The following is a

list of some of the available Web container custom properties.

Chapter 7. Web applications 157

Global settings for internal servlets

HTTP Transport custom properties can also be set at the Web container level. See HTTP transport custom

properties for a description of these properties.

Web application archive (WAR) files that are packaged using third-party tools cannot specify behavior for

the services that are exposed by the Web container internal servlets. You can globally enable and disable

internal servlets for all Web applications at the Web container level by creating name-value pairs such as:

 Name Value

fileServingEnabled true

directoryBrowsingEnabled true

serveServletsByClassnameEnabled true

Settings that are defined in an assembly tool take precedence over the global settings that are set through

the custom properties at the Web container level.

Web application deployment extensions continue to hold configuration information for the services that are

provided by the internal servlets, and take precedence over the global settings that are set through the

custom properties at the Web container level.

UTF-8 encoded Uniform Resource Locators (URLs)

The UTF-8 encoded URL feature, which provides UTF-8 encoded Uniform Resource Locators (URLs) to

support the double-byte characters in URLs is enabled by default. You can prevent the Web container from

explicitly decoding URLs in UTF-8 and have them use the ISO-8859 standard as per the current HTTP

specification by using the following name-value pair:

 Name Value

DecodeUrlAsUTF8 false

Global configuration of servlet listeners

The servlet specification supports applications registering listeners for servlet-related events on an

individual application basis through the web.xml descriptor. However, using the listeners custom property, a

server can listen to servlet events across Web applications. To implement global listening, a listener is

registered at the Web container level and is propagated to all of the installed and new Web applications.

This global behavior of internal servlet listeners is controlled by the listeners custom property by using the

following name-value pair format:

 Name Value

listeners listener_class

The values for this property is a string specifying a comma separated list of listener classes. The listener

supplied must implement standard listener classes from the Java Servlet API or IBM listener extension

classes.

Binary Large Object (BLOB) data type for Oracle databases

The UseOracleBLOB custom property creates the HTTP session database table using the Binary Large

Object (BLOB) data type for the medium column. This property increases performance of persistent

sessions when Oracle databases are used. Due to an Oracle restriction, BLOB support requires use of the

158 Administering applications and their environment

Oracle’s oci database driver for more than 4000 bytes of data. You must also ensure that a new sessions

table is created before the server is restarted by dropping your old sessions table or by changing the

datasource definition to reference a database that does not contain a sessions table. To create a sessions

table using the BLOB data type, use the following name-vaule pair:

 Name Value

UseOracleBLOB true

Detecting session data crossover

The DebugSessionCrossover custom property enables code to perform additional checks to verify that

only the session associated with the request is accessed or referenced. Messages are logged if any

discrepancies are detected. To enable session data crossover detection, use the following name-vaule

pair:

 Name Value

DebugSessionCrossover true

See article, “Problems creating or using HTTP sessions” on page 152, for additional information.

Optimizing Web services client to Web container communication

To improve performance, there is an optimized communication path between a Web services client

application and a Web container that are located in the same application server process. Requests from

the Web services client that are normally sent to the Web container using a network connection are

delivered directly to the Web container using an optimized local path. The local path is available because

the Web services client application and the Web container are running in the same process. This

optimized communication path is disabled by default. Before enabling this property, make sure that wild

cards are not specified for the Web container ports. Use specific ports for the web container when the

optimized communication path is enabled. To enable the optimized communication path, use the following

name-value pair:

 Name Value

enableInProcessConnections true

See article, Web services client to Web container optimized communication, for additional information.

WebSphere Application Server 5.x allows Uniform Resource Locators (URLs) without leading front slashes

(/) and to preserve compatibility, You can set the custom property, prependSlashToResource to true. To

ignore the specification and consider URLs without the leading front slash, use the following name-value

pair:

 Name Value

prependSlashToResource true

HTTPS requests with an SSL offloader

The custom property httpsIndicatorHeader manages HTTPS requests that are forwarded to an application

server from an SSL offloader that is used in front of WebSphere Application Server. When an HTTPS

request is received by a SSL offloader it is redirected over HTTP to an application server using

WebSphere Application Server. The SSL offloader adds a header indicating the original request was over

HTTP. The httpsIndicatorHeader property specifies the header name added by the SSL box. The

Chapter 7. Web applications 159

application server checks this indicator to determine if SSL is required. If it determines the request is SSL

over HTTP, an HTTPS scheme is chosen.

 Name Value

httpsIndicatorHeader Request header key name

Web module deployment settings

Use this page to configure an instance of Web module deployment.

To view this administrative console page, click Applications > Enterprise Application >

application_instance > Manage Modules > Web_module_instance.

URI

Specifies the relative location of the module within the application EAR.

Alternate deployment descriptor

Specifies the alternate deployment descriptor for the module as defined in the application deployment

descriptor according to the J2EE specification.

Starting weight

Specifies the order in which modules are started. Lower weighted modules are started before higher

weighted modules.

Class loader order

Specifies whether the class loader searches in the parent class loader or in the application class loader

first to load a class. The standard for development kit class loaders and product class loaders is Classes

loaded with parent class loader first. By specifying Classes loaded with application class loader first, your

application can override classes contained in the parent class loader, but this action can potentially result

in ClassCastException or LinkageErrors if you have mixed use of overridden classes and non-overridden

classes.

The options are Classes loaded with parent class loader first and Classes loaded with application class

loader first. The default is to search in the parent class loader before searching in the application class

loader to load a class.

 Data type String

Default Classes loaded with parent class loader first

Context root for Web modules settings

Use this page to specify the context root for Web modules during or after installation of an application onto

a WebSphere Application Server deployment target.

To view this administrative console panel, click Applications > Enterprise Applications >

application_name > Context root for Web modules. This panel is the same as the Context root for Web

modules panel on the application installation and update wizards.

Web module

Specifies the name of a Web module in the application that you are installing or that you are viewing after

installation.

URI

Specifies the location of the module relative to the root of the application EAR file.

160 Administering applications and their environment

Context root

Specifies the context root of the Web application (WAR).

A context root for each Web module is defined in the application deployment descriptor during application

assembly. Use this field to assign a different context root to a Web module. The context root is combined

with the defined servlet mapping (from the WAR file) to compose the full URL that users type to access

the servlet. For example, if the context root is /gettingstarted and the servlet mapping is MySession, then

the URL is http://host:port/gettingstarted/MySession.

Environment entries for Web modules settings

Use this page to configure the environment entries of Web modules such as servlets and JavaServer

Pages (JSP) files.

To view this administrative console panel, click Applications > Enterprise Applications >

application_name > Environment entries for Web modules. This page is the same as the Environment

entries for Web modules panel on the application installation and update wizards.

Module

Specifies the name of a module in the web.xml Web application.

URI

Specifies the location of the module relative to the root of the application (EAR file).

Name

Specifies the name of the environment entry that you are editing or viewing. The environment entry is the

Env-entry property in the module web.xml file.

Type

Specifies a data type for the environment entry defined by the Env-entry property in the module web.xml

file.

Description

Specifies information on the environment entry.

Value

Specifies an editable value for the environment entry defined by the Env-entry property in the module

web.xml file.

Web container troubleshooting tips

If you are having problems starting a Web module, or accessing resources within a particular Web module:

v View the JVM logs and process logs for the application server which hosts the problem Web modules,

and look for messages in the JVM output file which indicate that the web module has started

successfully. You should see messages similar to the following:

WebContainer A SRVE0161I: IBM WebSphere Application Server - Web Container.

Copyright IBM Corp. 1998-2002

WebContainer A SRVE0169I: Loading Web Module: [module_name]

ApplicationMg A WSVR0221I: Application started: [application_name]

HttpTransport A SRVE0171I: Transport http is listening on port [port_number]

[server_name] open for e-business in [profile_root]/logs/[server_name]/SystemOut.log

v For specific problems that can cause servlets, HTML files, and JavaServer Pages (JSP) files not to be

served, see Web resource (JSP file, servlet, HTML file, image) does not display .

v For a detailed trace of the run-time behavior of the Web container, enable trace for the component

com.ibm.ws.webcontainer using com.ibm.ws.webcontainer.*=all:com.ibm.ws.wswebcontainer.*=all.

If application server related calls fail during Servlet.init method, you can either:

Chapter 7. Web applications 161

v Initialize the servlet manually by making a single request to that servlet in your browser when the server

is ready for e-business instead of starting the servlet upon startup or

v You can choose not to make application server related calls in the servlet’s init method.

If the property to start servlets during application server startup is enabled, part of its startup process calls

the Servlet.init method on its servlets when you start the Web container. Therefore, when the Web

container is starts and calls the init method, other components such as Naming and Work Load

Management may not be fully started yet. As a result, application server related calls may not work since

all of the application server components may not be ready yet. Once the application server is ’ready for

e-business’, it is completely ready.

If none of these steps fixes your problem, check to see if the problem has been identified and documented

by looking at the available online support (hints and tips, tech notes, and fixes). If you don’t find your

problem listed there contact IBM support.

For current information available from IBM Support on known problems and their resolution, see the IBM

Support page.

IBM Support has documents that can save you time gathering information needed to resolve this problem.

Before opening a PMR, see the IBM Support page.

Disabling servlet pooling: Best practices and considerations

This topic provides usage examples of when you may want to disable servlet pooling. You may want to

disable request and response pooling if your application is creating threads inside of the application or if

you are concerned about the Web container reusing request and response objects.

Disabling request and response pooling

v Application is creating threads inside of the application.

The Servlet 2.4 specification states the following:

SRV.4.10 Lifetime of the Request Object Each request object is valid only within the scope of a

servlet’s service method, or within the scope of a filter’s doFilter method. Containers commonly

recycle request objects in order to avoid the performance overhead of request object creation. The

developer must be aware that maintaining references to request objects outside the scope

described above is not recommended as it may have indeterminate results.

SRV.5.6 Lifetime of the Response Object Each response object is valid only within the scope of

a servlet’s service method, or within the scope of a filter’s doFilter method. Containers commonly

recycle response objects in order to avoid the performance overhead of response object creation.

The developer must be aware that maintaining references to response objects outside the scope

described above may lead to non-deterministic behavior.

v If you are concerned about the Web container reuse of reusing request and response objects. Since

these objects are reused, there is the potential for two requests in two separate applications to have

access to the same request or response object as described in the Thread Safety section of Servlet 2.4.

SRV.2.3.3.3 Thread Safety Implementations of the request and response objects are not

guaranteed to be thread safe. This means that they should only be used within the scope of the

request handling thread.

References to the request and response objects should not be given to objects executing in other

threads as the resulting behavior may be nondeterministic. If the thread created by the application

uses the container-managed objects, such as the request or response object, those objects must

be accessed only within the servlet’s service life cycle and such thread itself should have a life

cycle within the life cycle of the servlet’s service method because accessing those objects after the

service method ends may cause undeterministic problems. Be aware that the request and

162 Administering applications and their environment

http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCMPDF
http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCMPDF
http://www-1.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCMPDF&q=mustgather

response objects are not thread safe. If those objects were accessed in the multiple threads, the

access should be synchronized or be done through the wrapper to add the thread safety, for

instance, synchronizing the call of the methods to access the request attribute, or using a local

output stream for the response object within a thread.

It is important to note that disabling pooling prevents the Web container from recycling the servlet request

and servlet response objects for subsequent requests. This creates additional overhead as a result of an

increase in request and response object creation and the subsequent garbage collection of these

discarded objects.

Configuring session management by level

When you configure session management at the Web container level, all applications and the respective

Web modules in the Web container normally inherit that configuration, setting up a basic default

configuration for the applications and Web modules below it.

However, you can set up different configurations individually for specific applications and Web modules

that vary from the Web container default. These different configurations override the default for these

applications and Web modules only.

Note: When you overwrite the default session management settings on the application level, all the Web

modules below that application inherit this new setting unless they too are set to overwrite these

settings.

1. Open the administrative console.

2. Select the level that this configuration applies to:

v For the Web container level:

a. Click Servers > Application Servers > server_instance > Web Container Settings > Web

Container.
v For the enterprise application level:

a. Click Applications > Enterprise Applications > server_instance.
v For the Web module level:

a. Click Applications > Enterprise Applications > server_instance > Web Modules.

b. Select a Web module from the list of Web modules defined for this application.

3. Under Additional Properties, click Session Management.

4. Make whatever changes you need to manage sessions.

5. If you are working on the Web module or application level and want these settings to override the

inherited Session Management settings, under General Properties, select Overwrite.

6. Click Apply and Save.

Configuring session tracking

To configure session tracking, complete the following:

1. Go to the appropriate level of Session Management.

2. Specify which session tracking mechanism you want to pass the session ID between the browser and

the servlet:

v To track sessions with cookies, click Enable Cookies.

To change the cookie settings, click Modify.

v To track sessions with URL rewriting, click Enable URL Rewriting.

If you want to enable protocol switch rewriting, click Enable protocol switch rewriting.

v To track sessions with SSL information, click Enable SSL ID tracking.

3. Click Apply.

4. Click Save.

Chapter 7. Web applications 163

Serializing access to session data

The Servlet API supports concurrent access to a session in a given server instance. WebSphere

Application Server provides an option to prevent the concurrent access to a session in a given server

instance so that concurrent modification of a session does not occur in a given server instance. This

prevention is achieved by synchronizing the requests based on session. When this feature is turned on, a

session is obtained for the request before invoking the servlet and requests are synchronized by locking

the session for the servlet execution time. Note that synchronization is based on the memory copy of

session. So this feature cannot serialize requests across servers based on session when session affinity

fails.

You can also use the serializing access to session data feature to synchronize session objects inside of

servlets or JavaServer pages. Applications cannot synchronize session objects inside of their servlets or

JavaServer Pages because a deadlock with the session manager may occur. The deadlock occurs

because the session manager does not expect the use of more than one locking mechanism. You can

ensure that only one request can access the session at a time through the use of the configuration option,

Allow serial access.

Use this feature only when concurrent modification of the same session data is possible and is not

desirable by the application. This feature has overhead of serializing the requests based on a session.

Do the following to synchronize session access:

1. Select the level of Session Management on which you want to serialize session access.

2. Under Serialize Session access, click Allow serial access.

3. In the Maximum wait time box, type the amount of time, in milliseconds, a servlet waits on a session

before continuing execution. The default is 120000 milliseconds or two minutes.

4. Select Allow access on timeout if you want the servlet to gain access to the session and continue

normal execution even if the session is still locked by another servlet. If you do not select this box, the

servlet execution will abort when the session request times out.

5. Click Apply.

6. Click Save.

Session management settings

Use this page to manage HTTP session support. This support includes specifying a session tracking

mechanism, setting maximum in-memory session count, controlling overflow, and configuring session

timeout.

To view this administrative console page, click Servers > Application servers > server_name > Web

container settings > Session management.

Session tracking mechanism

Specifies a mechanism for HTTP session management.

 Mechanism Function Default

164 Administering applications and their environment

Enable SSL ID Tracking Specifies that session tracking uses

Secure Sockets Layer (SSL)

information as a session ID. Enabling

SSL tracking takes precedence over

cookie-based session tracking and

URL rewriting.

V6.0.x

There are two parameters

available if you enable SSL ID

tracking: SSLV3Timeout and Secure

Authentication Service (SAS).

SSLV3Timeout specifies the time

interval after which SSL sessions are

renegotiated. This is a high setting

and modification does not provide any

significant impact on performance.

The SAS parameter establishes an

SSL connection only if it goes out of

the Java Virtual Machine (JVM) to

another JVM. If all the beans are

co-located within the same JVM, the

SSL used by SAS does not hinder

performance.

These are set by editing the

sas.server.properties and

sas.client.props files located in the

product_installation_root\properties

directory, where

product_installation_root is the

directory where WebSphere

Application Server is installed.

Important:

V6.0.x

SAS is

supported only between Version 6.0.x

and previous version servers that

have been federated in a Version 6.1

cell.

9600 seconds

Chapter 7. Web applications 165

Enable cookies Specifies that session tracking uses

cookies to carry session IDs. If

cookies are enabled, session tracking

recognizes session IDs that arrive as

cookies and tries to use cookies for

sending session IDs. If cookies are

not enabled, session tracking uses

Uniform Resource Identifier (URL)

rewriting instead of cookies (if URL

rewriting is enabled).

Enabling cookies takes precedence

over URL rewriting. Do not disable

cookies in the session management

facility of the application server that is

running the administrative application

because this action causes the

administrative application not to

function after a restart of the server.

As an alternative, run the

administrative application in a

separate process from your

applications. Click Enable cookies to

change these settings.

Enable URL rewriting Specifies that the session

management facility uses rewritten

URLs to carry the session IDs. If URL

rewriting is enabled, the session

management facility recognizes

session IDs that arrive in the URL if

the encodeURL method is called in

the servlet.

Enable protocol switch rewriting This option is only available when

Enable URL rewriting is selected.

This option specifies that the session

ID is added to a URL when the URL

requires a switch from HTTP to

HTTPS or from HTTPS to HTTP. If

rewriting is enabled, the session ID is

required to go between HTTP and

HTTPS.

Maximum in-memory session count

Specifies the maximum number of sessions to maintain in memory.

The meaning differs depending on whether you are using in-memory or distributed sessions. For

in-memory sessions, this value specifies the number of sessions in the base session table. Use the Allow

overflow property to specify whether to limit sessions to this number for the entire session management

facility or to allow additional sessions to be stored in secondary tables. For distributed sessions, this value

specifies the size of the memory cache for sessions. When the session cache has reached its maximum

size and a new session is requested, the session management facility removes the least recently used

session from the cache to make room for the new one.

Note: Do not set this value to a number less than the maximum thread pool size for your server.

Allow overflow

Specifies that the number of sessions in memory can exceed the value specified by the Max in-memory

session count property. This option is valid only in non-distributed sessions mode.

166 Administering applications and their environment

Session timeout

Specifies how long a session can go unused before it is no longer valid. Specify either Set timeout or No

timeout. Specify the value in minutes greater than or equal to two.

The value specified in a Web module deployment descriptor file takes precedence over the administrative

console settings. However, the value of this setting is used as a default when the session timeout is not

specified in a Web module deployment descriptor. Note that to preserve performance, the invalidation

timer is not accurate to the second. When the write frequency is time based, ensure that this value is least

twice as large as the write interval.

Security integration

Specifies that when security integration is enabled, the session management facility associates the identity

of users with their HTTP sessions

Serialize session access

Specifies that concurrent session access in a given server is not allowed.

 Maximum wait time Specifies the maximum amount of time a servlet request

waits on an HTTP session before continuing execution.

This parameter is optional and expressed in seconds. The

default is 5 seconds. Under normal conditions, a servlet

request waiting for access to an HTTP session gets

notified by the request that currently owns the given HTTP

session when the request finishes.

Allow access on timeout Specifies whether the servlet is started normally or

aborted in the event of a timeout. If this box is checked,

the servlet is started normally. If this box is not checked,

the servlet execution aborts and error logs are generated.

Cookie settings

Use this page to configure cookie settings for session management.

To view this administrative console page, click Servers > Application servers > server_name > Web

container settings > Session management > Enable cookies.

Cookie name

Specifies a unique name for the session management cookie. The servlet specification requires the name

JSESSIONID. However, for flexibility this value can be configured.

Restrict cookies to HTTPS sessions

Specifies that the session cookies include the secure field. Enabling the feature restricts the exchange of

cookies to HTTPS sessions only.

Cookie domain

Specifies the domain field of a session tracking cookie. This value controls whether or not a browser

sends a cookie to particular servers. For example, if you specify a particular domain, session cookies are

sent to hosts in that domain. The default domain is the server.

Cookie path

Specifies that a cookie is sent to the URL designated in the path. Specify any string representing a path

on the server. ″/″ indicates root directory. Specify a value to restrict the paths to which the cookie will be

sent. By restricting paths, you prevent the cookie from going to certain URLs on the server. If you specify

the root directory, the cookie is sent no matter which path on the given server is accessed.

Chapter 7. Web applications 167

Cookie maximum age

Specifies the amount of time that the cookie lives on the client browser. Specify that the cookie lives only

as long as the current browser session, or to a maximum age. If you choose the maximum age option,

specify the age in seconds. This value corresponds to the Time to Live (TTL) value described in the

Cookie specification.

Default is the current browser session which is equivalent to setting the value to -1.

Session management custom properties

Custom properties for session management:

CloneSeparatorChange

Use this property to maintain session affinity. The clone ID of the server is appended to session

identifier separated by colon. On some Wireless Application Protocol (WAP) devices, a colon is not

allowed. Set this property to ″true″ to change clone separator to a plus sign (+).

HttpSessionCloneId

Use this property to change the clone ID of the cluster member. Within a cluster, this name must

be unique to maintain session affinity. When set, this name overwrites the default name generated

by WebSphere Application Server.

 Default clone ID length: 8 or 9

HttpSessionIdLength

Use this property to configure the session identifier length. Do not use an extremely low value;

using a low value results in reduced number of combinations possible, thereby increasing risk of

guessing the session identifier. In a cluster, all cluster members should be configured with same ID

length. Allowed range: 8 to 128. Default length: 23.

HttpSessionReaperPollInterval

Use this property to set a wake-up interval for the process that removes invalid sessions. Default

is based on maximum inactive interval set in session management. Allowed value: integer.

NoAdditionalSessionInfo

Set this value to ″true″ to force removal of information that is not needed in session identifiers.

 In WebSphere Application Server base edition, a clone ID of -1 is never used; therefore, a clone

ID is not included in base edition when this is set. Also, cache ID is not used with nonpersistent

sessions; so the cache ID is not included with nonpersistent sessions when this value is set.

SessionIdentifierMaxLength

Use this value to set maximum length that a session identifier can grow. In a cluster, because of

fail-over when a request goes to new cluster member, session management appends a new clone

ID to the existing clone ID. In a large cluster, if for some reason servers are failing more often,

then it is possible that the session identifier length can be more than expected reducing room for

URL. So this property helps to find out the condition and take appropriate action to address

servers fail-over. When this is specified, message is logged when specified maximum length is

reached. Allowed value: integer.

SessionRewriteIdentifier

Use this property to change the key used with URL rewriting. Default key: jsessionid.

Configuring session tracking for Wireless Application Protocol (WAP)

devices

Most Wireless Application Protocol (WAP) devices do not support cookies. The preferred way to track

sessions for WAP devices is to use URL rewriting. However on most WAP devices, the maximum allowed

URL length is 128 characters. With URL rewriting, a session indentifier is added to the URL itself,

effectively decreasing the space available for the actual URL and the number of parameters that can be

sent on a request.

168 Administering applications and their environment

To reduce the length of session identifier, you can configure key (jsessionid), session ID length and clone

ID. To make these configuration changes, complete the following:

1. Open the administrative console.

2. Click Servers > Application Servers>server_instanceWeb Container Settings > Web container.

3. Under Additional Properties, click Custom Properties.

4. Add the appropriate properties from the following list:

v HttpSessionIdLength

v SessionRewriteIdentifier

v HttpSessionCloneId

v CloneSeparatorChange

v NoAdditionalSessionInfo

v SessionIdentifierMaxLength

5. Click Apply and Save.

Configuring for database session persistence

To configure the session management facility for database session persistence, complete the following:

 1. Create and configure a JDBC provider.

 2. Create a data source pointing to a database.

Use the JDBC provider that you defined: Resources > JDBC Providers > JDBC_provider > Data

Sources > New. The data source should be non-JTA, for example, non-XA enabled. Note the JNDI

name of the data source.

Point to an existing database.

 3. Verify that the correct database is listed under Resources > JDBC Providers > JDBC_provider >

Data Sources > datasource_name. If necessary, contact your database administrator to verify the

correct database name.

 4. Go to the appropriate level of Session Management.

 5. Under Additional Properties, click Distributed Environment Settings

 6. Select and click Database.

 7. Specify the Data Source JNDI name from a previous step.

 8. Specify the database user ID and password for accessing the database.

 9. Retype the password for confirmation.

10. Configure a table space and page sizes for DB2 session databases.

11. Switch to a multirow schema.

12. Click OK.

13. If you want to change the tuning parameters, click Custom Tuning Parameters under Additional

properties and select a setting or customize a setting.

14. Click Apply.

15. Click Save.

Switching to a multirow schema

By default, a single session maps to a single row in the database table used to hold sessions. With this

setup, there are hard limits to the amount of user-defined, application-specific data that WebSphere

Application Server can access.

1. Modify the Session Management facility properties to switch from single to multirow schema.

2. Manually drop the table.

To drop the table:

a. Determine which data source configuration Session Management is using.

Chapter 7. Web applications 169

b. In the data source configuration, look up the database name.

c. Use the database facilities to connect to the database.

d. Drop the SESSIONS table.

Configuring tablespace and page sizes for DB2 session databases

If you are using DB2 for session persistence, you can increase the page size to optimize performance for

writing large amounts of data to the database. Page sizes of 8K, 16K, and 32K are supported.

To use a page size other than the default (4K), do the following:

1. If the SESSIONS table already exists, drop it from the DB2 database.

2. Create a new DB2 buffer pool and table space, specifying the same page size (8K, 16K or 32K) for

both, and assign the new buffer pool to this table space.

DB2 Connect to session

DB2 CREATE BUFFERPOOL sessionBP SIZE 1000 PAGESIZE 8K

DB2 Connect reset

DB2 Connect to session

DB2 CREATE TABLESPACE sessionTS PAGESIZE 8K MANAGED BY SYSTEM

 USING (’D:\DB2\NODE0000\SQL00005\sessionTS.0’) BUFFERPOOL sessionBP

DB2 Connect reset

Refer to DB2 product documentation for details.

3. Configure the correct table space name and page size in the Session Management facility. Page size

is referred to as row size on the Session Management page.)

When the product is restarted, the Session Management facility creates the new SESSIONS table in the

specified tablespace based on the indicated page size.

Database settings

Use this page to specify the settings for database session support.

To view this administrative console page, click Servers > Application servers > server_name > Web

container settings > Session management > Distributed environment settings > Database.

Datasource JNDI name

Specifies the datasource description.

The JNDI name of the non-XA enabled datasource from which session management obtains database

connections. For example, if the JNDI name of the datasource is ″jdbc/sessions″, specify ″jdbc/sessions.″

The datasource represents a pool of database connections and a configuration for that pool (such as the

pool size). The datasource must already exist as a configured resource in the environment.

User ID

Specifies the user ID for database access.

Password

Specifies the password for database access.

DB2 row size

Specifies the table space page size configured for the sessions table, if using a DB2 database. Possible

values are 4, 8, 16, and 32 kilobytes (KB). The default row size is 4KB.

The default row size is 4KB. In DB2, it can be updated to a larger value. This can help database

performance in some environments. When this value is other than 4, you must specify table space name

to use this property. For 4KB pages, the table space name is optional.

170 Administering applications and their environment

Table space name

Specifies that table space to be used for the sessions table.

This value is required when the DB2 page size is other than 4KB.

Use multi row schema

Specifies that each instance of application data be placed in a separate row in the database, allowing

larger amounts of data to be stored for each session. This action can yield better performance in certain

usage scenarios. If using multi row schema is not enabled, instances of application data can be placed in

the same row.

Multirow schema considerations

WebSphere Application Server supports the use of a multirow schema option in which each piece of

application specific data is stored in a separate row of the database. With this setup, the total amount of

data you can place in a session is now bound only by the database capacities. The only practical limit that

remains is the size of the session attribute object.

The multirow schema potentially has performance benefits in certain usage scenarios, such as when larger

amounts of data are stored in the session but only small amounts are specifically accessed during a given

servlet processing of an HTTP request. In such a scenario, avoiding unneeded Java object serialization is

beneficial to performance.

Understand that switching between multirow and single row is not a trivial proposition.

In addition to allowing larger session records, using multirow schema can yield performance benefits.

However, it requires a little work to switch from single-row to multirow schema, as shown in the

instructions below.

Coding considerations and test environment

Consider configuring direct single-row usage to one database and multirow usage to another database

while you verify which option suits your application needs. (Do this in code by switching the data source

used; then monitor performance.)

 Programming issue Application scenario

Reasons to use single-row v You can read or write all values with just one record

read and write.

v This takes up less space in a database because you

are guaranteed that each session is only one record

long.

Reasons not to use single-row 2-megabyte limit of stored data per session.

Reasons to use multirow v The application can store an unlimited amount of data;

that is, you are limited only by the size of the database

and a 2-megabyte-per-record limit.

v The application can read individual fields instead of the

whole record. When large amounts of data are stored

in the session but only small amounts are specifically

accessed during servlet processing of an HTTP

request, multirow sessions can improve performance

by avoiding unneeded Java object serialization.

Reasons not to use multirow If data is small in size, you probably do not want the extra

overhead of multiple row reads when you can store

everything in one row.

Chapter 7. Web applications 171

In the case of multirow usage, design your application data objects not to have references to each other,

to prevent circular references. For example, suppose you are storing two objects A and B in the session

using HttpSession.put(..) method, and A contains a reference to B. In the multirow case, because objects

are stored in different rows of the database, when objects A and B are retrieved later, the object graph

between A and B is different than stored. A and B behave as independent objects.

172 Administering applications and their environment

Chapter 8. Portlet applications

Task overview: Managing portlets

You can use this task to manage deployed portlet applications.

Before you begin this task, you must have a portlet application installed. See “Installing application files”

on page 28 for additional information.

You can complete the following steps to manage portlets.

v Render a portlet.

– Access a single portlet using “Portlet Uniform Resource Locator (URL) addressability” on page 180.

– Access multiple portlets using “Portlet aggregation using JavaServer Pages” on page 174.

v Change the location of “Portlet preferences” on page 181. By default, portlet preferences for each

portlet window are stored in a cookie. However, you can change the location of where to store portlet

preferences.

v Disable URL addressability. By default, you can access a portlet through an Uniform Resource Locator

(URL), however, you can disable this feature.

v Enable portlet fragment caching. Portlet fragment caching is disabled by default.

Portlets

Portlets are reusable Web modules that provide access to Web-based content, applications, and other

resources. Portlets can run on WebSphere Application Server because it has an embedded JSR168

Portlet Container. You can assemble portlets into a larger portal page, with multiple instances of the same

portlet displaying different data for each user.

From a user’s perspective, a portlet is a window on a portal site that provides a specific service or

information, for example, a calendar or news feed. From an application development perspective, portlets

are pluggable Web modules that are designed to run inside a portlet container of any portal framework.

You can either create your own portlets or select portlets from a catalog of third-party portlets.

Each portlet on the page is responsible for providing its output in the form of markup fragments to be

integrated into the portal page. The portal is responsible for providing the markup surrounding each portlet.

In HTML, for example, the portal can provide markup that gives each portlet a title bar with minimize,

maximize, help, and edit icons.

You can also include portlets as fragments into servlets or JavaServer Pages files. This provides better

communication between portlets and the J2EE Web technologies provided by the application server.

If you use Rational Application Developer version 6 (RAD) to create your portlets, you must remove the

following reference to the std-portlet.tld from the web.xml file to run the portlets outside of RAD:

<taglib id="PortletTLD">

 <taglib-uri>http://java.sun.com/portlet</taglib-uri>

 <taglib-location>/WEB-INF/tld/std-portlet.tld</taglib-location>

</taglib>

Also if you use RAD version 6 to create portlets, note that portlets created by using the Struts Portlet

Framework are not supported on WebSphere Application Server.

Portlet applications

If the portlet application is a valid Web application written to the Java Portlet API, the portlet application

can operate on both the Portal Server and the WebSphere Application Server without requiring any

© Copyright IBM Corp. 2006 173

changes. A JSR 168 compliant portlet application must not use extended services provided by WebSphere

Portal to operate on the WebSphere Application Server.

Portlet container

The portlet container is the runtime environment for portlets using the JSR 168 Portlet Specification, in

which portlets are instantiated, used, and finally destroyed. The JSR 168 Portlet API provides standard

interfaces for portlets. Portlets based on this JSR 168 Portlet Specification are referred to as standard

portlets.

A simple portal framework is provided by the PortletServingServlet servlet. The PortletServingServlet

servlet registers itself for each Web application that contains portlets. You can use the

PortletServingServlet servlet to directly render a portlet into a full browser page by a URL request and

invoke each portlet by its context root and name. See “Portlet Uniform Resource Locator (URL)

addressability” on page 180 for additional information. If you want to aggregate multiple portlets on the

page, you need to use the aggregation tag library. See the article “Portlet aggregation using JavaServer

Pages” for additional information. The PortletServingServlet servlet can be disabled in an extended portlet

deployment descriptor called the ibm-portlet-ext.xmi file.

Remote request dispatcher support for portlets

The remote request dispatcher (RRD) support allows the invocation of portlets outside of the current Java

virtual machine (JVM) within an Network Deployment single core group environment. The request related

data is passed to the remote JVM where the portlet is invoked. The response is transmitted back and

processed on the local JVM. Thus it guarantees that URLs contained in the portlet markup are created

according to the local portal context.

Portlet container settings

Use this page to configure and manage the portlet container of this application server.

To view this administrative console page, click Servers > Application servers > server_name > Portlet

Container Settings > Portlet container.

Enable portlet fragment cache

Specifies whether to create a cached entry when a portlet is invoked, similar to servlet caching of the Web

container settings.

Portlet fragment caching requires that servlet caching is enabled. Therefore, enabling portlet fragment

caching automatically enables servlet caching. Disabling servlet caching automatically disables portlet

fragment caching.

Portlet aggregation using JavaServer Pages

The aggregation tag library generates a portlet aggregation framework to address one or more portlets on

one page If you write JavaServer Pages, you can aggregate multiple portlets on one page using the

aggregation tag library. This tag library does not provide full featured portal aggregation implementation,

but provides a good migration scenario if you already have aggregating servlets and JavaServer Pages

and want to switch to portlets.

To allow the customer to create a simple portal aggregation, the aggregation tag library also provides the

following features.

v Invoke a portlet’s action method

v Render multiple portlets on one page

v Provide links to change the portlet’s mode or window state

v Display the portlet’s title

174 Administering applications and their environment

v Retain the portlet cookie state

The aggregation tag library and JavaServer Pages that use the aggregation tag library will only work with

the WebSphere Application Server portlet container implementation because the protocol between the tags

and the container is not standardized.

The following diagram depicts how an HTML page would look like and what tags are used in order to

create the page. See “Aggregation tag library attributes” for information on the aggregation tag library

attributes.

<portlet:init portletURLPrefix="
http://localhost/hello/framework/"
portletURLSuffix="/something"
portletURLQueryParams="p1=v1&p2=v2">

<table>

<portlet:insert url="demo/weather"
contentVar="weather.content"
titleVar="weather.title"/>

<portlet:state url="demo/weather" portletMode="view"
var="weather.view"/>

<portlet:state url="demo/weather" portletMode="edit"
var="weather.edit"/>

<portlet:insert url="demo/time" contentVar="time.content"
titleVar="time.title"/>

<portlet:state url="demo/time" mode="view"
var="time.view"/>

<portlet:state url="demo/time" mode="edit"
var="time.edit"/>

<tr><td>{$weather.title}</td>
<td>view</td>
<td>edit</td>

<td>{$time.title}</td>
<td>view</td>
<td>edit</td>

</tr>

<tr><td colspan="3">
{$weather.content}

</td><td colspan="3">
{$time.content}

</td></tr>

</table>

</portlet:init>

HTML Page

table

column column

title title

portlet

content

portlet

content

v e v
e

When you use the aggregation tag library, you must set the portletUrlPrefix attribute of the init tag to the

aggregating application. You need to:

v Ensure that the portletUrlPrefix attribute is set to the following in the aggregator page.

"http://" + <server_address> + ":" + <server_port> + "/" + <aggregator context> + "/" <aggregator mapping>

v Reference the aggregation JSP page within the web.xml file through a servlet mapping ending with /*.

For example, /aggregation/*

When aggregating multiple portlets on a single page, special care must be used with the naming

conventions of form attribute names in your portlets. Because your portlets are all on the same page, they

all share the same HttpServletRequest. When one portlet is viewed the entire page is refreshed and form

data is re-posted. Therefore, if there are multiple portlets that are aggregated on a single page with the

same form attribute names, there could be logic corruption when form data is re-posted.

Aggregation tag library attributes

The aggregation tag library is used to aggregate multiple portlets on one page. This topic describes the

attributes within the aggregation tag library.

Chapter 8. Portlet applications 175

Supported arguments include:

init

This tag initializes the portlet framework and has to be used in the beginning of the JSP. All other tags

described in this section are only valid in the body of this tag, therefore the init tag usually encloses

the whole body of a JSP. In case the current URL contains an action flag the action method of the

corresponding portlet is called. The state and insert tags are sub-tags of the init tag.

 The init tag has the following attributes:

v portletURLPrefix=”<any string>”

This URL defines the prefix used for PortletURLs. Portlet URLs are created either by the state tag

or within a portlet’s render method, which is called by using the insert tag. This is a required

attribute.

v portletURLSuffix=”<any string>”

This URL defines the suffix used for PortletURLs. Portlet URLs are created either by the state tag or

within a portlet’s render method, which is called by using the insert tag. This is attribute optional.

v portletURLQueryParams=”<any string>”

This URL defines the query parameters used for PortletURLs. Portlet URLs are created either by

the state tag or within a portlet’s render method, which is called by using the insert tag. This is

attribute optional.

state

The state tag creates a URL pointing to the given portlet using the given state. You can place this URL

either into a variable specified by the var attribute or you can write it directly to the output stream. This

tag is useful to create URLs for HTML buttons, images, and other items such that when the URL is

invoked, the state changes defined in the URL are applied to the given portlet.

 The state tag has the following attributes:

v url=”<context>/<portlet-name>”

Identifies the portlet for this tag by using the context and portlet-name to address the portlet. This

attribute is required.

v windowId=”<any string>”

Defines the window ID for the portlet URL created by this tag. This is attribute optional.

v var=”<any string>”

If defined the URL is written into a variable with the given scope and name, not to the output

stream. This is attribute optional.

v scope=”page|request|session|application”

This attribute is only valid if the var attribute is specified. If defined, the URL is not written to the

output stream but a variable is created in the given scope with the given name. The default is page.

This is attribute optional.

v portletMode=”view|help|edit|<custom>”

This attribute sets the portlet mode.

v portletWindowState=”maximized|minimized|normal|<custom>”

This attribute sets the window state.

v action=”true/false”

This attribute defines whether this is an action URL. This is attribute optional. The default is false.

urlParam

Adds a render parameter to the newly created URL.

 The urlParam tag has the following attributes:

v name=”<any string>”

Indicates the name of the parameter. This is attribute required.

176 Administering applications and their environment

v value=”<any string>”

Indicates the value of the parameter. This is attribute required.

insert

This tag calls the render method of the portlet and retrieves the content as well as the title. You can

optionally place the content and title of the specified portlet into variables using the contentVar and

titleVar attributes.

 The insert tag has the following attributes:

v url=”<context>/<portlet-name>” (mandatory) Identifies the portlet for this tag by using the context

and portlet-name to address the portlet

This is attribute required.

v windowId=”<any string>”

Defines the window ID of the portlet. This is attribute optional.

v contentVar=”<any string>”

If defined, the portlet’s content is not written to the output stream but written into a variable with the

given scope and name. This is attribute optional.

v contentScope=”page|request|session|application”

This attribute is only valid if the contentVar tag is used. If defined, the portlet’s content is written into

a variable with the given scope and name, not to the output stream. The default is page. This is

attribute optional.

v titleVar=”<any string>”

If defined the portlet’s title is written into a variable with the given scope and name. If it is not

defined, the title is ignored and not written to the output stream. This is attribute optional.

v titleScope=”page|request|session|application”

This attribute is only valid if titleVar tag is used. If defined, the portlet’s title is written into a variable

with the given scope and name, not to the output stream. The default is page. This is attribute

optional.

Example: Using the portlet aggregation tag library

You can use the aggregation tag library to aggregate multiple portlets to have multiple and different

content on one page. The library can be used by every JavaServer Pages (JSP) file that has been

included by a servlet.

To use the portlet aggregation tag library, you must declare the tag-lib at the top of the JSP file using, <%@

taglib uri=″http://ibm.com/portlet/aggregation″ prefix=″portlet″ %>, as in the following example.

The following JSP file example shows how to aggregate portlets on one page.

<%@ taglib uri="http://ibm.com/portlet/aggregation" prefix="portlet" %>

<%@ page isELIgnored="false" import="java.util.Enumeration"%>

<portlet:init portletURLPrefix="/dummy/portletTagTest/" portletURLSuffix="/more" portletURLQueryParams="p1=v1&p2=v2">

 <portlet:insert url="worldclock/StdWorldClock" contentVar="worldclockcontent" titleVar="worldclocktitle"/>

 <portlet:state url="worldclock/StdWorldClock" portletMode="view" var="worldclockview"

 portletWindowState="maximized">

 <portlet:urlParam name="namea" value="valuea"/>

 <portlet:urlParam name="nameb" value="valueb"/>

 </portlet:state>

 <portlet:state url="worldclock/StdWorldClock" portletMode="edit" var="worldclockedit" portletWindowState="normal">

 <portlet:urlParam name="name1" value="value1"/>

 <portlet:urlParam name="name2" value="value2"/>

 </portlet:state>

 <portlet:state url="worldclock/StdWorldClock" portletMode="view" var="worldclockmin"

 portletWindowState="minimized">

 <portlet:urlParam name="namemin" value="valuemin"/>

 <portlet:urlParam name="namemin" value="valuemin"/>

Chapter 8. Portlet applications 177

</portlet:state>

 <portlet:insert url="worldclock/StdWorldClock" windowId="min" contentVar="simplecontent" titleVar="simpletitle"/>

 <portlet:state url="worldclock/StdWorldClock" windowId="min" portletMode="view" var="simpleview"

 portletWindowState="maximized">

 <portlet:urlParam name="name3" value="value3"/>

 <portlet:urlParam name="name4" value="value4"/>

 <portlet:urlParam name="name5" value="value5"/>

 <portlet:urlParam name="name5" value="value5a"/>

 <portlet:urlParam name="name5" value="value5b"/>

 <portlet:urlParam name="name5" value="value5c"/>

 </portlet:state>

 <portlet:state url="worldclock/StdWorldClock" windowId="min" portletMode="edit" var="simpleedit"

 action="true" portletWindowState="normal">

 <portlet:urlParam name="name6" value="value6"/>

 <portlet:urlParam name="name6" value="value6z"/>

 </portlet:state>

 <portlet:state url="worldclock/StdWorldClock" windowId="min" portletMode="view" var="simplemin"

 portletWindowState="minimized">

 <portlet:urlParam name="name1" value="value1"/>

 <portlet:urlParam name="name2" value="value2"/>

 </portlet:state>

 <portlet:insert url="test/TestPortlet1" contentVar="testcontent" titleVar="testtitle"/>

 <portlet:state url="test/TestPortlet1" portletMode="view" var="testview" portletWindowState="maximized"/>

 <portlet:state url="test/TestPortlet1" portletMode="edit" var="testedit" portletWindowState="maximized"/>

<!-- This table is the outtermost table for creating two-column portal layout -->

<TABLE border="0" CELLPADDING="3" CELLSPACING="8" WIDTH="100%">

<TR>

<TD VALIGN="top">

<!-- This table is the top portlet in the first column -->

 <table border="0" width="100%" CELLPADDING="3" CELLSPACING="0" CLASS="portletTable" SUMMARY="portlet top left">

 <tr><td class="portletTitle" NOWRAP>worldclock title:${worldclocktitle}</td>

 <td CLASS="portletTitleControls" NOWRAP>

 view

 edit

 minimize

 </td>

 </tr>

 <tr>

 <td CLASS="portletBody" COLSPAN="2">

 ${worldclockcontent}

 </td>

 </tr>

 </table>

<!-- This table is the bottom portlet in the first column -->

 <table border="0" width="100%" CELLPADDING="3" CELLSPACING="0" CLASS="portletTable" SUMMARY="portlet bottom left">

 <tr>

 <td class="portletTitle" NOWRAP>test title:${testtitle}</td>

 <td CLASS="portletTitleControls" NOWRAP>

 view

 edit

 </td>

 </tr>

 <tr>

 <td CLASS="portletBody" COLSPAN="2">

 ${testcontent}

 </td>

 </tr>

178 Administering applications and their environment

</table>

 </TD>

 <TD VALIGN="top">

<!-- This table is the top portlet in the second column -->

 <table border="0" width="100%" CELLPADDING="3" CELLSPACING="0" CLASS="portletTable" SUMMARY="portlet top right">

 <tr>

 <td class="portletTitle" NOWRAP>simple title:${simpletitle}</td>

 <td CLASS="portletTitleControls" NOWRAP>

 view

 edit

 minimize

 </td>

 </tr>

 <tr>

 <td CLASS="portletBody" COLSPAN="2">

 ${simplecontent}

 </td>

 </tr>

 </table>

 </TD>

 </TR>

 </table>

</portlet:init>

You can include the following formatting to the previous example JSP file immediately after declaring the

tag library.

<STYLE TYPE="TEXT/CSS">

BODY {

 font-family:Verdana,sans-serif; font-size:70%

}

.portletTitle {

 text-align: left;border-top: #000000 1px solid; border-bottom: #000000 1px solid; FONT-SIZE: 60.0%;

 COLOR: #ffffff; FONT-FAMILY: Verdana, Arial, Helvetica, sans-serif; BACKGROUND-COLOR: #5495d5;

}

.portletTitleControls {

 text-align: right;border-top: #000000 1px solid; border-right: #000000 1px solid; border-bottom: #000000

 1px solid; FONT-SIZE: 60.0%; COLOR: #ffffff; FONT-FAMILY: Verdana, Arial, Helvetica, sans-serif;

 BACKGROUND-COLOR: #5495d5;

}

.portletTitleControls A {

 COLOR: #ffffff; text-decoration:none; border:#5495d5 1px solid;border-left:white 1px solid;

 padding-left:0.5em; padding-right:0.5em;

}

.portletTitleControls A:hover {

 COLOR: #ffffff; text-decoration:none; border-top:white 1px solid;

 border-bottom:white 1px solid;border-right:white 1px solid;

}

.minimizeControl {

 font-weight:bold; font-size:100%;

}

.portletTable {

 border-left: gray 1px solid;

 border-bottom: gray 1px solid;

 border-right: gray 1px solid;

}

Chapter 8. Portlet applications 179

.portletBody {

 font-family:Verdana,sans-serif; font-size:70%

}

</STYLE>

Portlet Uniform Resource Locator (URL) addressability

You can request a portlet directly through a Uniform Resource Locator (URL) to display its content without

portal aggregation. The PortletServingServlet servlet registers each Web application that contains portlets.

It is similar to the FileServingServlet servlet of the Web container that serves resources. The

PortletServingServlet servlet allows you to directly render a portlet into a full browser page by a URL

request.

You can invoke each portlet by its context root and name with the URL mapping /<portlet-name> that is

created for each portlet. The context root and name has the following format:

http://<host>:<port>/<context-root>/<portlet-name>

For example, http://localhost:9080/portlets/TestPortlet1

The context root identifies the Web archive (WAR) file that contains the portlet. The portlet name uniquely

identifies the portlet with a portlet application of a WAR file. The DefaultDocumentFilter servlet only

supports HTML, UTF8 encoding and an extended URL form based on the basic URL form as shown

above.

You can only display one portlet at a time using the PortletServingServlet servlet. If you want to aggregate

multiple portlets on the page, you need to use the aggregation tag library. See the article “Portlet

aggregation using JavaServer Pages” on page 174 for additional information.

Because a portlet only delivers fragment output whereas a servlet usually delivers document output, a

mechanism is introduced to convert the fragment into a document, called the PortletDocumentFilter filter.

By default, the PortletDocumentFilter filter only supports converting HTML. The conversion is implemented

using a servlet filter before the PortletServingServlet servlet is initiated to return the portlet‘s content inside

of a document. This default document servlet filter only applies to URL requests, not for includes or

forwards using the RequestDispatcher method. You can create servlet filters to support other markups

additional document servlet filters. See the article, “Converting portlet fragments to an HTML document” on

page 183, for additional information.

The PortletServingServlet servlet does not persist portlet preferences in a XML file or database. It places

the portlet preferences directly into a cookie to store the preferences persistently. See the article, “Portlet

preferences” on page 181, for additional information on how to change this behavior.

Portlet URL syntax

You can add additional portal context such as portlet mode or window state. You can access the

PortletServingServlet servlet by using a URL mapping that has the following structure:

http://host:port/context/portlet-name [/portletwindow[/ver [/action] [/mode] [/state] [rparam][/?name]]]

Any differing URL structure results in a com.ibm.wsspi.portletcontainer.InvalidURLException exception.

Empty strings are not permitted as parameter values and creates an InvalidURLException exception. The

following is a list of valid parameters:

http:// host:port/context/portlet-name

This is the minimum URL required to access a portlet. A default portlet window called ‘default’ is

created. The portlet-name variable is case-sensitive.

/portletwindow

This parameter identifies the portlet window. You must set this parameter if you choose to add

more portal context information to the URL.

180 Administering applications and their environment

/ver=major.minor

This optional parameter is used to define the version of the portlet API that is used. You must set

this parameter if you choose to add more portal context information to the URL. Only the version

’1.0’ is allowed. Any differing version creates an InvalidURLException exception.

/action

This is a required parameter if you call the action method of the portlet. The action parameter

causes the action process of the portlet to be called. After the action has been completed, a

redirect is automatically issued to call the render process. To control the subsequent render

process, a document servlet filter can set a request attribute with name

’com.ibm.websphere.portlet.action’ and value ’redirect’ to specify that the portlet serving servlet

directly returns after action without calling the render process.

/mode=view | edit | help | custom-mode

This optional parameter defines the portlet mode that is used to render the portlet. The default

mode is ‘view’. The value is not case-sensitive, For example, ‘View’, ‘view’ or ‘VIEW’ results in the

same mode.

/state=normal | maximized | minimized | custom-state

This optional parameter defines the window state that is used to render the portlet. The default

state is ‘normal’. The value is not case-sensitive, For example, ‘Normal’, ‘normal’, or ‘NORMAL’

results in the same state.

* [/rparam=name *[=value]]

This optional parameter specifies render parameters for the portlet. Repeat this parameter chain to

provide more than one render parameter. For example, /rparam=invitation/
rparam=days=Monday=Tuesday

?name=value&name2=value2 ...

Query parameters may follow optionally. They are not explicitly supported by the portlet container,

but they do not invalidate the URL format.

The following list includes examples of valid URLs:

v http:// localhost:9080/sample/WorldClock

v http:// localhost:9080/sample/WorldClock/myPortlet/ver=1.0/mode=edit/rparam=timezone=UTC

v http:// localhost:9080/sample/WorldClock/myPortlet/ver=1.0/action/state=maximized?timezone=UTC

Portlet preferences

Preferences are set by portlets to store customized information. By default, the PortletServingServlet

servlet stores the portlet preferences for each portlet window in a cookie. However, you can change the

location to store them in either a session, an .xml file, or a database.

Storing portlet preferences in cookies

The attributes of the cookie are defined as follows:

Path

context/portlet-name/portletwindow

Name:

The name of the cookie has the fixed value of PortletPreferenceCookie.

Value

The value of the cookie contains a list of preferences by mapping to the following structure:

*[’/’ pref-name *[’=’ pref-value]]

Chapter 8. Portlet applications 181

All preferences start with ’/’ followed by the name of the preference. If the preference has one or more

values, the values follow the name separated by the ’=’ character. A null value is represented by the

string ’#*!0_NULL_0!*#’. As an example, the cookie value may look like, /locations=raleigh=boeblingen/
regions=nc=bw

Customizing the portlet preferences storage

You can override how the cookie is handled to store preferences in a session, an .xml file or database. To

customize the storage, you must create a filter, servlet or JavaServer Pages file as new entry point that

wraps the request and response before calling the portlet. Examine the following example wrappers to

understand how to change the behavior of the PortletServingServlet to store the preferences in a session

instead of cookies.

The following is an example of how the main servlet manages the portlet invocation.

public class DispatchServlet extends HttpServlet

{

 ...

 public void service(HttpServletRequest request, HttpServletResponse response) throws ServletException, IOException

 {

 response.setContentType("text/html");

 // create wrappers to change preference storage

 RequestProxy req = new RequestProxy(request);

 ResponseProxy resp = new ResponseProxy(request, response);

 // create url prefix to always return to this servlet

 ...

 req.setAttribute("com.ibm.wsspi.portlet.url.prefix", urlPrefix);

 // prepare portlet url

 String portletPath = request.getPathInfo();

 ...

 // include portlet using wrappers

 RequestDispatcher rd = getServletContext().getRequestDispatcher(modifiedPortletPath);

 rd.include(req, resp);

 }

}

In the following example, the request wrapper changes the cookie handling to retrieve the preferences out

of the session.

public class RequestWrapper extends HttpServletRequestWrapper

{

 ...

 public Cookie[] getCookies() {

 Cookie[] cookies = (Cookie[]) session.getAttribute("SessionPreferences");

 return cookies;

 }

}

In the following example, the response wrapper changes the cookie handling to store the preferences in

the session:

public class ResponseProxy extends HttpServletResponseWrapper

{

 ...

 public void addCookie(Cookie cookie) {

 Cookie[] oldCookies = (Cookie[]) session.getAttribute("SessionPreferences");

 int newPos = (oldCookies == null) ? 0 : oldCookies.length;

 Cookie[] newCookies = new Cookie[newPos+1];

 session.setAttribute("SessionPreferences", newCookies);

 if (oldCookies != null) {

182 Administering applications and their environment

System.arraycopy(oldCookies, 0, newCookies, 0, oldCookies.length);

 }

 newCookies[newPos] = cookie;

 }

}

Portlet deployment descriptor extensions

Extensions for the portlet deployment descriptor are defined within a file called ibm-portlet-ext.xmi. This

deployment descriptor is an optional descriptor that you can use to configure WebSphere extensions for

the portlet application and its portlets. For example, you can disable the PortletServingServlet servlet for

the portlet application in the extended portlet deployment descriptor.

The ibm-portlet-ext.xmi extension file is loaded during application startup. If there are no extension files

specified with this setting, the portlet container’s default values are used.

The default for the portletServingEnabled attribute is true. The following is an example of how to configure

that a PortletServingServlet servlet is not created for any portlet on the portlet application.

<?xml version="1.0" encoding="UTF-8"?>

<portletappext:PortletApplicationExtension xmi:version="1.0"

 xmlns:xmi="http://www.omg.org/XMI"

 xmlns:portletappext="portletapplicationext.xmi"

 xmlns:portletapplication="portletapplication.xmi"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmi:id="PortletApp_ID_Ext"

 portletServingEnabled="false">

 <portletappext:portletApplication href="WEB-INF/portlet.xml#myPortletApp"/>

</portletappext:PortletApplicationExtension>

Converting portlet fragments to an HTML document

A portlet only delivers fragment output whereas a servlet typically delivers document output. However, you

can use the PortletServingServlet servlet, which is similar to the FileServingServlet servlet, to address

portlets like servlets. A default document servlet filter, the DefaultFilter filter, is applied to the

PortletServingServlet servlet to return the portlet‘s content inside of a document. This filter only applies to

requests, not to includes or forwards using the RequestDispatcher method. A servlet filter that is used to

embed the portlet‘s content into a document is called the document servlet filter. You can define additional

document servlet filters in a .xml file.

The FilterRequestHelper attribute within com.ibm.wsspi.portletcontainer.util is provided to assist the

document servlet filters in analyzing a request regarding filter chain and portlet information. It is used in

supporting dynamic portlet titles, as a marker for redirection for document servlet filters and to ensure that

document conversion is completed once.

Adding a new document servlet filter

The filter capability is a server feature, therefore all filters must be installed into the server to use the filter

capability of the server. The filters need to be available in any classes or library directory on a server level.

You must also register the filter in a plugin.xml file within the root of a Java archive (JAR) file. The

following is an example of how to register the filter in a plugin.xml file.

<?xml version="1.0" encoding="UTF-8"?>

<?eclipse version="3.0"?>

<plugin id="sample.plugin" name="Customer_Plugin" provider-name="Customer" version="1.0.0">

 <extension point="com.ibm.ws.portletcontainer.portlet-document-filter-config">

 <portlet-document-filter class-name="sample.filter.CustomFilter" order="200" />

 </extension>

</plugin>

Chapter 8. Portlet applications 183

Dynamic portlet titles

The PortletServingServlet servlet supports dynamic portlet titles by providing the dynamic title as a request

attribute, FilterRequestHelper.DYNAMIC_TITLE. This attribute returns the dynamic portlet title if it has

been set by the portlet, otherwise it returns the static portlet title of the portlet.xml file if defined.

The FilterRequestHelper is used to assist in controling of the dynamic portlet title. The following constant is

defined, DYNAMIC_TITLE = ‘javax.portlet.title’

The DefaultFilter uses this request attribute to set the document title while converting the fragment into a

document. If the filter wants to support browser caching or dynamic portlet titles, the complete portlet

content must be cached

Redirection for document servlet filters

A document servlet filter can set a marker as request attribute, FilterRequestHelper.REDIRECT. This

marker ensures that the portlet container returns to the document servlet filter after the portlet action has

been called prior to any render calls. The following constants are defined, REDIRECT =

‘com.ibm.websphere.portlet.action’ and REDIRECT_VALUE = ’redirect’. The DefaultFilter uses this

request attribute to provide special cache handling for the portlet rendering call to support dynamic title.

Document conversion

The conversion of the portlet’s fragment into a valid document must be completed only once. Therefore

each document servlet filter must ensure that the fragment has not yet been converted to a document

previously. If the document servlet filter converts the fragment to a document, the request attribute

FilterRequestHelper.DOCUMENT must be set to FilterRequestHelper.DOCUMENT_VALUE. This request

attribute marks whether the conversion still needs to be completed. The following constants are defined,

DOCUMENT = ‘com.ibm.websphere.portlet.filter’ and DOCUMENT_VALUE = ’document’. The DefaultFilter

uses this request attribute to check whether it should convert the fragment to an Hypertext Markup

Language (HTML) document. For example, this allows another document servlet filter in front to convert

the fragment into a valid Wireless Markup Language (WML) document instead.

Portlet and PortletApplication MBeans

The MBeans of type portlet and portletapplication provide information about a given portlet application and

its portlets. Through the MBean of type portletapplication, you can retrieve a list of names of all portlets

that belong to a portlet application. By querying the MBean of type portlet with a given portlet name, you

can retrieve portlet specific information from the MBean of type portlet.

Each MBean that corresponds to a portlet or portlet application is uniquely identifiable by its name. Portlet

applications are not required to have a name set within the portlet.xml. Thus for MBeans of type

portletapplication, the Web module name concatenated with the string ″_portletapplication″ has been

chosen as the MBean name. The name chosen for the MBean of type portlet is the name of the MBean of

type portletapplication the portlet belongs to, concatenated with the porlet name. A full stop separates the

preceding Web module name from the portlet name. For more information about the Portlet and

PortletApplication MBean types in the Generated API documentation. The generated API documentation is

available in the information center table of contents from the path, Reference > Administrator > API

documentation > MBean interfaces.

The following code is an example of how to invoke the MBean of type portletapplication for an application

with the name ″Bookmark″.

String myPortletApplicationName = "Bookmark_war_portletapplication";

This name is composed by the Web module name concatenated with the substring "_portletapplication"

com.ibm.websphere.management.AdminService adminService =

184 Administering applications and their environment

com.ibm.websphere.management.AdminServiceFactory.getAdminService();

javax.management.ObjectName on =

 new ObjectName("WebSphere:type=PortletApplication,name=" + myPortletApplicationName + ",*");

Iterator onIter = adminService.queryNames(on, null).iterator();

while(onIter.hasNext())

{

 on = (ObjectName)onIter.next();

}

String ctxRoot = (java.lang.String)adminService.getAttribute(on, "webApplicationContextRoot");

In the previous example, the MBeanServer is first queried for an MBean of type portletapplication. If this

query is successful, the attribute webApplicationContextRoot is retrieved on that MBean or the first MBean

that is found and the result is stored in the variable ctxRoot. This variable now contains the context root of

the Web application that contains the portlet application that was searched. For example, this may be

something like, ″/bookmark″.

The next code example demonstrates how to invoke the MBean of type portlet for a portlet with the name

″BookmarkPortlet″.

String myPortletName = "Bookmark_war_portletapplication.BookmarkPortlet";

This name is composed by the name of the MBean of type portletapplication and

the portlet name, separated by a full stop because the same portlet name may

be used within different Web modules, but must be unique within the system.

com.ibm.websphere.management.AdminService adminService =

 com.ibm.websphere.management.AdminServiceFactory.getAdminService();

javax.management.ObjectName on =

 new ObjectName("WebSphere:type=Portlet,name=" + myPortletName + ",*");

Iterator iter = adminService.queryNames(on, null).iterator();

while(iter.hasNext())

{

 on = (ObjectName)iter.next;

}

java.util.Locale locale = (java.util.Locale) adminService.getAttribute(on, "defaultLocale");

The locale returned by the method getAttribute method for the MBean is the default locale defined for this

portlet.

Chapter 8. Portlet applications 185

186 Administering applications and their environment

Chapter 9. SIP applications

Providing real time collaboration with SIP applications

Follow these procedures for creating SIP applications and configuring the SIP container.

Session Initiation Protocol (SIP) is used to establish, modify, and terminate multimedia IP sessions

including IP telephony, presence, and instant messaging. A SIP application is a Java program that uses at

least one Session Initiation Protocol (SIP) servlet. A SIP servlet is a Java-based application component

that is managed by a SIP servlet container.

The servlet container is a part of an application server that provides the network services over which

requests and responses are received and sent. The servlet container decides which applications to invoke

and in what order. A servlet container also contains and manages a servlet through its lifecycle.

This topic is divided into the following subsections:

v Configure the SIP container: Information and instructions for configuring SIP container properties and

timers.

v Developing SIP applications: Reference information for developers.

v Deploying SIP applications: Information for installing, starting, and stopping, your applications.

v Securing SIP applications: Instructions for enabling security providers and setting up a trust association

interceptor (TAI).

v Tracing a SIP container: Troubleshoot SIP applications through traces on the SIP container.

SIP applications

A SIP application is a Java program that uses at least one Session Initiation Protocol (SIP) servlet.

A SIP servlet is a Java-based application component that is managed by a SIP servlet container and that

performs SIP signaling. Like other Java-based components, servlets are platform-independent Java

classes that are compiled to platform-neutral bytecode that can be loaded dynamically into and run by a

Java-enabled SIP application server. Containers, sometimes called servlet engines, are server extensions

that handle servlet interactions. SIP servlets interact with clients by exchanging request and response

messages through the servlet container.

SIP is used to establish, modify, and terminate multimedia IP sessions including IP telephony, presence,

and instant messaging. ″Presence″ in this context refers to user status such as ″Active,″ ″Away,″ or ″Do

not disturb.″ The standard that defines a programming model for writing SIP-based servlet applications is

JSR 116.

SIP container

A SIP container is a Web application server component that invokes the Session Initiation Protocol (SIP)

action servlet and that interacts with the action servlet to process SIP requests.

The servlet container provides the network services over which requests and responses are received and

sent. It decides which applications to invoke and in what order. The container also contains and manages

servlets through their life cycle.

A SIP servlet container manages the network listener points on which it listens for incoming SIP traffic. A

listener point is a combination of transport protocol, IP address, and port number. The SIP specification

(JSR 116) requires all SIP elements to support both UDP and TCP, and optionally TLS, SCTP, and

potentially other transports.

© Copyright IBM Corp. 2006 187

http://www.jcp.org/aboutJava/communityprocess/final/jsr116

Configuring the SIP container

Learn how to configure SIP container timers and custom properties

You can configure and optimize the Session Initiation Protocol (SIP) container for your specific

environment. For example, you may want to adjust message response times or set a custom property. The

administrative console allows you to modify the default settings for many SIP container properties.

Follow these basic steps to find and configure your SIP container settings:

1. Stop WebSphere Application Server, if it is running.

2. Open the administrative console.

3. Expand the Servers section and click Application servers → serverName to open the configuration

tab for your server.

4. Under Container Settings, expand the SIP Container Settings section and click SIP Container to

display the SIP container configuration tab. You may now select which container settings you want to

change:

v General Properties lets you configure session, message, and response time maximums. See the

list of Session Initiation Protocol (SIP) container settings for information about specific properties

and settings.

v The Additional Properties section contains links to fields that allow you to define custom

properties, configure the session manager, or manage the inbound channel settings. Refer to

Configuring transport chains and Session Initiation Protocol (SIP) container inbound channel settings

for detailed instructions.

5. After you have entered your configuration changes, click Apply and exit the administration console.

6. Start WebSphere Application Server.

Your changes to the SIP container will take effect immediately after you start WebSphere Application

Server.

Configuring SIP timers

Information for configuring the Timer B the timeout for receiving INVITE replies setting

SIP timers have an effect on the functional configuration of the product. You can configure Timer B, the

timeout in milliseconds for receiving a reply from a client after the SIP container sends an INVITE request

to that client.

If a SIP container does not receive a reply from a client after the defined Timer B timeout value, the

container sends error message 408 to the application. The default timeout value is 64*T1, which equals

32 000 milliseconds (32 seconds) when Timer T1 is set to its default value of 500 milliseconds. To set the

Timer B value:

1. Expand the Servers section and click Application servers → serverName to open the configuration

tab for your server.

2. Under Container Settings, expand the SIP Container Settings section and click SIP Container to

display the SIP container configuration tab.

3. Under the Additional Properties section click Custom properties.

4. On the Custom properties screen, do one of the following:

a. If your Timer B property already exists in the list of custom properties, find and click on your Timer

B settings to bring up the Configuration tab and enter your new setting in the value field.

b. Click New to bring up the Configuration tab and enter javax.sip.transaction.timerb in the

name field and your desired value in milliseconds in the value field.

Then click Apply to make your changes.

188 Administering applications and their environment

5. Click save to save your settings to the master configuration. You may need to restart your server for

the changes to take effect.

SIP timer summary

Request for Comments (RFC) 3261, “SIP: Session Initiation Protocol,” specifies various timers that SIP

uses.

Table 4 summarizes for each SIP timer the default value, the section of RFC 3261 that describes the timer,

and the meaning of the timer.

 Table 4. Summary of SIP timers

Timer Default value Section Meaning

T1 500 ms 17.1.1.1 Round-trip time (RTT) estimate

T2 4 sec. 17.1.2.2 Maximum retransmission interval for non-INVITE requests and

INVITE responses

T4 5 sec. 17.1.2.2 Maximum duration that a message can remain in the network

Timer A initially T1 17.1.1.2 INVITE request retransmission interval, for UDP only

Timer B 64*T1 17.1.1.2 INVITE transaction timeout timer

Timer D > 32 sec. for UDP 17.1.1.2 Wait time for response retransmissions

0 sec. for TCP and

SCTP

Timer E initially T1 17.1.2.2 Non-INVITE request retransmission interval, UDP only

Timer F 64*T1 17.1.2.2 Non-INVITE transaction timeout timer

Timer G initially T1 17.2.1 INVITE response retransmission interval

Timer H 64*T1 17.2.1 Wait time for ACK receipt

Timer I T4 for UDP 17.2.1 Wait time for ACK retransmissions

0 sec. for TCP and

SCTP

Timer J 64*T1 for UDP 17.2.2 Wait time for retransmissions of non-INVITE requests

0 sec. for TCP and

SCTP

Timer K T4 for UDP 17.1.2.2 Wait time for response retransmissions

0 sec. for TCP and

SCTP

Session Initiation Protocol (SIP) container settings

Use this page to configure the Web container settings.

To view this administrative console page, click Application servers → serverName → SIP container

settings → SIP container.

 Related information

 Server collection
Use this page to view information about and manage application servers, Java message service (JMS)

servers, and Web servers.

Maximum application sessions

Specifies the maximum number of SIP application sessions that the container manages. When the

maximum has been reached, no new SIP conversations are started.

Chapter 9. SIP applications 189

http://www.ietf.org/rfc/rfc3261.txt

Data type Integer

Default 120000 (recommended)

Range 1 <= n <= java.lang.Integer.MAX_VALUE

Maximum messages per averaging period

Specifies the maximum amount of SIP messages per averaging period.

 Data type Integer

Default 5000 (recommended)

Range 1 <= n <= java.lang.Integer.MAX_VALUE

Maximum queue dispatch size

Specifies the size of the internal dispatch queue. Specifying anything higher than this size overloads the

queue. When the internal queue reaches the overloaded state, incoming UDP packets will be dropped until

the queue exits the overloaded state. Limiting the queue size enables better recovery from the case where

the CPU is used by other processes or threads (for example, garbage collection) and prevents the

container from reaching out-of-memory conditions. Setting the value to 0 gives an unlimited queue size.

 Data type Integer

Default 5000 (recommended)

Range 1 <= n <= java.lang.Integer.MAX_VALUE

Maximum response time

Specifies the maximum acceptable response time in milliseconds for an application. When the value of this

parameter has exceeded the specified time, the container notifies the clustering framework that it is

unavailable.

Use the maxSipResponseTime parameter carefully because the calculated response time does not match

the behavior of all applications. For requests, such as INVITE, where the responses are generated as a

result of a user interaction (a user picking up a handset, for example), the calculated response time is

extensive. However, in this example, the extensive response time is not caused by a delay in the SIP

container. Therefore, do not calculate the response time as a load factor. The recommended applications

for effective calculation of response time are applications that respond immediately without a user

interaction. The Subscribe and Register applications are relevant examples.

 Data type Integer

Default 0

Range 0 <= n <= java.lang.Integer.MAX_VALUE

Averaging period in milliseconds

Specifies that if a servlet is invoked one time while generating output to be cached, a cache entry is

created. This entry contains the cache output and the side effects of the invocation. Example of side

effects include calls to other servlets or JavaServer Pages (JSP) files, and metadata about the entry, such

as timeout and entry priority information.

 Data type Integer

Default 1000 (recommended)

Range 1000 <= n <= java.lang.Integer.MAX_VALUE

Statistic update rate in milliseconds

Specifies control over the interval for which the container calculates averages and publishes statistics to

Performance Monitoring Infrastructure.

190 Administering applications and their environment

Data type Integer

Default 1000 (recommended)

Range 1000 <= n <= java.lang.Integer.MAX_VALUE

Deploying SIP applications

Use the administrative console to customize your Session Initiation Protocol (SIP) application installation

When you deploy a Session Initiation Protocol (SIP) application, you can perform various tasks such as

installing, starting, stopping, upgrading, and uninstalling the application.

SIP applications are installed as Java 2 Platform Enterprise Edition (J2EE) applications. You can deploy a

SIP application from a graphical interface or from a command line.

Deploying SIP applications through the console

You can deploy a Session Initiation Protocol (SIP) application through the administrative console.

SIP applications are deployed as Java 2 Platform Enterprise Edition (J2EE) applications. In order to

process requests, a virtual host must be defined when deploying the SIP application. If there is no virtual

host defined for the configured SIP container listen port, the installed application will be inaccessible.

 1. Open the administrative console.

In a browser, go to URL http://hostname:9090/admin, where hostname is the name of the host

computer. Enter the appropriate login information, and click OK.

 2. In the left frame click Applications → Install New Application.

 3. Browse and select a SAR file. Specify the context root, beginning with a slash (/), in the Context

Root field. For example, if your application is named ThisApplication, type /ThisApplication.

 4. Click Next (under the Context Root field not beside the WebSphere Status title). If the SAR file has

been assembled correctly, the screen will still have the title “Preparing for the application installation”,

but the content will change. If an error message appears, check the contents of the SAR file; in

particular, verify the web.xml file contents, and try to reload the SAR file.

 5. Click Next. If you see a screen indicating “Application Security Warnings”, click Continue.

 6. The Install New Application screen should appear with “Step 1: Select application options”

highlighted. Select the options you need and click Next.

 7. “Step 2: Map modules to servers” should appear highlighted now. You can choose the cluster or

server where you want to install the application’s modules.

v If you are installing the application in a stand-alone system, click Next.

v If you are installing the application in a clustered system, select

WebSphere:cell=cellname,cluster=cluster_name in the Clusters and Servers field, select the

check box beside the Web module that you want to install, and click Apply and Next.

 8. Now “Step 3: Map virtual hosts for Web modules” should appear highlighted. To the right of the

application name there should be a drop-down labeled Virtual Host.

v If you are installing the application in a standalone system, set the value of the drop-down to

default_host, and click Next.

v If you are installing the application in a clustered system, set the value of the drop-down to the

name of the virtual host that was chosen during setup, and click Next.

Remember: You must define a virtual host for your configured SIP container listen port or else you

will not be able to access the application.

 9. You should now see “Step 4: Summary” highlighted. In the right panel you will see a Summary of

installation options table that details your selected options and their values. If you need to change

an option, click Previous to return to the section where you can make your change. Click Finish to

Chapter 9. SIP applications 191

install the application with your settings. The screen should display, Application appname_sar

installed successfully, where appname is the name of the application.

10. Click the Save to Master Configuration link. A Save to Master Configuration window appears.

11. In the Save to Master Configuration window, click Save. The application has now been saved in the

current configuration.

12. To confirm that the installation succeeded, in the left frame click Applications → Enterprise

Applications. The newly installed application should appear in the list of installed applications as

appname_sar.

13. To start the application so that it can service SIP requests, check the box beside appname_sar, and

click Start. You might also want to look at the logs for a successful startup message.

The application can service SIP requests now.

Deploying SIP applications through scripting

You can deploy a Session Initiation Protocol (SIP) application not only from the GUI but also from the

command line.

v Launch a scripting client. For more information, see AdminApp object for scripted administration.

v List applications.

v Install standalone archive files. For more information about installation, see Installation options for the

AdminApp object.

v Edit application configurations.

v Uninstall applications.

192 Administering applications and their environment

Chapter 10. EJB applications

Task overview: Using enterprise beans in applications

This article provides an overview of the tasks you must perform to use enterprise beans in a J2EE

application.

 1. Design a J2EE application and the enterprise beans that it needs. For links to design information that

is specific to enterprise beans, see “Data access: Resources for learning” on page 535.

 2. Develop any enterprise beans that your application will use.

 3. Prepare for assembly. For your EJB 2.x-compliant entity beans, decide on an appropriate access

intent policy.

 4. Assemble the beans into one or more EJB modules using one of the assembly tools. This process

includes setting security. For your EJB 2.x-compliant entity beans, you might also want to designate

container-managed persistence (CMP) sequence groups.

 5. Assemble the modules into a J2EE application using the assembly tool.

 6. For a given application server, update the EJB container configuration if needed for the application to

be deployed, and determine if you want to batch commands or defer commands for

container-managed persistence.

 7. Deploy the application in an application server.

 8. Test the modules.

v As needed, debug problems with the container.

v Debug access problems.

 9. Assemble the production application using one of the assembly tools

10. Deploy the application to a production environment.

11. Manage the application:

a. Manage installed EJB modules. After an application has been installed, you can manage its EJB

modules individually through the Assembly Service Toolkit.

b. Manage other aspects of the J2EE application.

12. Update the module and redeploy it using one of the assembly tools.

13. Tune the performance of the application. See Best practices for developing enterprise beans.

Enterprise beans

An enterprise bean is a Java component that can be combined with other resources to create J2EE

applications. There are three types of enterprise beans, entity beans, session beans, and message-driven

beans.

All beans reside in EJB containers, which provide an interface between the beans and the application

server on which they reside.

Entity beans store permanent data, so they require connections to a form of persistent storage. This

storage might be a database, an existing legacy application, a file, or another type of persistent storage.

Session beans typically contain the high-level and mid-level business logic for an application. Each method

on a session bean typically performs a particular high-level operation. For example, submitting an order or

transferring money between accounts. Session beans often invoke methods on entity beans in the course

of their business logic.

Session beans can be either stateful or stateless. A stateful bean instance is intended for use by a single

client during its lifetime, where the client performs a series of method calls that are related to each other in

time for that client. One example is a ″shopping cart″ where the client adds items to the cart over the

course of an online shopping session. In contrast, a stateless bean instance is typically used by many

© Copyright IBM Corp. 2006 193

clients during its lifetime, so stateless beans are appropriate for business logic operations that can be

completed in the span of a single method invocation. Stateful beans should be used only where absolutely

necessary -- using stateless beans improves the ability to debug, maintain, and scale the application.

Message-driven beans enable asynchronous message servicing.

v The EJB container and a Java Message Service (JMS) provider work together to process messages.

When a message arrives from another application component through JMS, the EJB container forwards

it through an onMessage() call to a message-driven bean instance, which then processes the message.

In other respects, message-driven beans are similar to stateless session beans.

v The EJB container and a Java Connector Architecture (JCA) resource adapter work together to process

messages from an enterprise information system (EIS). When a message arrives from an EIS, the

resource adapter receives the message and forwards it to a message-driven bean, which then

processes the message. The message-driven bean is provided services such as transaction support by

the EJB container in the same way that other enterprise beans are provided service.

Beans that require data access use data sources, which are administrative resources that define pools of

connections to persistent storage mechanisms.

For more information about enterprise beans, see “Enterprise beans: Resources for learning” on page 195.

EJB modules

An EJB module is used to assemble one or more enterprise beans into a single deployable unit. An EJB

module is stored in a standard Java archive (JAR) file.

An EJB module contains the following:

v One or more deployable enterprise beans.

v A deployment descriptor, stored in an Extensible Markup Language (XML) file. This file declares the

contents of the module, defines the structure and external dependencies of the beans in the module,

and describes how the beans are to be used at run time.

You can deploy an EJB module as a stand alone application, or combine it with other EJB modules or with

Web modules to create a J2EE application. An EJB module is installed and run in an enterprise bean

container.

For more information about EJB modules, see “Enterprise beans: Resources for learning” on page 195

EJB containers

An Enterprise JavaBeans (EJB) container provides a run-time environment for enterprise beans within the

application server. The container handles all aspects of an enterprise bean’s operation within the

application server and acts as an intermediary between the user-written business logic within the bean and

the rest of the application server environment.

One or more EJB modules, each containing one or more enterprise beans, can be installed in a single

container.

The EJB container provides many services to the enterprise bean, including the following:

v Beginning, committing, and rolling back transactions as necessary.

v Maintaining pools of enterprise bean instances ready for incoming requests and moving these instances

between the inactive pools and an active state, ensuring that threading conditions within the bean are

satisfied.

v Most importantly, automatically synchronizing data in an entity bean’s instance variables with

corresponding data items stored in persistent storage.

194 Administering applications and their environment

By dynamically maintaining a set of active bean instances and synchronizing bean state with persistent

storage when beans are moved into and out of active state, the container makes it possible for an

application to manage many more bean instances than could otherwise simultaneously be held in the

application server’s memory. In this respect, an EJB container provides services similar to virtual memory

within an operating system.

By default, an EJB container runs in the quick start mode. The EJB container startup logic delays the

loading and processing of all EJB types except Message Driven Beans (because they must exist before

messages are posted for them), Startup Beans (which must be processed at server startup time), and

those EJB types that you specify to initialize at server start. For more information about disabling quick

start for EJB types, see “Changing enterprise bean types to initialize at application start time using the

Application Server Toolkit” on page 218.

All other EJB initialization is delayed until the first use of the EJB type. When using Local Interfaces, the

first use is when you perform an InitialContext.lookup() method for the type. For Remote Interfaces, it is

when you call the first method on an EJB or its Home.

For more information about EJB containers, see “Enterprise beans: Resources for learning.”

Enterprise beans: Resources for learning

Use the following links to find relevant supplemental information about enterprise beans. The information

resides on IBM and non-IBM Internet sites, whose sponsors control the technical accuracy of the

information.

These links are provided for convenience. Often, the information is not specific to this product but is useful

all or in part for understanding the product. When possible, links are provided to technical papers and

Redbooks that supplement the broad coverage of the release documentation with in-depth examinations of

particular product areas.

Planning, business scenarios, and IT architecture

v Mastering Enterprise JavaBeans

A comprehensive treatment of Enterprise JavaBeans (EJB) programming in nonprintable form (PDF).

One must be registered to download the PDF, but registration is free. Information about purchasing a

hardcopy is available on the Web site.

v Enterprise JavaBeans by Richard Monson-Haefel (O’Reilly and Associates, Inc.: Third Edition, 2001)

Programming model and decisions

v Read all about EJB 2.0

A comprehensive overview of the 2.0 specification that is still relevant to users of EJB 2.1.

v The J2EE Tutorial

This set of articles by Sun Microsystems covers several EJB-related topics, including the basic

programming models, persistence, and EJB Query Language.

Programming instructions and examples

v WebSphere Application Server Development Best Practices for Performance and Scalability

Programming practice for enterprise beans and other types of J2EE components.

v Optimistic Locking in IBM WebSphere Application Server 4.0.2

Examples of the effect of optimistic concurrency on application behavior. Although the paper is based on

a previous version of this product, the data access issues discussed in it are current.

This paper does not seem to be available directly by URL. To view this paper, visit the specified URL

and search on ″optimistic locking″

Chapter 10. EJB applications 195

http://www.theserverside.com/books/masteringEJB/index.jsp
http://www-106.ibm.com/developerworks/java/library/j-jw-ejb20/
http://java.sun.com/j2ee/tutorial/1_3-fcs/index.html
http://www-4.ibm.com/software/webservers/appserv/ws_bestpractices.pdf
http://www7b.boulder.ibm.com/wsdd/

Programming specifications

v Enterprise JavaBeans 2.1 Specification

You can download the specification from this URL.

v Enterprise JavaBeans 3.0 Specification

You can download the specification from this URL.

v JavaTM 2 Platform: Compatibility with Previous Releases

This Sun Microsystems article includes both source and binary compatibility issues.

EJB method Invocation Queuing

Method invocations to enterprise beans are only queued for remote clients making the method call. An

example of a remote client is an enterprise Java bean (EJB) client running in a separate Java virtual

machine (JVM) (another address space) from the enterprise bean. In contrast, no queuing occurs if the

EJB client, either a servlet or another enterprise bean, is installed in the same JVM on which the EJB

method runs and on the same thread of execution as the EJB client.

Remote enterprise beans communicate by using the Remote Method Invocation over Internet Inter-ORB

Protocol (RMI-IIOP). Method invocations initiated over RMI-IIOP are processed by a server-side object

request broker (ORB). The thread pool acts as a queue for incoming requests. However, if a remote

method request is issued and there are no more available threads in the thread pool, a new thread is

created. After the method request completes the thread is destroyed. Therefore, when the ORB is used to

process remote method requests, the EJB container is an open queue, due to the use of unbounded

threads.

The following illustration depicts the two queuing options of enterprise beans.

EJB Queuing

Request queued
in the Servlet Engine

Threads

Request
queued
in the ORB
Thread Pool

EJB Client

Servlet

Servlet Engine

EJB Container

ORB Thread Pool

REMOTE

WebSphere

Application Server

WebSphere

Application Server

The following are two tips for queueing enterprise beans:

v Analyze the calling patterns of the EJB client.

When configuring the thread pool, it is important to understand the calling patterns of the EJB client. If a

servlet is making a small number of calls to remote enterprise beans and each method call is relatively

quick, consider setting the number of threads in the ORB thread pool to a value lower than the Web

container thread pool size value.

196 Administering applications and their environment

http://java.sun.com/products/ejb/docs.html
http://java.sun.com/products/ejb/docs.html
http://java.sun.com/j2se/1.4.1/compatibility.html

Longer-lived EJB calls

Short-lived EJB calls

Servlet service() Servlet service()

BEGIN END

Execution timeline

Servlet service() Servlet service()

BEGIN END

Execution timeline

Remote Call Remote Call

Remote Call Remote Call

The degree to which the ORB thread pool value needs increasing is a function of the number of

simultaneous servlets, that is, clients, calling enterprise beans and the duration of each method call. If

the method calls are longer or the applications spend a lot of time in the ORB, consider making the

ORB thread pool size equal to the Web container size. If the servlet makes only short-lived or quick

calls to the ORB, servlets can potentially reuse the same ORB thread. In this case, the ORB thread

pool can be small, perhaps even one-half of the thread pool size setting of the Web container.

v Monitor the percentage of configured threads in use.

Tivoli Performance Viewer shows a metric called percent maxed, which is used to determine how often

the configured threads are used. A value that is consistently in the double-digits, indicates a possible

bottleneck a the ORB. Increase the number of threads.

See also Queuing network

Enterprise bean and EJB container troubleshooting tips

If you are having problems starting an EJB container, or encounter error messages or exceptions that

appear to be generated on by an EJB container, follow these steps to resolve the problem:

v Use the Administrative Console to verify that the application server which hosts the container is running.

v Browse the JVM log files for the application server which hosts the container. Look for the message

server server_name open for e-business in the SystemOut.log . If it does not appear, or if you see the

message problems occurred during startup, browse the SystemErr.log for details.

v Browse the system log files for the application server which hosts the container.

v Enable tracing for the EJB Container component, by using the following trace specification

EJBContainer=all=enabled. Follow the instructions for dumping and browsing the trace output to narrow

the origin of the problem.

Chapter 10. EJB applications 197

If none of these steps solves the problem, check to see if the problem is identified and documented using

the links in Diagnosing and fixing problems: Resources for learning. If you do not see a problem that

resembles yours, or if the information provided does not solve your problem, contact IBM support for

further assistance.

For current information available from IBM Support on known problems and their resolution, see the IBM

Support page.

IBM Support has documents that can save you time gathering information needed to resolve this problem.

Before opening a PMR, see the IBM Support page.

Error in client log: Missing jar file

The following error message appears in the client log file because a JAR file is missing from the classpath

on the client machine. The Object Request Broker (ORB) needs this file to unmarshal the nested

exception that is part of the EJB exception, returned by the server to the client application. For example, if

the EJB returns a DB2® JCC SQL exception nested inside of the EJB exception that it returns to the client,

the ORB is not able to unmarshal the nested exception if the db2jcc.jar file that contains the DB2 SQL

exception is not in the client classpath.

java.rmi.MarshalException: CORBA MARSHAL 0x4942f89a No; nested exception is:

org.omg.CORBA.MARSHAL: Unable to read value

from underlying bridge : Custom marshaling (4) Sender’s class does not match

local class vmcid: 0x4942f000 minor code: 2202 completed: No*

To avoid this error, include the JAR file that contains the class for the nested exception that is returned in

the EJB exception.

Cannot access an enterprise bean from a servlet, a JSP file, a

stand-alone program, or another client

This article provides troubleshooting tips for problems related to accessing enterprise beans.

What kind of error are you seeing?

v javax.naming.NameNotFoundException: Name name not found in context ″local″ message when

access is attempted

v BeanNotReentrantException is thrown

v CSITransactionRolledbackException / TransactionRolledbackException is thrown

v Call fails, Stack trace beginning EJSContainer E Bean method threw exception [exception_name]

found in JVM log file.

v Call fails, ObjectNotFoundException or ObjectNotFoundLocalException when accessing stateful

session EJB found in JVM log file.

v Attempt to start CMP EJB module fails with javax.naming.NameNotFoundException:

dataSourceName

v Transaction [tran ID] has timed out after 120 seconds error accessing EJB.

v

v Symptom: CNTR0001W: A Stateful SessionBean could not be passivated

v Symptom: org.omg.CORBA.BAD_PARAM: Servant is not of the expected type. minor code:

4942F21E completed: No returned to client program when attempting to execute an EJB method

If the client is remote to the enterprise bean, which means, running in a different application server or as a

stand-alone client, browse the JVM logs of the application server hosting the enterprise bean as well as

log files of the client.

If you do not see a problem that resembles yours, or if the information provided does not solve your

problem, perform these steps:

198 Administering applications and their environment

http://www-1.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCMPAH
http://www-1.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCMPAH
http://www-1.ibm.com/support/search.wss?tc=SSEQTP&tc1=SSCMPAH&rs=180&q=mustgather

1. If the problem appears to be name-service related, which means that you see a

NameNotFoundException, or a message ID beginning with NMSV, see these topics for more

information:

v Cannot look up an object hosted by WebSphere Application Server from a servlet, JSP file, or other

client

v Naming service troubleshooting tips
2. Check to see if the problem is identified and documented using the links in Diagnosing and fixing

problems: Resources for learning.

If you still cannot fix your problem, seeTroubleshooting help from IBM for further assistance.

ObjectNotFoundException or ObjectNotFoundLocalException when accessing

stateful session EJB

A possible cause of this problem is that the stateful session bean timed out and was removed by the

container. This event must be addressed in the code, according to the EJB 2.1 specification (available at

http://java.sun.com/products/ejb/docs.html), section 7.6.2, Dealing with exceptions.

Stack trace beginning ″EJSContainer E Bean method threw exception

[exception_name]″ found in JVM log file

If the exception name indicates an exception thrown by an IBM class that begins with ″com.ibm...″, then

search for the exception name within the information center, and in the online help as described below. If

″exception name″ indicates an exception thrown by your application, contact the application developer to

determine the cause.

javax.naming.NameNotFoundException: Name name not found in context ″local″

A possible reason for this exception is that the enterprise bean is not local (not running in the same Java

virtual machine [JVM] or application server) to the client JSP, servlet, Java application, or other enterprise

bean, yet the call is to a ″local″ interface method of the enterprise bean . If access worked in a

development environment but not when deployed to WebSphere Application Server, for example, it might

be that the enterprise bean and its client were in the same JVM in development, but are in separate

processes after deployment.

To resolve this problem, contact the developer of the enterprise bean and determine whether the client call

is to a method in the local interface for the enterprise bean. If so, have the client code changed to call a

remote interface method, or to promote the local method into the remote interface.

References to enterprise beans with local interfaces are bound in a name space local to the server

process with the URL scheme of local:. To obtain a dump of a server local: name space, use the name

space dump utility described in the article ″Name space dump utility for java:, local: and server name

spaces.″

BeanNotReentrantException is thrown

This problem can occur because client code (typically a servlet or JSP file) is attempting to call the same

stateful SessionBean from two different client threads. This situation often results when an application

stores the reference to the stateful session bean in a static variable, uses a global (static) JSP variable to

refer to the stateful SessionBean reference, or stores the stateful SessionBean reference in the HTTP

session object. The application then has the client browser issue a new request to the servlet or JSP file

before the previous request has completed.

To resolve this problem, ask the developer of the client code to review the code for these conditions.

Chapter 10. EJB applications 199

http://java.sun.com/products/ejb/docs.html

CSITransactionRolledbackException / TransactionRolledbackException is thrown

An enterprise bean container creates these high-level exceptions to indicate that an enterprise bean call

could not successfully complete. When this exception is thrown, browse the JVM logs to determine the

underlying cause.

Some possible causes include:

v The enterprise bean might throw an exception that was not declared as part of its method signature.

The container is required to roll back the transaction in this case. Common causes of this situation are

where the enterprise bean or code that it calls creates a NullPointerException,

ArrayIndexOutOfBoundsException, or other Java runtime exception, or where a BMP bean encounters a

JDBC error. The resolution is to investigate the enterprise bean code and resolve the underlying

exception, or to add the exception to the problem method signature.

v A transaction might attempt to do additional work after being placed in a ″Marked Rollback″,

″RollingBack″, or ″RolledBack″ state. Transactions cannot continue to do work after they are set to one

of these states. This situation occurs because the transaction has timed out which, often occurs

because of a database deadlock. Work with the application database management tools or

administrator to determine whether database transactions called by the enterprise bean are timing out.

v A transaction might fail on commit due to dangling work from local transactions. The local transaction

encounters some ″dangling work″ during commit. When a local transactions encounters an ″unresolved

action″ the default action is to ″rollback″. You can adjust this action to ″commit″ in an assembly tool.

Open the enterprise bean .jar file (or the EAR file containing the enterprise bean) and select the

Session Beans or Entity Beans object in the component tree on the left. The Unresolved Action property

is on the IBM Extensions tab of the container properties.

Attempt to start EJB module fails with ″javax.naming.NameNotFoundException

dataSourceName_CMP″exception

This problem can occur because:

v When the DataSource resource was configured, container managed persistence was not selected.

– To confirm this problem, in the administrative console, browse the properties of the data source given

in the NameNotFoundException. On the Configuration panel, look for a check box labeled Container

Managed Persistence.

– To correct this problem, select the check box for Container Managed Persistence.
v If container managed persistence is selected, it is possible that the CMP DataSource could not be

bound into the namespace.

– Look for additional naming warnings or errors in the status bar, and in the hosting application server

JVM logs. Check any further naming-exception problems that you find by looking at the topic Cannot

look up an object hosted by WebSphere Application Server from a servlet, JSP file, or other client.

Transaction [tran ID] has timed out after 120 seconds accessing an enterprise

bean

This error can occur when a client executes a transaction on a CMP or BMP enterprise bean.

v The default timeout value for enterprise bean transactions is 120 seconds. After this time, the

transaction times out and the connection closes.

v If the transaction legitimately takes longer than the specified timeout period, go to Manage Application

Servers > server_name, select the Transaction Service properties page, and look at the property

Total transaction lifetime timeout. Increase this value if necessary and save the configuration.

Symptom:CNTR0001W: A Stateful SessionBean could not be passivated

This error can occur when a Connection object used in the bean is not closed or nulled out.

To confirm this is the problem, look for an exception stack in the JVM log for the EJB container that hosts

the enterprise bean, and looks similar to:

200 Administering applications and their environment

[time EDT] <ThreadID> StatefulPassi W CNTR0001W:

A Stateful SessionBean could not be passivated: StatefulBeanO

(BeanId(XXX#YYY.jar#ZZZZ, <ThreadID>),

state = PASSIVATING) com.ibm.ejs.container.passivator.StatefulPassivator@<ThreadID>

java.io.NotSerializableException: com.ibm.ws.rsadapter.jdbc.WSJdbcConnection

 at java.io.ObjectOutputStream.outputObject((Compiled Code))

 at java.io.ObjectOutputStream.writeObject(ObjectOutputStream.java(Compiled Code))

 at java.io.ObjectOutputStream.outputClassFields((Compiled Code))

 at java.io.ObjectOutputStream.defaultWriteObject((Compiled Code))

 at java.io.ObjectOutputStream.outputObject((Compiled Code))

 at java.io.ObjectOutputStream.writeObject(ObjectOutputStream.java(Compiled Code))

 at com.ibm.ejs.container.passivator.StatefulPassivator.passivate((Compiled Code))

 at com.ibm.ejs.container.StatefulBeanO.passivate((Compiled Code)

 at com.ibm.ejs.container.activator.StatefulASActivationStrategy.atUnitOfWorkEnd

 ((Compiled Code))

 at com.ibm.ejs.container.activator.Activator.unitOfWorkEnd((Compiled Code))

 at com.ibm.ejs.container.ContainerAS.afterCompletion((Compiled Code)

where XXX,YYY,ZZZ is the Bean’s name, and <ThreadID> is the thread ID for that run.

To correct this problem, the application must close all connections and set the reference to null for all

connections. Typically this activity is done in the ejbPassivate() method of the bean. See the enterprise

bean specification mandating this requirement, specifically section 7.4 in the EJB specification Version 2.1.

Also, note that the bean must have code to reacquire these connections when the bean is reactivated.

Otherwise, there are NullPointerExceptions when the application tries to reuse the connections.

Symptom: org.omg.CORBA.BAD_PARAM: Servant is not of the expected type.

minor code: 4942F21E completed: No

This error can be returned to a client program when the program attempts to execute an EJB method.

Typically this problem is caused by a mismatch between the interface definition and implementation of the

client and server installations, respectively.

Another possible cause is when an application server is set up to use a single class loading scheme. If an

application is uninstalled while the application server remains active, the classes of the uninstalled

application are still loaded in the application server. If you change the application, redeploy and reinstall it

on the application server, the previously loaded classes become back level. The back level classes cause

a code version mismatch between the client and the server.

To correct this problem:

1. Change the application server class loading scheme to multiple.

2. Stop and restart the application server and try the operation again.

3. Make sure the client and server code version are the same.

Using access intent policies

You can use access intent policies to help the product runtime environment manage various aspects of

Enterprise JavaBeans (EJB) persistence.

You apply access intent policies to EJB Version 2.0 (and later) entity beans and their methods by using an

application assembly tool. A set of default access intent policies comes with the Application Server Toolkit

(AST) .

1. Apply default access intent to CMP entity beans. For more information, see the online help available

with the Application Server Toolkit.

2. Apply access intent policies to methods of CMP entity beans.

Chapter 10. EJB applications 201

Access intent policies

An access intent policy is a named set of properties (access intents) that governs data access for

Enterprise JavaBeans (EJB) persistence. You can assign policies to an entity bean and to individual

methods on an entity bean’s home, remote, or local interfaces during assembly. You can set access

intents only within EJB Version 2.x-compliant modules for entity beans with CMP Version 2.x.

This product supplies a number of access intent policies that specify permutations of read intent and

concurrency control; the pessimistic/update policy can be qualified further. The selected policy determines

the appropriate isolation level and locking strategy used by the run time environment.

transition: Access intent policies are specifically designed to supplant the use of isolation level and

access intent method-level modifiers found in the extended deployment descriptor for EJB

version 1.1 enterprise beans. You cannot specify isolation level and read-only modifiers for

EJB version 2.x enterprise beans.

Access intent policies configured on an entity basis define the default access intent for that entity. The

default access intent controls the entity unless you specify a different access intent policy based on either

method-level configuration or application profiling.

Note: Method level access intent has been deprecated for Version 6.

You can use application profiling or method level access intent policies to control access intent more

precisely. Method-level access intent policies are named and defined at the module level. A module can

have one or many such policies. Policies are assigned, and apply, to individual methods of the declared

interfaces of entity beans and their associated home interfaces. A method-based policy is acted upon by

the combination of the EJB container and persistence manager when the method causes the entity to

load.

For entity beans that are backed by tables with nullable columns, use an optimistic policy with caution. The

top down default mapping excludes nullable fields. You can override this when doing a meet-in-middle

mapping. The fields used in overqualified updates are specified in the ejb-rdb mapping. If nullable columns

are selected as overqualified columns, then partial update should also be selected.

Note: When using DB2 for z/OS Version 8, nullable OCC columns create no problems. This is true for

JDBC and SQLJ deploy options, and partial and full update.

An entity that is configured with a read-only policy that causes a bean to be activated can cause problems

if updates are attempted within the same transaction. Those changes are not committed, and the process

throws an exception because data integrity might be compromised.

Concurrency control

Concurrency control is the management of contention for data resources. A concurrency control scheme is

considered pessimistic when it locks a given resource early in the data-access transaction and does not

release it until the transaction is closed. A concurrency control scheme is considered optimistic when locks

are acquired and released over a very short period of time at the end of a transaction.

The objective of optimistic concurrency is to minimize the time over which a given resource would be

unavailable for use by other transactions. This is especially important with long-running transactions, which

under a pessimistic scheme would lock up a resource for unacceptably long periods of time.

Under an optimistic scheme, locks are obtained immediately before a read operation and released

immediately afterwards. Update locks are obtained immediately before an update operation and held until

the end of the transaction.

To enable optimistic concurrency, this product uses an overqualified update scheme to test whether the

underlying data source has been updated by another transaction since the beginning of the current

202 Administering applications and their environment

transaction. With this scheme, the columns marked for update and their original values are added explicitly

through a WHERE clause in the UPDATE statement so that the statement fails if the underlying column

values have been changed. As a result, this scheme can provide column-level concurrency control;

pessimistic schemes can control concurrency at the row level only.

Optimistic schemes typically perform this type of test only at the end of a transaction. If the underlying

columns have not been updated since the beginning of the transaction, pending updates to

container-managed persistence fields are committed and the locks are released. If locks cannot be

acquired or if some other transaction has updated the columns since the beginning of the current

transaction, the transaction is rolled back: All work performed within the transaction is lost.

Pessimistic and optimistic concurrency schemes require different transaction isolation levels. Enterprise

beans that participate in the same transaction and require different concurrency control schemes cannot

operate on the same underlying data connection.

best-practices: Whether or not to use optimistic concurrency depends on the type of transaction.

Transactions with a high penalty for failure might be better managed with a pessimistic

scheme. (A high-penalty transaction is one for which recovery would be risky or

resource-intensive.) For low-penalty transactions, it is often worth the risk of failure to

gain efficiency through the use of an optimistic scheme. In general, optimistic

concurrency is more efficient when update collisions are expected to be infrequent;

pessimistic concurrency is more efficient when update collisions are expected to occur

often.

Read-ahead hints

Read-ahead schemes enable applications to minimize the number of database round trips by retrieving a

working set of container-managed persistence (CMP) beans for the transaction within one query.

Read-ahead involves activating the requested CMP beans and caching the data for their related beans,

which ensures that data is present for the beans that an application most likely needs next. A read-ahead

hint is a representation of the related beans to read. The hint is associated with the findByPrimaryKey

method for the requested bean type, which must be an EJB 2.x-compliant CMP entity bean.

A read-ahead hint takes the form of a character string. You do not have to provide the string; the wizard

generates it for you based on the container-managed relationships (CMRs) that are defined for the bean.

The following example is provided as supplemental information only. Suppose a CMP bean type A has a

finder method that returns instances of bean A. A read-ahead hint for this method is specified using the

following notation: RelB.RelC; RelD

Interpret the preceding notation as follows:

v Bean type A has a CMR with bean types B and D.

v Bean type B has a CMR with bean type C.

For each bean of type A that is retrieved from the database, its directly-related B and D beans and its

indirectly-related C beans are also retrieved. The order of the retrieved bean data columns in each row of

the result set is the same as the order in the read-ahead hint: an A bean, a B bean (or null), a C bean (or

null), a D bean (or null). For hints in which the same relationship is mentioned more than once (for

example, RelB.RelC;RelB.RelE), the data columns for a bean occur only once in the result set, at the

position the bean first occupies in the hint.

The tokens shown in the notation (RelB and so on) must be CMR field names for the relationships, as

defined in the deployment descriptor for the bean. In indirect relationships such as RelB.RelC, RelC is a

CMR field name that is defined in the deployment descriptor for bean type B.

A single read-ahead hint cannot refer to the same bean type in more than one relationship. For example, if

a Department bean has an employees relationship with the Employee bean and also has a manager

relationship with the Employee bean, the read-ahead hint cannot specify both employees and manager.

Chapter 10. EJB applications 203

For more information about how to set read-ahead hints, see the documentation for the Rational

Application Developer product.

Run-time behaviors of read-ahead hints

When developing your read-ahead hints, consider the following tips and limitations:

v Read-ahead hints on long or complex paths can result in a query that is too complex to be useful.

Read-ahead hints on root or leaf inheritance mappings need particular care. Add up the number of

tables that potentially comprise a read-ahead preload to gauge the complexity of the join operations that

are required. Consider if the resulting statement constitutes a reasonable query on your target

database.

v Read-ahead hints do not work in the following cases:

– Preload paths across M:N relationships

– Preload paths across recursive enterprise bean relationships or recursive fk relationships

– When a read-head hint applies to a SELECT FOR UPDATE statement that requires a table join in a

database that does not support the combination of those two operations.

Generally, the persistence manager issues a SELECT FOR UPDATE statement for a bean only if the

bean has an access intent that enforces strict locking policies. Strict locking policies require SELECT

FOR UPDATE statements for database select queries. If the database table design requires a join

operation to fulfill the statement, many databases issue exceptions because these databases do not

support table joins with SELECT FOR UPDATE statements. In those cases, WebSphere Application

Server does not implement a read-ahead hint. If the database does provide that support, Application

Server implements the read-ahead hints that you configure.

DB2 Universal Database V8.2 supports SELECT FOR UPDATE statements with table joins.

– When a read-ahead hint contains a table join

Different access intents can result in requiring a SELECT FOR UPDATE statement. Check the matrix

on the JDBC driver and SELECT FOR UPDATE support to see if readAhead is enabled.

Database deadlocks caused by lock upgrades

To avoid databse deadlocks caused by lock upgrades, you can change the access intent policy for entity

beans from the default of wsPessimisticUpdate-WeakestLockAtLoad to wsPessimisticUpdate or can use

an optimistic locking approach.

When accessing data in a database concurrently, an application must be aware of and prepared for

database locking that must occur to insure the integrity of the data.

If an entity bean performs a findByPrimaryKey (which by default obtains a ’Read’ lock in the database),

and the entity bean is updated within the same transaction, then a lock upgrade (to ’Exclusive’) occurs.

If this scenario occurs on multiple threads concurrently, then a deadlock can happen. This is because

multiple ’Read’ locks can be obtained concurrently, but one ’Exclusive’ lock can be obtained only when all

other locks have been dropped. Because all transactions are attempting the lock upgrade in this scenario,

this one ’Exclusive’ lock can never be obtained .

To avoid this problem, you can change the access intent policy for the entity bean from the default of

wsPessimisticUpdate-WeakestLockAtLoad to wsPessimisticUpdate. This change in access intent enables

the application to inform WebSphere and the database that the transaction will update the enterprise bean,

and so an ’Update’ lock is obtained immediately on the findByPrimaryKey. This avoids the lock upgrade

when the update is performed later.

The preferred technique to define access intent policies is to change the access intent for the entire entity

bean. You can change the access intent for the findByPrimaryKey method, but this is deprecated in

Version 6.0. (You might want to change the access intent for an individual method if, for example, the

entity bean is involved in some transactions that are read only.)

204 Administering applications and their environment

An alternative technique is to use an optimistic approach, where the findByPrimaryKey method does not

hold a ’Read’ lock, so there is no lock upgrade. However, this requires that the application is coded for

this, to handle rollbacks that could occur. Optimistic locking is really intended for applications that do not

expect database contention on a regular basis.

To change the access intent policy for an entity bean, you can use the assembly tool to set the ″Default

Access Intent for Entities 2.x (Bean Level)″ on the Access tab of the EJB Deployment Descriptor, as

described in “Applying access intent policies to beans” on page 207.

Access intent assembly settings

Access intent policies contain data-access settings for use by the persistence manager. Default access

intent policies are configured on the entity bean.

These settings are applicable only for EJB 2.x-compliant entity beans that are packaged in EJB

2.x-compliant modules. Connection sharing between beans with bean-managed persistence and those with

container-managed persistence is possible if they all use the same access intent policy.

Name:

Specifies a name for a mapping between an access intent policy and one or more methods.

Description:

Contains text that describes the mapping.

Methods - Name:

Specifies the name of an enterprise bean method, or the asterisk character (*). The asterisk is used to

denote all of the methods of an enterprise bean’s remote and home interfaces.

Methods - Enterprise bean:

Specifies which enterprise bean contains the methods indicated in the Name setting.

Methods - Type:

Used to distinguish between a method with the same signature that is defined in both the home and

remote interface. Use Unspecified if an access intent policy applies to all methods of the bean.

 Data type String

Range Valid values are Home, Remote,Local, LocalHome or

Unspecified

Methods - Parameters:

Contains a list of fully qualified Java type names of the method parameters. This setting is used to identify

a single method among multiple methods with an overloaded method name.

Applied access intent:

Specifies how the container must manage data access for persistence. Configurable both as a default

access intent for an entity and as part of a method-level access intent policy.

 Data type String

Default wsPessimisticUpdate-WeakestLockAtLoad. With Oracle,

this is the same as wsPessimisticUpdate.

Chapter 10. EJB applications 205

Range Valid settings are wsPessimisticUpdate,

wsPessimisticUpdate-NoCollision, wsPessimisticUpdate-
Exclusive, wsPessimisticUpdate-WeakestLockAtLoad,

wsPessimisticRead, wsOptimisticUpdate, or

wsOptimisticRead. Only wsPessimisticRead and

wsOptimisticRead are valid when class-level caching is

enabled in the EJB container.

This product supports lazy collections. For each segment of a collection, iterating through the collection

(next()) does not trigger a remote method call to retrieve the next remote reference. Two policies

(wsPessimisticUpdate and wsPessimisticUpdate-Exclusive) are extremely lazy; the collection increment

size is set to 1 to avoid overlocking the application. The other policies have a collection increment size of

25.

If an entity is not configured with an access intent policy, the run-time environment typically uses

wsPessimisticUpdate-WeakestLockAtLoad by default. If, however, the Lifetime in cache property is set on

the bean, the default value of Applied access intent is wsOptimisticRead; updates are not permitted.

Additional information about valid settings follows:

 Profile name Concurrency control Access type Transaction isolation

wsPessimisticRead (Note 1) pessimistic read For Oracle, read committed.

Otherwise, repeatable read

wsPessimisticUpdate (Note

2)

pessimistic update For Oracle, read committed.

Otherwise, repeatable read

wsPessimisticUpdate-

Exclusive (Note 3)

pessimistic update serializable

wsPessimisticUpdate-

NoCollision (Note 4)

pessimistic update read committed

wsPessimisticUpdate-

WeakestLockAtLoad (Note

5)

pessimistic update Repeatable read

wsOptimisticRead optimistic read read committed

wsOptimisticUpdate (Note

6)

optimistic update read committed

Notes:

1. Read locks are held for the duration of the transaction.

2. The generated SELECT FOR UPDATE query grabs locks at the beginning of the transaction.

3. SELECT FOR UPDATE is generated; locks are held for the duration of the transaction.

4. A plain SELECT query is generated. No locks are held, but updates are permitted. Use cautiously. This intent

enables execution without concurrency control.

5. Where supported by the backend, the generated SELECT query does not include FOR UPDATE; locks are

escalated by the persistent store at storage time if updates were made. Otherwise, the same as

wsPessimisticUpdate.

6. Generated overqualified-update query forces failure if CMP column values have changed since the beginning of

the transaction.

Be sure to review the rules for forming overqualified-update query predicates. Certain column types (for example,

BLOB) are ineligible for inclusion in the overqualified-update query predicate and might affect your design.

206 Administering applications and their environment

Access intent for both entity bean types

Container-managed persistence (CMP) developers can use access intent to provide hints on how the

application server run time should manage the details of persistence without having to explicitly manage

any of the persistence logic from within their application.

Using the access intent service is also an option for programmers who develop bean-managed persistence

(BMP) entity beans. Because the only meaningful difference between BMP and CMP components is the

mechanism that provides the persistence logic, BMP beans leverage access intent hints in the same

manner as the EJB container manages accent intent for CMP beans. This ability becomes especially

important when BMP entities and CMP entities want to share connections. BMP beans configured with the

same concurrency as the CMP beans and implemented to the same isolation level mapping as the CMP

can share connections.

Developers can apply access intent policies to BMP entity beans as well as to CMP entity beans. It is

expected that BMP developers use only those access intent attributes that are important to a particular

BMP bean. The access intent service interface is bound into the java:comp namespace for each particular

BMP bean. The access intent policy retrieved from the access intent service is current from the time that

the ejbLoad process is called until the time that the ejbStore process completes its invocation.

Applying access intent policies to beans

You can apply an access intent policy to an application’s entity beans through the assembly tool.

Note: This is the preferred technique to define access intent policies. Method-level access intent is

deprecated in Version 6.0.

 1. Start the Application Server Toolkit.

 2. Optional: Open the J2EE perspective to work with J2EE projects. Click Window > Open

Perspective > Other > J2EE.

 3. Optional: Open the Project Explorer view. Click Window > Show View > Project Explorer. Another

helpful view is the Navigator view (Window > Show View > Navigator).

 4. Create a new application EAR file or edit an existing one.

For example, to change attributes of an existing application, use the import wizard to import an EAR

file. To start the import wizard:

a. Select File > Import > EAR file > Next

b. Select the EAR file.

c. Create a WebSphere Application Server v6.0 type of Server Runtime. Select New to open the

New Server Runtime Wizard and follow the instructions.

d. In the Target server field, select WebSphere Application Server v6.0 type of Server Runtime.

e. Select Finish

 5. In the Project Explorer view of the J2EE perspective, right-click Deployment Descriptor: EJB

Module Name under the EJB module for the bean instance, then select Open With > Deployment

Descriptor Editor. A property dialog notebook for the EJB project is displayed in the property pane.

 6. Select the Access tab.

 7. In the Access Intent for Entities 2.x (Bean Level) panel, select the name of the bean.

 8. On the right side of the Access Intent for Entities 2.x (Method Level) panel, select Add. The Add

Access Intent panel displays.

 9. In the Access intent name field, select wsPessimisticUpdate from the drop-down list.

10. Optional: Enter a Description to help you remember what this policy does.

11. Optional: Change the Persistence Option setting

12. Click Finish. The access intent policy for the entity bean is shown in the Access Intent for Entities

2.x (Bean Level) panel

Chapter 10. EJB applications 207

Configuring read-read consistency checking with the assembly tools

Read-read consistency checking only applies to LifeTimeInCache beans whose data is read from another

transaction. For the Access Intents that are for repeatable read (RR), this means the product checks that

the data is consistent with that in the data store, and ensures that no one updates it after the checking.

For the Access Intents that are for read committed (RC), this means the product checks that the data is

consistent at the point of checking, it does not guarantee that the data does not change after the

checking. This makes the behavior of the LifeTimeInCache bean the same as non-LifeTimeInCache beans.

To perform this checking, you need to configure CMP entity beans with read-read consistency checking.

You can do this using the Application Server Toolkit.

 1. Start the Application Server Toolkit.

 2. In the Project Explorer view of the J2EE perspective, right-click the Deployment Descriptor: EJB

Module Name under the EJB module for the bean instance, then select Open With > Deployment

Descriptor Editor. A property dialog notebook for the EJB project is displayed in the property pane.

 3. Select the Access tab. The Add Access Intent window appears. There are two areas of the panel that

deal with adding access intent:

v Default Access Intent for Entities 2.x (Bean Level)

v Access Intent for Entities 2.x (Method Level)

 4. Select the Bean or Method level. Another access intent window appears where you can set the

properties you wish to use.

 5. Use the dropdown list to select the Access intent name.

 6. Optional: Enter a description.

 7. Check the Persistence Option box.

 8. Check the Verify Read Only Data box.

 9. Use the dropdown list to select your choice for read-read consistency checking. You have three

options:

NONE No read-read checking is done.

AT_TRAN_BEGIN

During ejbLoad, if the data is from cache, check the database to ensure that the data of the

bean (with proper locking based on access intent’s concurrency control attribute) has not

changed since the last load.

AT_TRAN_END

At the end of transaction, if the bean is not changed and did not load by the current

transaction, check the database to ensure that the data of the bean has not changed from

last load (with proper locking based on access intent’s concurrency control attribute.) If the

data has changed, fail the transaction.

10. Select Finish.

Examples: read-read consistency checking

Read-read consistency checking only applies to LifeTimeInCache beans whose data is read from another

transaction.

Usage scenario

For the Access Intents that are for repeatable read (RR), this means the product checks that the data is

consistent with that in the data store and ensures that no one updates it after the checking. For the Access

Intents that are for read committed (RC), this means the product checks that the data is consistent at the

point of checking, but it does not guarantee that the data does not change after the checking. This makes

the behavior of the LifeTimeInCache bean the same as non-LifeTimeInCache beans.

208 Administering applications and their environment

You have three options for setting consistency checking, as shown in the following scenarios concerning

the calculation of interest in ″Ann’s″ bank account. In each case, the data store is shared by this EJB CMP

application (to calculate the interest) and other applications, such as EJB BMP, JDBC, or legacy

applications. Also in each case, the EJB Account is configured as a “long-lifetime” bean.

NONE

v The server is started.

v User 1 in Transaction 1 calls Account.findByPrimaryKey(″10001″), account data for Ann is read from the

database, with a balance of $100.

v Ann’s record is cached by the persistence manager (PM) on the server.

v User 2 writes a JDBC call and changes the balance to $120.

v User 3 in Transaction 2 calls Account.findByPrimaryKey() for account ″10001″, Ann’s data is read from

cache, with a balance of $100.

v Calculate Ann’s interest, but the result might not be correct because of the data integrity issue.

Read-read checking AT_TRAN_BEGIN

v The server is started.

v User 1 in Transaction 1 calls Account.findByPrimaryKey(″10001″), account data for Ann is read from the

database, with a balance of $100.

v Ann’s record is cached by the persistence manager (PM) on the server.

v User 2 writes a JDBC call and changes the balance to $120.

v User 3 in Transaction 2 calls Account.findByPrimaryKey() for account ″10001″, Ann’s data is read from

cache, with a balance of $100.

v PM performs read-read check on Ann’s account and finds that the balance of 100 is changed. It issues

a database query to retrieve balance of $120, and Ann’s data in the cache is refreshed.

v Calculate Ann’s interest, proceed with the transaction because data integrity is protected.

Read-read checking AT_TRAN_END

v The server is started.

v User 1 in Transaction 1 calls Account.findByPrimaryKey(″10001″), account data for Ann is read from the

database, with a balance of $100.

v Ann’s record is cached by the persistence manager (PM) on the server.

v User 2 writes a JDBC call and changes the balance to $120.

v User 3 in Transaction 2 calls Account.findByPrimaryKey() for account ″10001″, Ann’s data is read from

database, with balance of $100.

v Calculate Ann’s interest.

v During end of transaction 2, PM performs read-read check on Ann’s account and finds that the balance

of 100 is changed.

v PM rolls back the transaction and invalidates the cache. The transaction fails and again data integrity is

protected.

Access intent service

Access intent is a WebSphere Application Server runtime service that enables you to more precisely

manage an application’s persistence.

The access intent service defines a set of declarative annotations used by the Enterprise JavaBeans (EJB)

container and its agents to make performance optimizations for entity bean access. These annotations are

organized into sets called access intent policies.

Chapter 10. EJB applications 209

Access intent policies contain a set of annotations considered as hints by the EJB container and its

agents. Most access intent policies are hints representing high-level abstractions that can be mapped to a

specific back end resource manager. It is the responsibility of the EJB persistence machinery to ensure the

necessary concurrency control, connection, and cache management when carrying out the persistence

details. The EJB persistence manager can use access intent hints to make better performance decisions

when carrying out its assigned task. A smaller number of access intents are hints to the EJB container,

influencing the management of EJB collections.

Generally you configure bean level access intent for your applications. You can also apply access intent

policies to beans within the scope of application profiles. Consequently, you can configure beans with

multiple and opposing access intent policies. The application profiling documentation explains in more

detail how to configure an application to apply a particular access intent policy to a bean for one request,

then apply another access intent policy to the same bean for a different request.

Support for applying access intent policies at the method level is deprecated in WebSphere Application

Server Version 6.0. In this practice of configuring access intent, you apply a policy to methods within the

scope of an EJB module so that the policy becomes the default access intent for all requests upon those

methods.

Access intent with BMP entity beans

Access intent’s declarative functionality provides great power to you as a CMP entity bean developer. You

can provide hints on how WebSphere Application Server is to manage the details of persistence without

having to explicitly manage any of the persistence logic from within the application.

There are situations, however, in which you might need to develop BMP entity beans. Because the only

meaningful difference between BMP and CMP components is who provides the persistence logic, BMP

entity beans should be able to leverage access intent hints just as WebSphere Application Server does on

behalf of CMP entity beans. BMP entity beans that use the access intent service participate in application

profiling; that is, the value of the access intent attributes can differ from request to request, allowing the

BMP entity bean to seamlessly modify its persistence strategy.

You can apply access intent policies to BMP entity bean methods as well as CMP entity bean methods.

Because access intent hints are not contractual in nature, there is no obligation for a BMP entity bean to

exploit them. BMP entity beans are expected to use only those access intent attributes that are important

to that particular bean.

The current access intent policy is bound into the java:comp namespace for a particular BMP entity bean.

That policy is current only for the duration of the method call during which the access intent policy was

retrieved. In a typical scenario, you would cache the access type during invocation of the ejbLoad()

method so that appropriate actions can be taken during invocation of the ejbStore() method.

Access intent design considerations

Use the access intent service to solve clear performance problems. Identify usage patterns that lead to

poor application performance and apply appropriate access intent policies.

best-practices: Refrain from over-tuning an application. You can introduce errors by incorrectly using the

access intent service. For example, misuse of the wsPessimisticUpdate-NoCollision policy

can result in lost updates; inappropriately setting the collection increment value can

introduce performance issues; and problem determination is more difficult when an

application is confusingly configured with multiple access intent policies.

Note: Clarity and simplicity should be your guiding principles when using the access intent service. This is

even more important when applying access intent polices within the scope of application profiles.

Even though access intent policies can be configured on any method of an entity bean, some attributes of

a policy can only be leveraged by the runtime environment under certain conditions. For example,

210 Administering applications and their environment

concurrency and access intent are only used for CMP entity beans when the ejbLoad() method is driven to

open a connection to, and read data from, a given resource; that data is cached and used to drive the

proper queries during invocation of the ejbStore() method. Read-ahead hints are only used during the

execution of a finder for a bean. Finally, the collection increment and resource manager prefetch increment

are only used on multi-object finders. Configuring policies on methods that will not use the policy is not an

error (only certain attributes of any policy are used, even when the policy is appropriately applied to a

method). However, configuring policies unnecessarily throughout an application obscures the design of the

application and complicates the maintenance of the application.

Applying access intent policies to methods

You apply an access intent policy to a method, or set of methods, in an application’s entity beans through

the assembly tool.

Note: Method-level access intent is deprecated in Version 6.0.

 1. Start the Application Server Toolkit.

 2. Optional: Open the J2EE perspective to work with J2EE projects. Click Window > Open

Perspective > Other > J2EE.

 3. Optional: Open the Project Explorer view. Click Window > Show View > Project Explorer. Another

helpful view is the Navigator view (Window > Show View > Navigator).

 4. Create a new application EAR file or edit an existing one.

For example, to change attributes of an existing application, use the import wizard to import an EAR

file. To start the import wizard:

a. Select File > Import > EAR file > Next

b. Select the EAR file.

c. Create a WebSphere Application Server v6.0 type of Server Runtime. Select New to open the

New Server Runtime Wizard and follow the instructions.

d. In the Target server field, select WebSphere Application Server v6.0 type of Server Runtime.

e. Select Finish

 5. In the Project Explorer view of the J2EE perspective, right-click the Deployment Descriptor: EJB

Module Name under the EJB module for the bean instance, then select Open With > Deployment

Descriptor Editor. A property dialog notebook for the EJB project is displayed in the property pane.

 6. Select the Access tab.

 7. On the right side of the Access Intent for Entities 2.x (Method Level) panel, select Add. The Add

Access Intent panel displays.

 8. Specify the Name for your new intent policy.

 9. Select the Access intent name from the drop-down list.

10. Enter a Description to help you remember what this policy does.

11. Optional: Select Read Ahead Hint. A single access intent read ahead hint might not refer to the

same bean type in more than one relationship. For example, if a Department enterprise bean has a

relationship employees with the Employee enterprise bean, and also has a relationship manager with

the Employee enterprise bean, then a read ahead hint cannot specify both employees and manager.

12. Click Next. The next Add Access Intent panel displays, with optional attributes.

13. Optional: Decide whether or not to overwrite these optional access intent attributes. Click on those

you want to change.

14. Click Next. The next Add Access Intent panel, with a list of Enterprise Beans, displays.

15. Select one or more Enterprise Beans from the list.

Note: If you selected Read Ahead Hint in an earlier step, you can only select ONE bean at this

step.

16. Click Next. The next Add Access Intent panel, with a list of methods, displays.

Chapter 10. EJB applications 211

17. Select the methods you want to use.

18. If you DID NOT select Read Ahead Hint in an earlier step, click Finish. If you DID select the Read

Ahead Hint option, you can click Next to specify your Read Ahead Hint for the specified bean. The

next Add Access Intent panel, with a list of EJB preload paths, displays.

19. Edit the EJB preload path by selecting relationship roles from the Relationship roles: window.

20. Click Finish. A new entry is created in the Access Intent for Entities 2.x (Method Level) panel

Using the AccessIntent API

This task describes how to programmatically retrieve and call the AccessIntent API during the execution of

BMP entity bean methods.

1. Look up the current access intent in the namespace. For example:

InitialContext ic = new InitialContext();

AccessIntent ai = ic.lookup("java:comp/websphere/AppProfile/AccessIntent");

2. Call the necessary get() methods. For example:

int concurrency = ai.getConcurrencyControl();

int accessType = ai.getAccessType();

if ((concurrency == AccessIntent.CONCURRENCY_CONTROL_PESSIMISTIC)

 && (accessType == AccessIntent.ACCESS_TYPE_UPDATE)) {

 int exclusive = ai.getPessimisticUpdateLockHint();

 // . . .

}

// . . .

Note: The access intent object reference retrieved from the java:comp lookup is current for the duration of

the method in which the reference was looked up. Depending on how you configured the

application profile, subsequent calls of the same method might not retrieve the same access intent

reference. You can only look up the object reference during the call of a BMP entity bean’s method;

the reference does not exist during a request on a CMP entity bean. Therefore, access intent object

references should not be cached beyond, or used outside of, the scope of the execution of any

given BMP method.

AccessIntent interface

The AccessIntent interface is available to BMP entity beans.

The following JNDI lookup allows BMP entity beans to access the AccessIntent interface:

java:comp/websphere/AppProfile/AccessIntent

AccessIntent interface

package com.ibm.websphere.appprofile.accessintent;

/**

* This interface defines the essential access intents

* available at run time.

*/

public interface AccessIntent {

/**

* Returns the concurrency control intent, which indicates

* the application prefers either pessimistic or optimistic

* concurrency control when accessing the current component

* in the context of the current transaction.

*/

public int getConcurrencyControl();

public final int CONCURRENCY_CONTROL_PESSIMISTIC = 1;

public final int CONCURRENCY_CONTROL_OPTIMISTIC = 2;

/**

* Returns access type intent, which indicates the application

212 Administering applications and their environment

* intends either update or read access of the current component

* in the context of the current transaction.

*/

public int getAccessType();

public final int ACCESS_TYPE_UPDATE= 1;

public final int ACCESS_TYPE_READ = 2;

/**

* Returns an integer value that indicates that the run time should

* assume that there will be no collision on retrieved rows.

*/

public int getPessimisticUpdateLockHint();

public final static int PESSIMISTIC_UPDATE_LOCK_HINT_NOCOLLISION = 1;

public final static int PESSIMISTIC_UPDATE_LOCK_HINT_WEAKEST_LOCK_AT_LOAD = 2;

public final static int PESSIMISTIC_UPDATE_LOCK_HINT_NONE = 3;

public final static int PESSIMISTIC_UPDATE_LOCK_HINT_EXCLUSIVE = 4;

/*

* Returns an integer value that indicates that the run time should

* assume that there will be collisions on retrieved rows.

*/

public int getPessimisticUpdateLockHint();

public final static int PESSIMISTIC_UPDATE_LOCK_HINT_NOCOLLISION = 1;

public final static int PESSIMISTIC_UPDATE_LOCK_HINT_WEAKEST_LOCK_AT_LOAD = 2;

public final static int PESSIMISTIC_UPDATE_LOCK_HINT_NONE = 3;

public final static int PESSIMISTIC_UPDATE_LOCK_HINT_EXCLUSIVE = 4;

/**

* Returns the collection access intent, which indicates the

* application intends to access the objects returned by the

* currently executing finder in either serial or random fashion.

*/

public int getCollectionAccess();

public final int COLLECTION_ACCESS_RANDOM = 1;

public final int COLLECTION_ACCESS_SERIAL = 2;

/**

* Returns the collection scope, which indicates the maximum

* lifespan of a lazy collection.

*/

public int getCollectionScope();

public final int COLLECTION_SCOPE_TRANSACTION = 1;

public final int COLLECTION_SCOPE_ACTIVITYSESSION = 2;

public final int COLLECTION_SCOPE_TIMEOUT = 3;

/**

* Returns the timeout value in seconds when collectionScope is Timeout.

*/

public int getCollectionTimeout();

/**

* Returns the number of elements the application requests be contained

* in each segment of the element collection returned by the currently

* executing finder.

*/

public int getCollectionIncrement();

/**

* Returns the ReadAheadHint requested by the application for the currently

* executing finder.

*/

public ReadAheadHint getReadAheadHint();

/**

* Returns the number of elements the application requests be contained in

* each segment of a query made on a database.

Chapter 10. EJB applications 213

*/

public int getResourceManagerPreFetchIncrement();

}

Access intent exceptions

The exceptions thrown in response to the application of access intent policies are listed.

com.ibm.ws.ejbpersistence.utilpm.PersistenceManagerException

If the method that drives the ejbLoad() method is configured to be read-only but updates are then

made within the transaction that loaded the bean’s state, an exception is thrown during invocation

of the ejbStore() method, and the transaction is rolled back. Likewise, the ejbRemove() method

cannot succeed in a transaction that is set as read-only. If an update hint is applied to methods of

entity beans with bean-managed persistence, the same behavior and exception results. The

forwarded exception object contains the message string PMGR1103E: update instance level read

only bean beanName

 This exception is also thrown if the applied access intent policy cannot be honored because a

finder, ejbSelect, or container-managed relationship (CMR) accessor method returns an inherently

read-only result. The forwarded exception object contains the message string PMGR1001: No such

DataAccessSpec - methodName

 The most common occurrence of this error is when a custom finder that contains a read-only EJB

Query Language (EJB QL) statement is called with an applied access intent of

wsPessimisticUpdate or wsPessimisticUpdate-Exclusive. These policies require the use of a USE

AND KEEP UPDATE LOCKS clause on the SQL SELECT statement to be executed, but a

read-only query cannot support USE AND KEEP UPDATE LOCKS. Other examples of read-only

queries include joins; the use of ORDER BY, GROUP BY, and DISTINCT keywords.

 To eliminate the exception, edit the EJB query so that it does not return an inherently read-only

result or change the access intent policy being applied.

v If an update access is required, change the applied access intent setting to

wsPessimisticUpdate-WeakestLockAtLoad or wsOptimisticUpdate.

v If update access is not truly required, use wsPessimisticRead or wsOptimisticRead.

v If connection sharing between entity beans is required, use wsPessimisticUpdate-
WeakestLockAtLoad or wsPessimisticRead.

com.ibm.websphere.ejb.container.CollectionCannotBeFurtherAccessed

If a lazy collection is driven after it is no longer in scope, and beyond what has already been

locally buffered, a CollectionCannotBeFurtherAccessed exception is thrown.

com.ibm.ws.exception.RuntimeWarning

If an application is configured incorrectly, a run-time warning exception is thrown as the application

starts; startup is ended. You can validate an application’s configuration by choosing the verify

function. Some examples of misconfiguration include:

v A method configured with two different access intent policies

v A method configured with an undefined access intent policy

Access intent best practices

When applying access intent policies to Enterprise JavaBeans (EJB) methods, consider the following

issues.

v Start by configuring the default access intent policy for an entity. After your application is built and

running, you can more finely tune certain access paths in your application using application profiling or

method-level access intent.

v Don’t mix access types. Avoid using both pessimistic and optimistic policies in the same transaction.

For most databases, pessimistic and optimistic policies use different isolation levels. This can result in

multiple database connections, which prevents you from taking advantage of the performance benefits

possible through connection sharing.

214 Administering applications and their environment

v Take care when applying wsPessimisticUpdate-NoCollision. This policy does not ensure data

integrity. No database locks are held, so concurrent transactions can overwrite each other’s updates.

Use this policy only if you can be sure that only one transaction will attempt to update persistent store

at any given time.

Frequently asked questions: Access intent

The following frequently asked questions involving access intent are answered.

I have not applied any access intent policies at all. My application runs just fine with a DB2

database, but it fails with an Oracle database with the following message:

com.ibm.ws.ejbpersistence.utilpm.PersistenceManagerException: PMGR1001E: No such

DataAccessSpec :FindAllCustomers. The backend datastore does not support the SQLStatement

needed by this AccessIntent: (pessimistic update-weakestLockAtLoad)(collections: transaction/25)

(resource manager prefetch: 0) (AccessIntentImpl@d23690a). Why?

If you have not configured access intent, all of your data is accessed under the default access intent policy

(wsPessimisticUpdate-WeakestLockAtLoad). On DB2 the weakest lock is share. On Oracle databases,

however, the weakest lock is update; this means that the SQL query must contain a FOR UPDATE clause.

To avoid this problem, try to apply an access intent policy that supports optimistic concurrency.

I am calling a finder method and I get an InconsistentAccessIntentException at run time. Why?

This can occur when you use method-level access intent policies to apply more control over how a bean

instance is loaded. This exception indicates that the entity bean was previously loaded in the same

transaction. This could happen if you called a multifinder method that returned the bean instance with

access intent policy X applied; you are now trying to load the second bean again by calling its

findByPrimaryKey method with access intent Y applied. Both methods must have the same access intent

policy applied.

Likewise, if the entity was loaded once in the transaction using an access intent policy configured on a

finder, you might have called a container-managed relationship (CMR) accessor method that returned the

entity bean configured to load using that entity’s default access intent.

To avoid this problem, ensure that your code does not load the same bean instance twice within the same

transaction with different access intent policies applied. Avoid the use of method-level access intent unless

absolutely necessary.

I have two beans in a container-managed relationship. I call findByPrimaryKey() on the first bean

and then call getBean2(), a CMR accessor method, on the returned instance. At that point, I get an

InconsistentAccessIntentException. Why?

You are probably using read-ahead. When you loaded the first bean, you caused the second bean to be

loaded under the access intent policy applied to the finder method for the first bean. However, you have

configured your CMR accessor method from the first bean to the second with a different access intent

policy. CMR accessor methods are really finder methods in disguise; the run-time environment behaves as

if you were trying to change the access intent for an instance you have already read from persistent store.

To avoid this problem, beans configured in a read-ahead hint are all driven to load with the same access

intent policy as the bean to which the read-ahead hint is applied.

I have a bean with a one-to-many relationship to a second bean. The first bean has a

pessimistic-update intent policy applied. When I try to add an instance of the second bean to the

first bean’s collection, I get an UpdateCannotProceedWithIntegrityException. Why?

Chapter 10. EJB applications 215

The second bean probably has a read intent policy applied. When you add the second bean to the first

bean’s collection, you are not updating the first bean’s state, you are implicitly modifying the second

bean’s state. (The second bean contains a foreign key to the first bean, which is modified.)

To avoid this problem, ensure that both ends of the relationship have an update intent policy applied if you

expect to change the relationship at run time.

Managing EJB containers

Each application server can have a single EJB container; one is created automatically for you when the

application server is created. The following steps are to be performed only as needed to improve

performance after the EJB application has been deployed.

1. Adjust EJB container settings.

2. Adjust EJB cache settings.

If adjustments do not improve performance, consider adjusting access intent policies for entity beans,

reassembling the module, and redeploying the module in the application.

EJB container settings

Use this page to configure and manage the EJB container of this application server.

To view this administrative console page, click Servers > Application Servers > serverName > EJB

Container Settings > EJB container.

Passivation directory

Specifies the directory into which the container saves the persistent state of passivated stateful session

beans. This directory must already exist. It is not automatically created.

Stateful session beans with an activation policy of TRANSACTION are passivated at the end of the

transaction in which they are enlisted, and stateful session beans with an activation policy of ONCE

(default) are passivated when the number of active bean instances becomes greater than the cache size

specified in the container configuration. When a stateful bean is passivated, the container serializes the

bean instance to a file in the passivation directory and discards the instance from the bean cache. If, at a

later time, a request arrives for the passivated bean instance, the container retrieves it from the

passivation directory, deserializes it, returns it to the cache, and dispatches the request to it. If any step

fails (for example, if the bean instance is no longer in the passivation directory), the method invocation

fails.

Inactive pool cleanup interval

Specifies the interval at which the container examines the pools of available bean instances to determine if

some instances can be deleted to reduce memory usage.

 Data type Integer

Units Milliseconds

Range 0 to 2 147 483 647

Default data source JNDI name

Specifies the JNDI name of a data source to use if no data source is specified during application

deployment. This setting is not applicable for EJB 2.x-compliant CMP beans.

Servlets and enterprise beans use data sources to obtain these connections. When configuring a

container, you can specify a default data source for the container. This data source becomes the default

data source used by any entity beans installed in the container that use container-managed persistence

(CMP).

216 Administering applications and their environment

The default data source for a container is secure. When specifying it, you must provide a user ID and

password for accessing the data source.

Specifying a default data source is optional if each CMP entity bean in the container has a data source

specified in its configuration. If a default data source is not specified and a CMP entity bean is installed in

the container without specifying a data source for that bean, applications cannot use that CMP entity bean.

Enable stateful session bean failover using memory-to-memory replication

Specifies that failover is enabled for all stateful session beans installed in this EJB container.

This checkbox is disabled until you define a replication domain. This selection has a hyperlink to help you

configure the replication settings. If no replication domains are configured, the link takes you to a panel

where you can create one. If at least one domain is configured, the link takes you to a panel where you

can select the replication settings to be used by the EJB container.

 Data type Checkbox

Default Unselected

Range Selected or unselected.

Initial state

Specifies the execution state requested when the server first starts.

 Data type String

Default Started

Range Valid values are Started and Stopped

EJB container system properties

In addition to the settings accessible from the administrative console, you can set the following system

property by command-line scripting.

com.ibm.websphere.ejbcontainer.poolSize

Specifies the size of the pool for the specified bean type. This property applies to stateless,

message-driven and entity beans. If you do not specify a default value, the container defaults of

50 and 500 are used.

 Set the pool size for a given entity bean as follows:

beantype=min,[H]max [:beantype=min,max...]

beantype is the J2EE name of the bean, formed by concatenating the application name, the #

character, the module name, the # character, and the name of the bean (that is, the string

assigned to the <ejb-name> field in the bean’s deployment descriptor). min and max are the

minimum and maximum pool sizes, respectively, for that bean type. Do not specify the square

brackets shown in the previous prototype; they denote optional additional bean types that you can

specify after the first. Each bean-type specification is delimited by a colon (:).

 Use an asterisk (*) as the value of beantype to indicate that all bean types are to use those values

unless overridden by an exact bean-type specification somewhere else in the string, as follows:

*=30,100

To specify that a default value be used, omit either min or max but retain the comma (,) between

the two values, as follows (split for publication):

SMApp#PerfModule#TunerBean=54,

 :SMApp#SMModule#TypeBean=100,200

You can specify the bean types in any order within the string.

com.ibm.websphere.ejbcontainer.allowEarlyInsert

Chapter 10. EJB applications 217

Note: This property is applicable to CMP 1.1 beans only.

By default, the EJB Container creates the entity bean representation in the database only after the

method ejbPostCreate(...) is called. However, some applications may rely on method ejbCreate(...)

to have created the entity bean in the database. For such a requirement, setting the JVM property

com.ibm.websphere.ejbcontainer.allowEarlyInsert to true overrides the default behavior.

Changing enterprise bean types to initialize at application start time

using the Application Server Toolkit

EJB types can be forced to initialize at application start time by setting a flag within the bean’s deployment

descriptor. If this flag is set to true, then the bean is initialized at application start time.

However, by default, the WebSphere Application Server’s Enterprise JavaBeans (EJB) Container delays

the initialization (loading and processing) of most EJB types until they are needed during runtime. This

delay helps to speed up the application start time.

1. Start the Application Server Toolkit.

2. Select EJB Deployment Descriptor.

3. In the property pane, select the WebSphere Extensions tab.

4. Check the box labeled Start EJB at Application Start.

5. Select OK.

Changing enterprise bean types to initialize at application start time

using the administrative console

All EJB types within a server can be forced to initialize at application start time by setting a system

property within the administrative console. If the value of this property is set to true, then all beans within

the server are initialized at each application’s start time.

However, by default, the WebSphere Application Server’s Enterprise JavaBeans (EJB) Container delays

the initialization (loading of classes and processing of deployment descriptor metadata) of most EJB types

until they are needed during run time. This delay helps to speed up the application start time.

 1. Open the administrative console.

 2. Select Servers.

 3. Select Application Servers.

 4. Select the server you want to configure.

 5. In the Server Infrastructure area, select Java and Process Management.

 6. In the Server Infrastructure area, select Process Definition.

 7. In the Additional Properties area, select Java Virtual Machine.

 8. In the Additional Properties area, select Custom Properties.

 9. Select the New box.

10. In the Name entry field, type com.ibm.websphere.ejbcontainer.initializeEJBsAtStartup.

11. In the Value entry field, type true. Entering true causes all Enterprise JavaBeans to initialize when

your application starts. Entering false causes initialization of all beans to be delayed.

Note: Setting com.ibm.websphere.ejbcontainer.initializeEJBsAtStartup to either true or false takes

precedence over any Start EJB at Application Start settings made on individual EJB types (see

“Changing enterprise bean types to initialize at application start time using the Application

Server Toolkit”).

12. Select OK.

218 Administering applications and their environment

Stateful session bean failover for the EJB container

WebSphere Application Server Version 6.0 enables you to construct applications with the assumption that

your applications using stateful session beans are not limited by unexpected server failures. This version

of the product utilizes the functions of the Data Replication Service (DRS) and Workload Management

(WLM) so you can enable stateful session bean failover.

Because you might not want to enable failover for every single stateful session bean installed in the EJB

container, you can override the EJB container settings at either the application or EJB module level. You

can either enable or disable failover at each of these levels. For example, consider the following situations:

v You want to enable failover for all applications except for a single application. To do this, you enable

failover at the EJB container level and override the setting at the application level to disable failover on

the single application.

v You want to enable failover for a single installed application. To do this, disable failover at the EJB

container level and then override the setting at the application level to enable failover on the single

application.

v You want to enable failover for all applications except for a single module of an application. To do this,

enable failover at the EJB container level, then override the setting at the module application level to

disable failover on the single module.

v You want to enable failover for a single installed EJB module. To do this, disable failover at the EJB

container level and then override the setting at the EJB module level to enable failover on the single

EJB module.

For information about enabling stateful session bean failover from the administrative console, see

“Enabling or disabling stateful session bean failover with the EJB container panel” on page 222, “Enabling

or disabling stateful session bean failover with the enterprise applications panel” on page 223, and

“Enabling or disabling stateful session bean failover with the EJB modules panel” on page 223.

Stateful session bean activation policy with failover enabled

WebSphere Application Server enables an application assembler to specify an activation policy to use for

stateful session beans. It is important to consider that the only time the EJB container prepares for failover

(by replicating the stateful session bean data using DRS) is when the stateful session bean is passivated.

If you configure the bean with an activate once policy, the bean is essentially never passivated. If you

configure the activate at transaction boundary policy, the bean is passivated whenever the transaction that

the bean is enlisted in completes. For stateful session bean failover to be useful, the activate at

transaction boundary policy is required.

Rather than forcing you to edit the deployment descriptor of every stateful session bean and reinstall the

bean, the EJB container simply ignores the configured activation policy for the bean when you enable

failover. The container automatically uses the activate at transaction boundary policy.

Stateful session bean use of container managed units of work or bean managed

units of work with failover enabled

The relevant ″units of work″ in this case are transactions and activity sessions. The product supports

stateful session bean failover for container managed transactions (CMT), bean managed transactions

(BMT), container managed activity sessions (CMAS), and bean managed activity sections (BMAS).

However, in the container managed cases, preparation for failover only occurs if trying to send a request

for an enterprise bean method invocation results in no connection to the server. Also, if the server fails

after a request is sent to it and acknowledged, failover does not occur. When a failure occurs in the middle

of a request or unit of work, WLM cannot safely fail over to another server without some compensation

code being executed by the application. When that happens, the application receives a Common Object

Request Broker Architecture (CORBA) exception and minor code telling it that transparent failover could

not occur because the failure happened during execution of a unit of work. The application should be

Chapter 10. EJB applications 219

written to check for the CORBA exception and minor code, and compensate for the failure. After the

compensation code executes, the application can retry the requests and if a path exists to a backup server

WLM routes the new request to a new primary server for the stateful session bean.

For more information, see CORBA minor codes .

The same is true for bean managed units of work (transactions or activity sessions). However, bean

managed work introduces a new possibility that needs to be considered.

For bean managed units of work, the failover process is not always able to detect that a BMT or BMAS

started by a stateful session bean method has not completed. Thus, it is possible that failover to a new

server can occur despite the unit of work failing during the middle of a transaction or session. Because the

unit of work is implicitly rolled back, WLM behaves as if it is safe to transparently fail over to another

server, when in fact some compensation code might be required. When this happens, the EJB container

detects this on the new server and initiates an exception. This exception occurs under the following

scenario:

1. A method of a stateful session bean using bean managed transaction or activity session calls begins

on a UserTransaction it obtained from the SessionContext. The method does some work in the started

unit of work, but does not complete the transaction or session before returning to the caller of the

method.

2. After invocation of the method started in step 1, the EJB container suspends the work started by the

method. This is the action required by Enterprise JavaBeans specification for bean managed units of

work when the bean is a stateful session bean.

3. The client starts several other methods on the stateful session bean. Each invocation causes the EJB

container to resume the suspended transaction or activity session, dispatch the method invocation, and

then suspend the work again before returning to the caller.

4. The client calls a method on the stateful session bean that completes the transaction or session

started in step 1.

This scenario depicts a sticky bean managed unit of work. The transaction or activity session sticks around

for more than a single stateful session bean method. If an application uses a sticky BMT or BMAS, and

the server fails after a sticky unit of work completes and before another sticky unit of work starts, failover

is successful. However, if the server fails before a sticky transaction or activity session completes, the

failover is not successful. Instead, when the failover process routes the stateful session bean request to a

new server, the EJB container detects that the failure occurred during an active sticky transaction or

activity session. At that time, the EJB container initiates an exception.

Essentially, this means that failover for both container managed and bean managed units of work is not

successful if the transaction or activity session is still active. The only real difference is the exception that

occurs.

Application design Considerations

You should consider the following when designing applications that use the stateful session bean failover

process:

v To avoid the possibility described in the section above, you are encouraged to write your application to

configure stateful session beans to use container managed transactions (CMT) rather than bean

managed transactions (BMT).

v If you desire immediate failover, and your application creates either an HTTP session or a stateful

session bean that stores a reference to another stateful session bean, then the administrator must

ensure the HTTP session and stateful session bean are configured to use the same data replication

service (DRS) replication domain.

v Do Not use a local and a remote reference to the same stateful session bean.

220 Administering applications and their environment

Normally a stateful session bean instance with a given primary key can only exist on a single server at

any given moment in time. Failover might cause the bean to be moved from one server to another, but

it never exists on more than one server at a time. However, there are some unlikely scenarios that can

result in the same bean instance (same primary key) existing on more than one server concurrently.

When that happens, each copy of the bean is unaware of the other and no synchronization occurs

between the two instances to ensure they have the same state data. Thus, your application receives

unpredictable results.

 Attention: To be sure to avoid this situation you must remember that with failover enabled, your

application should never get both a local (EJBLocalObject) and remote (EJBObject) reference to the

same stateful session bean instance.

Stateful session beans failover settings (applications)

Each Enterprise JavaBeans container provides a method for stateful session beans to fail over to other

servers. This enables you to specify whether failover occurs for the stateful session beans in this module.

You can also override the parent object’s stateful session bean replication settings for this module.

To view this administrative console page, click Applications > Enterprise Applications > application >

Stateful Session Bean Failover Settings.

Note: These settings are ignored for 5.x application targets.

Enable stateful session bean failover using memory to memory replication:

Specifies whether the EJB Container attempts failover for all of the stateful session beans in this

application.

 This checkbox overrides the default stateful session bean failover setting that the administrator configured

for an EJB container. De-selecting this checkbox disables failover for this application.

 Data type Checkbox

Range Selected or unselected.

Use replication settings from the EJB container:

Specifies that the replication settings configured for the EJB container are used for this application. If you

select this option and you want the application to use stateful session bean failover, you must define

memory to memory replication for the EJB container on each server you want to use failover.

 Data type Radio button

Range Selected or unselected.

Use application replication settings:

Specifies that the replication settings configured for this application are used for memory to memory

replication of the stateful session bean data.

 If you select this button, you override the EJB container settings. This button is disabled until you define a

replication domain. This selection has a hyperlink to help you configure the replication settings. If no

replication domains are configured, the link takes you to a panel where you can create one. If at least one

domain is configured, the link takes you to a panel where you can select the replication settings to be

used by the application.

 Data type Radio button

Range Selected or unselected.

Chapter 10. EJB applications 221

Stateful session beans failover settings (EJB modules)

Each Enterprise JavaBeans container provides a method for stateful session beans to fail over to other

servers. This enables you to specify whether failover occurs for the stateful session beans in this module.

You can also override the parent object’s stateful session bean replication settings for this module.

To view this administrative console page, click Applications > Enterprise Applications > application >

Manage modules > .jar > Stateful session bean failover settings.

Note: These settings are ignored for 5.x application targets.

Enable stateful session bean failover using memory to memory replication:

Specifies whether the EJB Container attempts failover for all of the stateful session beans in this module.

 This checkbox overrides the default stateful session bean failover setting that the administrator configured

for an EJB container or the module’s application. De-selecting this checkbox disables failover for this

module.

 Data type Checkbox

Range Selected or unselected.

Use application or EJB container replication settings:

Specifies that the replication settings configured for the EJB container or application are used for this

module. If you select this option and you want the application to use stateful session bean failover, you

must define memory to memory replication for the EJB container on each server you want to use failover.

 Data type Radio button

Range Selected or unselected.

Use EJB module replication settings:

Specifies that the replication settings configured for this EJB module are used for memory to memory

replication of the stateful session bean data.

 If you select this button, you override the replication settings for the EJB container and application. This

button is disabled until you define a replication domain. This selection has a hyperlink to help you

configure the replication settings. If no replication domains are configured, the link takes you to a panel

where you can create one. If at least one domain is configured, the link takes you to a panel where you

can select the replication settings to be used by the EJB container.

 Data type Radio button

Range Selected or unselected.

Enabling or disabling stateful session bean failover with the EJB

container panel

You can use the EJB Container administrative console panel to enable stateful session bean failover.

Select the check box on the panel to configure whether the failover is active for all stateful session beans

in the specified EJB container.

1. Start the administrative console.

2. Select Servers.

3. Select Application Servers.

222 Administering applications and their environment

4. Select the server you want to work with.

5. Select EJB Container Settings.

6. Select EJB container.

7. Check the box labeled Enable stateful session bean failover using memory-to-memory

replication. This check box is disabled until you define a replication domain. This selection has a

hyperlink to help you configure the replication settings. If no replication domains are configured, the

link takes you to a panel where you can create one. If at least one domain is configured, the link takes

you to a panel where you can select the replication settings to be used by the EJB container.

8. Select OK.

Enabling or disabling stateful session bean failover with the enterprise

applications panel

You can use the enterprise applications administrative console panel to enable or disable stateful session

bean failover for all stateful session beans in the specified application.

1. Start the administrative console.

2. Select Applications.

3. Select Enterprise Applications.

4. Select the application you want to work with.

5. Under Additional Properties, select Stateful Session Bean Failover Settings. The Stateful Session

Bean Failover Settings panel appears.

6. Select Enable stateful session bean failover using memory to memory replication. This enables

failover for all stateful session beans in this application. If you want to disable the failover, clear this

checkbox.

7. Select your choice of Replication settings. You have a choice of two radio buttons:

Use replication settings from EJB container

If you select this button, any replication settings defined for this application are ignored.

Attention: Note to the system administrator: if you use this radio button, then memory to

memory replication must be configured at the EJB container level. Otherwise, the settings on

this panel are ignored by EJB container during server startup and the EJB container will log a

message indicating that stateful session bean failover is not enabled for this application.

Use application replication settings

If you select this button, you override the EJB container settings. This button is disabled until

you define a replication domain. This selection has a hyperlink to help you configure the

replication settings. If no replication domains are configured, the link takes you to a panel

where you can create one. If at least one domain is configured, the link takes you to a panel

where you can select the replication settings to be used by the application.

8. Select OK.

Enabling or disabling stateful session bean failover with the EJB

modules panel

You can use the enterprise applications administrative console panel to enable or disable stateful session

bean failover for all stateful session beans in the specified module.

 1. Start the administrative console.

 2. Select Applications.

 3. Select Enterprise Applications.

 4. Select the application you want to work with.

 5. Under Related items, select EJB modules.

 6. Select the .jar file you want to work with.

Chapter 10. EJB applications 223

7. Select Stateful session bean failover settings.

 8. Select Enable stateful session bean failover using memory to memory replication.

 9. Select your choice of Replication settings. You have a choice of two radio buttons:

Use application or EJB container replication settings

If you select this button, any replication settings defined for this EJB module are ignored.

Attention: Note to the system administrator: if you use this radio button, then memory to

memory replication must be configured at the EJB container level. Otherwise, the settings on

this panel are ignored by EJB container during server startup and the EJB container will log a

message indicating that stateful session bean failover is not enabled for this application.

Use EJB module replication settings

If you select this button, you override the replication settings for the EJB container and

application. This button is disabled until you define a replication domain. This selection has a

hyperlink to help you configure the replication settings. If no replication domains are

configured, the link takes you to a panel where you can create one. If at least one domain is

configured, the link takes you to a panel where you can select the replication settings to be

used by the EJB container.

10. Select OK.

EJB cache settings

Use this page to configure and manage the cache for a specific EJB container. To avoid errors from

attempting to overload the cache, determine the cache absolute limit. Multiply the number of enterprise

beans active in any given transaction by the total number of concurrent transactions expected. Then, add

the number of active session bean instances. This value is the limit that the cache will hold. You can use

the Tivoli Performance Viewer to view bean performance information.

To view this administrative console page, click Servers > Application Servers > serverName > EJB

Container Settings > EJB cache settings.

Cleanup interval

Specifies the interval at which the container attempts to remove unused items from the cache in order to

reduce the total number of items to the value of the cache size.

The cache manager tries to maintain some unallocated entries that can be allocated quickly as needed. A

background thread attempts to free some entries while maintaining some unallocated entries. If the thread

runs while the application server is idle, when the application server needs to allocate new cache entries, it

does not pay the performance cost of removing entries from the cache. In general, increase this parameter

as the cache size increases.

 Data type Integer

Units Milliseconds

Range 0 to 2 147 483 647

Default 3000

Cache size

Specifies the number of buckets in the active instance list within the EJB container.

A bucket can contain more than one active enterprise bean instance, but performance is maximized if

each bucket in the table has a minimum number of instances assigned to it. When the number of active

instances within the container exceeds the number of buckets, that is, the cache size, the container

periodically attempts to reduce the number of active instances in the table by passivating some of the

active instances. For the best balance of performance and memory, set this value to the maximum number

of active instances expected during a typical workload.

224 Administering applications and their environment

Data type Integer

Units Buckets in the hash table

Range Greater than 0. The container selects the next largest

prime number equal to or greater than the specified value.

Default 2053

Container interoperability

Container interoperability describes the ability of WebSphere Application Server clients and servers at

different versions to successfully negotiate differences in native Enterprise JavaBeans (EJB) finder

methods support and Java 2 Platform, Enterprise Edition (J2EE) compliance.

Interoperability of the handle formats in WebSphere Application Server, Version 5

and Version 5.0.1

Applications that attempt to persist handles to enterprise beans and EJBHome needed to subclass

ObjectInputStream in WebSphere Application Server, Version 5. This action was required so that the

subclass ObjectInputStream could utilize the context class loader to resolve the classes for enterprise

beans and EJBHome stubs.

In addition, handles created and persisted in WebSphere Application Server, Version 5 only work with

objects that have an unchanged remote interface. If the remote interface is changed, the handle is no

longer valid because the stub is serialized inside the handle and its serial Version UID changes if the

remote interface changes.

This release introduces a new handle persistence mechanism that avoids the implementation drawbacks

of the previous version. However, if handles are used for this WebSphere Application Server deployment,

you should consider the following issues when applying this update, future WebSphere Application Server

Fix Packs and EJB Container cumulative fixes for WebSphere Application Server, Version 5.

If a WebSphere Application Server, Version 5 persisted handle or home handle is encountered by a

WebSphere Application Server, Version 5.0.1 system, it can be read and utilized. In addition, it will be

converted to WebSphere Application Server, Version 5.0.1 format if it is re-persisted. The WebSphere

Application Server, Version 5.0.1 format cannot be read by a WebSphere Application Server, Version 5

system unless PQ72184 is applied.

Problems arise when handles are persisted and shared across systems that are not at the WebSphere

Application Server, Version 5.0.1 level or later. However, a Version 5 system can receive a handle from

Version 5.0.1 remotely through a call to get a handle on an enterprise bean or a getHomeHandle on an

EJBHome. The remote call will succeed, however, any attempt to persist it on the Version 5 system will

have the same limitations regarding the use of ObjectInputStream and changes in remote interface

invalidating the persisted handle.

When your application stores handles persistently and shares this persistence with multiple clients or

application servers, apply WebSphere Application Server, Version 5.0.1 or PQ72184 to both the client and

server systems at the same time. Failure to do so can result in the inability of these systems to read the

handle data stored by upgraded systems. Also, handles stored by the WebSphere Application Server,

Version 5 can force the applications of the updated system to still subclass ObjectInputStream.

Applications using the WebSphere Application Server Enterprise, Version 5 scheduler and process

choreographer, are affected by these changes. These users should update their Version 5 systems at the

same time with either Version 5.0.1 or PQ72184.

If the applications store handles in the session context, or locally in a file on the same system, that is not

shared by other applications, on different systems, they might be able to update their systems individually,

rather than all at once. If Client Container and thin client applications do not share persisted handle data,

Chapter 10. EJB applications 225

they can be updated as needed as well. However, handles created and persisted in WebSphere

Application Server, Version 5, Version 4.0.3 and later (with the property flag set), or Version 3.5.7 and later

(with the property flag set) are not usable if either the home or the remote interface changes.

If any WebSphere Application Server, Version 3.5.7 or Version 4.0.3 and later enables the system property

com.ibm.websphere.container.portable to true, any handles to objects on that server have the same

interoperability limitations. In addition, if any WebSphere Application Server, Version 3.5.7 and later or

Version 4.0.3 applications store a handle obtained from a WebSphere Application Server, Version 5 or

Version 5.0.1, the same restrictions apply, regarding the need to subclass ObjectInputStream and the

usability of handles after a change to the remote interface is made.

Replication of the Http Session and Handles

This note applies to you if you place Handles to Homes or Enterprise JavaBeans, or EJB or EJBHome

references in the Http Session in your application and you use Http Session Replication. If you intend to

replicate a mixed environment of Version 5.0.0 and Version 5.0.1 or 5.0.2 machines you should first apply

the latest Version 5.0.0 container cumulative e-fix to the Version 5.0.0 machines before allowing the

Version 5.0.1 or 5.0.2 server into the typology. The reason for this is that Version 5.0.0 servers are not

able to understand the persisted Handle format used on the Version 5.0.1 and 5.0.2 server. This is similar

to the case of Version 5.0.0 and Version 5.0.1 or 5.0.2 systems trying to use a shared database,

mentioned above. But in this case, it is the Http Session object and not the database providing the

persistence.

Top Down Deployment Mapping

The size of the Handle objects has grown due to the fix put in to allow serialization and deserialization to

occur without the previous requirements of subclassing the ObjectInputStream and so on. Top down

deployment of an object that contains EJB and EJBHome references create a database table ddl that has

a field of 1000 bytes of VARCHAR for BITDATA which will contain the Handle. It might be that your

object’s Handle does not fit in the 1000 byte default field, and you might need to adjust this to a higher

value. You might try increments of 250 bytes, that is, 1250, 1500, and so on.

EJB Container tuning

If you use applications that affect the size of the EJB Container Cache, it is possible that the performance

of your applications can be impacted by an incorrect size setting. Monitoring Tivoli Performance Viewer

(TPV) is a great way to diagnose if the EJB Container Cache size setting is tuned correctly for your

application.

If the application has filled the cache causing evictions to occur, TPV will show a very high rate of

ejbStores() being called and probably a lower than expected CPU utilization on the application server

machine.

All applications using enterprise beans should have this setting adjusted from the default if the following

formula works out to more than 2000.

EJB_Cache_Size = (Largest number of Option B or C Entity Beans enlisted in a

transaction * maximum number of concurrent transactions) +

(Largest number of unique Option A Entity Beans expected to be accessed during

typical application workload) +

(Number of stateful Session Beans active during typical workload) +

(Number of stateless SessionBean types used during typical workload)

Where:

Option B and C Entity Beans are only held in the EJB cache during the lifetime

of the transaction they are enlisted in. Therefore, the first term in the formula

computes the average EJB cache requirements for these types of beans.

Option A Entity Beans are held in the EJB cache indefinitely, and are only removed

226 Administering applications and their environment

from the cache if there start to become more beans in the cache than the cache

size has been set to.

Stateful Session Beans are held in the EJB cache until they are removed by the

application, or their session timeout value is reached.

Only a single stateless Session Bean instance for each EJB type is held in the

cache during the time any methods are being executed on that stateless Session

Bean. If two or more methods are being executed simultaneously on the same

stateless Session Bean type, each method executes on its own bean instance, but

only one cache location is used for all of these instances.

This calculates the upper bound on the maximum possible number of enterprise beans active at one time

inside the application server. Because the EJB Containers cache is built to contain all these beans for

performance optimizations, best performance can be achieved by setting this cache size to be larger than

the number resulting from the calculation above.

<tuning parameter>

This setting can be found under Servers > Application Servers > serverName >

 EJB Container > EJB Cache Settings

Also while adjusting the EJB Cache Size, the EJB Container management thread parameter can be tuned

to meet the needs of the application. The management thread is controlled through the Clean Up Interval

setting. This setting controls how frequently a daemon thread inside of WebSphere Application Server

wakes up and attempts to remove bean instances from the cache that have not been used recently,

attempting to keep the number of bean instances at or below the cache size. This allows the EJB

container to place and look up items in the cache as quickly as possible. It normally is best to leave this

interval set to the default, however, in some cases, it may be worthwhile to see if there is a benefit to

reducing this interval.

EJB Container Pool Size

If the application is using the majority of the instances in the pool, TPV indicates this. When this occurs,

then the size of those bean pools that are being exhausted should be increased. This can be done by

adding the following parameter in the JVM’s custom properties tag .

-Dcom.ibm.websphere.ejbcontainer.poolSize=<application_name>#<module_name>#

<enterprisebean_name>=<minSize>,<maxSize>

where:

 <application_name> is the J2EE application name as defined in the application

archive (.ear) file deployment descriptor, for the bean whose pool size is being

set

<module_name> is the .jar file name of the EJB module, for the bean whose pool size

 is being set,

<bean_name> is the J2EE Enterprise Bean name as defined in the EJB module

deployment descriptor, for the bean whose pool size is being set

<minSize> is the number of bean instances the container maintains in the pool,

 irrespective of how long the beans have been in the pool (beans greater than this

 number are cleared from the pool over time to optimize memory usage)

<maxSize> is the number of bean instances in the pool where no more bean instances

 are placed in the pool after they are used (that is, once the pool is at this

 size, any additional beans are discarded rather than added into the pool --

this ensures the number of beans in the pool has an upper limit so memory usage

does not grow in an unbounded fashion).

To keep the number of instances in the pool at a fixed size, minSize and maxSize

can be set to the same number. Note that there is a separate instance pool for

every EJB type running in the application server, and that every pool starts out

with no instances in it - that is, the number of instances grows as beans are

Chapter 10. EJB applications 227

used and then placed in the pool. When a bean instance is needed by the container

and no beans are available in the pool, the container creates a new bean

instance, uses it, then places that instance in the pool (unless there are

already maxSize instances in the pool).

For example, the statement

-Dcom.ibm.websphere.ejbcontainer.poolSize=ivtApp#ivtEJB.jar#ivtEJBObject=125,1327

would set a minSize of 125 and a maxSize of 1327 on the bean named "ivtEJBObject"

within the ivtEJB.jar file, in the application "ivtApp".

Where ivtApp is replaced by the actual application name, ivtEJB.jar is replaced by the jar containing the

bean that needs to have its pool size increased, and ivtEJBObject is the bean name of the enterprise bean

whose pool size should be increased. The 125,1327 is the minimum and maximum number of beans that

will be held in the pool. These should be set so no more evictions occur from the pool and in most cases

should be set equal if memory is plentiful because no growth and shrinkage of the pool will occur.

EJB Container Primary Key Mutation

Application developers and administrators should have a good idea of how their application handles the

creation of primary key objects for use by container-managed persistence (CMP) beans and

bean-managed persistence (BMP) beans inside of WebSphere Application Server. The IBM EJB Container

uses the primary key of an Entity bean as an identifier inside of many internal data structures to optimize

performance. However, the EJB Container must copy these primary key objects upon the first access to

the bean to ensure that the objects stored in the internal caches are separate from the ones used in an

application, in case the application changes or mutates the primary key, to keep the internal structures

consistent.

If the application does not mutate any of the primary keys used to create and access entity beans after

they are created, then a special flag can be used that allows the EJB Container to skip the copy of the

primary key object, thus saving CPU cycles and increasing performance. This mechanism can be enabled

at your own risk by adding the following –D property to the JVM custom property field.

<tuning parameter>

-Dcom.ibm.websphere.ejbcontainer.noPrimaryKeyMutation=true

The performance benefit of this optimization depends on the application. If the application uses primitive

types for enterprise beans’ primary keys there will be no gain because these objects are already

immutable and the copy mechanism takes this into account. If, however, the application uses many

complex primary keys (that is, And object for a primary key or multiple fields) then this parameter can yield

significant improvements.

Persistence Manager Deferred Insert on EJB Create

The IBM Persistence manager is used by the EJB Container to persist data to the database from CMP

entity beans. When creating entity beans by calling the ejbCreate() method, by default the Persistence

manager immediately inserts the empty row with only the primary key in the database. In most cases

applications, after creating the bean, modify fields in the bean created or in other beans inside of the same

transaction. If the user wishes to postpone the insert into the database until the end of the transaction, so

that it will eliminate one trip to the database, they may set this –D flag inside of the JVM custom properties

field. The data will still be inserted into the database and consistency will be maintained.

<tuning parameter>

-Dcom.ibm.ws.pm.deferredcreate=true

The performance benefit of this optimization depends on the application. If the EJB applications

transactions are very insert intensive the application could benefit largely from this optimization. If the

application performs very few inserts then the benefit of this optimization will be much less.

Persistence Manager Database Batch Update on EJB Update

228 Administering applications and their environment

When an EJB application accesses multiple CMP beans inside of a single transaction, depending on the

operations performed on the beans (updates, inserts, reads), the number of operations issued to the

database will correspond directly to the operations performed on the CMP beans. If the database system

you are using supports batching of update statements you can enable this flag and gain a performance

boost on all interactions with the database that involve more than two updates in a single transaction. This

flag will let the persistence manager add all the update statements into one single batch statement which

will then be issued to the database. This saves round trips to the database, thus increasing performance.

If the user knows their application exhibits the behavior of updating multiple CMP beans in a single

transaction and the database supports batch updates they may set this –D flag inside of the JVM custom

properties field.

<tuning parameter>

-Dcom.ibm.ws.pm.batch=true

The performance benefit of this optimization depends on the application. If the application never or

infrequently updates CMP beans or only updates a single bean per transaction there will be no

performance gain. If the application updates multiple beans per transaction then this parameter will benefit

your applications performance.

The following table lists which backend databases support batch update.

 Table 5.

Database Supports Batch update

Supports Batch update with

Optimistic Concurrency Control

DB2 yes no

Oracle yes no

DB2 Universal Driver yes yes

Informix yes yes

SQLServer yes yes

Cloudscape yes yes

Note: Batch update with OCC cannot be performed for databases that do not support it, even if specified

by the access intent.

Persistence Manager cache Tuning

Persistence Manager has two different types of caching mechanisms available: legacy cache and two-level

cache. Normally two-level cache performs better than legacy cache because of optimizations in this mode.

The default is legacy cache, although two-level cache is recommended. Set this configuration through the

system property

com.ibm.ws.pm.useLegacyCache=false

Persistence Manager Partial Updates Tuning

The partial updates feature enhances the performance of applications with enterprise beans in certain

scenarios. Persistence Manager has two different types of caching mechanisms available, legacy cache

and two-level cache. Normally, two-level cache performs better than legacy cache because of the

optimizations in this mode. In certain applications where you need to perform both batch updates and

partial updates, you must configure the following system properties to gain the benefits of both.

‘com.ibm.ws.pm.grouppartialupdate=true’ and ‘com.ibm.ws.pm.batch=true’

Chapter 10. EJB applications 229

Deploying EJB modules

When you deploy an EJB module, you install that module on a server that has been configured to support

deployed modules.

Assemble one or more EJB modules, assemble one or more Web modules, and assemble them into a

J2EE application.

1. Prepare the deployment environment.

2. Update the configuration for each EJB module as needed for the deployment environment. See the

AST information center for more information about modifying deployment descriptors.

3. Deploy the application.

If you specify that EJB deploy be run during application installation and the installation fails with a

NameNotFoundException message, ensure that the input JAR or EAR file does not contain source files.

Either remove the source files or include all dependent classes and resource files on the class path. If

there are source files in the input JAR or EAR file, the EJB deployment tools runs a rebuild before

generating the deployment code.

If the module deploys successfully, test and debug the module.

Troubleshooting tips for EJBDEPLOY relationships

This article provides troubleshooting information for EJBDEPLOY problems.

The converter that is defined for the primary key is not invoked on its foreign key

value

The mapping for primary key fields to database columns may use a converter to transform the key values.

If a container-managed persistence (CMP) bean uses a converter to map its primary key, and that bean

has a relationship where the bean at the other end holds a foreign key, the mapping for the foreign key will

not use the converter.

The following errors might occur, indicating that the converter defined for the primary key is not invoked on

its foreign key value. During the run of the ejbDeploy command , you receive the following message:

No type mapping defined for Java datatype1 to Database datatype2

During run time, the application does not find the CMP bean at the other end of the relationship.

To work around this limitation, define your own foreign key in the database table, and create a mapping

that uses the same converter as defined for the primary key on the enterprise beans at the other end of its

relationship.

EJB module settings

Use this page to configure and manage a specific deployed EJB module.

Note: You cannot start or stop an individual EJB module for modification. You must start or stop the

appropriate application entirely.

To view this administrative console page, click Applications > Enterprise Applications >

applicationName > Manage Modules > moduleName.

URI

Specifies location of the module relative to the root of the application EAR file. The URI must match the

URI of a ModuleRef URI in the deployment descriptor of the deployed application (EAR).

230 Administering applications and their environment

Alternate deployment descriptor

Specifies an alternate deployment descriptor for the module as defined in the application deployment

descriptor according to the J2EE specification.

Starting weight

Specifies the order in which modules are started when the server starts. The module with the lowest

starting weight is started first.

 Data type Integer

Default 5000

Range Greater than 0

Chapter 10. EJB applications 231

232 Administering applications and their environment

Chapter 11. Client applications

Using application clients

An application client module is a Java Archive (JAR) file that contains a client for accessing a Java

application.

Complete the following steps for developing different types of application clients.

1. Decide on a type of application client.

2. Develop the application client code.

a. Develop ActiveX application client code.

b. Develop J2EE application client code.

c. Develop pluggable application client code.

d. Develop thin application client code.

3. Assemble the application client using the Application Server Toolkit.

4. Deploy the application client.

Deploy the application client on Windows systems.

5. Run the application client.

View the Application Clients Samples Gallery for more information. To access these samples, install

Application Clients, and retrieve the samples from your local file system as the following command

indicates:

<app_server_root>/samples/index.html

Application Client for WebSphere Application Server

In a traditional client-server environment, the client requests a service and the server fulfills the request.

Multiple clients use a single server. Clients can also access several different servers. This model persists

for Java clients except that now these requests use a client runtime environment.

WebSphere Application Server Version 6.1 supports the pluggable client.

In this model, the client application requires a servlet to communicate with the enterprise bean, and the

servlet must reside on the same machine as the WebSphere Application Server.

The Application Client for WebSphere Application Server Version 6 (Application Client) consists of the

following client applications:

v J2EE application client application (Uses services provided by the J2EE Client Container)

v Thin application client application (Does not use services provided by the J2EE Client Container)

v Applet application client application

v ActiveX to EJB Bridge application client application (Windows only)

The Application Client is packaged with the following components:

v Java Runtime Environment (JRE) (or an optional full Software Development Kit) that IBM provides.

v WebSphere Application Server run time for J2EE application client applications or Thin application client

applications

v

Windows

An ActiveX to EJB Bridge run time for ActiveX to EJB Bridge application client applications

(Windows only)

v

Windows

IBM plug-in for Java platforms for Applet client applications (Windows only)

© Copyright IBM Corp. 2006 233

Note: The Pluggable application client is a kind of Thin application client. However, the Pluggable

application client uses a Sun JRE and Software Development Kit instead of the JRE and

Software Development Kit that IBM provides.

The ActiveX application client model, uses the Java Native Interface (JNI) architecture to programmatically

access the Java virtual machine (JVM) API. Therefore the JVM code exists in the same process space as

the ActiveX application (Visual Basic, VBScript, or Active Server Pages (ASP) files) and remains attached

to the process until that process terminates.

In the Applet client model, a Java applet embeds in a HyperText Markup Language (HTML) document

residing on a remote client machine from the WebSphere Application Server. With this type of client, the

user accesses an enterprise bean in the WebSphere Application Server through the Java applet in the

HTML document.

The J2EE application client is a Java application program that accesses enterprise beans, Java DataBase

Connectivity (JDBC) APIs, and Java Message Service message queues. The J2EE application client

program runs on client machines. This program follows the same Java programming model as other Java

programs; however, the J2EE application client depends on the Application Client run time to configure its

execution environment, and uses the Java Naming and Directory Interface (JNDI) name space to access

resources.

The Pluggable and Thin application clients provide a lightweight Java client programming model. These

clients are useful in situations where a Java client application exists but the application needs

enhancements to use enterprise beans, or where the client application requires a thinner, more lightweight

environment than the one offered by the J2EE application client. The difference between the Thin

application client and the Pluggable application client is that the Thin application client includes a Java

virtual machine (JVM) API, and the Pluggable application client requires the user to provide this code. The

Pluggable application client uses the Sun Java Development Kit, and the Thin application client uses the

IBM Developer Kit for the Java platform.

The J2EE application client programming model provides the benefits of the J2EE platform for the Java

client application. Use the J2EE application client to develop, assemble, deploy and launch a client

application. The tooling provided with the WebSphere platform supports the seamless integration of these

stages to help the developer create a client application from start to finish.

When you develop a client application using and adhering to the J2EE platform, you can put the client

application code from one J2EE platform implementation to another. The client application package can

require redeployment using each J2EE platform deployment tool, but the code that comprises the client

application remains the same.

The Application Client run time supplies a container that provides access to system services for the client

application code. The client application code must contain a main method. The Application Client run time

invokes this main method after the environment initializes and runs until the Java virtual machine code

terminates.

The J2EE platform supports the Application Client use of nicknames or short names, defined within the

client application deployment descriptor. These deployment descriptors identify enterprise beans or local

resources (JDBC, Java Message Service (JMS), JavaMail and URL APIs) for simplified resolution through

JNDI. This simplified resolution to the enterprise bean reference and local resource reference also

eliminates changes to the client application code, when the underlying object or resource either changes

or moves to a different server. When these changes occur, the Application Client can require

redeployment.

The Application Client also provides initialization of the run-time environment for the client application. The

deployment descriptor defines this unique initialization for each client application. The Application Client

run time also provides support for security authentication to enterprise beans and local resources.

234 Administering applications and their environment

The Application Client uses the Java Remote Method Invocation-Internet InterORB Protocol (RMI-IIOP).

Using this protocol enables the client application to access enterprise bean references and to use

Common Object Request Broker Architecture (CORBA) services provided by the J2EE platform

implementation. Use of the RMI-IIOP protocol and the accessibility of CORBA services assist users in

developing a client application that requires access to both enterprise bean references and CORBA object

references.

When you combine the J2EE and CORBA environments or programming models in one client application,

you must understand the differences between the two programming models to use and manage each

appropriately.

View the Samples gallery for more information about the Application Client.

Application client functions

This topic provides information about available functions in the different types of clients.

Use the following table to identify the available functions in the different types of clients.

 Available functions ActiveX client Applet client J2EE

client

Pluggable client Thin client

Provides all the benefits of a

J2EE platform

Yes No Yes No No

Portable across all J2EE

platforms

No No Yes No No

Provides the necessary run-time

support for communication

between a client and a server

Yes Yes Yes Yes Yes

Supports the use of nicknames in

the deployment descriptor files.

Note: Although you can edit

deployment descriptor files, do

not use the administrative

console to modify them.

Yes No Yes No No

Supports use of the RMI-IIOP

protocol

Yes Yes Yes Yes Yes

Browser-based application No Yes No No No

Enables development of client

applications that can access

enterprise bean references and

CORBA object references

Yes Yes Yes Yes Yes

Enables the initialization of the

client application run-time

environment

Yes No Yes No No

Supports security authentication

to enterprise beans

Yes Limited Yes Yes Yes

Supports security authentication

to local resources

Yes No Yes No No

Requires distribution of

application to client machines

Yes No Yes Yes Yes

Enables access to enterprise

beans and other Java classes

through Visual Basic, VBScript,

and Active Server Pages (ASP)

code

Yes No No No No

Chapter 11. Client applications 235

Provides a lightweight client

suitable for download

No Yes No Yes Yes

Enables access JNDI APIs for

enterprise bean resolution

Yes Yes Yes Yes Yes

Runs on client machines that use

the Sun Java Runtime

Environment

No No No Yes No

Supports CORBA services (using

CORBA services can render the

application client code

nonportable)

No No Yes No No

Supports JMS connections to the

default messaging provider

No No Yes Yes Yes

ActiveX application clients

WebSphere Application Server provides an ActiveX to EJB bridge that enables ActiveX programs to

access enterprise beans through a set of ActiveX automation objects.

The bridge accomplishes this access by loading the Java virtual machine (JVM) into any ActiveX

automation container such as Visual Basic, VBScript, and Active Server Pages (ASP).

There are two main environments in which the ActiveX to EJB bridge runs:

v Client applications, such as Visual Basic and VBScript, are programs that a user starts from the

command line, desktop icon, or Start menu shortcut.

v Client services, such as Active Server Pages, are programs started by some automated means like the

Services control panel applet.

The ActiveX to EJB bridge uses the Java Native Interface (JNI) architecture to programmatically access

the JVM code. Therefore the JVM code exists in the same process space as the ActiveX application

(Visual Basic, VBScript, or ASP) and remains attached to the process until that process terminates. To

create JVM code, an ActiveX client program calls the XJBInit() method of the XJB.JClassFactory object.

For more information about creating JVM code for an ActiveX program, see ActiveX to EJB bridge,

initializing JVM code.

After an ActiveX client program has initialized the JVM code, the program calls several methods to create

a proxy object for the Java class. When accessing a Java class or object, the real Java object exists in the

JVM code; the automation container contains the proxy for that Java object. The ActiveX program can use

the proxy object to access the Java class, object fields, and methods. For more information about using

Java proxy objects, see ActiveX to EJB bridge, using Java proxy objects. For more information about

calling methods and access fields, see ActiveX to EJB bridge, calling Java methods and ActiveX to EJB

bridge, accessing Java fields.

The client program performs primitive data type conversion through the COM IDispatch interface (use of

the IUnknown interface is not directly supported). Primitive data types are automatically converted between

native automation types and Java types. All other types are handled automatically by the proxy objects For

more information about data type conversion, see ActiveX to EJB bridge, converting data types.

Any exceptions thrown in Java code are encapsulated and thrown again as a COM error, from which the

ActiveX program can determine the actual Java exceptions. For more information about handling

exceptions, see ActiveX to EJB bridge, handling errors.

The ActiveX to EJB bridge supports both free-threaded and apartment-threaded access and implements

the free threaded marshaler (FTM) to work in a hybrid environment such as Active Server Pages. For

more information about the support for threading, see ActiveX to EJB bridge, using threading.

236 Administering applications and their environment

Applet clients

The applet client provides a browser-based Java run time capable of interacting with enterprise beans

directly, instead of indirectly through a servlet.

This client is designed to support users who want a browser-based Java client application programming

environment that provides a richer and more robust environment than the one offered by the Applet >

Servlet > enterprise bean model.

The programming model for this client is a hybrid of the Java application thin client and a servlet client.

When accessing enterprise beans from this client, the applet can consider the enterprise bean object

references as CORBA object references.

No tooling support exists for this client to develop, assemble or deploy the applet. You are responsible for

developing the applet, generating the necessary client bindings for the enterprise beans and CORBA

objects, and bundling these pieces together to install or download to the client machine. The Java applet

client provides the necessary run time to support communication between the client and the server. The

applet client run time is provided through the Java applet browser plug-in that you install on the client

machine.

Generate client-side bindings using an assembly tool such as the Application Server Toolkit (AST) or

Rational Application Developer. An applet can utilize these bindings, or you can generate client-side

bindings using the rmic command. This command is part of the IBM Developer Kit, Java edition that is

installed with the WebSphere Application Server.

The applet client uses the RMI-IIOP protocol. Using this protocol enables the applet to access enterprise

bean references and CORBA object references, but the applet is restricted in using some supported

CORBA services.

If you combine the enterprise bean and CORBA environments in one applet, you must understand the

differences between the two programming models, and you must use and manage each model

appropriately.

The applet environment restricts access to external resources from the browser run-time environment. You

can make some of these resources available to the applet by setting the correct security policy settings in

the WebSphere Application Server client.policy file. If given the correct set of permissions, the applet

client must explicitly create the connection to the resource using the appropriate API. This client does not

perform initialization of any service that the client applet can need. For example, the client application is

responsible for the initialization of the naming service, either through the CosNaming, or the Java Naming

and Directory Interface (JNDI) APIs.

J2EE application clients

The J2EE application client programming model provides the benefits of the Java 2 Platform for

WebSphere Application Server Enterprise product.

The J2EE platform offers the ability to seamlessly develop, assemble, deploy and launch a client

application. The tooling provided with the WebSphere platform supports the seamless integration of these

stages to help the developer create a client application from start to finish.

When you develop a client application using and adhering to the J2EE platform, you can put the client

application code from one J2EE platform implementation to another. The client application package can

require redeployment using each J2EE platform deployment tool, but the code that comprises the client

application does not change.

Chapter 11. Client applications 237

The J2EE application client run time supplies a container that provides access to system services for the

application client code. The J2EE application client code must contain a main method. The J2EE

application client run time invokes this main method after the environment initializes and runs until the

Java virtual machine application terminates.

Application clients can use nicknames or short names, defined within the client application deployment

descriptor with the J2EE platform. These deployment descriptors identify enterprise beans or local

resources (JDBC data sources, J2C connection factories, Java Message Service (JMS), JavaMail and

URL APIs) for simplified resolution through JNDI use. This simplified resolution to the enterprise bean

reference and local resource reference also eliminates changes to the application client code, when the

underlying object or resource either changes or moves to a different server. When these changes occur,

the application client can require redeployment. Although you can edit deployment descriptor files, do not

use the administrative console to modify them.

The J2EE application client also provides initialization of the run-time environment for the client application.

The deployment descriptor defines this unique initialization for each client application. The J2EE

application client run time also provides support for security authentication to the enterprise beans and

local resources.

The J2EE application client uses the Java Remote Method Invocation technology run over Internet

Inter-Orb Protocol (RMI-IIOP). Using this protocol enables the client application to access enterprise bean

references and to use Common Object Request Broker Architecture (CORBA) services provided by the

J2EE platform implementation. Use of the RMI-IIOP protocol and the accessibility of CORBA services

assist users in developing a client application that requires access to both enterprise bean references and

CORBA object references.

When you combine the J2EE and the CORBA WebSphere Application Server Enterprise environments or

programming models in one client application, you must understand the differences between the two

programming models to use and manage each appropriately.

Pluggable application clients

The Pluggable application client provides a lightweight, downloadable Java application run time capable of

interacting with enterprise beans.

The Pluggable application client requires that you have previously installed the Sun Java Runtime

Environment (JRE) files. In all other aspects, the Pluggable application client, and the Thin application

client are similar.

Note: The Pluggable application client is only available on the Windows platform.

This client is designed to support those users who want a lightweight Java client application programming

environment, without the overhead of the J2EE platform on the client machine. The programming model

for this client is heavily influenced by the CORBA programming model, but supports access to enterprise

beans.

When accessing enterprise beans from this client, the client application can consider the enterprise beans

object references as CORBA object references.

Tooling does not exist on the client; however, tooling does exists on the server. You are responsible for

developing the client application, generating the necessary client bindings for the enterprise bean and

CORBA objects, and after bundling these pieces together, installing them on the client machine.

The Pluggable application client provides the necessary run time to support the communication needs

between the client and the server.

238 Administering applications and their environment

The Pluggable application client uses the RMI-IIOP protocol. Using this protocol enables the client

application to access enterprise bean references and CORBA object references and use any supported

CORBA services. Using the RMI-IIOP protocol along with the accessibility of CORBA services can assist a

user in developing a client application that needs to access both enterprise bean references and CORBA

object references.

When you combine the J2EE and CORBA environments in one client application, you must understand the

differences between the two programming models to use and manage each appropriately.

The Pluggable application client run time provides the necessary support for the client application for

object resolution, security, Reliability Availability and Serviceability (RAS), and other services. However,

this client does not support a container that provides easy access to these services. For example, no

support exists for using nicknames for enterprise beans or local resource resolution. When resolving to an

enterprise bean (using either the Java Naming and Directory Interface (JNDI) API or CosNaming) sources,

the client application must know the location of the name server and the fully qualified name used when

the reference was bound into the name space.

When resolving to a local resource, the client application cannot resolve to the resource through a JNDI

lookup. Instead the client application must explicitly create the connection to the resource using the

appropriate API (JDBC, Java Message Service (JMS), and so on). This client does not perform

initialization of any of the services that the client application might require. For example, the client

application is responsible for the initialization of the naming service, either through CosNaming or JNDI

APIs.

The Pluggable application client offers access to most of the available client services in the J2EE

application client. However, you cannot access the services in the Pluggable application client as easily as

you can in the J2EE application client. The J2EE client has the advantage of performing a simple Java

Naming and Directory Interface (JNDI) name space lookup to access the desired service or resource. The

Pluggable application client must code explicitly for each resource in the client application. For example,

looking up an enterprise bean Home object requires the following code in a J2EE application client:

 java.lang.Object ejbHome = initialContext.lookup("java:/comp/env/ejb/MyEJBHome"

);

 MyEJBHome = (MyEJBHome)javax.rmi.PortableRemoteObject.narrow(ejbHome,

MyEJBHome.class);

However, you need more explicit code in a Pluggable application client for Java:

 java.lang.Object ejbHome = initialContext.lookup("the/fully/qualified

/path/to/actual/home/in/namespace/MyEJBHome");

 MyEJBHome = (MyEJBHome)javax.rmi.PortableRemoteObject.narrow(ejbHome,

MyEJBHome.class);

In this example, the J2EE application client accesses a logical name from the java:/comp name space.

The J2EE client run time resolves that name to the physical location and returns the reference to the client

application. The pluggable client must know the fully qualified physical location of the enterprise bean

Home object in the name space. If this location changes, the pluggable client application must also change

the value placed on the lookup() statement.

In the J2EE client, the client application is protected from these changes because it uses the logical name.

A change can require a redeployment of the EAR file, but the actual client application code remains the

same.

The Pluggable application client is a traditional Java application that contains a main function. The

WebSphere Pluggable application client provides run-time support for accessing remote enterprise beans,

and provides the implementation for various services (security, Workload Management (WLM), and

others). This client can also access CORBA objects and CORBA-based services. When using both

Chapter 11. Client applications 239

environments in one client application, you need to understand the differences between the enterprise

bean and the CORBA programming models to manage both environments.

For instance, the CORBA programming model requires the CORBA CosNaming name service for object

resolution in a name space. The enterprise beans programming model requires the JNDI name service.

The client application must initialize and properly manage these two naming services.

Another difference applies to the enterprise bean model. Use the Java Naming and Directory Interface

(JNDI) implementation in the enterprise bean model to initialize the Object Request Broker (ORB). The

client application is unaware that an ORB is present. The CORBA model, however, requires the client

application to explicitly initialize the ORB through the ORB.init() static method.

The Pluggable application client provides a batch command that you can use to set the CLASSPATH and

JAVA_HOME environment variables to enable the Pluggable application client run time.

Thin application clients

The thin application client provides a lightweight, downloadable Java application run time capable of

interacting with enterprise beans.

WebSphere Application Server Version 6.1 supports the pluggable client.

The thin client is designed to support those users who want a lightweight Java client application

programming environment, without the overhead of the J2EE platform on the client machine. The

programming model for this client is heavily influenced by the CORBA programming model, but supports

access to enterprise beans.

When accessing enterprise beans from this client, the client application can consider the enterprise beans

object references as CORBA object references.

Tooling does not exist on the client, it exists on the server. You are responsible for developing the client

application, generating the necessary client bindings for the enterprise bean and CORBA objects, and

bundling these pieces together to install on the client machine.

The thin application client provides the necessary runtime to support the communication needs between

the client and the server.

The thin application client uses the RMI-IIOP protocol. Using this protocol enables the client application to

access not only enterprise bean references and CORBA object references, but also allows the client

application to use any supported CORBA services. Using the RMI-IIOP protocol along with the accessibility

of CORBA services can assist a user in developing a client application that needs to access both

enterprise bean references and CORBA object references.

When you combine the J2EE and CORBA environments in one client application, you must understand the

differences between the two programming models, to use and manage each appropriately.

The thin application client run time provides the necessary support for the client application for object

resolution, security, Reliability Availability and Servicability (RAS), and other services. However, this client

does not support a container that provides easy access to these services. For example, no support exists

for using nicknames for enterprise beans or local resource resolution. When resolving to an enterprise

bean (using either Java Naming and Directory Interface (JNDI) or CosNaming) sources, the client

application must know the location of the name server and the fully qualified name used when the

reference was bound into the name space. When resolving to a local resource, the client application

cannot resolve to the resource through a JNDI lookup. Instead the client application must explicitly create

the connection to the resource using the appropriate API (JDBC, Java Message Service (JMS), and so

240 Administering applications and their environment

on). This client does not perform initialization of any of the services that the client application might

require. For example, the client application is responsible for the initialization of the naming service, either

through CosNaming or JNDI APIs.

The thin application client offers access to most of the available client services in the J2EE application

client. However, you cannot access the services in the thin client as easily as you can in the J2EE

application client. The J2EE client has the advantage of performing a simple Java Naming and Directory

Interface (JNDI) name space lookup to access the desired service or resource. The thin client must code

explicitly for each resource in the client application. For example, looking up an enterprise bean Home

requires the following code in a J2EE application client:

 java.lang.Object ejbHome = initialContext.lookup("java:/comp/env/ejb/MyEJBHome");

 MyEJBHome = (MyEJBHome)javax.rmi.PortableRemoteObject.narrow(ejbHome, MyEJBHome.class);

However, you need more explicit code in a Java thin application client:

 java.lang.Object ejbHome =

initialContext.lookup("the/fully/qualified/path/to/actual/home/in/namespace/MyEJBHome");

 MyEJBHome = (MyEJBHome)javax.rmi.PortableRemoteObject.narrow(ejbHome, MyEJBHome.class);

In this example, the J2EE application client accesses a logical name from the java:/comp name space.

The J2EE client run time resolves that name to the physical location and returns the reference to the client

application. The thin client must know the fully qualified physical location of the enterprise bean Home in

the name space. If this location changes, the thin client application must also change the value placed on

the lookup() statement.

In the J2EE client, the client application is protected from these changes because it uses the logical name.

A change might require a redeployment of the EAR file, but the actual client application code remains the

same.

The thin application client is a traditional Java application that contains a main function. The WebSphere

thin application client provides run-time support for accessing remote enterprise beans, and provides the

implementation for various services (security, Workload Management (WLM), and others). This client can

also access CORBA objects and CORBA based services. When using both environments in one client

application, you need to understand the differences between the enterprise bean and CORBA

programming models to manage both environments.

For instance, the CORBA programming model requires the CORBA CosNaming name service for object

resolution in a name space. The enterprise beans programming model requires the JNDI name service.

The client application must initialize and properly manage these two naming services.

Another difference applies to the enterprise bean model. Use the Java Naming and Directory Interface

(JNDI) implementation in the enterprise bean model to initialize the Object Request Broker (ORB). The

client application is unaware that an ORB is present. The CORBA model, however, requires the client

application to explicitly initialize the ORB through the ORB.init() static method.

The thin application client provides a batch command that you can use to set the CLASSPATH and

JAVA_HOME environment variables to enable the thin application client run time.

Application client troubleshooting tips

This topic provides debugging tips for resolving common Java 2 Platform Enterprise Edition (J2EE)

application client problems. To use this troubleshooting guide, review the trace entries for one of the J2EE

application client exceptions, and then locate the exception in the guide.

Some of the errors in the guide are samples, and the actual error you receive can be different than what is

shown here. You might find it useful to rerun the launchClient command specifying the -CCverbose=true

option. This option provides additional information when the J2EE application client run time is initializing.

Chapter 11. Client applications 241

Error: java.lang.NoClassDefFoundError

 Explanation This exception is thrown when Java code cannot load the specified class.

Possible causes v Invalid or non-existent class

v Class path problem

v Manifest problem

Recommended

response

Check to determine if the specified class exists in a Java Archive (JAR) file within your

Enterprise Archive (EAR) file. If it does, make sure the path for the class is correct. For

example, if you get the exception:

java.lang.NoClassDefFoundError:

WebSphereSamples.HelloEJB.HelloHome

verify that the HelloHome class exists in one of the JAR files in your EAR file. If it exists,

verify that the path for the class is WebSphereSamples.HelloEJB.

If both the class and path are correct, then it is a class path issue. Most likely, you do not

have the failing class JAR file specified in the client JAR file manifest. To verify this situation,

perform the following steps:

1. Open your EAR file with the Application Server Toolkit or the Rational Web Developer

assembly tool, and select the Application Client.

2. Add the names of the other JAR files in the EAR file to the Classpath field.

This exception is generally caused by a missing Enterprise Java Beans (EJB) module name

from the Classpath field.

If you have multiple JAR files to enter in the Classpath field, be sure to separate the JAR

names with spaces.

If you still have the problem, you have a situation where a class is loaded from the file

system instead of the EAR file. This error is difficult to debug because the offending class is

not the one specified in the exception. Instead, another class is loaded from the file system

before the one specified in the exception. To correct this error, review the class paths

specified with the -CCclasspath option and the class paths configured with the Application

Client Resource Configuration Tool. Look for classes that also exist in the EAR file. You must

resolve the situation where one of the classes is found on the file system instead of in the

.ear file. Remove entries from the classpaths, or include the .jar files and classes in the

.ear file instead of referencing them from the file system.

If you use the -CCclasspath parameter or resource classpaths in the Application Client

Resource Configuration Tool, and you have configured multiple JAR files or classes, verify

they are separated with the correct character for your operating system. Unlike the Classpath

field, these class path fields use platform-specific separator characters, usually a colon (on

operating systems such as AIX or Linux) or a semi-colon (on Windows systems).

Note: The system class path is not used by the Application Client run time if you use the

launchClient batch or shell files. In this case, the system class path would not cause this

problem. However, if you load the launchClient class directly, you do have to search through

the system class path as well.

242 Administering applications and their environment

Error: com.ibm.websphere.naming.CannotInstantiateObjectException: Exception

occurred while attempting to get an instance of the object for the specified

reference object. [Root exception is javax.naming.NameNotFoundException:

xxxxxxxxxx]

 Explanation This exception occurs when you perform a lookup on an

object that is not installed on the host server. Your

program can look up the name in the local client Java

Naming and Directory Interface (JNDI) name space, but

received a NameNotFoundException exception because it

is not located on the host server. One typical example is

looking up an EJB component that is not installed on the

host server that you access. This exception might also

occur if the JNDI name you configured in your Application

Client module does not match the actual JNDI name of

the resource on the host server.

Possible causes v Incorrect host server invoked

v Resource is not defined

v Resource is not installed

v Application server is not started

v Invalid JNDI configuration

Recommended response If you are accessing the wrong host server, run the

launchClient command again with the -CCBootstrapHost

parameter specifying the correct host server name. If you

are accessing the correct host server, use the product

dumpnamespace command line tool to see a listing of the

host server JNDI name space. If you do not see the failing

object name, the resource is either not installed on the

host server or the appropriate application server is not

started. If you determine the resource is already installed

and started, your JNDI name in your client application

does not match the global JNDI name on the host server.

Use the Application Server Toolkit to compare the JNDI

bindings value of the failing object name in the client

application to the JNDI bindings value of the object in the

host server application. The values must match.

Error: javax.naming.ServiceUnavailableException: A communication failure

occurred while attempting to obtain an initial context using the provider url:

″iiop://[invalidhostname]″. Make sure that the host and port information is correct

and that the server identified by the provider URL is a running name server. If no

port number is specified, the default port number 2809 is used. Other possible

causes include the network environment or workstation network configuration.

Root exception is org.omg.CORBA.INTERNAL: JORB0050E: In

Profile.getIPAddress(), InetAddress.getByName[invalidhostname] threw an

UnknownHostException. minor code: 4942F5B6 completed: Maybe

 Explanation This exception occurs when you specify an invalid host

server name.

Possible causes v Incorrect host server invoked

v Invalid host server name

Recommended response Run the launchClient command again and specify the

correct name of your host server with the

-CCBootstrapHost parameter.

Chapter 11. Client applications 243

Error: javax.naming.CommunicationException: Could not obtain an initial context

due to a communication failure. Since no provider URL was specified, either the

bootrap host and port of an existing ORB was used, or a new ORB instance was

created and initialized with the default bootstrap host of ″localhost″ and the

default bootstrap port of 2809. Make sure the ORB bootstrap host and port resolve

to a running name server. Root exception is org.omg.CORBA.COMM_FAILURE:

WRITE_ERROR_SEND_1 minor code: 49421050 completed: No

 Explanation This exception occurs when you run the launchClient

command to a host server that does not have the

Application Server started. You also receive this exception

when you specify an invalid host server name. This

situation might occur if you do not specify a host server

name when you run the launchClient tool. The default

behavior is for the launchClient tool to run to the local

host, because WebSphere Application Server does not

know the name of your host server. This default behavior

only works when you are running the client on the same

machine with WebSphere Application Server is installed.

Possible causes v Incorrect host server invoked

v Invalid host server name

v Invalid reference to localhost

v Application server is not started

v Invalid bootstrap port

Recommended response If you are not running to the correct host server, run the

launchClient command again and specify the name of

your host server with the -CCBootstrapHost parameter.

Otherwise, start the Application Server on the host server

and run the launchClient command again.

Error: javax.naming.NameNotFoundException: Name comp/env/ejb not found in

context ″java:″

 Explanation This exception is thrown when the Java code cannot

locate the specified name in the local JNDI name space.

Possible causes v No binding information for the specified name

v Binding information for the specified name is incorrect

v Wrong class loader was used to load one of the

program classes

v A resource reference does not include any client

configuration information

v A client container on the deployment manager is trying

to use enterprise extensions (not supported)

Recommended response Open the EAR file with the Application Server Toolkit, and

check the bindings for the failing name. Ensure this

information is correct. If you are using Resource

References, open the EAR file with the Application Client

Resource Configuration Tool, and verify that the Resource

Reference has client configuration information and the

name of the Resource Reference exactly matches the

JNDI name of the client configuration. If the values are

correct, you might have a class loader error. For detailed

information about the configuration tool and opening EAR

files, read the Starting the Application Client Resource

Configuration Tool in the Developing and deploying

applications PDF book.

244 Administering applications and their environment

Error: java.lang.ClassCastException: Unable to load class:

org.omg.stub.WebSphereSamples.HelloEJB._HelloHome_Stub at

com.ibm.rmi.javax.rmi.PortableRemoteObject.narrow(portableRemoteObject.java:269)

 Explanation This exception occurs when the application program

attempts to narrow to the EJB home class and the class

loaders cannot find the EJB client side bindings.

Possible causes v The files, *_Stub.class and _Tie.class, are not in the

EJB .jar file

v Class loader could not find the classes

Recommended response Look at the EJB .jar file located in the .ear file and verify

the class contains the Enterprise Java Beans (EJB) client

side bindings. These are class files with file names that

end in _Stub and _Tie. If the binding classes are in the

EJB .jar file, then you might have a class loader error.

Error: WSCL0210E: The Enterprise archive file [EAR file name] could not be found.

com.ibm.websphere.client.applicationclient.ClientContainerException:

com.ibm.etools.archive.exception.OpenFailureException

 Explanation This error occurs when the application client run time

cannot read the Enterprise Archive (EAR) file.

Possible causes The most likely cause of this error is that the system

cannot find the EAR file cannot be found in the path

specified on the launchClient command.

Recommended response Verify that the path and file name specified on the

launchclient command are correct. If you are running on

the Windows operating system and the path and file name

are correct, use a short version of the path and file name

(8 character file name and 3 character extension).

The launchClient command appears to hang and does not return to the command

line when the client application has finished.

 Explanation When running your application client using the

launchClient command the WebSphere Application

Server run time might need to display the security login

dialog. To display this dialog, WebSphere Application

Server run time creates an Abstract Window Toolkit (AWT)

thread. When your application returns from its main

method to the application client run time, the application

client run time attempts to return to the operating system

and end the Java virtual machine (JVM) code. However,

since there is an AWT thread, the JVM code will not end

until System.exit is called.

Possible causes The JVM code does not end because there is an AWT

thread. Java code requires that System.exit() be called

to end AWT threads.

Recommended response v Modify your application to call System.exit(0) as the

last statement.

v Use the -CCexitVM=true parameter when you call the

launchClient command.

Chapter 11. Client applications 245

The applet client application client fails to launch an HTML browser in Internet

Explorer

 Explanation Applet client applications run only on Windows systems.

When the applet client application runs, the application

output data is displayed in a browser window. If you are

using Internet Explorer with the Windows XP operating

system for Service Pack 2 , then you might get errors

when trying to display output data.

Possible causes The Windows XP operating system for Service Pack 2 has

a security feature that blocks pop-up browser windows

from appearing.

Recommended response v Locate the information bar found under the URL

Address bar in the Internet Explorer pop-up browser

that has been blocked.

v Click the Information Bar to display options that disable

the operating system security feature.

v Select Allow blocked content. You are prompted with

a security window asking you to confirm your selection

to allow blocked content.

v Click Yes.

v The applet client application runs successfully, and the

browser information is displayed appropriately.

Installing the Developer Kit feature downgrades the JRE files from Version 6.0.1 or

Version 6.0.2 to Version 6.0

 Explanation If you select the Developer Kit feature on the Application

Client Version 6.0.0 installer, all the files are installed

under the <client_install_root>/java directory, instead of

leaving the Java Runtime Environment (JRE) files intact.

The JRE files are unexpectedly downgraded to the

Version 6.0.0 level.

Possible causes Selecting the Developer Kit feature on the Application

Client 6.0.0 installer will actually install all files under the

<client_install_root>/java directory rather than leave the

JRE files intact. Therefore, the JRE files are unexpected

downgraded to the 6.0.0 level in the above installation

scenario.

Recommended response Complete the following installation steps to prevent

unexpected downgrading of the JRE files.

IBM Support has documents and tools that can save you time gathering information needed to resolve

problems as described in Troubleshooting help from IBM. Before opening a problem report, see the

Support page:

v http://www.ibm.com/software/webservers/appserv/was/support/

Running application clients

The J2EE specification requires support for a client container that runs stand-alone Java applications

(known as J2EE application clients) and provides J2EE services to the applications. J2EE services include

naming, security, and resource connections.

You are ready to run your application client using this tool after you have:

1. Written the application client program.

2. Assembled and installed an application module (.ear file) in the application server run time.

246 Administering applications and their environment

http://www.ibm.com/software/webservers/appserv/was/support/

3. Deployed the application using the Application Client Resource Configuration Tool (ACRCT) on

Windows .

This task only applies to J2EE application clients. To launch J2EE application clients using the

launchClient script, perform the following steps:

1.

On the CL command line, enter the following command to start the Qshell environment:

STRQSH

a. Enter the following command to launch J2EE application clients:

app_server_root/bin/launchClient

2. Pass parameters to the launchClient command or to your application client program as well. The

launchClient command allows you to do both. The launchClient command requires that the first

parameter is either:

v An EAR file specifying the application client to launch.

v A request for launchClient usage information.

The following example illustrates the command line invocation syntax for the launchClient tool:

launchClient [-profileName pName | -JVMOptions options | -help | -?] <userapp> [-CC<name>=<value>] [app args]

where

v userapp.ear is the path and the name of the EAR file that contains the application client.

v -CC<name>=<value> is the client container name-value pair parameter. See the client container

parameters section, for supported name-value pair arguments.

v app args are arguments that pass to the application client.

v -profileName defines the profile of the Application Server process in a multi-profile installation. The

-profileName option is not required for running in a single profile environment or in an Application

Clients installation. The default is default_profile.

v -JVMOptions is a valid Java standard or non-standard option string. Insert quotation marks around

the string.

v -help, -? prints the usage information.

All other parameters intended for the launchClient command must begin with the -CC prefix.

Parameters that are not EAR files, or usage requests, or that do not begin with the -CC prefix, are

ignored by the application client run time, and are passed directly to the application client program.

The launchClient command retrieves parameters from three places:

v The command line

v A properties file

v System properties

The parameters are resolved in the order listed above, with command line values having the highest

priority and system properties the lowest. Using this prioritization you can set and override default

values.

3. Specify the server name.

By default, the launchClient command uses the localhost for the BootstrapHost property value.

This setting is effective for testing your application client when it is installed on the same computer as

the server. However, in other cases override this value with the name of your server. You can override

the BootstrapHost value by invoking launchClient command with the following parameters:

launchClient myapp.ear -CCBootstrapHost=abc.midwest.mycompany.com

You can also override the default by specifying the value in a properties file and passing the file name

to the launchClient shell.

Security is controlled by the server. You do not need to configure security on the client because the

client assumes that security is enabled. If server security is not enabled, then the server ignores the

security request, and the application client functions as expected.

Chapter 11. Client applications 247

You can store launchClient values in a properties file, which is a good method for distributing default

values. You can then override one or more values on the command line. The format of the file is one

launchClient -CC parameter per line without the -CC prefix. For example:

 verbose=true classpath=c:\mydir\util.jar;c:\mydir\harness.jar;c:\production\G19

\global.jar BootstrapHost=abc.westcoast.mycompany.com tracefile=c:\WebSphere\mylog.txt

launchClient tool

This topic describes the Java 2 Platform Enterprise Edition (J2EE) command line syntax for the

launchClient tool for WebSphere Application Server.

The following example illustrates the command line invocation syntax for the launchClient tool:

launchClient [-profileName pName | -JVMOptions options | -help | -?] <userapp> [-CC<name>=<value>] [app args]

where

v userapp.ear is the path and the name of the EAR file that contains the application client.

v -CC<name>=<value> is the client container name-value pair parameter. See the client container

parameters section, for supported name-value pair arguments.

v app args are arguments that pass to the application client.

v -profileName defines the profile of the Application Server process in a multi-profile installation. The

-profileName option is not required for running in a single profile environment or in an Application

Clients installation.

The default is default_profile.

v -JVMOptions is a valid Java standard or nonstandard option string. Insert quotation marks around the

string.

v -help, -? prints the usage information.

The first parameter must be -help, -? or contain no parameter at all. The -profileName pName and

-JVMOptions options are optional parameters. If used, they must appear before the <userapp> parameter.

All other parameters are optional and can appear in any order after the <userapp> parameter. The J2EE

Application client run time ignores any optional parameters that do not begin with a -CC prefix and passes

those parameters to the application client.

Client container parameters

Supported arguments include:

-CCadminConnectorHost

Specifies the host name of the server from which configuration information is retrieved.

 The default is the value of the -CCBootstrapHost parameter or the value, localhost, if the

-CCBootstrapHost parameter is not specified.

-CCadminConnectorPort

Indicates the port number for the administrative client function to use. The default value is 8880 for

SOAP connections and 2809 for Remote Method Invocation (RMI) connections.

-CCadminConnectorType

Specifies how the administrative client connects to the server. Specify RMI to use the RMI connection

type, or specify SOAP to use the SOAP connection type. The default value is SOAP.

-CCadminConnectorUser

Administrative clients use this user name when a server requires authentication. If the connection type

is SOAP, and security is enabled on the server, this parameter is required. The SOAP connector does

not prompt for authentication.

-CCadminConnectorPassword

The password for the user name that the -CCadminConnectorUser parameter specifies.

248 Administering applications and their environment

-CCaltDD

The name of an alternate deployment descriptor file. This parameter is used with the -CCjar parameter

to specify the deployment descriptor to use. Use this argument when a client JAR file is configured

with more than one deployment descriptor. Set the value to null to use the client JAR file standard

deployment descriptor.

-CCBootstrapHost

The name of the host server you want to connect to initially. The format is:

your_server_of_choice.com

-CCBootstrapPort

The server port number. If you do not specify this argument, the WebSphere Application Server default

value is used.

-CCclassLoaderMode

Specifies the class loader mode. If PARENT_LAST is specified, the class loader loads classes from

the local class path before delegating the class loading to its parent. The classes loaded for the

following are affected:

v Classes defined for the J2EE application client

v Resources defined in the J2EE application

v Classes specified on the manifest of the J2EE client JAR file

v Classes specified using the -CCclasspath option

If PARENT_LAST is not specified, then the default mode, PARENT_FIRST, causes the class loader to

delegate the loading of classes to its parent class loader before attempting to load the class from its

local class path.

-CCclasspath

A class path value. When you launch an application, the system class path is used. If you want to

access classes that are not in the EAR file or part of the system class paths, specify the appropriate

class path here. Multiple paths can be concatenated.

-CCD

Use this option to have the WebSphere Application Server set the specified system property during

initialization. Do not use the equals (=) character after the -CCD. For example:

-CCDcom.ibm.test.property=testvalue. You can specify multiple -CCD parameters. The general format

of this parameter is -CCD<property key>=<property value>. For example,

-CCDI18NService.enable=true.

-CCdumpJavaNameSpace

Prints out the Java portion of the Java Naming and Directory Interface (JNDI) name space for

WebSphere Application Server. The true value uses the short format that prints out the binding name

and the type of the object bound at that location. The long value uses the long format that prints out

the binding name, bound object type, local object, type and string representation of the local object, for

example, IORs and string values. The default value is false.

-CCexitVM

Use this option to have the WebSphere Application Server call the System.exit() method after the

client application completes. The default is false.

-CCinitonly

Use this option to initialize application client run time for ActiveX application clients without launching

the client application. The default is false.

-CCjar

The name of the client Java Archive (JAR) file that resides within the EAR file for the application you

wish to launch. Use this argument when you have multiple client JAR files in the EAR file.

-CCpropfile

Indicates the name of a properties file that contains launchClient properties. Specify the properties

Chapter 11. Client applications 249

without the -CC prefix in the file, with the exception of the securityManager, securityMgrClass and

securityMgrPolicy properties. See the following example: verbose=true.

-CCproviderURL

Provides bootstrap server information that the initial context factory can use to obtain an initial context.

WebSphere Application Server initial context factory can use either a Common Object Request Broker

Architecture (CORBA) object URL or an Internet Inter-ORB Protocol (IIOP) URL. CORBA object URLs

are more flexible than IIOP URLs and are the recommended URL format to use. This value can

contain more than one bootstrap server address. This feature can be used when attempting to obtain

an initial context from a server cluster. You can specify bootstrap server addresses, for all servers in

the cluster, in the URL. The operation will succeed if at least one of the servers is running, eliminating

a single point of failure. The address list does not process in a particular order. For naming operations,

this value overrides the -CCBootstrapHost and -CCBootstrapPort parameters. A CORBA object URL

specifying multiple systems is illustrated in the following example:

-CCproviderURL=corbaloc:iiop:myserver.mycompany.com:9810,:mybackupserver.mycompany.com:2809

This value is mapped to the java.naming.provider.url system property.

-CCsecurityManager

Enables and runs the WebSphere Application Server with a security manager. The default is disable.

-CCsecurityMgrClass

Indicates the fully qualified name of a class that implements a security manager. Only use this

argument if the -CCsecurityManager parameter is set to enable. The default is

java.lang.SecurityManager.

-CCsecurityMgrPolicy

Indicates the name of a security manager policy file. Only use this argument if the -CCsecurityManager

parameter is set to enable. When you enable this parameter, the java.security.policy system

property is set. The default is <app_server_root>/ properties/client.policy.

-CCsoapConnectorPort

The Simple Object Access Protocol (SOAP) connector port. If you do not specify this argument, the

WebSphere Application Server default value is used.

-CCtrace

Use this option to obtain debug trace information. You might need this information when reporting a

problem to IBM customer support. The default is false. For more information, read the topic ″Enabling

trace.″

-CCtracefile

Indicates the name of the file to which trace information is written. The default is to write output to the

console.

-CCtraceMode

Specifies the trace format to use for tracing. If the valid value, basic, is not specified the default is

advanced. Basic tracing format is a more compact form of tracing.

 For more information on basic and advanced trace formatting, see Interpreting trace output.

-CCverbose

This option displays additional information messages. The default is false.

The following examples demonstrate correct syntax.

Windows

launchClient c:\earfiles\myapp.ear -CCBootstrapHost=myWASServer -CCverbose=true app_parm1 app_parm2

./launchClient.sh /usr/earfiles/myapp.ear -CCBootstrapHost=myWASServer -CCverbose=true app_parm1

app_parm2

250 Administering applications and their environment

Specifying the directory for an expanded EAR file

You can archive the Manifest.mf client Java Archive (JAR) files instead of automatically cleaning them up

after the application exits.

Each time the launchClient tool is called, it extracts the Enterprise Archive (EAR) file to a random directory

name in the temporary directory on your hard drive. Then the tool sets up the thread ClassLoader to use

the extracted EAR file directory and JAR files included in the Manifest.mf client Java Archive (JAR) file. In

a normal J2EE Java client, these files are automatically cleaned up after the application exits. This

cleanup occurs when the client container shutdown hook is called. To avoid extracting the EAR file (and

removing the temporary directory) each time the launchClient tool is called, complete the following steps:

1. Specify a directory to extract the EAR file by setting the

com.ibm.websphere.client.applicationclient.archivedir Java system property. If the directory does

not exist or is empty, the EAR file is extracted normally. If the EAR file was previously extracted, the

launchClient tool reuses the directory.

2. Delete the directory before running the launchClient tool again, if you need to update your EAR file.

When you call the launchClient command, it extracts the new EAR file to the directory. If you do not

delete the directory or change the system property value to point to a different directory, the

launchClient tool reuses the currently extracted EAR file and does not use your changed EAR file.

When specifying the com.ibm.websphere.client.applicationclient.archivedir property, make sure

that the directory you specify is unique for each EAR file you use. For example, do not point the

MyEar1.ear and the MyEar2.ear files to the same directory.

Java Web Start architecture for deploying application clients

Java Web Start is an application-deployment technology that includes the portability of applets, the

maintainability of servlets and JavaServer Pages (JSP) file technology, and the simplicity of mark-up

languages such as XML and HTML. It is a Java application that allows full-featured Java 2 client

applications to be launched, deployed and updated from a standard Web server. The Java Web Start client

is used with platforms that support a Web browser.

Upon launching Java Web Start for the first time, you might download new client applications from the

Web. Each time you launch JWS thereafter, you can initiate applications either through a link on a Web

page or (in Windows) from desktop icons or the Start menu. You can deploy applications quickly using

Java Web Start, cache applications on the client machine, and launch applications remotely offline.

Additionally, because Java Web Start is built from the J2EE infrastructure, the technology inherits the

complete security architecture of the J2EE platform.

The technology underlying Java Web Start is the Java Network Launching Protocol & API (JNLP). Java

Web Start is a JNLP client and it reads and parses a JNLP descriptor file (JNLP file). Base on the JNLP

descriptor, it downloads appropriate pieces of a client application and any of its dependencies. If any of the

pieces of the application are already cached on the client machine, then those components are not

downloaded again, unless they have been updated on the server machine. After you download and cache

the client application, JWS launches it natively on the client machine.

The following diagram shows an overview of launching a client application, include the Application Client

for WebSphere Application Server, Version 6 as a dependent resource, using Java Web Start.

Chapter 11. Client applications 251

Java Network

Launching Protocol

files(JNLP)

Web

browser

Java WebStart

(JWS)

application-desc

JNLP

installer-desc

JNLP

WebSphere JARs

WebSphereClientLauncher.jar

WASClient6.0_runtime.jar

EAR file

JAR file

for a J2EE application

or for a non-J2EE application

WebSphereClientRuntimeInstaller.jar

component-desc

JNLP

The Web browser running on a client machine connects to a Web application located on a server

machine. The client application JNLP descriptor file is downloaded and processed by Java Web Start on

the client machine.

In this diagram, there are three JNLP descriptor files:

v Client application JNLP descriptor (application-desc in the diagram)

v Application Clients run-time installer JNLP descriptor (installer-desc in the diagram)

v Application Clients run-time library component JNLP descriptor (component-desc in the diagram)

Each of these JNLP descriptor files, the client application (JAR or EAR) and the dependent resource JAR

files are packaged as Web applications in an EAR file. This EAR file is deployed to an Application server.

The client machine with JWS installed uses a Web browser to connect to the url of the client application

JNLP descriptor file to download and run the client application.

Using Java Web Start from J2SE Java Runtime Environment 5.0 or later is highly recommended. All the

platforms supported by the application client for WebSphere Application Server are supported with the

exception Linux on Power and OS400 platforms.

You can use any of the following:

v Java Web Start on the Java 2 Standard Edition Developer Kits that IBM provides, packaged in

Application Client for WebSphere Application Server, Version 6.1

v Java Web Start on Sun Microsystems J2SE Software Development Kit or J2SE Java Runtime

Environment 5.0, which you can download from the Sun Microsystems Web site for Windows, Linux and

Solaris operating systems

v Java Web Start on HP-UX JDK or JRE for Java 2 Platform Standard Edition, version 5, which you can

download from the HP Web site

Using Java Web Start

This topic provides the steps and prerequisites necessary to use Java Web start.

Before you begin this task, see the following topics to understand Java Web Start technology and its

components:

v “Java Web Start architecture for deploying application clients” on page 251

252 Administering applications and their environment

http://www.sun.com
http://www.hp.com

v “Client application Java Network Launcher Protocol deployment descriptor file” on page 254

v “ClientLauncher class” on page 258

Note: You can use any of the following:

v Java Web Start on Java 2 Standard Edition Developer Kits that IBM provides, packaged in the

Application Client for WebSphere Application Server, Version 6.1

v Java Web Start on Sun Microsystems J2SE Software Development Kit or J2SE Java Runtime

Environment 5.0, which you can download from the Sun Microsystems Web site for Windows,

Linux and Solaris operating systems

v Java Web Start on HP-UX JDK or JRE for Java 2 Platform Standard Edition, version 5.0, which

you can download from the HP Web site.

1. Prepare the Application Clients run-time dependency component for JWS.

2. Prepare the Application Clients run-time library component for JWS.

3. Installing JWS.

4. Optional: Run the Java Web Start sample.

Problem: When you run Web services clients from Java Web Start using a Mozilla browser, you might

get errors if the client argument contains quotations in the jnlp.jsp file. For example, the following

argument results in an error:

<argument>-url="wsejb:/com.ibm.wssvt.tc.pli.ejb.WSMultiProtocolHome?jndiName=com/ibm/wssvt/tc

/pli/ejb/WSMultiProtocolHome&"</argument>

Error: The following errors display in the Java Web Start console:

If using the EJB protocol, the following error is displayed:

Client caught exception getting the InsuranceWebServicesPort

using the URL

"wsejb:/com.ibm.wssvt.tc.pli.ejb.WSMultiProtocolHome?jndiName=com/ibm/wssvt/tc

/pli/ejb/WSMultiProtocolHome&"

java.net.MalformedURLException: no protocol:

"wsejb:/com.ibm.wssvt.tc.pli.ejb.WSMultiProtocolHome?jndiName=com/ibm/wssvt/tc

/pli/ejb/WSMultiProtocolHome&"

 at java.net.URL.<init>(URL.java(Compiled Code))

 at java.net.URL.<init>(URL.java(Compiled Code))

 at java.net.URL.<init>(URL.java:411)

 at com.ibm.wssvt.tc.pli.webservice.InsuranceWebServicesClient

.getInsuranceServicesClientURL(InsuranceWebServicesClient.java:231)

 at com.ibm.wssvt.tc.pli.webservice.InsuranceWebServicesClient

.main(InsuranceWebServicesClient.java:748)

 at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)

 at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:85)

 at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:58)

 at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:60)

 at java.lang.reflect.Method.invoke(Method.java:391)

 at com.ibm.websphere.client.applicationclient.launchClient.

createContainerAndLaunchApp(launchClient.java:649)

If using the HTTP protocol, the following error is displayed:

Client caught exception getting the InsruanceWebServicesPort

using the URL

"http://svtlnx1:9081/WebSvcsInsSession20EJB/services/WSMultiProtocol"

java.net.MalformedURLException: no protocol:

"http://svtlnx1:9081/WebSvcsInsSession20EJB/services/WSMultiProtocol"

If using the JMS protocol, the following error is displayed:

Client caught exception getting the InsruanceWebServicesPort

using the URL

"jms:/queue?destination=jms/MultiProtocol_Q&connectionFactory=jms/InsuranceServices_Q

CF&targetService=WSMultiProtocolJMS&jndiProviderURL=IIOP://svtlnx1.austin.ibm.com:981

1"

Chapter 11. Client applications 253

http://www.sun.com
http://www.hp.com

java.net.MalformedURLException: no protocol:

"jms:/queue?destination=jms/MultiProtocol_Q&connectionFactory=jms/InsuranceServices_Q

CF&targetService=WSMultiProtocolJMS&jndiProviderURL=IIOP://svtlnx1.austin.ibm.com:981

1"

 at java.net.URL.<init> (URL.java(Compiled Code))

Making calls to methods in WSMultiprotocolWebServicesBean ...

Solution: To resolve the problem, update the jnlp.jsp file to remove the quotations (″ ″) from the

argument. When a jnlp.jsp file has statements or expressions that begin with ″${″ and the statement is

not to be interpreted as an expression, then add a backward slash ″\″, as shown in the following

example:

<argument>-CCDcom.ibm.ssl.keyStore=${WAS_ROOT}/etc/DummyClientKeyFile.jks</argument>

<argument>-CCDcom.ibm.ssl.trustStore=${WAS_ROOT}/etc/DummyClientTrustFile.jks</argument>

For the EJB protocol, use the following example argument to correct the errors:

<argument>-url=wsejb:/com.ibm.wssvt.tc.pli.ejb.WSMultiProtocolHome?jndiName=com/ibm/wssvt/tc

/pli/ejb/WSMultiProtocolHome&</argument>

For the HTTP protocol, use the following argument to correct the errors:

<argument>-url=http://svtaix23:9081/WebSvcsInsSession20EJB/services/WSMultiProtocol</argument>

For the JMS protocol, use the following argument to correct the errors:

<argument>-url=jms:/queue?destination=jms/MultiProtocol_Q&connectionFactory=

jms/InsuranceServices_QCF&targetService=

WSMultiProtocolJMS&jndiProviderURL=IIOP://svtaix23.austin.ibm.com:9811</argument>

Now, rerun the client from Java Web Start.

Client application Java Network Launcher Protocol deployment descriptor file

The deployment descriptor file is the main Java Network Launcher Protocol (JNLP) descriptor file for the

client application.

Location

The client application has an Application Clients run-time dependency that provides the following:

v Java 2 Runtime Environment from IBM

v Application Clients run-time properties

v SSL KeyStore and TrustStore file

v Application Clients run-time library JAR files (optional for Thin Application client applications)

If the Application Clients run-time dependency is not met, it is downloaded and installed in Java Web Start

(JWS), as described by the Application Clients run-time installer JNLP descriptor file.

<j2se version="WASclient6.1.0"

href="/WebSphereClientRuntimeWeb/Runtime/WebSphereJre/AppClientRT.jsp"/>

Usage notes

The client application must also include the WebSphereClientLauncher.jar file, which contains the launcher

class, com.ibm.websphere.client.launcher.ClientLauncher, that completes one of the following actions:

v If it is a J2EE Application client application (that is the resources for the application contain an EAR file

with a client application), then the launcher class starts a second Java Virtual Machine (JVM) using the

JRE provided by the Application Clients run-time dependency and launches the J2EE Application client

application that is packaged in the EAR file.

The EAR file must be specified as a JAR resource so that it can be downloaded to JWS and specified

in the system property, com.ibm.websphere.client.launcher.ear. See “JNLP descriptor file for a J2EE

Application client application” on page 255 for an example.

254 Administering applications and their environment

v If it is a Thin Application client application, then the launcher class uses the current JVM from the

Application Clients run-time dependency and invokes the Thin Application client application main

method.

The Thin Application client application JAR file must be specified as a JAR resource so that it can be

downloaded to JWS and the name of the class containing main method entry point is specified in the

system property, com.ibm.websphere.launcher.main. See “JNLP descriptor file for a Thin Application

client application” on page 257 for an example.

Unlike the J2EE Application client application, the Thin Application client application is not loading the

Application Clients run-time library JAR files from the Application Clients run-time dependency. It is

downloaded from the server directly as it is for the Thin Application client application JAR file. An

Application Clients run-time library component JNLP descriptor is used for specifying the Application

Clients run-time library JAR files resources, as shown in the following example:

<extension name="WAS Thin EJB Client Library"

 href="/WebSphereClientRuntimeWeb/Runtime/WebSphereJars/AppClientLib.jnlp"/>

The JNLP specification requires all the resource (JAR or EAR) files used in a JNLP file to be signed.

You can specify the –CC arguments defined in the launchClient tool for a J2EE Application client

application in application arguments section of the JNLP descriptor files. However, only –CCD is

supported for a Thin Application client application to define system properties and the JNLP <property>

tag can also be used to define system properties. See the following example for details:

<property name="java.naming.provider.url" value="corbaloc:iiop:myserver.com:9089"/>

For a J2EE Application client application, specify the following application arguments as defined in the

JNLP.

1. Specify your target server provider URL, as shown in the following example:

<argument> >-CCDjava.naming.provider.url =corbaloc:iiop:myserver.mydomain.com:9080 </argument>

2. Specify the SSL Key File and SSL Trust File location. These files are expected to be available in the

client machine. To use the ones in the Application Clients run-time dependency installed in JWS

cache, specify these application arguments:

<argument> -CCDcom.ibm.ssl.keyStore=${WAS_ROOT}/etc/key.p12 </argument>

<argument>-CCDcom.ibm.ssl.trustStore=${WAS_ROOT}/etc/trust.p12 </argument>

3. Specify the initial naming context factor, as shown in the following example:

<argument>-CCDjava.naming.factory.initial=com.ibm.websphere.naming.WsnInitialContextFactory </argument>

For a Thin Application client application, you also need to specify the actual location of the

sas.client.props and ssl.client.props files located in the Application Clients run-time dependency

that is installed in the JWS cache.

<argument>-CCDcom.ibm.CORBA.ConfigURL=file:${WAS_ROOT}/properties/sas.client.props </argument>

<argument>-CCDcom.ibm.SSL.ConfigURL=file:${WAS_ROOT}/properties/ssl.client.props </argument>

If any of the default settings in the sas.client.props and ssl.client.props file need modifying, use

the –CCD to change the settings through the system properties, as shown in the following example:

<argument>-CCDjavacom.ibm.CORBA.securityEnabled=false </argument>

Note: The ${WAS_ROOT} token used in the JNLP file is replaced by the launcher class,

com.ibm.websphere.client.launcher.ClientLauncher, to the actual location of the Application

Clients run-time dependency installation in the JWS cache. If you are using JSP to

dynamically create this JNLP description file, you must escape this token because it has a

different meaning in JSP 2.0. See the following example for details:

<argument>-CCDcom.ibm.ssl.keyStore=\${WAS_ROOT}/etc/key.p12 </argument>

<argument>-CCDcom.ibm.ssl.trustStore=\${WAS_ROOT}/etc/trust.p12 </argument>

JNLP descriptor file for a J2EE Application client application:

The deployment descriptor file is the main Java Network Launcher Protocol (JNLP) descriptor file for the

client application. If it is a J2EE Application client application (that is the resources for the application

contain an EAR file with a client application), then the launcher class starts a second Java Virtual Machine

Chapter 11. Client applications 255

(JVM) using the JRE provided by the Application Clients run-time dependency and launches the J2EE

Application client application that is packaged in the EAR file.

 Here is an example of the client application JNLP descriptor file for a J2EE Application client application.

<!--

"This sample program is provided AS IS and may be used, executed, copied and

modified without royalty payment by customer (a) for its own instruction and

study, (b) in order to develop applications designed to run with an IBM

WebSphere product, either for customer’s own internal use or for

redistribution by customer, as part of such an application, in customer’s

own products."

Product 5630-A36, (C) COPYRIGHT International Business Machines Corp., 2004

All Rights Reserved * Licensed Materials - Property of IBM

–->

<!–-

 This is a generic jnlp for a client app. It will specify the WAS JRE

 as a dependency as well as the client launcher

–->

<!-- == -->

<!-- TODO: change "codebase" to the actual url location of this jnlp file -->

<!-- == -->

<jnlp spec="1.0+"

 codebase="http://your_server:port_number/J2EEWebStartWeb/JavaClients/WebStartExample">

 <information>

 <title>J2EE Client Exampletitle>J2EE Client Example</title>

 <vendor>IBM Client Teamvendor>IBM Client Team</vendor>

 <description>JVE WebStart example of: J2EE Client Example</description>

 <description kind="short">J2EE Client Example</description>

 <description kind="tooltip">J2EE Client Example</description>

 </information>

 <security>

 <all-permissions/>

 </security>

 <resources>

 <!–- === -–>

 <!–- TODO: Update the "version" value to match your Application Client runtime -–>

 <!–- Update the "href" value to the url for downloading the Application -–>

 <!–- Client runtime. -–>

 <!–- === -–>

 <j2se version="WASClient6.1.0"

 href="/WebSphereClientRuntimeWeb/Runtime/WebSphereJre/AppClientRT.jsp"/

 <!–- The client app will require a client launcher -–>

 <jar href="../Launcher/WebSphereClientLauncher.jar" main="true"/>

 <!–- Ear we want to download to the client -–>

 <jar href="J2eeJWS.ear"/>

 <!–- The launcher depends on this property to be set -–>

 <property name="com.ibm.websphere.client.launcher.ear" value="J2eeJWS.ear"/>

 </resources>

 <!–- WebStart will consider the Launcher as the app. to run -–>

 <application-desc main-class="com.ibm.websphere.client.launcher.ClientLauncher">

 <argument>-CCproviderURL=corbaloc:iiop:your_server</argument>

 <argument>-CCDcom.ibm.ssl.keyStore=${WAS_ROOT}/etc/key.p12</argument>

 <argument>-CCDcom.ibm.ssl.trustStore=${WAS_ROOT}/etc/trust.p12</argument>

 </application-desc>

</jnlp>

256 Administering applications and their environment

JNLP descriptor file for a Thin Application client application:

The deployment descriptor file is the main Java Network Launcher Protocol (JNLP) descriptor file for the

client application. If it is a Thin Application client application, then the launcher class uses the current JVM

from the Application Clients run-time dependency and invokes the Thin Application client application main

method.

 Here is an example of the JNLP descriptor file for a Thin Application client application.

<!–-

"This sample program is provided AS IS and may be used, executed, copied and

modified without royalty payment by customer (a) for its own instruction and

study, (b) in order to develop applications designed to run with an IBM

WebSphere product, either for customer’s own internal use or for

redistribution by customer, as part of such an application, in customer’s

own products."

Product 5630-A36, (C) COPYRIGHT International Business Machines Corp., 2004

All Rights Reserved * Licensed Materials - Property of IBM

-–>

<!–-

 This is a generic jnlp for a client app. It will specify the WAS JRE

 as a dependency as well as the client launcher

 -–>

<!–- == -–>

<!–- TODO: change "codebase" to the actual url location of this jnlp file -–>

<!–- == -–>

<?xml version="1.0" encoding="utf-8"?>

<jnlp spec="1.0+"

codebase="http://your_server:port_number/J2EEWebStartWeb/JavaClients/WebStartExample">

 <information>

 <title>Thin Basic Calculator Client Samples</title>

 <vendor>IBM</vendor>

 <description>Thin Basic Calculator Client Samples</description>

 <offline-allowed/>

 </information>

 <security>

 <all-permissions/>

 <security>

 <resources>

 <j2se version="WASClient6.1.0"

 href="/WebSphereClientRuntimeWeb/Runtime/WebSphereJre/AppClientRT.jspz"/>

 <extension name="WAS Thin EJB Client Library"

 href="/WebSphereClientRuntimeWeb/Runtime/WebSphereJars/AppClientLib.jnlp"/>

 <!–- you must use the jar resource for JWS LaunchClient class here if using JWS LaunchClient

 wrapper launcher -–>

 <jar href="/WebSphereClientRuntimeWeb/Runtime/WebSphereJars/WebSphereClientLauncher.jar" main="true"/>

 <jar href="BasicCalculatorClientCommon.jar"/>

 <jar href="BasicCalculatorEJB.jar"/>

 <jar href="BasicCalculatorThinClient.jar"/>

 <property name="com.ibm.websphere.client.launcher.main"

value="com.ibm.websphere.samples.technologysamples.basiccalcthinclient.BasicCalculatorClientThinMain"/>

 <property name="java.naming.factory.initial"

 value="com.ibm.websphere.naming.WsnInitialContextFactory" />

 <property name="java.naming.provider.url"

 value="corbaloc:iiop:your_server:port_number"/>

 <property name="com.ibm.CORBA.ConfigURL"

Chapter 11. Client applications 257

value="http://your_server:port_number/J2EEWebStartWeb/JavaClients/sas.client.props"/>

 <property name="com.ibm.SSL.ConfigURL"

value="http://your_server:port_number/J2EEWebStartWeb/JavaClients/ssl.client.props"/>

 <!-- *** Logging Properties ***

 <property name="com.ibm.websphere.client.launcher.jws.trace" />

 <property name="java.util.logging.configureByServer" value="true" />

 <property name="traceSettingsFile" value="TraceSettings.properties" />

 <property name="com.ibm.CORBA.Debug" value="true" />

 <property name="com.ibm.CORBA.CommTrace" value="true" />

 <property name="java.util.logging.manager" value="com.ibm.ws.bootstrap.WsLogManager" />

 <property name="com.ibm.CORBA.RasManager" value="com.ibm.websphere.ras.WsOrbRasManager" />

 -->

 </resources>

 <application-desc>

 <argument>-CCDcom.ibm.ssl.keyStore=${WAS_ROOT}/etc/key.p12</argument>

 <argument>-CCDcom.ibm.ssl.trustStore=${WAS_ROOT}/etc/trust.p12</argument>

 <argument>add</argument>

 <argument>1</argument>

 <argument>2</argument>

 </application-desc>

</jnlp>

ClientLauncher class:

The class, com.ibm.websphere.client.installer.ClientLauncher, contains a main() method that is called by

Java Web Start (JWS) to launch the client application. The Java Web Start client is used with platforms

that support a Web browser.

 This client is packaged in the WebSphereClientLauncher.jar file that is located in a WebSphere Application

Server clients installation under the <app_server_root>/ JWS directory.

This launcher class configures the run-time environment for J2EE application clients and thin client

applications (not J2EE application clients).

The launcher class requires that the following properties are defined. These properties are not defined in a

separate properties file. Instead, the properties are defined as part of the Java Network Launching

Protocol (JNLP) files.

com.ibm.websphere.client.launcher.main

If the client application is a Thin Application client, then this property should be specified. It

specifies the class where the main entry point of the client application resides.

com.ibm.websphere.client.launcher.ear

If the client application is a J2EE Application client, then this property should be specified. It

specifies the name of the EAR file to be executed. This property takes precedence over

com.ibm.websphere.client.launcher.main. However, only one of the two properties should be

specified.

Launcher tool:

The launcher configures the run-time environment for J2EE application clients and thin client applications

(not J2EE application clients). The launcher utility is located in the main entry point of the Java Network

Launching Protocol (JNLP) application client. The main class launcher name is

com.ibm.websphere.client.launcher.ClientLauncher and is located in the WebSphereClientLauncher.jar file.

 The launcher tool requires that the following properties are defined.

258 Administering applications and their environment

com.ibm.websphere.client.launcher.main

If the client that is to be run is a thin client, then this property should be specified. It specifies the

class where the main entry point of the application resides.

com.ibm.websphere.client.launcher.ear

If the client that is to run is the J2EE client, then this property should be specified. It specifies the

name of the ear file to be executed. This property takes precedence over

com.ibm.websphere.client.launcher.main although only one of the two properties should be

specified.

com.ibm.websphere.client.launcher.classpath.* (required for J2EE client applications only)

There can be a set of properties that are prefixed with

com.ibm.websphere.client.launcher.classpath. Each property specifies a JAR file that is to be

added to the class path of the application. This JAR file is a JAR file that is already defined as a

resource for the application. This file is needed so that the correct elements of the class path of

the Java Virtual Machine (JVM) starting the client launcher can be retrieved and added to the

class path of the (JVM) that is to be spawned for the application client.

These properties are not defined in a separate properties file. Instead, they are defined as part of the Java

Network Launching Protocol files.

Preparing the Application Client run-time dependency component for Java Web

Start

For a J2EE application client application and or Thin application client application to be launched using

Java Web Start (JWS), an Java Runtime Environment that IBM provides, the library JAR files and

properties files bundled in Application Client for WebSphere Application Server must be installed in the

JWS. This article provides the steps to build the Application Client run-time dependency component from

an Application Client installation. It is packaged as a Web Archive Resource (WAR) file that can be

installed in an Application Server.

Install the Application Client for WebSphere Application Server for the platform to which the client

application deploys. If there is a requirement to deploy the client application to multiple platforms, the

Application Client run-time dependency component must be built separately for each platform that client

application supports.

For example, if the client application deploys to both the Windows platform and Linux platform, follows the

steps for this task to build the Application Client run-time dependency component for Windows on a

Windows platform machine with the Application Client for WebSphere Application Server for Windows

installed. Now, repeat the steps for this task to build the Application Client run-time dependency

component for Linux on a Linux platform machine with the Application Client for WebSphere Application

Server for Linux installed.

1. Install the Application Client for WebSphere Application Server for the client application supported

operating systems. Install Application Client in the C:\Program Files\IBM\WebSphere\AppClient

directory.

2. Change the directory to the installation bin directory. See the following example for help:

CD C:\Program files\IBM\WebSphere\AppClient\bin

3. Run the buildClientRuntime tool to generate the Application Client run-time JAR file in a temporary

directory which contains the Java 2 Runtime Environment, Application Client run-time properties, the

SSL KeyStore and TrustStore file, and the Application Client run-time library JAR files. See the

following example for help:

buildClientRuntime C:\WebApp1\runtime\WASClient6.1_windows.jar

If you are building an Application Client run-time JAR file only for serving Thin application client

applications and not for J2EE application client applications, you can reduce the size of the generated

JAR file by not including the Application Client run-time library JAR files. An extra parameter is passed

to the buildClientRuntime tool, as the following example shows:

Chapter 11. Client applications 259

buildClientRuntime C:\WebApp1\runtime\WASClient6.1_windows.jar

 buildThin

4. Copy the WebSphereClientRuntimeInstaller.jar file to the same location of the JAR file generated in

the previous step. This JAR file is located in the JWS directory of the WebSphere Application Server

clients installation. See the following example for help:

copy ..\JWS\WebSphereClientRuntimeInstaller.jar C:\WebApp1\runtime

5. Sign the JAR files created from the previous steps, using the Java 2 SDK jarsigner utility, as the

following example shows:

cd C:\WebApp1\runtime

jarsigner -keystore myKeystore -storepass myPassword

 WASClient6.1_windows.jar myKeyAliasName

jarsigner -keystore myKeystore -storepass myPassword

 WebSphereClientRuntimeInstaller.jar myKeyAliasName

6. Create an Application Client run-time installer JNLP descriptor file or a JavaServer Pages (JSP) file if it

is generated dynamically in the same temporary directory as previous step. See the sample JNLP file

shown in the Example section of this topic.

7. Package the two signed JAR files and the Application Client run-time installer JNLP descriptor file into

a WAR file. This WAR file is packaged into an EAR file that can be deployed to an Application Server.

Your Web application is ready to serve the Application Client run time and the JRE environment.

<!-- This sample program is provided AS IS and may be used, executed, copied and modified

without royalty payment by customer (a) for its own instruction and study, (b) in order

to develop applications designed to run with an IBM WebSphere product, either for customer’s

own internal use or for redistribution by customer, as part of such an application, in

customer’s own products.

Product 5630-A36, (C) COPYRIGHT International Business Machines Corp., 2005

All Rights Reserved * Licensed Materials - Property of IBM

-->

<%-- // to set the Last_Modified header so that the JNLP client will know whether to download

 // the JNLP file again and update the cached copy.

 String jspPath = application.getRealPath(request.getServletPath());

 java.io.File jspFile = new java.io.File(jspPath);

 long lastModified = jspFile.lastModified();

%><%

 // locally declared variables

 String url=request.getRequestURL().toString();

 String jnlpCodeBase=url.substring(0,url.lastIndexOf(’/’));

 String jnlpRefURL=url.substring(url.lastIndexOf(’/’)+1,url.length());

 // Need to set a JNLP mime type - if WebStart is installed on the client,

 // this header will induce the browser to drive the WebStart Client

 response.setContentType("application/x-java-jnlp-file"); 1

 response.setHeader("Cache-Control", null);

 response.setHeader("Set-Cookie", null);

 response.setHeader("Vary", null);

 response.setDateHeader("Last-Modified", lastModified);

 // An installer must reply with the version number for a given install

 if (response.containsHeader("x-java-jnlp-version-id"))

 response.setHeader("x-java-jnlp-version-id", "WASClient6.1.0"); 2

 else

 response.addHeader("x-java-jnlp-version-id", "WASClient6.1.0");

%>

<?xml version="1.0" encoding="utf-8"?>

<!-- == -->

<!-- TODO: change "codebase" to the actual url location of this jsp -->

260 Administering applications and their environment

<!-- == -->

<jnlp spec="1.0+"

codebase="http://YOUR_APP_SERVER:PORTNUMBER/WEBAPP_CONTEXT_ROOT/Runtime/WebSphereJre">

<information>

 <title>Application Client Java Runtime Environment</title>

 <vendor>IBM</vendor>

 <icon href="icon.gif"/>

 <description>Application Client Java Runtime Environment</description>

 <description kind="short">Applicaiton Client JRE</description>

 <description kind="tooltip">Applicaiton Client JRE</description>

 <offline-allowed/>

</information>

<security>

 <all-permissions/>

</security>

 <resources>

 <j2se version="1.4+"/><%-- The installer can use any 1.4 JRE --%> 3

 <jar href="WebSphereClientRuntimeInstaller.jar" main="true"/> 4

 <!-- JRE version registration with Web Start -->

 <property name="com.ibm.websphere.client.jre.version" value="WASClient6.1.0"/> 5

 </resources>

 <resources os="Windows"> 6

<!-- == -->

<!-- TODO: the property value for unix platform is "java/jre/bin/javaw" -->

<!-- and the "os" value match to your target client machine platform -->

<!-- == -->

 <jar href="WASClient6.1.0_Windows.jar"/> 7

<!-- == -->

<!-- TODO: property value for unix platform is "java/jre/bin/javaw" -->

<!-- == -->

<!-- relative path of the jre executable —->

 <property name="com.ibm.websphere.client.jre.launch.java"

 value="java\jre\bin\javaw.exe"/> 8

 </resources>

 <installer-desc main-class="com.ibm.websphere.client.installer.ClientRuntimeInstaller"/>

</jnlp>

1. Specifies that the file is a JNLP mime type so that the browser can process the JNLP file.

2. Specifies the exact version of this Application Client run-time dependency component in the response

by setting the HTTP header field: x-java-jnlp-version-id.

3. Specifies the required JRE version to run the installer program.

4. Specifies the installer WebSphereClientRuntimeInstaller.jar file, which contains the

ClientRuntimeInstaller class.

5. Specifies a system property that defines the version of Application Client run-time dependency

component. This version is registered to the JNLP client.

6. Specifies resources for a particular platform. Each supported client application platform needs its own

separate JAR file.

7. Specifies the Application Client run-time dependency component JAR file.

8. Specifies the program to call that starts a JVM for the client application.

Preparing Application Client run-time library component for Java Web Start.

buildClientRuntime tool:

Chapter 11. Client applications 261

For a J2EE application client application and or Thin application client application to be launched using

Java Web Start (JWS), the library JAR files bundled in Application Client for WebSphere Application

Server must be installed in the Java Web Start. Use this tool to build those JAR files. The Java Web Start

client is used with platforms that support a Web browser. .

 The buildClientRuntime tool builds the required components from the WebSphere Application Server

clients installation into the JAR file specified on the command. This JAR file contains:

v License files

v Java 2 Runtime Environment (JRE) that IBM provides

v Application Clients run-time properties and configuration

v SSL KeyStore and TrustStore files

v Run-time library JAR files

In the case of building an Application Clients run-time JAR file only for serving Thin Application client

applications and not for J2EE Application client applications, the run-time library JAR files and the

Application Clients run-time properties files are not included, except the configuration files,

sas.client.props, ssl.client.props and soap.client.props, located in the WAS_ROOT/properties

directory. The Java Web Start client is used with platforms that support a Web browser.

The command-line invocation syntax for the buildClientRuntime tool is shown in the following example:

Windows Usage: buildClientRuntime .bat jar_file [type]

Unix Usage: buildClientRuntime.sh jar_file [type]

Where:

 jar_file

Specifies the target jar file name.

Range:

 buildJ2EE - Default value that builds a Application Clients

 run-time library for J2EE application.

 buildThin - Builds a Application Clients run-time library

 for Thin application.

ClientRuntimeInstaller class: This class, com.ibm.websphere.client.installer.ClientRuntimeInstaller,

contains a main() method that Java Web Start (JWS) calls to install the Application Client for WebSphere

Application Server run-time dependency component in JWS cache. It is packaged in

WebSphereClientRuntimeInstaller.jar file located in the Application Client for WebSphere Application

Server installation in the <app_server_root>/JWS directory.

Specify the WebSphereClientRuntimeInstaller.jar file and the Application Client run-time dependency

component JAR file as JAR resources in the Application Client run-time installer Java Network Launcher

Protocol (JNLP) descriptor file. See the following example for details:

<jar href="Launcher/WebSphereClientRuntimeInstall.jar" main="true"/>

<jar href="Launcher/WASClient6.1_windows.jarRuntimeInstall.jar" main="true"/>

The ClientRuntimeInstaller class main method requires the following properties to be set in the JNLP file:

com.ibm.websphere.client.jre.version

Specifies a Java Runtime Environment (JRE) version name that is to be used when referring to

the Application Client run-time dependency component.

com.ibm.websphere.client.jre.launch.java

Specifies the relative location of the javaw.exe program in the Application Client run-time

dependency component JAR file.

The previously mentioned properties, JRE version name and the location of the javaw.exe program are

registered to the Java Web Start Application Manager, as shown in the following example:

262 Administering applications and their environment

<property name="com.ibm.websphere.client.jre.version" value="java\jre\bin\javaw.exe"/>

<property name="com.ibm.websphere.client.jre.launch.java" value="WASclient6.1"/>

Preparing Application Clients run-time library component for Java Web Start

The Java Web Start client is used with platforms that support a Web browser. For a Thin Application client

application to be launched using Java Web Start (JWS), you also need to create a Java Network

Launching Protocol (JNLP) component to serve the Application Clients run-time library JAR files from the

Application server. This JNLP component is referenced in the client application JNLP file with the

<extension> tag. This article provides the steps to build the Application Clients run-time library component

from an Application Clients installation. It is packaged as its own Web Archive Resource (WAR) file or to

the same WAR file that contains the Application Clients run-time dependency component, and can be

installed in an Application server.

Install the Application Client for WebSphere Application Server for the platform to which client applications

deploy.

1. Install the Application Clients on the client application supported operating system. For example, install

Application Clients in the C:\Program Files\IBM\WebSphere\AppClient directory.

2. Change the directory to the installation bin directory. For example:

CD C:\Program files\IBM\WebSphere\AppClient\bin

3. Run buildClientLibJars to copy the Application Clients run-time library JAR files from the Application

Clients installation to a temporary directory. All the JAR files in the temporary directory are signed, as

shown in the following example:

buildClientLibJars C:\WebApp1\runtime\WebSphereJars

 myKeystore myPassword myKeyAliasName

4. Create an Application Clients run-time installer JNLP descriptor file in the same temporary directory as

the previous step. See the sample JNLP file shown in the Example section of this topic.

5. Package these JAR files and the Application Clients run-time library component JNLP descriptor file

into a WAR file. You can also package both Application Clients run-time library component and

Application Clients run-time dependency component in the same WAR file. This WAR file is packaged

into an EAR file that can deployed to an Application server.

<!--

 "This sample program is provided AS IS and can be used, executed, copied

and modified without royalty payment by customer (a) for its own instruction

and study, (b) in order to develop applications designed to run with an IBM

WebSphere product, either for customer’s own internal use or for redistribution

by customer, as part of such an application, in customer’s own products."

Product 5630-A36, (C) COPYRIGHT International Business Machines Corp., 2005

All Rights Reserved * Licensed Materials - Property of IBM

-->

<?xml version="1.0" encoding="utf-8"?>

<jnlp spec="1.0+"

codebase="http://YOUR_APP_SERVER:PORTNUMBER/WEBAPP_CONTEXT_ROOT/Runtime/WebSphereJars">

 <information>

 <title>Application Client Library</title>

 <vendor>IBM</vendor>

 <icon href="icon.gif"/>

 <description>Application Client Library</description>

 <description kind="short">Application Client Library</description>

 <description kind="tooltip">Application Client Library</description>

 <offline-allowed/>

 </information>

<security>

 <all-permissions/>

</security>

<component-desc/>

 <resources><jar href="activation-impl.jar"/>

<jar href="bootstrap.jar"/>

<jar href="com.ibm.events.client_6.1.0.jar"/>

Chapter 11. Client applications 263

<jar href="com.ibm.mq.jar"/>

<jar href="com.ibm.mqjms.jar"/>

<jar href="com.ibm.uddi.client_1.0.0.jar"/>

<jar href="com.ibm.ws.bootstrap_6.1.0.jar"/>

<jar href="com.ibm.ws.debug.osgi_6.1.0.jar"/>

<jar href="com.ibm.ws.emf_2.0.0.jar"/>

<jar href="com.ibm.ws.j2ee.client_6.1.0.jar"/>

<jar href="com.ibm.ws.runtime.dist_6.1.0.jar"/>

<jar href="com.ibm.ws.runtime.gateway_6.1.0.jar"/>

<jar href="com.ibm.ws.runtime_6.1.0.jar"/>

<jar href="com.ibm.ws.security.crypto_6.1.0.jar"/>

<jar href="com.ibm.ws.sib.client_2.0.0.jar"/>

<jar href="com.ibm.ws.sib.utils_2.0.0.jar"/>

<jar href="com.ibm.ws.wccm_6.1.0.jar"/>

<jar href="com.ibm.wsspi.extension_6.1.0.jar"/>

<jar href="dhbcore.jar"/>

<jar href="j2ee.jar"/>

<jar href="launchclient.jar"/>

<jar href="lmproxy.jar"/>

<jar href="mail-impl.jar"/>

<jar href="org.eclipse.core.runtime_3.1.1.jar"/>

<jar href="org.eclipse.osgi_3.1.1.jar"/>

<jar href="org.eclipse.update.configurator_3.1.0.jar"/>

<jar href="properties.jar"/>

<jar href="serviceadapter.jar"/>

<jar href="startup.jar"/>

<jar href="urlprotocols.jar"/>

<jar href="WebSphereClientLauncher.jar"/>

 <resources/><jnlp/>

buildClientLibJars tool:

For a J2EE application client application and or Thin application client application to be launched using

Java Web Start (JWS), the properties files bundled in Application Client for WebSphere Application Server

must be installed in the Java Web Start. Use this tool to create those property JAR files. The Java Web

Start client is used with platforms that support a Web browser.

 The buildClientLibJars tool copies the JAR files from the Application Client for WebSphere Application

Server installation and creates a properties.jar file, which contains the properties files from the

Application Clients installation properties directory to a specified location. When this property is created,

the tool uses the value of keystore, storepass and alias to sign all the JAR files in the specified location.

Windows Usage: buildClientLibJars.bat target_dir keystore storepass alias

Unix Usage: buildClientLibJars.sh target_dir keystore storepass alias

Where:

 target_dir Specifies the target directory where the Application

 Clients library JAR files copied to.

 keystore Specifies a keystore file.

 storepass Specifies the keystore password.

 alias Specifies an alias for the key object in the key file.

Using the Java Web Start sample

The EAR file, WebSphereClientRuntime.ear, is provided in the JWS directory of the Client Application for

WebSphere Application Server installation. This EAR file provides a sample Application Clients run-time

installer JNLP descriptor file and a sample Application Clients run-time library component JNLP descriptor

file. Follow the steps in this task to build the Application Clients run-time dependency component and the

Application Clients run-time library component. Add these components to the WebSphereClientRuntime.ear

file, and then install the EAR file in an Application Server to be used by the client application.

Install the Application Client for WebSphere Application Server for the platform to which the client

application deploys. If there is a requirement to deploy the client application to multiple platforms, the

Application Clients run-time dependency component must be built separately for each platform that the

client application supports.

264 Administering applications and their environment

1. Install the Application Clients on the client application supported operating system. For example, install

Application Clients in the C:\Program Files\IBM\WebSphere\AppClient directory.

2. Create the following temporary working directories:

MKDIR C:\WebApp1

MKDIR C:\WebApp1\runtime

MKDIR C:\WebApp1\runtime\Widnows

MKDIR C:\WebApp1\runtime\WebSphereJars

3. Change directory to the installation bin directory. See the following example for help:

CD C:\Program files\IBM\WebSphere\AppClient\bin

4. Run the buildClientRuntime tool to generate the Application Clients run-time JAR file in a temporary

directory that contains the Java 2 Runtime Environment that IBM provides, Application Clients run-time

properties, the SSL KeyStore and TrustStore files, and the Application Clients run-time library JAR

files. See the following example for details:

buildClientRuntime C:\WebApp1\runtime\windows\WASClient6.1.0_Windows.jar

5. Copy the WebSphereClientRuntimeInstaller.jar file to the same location of the JAR file generated in

the previous step. This JAR file is located in the JWS directory of the Application Client for WebSphere

Application Server installation. For example, copy the ..\JWS\WebSphereClientRuntimeInstaller.jar

file to the C:\WebApp1\runtime directory.

6. Sign the JAR files created from the previous steps, using the Java 2 SDK jarsigner utility. See the

following example for details:

cd C:\WebApp1\runtime

jarsigner -keystore myKeystore -storepass myPassword

 WASClient6.1_windows.jar myKeyAliasName

jarsigner -keystore myKeystore -storepass myPassword

 WebSphereClientRuntimeInstaller.jar myKeyAliasName

a. This step also requires you to create a keystore file, such as myKeystore.

b. You must also create a self-signed certificate for the myKeystore file.

7. Run buildClientLibJars to copy the Application Clients run-time library JAR files from the Application

Client for WebSphere Application Server installation to a temporary directory. All the JAR files in the

temporary directory are signed. See the following example for details:

buildClientLibJars C:\WebApp1\runtime\WebSphereJars

 myKeystore myPassword myKeyAliasName

a. This step also requires you to create a keystroke file, such as myKeystore.

b. You must also create a self-signed certificate for the myKeystore file.

8. Add all the JAR files created in the previous steps in the C:\WebApp1 directory to the WAR file within

the WebSphereClientRuntime.ear file. The contents of the WAR file are shown in the following example:

The root of the WAR

├───META-INF

│ MANIFEST.MF

│

├───Runtime

│ ├───WebSpherejars

│ │ AppClientLib.jnlp

│ │ com.ibm.ws.runtime_6.1.0.jar

│ │ com.ibm.ws.j2ee.client_6.1.0.jar

│ │ com.ibm.ws.wccm_6.1.0.jar

│ │ :

│ │ (all the jars created in step 7 under

│ │ c:\WebApp1\Runtime\WebSphereJars)

│ └───WebSphereJre

│ AppClientRT.jsp

│ WASClient6.1.0_Windows.jar

│ WebSphereClientLauncher.jar

│ WebSphereClientRuntimeInstaller.jar │

│

Chapter 11. Client applications 265

└───WEB-INF

 ibm-web-bnd.xmi

 ibm-web-ext.xmi

 web.xml

9. Install the WebSphereClientRuntime.ear file to an Application Server. You have just created an

Application Clients run-time dependency component and Application Clients run-time libraries for

serving J2EE Application client applications and Thin Application client applications using Java Network

Launching Protocol (JNLP) or Java Web Start (JWS).

Installing Java Web Start

This topic provides the steps necessary to install JWS on the AIX platform.

Before you begin this task, see the following topics to understand Java Web Start (JWS) technology and

its components:

v Prepare the Application Clients run-time dependency component for JWS

v Prepare the Application Clients run-time library component for JWS

Note: You can use Java Web Start on Java 2 Standard Edition Developer Kits that IBM provides,

packaged in the Application Client for WebSphere Application Server, Version 6; Java Web Start on

Sun Microsystems J2SE Software Development Kit or J2SE Java Runtime Environment 1.4.2,

which you can download from the Sun Microsystems Web site for Windows, Linux and Solaris

operating systems, or the Java Web Start on HP SDK or RTE for Java 2 version 1.4.2, which you

can download from the HP Web site.

Use the following steps to install JWS on the AIX platform.

1. Install IBM Application Client for WebSphere Application Server.

2. Change your directory to the client_install_root/java/jre path.

3. Run sh bin/webstart_install_sdk.sh.

4. When prompted for the Java path, enter your JRE path. Use the following example:

client_install_root/java/jre.

5. You should see the following messages, which indicate that JWS installs successfully:

v Obtaining version...

v You appear to be running 1.4.2

v Extracting...

v Updating ~/.mailcap...

v Updating ~/.mime.types...

6. Change your path to the JWS installed path. For example, enter client_install_root/java/jre/
javaws/.

7. Run ./javaws from the path mentioned in the previous step.

Java Web Start for Application client best practices

Do not use JSP to dynamically generate a JNLP file, otherwise the JNLP jsp page cannot be opened in

some IE browsers. To use a static JNLP file, you will need to add the following mime type mapping in the

web.xml file:

<?xml version="1.0" encoding="UTF-8"?>

<web-app id="WebApp_ID" version="2.4" xmlns="http://java.sun.com/xml/ns/j2ee"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee

http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd">

 <display-name>

 WAS Client runtime for Java Web Start</display-name>

 <welcome-file-list>

 <welcome-file>index.html</welcome-file>

266 Administering applications and their environment

http://www.sun.com
http://www.hp.com/products1/unix/java/java2/sdkrte14/downloads/index_pa-risc.html

<welcome-file>index.htm</welcome-file>

 <welcome-file>index.jsp</welcome-file>

 <welcome-file>default.html</welcome-file>

 <welcome-file>default.htm</welcome-file>

 <welcome-file>default.jsp</welcome-file>

 </welcome-file-list>

 <mime-mapping>

 <extension>jnlp</extension>

 <mime-type>application/x-java-jnlp-file</mime-type>

 </mime-mapping>

</web-app>

Installing Application Client for WebSphere Application Server

This topic describes how to install the Application Client for WebSphere Application Server using the

installation image on the product CD-ROM.

Running client applications that communicate with a WebSphere Application Server requires that elements

of the Application Server are installed on the system on which the client applications run. However, if the

system does not have the Application Server installed, you can install Application Client, which provides a

stand-alone client run-time environment for your client applications. See the Supported Prerequisites page

for more information on supported product platforms.

The steps that follow provide enough detail to guide you through preparing for, choosing, and installing the

variety of options and features provided. To prepare for installation and to make yourself familiar with

installation options, complete the steps in this article and read the related topics, before you start to use

the installation tools. Specifically, read these topics before installing the product:

v Installing silently

v Best practices for installing

As a general rule, if you launch an installation and there is a problem such as not having enough

temporary space or not having the right packages on your Linux or UNIX systems, then cancel the

installation, and make the required changes. Restart the installation to initiate your changes.

You can install this product by a non-root user on a UNIX operating system and non-administrator user on

a Windows operating system. However, the following functions are not enabled on Windows if the product

is installed by a non-administrator user:

v ActiveX to EJB bridge

v Applet Client

v Launching Java Web Start from browser

In Version 6.x, the Application Client for WebSphere Application Server is installable on a machine with a

previous version of Application Clients. However, you cannot install a Version 6.x Application Client on top

of a previous version of the Application Client. For example, if a Version 5 Application Clients install under

the C:\WebSphere\AppClient directory, you can not choose the same install location for your V6.x

Application Clients installation.

Note: For Application Clients to coexist, there is a limitation on Applet client and ActiveX client on

Windows that can not be coexisted with V5.0.x and V4.x of the clients. For example, the Applet

client feature in Version 6.x cannot coexist with the Applet client feature in any previous release.

This coexistence is not available because the installation of Applet client feature in Version 6.x sets

the browser default Java Virtual Machine (JVM) using the Java Runtime Environment (JRE) from

the Version 6.x installation, which is Java Runtime Environment Version 1.4.2. Similarly, the ActiveX

to EJB Bridge feature in Version 6.x sets the Windows system path to use the JRE from the

Version 6.x installation.

 1. Install Application Client for WebSphere Application Server using the launchpad.

Chapter 11. Client applications 267

http://www.ibm.com/support/docview.wss?rs=180&uid=swg27006921

See .

Linux

The launchpad program is available on the root directory of the product CD in the program,

launchpad.sh.

Windows

The launchpad program is available on the root directory of the product CD in the program

launchpad.bat.

Note: The free download Application Client installation is not packaged with the launchPad program.

a. Click Launch the installation wizard for Application Client for WebSphere Application

Server from the launchpad tool to launch the InstallShield for MultiPlatforms installation wizard.

This action launches the installation wizard.

The Readme documentation to which the launchpad links is the readme.html file in the CD root

directory. The readme directory off the root of the CD has more detailed Readme files. The

Installation Guide is in the /docs directory of the CD root directory.

Note: Readme file names are based on product offerings.

When you install application clients, the current working directory must be the directory where the

installer binary program is located. This placement is important because the resolution of the

class files location is done in the current working directory. For example:

cd /install_root/AppClient

./install

or

 cd <CD mount point>/AppClient

 ./install

Failing to use the correct working directory can cause ISMP errors that abort the installation.

The installation wizard does not upgrade or remove previous Application Clients installation

automatically. Application Client V6.1 can be installed together with previously installed Application

Clients if their versions are lower than 6.1. However, only one instance of Application Client V6.1

can be installed on the same system. When the installer is launched, it will detect any existing

installation of Application Client V6.1 and direct the install flow to the feature panels so that

additional features can be added on top of the existing installation.

b. As indicated in the previous example, you can start the installation wizard from the product

CD-ROM, using the command line.

On other Linux platforms and UNIX-based platforms, run the ./install command.

On Windows platforms, run the Install.exe command.

c. You can also perform a silent installation using the -options responsefile -silent parameter,

which causes the installation wizard to read your responses from the options response file,

instead of from the interactive graphical user interface. Customize the response file before

installing silently. After customizing the file, issue the command to silently install. Silent installation

is particularly useful if you install the product often.

The rest of this procedure assumes that you are using the installation wizard. There are

corresponding entries in the response file for every prompt that is described as part of the wizard.

Review the description of the response file for more information. Comments in the file describe

how to customize its options.

 2. Click Next to continue when the Welcome panel is displayed.

a. Click the radio button beside the I accept the terms in the license agreement message if you

agree to the license agreement, and click Next to continue.

 3. The installation wizard checks the system for prerequisites. Click Next if you see a success message

on the wizard panel. If a warning message is displayed on the panel, click Cancel to exit the

268 Administering applications and their environment

installation wizard and install the proper prerequisites to the system. Note: Application Client may be

fully functional even if some prerequisites are not installed on the system, however it is recommended

you update your system to the required level.

 4. Specify a destination directory. Click Next to continue.

a. Ensure that there is adequate space available in the target directory.

b. Specify a target directory for the Application Client product.

c. Enter the required target directory to proceed to the next panel. Deleting the default target location

and leaving an installation directory field empty prevents you from continuing the installation

process.

 5. Choose a type of installation, and click Next.

If you use the GUI you can choose a Typical installation type, which installs J2EE and Thin

application client, Samples and IBM Developer Kit, Java 2 Technology Edition, or you can choose the

custom installation type. For Windows, there are two custom installation types: Custom J2EE/Thin

Client and Custom Pluggable Client. For other platforms, there is only one custom installation type.

Windows

Custom J2EE/Thin Client

v If you select the ActiveX to EJB Bridge feature, then the following is displayed in a dialog box: Do

you want to add Java runtime to the system path and make it the default JRE? If you answer Yes,

then the Java run time is added to the beginning of the system path. If you answer No, then the

ActiveX to EJB Bridge does not function from the Active Server Pages (ASP), unless you add the

Java run time to the path. To add the Java run time later, see the topic ActiveX application clients

or reinstall the Application Client.

v If you select the Applet client feature, then the following message might be displayed: An existing

JDK or JRE has been detected on your computer. You chose to install the Applet Client, which will

overwrite the registry entries for this JDK or JRE. Do you want to continue and install the Applet

Client? If you select Yes, the installation overrides the registry on your machine. If you select No,

the Applet client feature is not installed, and you are directed back feature dialog box.

v Install the Software Developer Kit feature, if you need to use any of the utilities that it provides,

such as the javaccompiler, the jarutility or the jarsigner utility. The Java 2 Development Kit that IBM

provides has two components, Java Runtime Environment (JRE) and a complete Software

Developer Kit (SDK). The JRE sub feature is selected by default for the Custom J2EE/Thin Client

installation type. The SDK component is optional; however, you must install the SDK component to

compile the sample.

v Install the Administration Thin Client, if you need a runtime jar that is customed to enable client

applications to perform WebSphere administration tasks. The Administration Thin Client is installed

into <install_root>/runtimes.

v Install the Web Services Thin Client, if you need a runtime jar that is customed to enable client

applications to communicate with the Application Server through Web Services. The Web Services

Thin Client is installed into <install_root>/runtimes.

Windows

Custom Pluggable Client

v Install the Pluggable Client samples if you want to make use of the Pluggable Client applications.

Linux

Custom

v Install the Software Developer Kit feature, if you need to use any of the utilities that it provides,

such as the javaccompiler, the jarutility or the jarsigner utility. The Java 2 Development Kit that IBM

provides has two components, Java Runtime Environment (JRE) and a complete Software

Developer Kit (SDK). The JRE sub feature is selected by default for the Custom J2EE/Thin Client

installation type. The SDK component is optional; however, you must install the SDK component to

compile the sample.

v Install the Administration Thin Client, if you need a runtime jar that is customized to enable client

applications to perform WebSphere administration tasks. The Administration Thin Client is installed

into <install_root>/runtimes.

Chapter 11. Client applications 269

v Install the Web Services Thin Client, if you need a runtime jar that is customed to enable client

applications to communicate with the Application Server through Web Services. The Web Services

Thin Client is installed into <install_root>/runtimes.

 6. (Pluggable Client installation type only) Click Next to accept the detected Sun JRE, or click Browse

to select the location of the installed Sun JRE. The Sun Software Development Kit installation location

is optional. However, if the installation location is not provided, the installed Samples do not compile.

v If Sun JRE has not been installed, the installation cannot be continued. Click Cancel to exit the

installation. Install the Sun JRE, and restart the Pluggable Custom installation. The Sun JRE panel

is displayed with the JRE path detected, and the Pluggable application client installation continues.

 7. Enter the host name of the WebSphere Application Server machine. Click Next to continue. The

default port number is 2809.

 8. Review the summary information, and click Next to install the product code or you might also click

Back to change your specifications.

 9. Click Finish to exit the wizard, after the Application Client installs.

10. Verify the success of the installer program by examining the Completion panel and the

<install_root>/logs/install/log.txt file for installation status. The installer program records the

following indicators of success in the logs:

v INSTCONFSUCCESS indicates that the installation is successful and that no further log analysis is

required.

v INSTCONFFAILED indicates an installation failure that you cannot retry or recover from without

reinstalling.

You successfully installed the Application Client for WebSphere Application Server and the features you

selected.

Use the installation verification utility to verify a successful installation. If the installation is not successful,

fix the error as indicated in the installation error message. For example, if you do not have enough disk

space, add more space, and reinstall the Application Client.

Best practices for installing Application Client for WebSphere

Application Server

This topic provides tips for installing Application Client on multiple platforms.

The following table offers tips for installing Application Client on multiple platforms.

 Operating environment Tip

Linux and UNIX systems Spaces are not supported in the name of the installation directory on

Linux and UNIX platforms.

UNIX systems When the application client installations are successful, the return

code 0 is issued from the UNIX shell where you issued the /install

command. Other return codes include:

v 1 -- Failure

v 2 -- Partial success

Any other return code indicates an unsuccessful installation.

Solaris systems Double-byte character set (DBCS) characters are not supported in the

name of the installation directory on Solaris systems.

All platforms Reserve at least 4 to 5MB free space in the target platform temporary

directory.

270 Administering applications and their environment

All platforms When specifying a different temporary directory while installing

Application Client, the following message is displayed if the target

platform default temporary directory does not have enough free space

to install Application Client:

Error writing file = There may not be enough

temporary disk space.

Try using -is:tempdir to use a temporary

directory on a partition with more disk

space.

Use the -is:tempdir installation option to specify a different

temporary directory. For example, the following command uses /swap

as a temporary directory during installation:

./install -is:tempdir /swap

All platforms After the installation, when changing the installation settings for the

WebSphere Application Server host name and the port number, edit

the setupClient.bat for Windows or setupClient.sh for UNIX.

Change the DEFAULTSERVERNAME and SERVERPORTNUMBER to the new

WebSphere Application Server host name and port number,

respectively. If the SERVERPORTNUMBER is not set, then the default is

2809. Review the following example:

set DEFAULTSERVERNAME=NDServerName

set SERVERPORTNUMBER=9810

The setupClient.bat file or setupClient.sh file is located in the bin

sub-directory under the Application Client installation destination.

Installing Application Client for WebSphere Application Server silently

This topic provides the steps necessary to use the installation wizard and perform a silent installation.

Use these steps to perform a silent installation, which uses the installation wizard to install the product.

Instead of displaying a user interface, the silent installation provides interaction between you and the

wizard by reading all of your responses from a file that you must customize.

1. Verify that the user ID that you are using to run the silent installation has sufficient authority to perform

the task.

2. Customize the option response file.

a. Locate the sample options response file. The file name is setup.response in the operating system

platform directory on the product CD-ROM.

b. Make a copy to preserve the original response file. For example, copy the file as myoptionsfile.

c. Edit the copy in your flat file editor of choice, on the target operating system. Read the directions

within the response file to choose appropriate values.

Note: To prepare the file for a silent installation on AIX, use UNIX line-end characters (0x0D0A) to

terminate each line of the options response file.

d. Make a non-commented option to have a silent install.

e. Include custom option responses that reflect parameters for your system.

f. Follow the instructions in the response file to choose appropriate values.

g. Save the file.

3. Issue a command to use your custom response file: Install.exe -options myoptionsfile -silent for

Windows platforms and install -options ./myoptionsfile -silent for Linux and UNIX platforms.

The sample options response file is located in the AppClient directory on the product CD-ROM.

Chapter 11. Client applications 271

a. Issue the following command from a command prompt to update your response file: -OPT

silentInstallLicenseAcceptance="true’ .

Issuing this command indicates that you accept all IBM license terms associated with this product,

which is necessary for installing application clients.

4. Optional: Restart your machine in response to the prompt that appears on Windows platforms when

the installation is complete.

You installed application clients silently by using the response file.

To verify the silent install, look for the string INSTCONFSUCCESS in the log.txt file for successful installation

and INSTCONFFAILED for a failed installation. For UNIX platforms, the install command returns a return code

of 0 to indicate a successful installation, 1 to indicate failure and 2 to indicate partial success. Any other

return code means that the installation failed.

When the InstallShield for MultiPlatforms (ISMP) fails and the log.txt file is not created, the error log file

might have been created in one of the following directories:

v <system_temp_dir>/niflogs

v <user_home>/cltlogs

Uninstalling Application Client for WebSphere Application Server

This task describes using the uninstall program to uninstall the Application Client for WebSphere

Application Server.

If you want to uninstall IBM Application Client for WebSphere Application Server manually, see the topic,

Manually uninstalling on a Windows system.

1. Stop any browsers and any Java processes related to Application Client products.

See Uninstalling the product.

2. Change directories to the uninstall directory before issuing the command to uninstall the application

client. The command file is located in the install_root/uninstall directory on a Linux or z/OS platform,

and in the install_root\product\uninstall directory on a Windows system.

For example, to change directories before uninstalling the product from a Linux platform, issue this

command if your installation root is /opt/IBM/WebSphere/AppClient:

cd /opt/IBM/WebSphere/AppClient/uninstall

3. Issue the command to uninstall the product.

Use the uninstall command.

Linux

The command file is named uninstall.

Windows

The command file is named uninstall.exe.

Linux

On Linux and z/OS platforms, issue the uninstall command from the install_root/
uninstall directory:

./uninstall

Windows

On Windows platforms, call the uninstall.exe command:

install_root\uninstall\uninstall.exe

Windows

Call the program directly from the install_root\uninstall directory. For example, if the

installation root is C:\IBM\WebSphere\AppClient, issue the following command:

C:\IBM\WebSphere\AppClient\uninstall> uninstall.exe

The Uninstall wizard begins and displays the Welcome panel.

4. Click Next to begin uninstalling the product. The Uninstall wizard displays a Confirmation panel that

lists the product and features that you are uninstalling.

5. Click Next to continue uninstalling the product. The Uninstall wizard deletes existing profiles first.

272 Administering applications and their environment

After deleting profiles, the Uninstall wizard deletes core product files by component.

6. Click Finish to close the wizard after the wizard removes the product.

Application Client for WebSphere Application Server is uninstalled.

Verify the uninstall procedure by viewing the install_root/logs/uninstall/log.txt file for errors. Look for

the INSTCONFSUCCESS, indicating a successful uninstall in the log file:

Uninstall, com.ibm.ws.install.ni.ismp.actions.ISMPLogSuccessMessageAction, msg1,

 INSTCONFSUCCESS

Deploying J2EE application clients on workstation platforms

You can deploy the J2EE application clients on workstation platforms using the methods described in this

topic.

After developing an application client, deploy this application on client machines. Deployment consists of

pulling together the various artifacts that the application client requires.

The Application Client Resource Configuration Tool (ACRCT) defines resources for the application client.

These configurations are stored in the client .jar file within the application .ear file. The application client

run time uses these configurations for resolving and creating an instance of the resources for the

application client.

Note: This task only applies to J2EE application clients. Only perform this task if you configured your

J2EE application client to use resource references.

1. Start the ACRCT and open an EAR file.

2. Configure new data source providers.

3. Configure mail providers and sessions.

4. Configure URL providers and sessions.

5. Configure Java messaging resources.

6. Configure new environment entries.

7. (Optional) Remove application client resources.

8. Save the EAR file.

Resource Adapters for the client

A resource adapter is a system-level software driver that a Java application uses to connect to an

enterprise information system (EIS). A resource adapter plugs into an application client and provides

connectivity between the EIS and the enterprise application.

The resource adapter support for the J2EE client applications is a subset of the support for the server. For

any resource adapter installed using the clientRAR tool, the client resource adapter is used in a

non-managed environment and must conform to the J2EE Connector Architecture Specification Version 1.5

or higher. Only outbound connections to the EIS are supported through the ManagedConnectionFactory

interfaces. The inbound messaging support (from the EIS), life cycle management, and work management

aspects of the specification are not supported on the client.

For a client application to use a resource adapter, it must be installed in the directory specified by the

environment variable, CLIENT_CONNECTOR_INSTALL_ROOT, defined when the setupCmdLine script

runs. The launchClient tool, Application Client Resource Configuration Tool (ACRCT) and clientRAR tool all

use this variable to find the default location of all installed resource adapters. To install a resource adapter

in the client, use the clientRAR tool. Once the resource adapter is installed, it must be configured using

the ACRCT. The client configuration tool adds the resource adapter configuration to the EAR file. Then,

connection factories and administered objects are defined.

Chapter 11. Client applications 273

When running J2EE application clients, the launchClient script specifies a system property called

com.ibm.ws.client.installedConnector, which is set to the same value as the

CLIENT_CONNECTOR_INSTALL_ROOT variable. This is the default location for installed resource adapters and

can be overridden for each launchClient call by specifying the -CCD parameter. When the client container

is activated, all resource adapter subdirectories under the specified default location for the resource

adapters directory are added to the classpath. This action allows the client application to use the resource

adapters without using the ACRCT to specify any of the client resources.

Using resource adapters is a new mechanism for easily extending client applications.

Configuring resource adapters

Use the Application Client Resource Configuration Tool (ACRCT) to configure resource adapters.

1. Start the Application Client Resource Configuration Tool (ACRCT).

2. Open the EAR file for which you want to configure new resource adapters. The EAR file contents

display in a tree view.

3. Select the JAR file in which you want to configure the new resource adapters from the tree.

4. Expand the JAR file to view its contents.

5. Right-click the Resource Adapters folder, and click New.

6. Configure the resource adapter settings in the resulting property dialog.

7. Click OK.

8. Click File > Save on the menu bar to save your changes.

clientRAR tool

This topic describes the command line syntax for the client resource adapter installation tool.

If this tool is used to add or delete resource adapters on the server, then only the client can use the

resource adapter. If the resource adapter is installed on the server using the wsadmin tool or the

administrative console, then do not use the clientRAR tool remove it. Only resource adapters that are

installed using the clientRAR tool should be removed using the clientRAR tool.

The command line invocation syntax for the clientRAR tool follows:

clientRAR [-help | -?] [-CRDcom.ibm.ws.client.installedConnectors=<dir>] <task> <archive>

where

-help, -?

Print the usage information.

-CRDcom.ibm.ws.client.installedConnectors

The directory where resource adapters are installed.

This will override the system property of the same name

(com.ibm.ws.client.installedConnectors).

<task>

The task to perform: add - install, delete - uninstall.

<archive>

if task=add then this is the fully qualified name of the resource adapter archive file.

If task=delete then this is the filename of the resource adapter archive to be uninstalled.

The following examples demonstrate correct syntax.

On the Windows operating systems:

v clientRAR add c:\rars\myrar.rar

v clientRAR delete myrar.rar

On the UNIX operating systems:

274 Administering applications and their environment

v ./clientRAR add /usr/rars/myrar.rar

v ./clientRAR delete myrar.rar

Configuring new connection factories for resource adapters

Use the Application Client Resource Configuration Tool (ACRCT) to configure new connection factories for

resource adapters.

Complete this task to configure new connection factories for resource adapters.

 1. Start the Application Client Resource Configuration Tool (ACRCT).

 2. Open the EAR file for which you want to configure new connection factories. The EAR file contents

display in a tree view.

 3. Select the JAR file in which you want to configure the new connection factories from the tree.

 4. Expand the JAR file to view its contents.

 5. Click the Resource Adapters folder.

 6. Expand the resource adapter for which you want to create connection factories.

 7. Right-click the Connection Factories folder and click New.

 8. Configure the connection factory properties in the resulting property dialog.

 9. Click OK.

10. Click File > Save on the menu bar to save your changes.

Resource adapter connection factory settings:

Use this panel to view or change the configuration properties of the selected resource adapter connection

factory.

 To view this Application Client Resource Configuration Tool (ACRCT) page, click File > Open. After you

browse for an EAR file, click Open. Expand the selected JAR file > Resource Adapters. Right-click the

Connection Factories folder, and click New. The following fields appear on the General tab.

Name:

The name by which this connection factory is known for administrative purposes within WebSphere

Application Server. The name must be unique within the resource adapter connection factories across the

product administrative domain.

 Data type String

Description:

An optional description of this connection factory for administrative purposes within IBM WebSphere

Application Server.

 Data type String

JNDI Name:

The JNDI name that is used to match this resource adapter connection factory definition to the deployment

descriptor. This entry should be a resource-ref name.

 Data type String

User Name:

Chapter 11. Client applications 275

The User Name used, with the Password property, for authentication if the calling application does not

provide a userid and password explicitly when getting a connection. If this field is used, then the Properties

field UserName is ignored.

 If you specify a value for the User Name property, you must also specify a value for the Password

property.

The connection factory User Name and Password properties are used if the calling application does not

provide a userid and password explicitly when getting a connection.

 Data type String

Password:

Specifies an encrypted password. If you complete this field, then the Password field in the Properties box

is ignored.

 If you specify a value for the UserName property, you must also specify a value for the Password

property.

 Data type String

Re-Enter Password:

Confirms the password.

Type:

A drop-down list of all the connectionFactoryInterfaces as defined for the factories in the Resource

Adapter Archive.

 For each Type, there is a set of properties specified in the Properties box. This set of properties is

constructed by retrieving the properties from each connection definition object. For any existing connection

factories that are displayed for updating, this list of properties is overlaid with the properties specified for

the objects. When the Type field is changed, the properties also change to reflect the correct properties for

that type.

 Data type String

Configuring administered objects

Before you configure new administered objects, you must complete the following prerequisites:

1. Install the Resource Adapter Archive file (RAR) using the clientRAR tool.

2. Configure the resource adapter for the .ear file, using the Application Client Resource Configuration

Tool (ACRCT) tool.

Complete this task to configure new administered objects for installed resource adapters.

 1. Start the Application Client Resource Configuration Tool (ACRCT).

 2. Open the EAR file for which you want to configure new administered objects. The EAR file contents

display in a tree view.

 3. Select the JAR file in which you want to configure the new administered objects from the tree.

 4. Expand the JAR file to view its contents.

 5. Click the Resource Adapters folder.

276 Administering applications and their environment

6. Expand the resource adapter for which you want to create administered objects.

 7. Right-click the Administered Objects folder and click New.

 8. Configure the administered object properties in the resulting property dialog.

 9. Click OK.

10. Click File > Save on the menu bar to save your changes.

Administered objects settings:

Use this panel to view or change the configuration properties of the selected administered objects.

 To view this Application Client Resource Configuration Tool (ACRCT) page, click File > Open. After you

browse for an EAR file, click Open. Expand the selected JAR file > Resource Adapters >

resource_adapter_instance. Right-click Administered Objects and click New. The following fields appear

on the General tab.

The settings for administered objects are handled similarly to connection factories. When updating

administered objects, use the same panels that you used to create administered objects.

Name:

The name by which this administered object is known for administrative purposes within IBM WebSphere

Application Server. The name must be unique within the resource adapter administered objects across the

product administrative domain.

 Data type String

Description:

An optional description of this connection factory for administrative purposes within IBM WebSphere

Application Server.

 Data type String

JNDI Name:

This entry is a resource-env-ref name, a message-destination-ref name (if the message-destination-
ref has no link), or a message-destination link.

 Data type String

Type:

A drop-down list of all the administered object class-interface pairs as defined for the admin objects in the

Resource Adapter Archive (RAR) file.

 For each Type, there is a set of properties specified in the Properties box. This set of properties is

constructed by retrieving the properties from each administered object definition. For any existing

administered objects that are displayed for updating, this list of properties is overlaid with the properties

specified for the objects. When the Type field is changed, the properties also change to reflect the correct

properties for that type.

 Data type String

Chapter 11. Client applications 277

Resource adapter settings

Use this panel to view or change the configuration properties of the resource adapter. These configuration

properties control how resource adapters are created.

To view this Application Client Resource Configuration Tool (ACRCT) page, click File > Open. After you

browse for an EAR file, click Open. Expand the selected JAR file > Resource Adapter. Right-click

Resource Adapter and click New. The following fields appear on the General tab.

Name

The name by which this Resource Adapter is known for administrative purposes within IBM WebSphere

Application Server. The name must be unique within the Resource Adapters across the product

administrative domain.

 Data type String

Description

A description of this resource adapter for administrative purposes within IBM WebSphere Application

Server.

 Data type String

Class Path

Any additional class path. The path to the resource adapter directory is automatically added.

 Data type String

Default The path to your Resource Adapter directory.

Native Path

The native path where the Resource Adapter is located. Enter any additional native class path here.

 Data type String

Resource Adapter Name

A mandatory field that points to an installed resource adapter subdirectory. The entry does not represent

the full directory name for the resource adapter. The full directory name is the installed resource adapter

path, plus the resource adapter name.

 Data type String

Installed Resource Adapter Path

The directory where resource adapters are installed. If you do not complete this field, then the default

takes effect.

If you specify the value, ${CONNECTOR_INSTALL_ROOT}, then this value replaces the value of the

CLIENT_CONNECTOR_INSTALL_ROOT variable on the machine on which the client application runs. This action

allows the application to run easily on different machines, where the client installation might be in different

locations.

 Data type String

Default ${CONNECTOR_INSTALL_ROOT}

278 Administering applications and their environment

Starting the Application Client Resource Configuration Tool and

opening an EAR file

You can perform many tasks by starting the Application Client Resource Configuration Tool (ACRCT).

Many of these tasks also involve then opening an EAR file.

Note: This task only applies to J2EE application clients.

Use these steps to start the Application Client Resource Configuration Tool. When you start the tool, one

of the most common tasks that you perform is opening and modifying the components of EAR files.

1. Open a command prompt and change to the app_server_root\bin directory.

2. Run the clientConfig.bat file for a Windows system or the clientConfig.sh file for a UNIX system.

3. Open an EAR file within the Application Client Resource Configuration Tool (ACRCT):

v Click File > Open.

v Select the file and click Open.

4. Save your changes to the file and close the tool:

v Click File > Save.

v Click File > Exit.

Data sources for the Application Client

WebSphere Application Server and the Application Client for WebSphere Application Server do not provide

client database drivers to be used directly from a J2EE application client. If your application client

accesses a database directly, you must provide the database drivers on the client machine.

You can contact your database vendor to acquire client database driver code and licenses. In addition,

data sources configured on the server and looked up on the client do not participate in global transactions.

Instead of accessing the database directly, it is recommended that your client application use an enterprise

bean. Accessing a database through an enterprise bean eliminates the need to have database drivers on

the client machine, since the database access is handled by the enterprise bean running on WebSphere

Application Server. For a current list of providers that are supported on WebSphere Application Server visit

the Supported hardware, software, and APIs Web site:

Data source properties for application clients

Use this page to create or modify the data sources.

To view this Application Client Resource Configuration Tool (ACRCT) page, click File > Open. After you

browse for an EAR file, click Open. Expand the selected JAR file > Data Source Providers > Data source

provider instance. Right-click Data Sources and click New. The following fields are displayed on the

General tab:

Name

Specifies the display name of this data source.

 Data type String

Description

Specifies a text description of the data source.

 Data type String

JNDI Name

The application client run time uses this field to retrieve configuration information.

Chapter 11. Client applications 279

http://www.ibm.com/support/docview.wss?rs=180&uid=swg27006921

Database Name

The name of the database to which you want to connect.

User

Use the user ID with the Password property, for authentication if the calling application does not provide a

user ID and password explicitly.

If you specify a value for the User ID property, then you must also specify a value for the Password

property. The connection factory User ID and Password properties are used if the calling application does

not provide a user ID and password explicitly.

Password

Use the password with the User ID property, for authentication if the calling application does not provide a

user ID and password explicitly.

If you specify a value for the Password property, then you must also specify a value for the User ID

property.

Re-Enter Password

Confirms the password.

Custom Properties

Specifies name-value pairs for setting additional properties on the object that is created at run time for this

resource.

You must enter a name that is a public property on the object and a value that can be converted from a

string to the type required by the set method of the property. The acceptable properties and values depend

on the object that is created. Refer to the object documentation for a list of valid properties and values.

Configuring new data source providers (JDBC providers) for

application clients

You can create new data source providers, also known as JDBC providers, for your application client using

the Application Client Resource Configuration Tool (ACRCT) .

During this task, you create new data source providers, also known as JDBC providers, for your

application client. In a separate administrative task, install the Java code for the required data source

provider on the client machine on which the application client resides.

Use this task to connect application clients to relational databases.

1. Start the Application Client Resource Configuration Tool (ACRCT) and open the EAR file for which you

want to configure the new data source provider. The EAR file contents display in a tree view.

2. Select the JAR file in which you want to configure the new data source provider from the tree.

3. Expand the JAR file to view its contents.

4. Click the Data Source Providers folder. Do one of the following:

v Right-click the folder and click New Provider.

v Click Edit > New on the menu bar.

5. Configure the data source provider properties in the resulting property dialog.

6. Click OK when you finish.

7. Click File > Save on the menu bar to save your changes.

Example: Configuring data source provider and data source settings

You can configure data source provider and data source settings.

The purpose of this article is to help you to configure data source provider and data source settings.

280 Administering applications and their environment

v Required fields:

– Data Source Provider Properties page: name

– Data Source Properties page: name, jndiName
v Special cases:

– The user name and password fields have no equivalent XMI tags. You must specify these fields in

the custom properties.

– The password is encrypted when you use the Application Client Resource Configuration Tool

(ACRCT). If you do not use the ACRCT the field cannot be encrypted.
v Example:

<resources.jdbc:JDBCProvider xmi:id="JDBCProvider_1" name="jdbcProvider:name"

description="jdbcProvider:description" implementationClassName="jdbcProvider:

ImplementationClass">

<classpath>jdbcProvider:classPath</classpath>

<factories xmi:type="resources.jdbc:WAS40DataSource" xmi:id="WAS40DataSource_1"

name="jdbcFactory:name" jndiName="jdbcFactory:jndiName"

description="jdbcFactory:description" databaseName="jdbcFactory:databasename">

<propertySet xmi:id="J2EEResourcePropertySet_13">

<resourceProperties xmi:id="J2EEResourceProperty_13" name="jdbcFactory:customName"

value="jdbcFactory:customValue"/>

<resourceProperties xmi:id="J2EEResourceProperty_14" name="user"

value="jdbcFactory:user"/>

<resourceProperties xmi:id="J2EEResourceProperty_15" name="password"

value="{xor}NTs9PBk+PCswLSZlMT4yOg=="/>

</propertySet>

</factories>

<propertySet xmi:id="J2EEResourcePropertySet_14">

<resourceProperties xmi:id="J2EEResourceProperty_16" name="jdbcProvider:customName"

value="jdbcProvider:customeValue"/>

</propertySet>

</resources.jdbc:JDBCProvider>

Data source provider settings for application clients

Use this page to create a data source under a JDBC provider which provides the specific JDBC driver

implementation class.

To view this Application Client Resource Configuration Tool (ACRCT) page, click File > Open. After you

browse for an EAR file, click Open. Expand the selected JAR file. Right-click Data Source Providers >

and click New. The following fields appear on the General tab:

Name:

Specifies the display name for the data source.

 For example you can set this field to Test Data Source.

 Data type String

Description:

Specifies a text description for the resource.

 Data type String

Class Path:

A list of paths or .jar file names which together form the location for the resource provider classes.

Implementation class:

Chapter 11. Client applications 281

Use this setting to perform database specific functions.

 Data type String

Default Dependent on JDBC driver implementation class

Custom Properties:

Specifies name-value pairs for setting additional properties on the object that is created at run time for this

resource.

 You must enter a name that is a public property on the object and a value that can be converted from a

string to the type required by the set method of the property. The acceptable properties and values depend

on the object that is created. Refer to the object documentation for a list of valid properties and values.

Configuring new data sources for application clients

During this task, you create new data sources for your application client.

1. Click the data source provider for which you want to create a data source in the tree. Take one of the

following actions as needed:

v Configure a new data source provider.

v Click an existing data source provider.

2. Expand the data source provider to view its Data Sources folder.

3. Click the data source folder. Take one of the following actions as needed:

v Right click the data source folder and click New Factory.

v Click Edit > New on the menu bar.

4. Configure the data source properties in the displayed fields.

5. Click OK when you finish.

6. Click File > Save on the menu bar to save your changes.

Configuring mail providers and sessions for application clients

You can edit the configurations of JavaMail sessions and providers for your application clients using the

Application Client Resource Configuration Tool (ACRCT).

Use the Application Client Resource Configuration Tool (ACRCT) to edit the configurations of JavaMail

sessions and providers for your application clients to use.

1. Start the ACRCT.

2. Open an EAR file.

3. Locate the JavaMail objects in the tree that displays. For example, if your file contains JavaMail

sessions, expand Resources > application.jar > Mail Providers > java_mail_provider_instance >

Mail Sessions.

In this example, java_mail_provider_instance is a particular JavaMail provider.

The JavaMail session instances are located in the JavaMail Sessions folder.

Mail provider settings for application clients

Use this page to implement the JavaMail API and create mail sessions.

To view this Application Client Resource Configuration Tool (ACRCT) page, click File > Open. After you

browse for an EAR file, click Open. Expand the selected JAR file. Right-click Mail Providers > and click

New. The following fields appear on the General tab:

Name:

282 Administering applications and their environment

The name of the JavaMail resource provider.

Description:

An optional description for the resource provider.

Class Path:

Specifies a list of paths or JAR file names which together form the location for the resource provider

classes.

Protocol:

Specifies the name of the protocol.

Classname:

Specifies the name of the class implementing the protocol. Leave this field blank if you want to use the

default implementation.

Type:

This menu contains the following two values: TRANSPORT or STORE.

Custom Properties:

Specifies name-value pairs for setting additional properties on the object that is created at run time for this

resource.

 You must enter a name that is a public property on the object and a value that can be converted from a

string to the type required by the set method of the property. The acceptable properties and values depend

on the object that is created. Refer to the object documentation for a list of valid properties and values.

Mail session settings for application clients

Use this page to configure mail session properties.

To view this Application Client Resource Configuration Tool (ACRCT) page, click File > Open. After you

browse for an EAR file, click Open. Expand the selected JAR file > Mail Providers > mail provider

instance. Right-click Mail Sessions and click New. The following fields appear on the General tab:

Name:

Represents the administrative name of the JavaMail session object.

Description:

Provides an optional description for your administrative records.

JNDI Name:

The application client run time uses this field to retrieve configuration information.

Mail Transport Host:

Specifies the server to connect to when sending mail.

Mail Transport Protocol:

Chapter 11. Client applications 283

Specifies the transport protocol to use when sending mail.

Mail Transport User:

Specifies the user ID to use when the mail transport host requires authentication.

Mail Transport Password:

Specifies the password to use when the mail transport host requires authentication.

Enable strict Internet address parsing:

Specifies whether the recipient addresses must be parsed strictly in compliance with RFC 822, which is a

specifications document issued by the Internet Architecture Board.

 This setting is not generally used for most mail applications. RFC 822 syntax for parsing addresses

effectively enforces a strict definition of a valid e-mail address. If you select this setting, JavaMail will

adhere to RFC 822 syntax and reject recipient addresses that do not parse into valid e-mail addresses (as

defined by the specification). If you do not select this setting, JavaMail will not adhere to RFC 822 syntax

and will accept recipient addresses that do not comply with the specification. By default, this setting is

deselected. You can view the RFC 822 specification at the following URL for the World Wide Web

Consortium (W3C): http://www.w3.org/Protocols/rfc822/.

Re-Enter Password:

Confirms the password.

Mail From:

Specifies the mail originator.

Mail Store Host:

Specifies the mail account host (or ″domain″) name.

Mail Store User:

Specifies the user ID of the mail account.

Mail Store Password:

Specifies the password of the mail account.

Re-Enter Password:

Confirms the password.

Mail Store Protocol:

Specifies the protocol to be used when receiving mail.

Mail Debug:

When true, JavaMail interaction with mail servers, along with these mail session properties are printed to

the stdout file.

Custom Properties:

284 Administering applications and their environment

Specifies name-value pairs for setting additional properties on the object that is created at run time for this

resource.

 You must enter a name that is a public property on the object and a value that can be converted from a

string to the type required by the set method of the property. The acceptable properties and values depend

on the object that is created. Refer to the object documentation for a list of valid properties and values.

Example: Configuring JavaMail provider and JavaMail session settings for

application clients

You can configure JavaMail provider and JavaMail session settings. This topic provides the required fields,

special cases, and an example.

The purpose of this article is to help you configure JavaMail provider and JavaMail session settings.

v Required fields:

– JavaMail Provider Properties page: name, and at least one protocol provider

– JavaMail Session Properties page: name, jndiName, mail transport protocol, mail store protocol
v Special cases:

– The password is encrypted when using the ACRCT tool. Without the tool, you cannot encrypt this

field.
v Example:

<resources.mail:MailProvider xmi:id="MailProvider_1" name="Default Mail Provider"

description="IBM JavaMail Implementation">

<classpath>mailProvider:classpath</classpath>

<factories xmi:type="resources.mail:MailSession" xmi:id="MailSession_1"

name="mailSession:name" jndiName="mailSession:jndiName"

description="mailSession:description" mailTransportHost="mailSession:mailTransportHost"

mailTransportUser="mailSession:mailTransportUser"

mailTransportPassword="{xor}Mj42Mww6LCw2MDFlMT4yOg=="

mailFrom="mailSession:mailFrom" mailStoreHost="mailSession:mailStoreHost"

mailStoreUser="mailSession:mailStoreUser"

mailStorePassword="{xor}Mj42Mww6LCw2MDFlMT4yOg==" debug="true"

mailTransportProtocol="ProtocolProvider_1" mailStoreProvider="ProtocolProvider_1">

<propertySet xmi:id="J2EEResourcePropertySet_1">

<resourceProperties xmi:id="J2EEResourceProperty_1"

name="mailSession:customName" value="mailSession:customValue"/>

</propertySet>

</factories>

<propertySet xmi:id="J2EEResourcePropertySet_2">

<resourceProperties xmi:id="J2EEResourceProperty_2" name="mailProvider:customName"

value="mailProvider:customValue"/>

</propertySet>

<protocolProviders xmi:id="ProtocolProvider_1" protocol="smtp"

classname="smtp:className"/>

<protocolProviders xmi:id="ProtocolProvider_2" protocol="pop3"

classname="pop3:className"/>

<protocolProviders xmi:id="ProtocolProvider_3" protocol="imap"

classname="imap:className"/>

</resources.mail:MailProvider>

Configuring new mail sessions for application clients

You can use the Application Client Resource Configuration Tool (ACRCT) to configure new mail sessions

for your application client.

During this task, you configure new mail sessions for your application client. The mail sessions are

associated with the pre-configured default mail provider supplied by the product.

1. Start the Application Client Resource Configuration Tool (ACRCT) and open the EAR file. The EAR file

contents are displayed in a tree view.

2. Select the JAR file in which you want to configure the new JavaMail session.

3. Expand the JAR file to view its contents.

Chapter 11. Client applications 285

4. Click Mail Providers > Mail Provider > Mail Sessions. Complete one of the following actions:

v Right click the Mail Sessions folder and select New Factory.

v Click Edit > New on the menu bar.

5. Configure the Mail Session properties in the displayed fields.

6. Click OK.

7. Click File > Save on the menu bar to save your changes.

URLs for application clients

A Uniform Resource Locator (URL) is an identifier that points to an electronically accessible resource, such

as a directory file on a machine in a network, or a document stored in a database.

URLs appear in the format scheme:scheme_information.

You can represent a scheme as http, ftp, file, or another term that identifies the type of resource and

the mechanism by which you can access the resource.

In a World Wide Web browser location or address box, a URL for a file available using HyperText Transfer

Protocol (HTTP) starts with http:. An example is http://www.ibm.com. Files available using File Transfer

Protocol (FTP) start with ftp:. Files available locally start with file:.

The scheme_information commonly identifies the Internet machine making a resource available, the path

to that resource, and the resource name. The scheme_information for HTTP, FTP and File generally starts

with two slashes (//), then provides the Internet address separated from the resource path name with one

slash (/). For example,

http://www-4.ibm.com/software/webservers/appserv/library.html.

For HTTP and FTP, the path name ends in a slash when the URL points to a directory. In such cases, the

server generally returns the default index for the directory.

URL providers for the Application Client Resource Configuration Tool

A URL provider implements the function for a particular URL protocol, such as Hyper Text Transfer

Protocol (HTTP). This provider, comprised of a pair of classes, extends the java.net.URLStreamHandler

and java.net.URLConnection classes.

Configuring new URL providers for application clients

You can create URL providers and URLs for your client application using the Application Client Resource

Configuration Tool (ACRCT).

During this task, you create URL providers and URLs for your client application. In a separate

administrative task, you must install the Java code for the required URL provider on the client machine on

which the client application resides.

1. Start the Application Client Resource Configuration Tool (ACRCT).

2. Open the EAR file for which you want to configure the new URL provider. The EAR file contents

display in a tree view.

3. Select the JAR file in which you want to configure the new URL provider from the tree.

4. Expand the JAR file to view the contents.

5. Click the folder called URL Providers. Complete one of the following actions:

v Right click the folder and select New.

v Click Edit > New on the menu bar.

6. Configure the URL provider properties in the resulting property dialog.

7. Click OK.

286 Administering applications and their environment

8. Click File > Save on the menu bar to save your changes.

Configuring URL providers and sessions using the Application Client Resource

Configuration Tool

You can edit the configurations of URL providers and URLs to be used by your application clients using

the Application Client Resource Configuration Tool (ACRCT).

Use the Application Client Resource Configuration Tool (ACRCT) to edit the configurations of URL

providers and URLs to be used by your application clients.

1. Start the ACRCT.

2. Open an EAR file.

3. Locate the URL objects in the tree that displays. For example, if your file contains URL providers and

URLs, expand Resources -> application.jar -> URL Providers -> url_provider_instance

where url_provider_instance is a particular URL provider.

4. If you expand the tree further, you will also see the URLs folders containing the URL instances for

each URL provider instance.

URL settings for application clients:

Use this page to implement the function for a particular URL protocol, such as Hyper Text Transfer

Protocol (HTTP).

 To view this Application Client Resource Configuration Tool (ACRCT) page, click File > Open. After you

browse for an EAR file, click Open. Expand the selected JAR file > URL Providers > URL provider

instance. Right-click URLs and click New. The following fields appear on the General tab.

This provider, comprised of classes, extends the java.net.URLStreamHandler and java.net.URLConnection

classes.

Name:

The administrative name for the URL.

Description:

This is an optional description of the URL for your administrative records.

JNDI Name:

The application client run time uses this field to retrieve configuration information.

URL:

A Uniform Resource Locator (URL) name that points to an Internet or intranet resource. For example:

http://www.ibm.com.

Custom Properties:

Specifies name-value pairs for setting additional properties on the object that is created at run time for this

resource.

 You must enter a name that is a public property on the object and a value that can be converted from a

string to the type required by the set method of the property. The acceptable properties and values depend

on the object that is created. Refer to the object documentation for a list of valid properties and values.

Chapter 11. Client applications 287

URL provider settings for application clients:

Use this page create new URL providers.

 To view this Application Client Resource Configuration Tool (ACRCT) page, click File > Open. After you

browse for an EAR file, click Open. Expand the selected JAR file. Right click URL Providers, and click

New. The following fields appear on the General tab.

A URL provider implements the function for a particular URL protocol, such as Hyper Text Transfer

Protocol (HTTP). This provider, comprised of classes, extends the java.net.URLStreamHandler and

java.net.URLConnection classes.

Name:

Administrative name for the URL.

Description:

Optional description of the URL, for your administrative records.

Class Path:

A list of paths or JAR file names which together form the location for the resource provider classes.

Protocol:

Protocol supported by this stream handler. For example, nntp, smtp, ftp, and so on.

 To use the default protocol, leave this field blank.

Stream handler class:

Fully qualified name of a User-defined Java class that extends the java.net.URLStreamHandler for a

particular URL protocol, such as FTP.

 To use the default stream handler, leave this field blank.

Custom Properties:

Specifies name-value pairs for setting additional properties on the object that is created at run time for this

resource.

 You must enter a name that is a public property on the object and a value that can be converted from a

string to the type required by the set method of the property. The acceptable properties and values depend

on the object that is created. Refer to the object documentation for a list of valid properties and values.

Example: Configuring URL and URL provider settings for application clients

You can configure URL and URL provider settings. This topic provides the required fields and an example.

The purpose of this article is to help you to configure URL and URL provider settings.

v Required fields:

– URL Properties page: name, jndiName, url

– URL Provider Properties page: name
v Example:

<resources.url:URLProvider xmi:id="URLProvider_1" name="urlProvider:name"

description="urlProvider:description"

streamHandlerClassName="urlProvider:streamHandlerClass"

288 Administering applications and their environment

protocol="urlProvider:protocol">

<classpath>urlProvider:classpath</classpath>

<factories xmi:type="resources.url:URL" xmi:id="URL_1" name="urlFactory:name"

jndiName="urlFactory:jndiName" description="urlFactory:description"

spec="urlFactory:url">

<propertySet xmi:id="J2EEResourcePropertySet_18">

<resourceProperties xmi:id="J2EEResourceProperty_20" name="urlFactory:customName"

value="urlFactory:customValue"/>

</propertySet>

</factories>

<propertySet xmi:id="J2EEResourcePropertySet_19">

<resourceProperties xmi:id="J2EEResourceProperty_21" name="urlProvider:customName"

value="urlProvider:customValue"/>

</propertySet>

</resources.url:URLProvider>

Configuring new URLs with the Application Client Resource

Configuration Tool

You can use URLs for your client application using the Application Client Resource Configuration Tool

(ACRCT).

During this task, you create URLs for your client application.

1. Click the URL provider for which you want to create a URL in the tree. Complete one of the following:

v Configure a new URL provider.

v Click an existing URL provider.

2. Expand the URL provider to view the URLs folder.

3. Click the URL folder. Complete one of the following actions:

v Right click the folder and click New.

v Click Edit -> New on the menu bar.

4. Configure the URL properties in the displayed fields.

5. Click OK when you finish.

6. Click File > Save in the menu bar to save your changes.

Asynchronous messaging in WebSphere Application Server using JMS

WebSphere Application Server supports asynchronous messaging as a method of communication based

on the Java Message Service (JMS) programming interface. The JMS interface provides a common way

for Java programs (clients and J2EE applications) to create, send, receive, and read asynchronous

requests as JMS messages.

This topic provides a generic overview of asynchronous messaging using the JMS support provided by

WebSphere Application Server.

The base support for asynchronous messaging using the JMS API provides the common set of JMS

interfaces and associated semantics that define how a JMS client can access the facilities of a JMS

provider. This support enables WebSphere product J2EE applications, as JMS clients, to exchange

messages asynchronously with other JMS clients, by using JMS destinations (queues or topics). A J2EE

application can use JMS queue destinations for point-to-point messaging and JMS topic destinations for

Publisher and Subscriber messaging. A J2EE application can explicitly poll for messages on a destination,

and then retrieve messages for processing by business logic beans (enterprise beans).

With the base JMS and XA support, the J2EE application uses standard JMS calls to process messages,

including any responses or outbound messaging. An enterprise bean can handle responses acting as a

sender bean, or within the enterprise bean that receives the incoming messages. Optionally, this process

can use two-phase commit within the scope of a transaction. This level of function for asynchronous

Chapter 11. Client applications 289

messaging is called bean-managed messaging, and gives an enterprise bean complete control over the

messaging infrastructure, for example, connection and session pool management. The common container

has no role in bean-managed messaging.

WebSphere Application Server also supports automatic asynchronous messaging using message-driven

beans (a type of enterprise bean defined in the EJB 2.0 specification) and JMS listeners (part of the JMS

application server facilities). Messages are automatically retrieved from JMS destinations, optionally within

a transaction, then sent to the message-driven bean in a J2EE application, without the application having

to explicitly poll JMS destinations.

Java Message Service (JMS) providers for clients

This topic describes the different ways that client applications can use JMS providers with WebSphere

Application Server. A JMS provider enables use of the Java Message Service (JMS) and other message

resources in WebSphere Application Server.

IBM WebSphere Application Server supports asynchronous messaging through the use of a JMS provider

and its related messaging system. JMS providers must conform to the JMS specification version 1.1. To

use message-driven beans the JMS provider must support the optional Application Server Facility (ASF)

function defined within that specification, or support an inbound resource adapter as defined in the JCA

specification version 1.5.

The service integration technologies of IBM WebSphere Application Server can act as a messaging

system when you have configured a service integration bus that is accessed through the default

messaging provider. This support is installed as part of WebSphere Application Server, administered

through the administrative console, and is fully integrated with the WebSphere Application Server runtime.

WebSphere Application Server also includes support for the following JMS providers:

WebSphere MQ

Provided for use with supported versions of WebSphere MQ.

Generic

Provided for use with any 3rd party messaging system which supports ASF.

For backwards compatibility with earlier releases, WebSphere Application Server also includes support for

the V5 default messaging provider which enables you to configure resources for use with the WebSphere

Application Server version 5 Embedded Messaging system. The V5 default messaging provider can also

be used with a service integration bus.

WebSphere applications can use messaging resources provided by any of these JMS providers. However

the choice of provider is most often dictated by requirements to use or integrate with an existing

messaging system. For example, you may already have a messaging infrastructure based on WebSphere

MQ. In this case you may either connect directly using the included support for WebSphere MQ as a JMS

provider, or configure a service integration bus with links to a WebSphere MQ network and then access

the bus through the default messaging provider.

The service integration bus also provides access to a default messaging provider. This is a J2EE 1.4

compliant JMS messaging provider which is fully integrated with WebSphere Application Server. You can

use it in multiple server configurations for messaging interactions with a WebSphere MQ network.

Configuring Java messaging client resources

To configure Java messaging client resources, you create new JMS provider configurations for your

application client. The application client can use a messaging service through the Java Message Service

APIs. A JMS provider provides two kinds of J2EE factories. One is a JMS connection factory, and the

other is a JMS destination factory.

290 Administering applications and their environment

In a separate administrative task, install the Java Message Service (JMS) client on the client machine

where the application client resides. The messaging product vendor must provide an implementation of the

JMS client. For more information, see your messaging product documentation.

Note: When completing this task, you can either create a new messaging provider, or you can use an

existing one.

1. Start the Application Client Resource Configuration Tool (ACRCT).

2. Open the EAR file for which you want to configure the new JMS provider. The EAR file contents are in

the displayed tree view.

3. Select the JAR file in which you want to configure the new JMS provider from the tree.

4. Expand the JAR file to view its contents.

5. Optionally right-click Messaging Providers and select New, if you want to create and use a new

messaging provider.

6. Configure the JMS provider properties in the resulting property dialog.

7. Click OK.

8. Click File > Save.

Configuring new JMS providers with the Application Client Resource

Configuration Tool

You can create new Java Message Service (JMS) provider configurations for the Application Client. The

Application Client makes use of a messaging service through the JMS interfaces.

During this task, you create new Java Message Service (JMS) provider configurations for the Application

Client. The Application Client makes use of a messaging service through the JMS interfaces. A JMS

provider provides two kinds of J2EE resources. One is a JMS connection factory, and the other is a JMS

destination.

In a separate administrative task, you must install the JMS client on the client machine where your

particular application client resides. The messaging product vendor must provide an implementation of the

JMS client. For more information, see your messaging product documentation.

1. Start the Application Client Resource Configuration Tool and open the EAR file for which you want to

configure the new JMS provider. The EAR file contents are displayed in a tree view.

2. From the tree, select the JAR file in which you want to configure the new JMS provider.

3. Expand the JAR file to view its contents.

4. Right-click Messaging Providers. Complete one of the following actions:

v Right click the folder and select New.

v On the menu bar, click Edit > New.

5. In the resulting property dialog, configure the JMS provider properties.

6. Click OK when finished.

7. Click File -> Save on the menu bar to save your changes.

JMS provider settings for application clients

Use this page to configure properties of the Java Message Service (JMS) provider, if you want to use a

JMS provider other than the default messaging provider or the WebSphere MQ as a JMS provider.

To view this Application Client Resource Configuration Tool (ACRCT) page, click File > Open. After you

browse for an EAR file, click Open. Expand the selected JAR file. Right click Messaging Providers, and

click New. The following fields appear on the General tab.

Name:

The name by which the JMS provider is known for administrative purposes.

Chapter 11. Client applications 291

Data type String

Description:

A description of the JMS provider, for administrative purposes.

 Data type String

Class Path:

A list of paths or .jar file names which together form the location for the resource provider classes.

Context factory class:

The Java class name of the initial context factory for the JMS provider.

 For example, for an LDAP service provider the value has the form: com.sun.jndi.ldap.LdapCtxFactory.

 Data type String

Provider URL:

The JMS provider URL for external JNDI lookups.

 For example, an LDAP URL for a JMS provider has the form: ldap://hostname.company.com/contextName.

 Data type String

Custom Properties:

Specifies name-value pairs for setting additional properties on the object that is created at run time for this

resource.

 You must enter a name that is a public property on the object and a value that can be converted from a

string to the type required by the set method of the property. The acceptable properties and values depend

on the object that is created. Refer to the object documentation for a list of valid properties and values.

Default Provider connection factory settings

Use this panel to view or change the configuration properties of the selected JMS connection factory for

use with the internal product Java Message Service (JMS) provider that is installed with WebSphere

Application Server. These configuration properties control how connections are created between the JMS

provider and the service integration bus that it uses

To view this Application Client Resource Configuration Tool (ACRCT) page, click File > Open. After you

browse for an EAR file, click Open. Expand the selected JAR file > Messaging Providers > Default

Provider. Right-click Connection Factories and click New. The following fields appear on the General

tab.

Settings that have a default value display the appropriate value. Any settings that have fixed values have a

drop down menu.

Name:

The name of the connection factory.

292 Administering applications and their environment

Data type String

Description:

A description of this connection factory for administrative purposes within IBM WebSphere Application

Server.

 Data type String

JNDI Name:

The JNDI name that is used to match this Resource Adapter connection factory definition to the

deployment descriptor. This entry is a resource-ref name.

 Data type String

User Name:

The User Name used with the Password property for connecting to an application.

 If you specify a value for the User Name property, you must also specify a value for the Password

property.

The connection factory User ID and Password properties are used if the calling application does not

provide a userid and password explicitly. If a user name and password are specified, then an

authentication alias is created for the factory where the password is encrypted.

 Data type String

Password:

The password used to authenticate connection to an application.

 If you specify a value for the User Name property, you must also specify a value for the Password

property.

 Data type String

Re-Enter Password:

Confirms the password.

Bus Name:

The name of the bus to which the connection factory connects.

 Data type String

Client Identifier:

The name of the client. Required for durable topic subscriptions.

Chapter 11. Client applications 293

Data type String

Nonpersistent Messaging Reliability:

The reliability applied to nonpersistent JMS messages sent using this connection factory.

 If you want different reliability delivery options for individual JMS destinations, you can set this property to

As bus destination. The reliability is then defined by the Reliability property of the bus destination to which

the JMS destination is assigned.

 Default ReliablePersistent

Range

None There is no message reliability for nonpersistent

messages. If a nonpersistent message cannot be

delivered, it is discarded.

Best effort nonpersistent

Messages are never written to disk, and are

thrown away if memory cache overruns.

Express nonpersistent

Messages are written asynchronously to

persistent storage if memory cache overruns, but

are not kept over server restarts.

Reliable nonpersistent

Messages can be lost if a messaging engine

fails, and can be lost under normal operating

conditions.

Reliable persistent

Messages can be lost if a messaging engine

fails, but are not lost under normal operating

conditions.

Assured persistent

Highest degree of reliability where assured

message delivery is supported.

As Bus destination

Use the delivery option configured for the bus

destination.

Persistent Message Reliability:

The reliability applied to persistent JMS messages sent using this connection factory.

 If you want different reliability delivery options for individual JMS destinations, you can set this property to

As bus destination. The reliability is then defined by the Reliability property of the bus destination to

which the JMS destination is assigned.

 Default ReliablePersistent

294 Administering applications and their environment

Range

None There is no message reliability for nonpersistent

messages. If a nonpersistent message cannot be

delivered, it is discarded.

Best effort nonpersistent

Messages are never written to disk, and are

thrown away if memory cache overruns.

Express nonpersistent

Messages are written asynchronously to

persistent storage if memory cache overruns, but

are not kept over server restarts.

Reliable nonpersistent

Messages can be lost if a messaging engine

fails, and can be lost under normal operating

conditions.

Reliable persistent

Messages can be lost if a messaging engine

fails, but are not lost under normal operating

conditions.

Assured persistent

Highest degree of reliability where assured

message delivery is supported.

As Bus destination

Use the delivery option configured for the bus

destination.

Durable Subscription Home:

The name of the durable subscription home.

 Data type String

Share durable subscriptions:

Controls whether or not durable subscriptions are shared across connections with members of a server

cluster.

 Normally, only one session at a time can have a TopicSubscriber for a particular durable subscription. This

property enables you to override this behavior, to enable a durable subscription to have multiple

simultaneous consumers.

 Data type Selection list

Default In cluster

Range

In cluster

Allows sharing of durable subscriptions when

connections are made from within a server

cluster.

Always shared

Durable subscriptions can be shared across

connections.

Never shared

Durable subscriptions are never shared across

connections.

Chapter 11. Client applications 295

Read Ahead:

Controls the read-ahead optimization during message delivery.

 Default Default

Range Default, AlwaysOn and AlwaysOff

Target:

The name of the Workload Manager target group containing the messaging engine.

 Data type String

Target Type:

The type of Workload Manager target group that contains the messaging engine.

 Default BusMember

Range BusMember, Custom, ME

Target Significance:

The priority of significance for the target specified.

 Default Preferred

Range Preferred, Required

Target Inbound Transport Chain:

The name of the protocol that resolves to a group of messaging engines.

 Data type String

Provider Endpoints:

The list of comma separated endpoints used to connect to a bootstrap server.

 Type a comma-separated list of endpoint triplets with the syntax: host:port:protocol.

 Example merlin:7276:BootstrapBasicMessaging,Gandalf:

5557:BootstrapSecureMessaging

where

BootstrapBasicMessaging corresponds to the remote

protocol InboundBasicMessaging (JFAP-TCP/IP).

Default v If the host name is not specified, then the default

localhost is used as a default value.

v If the port number is not specified, then 7276 is used as

a default value.

v If the chain name is not specified, a predefined chain,

such as BootstrapBasicMessaging, is used as a default

value.

296 Administering applications and their environment

Connection Proximity:

The proximity that the messaging engine should have to the requester.

 Default Bus

Range Bus, Host, Cluster, Server

Temporary Queue Name Prefix:

The prefix to apply to the names of temporary queues. This name is a maximum of 12 characters.

 Data type String

Temporary Topic Name Prefix:

The prefix to apply to the names of temporary topics. This name is a maximum of 12 characters.

 Data type String

Default Provider queue connection factory settings

Use this panel to view or change the configuration properties of the selected JMS queue connection

factory for use with the internal product Java Message Service (JMS) provider that is installed with

WebSphere Application Server. These configuration properties control how connections are created

between the JMS provider and the service integration bus that it uses

To view this Application Client Resource Configuration Tool (ACRCT) page, click File > Open. After you

browse for an EAR file, click Open. Expand the selected JAR file > Messaging Providers > Default

Provider. Right-click Queue Connection Factories and click New. The following fields appear on the

General tab.

Settings that have a default value display the appropriate value. Any settings that have fixed values have a

drop down menu.

Name:

The name of the queue connection factory.

 Data type String

Description:

A description of this queue connection factory for administrative purposes within IBM WebSphere

Application Server.

 Data type String

JNDI Name:

The JNDI name that is used to match this queue connection factory definition to the deployment

descriptor. This entry is a resource-ref name.

 Data type String

Chapter 11. Client applications 297

User Name:

The User Name used, with the Password property, for authentication if the calling application does not

provide a userid and password explicitly. If this field is used, then the Properties field UserName is ignored.

 If you specify a value for the User Name property, you must also specify a value for the Password

property.

The connection factory User Name and Password properties are used if the calling application does not

provide a userid and password explicitly. If a user name and password are specified, then an

authentication alias is created for the factory where the password is encrypted.

 Data type String

Password:

The password used to create an encrypted. If you complete this field, then the Password field in the

Properties box is ignored.

 If you specify a value for the User Name property, you must also specify a value for the Password

property.

 Data type String

Re-Enter Password:

Confirms the password.

Bus Name:

The name of the bus to which the queue connection factory connects.

 Data type String

Client Identifier:

The client identifier. Required for durable topic subscriptions.

 Data type String

Nonpersistent Messaging Reliability:

The reliability applied to nonpersistent JMS messages sent using this connection factory.

 If you want different reliability delivery options for individual JMS destinations, you can set this property to

As bus destination. The reliability is then defined by the Reliability property of the bus destination to which

the JMS destination is assigned.

 Default ReliablePersistent

298 Administering applications and their environment

Range

None There is no message reliability for nonpersistent

messages. If a nonpersistent message cannot be

delivered, it is discarded.

Best effort nonpersistent

Messages are never written to disk, and are

thrown away if memory cache overruns.

Express nonpersistent

Messages are written asynchronously to

persistent storage if memory cache overruns, but

are not kept over server restarts.

Reliable nonpersistent

Messages can be lost if a messaging engine

fails, and can be lost under normal operating

conditions.

Reliable persistent

Messages can be lost if a messaging engine

fails, but are not lost under normal operating

conditions.

Assured persistent

Highest degree of reliability where assured

message delivery is supported.

As Bus destination

Use the delivery option configured for the bus

destination.

Persistent Message Reliability:

The reliability applied to persistent JMS messages sent using this connection factory.

 If you want different reliability delivery options for individual JMS destinations, you can set this property to

As bus destination. The reliability is then defined by the Reliability property of the bus destination to

which the JMS destination is assigned.

 Default ReliablePersistent

Chapter 11. Client applications 299

Range

None There is no message reliability for nonpersistent

messages. If a nonpersistent message cannot be

delivered, it is discarded.

Best effort nonpersistent

Messages are never written to disk, and are

thrown away if memory cache overruns.

Express nonpersistent

Messages are written asynchronously to

persistent storage if memory cache overruns, but

are not kept over server restarts.

Reliable nonpersistent

Messages can be lost if a messaging engine

fails, and can be lost under normal operating

conditions.

Reliable persistent

Messages can be lost if a messaging engine

fails, but are not lost under normal operating

conditions.

Assured persistent

Highest degree of reliability where assured

message delivery is supported.

As Bus destination

Use the delivery option configured for the bus

destination.

Read Ahead:

Controls the read-ahead optimization during message delivery.

 Default Default

Range Default, AlwaysOn and AlwaysOff

Target:

The name of the Workload Manager target group containing the messaging engine.

 Data type String

Target Type:

The type of Workload Manager target group that contains the messaging engine.

 Default BusMember

Range BusMember, Custom, Destination, ME

Target Significance:

The priority of significance for the target specified.

 Default Preferred

Range Preferred, Required

300 Administering applications and their environment

Target Inbound Transport Chain:

The name of the protocol that resolves to a group of messaging engines.

 Data type String

Provider Endpoints:

The list of comma separated endpoints used to connect to a bootstrap server.

 Type a comma-separated list of endpoint triplets with the syntax: host:port:protocol.

 Example localhost:7777:BootstrapBasicMessaging

where

BootstrapBasicMessaging corresponds to the remote

protocol InboundBasicMessaging (JFAP-TCP/IP).

Default v If the host name is not specified, then the default

localhost is used as a default value.

v If the port number is not specified, then 7276 is used as

a default value.

v If the chain name is not specified, a predefined chain,

such as BootstrapBasicMessaging, is used as a default

value.

Connection Proximity:

The proximity that the messaging engine should have to the requester.

 Default Bus, Cluster, Server

Range Bus, Host

Temporary Queue Name Prefix:

The prefix to apply to the names of temporary queues. This name is a maximum of 12 characters.

 Data type String

Default Provider topic connection factory settings

Use this panel to view or change the configuration properties of the selected JMS topic connection factory

for use with the internal product Java Message Service (JMS) provider that is installed with WebSphere

Application Server. These configuration properties control how connections are created between the JMS

provider and the service integration bus that it uses.

To view this Application Client Resource Configuration Tool (ACRCT) page, click File > Open. After you

browse for an EAR file, click Open. Expand the selected JAR file > Messaging Providers > Default

Provider. Right-click Topic Connection Factories and click New. The following fields appear on the

General tab.

Settings that have a default value display that appropriate value. Any settings that have fixed values have

a drop down menu.

Name:

Chapter 11. Client applications 301

The name of the topic connection factory.

 Data type String

Description:

A description of this topic connection factory for administrative purposes within IBM WebSphere Application

Server.

 Data type String

JNDI Name:

The JNDI name that is used to match this topic connection factory definition to the deployment descriptor.

This entry is a resource-ref name.

 Data type String

User Name:

The User Name used, with the Password property, for authentication if the calling application does not

provide a userid and password explicitly. If this field is used, then the Properties field UserName is ignored.

 If you specify a value for the User Name property, you must also specify a value for the Password

property.

The connection factory User Name and Password properties are used if the calling application does not

provide a userid and password explicitly. If a user name and password are specified, then an

authentication alias is created for the factory where the password is encrypted.

 Data type String

Password:

The password used to create an encrypted. If you complete this field, then the Password field in the

Properties box is ignored.

 If you specify a value for the User Name property, you must also specify a value for the Password

property.

 Data type String

Re-Enter Password:

Confirms the password.

Bus Name:

The name of the bus to which the topic connection factory connects.

 Data type String

Client Identifier:

302 Administering applications and their environment

The name of the client. This field is required for durable topic subscriptions.

 Data type String

Nonpersistent Messaging Reliability:

The reliability applied to nonpersistent JMS messages sent using this connection factory.

 If you want different reliability delivery options for individual JMS destinations, you can set this property to

As bus destination. The reliability is then defined by the Reliability property of the bus destination to which

the JMS destination is assigned.

 Default ReliablePersistent

Range

None There is no message reliability for nonpersistent

messages. If a nonpersistent message cannot be

delivered, it is discarded.

Best effort nonpersistent

Messages are never written to disk, and are

thrown away if memory cache overruns.

Express nonpersistent

Messages are written asynchronously to

persistent storage if memory cache overruns, but

are not kept over server restarts.

Reliable nonpersistent

Messages can be lost if a messaging engine

fails, and can be lost under normal operating

conditions.

Reliable persistent

Messages can be lost if a messaging engine

fails, but are not lost under normal operating

conditions.

Assured persistent

Highest degree of reliability where assured

message delivery is supported.

As Bus destination

Use the delivery option configured for the bus

destination.

Persistent Message Reliability:

The reliability applied to persistent JMS messages sent using this connection factory.

 If you want different reliability delivery options for individual JMS destinations, you can set this property to

As bus destination. The reliability is then defined by the Reliability property of the bus destination to

which the JMS destination is assigned.

 Default ReliablePersistent

Chapter 11. Client applications 303

Range

None There is no message reliability for nonpersistent

messages. If a nonpersistent message cannot be

delivered, it is discarded.

Best effort nonpersistent

Messages are never written to disk, and are

thrown away if memory cache overruns.

Express nonpersistent

Messages are written asynchronously to

persistent storage if memory cache overruns, but

are not kept over server restarts.

Reliable nonpersistent

Messages can be lost if a messaging engine

fails, and can be lost under normal operating

conditions.

Reliable persistent

Messages can be lost if a messaging engine

fails, but are not lost under normal operating

conditions.

Assured persistent

Highest degree of reliability where assured

message delivery is supported.

As Bus destination

Use the delivery option configured for the bus

destination.

Durable Subscription Home:

The name of the durable subscription home.

 Data type String

Share durable subscriptions:

Controls whether or not durable subscriptions are shared across connections with members of a server

cluster.

 Normally, only one session at a time can have a TopicSubscriber for a particular durable subscription. This

property enables you to override this behavior, to enable a durable subscription to have multiple

simultaneous consumers.

 Data type Selection list

Default In cluster

Range

In cluster

Allows sharing of durable subscriptions when

connections are made from within a server

cluster.

Always shared

Durable subscriptions can be shared across

connections.

Never shared

Durable subscriptions are never shared across

connections.

304 Administering applications and their environment

Read Ahead:

Controls the read-ahead optimization during message delivery.

 Default Default

Range Default, AlwaysOn and AlwaysOff

Target:

The name of the Workload Manager target group containing the messaging engine.

 Data type String

Target Type:

The type of Workload Manager target group that contains the messaging engine.

 Default BusMember

Range BusMember, Custom, ME

Target Significance:

The priority of significance for the target specified.

 Default Preferred

Range Preferred, Required

Target Inbound Transport Chain:

The name of the protocol that resolves to a group of messaging engines.

 Data type String

Provider Endpoints:

The list of comma separated endpoints used to connect to a bootstrap server.

 Type a comma-separated list of endpoint triplets with the syntax: host:port:protocol.

 Example localhost:7777:BootstrapBasicMessaging

where

BootstrapBasicMessaging corresponds to the remote

protocol InboundBasicMessaging (JFAP-TCP/IP).

Default v If the host name is not specified, then the default

localhost is used as a default value.

v If the port number is not specified, then 7276 is used as

a default value.

v If the chain name is not specified, a predefined chain,

such as BootstrapBasicMessaging, is used as a default

value.

Chapter 11. Client applications 305

Connection Proximity:

The proximity that the messaging engine should have to the requester.

 Default Bus

Range Bus, Host, Cluster, Server

Temporary Topic Name Prefix:

The prefix to apply to the names of temporary topics. This name is a maximum of 12 characters.

 Data type String

Default Provider queue destination settings

Use this panel to view or change the configuration properties of the selected JMS queue destination for

use with the internal product Java Message Service (JMS) provider that is installed with WebSphere

Application Server.

To view this Application Client Resource Configuration Tool (ACRCT) page, click File > Open. After you

browse for an EAR file, click Open. Expand the selected JAR file > Messaging Providers > Default

Provider. Right-click Queue Destinations. Click New. The following fields appear on the General tab.

Name:

The name of the queue destination factory. You must complete this field.

 Data type String

Description:

A description of this queue destination for administrative purposes within WebSphere Application Server.

 Data type String

JNDI Name:

The JNDI name used to match this definition to a deployment descriptor resource-env-ref name.

 Data type String

Queue Name:

The name of the queue.

 Data type String

Delivery Mode:

The delivery mode for messages sent to this destination.

 Data type String

Range Application, Persistent or NonPersistent

Default Application

306 Administering applications and their environment

Time to Live:

The default length of time from its dispatch time that a message sent to this destination should be retained

by the system, where 0 indicates that time to live value does not expire. Value from the producer is used if

the Time to Live field is not completed.

 Data type Integer

Units Milliseconds

Priority:

The priority for messages sent to this destination. The value from the producer is used if not completed.

 Data type Integer

Range 0 to 9 with 0 as the lowest priority and 9 as the highest

priority

Read Ahead:

Used to control read-ahead optimization during message delivery.

 Data type String

Range AsConnection, AlwaysOn and AlwaysOff

Default AsConnection

Default Provider topic destination settings

Use this panel to view or change the configuration properties of the selected JMS topic destination for use

with the internal product Java Message Service (JMS) provider that is installed with WebSphere

Application Server.

To view this Application Client Resource Configuration Tool (ACRCT) page, click File > Open. After you

browse for an EAR file, click Open. Expand the selected JAR file > Messaging Providers > Default

Provider. Right-click Topic Destinations, and click New. The following fields appear on the General tab.

Name:

The name of the topic destination entry.

 Data type String

Description:

A description of the entry.

 Data type String

JNDI Name:

The JNDI name used to match this definition to a deployment descriptor resource-env-ref name.

 Data type String

Chapter 11. Client applications 307

Topic Space:

The name of the topic space. This field is required.

 Data type String

Default DEFAULT_TOPIC_SPACE

Topic Name:

The name of the topic. This field is required.

 Data type String

Delivery Mode:

The default mode for messages sent to this destination.

 Data type String

Range Application, Persistent or NonPersistent

Default Application

Time to Live:

The default length of time from its dispatch time that a message sent to this destination should be retained

by the system, where 0 indicates that time to live value does not expire. Value from the producer is used if

not completed.

 Data type Long

Units Milliseconds

Priority:

The priority for messages sent to this destination. Value from producer is used if not completed.

 Data type Integer

Range 0 to 9 with 0 as the lowest priority and 9 as the highest

priority

Read Ahead:

Used to control read-ahead optimization during message delivery.

 Data type String

Range AsConnection, AlwaysOn and AlwaysOff

Default AsConnection

Version 5 Default Provider queue connection factory settings for application

clients

Use this panel to browse or change the configuration properties of the selected JMS queue connection

factory for point-to-point messaging for use by WebSphere Application Server version 5 applications.

These configuration properties control how connections are created between the JMS provider and the

default messaging system that it uses.

308 Administering applications and their environment

To view this Application Client Resource Configuration Tool (ACRCT) page, click File > Open. After you

browse for an EAR file, click Open. Expand the selected JAR file > Messaging Provider > Version 5

Default Provider. Right-click Queue Connection Factories and click New. The following fields appear on

the General tab.

A queue connection factory is used to create JMS connections to queue destinations. The queue

connection factory is created by the internal WebSphere Application Server product JMS provider. A

Version 5 Default Provider queue connection factory has the following properties:

Name:

The name by which this queue connection factory is known for administrative purposes within IBM

WebSphere Application Server. The name must be unique within the JMS connection factories across the

WebSphere administrative domain.

 Data type String

Description:

A description of this connection factory for administrative purposes within IBM WebSphere Application

Server.

 Data type String

Default Null

JNDI Name:

The application client run time uses this field to retrieve configuration information.

User ID:

The User ID used, with the Password property, for authentication if the calling application does not

provide a userid and password explicitly.

 If you specify a value for the User ID property, you must also specify a value for the Password property.

The connection factory User ID and Password properties are used if the calling application does not

provide a User ID and password explicitly, for example, if the calling application uses the method

createQueueConnection(). The JMS client flows the userid and password to the JMS server.

 Data type String

Password:

The password used, with the User ID property, for authentication if the calling application does not provide

a userid and password explicitly.

 If you specify a value for the User ID property, you must also specify a value for the Password property.

Re-Enter Password:

Confirms the password.

Node:

Chapter 11. Client applications 309

The WebSphere node name of the administrative node where the JMS server runs for this connection

factory. Connections created by this factory connect to that JMS server.

 Data type String

Application Server:

Enter the name of the application server. This name is not the host name of the machine, but the name of

the configured application server.

Custom Properties:

Specifies name-value pairs for setting additional properties on the object that is created at run time for this

resource.

 You must enter a name that is a public property on the object and a value that can be converted from a

string to the type required by the set method of the property. The acceptable properties and values depend

on the object that is created. Refer to the object documentation for a list of valid properties and values.

Version 5 Default Provider topic connection factory settings for application clients

Use this panel to view or change the configuration properties of the selected topic connection factory for

use with the internal product Java Message Service (JMS) provider. These configuration properties control

how connections are created between the JMS provider and the messaging system that it uses.

To view this Application Client Resource Configuration Tool (ACRCT) page, click File > Open. After you

browse for an EAR file, click Open. Expand the selected JAR file > Messaging Providers > Version 5

Default Provider. Right click Topic Connection Factories and click New. The following fields appear on

the General tab.

A Version 5 Default Provider topic connection factory has the following properties.

Name:

The name by which this queue connection factory is known for administrative purposes within WebSphere

Application Server. The name must be unique within the JMS connection factories across the WebSphere

Application Server administrative domain.

 Data type String

Description:

A description of this topic connection factory for administrative purposes within WebSphere Application

Server.

 Data type String

JNDI Name:

The application client run time uses this field to retrieve configuration information.

User ID:

The user ID used, with the Password property, for authentication if the calling application does not provide

a userid and password explicitly.

310 Administering applications and their environment

If you specify a value for the User ID property, you must also specify a value for the Password property.

The connection factory User ID and Password properties are used if the calling application does not

provide a userid and password explicitly, for example, if the calling application uses the method

createTopicConnection(). The JMS client flows the userid and password to the JMS server.

 Data type String

Password:

The password used, with the User ID property, for authentication if the calling application does not provide

a userid and password explicitly.

 If you specify a value for the User ID property, you must also specify a value for the Password property.

 Data type String

Re-Enter Password:

Confirms the password.

Node:

The WebSphere Application Server node name of the administrative node where the JMS server runs for

this connection factory. Connections created by this factory connect to that JMS server.

 Data type Enum

Range Pull-down list of nodes in the WebSphere Application

Server administrative domain.

Application Server:

Enter the name of the application server. This name is not the host name of the machine, but the name of

the configured application server.

Port:

Which of the two ports that connections use to connect to the JMS Server. The QUEUED port is for

full-function JMS publish/subscribe support, the DIRECT port is for nonpersistent, nontransactional,

nondurable subscriptions only.

Note: Message-driven beans cannot use the direct listener port for publish or subscribe support.

Therefore, any topic connection factory configured with the Port set to Direct cannot be used with

message-driven beans.

 Data type Enum

Default QUEUED

Chapter 11. Client applications 311

Range QUEUED

The listener port used for full-function JMS

compliant, publish or subscribe support.

DIRECT

The listener port used for direct TCP/IP

connection (nontransactional, nonpersistent, and

nondurable subscriptions only) for publish or

subscribe support.

The TCP/IP port numbers for these ports are defined on

the product internal JMS server.

Client ID:

The JMS client identifier used for connections to the MQSeries queue manager.

 Data type String

Custom Properties:

Specifies name-value pairs for setting additional properties on the object that is created at run time for this

resource.

 You must enter a name that is a public property on the object and a value that can be converted from a

string to the type required by the set method of the property. The acceptable properties and values depend

on the object that is created. Refer to the object documentation for a list of valid properties and values.

Version 5 Default Provider queue destination settings for application clients

Use this panel to view or change the configuration properties of the selected queue destination for use

with product Java Message Service (JMS) provider.

To view this Application Client Resource Configuration Tool (ACRCT) page, click File > Open. After you

browse for an EAR file, click Open. Expand the selected JAR file > Messaging Providers > Version 5

Default Provider. Right click Queue Destinations and click New. The following fields are displayed on

the General tab.

A queue destination is used to configure the properties of a JMS queue. A Version 5 Default Provider

queue destination has the following properties.

Name:

The name by which the queue is known for administrative purposes within WebSphere Application Server.

 Data type String

Description:

A description of the queue, for administrative purposes.

 Data type String

JNDI Name:

The application client run time uses this field to retrieve configuration information.

312 Administering applications and their environment

Persistence:

Whether all messages sent to the destination are persistent, nonpersistent, or have their persistence

defined by the application.

 Data type Enum

Default APPLICATION_DEFINED

Range Application defined

Messages on the destination have their

persistence defined by the application that put

them onto the queue.

Queue defined

[WebSphere MQ destination only] Messages on

the destination have their persistence defined by

the WebSphere MQ queue definition properties.

Persistent

Messages on the destination are persistent.

Nonpersistent

Messages on the destination are not persistent.

Priority:

Whether the message priority for this destination is defined by the application or the Specified priority

property.

 Data type Enum

Default APPLICATION_DEFINED

Range Application defined

The priority of messages on this destination is

defined by the application that put them onto the

destination.

Queue defined

[WebSphere MQ destination only] Messages on

the destination have their persistence defined by

the WebSphere MQ queue definition properties.

Specified

The priority of messages on this destination is

defined by the Specified priority property. If you

select this option, you must define a priority on

the Specified priority property.

Specified Priority:

If the Priority property is set to Specified, type here the message priority for this queue, in the range 0

(lowest) through 9 (highest).

 If the Priority property is set to Specified, messages sent to this queue have the priority value specified

by this property.

 Data type Integer

Units Message priority level

Range 0 (lowest priority) through 9 (highest priority)

Expiry:

Chapter 11. Client applications 313

Whether the expiry timeout for this queue is defined by the application or the Specified expiry property, or

whether messages on the queue expire (have an unlimited expiry timeout).

 Data type Enum

Default APPLICATION_DEFINED

Range Application defined

The expiry timeout for messages in this queue is

defined by the application that put them onto the

queue.

Specified

The expiry timeout for messages in this queue is

defined by the Specified expiry property.If you

select this option, you must define a time out on

the Specified expiry property.

Unlimited

Messages in this queue have no expiry timeout,

and those messages never expire.

Specified Expiry:

If the Expiry timeout property is set to Specified, specify the number of milliseconds (greater than 0)

after which messages on this queue expire.

 Data type Integer

Units Milliseconds

Range Greater than or equal to 0

v 0 indicates that messages never timeout.

v Other values are an integer number of milliseconds.

Custom Properties:

Specifies name-value pairs for setting additional properties on the object that is created at run time for this

resource.

 You must enter a name that is a public property on the object and a value that can be converted from a

string to the type required by the set method of the property. The acceptable properties and values depend

on the object that is created. Refer to the object documentation for a list of valid properties and values.

Version 5 Default Provider topic destination settings for application clients

Use this panel to view or change the configuration properties of the selected topic destination for use with

the internal product Java Message Service (JMS) provider.

To view this Application Client Resource Configuration Tool (ACRCT) page, click File > Open. After you

browse for an EAR file, click Open. Expand the selected JAR file > Messaging Providers > Version 5

Default Provider. Right click Topic Destinations and click New. The following fields appear on the

General tab.

A topic destination is used to configure the properties of a JMS topic for the associated JMS provider. A

Version 5 Default Provider topic has the following properties.

Name:

The name by which the topic is known for administrative purposes.

 Data type String

314 Administering applications and their environment

Description:

A description of the topic, for administrative purposes within WebSphere Application Server.

 Data type String

JNDI Name:

The application client run-time environment uses this field to retrieve configuration information.

Topic Name: The name of the topic as defined to the JMS provider.

 Data type String

Persistence:

Whether all messages sent to the destination are persistent, nonpersistent, or have their persistence

defined by the application.

 Data type Enum

Default APPLICATION_DEFINED

Range Application defined

Messages on the destination have their

persistence defined by the application that put

them onto the queue.

Queue defined

[WebSphere MQ destination only] Messages on

the destination have their persistence defined by

the WebSphere MQ queue definition properties.

Persistent

Messages on the destination are persistent.

Nonpersistent

Messages on the destination are not persistent.

Priority:

Whether the message priority for this destination is defined by the application or the Specified priority

property.

 Data type Enum

Default APPLICATION_DEFINED

Range Application defined

The priority of messages on this destination is

defined by the application that put them onto the

destination.

Queue defined

[WebSphere MQ destination only] Messages on

the destination have their persistence defined by

the WebSphere MQ queue definition properties.

Specified

The priority of messages on this destination is

defined by the Specified priority property.If you

select this option, you must define a priority on

the Specified priority property.

Specified Priority:

Chapter 11. Client applications 315

If the Priority property is set to Specified, specify the message priority for this queue, in the range 0

(lowest) through 9 (highest).

 If the Priority property is set to Specified, messages sent to this queue have the priority value specified

by this property.

 Data type Integer

Units Message priority level

Range 0 (lowest priority) through 9 (highest priority)

Expiry:

Whether the expiry timeout for this queue is defined by the application or the Specified expiry property, or

messages on the queue never expire (have an unlimited expiry timeout).

 Data type Enum

Default APPLICATION_DEFINED

Range Application defined

The expiry timeout for messages on this queue is

defined by the application that put them onto the

queue.

Specified

The expiry timeout for messages on this queue is

defined by the Specified expiry property. If you

select this option, you must define a timeout on

the Specified expiry property.

Unlimited

Messages on this queue have no expiry timeout,

so those messages never expire.

Specified Expiry:

If the Expiry timeout property is set to Specified, type here the number of milliseconds (greater than 0)

after which messages on this queue expire.

 Data type Integer

Units Milliseconds

Range Greater than or equal to 0

v 0 indicates that messages never time out.

v Other values are an integer number of milliseconds.

Custom Properties:

Specifies name-value pairs for setting additional properties on the object that is created at run time for this

resource.

 You must enter a name that is a public property on the object and a value that can be converted from a

string to the type required by the set method of the property. The acceptable properties and values depend

on the object that is created. Refer to the object documentation for a list of valid properties and values.

WebSphere MQ Provider queue connection factory settings for application clients

Use this panel to view or change the configuration properties of the selected queue connection factory for

use with the MQSeries product Java Message Service (JMS) provider. These configuration properties

control how connections are created between the JMS provider and WebSphere MQ.

316 Administering applications and their environment

To view this Application Client Resource Configuration Tool (ACRCT) page, click File > Open. After you

browse for an EAR file, click Open. Expand the selected JAR file > Messaging Providers > WebSphere

MQ Provider. Right click Queue Connection Factories, and click New. The following fields are displayed

on the General tab.

Note:

v The property values that you specify must match the values that you specified when configuring

WebSphere MQ for JMS resources. For more information about configuring WebSphere MQ for

JMS resources, see the WebSphere MQ Using Java book, located in the WebSphere MQ Family

library.

v In WebSphere MQ, names can have a maximum of 48 characters, with the exception of

channels which have a maximum of 20 characters.

A queue connection factory for the JMS provider has the following properties.

Name:

The name by which this queue connection factory is known for administrative purposes within IBM

WebSphere Application Server. The name must be unique within the JMS connection factories across the

WebSphere administrative domain.

 Data type String

Description:

A description of this connection factory for administrative purposes within IBM WebSphere Application

Server.

 Data type String

Default Null

JNDI Name:

The application client run time uses this field to retrieve configuration information.

User ID:

The user ID used, with the Password property, for authentication if the calling application does not provide

a userid and password explicitly.

 If you specify a value for the User ID property, you must also specify a value for the Password property.

The connection factory User ID and Password properties are used if the calling application does not

provide a userid and password explicitly; for example, if the calling application uses the method

createQueueConnection(). The JMS client flows the userid and password to the JMS server.

 Data type String

Password:

The password used, with the User ID property, for authentication if the calling application does not provide

a userid and password explicitly.

Chapter 11. Client applications 317

http://www-3.ibm.com/software/integration/mqfamily/library/manualsa/
http://www-3.ibm.com/software/integration/mqfamily/library/manualsa/

If you specify a value for the User ID property, you must also specify a value for the Password property.

 Data type String

Default Null

Re-Enter Password:

Confirms the password.

Queue Manager:

The name of the MQSeries queue manager for this connection factory.

 Connections created by this factory connect to that queue manager.

 Data type String

Host:

The name of the host on which the WebSphere MQ queue manager runs for client connection only.

 Data type String

Default Null

Range A valid TCP/IP host name

Port:

The TCP/IP port number used for connection to the WebSphere MQ queue manager, for client connection

only.

 This port must be configured on the WebSphere MQ queue manager.

 Data type Integer

Default Null

Range A valid TCP/IP port number, configured on the WebSphere

MQ queue manager.

Channel:

The name of the channel used for connection to the WebSphere MQ queue manager, for client connection

only.

 Data type String

Default Null

Range 1 through 20 ASCII characters

Transport type:

Specifies whether the WebSphere MQ client connection or JNDI bindings are used for connection to the

WebSphere MQ queue manager. The external JMS provider controls the communication protocols

between JMS clients and JMS servers. Tune the transport type when you are using non-ASF

nonpersistent, nondurable, nontransactional messaging or when you want to satisfy security issues and

the client is local to the queue manager node.

318 Administering applications and their environment

Data type Enum

Units Not applicable

Default BINDINGS

Range BINDINGS

JNDI bindings are used to connect to the queue manager. BINDINGS is a

shared memory protocol and can only be used when the queue manager is on

the same node as the JMS client and poses security risks that should be

addressed through the use of EJB roles.

CLIENT

WebSphere MQ client connection is used to connect to the queue manager.

CLIENT is a typical TCP-based protocol.

DIRECT

For WebSphere MQ Event Broker using DIRECT mode. DIRECT is a

lightweight sockets protocol used in nontransactional, nondurable and

nonpersistent Publish/Subscribe messaging. DIRECT only works for clients

and message-driven beans using the non-ASF protocol.

QUEUED

QUEUED is a standard TCP protocol.

Recommended Queue connection factory transport type

BINDINGS is faster by 30% or more, but it lacks security. When you have

security concerns, BINDINGS is more desirable than CLIENT.

Topic connection factory transport type

DIRECT is the fastest type and should be used where possible. Use

BINDINGS when you want to satisfy additional security tasks and the queue

manager is local to the JMS client. QUEUED is the fallback for all other cases.

WebSphere MQ 5.3 before CSD2 with the DIRECT setting can lose messages

when used with message-driven beans and under load. This loss also

happens with client-side applications unless the broker maxClientQueueSize is

set to 0. You can set this to 0 with the command:

#wempschangeproperties WAS_nodeName_server1

 -e default -o DynamicSubscriptionEngine -n

 maxClientQueueSize -v 0 -x executionGroupUUID

where executionGroupUUID can be found by starting the broker and looking in

the Event Log/Applications for event 2201. This value is usually

ffffffff-0000-0000-000000000000.

Note: The WebSphere MQ 5.3 JMS cannot be used within WAS 6.1 because WAS 6.1

has a Java 5 runtime. Therefore, cross-memory connections cannot be established with

WebSphere MQ 5.3 queue managers. This can result in a performance degradation if

you were previously using WebSphere MQ 5.3 and BINDINGS for your connections

and move to CLIENT network connections in migrating to WAS 6.1.

Client ID:

The JMS client identifier used for connections to the MQSeries queue manager.

 Data type String

CCSID:

The coded character set identifier for use with the WebSphere MQ queue manager.

 This coded character set identifier (CCSID) must be one of the CCSIDs supported by WebSphere MQ.

 Data type String

Chapter 11. Client applications 319

For more information about supported CCSIDs, and about converting between message data from one

coded character set to another, see the WebSphere MQ System Administration and the WebSphere MQ

Application Programming Reference books. These references are available from the WebSphere MQ

messaging multiplatform and platform-specific books Web pages; for example, at http://www-3.ibm.com/
software/ts/mqseries/library/manualsa/manuals/platspecific.html, the IBM Publications Center, or from the

WebSphere MQ collection kit, SK2T-0730.

Message Retention:

Select this check box to specify that unwanted messages are to be left on the queue. Otherwise,

unwanted messages are handled according to their disposition options.

 Data type Enum

Units Not applicable

Default Cleared

Range Selected

Unwanted messages are left on the queue.

Cleared

Unwanted messages are handled according to

their disposition options.

Temporary model:

The name of the model definition used to create temporary connection factories if a connection factory

does not already exist.

 Data type String

Range 1 through 48 ASCII characters

Temporary queue prefix:

The prefix used for dynamic queue naming.

 Data type String

Fail if quiesce:

Specifies whether applications return from a method call if the queue manager has entered a controlled

failure.

 Data type Check box

Default Selected

Local Server Address:

Specifies the local server address.

 Data type String

Polling Interval:

Specifies the interval, in milliseconds, between scans of all receivers during asynchronous message

delivery

320 Administering applications and their environment

http://www-3.ibm.com/software/ts/mqseries/library/manualsa/manuals/crosslatest.html
http://www-3.ibm.com/software/ts/mqseries/library/manualsa/manuals/crosslatest.html
http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi

Data type Integer

Units Milliseconds

Default 5000

Rescan interval:

Specifies the interval in milliseconds between which a topic is scanned to look for messages that have

been added to a topic out of order.

 This interval controls the scanning for messages that have been added to a topic out of order with respect

to a WebSphere MQ browse cursor.

 Data type Integer

Units Milliseconds

Default 5000

SSL cipher suite:

Specifies the cipher suite to use for SSL connection to WebSphere MQ.

 Set this property to a valid cipher suite provided by your JSSE provider. The value must match the

CipherSpec specified on the SVRCONN channel as the Channel property.

You must set this property, if you set the SSL Peer Name property.

SSL certificate store:

Specifies a list of zero or more Certificate Revocation List (CRL) servers used to check for SSL certificate

revocation. If you specify a value for this property, you must use WebSphere MQ JVM at Java 2 version

1.4.

 The value is a space-delimited list of entries of the form:

ldap://hostname:[port]

A single slash (/) follows this value. If port is omitted, the default LDAP port of 389 is assumed. At

connect-time, the SSL certificate presented by the server is checked against the specified CRL servers.

For more information about CRL security, see the section “Working with Certificate Revocation Lists” in the

WebSphere MQ Security book; for example at: http://publibfp.boulder.ibm.com/epubs/html/csqzas01/
csqzas012w.htm#IDX2254.

SSL peer name:

For SSL, a distinguished name skeleton that must match the name provided by the WebSphere MQ queue

manager. The distinguished name is used to check the identifying certificate presented by the server at

connection time.

 If this property is not set, such certificate checking is performed.

The SSL peer name property is ignored if SSL Cipher Suite property is not specified.

This property is a list of attribute name and value pairs separated by commas or semicolons. For example:

CN=QMGR.*, OU=IBM, OU=WEBSPHERE

Chapter 11. Client applications 321

http://publibfp.boulder.ibm.com/epubs/html/csqzas01/csqzas012w.htm
http://publibfp.boulder.ibm.com/epubs/html/csqzas01/csqzas012w.htm

The example given checks the identifying certificate presented by the server at connect-time. For the

connection to succeed, the certificate must have a Common Name beginning QMGR., and must have at

least two Organizational Unit names, the first of which is IBM and the second WEBSPHERE. Checking is

not case-sensitive.

For more details about distinguished names and their use with WebSphere MQ, see the section

“Distinguished Names” in the WebSphere MQ Security book.

Connection pool:

Specifies an optional set of connection pool settings.

 Connection pool properties are common to all J2C connectors.

The application server pools connections and sessions with the JMS provider to improve performance.

This is independent from any WebSphere MQ connection pooling. You need to configure the connection

and session pool properties appropriately for your applications, otherwise you may not get the connection

and session behavior that you want.

Change the size of the connection pool if concurrent server-side access to the JMS resource exceeds the

default value. The size of the connection pool is set on a per queue or topic basis.

 Data type Check box

Default Selected

WebSphere MQ Provider topic connection factory settings for application clients

Use this panel to view or change the configuration properties of the selected topic connection factory for

use with the WebSphere MQ product Java Message Service (JMS) provider. These configuration

properties control how connections are created between the JMS provider and WebSphere MQ.

To view this Application Client Resource Configuration Tool (ACRCT) page, click File > Open. After you

browse for an EAR file, click Open. Expand the selected JAR file > Messaging Providers > WebSphere

MQ Provider. Right-click Topic Connection Factories and click New.

Note:

v The property values that you specify must match the values that you specified when configuring

WebSphere MQ product JMS resources. For more information about configuring WebSphere MQ

product JMS resources, see the WebSphere MQ Using Java book.

v In WebSphere MQ, names can have a maximum of 48 characters, with the exception of

channels which have a maximum of 20 characters.

MA0C broker: When creating a WebSphere Application Server v6 topic connection factory for the

MA0C broker, you should consider the following attribute values:

BrokerControlQueue

This value is fixed at SYSTEM.BROKER.CONTROL.QUEUE for the MA0C broker and is

the queue the broker reads from.

BrokerVersion

Set this value to BASIC for the MA0C broker.

ClientID

Set this value to whatever you like for the MA0C broker (the value is string and is merely

an identifier for your client application).

322 Administering applications and their environment

http://publibfp.boulder.ibm.com/epubs/html/csqzas01/csqzas010p.htm

XA Enabled

Set this value to TRUE or FALSE for the MA0C broker (the setting you use is a

performance enhancement flag - you will probably want to set this to ’true’ most of the

time).

BrokerMessage Selection

This value is fixed at CLIENT for the MA0C broker because the broker relies on client side

message selection.

Direct Broker Authorization Type

This value is not required by the MA0C broker.

A topic connection factory for the WebSphere MQ product JMS provider has the following properties.

Name:

The name by which this topic connection factory is known for administrative purposes within IBM

WebSphere Application Server. The name must be unique within the JMS provider.

 Data type String

Description:

A description of this topic connection factory for administrative purposes within IBM WebSphere Application

Server.

 Data type String

JNDI Name:

The Java Naming and Directory Interface (JNDI) name that is used to bind the topic connection factory

into the application server name space.

 As a convention, use the fully qualified JNDI name; for example, in the form jms/Name, where Name is the

logical name of the resource.

This name is used to link the platform binding information. The binding associates the resources defined

by the deployment descriptor of the module to the actual (physical) resources bound into JNDI by the

platform.

 Data type String

Units En_US ASCII characters

Range 1 through 45 ASCII characters

User ID:

The user ID used, with the Password property, for authentication if the calling application does not provide

a userid and password explicitly.

 If you specify a value for the User property, you must also specify a value for the Password property.

The connection factory User and Password properties are used if the calling application does not provide

a userid and password explicitly, for example, if the calling application uses the method

createTopicConnection(). The JMS client flows the userid and password to the JMS server.

Chapter 11. Client applications 323

Data type String

Password:

The password used, with the User ID property, for authentication if the calling application does not provide

a userid and password explicitly.

 If you specify a value for the User ID property, you must also specify a value for the Password property.

 Data type String

Re-Enter Password:

Confirms the password.

Queue Manager:

The name of the WebSphere MQ queue manager for this connection factory. Connections created by this

factory connect to that queue manager.

 Data type String

Host:

The name of the host on which the WebSphere MQ queue manager runs for client connections only.

 Data type String

Range A valid TCP/IP host name

Port:

The TCP/IP port number used for connection to the WebSphere MQ queue manager, for client connection

only.

 This port must be configured on the WebSphere MQ queue manager.

 Data type Integer

Range A valid TCP/IP port number, configured on the WebSphere

MQ queue manager.

Channel:

The name of the channel used for client connections to the WebSphere MQ queue manager for client

connection only.

 Data type String

Range 1 through 20 ASCII characters

Transport Type:

Whether WebSphere MQ client connection or JNDI bindings are used for connection to the WebSphere

MQ queue manager.

324 Administering applications and their environment

Data type Enum

Default BINDINGS

Range CLIENT

WebSphere MQ client connection is used to

connect to the WebSphere MQ queue manager.

BINDINGS

JNDI bindings are used to connect to the

WebSphere MQ queue manager.

Client ID:

The JMS client identifier used for connections to the WebSphere MQ queue manager.

 Data type String

CCSID:

The coded character set identifier to be used with the WebSphere MQ queue manager.

 This coded character set identifier (CCSID) must be one of the CCSIDs supported by WebSphere MQ.

 Data type String

Broker Control Queue:

The name of the broker control queue to which all command messages (except publications and requests

to delete publications) are sent.

 Data type String

Units En_US ASCII characters

Range 1 through 48 ASCII characters

Broker Queue Manager:

The name of the WebSphere MQ queue manager that provides the Publisher and Subscriber message

broker.

 Data type String

Units En_US ASCII characters

Range 1 through 48 ASCII characters

Broker Publish Queue:

The name of the broker input queue that receives all publication messages for the default stream.

 The name of the broker’s input queue (stream queue) that receives all publication messages for the

default stream. Applications can also send requests to delete publications on the default stream to this

queue.

 Data type String

Units En_US ASCII characters

Range 1 through 48 ASCII characters

Chapter 11. Client applications 325

Broker Subscribe Queue:

The name of the broker queue from which nondurable subscription messages are retrieved.

 The name of the broker queue from which nondurable subscription messages are retrieved. The

subscriber specifies the name of the queue when it registers a subscription.

 Data type String

Units En_US ASCII characters

Range 1 through 48 ASCII characters

Broker CCSubQ:

The name of the broker queue from which nondurable subscription messages are retrieved for a

ConnectionConsumer request. This property applies only for use of the Web container.

 Data type String

Units En_US ASCII characters

Range 1 through 48 ASCII characters

Broker Version:

Specifies whether the message broker is provided by the WebSphere MQ MA0C SupportPac or newer

versions of WebSphere family message broker products.

 Data type Enum

Default Advanced

Range Advanced

The message broker is provided by newer

versions of WebSphere family message broker

products (MQ Integrator and MQ Publish and

Subscribe).

Basic The message broker is provided by the

WebSphere MQ MA0C SupportPac (WebSphere

MQ - Publish and Subscribe).

Cleanup level:

Specifies the level of clean up provided by the publish or subscribe cleanup utility.

 Data type Enum

Default SAFE

Range

ASPROP

NONE

STRONG

Cleanup interval:

Specifies the interval, in milliseconds, between background executions of the publish/subscribe cleanup

utility.

 Data type Integer

326 Administering applications and their environment

Units Milliseconds

Default 6000

Message selection:

Specifies where broker message selection is performed.

 Data type Enum

Default BROKER

Range

BROKER

Message selection is done at the broker location.

Message CLIENT

Message selection is done at the client location.

Publish acknowledge interval:

The interval, in number of messages, between publish requests that require acknowledgement from the

broker.

 Data type Integer

Default 25

Sparse subscriptions:

Enables sparse subscriptions.

 Data type Check box

Default Cleared

Status refresh interval:

The interval, in milliseconds, between transactions to refresh publish or subscribe status.

 Data type Integer

Default 6000

Subscription store:

Specifies where WebSphere MQ stores data relating to active JMS subscriptions.

 Data type Enum

Default MIGRATE

Range

MIGRATE

QUEUE

BROKER

Multicast:

Specifies whether this connection factory uses multicast transport.

Chapter 11. Client applications 327

Data type Enum

Default NOT USED

Range

NOT USED

This connection factory does not use multicast

transport.

ENABLED

This connection factory always uses multicast

transport.

ENABLED_IF_AVAILABLE

This connection factory uses multicast transport.

ENABLED_RELIABLE

This connection factory uses reliable multicast

transport.

ENABLED_RELIABLE_IF_AVAILABLE

This connection factory uses reliable multicast

transport if available.

Direct authentication:

Specifies whether to use direct broker authorization.

 Data type Enum

Default NONE

Range

NONE Direct broker authorization is not used.

PASSWORD

Direct broker authorization is authenticated with a

password.

CERTIFICATE

Direct broker authorization is authenticated with a

certificates.

Proxy Host Name:

Specifies the host name of a proxy to be used for communication with WebSphere MQ.

 Data type String

Proxy Port:

Specifies the port number of a proxy to be used for communication with WebSphere MQ.

 Data type Integer

Default 0

Fail if quiesce:

Specifies whether applications return from a method call if the queue manager has entered a controlled

failure.

 Data type Check box

Default Selected

328 Administering applications and their environment

Local Server Address:

Specifies the local server address.

 Data type String

Polling Interval:

Specifies the interval, in milliseconds, between scans of all receivers during asynchronous message

delivery.

 Data type Integer

Units Milliseconds

Default 5000

Rescan interval:

Specifies the interval in milliseconds between which a topic is scanned to look for messages that have

been added to a topic out of order.

 This interval controls the scanning for messages that have been added to a topic out of order with respect

to a WebSphere MQ browse cursor.

 Data type Integer

Units Milliseconds

Default 5000

SSL cipher suite:

Specifies the cipher suite to use for SSL connection to WebSphere MQ.

 Set this property to a valid cipher suite provided by your JSSE provider. The value must match the

CipherSpec specified on the SVRCONN channel as the Channel property.

You must set this property, if you set the SSL Peer Name property.

SSL certificate store:

Specifies a list of zero or more Certificate Revocation List (CRL) servers used to check for SSL certificate

revocation. If you specify a value for this property, you must use WebSphere MQ JVM at Java 2 version

1.4.

 The value is a space-delimited list of entries of the form:

ldap://hostname:[port]

A single slash (/) follows this value. If port is omitted, the default LDAP port of 389 is assumed. At

connect-time, the SSL certificate presented by the server is checked against the specified CRL servers.

For more information about CRL security, see the section “Working with Certificate Revocation Lists” in the

WebSphere MQ Security book; for example at: http://publibfp.boulder.ibm.com/epubs/html/csqzas01/
csqzas012w.htm#IDX2254.

SSL peer name:

Chapter 11. Client applications 329

http://publibfp.boulder.ibm.com/epubs/html/csqzas01/csqzas012w.htm#IDX2254
http://publibfp.boulder.ibm.com/epubs/html/csqzas01/csqzas012w.htm#IDX2254

For SSL, a distinguished name skeleton that must match the name provided by the WebSphere MQ queue

manager. The distinguished name is used to check the identifying certificate presented by the server at

connection time.

 If this property is not set, such certificate checking is performed.

The SSL peer name property is ignored if SSL Cipher Suite property is not specified.

This property is a list of attribute name and value pairs separated by commas or semicolons. For example:

CN=QMGR.*, OU=IBM, OU=WEBSPHERE

The example given checks the identifying certificate presented by the server at connect-time. For the

connection to succeed, the certificate must have a Common Name beginning QMGR., and must have at

least two Organizational Unit names, the first of which is IBM and the second WEBSPHERE. Checking is

not case-sensitive.

For more details about distinguished names and their use with WebSphere MQ, see the section

“Distinguished Names” in the WebSphere MQ Security book.

Connection pool:

Specifies an optional set of connection pool settings.

 Connection pool properties are common to all J2C connectors.

The application server pools connections and sessions with the JMS provider to improve performance.

This is independent from any WebSphere MQ connection pooling. You need to configure the connection

and session pool properties appropriately for your applications, otherwise you may not get the connection

and session behavior that you want.

Change the size of the connection pool if concurrent server-side access to the JMS resource exceeds the

default value. The size of the connection pool is set on a per queue or topic basis.

 Data type Check box

Default Selected

WebSphere MQ Provider queue destination settings for application clients

Use this panel to view or change the configuration properties of the selected queue destination for use

with the WebSphere MQ product Java Message Service (JMS) provider.

To view this Application Client Resource Configuration Tool (ACRCT) page, click File > Open. After you

browse for an EAR file, click Open. Expand the selected JAR file > Messaging Providers > WebSphere

MQ Provider. Right-click Queue Destinations and click New. The following fields are displayed on the

General tab.

Note:

v The property values that you specify must match the values that you specified when configuring

WebSphere MQ product for JMS resources. For more information about configuring WebSphere

MQ product for JMS resources, see the WebSphere MQ Using Java book.

v In WebSphere MQ, names can have a maximum of 48 characters.

A queue for use with the WebSphere MQ product JMS provider has the following properties.

Name:

330 Administering applications and their environment

http://publibfp.boulder.ibm.com/epubs/html/csqzas01/csqzas010p.htm#HDRDCDN

The name by which the queue is known for administrative purposes within IBM WebSphere Application

Server.

 Data type String

Description:

A description of the queue, for administrative purposes.

 Data type String

JNDI Name:

The application client run-time environment uses this field to retrieve configuration information.

Persistence:

Whether all messages sent to the destination are persistent, nonpersistent or have their persistence

defined by the application.

 Data type Enum

Default APPLICATION_DEFINED

Range Application defined

Messages on the destination have their

persistence defined by the application that put

them onto the queue.

Queue defined

[WebSphere MQ destination only] Messages on

the destination have their persistence defined by

the WebSphere MQ queue definition properties.

Persistent

Messages on the destination are persistent.

Nonpersistent

Messages on the destination are not persistent.

Priority:

Whether the message priority for this destination is defined by the application or the Specified priority

property.

 Data type Enum

Units Not applicable

Default APPLICATION_DEFINED

Range Application defined

The priority of messages on this destination is

defined by the application that put them onto the

destination.

Queue defined

[WebSphere MQ destination only] Messages on

the destination have their persistence defined by

the WebSphere MQ queue definition properties.

Specified

The priority of messages on this destination is

defined by the Specified priority property. If you

select this option, you must define a priority on

the Specified priority property.

Chapter 11. Client applications 331

Specified Priority:

If the Priority property is set to Specified, specify the message priority for this queue, in the range 0

(lowest) through 9 (highest).

 Data type Integer

Units Message priority level

Range 0 (lowest priority) through 9 (highest priority)

Expiry:

Whether the expiry timeout value for this queue is defined by the application or the by Specified expiry

property or whether messages on the queue never expire (have an unlimited expiry time out).

 Data type Enum

Units Not applicable

Default APPLICATION_DEFINED

Range Application defined

The expiry timeout for messages on this queue is

defined by the application that put them onto the

queue.

Specified

The expiry timeout for messages on this queue is

defined by the Specified expiry property. If you

select this option, you must define a timeout on

the Specified expiry property.

Unlimited

Messages on this queue have no expiry timeout

and those messages never expire.

Specified Expiry:

If the Expiry timeout property is set to Specified, type here the number of milliseconds (greater than 0)

after which messages on this queue expire.

 Data type Integer

Units Milliseconds

Range Greater than or equal to 0

v 0 indicates that messages never time out

v Other values are an integer number of milliseconds

Base Queue Name:

The name of the queue to which messages are sent, on the queue manager specified by the Base queue

manager name property.

 Data type String

Base Queue Manager Name:

The name of the WebSphere MQ queue manager to which messages are sent.

 This queue manager provides the queue specified by the Base queue name property.

 Data type String

332 Administering applications and their environment

Units En_US ASCII characters

Range A valid WebSphere MQ Queue Manager name, as 1

through 48 ASCII characters

CCSID:

The coded character set identifier to use with the WebSphere MQ queue manager.

 This coded character set identifier (CCSID) must be one of the CCSID identifier supported by WebSphere

MQ queue manager.

 Data type String

Integer encoding:

If native encoding is not enabled, select whether integer encoding is normal or reversed.

 Data type Enum

Default NORMAL

Range NORMAL

Normal integer encoding is used.

REVERSED

Reversed integer encoding is used.

For more information about encoding properties, see the

WebSphere MQ Using Java document.

Decimal encoding:

Indicates that if native encoding is not enabled to select whether decimal encoding is normal or reversed.

 Data type Enum

Default NORMAL

Range NORMAL

Normal decimal encoding is used.

REVERSED

Reversed decimal encoding is used.

For more information about encoding properties, see the

WebSphere MQ Using Java document.

Floating point encoding:

Indicates that if native encoding is not enabled to select the type of floating point encoding.

 Data type Enum

Default IEEENORMAL

Range IEEENORMAL

IEEE normal floating point encoding is used.

IEEEREVERSED

IEEE reversed floating point encoding is used.

S390 S390 floating point encoding is used.

For more information about encoding properties, see the

WebSphere MQ Using Java document.

Chapter 11. Client applications 333

Native encoding:

Indicates that the queue destination use native encoding (appropriate encoding values for the Java

platform) when you select this check box.

 Data type Enum

Default Cleared

Range Cleared

Native encoding is not used, so specify the

following properties for integer, decimal and

floating point encoding.

Selected

Native encoding is used (to provide appropriate

encoding values for the Java platform).

For more information about encoding properties, see the

WebSphere MQ Using Java document.

Target client:

Whether the receiving application is JMS-compliant or is a traditional WebSphere MQ application.

 Data type Enum

Default WebSphere MQ

Range WebSphere MQ

The target is a traditional WebSphere MQ

application that does not support JMS.

JMS The target application supports JMS.

Custom Properties:

Specifies name-value pairs for setting additional properties on the object that is created at run time for this

resource.

 You must enter a name that is a public property on the object and a value that can be converted from a

string to the type required by the set method of the property. The acceptable properties and values depend

on the object that is created. Refer to the object documentation for a list of valid properties and values.

WebSphere MQ Provider topic destination settings for application clients

Use this panel to view or change the configuration properties of the selected topic destination for use with

the WebSphere MQ product Java Message Service (JMS) provider.

To view this Application Client Resource Configuration Tool (ACRCT) page, click File > Open. After you

browse for an EAR file, click Open. Expand the selected JAR file > Messaging Providers > WebSphere

MQ Provider. Right click Topic Destinations, and click New. The following fields are displayed on the

General tab.

Note:

v The property values that you specify must match the values that you specified when configuring

WebSphere MQ product JMS resources. For more information about configuring WebSphere MQ

product JMS resources, see the WebSphere MQ Using Java book.

v In WebSphere MQ, names can have a maximum of 48 characters.

A topic destination is used to configure the properties of a JMS topic for the associated JMS provider. A

topic for use with the WebSphere MQ product JMS provider has the following properties.

334 Administering applications and their environment

Name:

The name by which the topic is known for administrative purposes.

 Data type String

Description:

A description of the topic for administrative purposes within IBM WebSphere Application Server.

JNDI Name:

The application client run time uses this field to retrieve configuration information.

Persistence:

Specifies whether all messages sent to the destination are persistent, nonpersistent, or have their

persistence defined by the application.

 Data type Enum

Default APPLICATION_DEFINED

Range Application defined

Messages on the destination have their

persistence defined by the application that put

them in the queue.

Queue defined

[WebSphere MQ destination only] Messages on

the destination have their persistence defined by

the WebSphere MQ queue definition properties.

Persistent

Messages on the destination are persistent.

Nonpersistent

Messages on the destination are not persistent.

Priority:

Specifies whether the message priority for this destination is defined by the application or the Specified

priority property.

 Data type Enum

Default APPLICATION_DEFINED

Range Application defined

The priority of messages on this destination is

defined by the application that put them in the

destination.

Queue defined

[WebSphere MQ destination only] Messages on

the destination have their persistence defined by

the WebSphere MQ queue definition properties.

Specified

The priority of messages on this destination is

defined by the Specified priority property. If you

select this option, you must define a priority for

the Specified priority property.

Specified Priority:

Chapter 11. Client applications 335

If the Priority property is set to Specified, type the message priority for this queue, in the range 0 (lowest)

through 9 (highest).

 If the Priority property is set to Specified, messages sent to this queue have the priority value specified

by this property.

 Data type Integer

Units Message priority level

Range 0 (lowest priority) through 9 (highest priority)

Expiry:

Whether the expiry timeout for this queue is defined by the application or by the Specified expiry property

or by messages on the queue never expire (have an unlimited expiry timeout).

 Data type Enum

Default APPLICATION_DEFINED

Range Application defined

The expiry timeout for messages on this queue is

defined by the application that put them in the

queue.

Specified

The expiry timeout for messages in this queue is

defined by the Specified expiry property. If you

select this option, you must define a timeout

value for the Specified expiry property.

Unlimited

Messages on this queue have no expiry timeout,

and these messages never expire.

Specified Expiry:

If the Expiry timeout property is set to Specified, type the number of milliseconds (greater than 0) after

which messages on this queue expire.

 Data type Integer

Units Milliseconds

Range Greater than or equal to 0

v 0 indicates that messages never time out.

v Other values are an integer number of milliseconds.

Base Topic Name:

The name of the topic to which messages are sent.

 Data type String

CCSID:

The coded character set identifier to use with the WebSphere MQ queue manager.

 This coded character set identifier (CCSID) must be one of the CCSID identifiers that WebSphere MQ

supports.

 Data type String

336 Administering applications and their environment

Units Integer

Range 1 through 65535

Integer encoding:

Indicates whether integer encoding is normal or reversed when native encoding is not enabled.

 Data type Enum

Default NORMAL

Range NORMAL

Normal integer encoding is used.

REVERSED

Reversed integer encoding is used.

For more information about encoding properties, see the

WebSphere MQ Using Java document.

Decimal encoding:

If native encoding is not enabled, select whether decimal encoding is normal or reversed.

 Data type Enum

Default NORMAL

Range NORMAL

Normal decimal encoding is used.

REVERSED

Reversed decimal encoding is used.

For more information about encoding properties, see the

WebSphere MQ Using Java document.

Floating point encoding:

Indicates the type of floating point encoding when native encoding is not enabled.

 Data type Enum

Default IEEENORMAL

Range IEEENORMAL

IEEE normal floating point encoding is used.

IEEEREVERSED

IEEE reversed floating point encoding is used.

S390 S/390 floating point encoding is used.

For more information about encoding properties, see the

WebSphere MQ Using Java document.

Native encoding:

Indicates that the queue destination uses native encoding (appropriate encoding values for the Java

platform) when you select this check box.

 Data type Enum

Default Cleared

Chapter 11. Client applications 337

Range Cleared

Native encoding is not used, so specify the

previous properties for integer, decimal and

floating point encoding.

Selected

Native encoding is used (to provide appropriate

encoding values for the Java platform).

For more information about encoding properties, see the

WebSphere MQ Using Java document.

BrokerDurSubQueue:

The name of the broker queue from which durable subscription messages are retrieved.

 The subscriber specifies the name of the queue when it registers a subscription.

 Data type String

Units En_US ASCII characters

Range 1 through 48 ASCII characters

BrokerCCDurSubQueue:

The name of the broker queue from which durable subscription messages are retrieved for a

ConnectionConsumer. This property applies only for use of the Web container.

 Data type String

Units En_US ASCII characters

Range 1 through 48 ASCII characters

Target Client:

Specifies whether the receiving application is JMS compliant or is a traditional WebSphere MQ application.

 Data type Enum

Default WebSphere MQ

Range WebSphere MQ

The target is a traditional WebSphere MQ

application that does not support JMS.

JMS The target is a JMS compliant application.

Multicast:

Specifies whether this connection factory uses multicast transport.

 Data type Enum

Default AS_CF

338 Administering applications and their environment

Range

AS_CF This connection factory uses multicast transport.

DISABLED

This connection factory does not use multicast

transport.

NOT_RELIABLE

This connection factory always uses multicast

transport.

RELIABLE

This connection factory uses multicast transport

when the topic destination is not reliable.

ENABLED

This connection factory uses reliable multicast

transport.

Generic JMS connection factory settings for application clients

Use this panel to view or change the configuration properties of the selected Java Message Service (JMS)

connection factory for use with the associated JMS provider. These configuration properties control how

connections are created between the JMS provider and the messaging system that it uses.

To view this Application Client Resource Configuration Tool (ACRCT) page, click File > Open. After you

browse for an EAR file, click Open. Expand the selected JAR file > Messaging Providers >

new_JMS_Provider_instance. Right-click Connection Factories, and click New. The following fields are

displayed on the General tab.

A Java Message Service (JMS) connection factory creates connections to JMS destinations. The JMS

connection factory is created by the associated JMS provider. A JMS connection factory for a generic JMS

provider (other than the internal default messaging provider or WebSphere MQ as a JMS provider) has the

following properties:

Name:

The name by which this JMS connection factory is known for administrative purposes within IBM

WebSphere Application Server. The name must be unique within the associated JMS provider.

 Data type String

Description:

A description of this connection factory for administrative purposes within IBM WebSphere Application

Server.

 Data type String

Default Null

JNDI Name:

The application client run time uses this field to retrieve configuration information.

User ID:

Indicates the user ID used with the Password property, for authentication if the calling application does

not provide a userid and password explicitly.

Chapter 11. Client applications 339

If you specify a value for the User ID property, you must also specify a value for the Password property.

The connection factory User ID and Password properties are used if the calling application does not

provide a userid and password explicitly; for example, if the calling application uses the method

createQueueConnection(). The JMS client flows the userid and password to the JMS server.

 Data type String

Password:

The password used with the User ID property for authentication if the calling application does not provide

a userid and password explicitly.

 If you specify a value for the User ID property, you must also specify a value for the Password property.

 Data type String

Default Null

Re-Enter Password:

Confirms the password entered in the Password field.

External JNDI Name:

The JNDI name that is used to bind the queue into the application server name space.

 As a convention, use the fully qualified JNDI name, for example, jms/Name, where Name is the logical

name of the resource.

This name is used to link the platform binding information. The binding associates the resources defined

by the deployment descriptor of the module to the actual (physical) resources bound into JNDI API by the

platform.

 Data type String

Connection Type:

Whether this JMS destination is a queue (for point-to-point) or topic (for publication or subscription).

 Select one of the following options:

Queue

A JMS queue destination for point-to-point messaging.

Topic A JMS topic destination for publish subscribe messaging.

Custom Properties:

Specifies name-value pairs for setting additional properties on the object that is created at run time for this

resource.

 You must enter a name that is a public property on the object and a value that can be converted from a

string to the type required by the set method of the property. The acceptable properties and values depend

on the object that is created. Refer to the object documentation for a list of valid properties and values.

340 Administering applications and their environment

Generic JMS destination settings for application clients

Use this panel to view or change the configuration properties of the selected JMS destination for use with

the associated JMS provider.

To view this Application Client Resource Configuration Tool (ACRCT) page, click File > Open. After you

browse for an EAR file, click Open. Expand the selected JAR file > Messaging Providers > new JMS

Provider instance. Right-click Destinations, and click New. The following fields are displayed on the

General tab.

A JMS destination is used to configure the properties of a JMS destination for the associated generic JMS

provider. Connections to the JMS destination are created by the associated JMS connection factory. A

JMS destination for use with a generic JMS provider (not the default messaging provider or WebSphere

MQ as a JMS provider) has the following properties.

Name:

The name by which the queue is known for administrative purposes within WebSphere Application Server.

 Data type String

Description:

A description of the queue, for administrative purposes.

JNDI Name:

The JNDI name of the actual (physical) name of the JMS destination bound into JNDI.

External JNDI Name:

The JNDI name that is used to bind the queue into the application server name space.

 As a convention, use the fully qualified JNDI name; for example, in the form jms/Name, where Name is the

logical name of the resource.

This name is used to link the platform binding information. The binding associates the resources defined

by the deployment descriptor of the module to the actual (physical) resources bound into JNDI by the

platform.

 Data type String

Destination Type:

Whether this JMS destination is a queue (for point-to-point) or topic (for publishing or subscribing).

 Select one of the following options:

Queue

A JMS queue destination for point-to-point messaging.

Topic A JMS topic destination for pub/sub messaging.

Custom Properties:

Specifies name-value pairs for setting additional properties on the object that is created at run time for this

resource.

Chapter 11. Client applications 341

You must enter a name that is a public property on the object and a value that can be converted from a

string to the type required by the set method of the property. The acceptable properties and values depend

on the object that is created. Refer to the object documentation for a list of valid properties and values.

Example: Configuring JMS provider, JMS connection factory and JMS destination

settings for application clients

You can configure JMS Provider, JMS Connection Factory and JMS Destination settings. This topic

provides the required fields, special cases, and an example.

The purpose of this article is to help you to configure JMS Provider, JMS Connection Factory and JMS

Destination settings.

v Required fields include:

– JMS Provider Properties page: name, and at least one protocol provider

– JMS Connection Factory Properties page: name, jndiName, destination type

– JMS Destination Properties page: name, jndiName, destination type
v Special cases:

– The destination type must be QUEUE, or TOPIC.
v Example:

<resources.jms:JMSProvider xmi:id="JMSProvider_3" name="genericJMSProvider:name"

description="genericJMSProvider:description"

externalInitialContextFactory="genericJMSProvider:contextFactoryClass"

externalProviderURL="genericJMSProvider:providerUrl">

<classpath>genericJMSProvider:classpath</classpath>

<factories xmi:type="resources.jms:GenericJMSDestination"

xmi:id="GenericJMSDestination_1" name="jmsDestination:name"

jndiName="jmsDestination:jndiName" description="jmsDestination:description"

externalJNDIName="jmsDestination:externalJndiName" type="QUEUE">

<propertySet xmi:id="J2EEResourcePropertySet_15">

<resourceProperties xmi:id="J2EEResourceProperty_17" name="jmsDestination:customName"

value="jmsDestination:customValue"/>

</propertySet>

</factories>

<factories xmi:type="resources.jms:GenericJMSConnectionFactory"

xmi:id="GenericJMSConnectionFactory_1" name="jmsCF:name" jndiName="jmsCF:jndiName"

description="jmsCF:description" userID="jmsCF:user" password="{xor}NTIsHBllMT4yOg=="

externalJNDIName="jmsCF:externalJndiName" type="QUEUE">

<propertySet xmi:id="J2EEResourcePropertySet_16">

<resourceProperties xmi:id="J2EEResourceProperty_18" name="jmsCF:customName"

value="jmsCF:customValue"/>

</propertySet>

</factories>

<propertySet xmi:id="J2EEResourcePropertySet_17">

<resourceProperties xmi:id="J2EEResourceProperty_19"

name="genericJMSProvider:customName" value="genericJMSProvider:customValue"/>

</propertySet>

</resources.jms:JMSProvider>

Configuring new JMS connection factories for application clients

Use this task to create a new Java Message Service (JMS) connection factory configuration for your

application client.

1. Click the JMS provider for which you want to create a connection factory in the tree. Complete one of

the following actions:

v Configure a new JMS provider.

v Click an existing JMS provider.

2. Expand the JMS provider to view its Connection Factories folder.

3. Click the connection factory folder, and complete one of the following actions:

v Right-click the folder and selectNew.

v Click Edit > New on the menu bar.

4. Configure the JMS connection factory properties in the displayed fields.

342 Administering applications and their environment

5. Click OK when you finish.

6. Click File > Save on the menu bar to save your changes.

Configuring new Java Message Service destinations for application

clients

Use this task to create a new Java Message Service (JMS) destination configuration for your application

client.

1. Click the JMS provider in the tree for which you want to create a destination. Complete one of the

following actions:

v Configure a new JMS provider.

v Click an existing JMS provider.

2. Expand the JMS provider to view its Destinations folder.

3. Click the provider folder, and complete one of the following actions:

v Right-click the folder and select New.

v Click Edit > New on the menu bar.

4. Configure the JMS destination properties in the displayed fields.

5. Click OK when you finish.

6. Click File > Save on the menu bar to save your changes.

Configuring new resource environment providers for application

clients

You can create new resource environment provider configurations for your application client using the

Application Client Resource Configuration Tool (ACRCT).

During this task, you create new resource environment provider configurations for your application client.

To configure a new resource environment provider, perform the following steps:

1. Start the Application Configuration Resource Tool and open the EAR file for which you want to

configure the new Java Message Service (JMS) provider. The EAR file contents display in a tree view.

2. Select from the tree the JAR file in which you want to configure the new JMS provider.

3. Expand the JAR file to view its contents.

4. Click the Resource Environment Providers folder. Take one of the following actions:

v Right-click the provider folder, and click New.

v Click Edit > New on the menu bar.

5. Configure the JMS provider properties in the displayed fields.

6. Click OK when you finish.

7. Click File > Save on the menu bar to save your changes.

Resource environment provider settings for application clients

Use this page to specify resource environment entry properties.

To view this Application Client Resource Configuration Tool (ACRCT) page, click File > Open. After you

browse for an EAR file, click Open. Expand the selected Java Archive (JAR) file. Right-click Resource

Environment Providers, and click New. The following fields are displayed on the General tab:

Name:

Specifies the administrative name for the resource environment provider.

Description:

Chapter 11. Client applications 343

Specifies a description of the resource environment provider for your administrative records.

Class Path:

Specifies the path to the JAR file that contains the implementation classes for the resource environment

provider.

Custom Properties:

Specifies name-value pairs for setting additional properties on the object that is created at run time for this

resource.

 You must enter a name that is a public property on the object and a value that can be converted from a

string to the type required by the set method of the property. The acceptable properties and values depend

on the object that is created. Refer to the object documentation for a list of valid properties and values.

Configuring new resource environment entries for application clients

You can create new resource environment entries for your client application using the Application Client

Resource Configuration Tool (ACRCT).

During this task, you create new resource environment entries for your client application.

1. Start the Application Client Resource Configuration Tool (ACRCT).

2. Open the EAR file for which you want to configure the new resource environment entry. The EAR file

contents are in the displayed tree view.

3. Click the desired resource environment provider, and complete the following action to configure new

providers:

v Configure a new resource environment provider.

4. Expand the resource environment provider to view the Resource Environment Entries folder.

5. Click the resource environment entries folder, and complete one of the following actions:

v Right-click the folder and select New.

v Click Edit > New on the menu bar.

6. Configure the resource environment entry properties in the displayed fields.

7. Click OK.

8. Click File > Save on the menu bar to save your changes.

Resource environment entry settings for application clients

Use this page to specify resource environment entry properties.

To view this Application Client Resource Configuration Tool (ACRCT) page, click File > Open. After you

browse for an EAR file, click Open. Expand the selected JAR file > Resource Environment Providers >

resource environment instance. Right-click Resource Environment Entries, and click New. The following

fields appear on the General tab:

Name:

Specifies the administrative name for the resource environment entry.

Description:

Specifies a description of the URL for your administrative records.

JNDI Name:

344 Administering applications and their environment

Specifies the Java Naming and Directory Interface (JNDI) name for the resource, including any naming

subcontexts.

 Use this name to link to the binding information of the platform. The binding associates the resources

defined in the deployment descriptor of the module to the actual (or physical) resources bound into JNDI

by the platform.

Custom Properties:

Specifies name-value pairs for setting additional properties on the object that is created at run time for this

resource.

 You must enter a name that is a public property on the object and a value that can be converted from a

string to the type required by the set method of the property. The acceptable properties and values depend

on the object that is created. Refer to the object documentation for a list of valid properties and values.

Managing application clients

You can manage J2EE application clients using the Application Client Resource Configuration Tool

(ACRCT).

Perform the following tasks after deploying application clients. This task only applies to J2EE application

clients.

1. Update data source and data source provider configurations.

2. Update URLs and URL provider configurations.

3. Update mail session configurations.

4. Update JMS provider, connection factories, and destination configurations.

5. Update MQ JMS provider, MQ connection factories and MQ destination configurations.

6. Update Resource Environment Entry and Resource Environment Provider configurations.

7. (Optional) Remove application client resources.

Updating data source and data source provider configurations with the Application

Client Resource Configuration Tool

You can update the configuration of an existing data source or data source provider using the Application

Client Resource Configuration Tool (ACRCT).

During this task, you update the configuration of an existing data source or data source provider. Perform

this task when your database configuration changes.

1. Start the Application Client Resource Configuration Tool (ACRCT), and open the Enterprise Archive

(EAR) file containing the data source or data source provider. The EAR file contents display in a tree

view.

2. Select Java Archive (JAR) file from the navigation tree containing the data source or data source

provider to update.

3. Expand the JAR file to view its contents until you locate the particular data source or data source

provider to update. Take one of the following actions:

v Right-click the data source object and click Properties.

v Click Edit > Properties on the menu bar.

4. Update the properties in the displayed fields. For detailed field help, see:

v Data source provider properties

5. Click OK when you finish.

6. Click File > Save on the menu bar to save your changes.

Chapter 11. Client applications 345

Updating URLs and URL provider configurations for application clients

You can update URLs and URL provider configurations for application clients using the Application Client

Resource Configuration Tool (ACRCT).

1. Start the tool and open the Enterprise Archive (EAR) file containing the URL or URL provider. The EAR

file contents are displayed in a tree view.

2. Select from the tree the Java Archive (JAR) file containing the URL or URL provider to update.

3. Expand the JAR file to view its contents.

4. Keep expanding the JAR file contents until you locate the particular URL or URL provider to update.

Take one of the following actions:

a. Right-click the URL object and click Properties.

b. Click Edit > Properties on the menu bar.

5. Update the properties in the displayed fields.

6. Click OK when you finish.

7. Click File > Save on the menu bar to save your changes.

Updating mail session configurations for application clients

You can update the configuration of an existing JavaMail session using the Application Client Resource

Configuration Tool (ACRCT).

During this task, you update the configuration of an existing JavaMail session. You cannot update the

name of the default JavaMail provider, and you cannot delete the default JavaMail provider from the

navigation tree.

1. Start the tool and open the Enterprise Archive (EAR) file containing the JavaMail session. The EAR file

contents are displayed in the navigation tree view.

2. Select the Java Archive (JAR) file containing the JavaMail session to update from the navigation tree.

3. Expand the JAR file to view its contents.

4. Keep expanding the JAR file contents until you locate the particular JavaMail session to update. Take

one of the following actions:

a. Right-click the object and click Properties

b. Click Edit > Properties from the menu bar.

5. Update the properties in the displayed fields.

6. Click OK when you finish.

7. Select File > Save from the menu bar to save your changes.

Updating Java Message Service provider, connection factories, and destination

configurations for application clients

You can update the configuration of an existing Java Message Service (JMS) provider, connection factory

or destination using the Application Client Resource Configuration Tool (ACRCT).

During this task, you update the configuration of an existing Java Message Service (JMS) provider,

connection factory or destination.

1. Start the tool and open the Enterprise Archive (EAR) file containing the Java Message Service (JMS)

provider, connection factory, or destination. The EAR file contents display in a tree view.

2. Select the Java Archive (JAR) file containing the JMS provider, connection factory, or destination to

update from the navigation tree.

3. Expand the JAR file to view its contents until you locate the particular JMS provider, connection

factory, or destination to update. When you find it, do one of the following actions:

v Right-click the provider, and click Properties.

v Click Edit > Properties on the menu bar.

4. Update the properties in the displayed fields. For detailed field help, see:

346 Administering applications and their environment

v JMS provider properties

v WebSphere Application Server Queue connection factory properties

v WebSphere Application Server Topic connection factory properties

v WebSphere Application Server Queue destination properties

v WebSphere Application Server Topic destination properties

5. Click OK.

6. Click File > Save to save your changes.

Updating WebSphere MQ as a Java Message Service provider, and its JMS

resource configurations, for application clients

You can update an existing configuration of WebSphere MQ as a Java Message Service (JMS) provider,

and update the configuration of WebSphere MQ connection factories or WebSphere MQ destinations.

Use this task to update an existing configuration of WebSphere MQ as a Java Message Service (JMS)

provider, and to update the configuration of WebSphere MQ connection factories or WebSphere MQ

destinations.

1. Start the Application Client Resource Configuration Tool (ACRCT).

2. Open the Enterprise Archive (EAR) file containing the WebSphere MQ JMS provider, WebSphere MQ

connection factory, or WebSphere MQ destination. The EAR file contents are displayed in the

navigation tree view.

3. Select the Java Archive (JAR) file containing the JMS provider, connection factory, or destination to

update.

4. Expand the JAR file to view its contents until you locate the particular JMS provider, connection

factory, or destination that you want to update. Complete one of the following actions:

v Right-click the appropriate object and click Properties.

v Click Edit > Properties on the menu bar.

5. Update the properties in the displayed fields. For detailed field help, see:

v JMS provider properties

v MQ Queue connection factory properties

v MQ Topic connection factory properties

v MQ Queue destination properties

v MQ Topic destination properties

6. Click OK.

7. Click File > Save to save your changes.

Updating resource environment entry and resource environment provider

configurations for application clients

You can update the configuration of an existing resource environment entry or resource environment

provider using the Application Client Resource Configuration Tool (ACRCT).

During this task, you update the configuration of an existing resource environment entry or resource

environment provider.

1. Start the tool and open the Enterprise Archive (EAR) file containing the resource environment entry or

resource environment provider. The EAR file contents display in a navigation tree view.

2. Select from the tree the Java Archive (JAR) file containing the resource environment entry or resource

environment provider to update.

3. Expand the JAR file to view its contents until you locate the resource environment entry or resource

environment provider to update. Take one of the following actions:

v Right-click the resource environment object, and click Properties.

v Click Edit > Properties on the menu bar.

4. Update the properties in the displayed fields. For detailed field help, see:

v Resource environment provider properties

v Resource environment entry properties

Chapter 11. Client applications 347

5. Click OK when you finish.

6. Click File > Save on the menu bar to save your changes.

Example: Configuring Resource Environment settings:

You can configure Resource Environment settings. This topic provides the required fields and an example.

 The purpose of this topic is to help you configure Resource Environment settings.

v Required fields:

– Resource Environment Provider page: Name

– Resource Environment Entry page: Name, JNDI Name
v Example:

<resources.env:ResourceEnvironmentProvider xmi:id="ResourceEnvironmentProvider_1"

name="resourceEnvProvider:name" description="resourceEnvProvider:description">

<classpath>resourceEnvProvider:classpath</classpath>

<factories xmi:type="resources.env:ResourceEnvEntry" xmi:id="ResourceEnvEntry_1"

name="resourceEnvEntry:name" jndiName="resourceEnvEntry:jndiName"

description="resourceEnvEntry:description">

<propertySet xmi:id="J2EEResourcePropertySet_20">

<resourceProperties xmi:id="J2EEResourceProperty_22"

name="resourceEnvEntry:customName" value="resourceEnvEntry:customValue"/>

</propertySet>

</factories>

<propertySet xmi:id="J2EEResourcePropertySet_21">

<resourceProperties xmi:id="J2EEResourceProperty_23"

name="resourceEnvProvider:customName" value="resourceEnvProvider:customValue"/>

</propertySet>

</resources.env:ResourceEnvironmentProvider>

Example: Configuring resource environment custom settings for application clients:

You can configure resource environment custom settings.

 The purpose of this topic is to help you configure resource environment custom settings.

v The custom page applies to every resource type. You can specify as many custom names and values

as you need.

v Example:

<propertySet xmi:id="J2EEResourcePropertySet_20">

<resourceProperties xmi:id="J2EEResourceProperty_22"

name="resourceEnvEntry:customName" value="resourceEnvEntry:customValue"/>

</propertySet>

Removing application client resources

You can remove J2EE application client resources using the Application Client Resource Configuration

Tool (ACRCT).

The option to delete an item does not offer a confirmation dialog. As a safeguard, consider saving your

work right before you begin this task. If you change your mind after removing an item, you can close the

EAR file without saving your changes, canceling your deletion. Remember to close the EAR file

immediately after the deletion, or you also lose any unsaved work that you performed since the deletion.

This task only applies to J2EE application clients.

1. Start the Application Client Resource Configuration Tool (ACRCT) and open the Enterprise Archive

(EAR) file from which you want to remove an object. The EAR file contents display in the navigation

tree view. If you already have an EAR file open and have made some changes, click File > Save to

save your work before preceding to delete an object.

2. Locate the object that you want to remove in the tree.

3. Right-click the object, and click Delete.

348 Administering applications and their environment

4. Click File > Save.

Chapter 11. Client applications 349

350 Administering applications and their environment

Chapter 12. Web services

Implementing Web services applications

This topic introduces you to using Web services that are based on the Web Services for Java 2 Platform,

Enterprise Edition (J2EE) specification. WebSphere Application Server supports Web services that are

developed and implemented based on Web Services for J2EE. Use Web services when operating across

a variety of platforms, including the J2EE 1.4 and non-J2EE platforms.

Decide if a Web service implementation benefits your business process.

Implementing Web services applications is an easy way to integrate application systems together within or

outside your company’s infrastructure that otherwise function as a standalone systems. For example, your

customer information database is a standalone application, but you want your accounting application to be

able to access the customer data. You can create a Web service for the customer database and then

enable the accounting application as a Web service client. The accounting application can now access the

customer information. By implementing a Web service, these two applications can share information in an

efficient manner.

Because Web services are easily applied to existing applications and information technology assets, new

solutions can be deployed quickly and recomposed to address new opportunities. As Web services

become more popular, the pool of services grows, promoting development of more robust models of

just-in-time application and business integration over the Internet.

You can use Web services applications with WebSphere Application Server by following the steps

provided:

 1. Plan to use Web services.

 2. (Optional) Migrate existing Web services.

If you have used Web services based on Apache SOAP and now want to develop and implement

Web services based on the Web Services for J2EE specification, you need to migrate client

applications developed with all versions of 4.0, and versions of 5.0 prior to 5.0.2.

 3. Develop Web services.

This topic is a good starting point in learning about how to develop a J2EE Web service.

 4. Configure Web services deployment descriptors.

You need to configure the deployment descriptors so that WebSphere Application Server can process

the incoming Web services requests.

 5. Assemble Web services.

This topic presents what you need to assemble a Web service and in what order you should

assemble the parts, for example an enterprise archive (EAR) file.

 6. Deploy Web services.

This topic presents the steps necessary to deploy the EAR file that has been configured and enabled

for Web services.

 7. Configure Web service client bindings. This topic explains how to edit bindings for a Web service after

these bindings are deployed on a server. When one Web service communicates with another Web

service, you must configure the client bindings to access the downstream Web service.

 8. Publish the WSDL file.

After installing a Web services application, and optionally modifying the endpoint information, you

might need Web Services Description Language (WSDL) files containing the updated endpoint

information. This topic presents the steps necessary to publish the WSDL files so that this information

is available.

 9. Develop Web services clients.

© Copyright IBM Corp. 2006 351

This topic explains how to develop a Web services client based on the Web Services for J2EE

specification.

10. Secure Web services.

This topic presents the methods used to integrate message-level security into a WebSphere

Application Server environment. If you are using V5.x, refer to Securing Web services for version 5.x

applications based on WS-Security. If you are using V6.x, refer to Securing Web services for version

6 applications based on WS-Security

11. Monitoring the performance of Web services applications.

This topic includes information to help you use the Performance Monitoring Infrastructure (PMI) to

measure the time required to process Web services requests.

12. Troubleshoot Web services.

You can use this topic to learn more about troubleshooting different processes used to develop,

implement and use Web services, including command-line tools, Java compiling errors, client runtime

errors and exceptions, serialization and deserialization errors, and authentication challenges and

authorization failures with Web services security.

The following example illustrates how a business might use Web services.

The owner of a flower shop wants to start receiving orders from customers through the Web. This owner

starts the process by finding wholesale flower suppliers, pricing the product, and completing contracts for

future flower orders.

Using Web services, the flower shop owner can find wholesale flower suppliers.

The flower shop owner can request price lists from each of the suppliers by obtaining a WSDL file for each

potential supplier. The WSDL can be downloaded from the supplier’s Web page, received through e-mail,

or retrieved from the supplier’s UDDI registry entry.

The WSDL describes the procedure call. When using WebSphere Application Server, the procedure call is

a Java API for XML-based remote procedure call (JAX-RPC), which retrieves price lists. The WSDL file

also specifies the Universal Resource Locator (URL) where the request is sent.

The flower shop owner now has to compare the prices received back from each supplier, decide which

suppliers to do business with, and make arrangements for future orders to fill. The flower shop can now

sell merchandise through the Web by using Web services to communicate with suppliers for the best

prices and complete the ordering processes. The merchandise price lists need publishing to the Web site

and a mechanism is needed for customers to order flowers.

The Web services clients of the flower supplier are deployed on the flower shop server. When a customer

makes a transaction to purchase flowers through the Web, the order is sent to the supplier through

JAX-RPC. The supplier responds by sending a confirmation with the order number and shipping date. The

suppliers maintain the inventory and the flower shop owner handles billing and customer order

management.

Similarly, the flower shop catalog can be composed automatically from the catalogs of all the suppliers. If

the supplier ships directly to the customer, the order tracking inquiries can pass directly to the supplier’s

order tracking system. The supplier can also use Web services to send invoices for orders and by the

flower shop to pay the supplier’s invoices. Processes that previously required forms to fill manually, and

fax or mail, can now be done automatically, saving labor costs for both the flower shop and the supplier.

Using Web services is beneficial because a much larger inventory is made available to the flower shop.

No merchandise maintenance overhead exists, but the flower shop can offer their customers products that

they otherwise might not have. Selling flowers through the Web increases capital for the flower shop

without overhead of another store or money invested into additional product.

352 Administering applications and their environment

For a more detailed scenario, see Web services scenario: Overview which tells the story of a fictional

online garden supply retailer named Plants by WebSphere and how they incorporated the Web services

concept.

Web services

Web services are self-contained, modular applications that you can describe, publish, locate, and invoke

over a network.

WebSphere Application Server supports Web services that are developed and implemented based on the

Web Services for Java 2 Platform, Enterprise Edition (J2EE) specification.

A typical Web services scenario is a business application requesting a service from another existing

application. The request is processed through a given Web address using SOAP messages over a HTTP,

Java Message Service (JMS) transport or invoked directly as Enterprise JavaBeans (EJB). The service

receives the request, processes it, and returns a response. Examples of a simple Web service include

weather reports or getting stock quotes. The method call is synchronous, that is, it waits until the result is

available. Transaction Web services, supporting quotes, business-to-business (B2B) or business-to-client

(B2C) operations include airline reservations and purchase orders.

Web services can include the actual service or the client that accesses the service.

Web services are Web applications that help you be more flexible in your business processes by

integrating with applications that otherwise do not communicate. The inner-library loan program at your

local library is a good example of the Web services concept and its evolution. The Web service concept

existed even before the term; the concept became widely accepted with the creation of the Internet. Before

the Internet was created, you visited your library, searched the collections and checked out your books. If

you did not find the book that you wanted, the librarian did a search for you by computer or phone and

located the book at a nearby library. The librarian ordered the book for you and you picked it up after it

was delivered to your local library. By incorporating Web services applications, you can streamline your

library visit.

Now, you can search the local library collection and other local libraries at the same time. When other

libraries provide your library with a Web service to search their collection (the service might have been

provided through UDDI), your results yield their resources. Another Web service application might enable

you to check the book out and get it sent to your home. Using Web services applications saves time and

provides a convenience for you, as well as freeing the librarian to do other business tasks.

Web services reflect the service-oriented architecture (SOA) approach to programming. This approach is

based on the idea of building applications by discovering and implementing network-available services, or

by invoking the available applications to accomplish a task. Web services deliver interoperability, for

example, Web services applications provide components created in different programming languages to

work together as if they were created using the same language. Web services rely on existing transport

technologies, such as HTTP, and standard data encoding techniques, such as Extensible Markup

Language (XML), for invoking the implementation.

The key components of Web services include:

v Web Services Description Language (WSDL)

WSDL is the XML-based file that describes the Web service. The Web service request uses this file to

bind to the service.

v SOAP

SOAP is the XML-based protocol that the Web service request uses to invoke the service.

For a more detailed scenario, see Web services scenario: Overview, which tells the story of a fictional

online garden supply retailer named Plants by WebSphere, and how this retailer incorporated the Web

services concept.

Chapter 12. Web services 353

Web Services for J2EE specification

The Web services for Java 2 Platform, Enterprise Edition (J2EE) specification defines the programming

model and run-time architecture for implementing Web services based on the Java language. Another

name for the Web Services for J2EE specification is the Java Specification Requirements (JSR) 109. The

specification includes open standards for developing and implementing Web services.

The Web Services for J2EE specification focuses on Extensible Markup Language (XML) remote

procedure call (RPC) and the Java language, including representing XML-based interface definitions in the

Java language; Java language definitions in XML-based definition languages, such as SOAP, and

assembling.

The J2EE technology can be integrated with Web services in a variety of ways. J2EE components, for

example, JavaBeans and enterprise beans, can be exposed as Web services. These services can be

accessed by clients written in Java code or by existing Web service clients that are not written in Java

code. J2EE components can also act as Web service clients.

The Web Services for J2EE specification is the preferred platform for Web-based programming because it

provides open standards allowing different types of languages, operating systems and software to

communicate seamlessly through the Internet.

For a Java application to act as Web service client, a mapping between the Web Services Description

Language (WSDL) file and the Java application must exist. The mapping is defined by the Java API for

XML-based RPC (JAX-RPC) specification.

You can use a Java component to implement a Web service by specifying the component interface and

binding information in the WSDL file and designing the application server infrastructure to accept the

service request.

This entire process encompassed is based on the Web Services for J2EE specification.

The specification brings with it the webservices.xml deployment descriptor specifically for Web services.

You are responsible for providing various elements to the deployment descriptor, including:

v Port name

v Port service implementation

v Port service endpoint interface

v Port WSDL definition

v Port QName

v JAX-RPC mapping

v Handlers (optional)

v Servlet mapping (optional)

The Enterprise JavaBeans (EJB) 2.1 specification also states that for a Web service developed from a

session bean, the EJB deployment descriptor, ejb-jar.xml, must contain the service-endpoint element.

The service-endpoint value must be the same as that stated in the webservices.xml deployment descriptor.

To learn more about the EJB 2.1 specification see Enterprise beans: Resources for learning.

Review the API documentation for a complete list of API’s. You can also review several articles about the

development of Web services at Web services: Resources for learning.

JAX-RPC

The Java API for XML-based RPC (JAX-RPC) specification enables you to develop SOAP-based

interoperable and portable Web services and Web service clients. JAX-RPC 1.1 provides core APIs for

354 Administering applications and their environment

http://developers.sun.com/techtopics/webservices/reference/api/index.html

developing and deploying Web services on a Java platform and is a required part of the J2EE 1.4

platform. The J2EE 1.4 platform allows you to develop portable Web services. Web services can also be

developed and deployed on J2EE 1.3 containers.

WebSphere Application Server implements JAX-RPC 1.1 standards.

The JAX-RPC standard covers the programming model and bindings for using Web Services Description

Language (WSDL) for Web services in the Java language. JAX-RPC simplifies development of Web

services by shielding you from the underlying complexity of SOAP communication.

On the surface, JAX-RPC looks like another instantiation of remote method invocation (RMI). Essentially,

JAX-RPC allows clients to access a Web service as if the Web service was a local object mapped into the

client’s address space even though the Web service provider is located in another part of the world. The

JAX-RPC is done by using the XML-based protocol SOAP, which typically rides on top of HTTP.

JAX-RPC defines the mappings between the WSDL port types and the Java interfaces, as well as

between Java language and Extensible Markup Language (XML) schema types.

A JAX-RPC Web service can be created from a JavaBean or a enterprise bean implementation. You can

specify the remote procedures by defining remote methods in a Java interface. You only need to code one

or more classes that implement the methods. The remaining classes and other artifacts are generated by

the Web service vendor’s tools. The following is an example of a Web service interface:

package com.ibm.mybank.ejb;

import java.rmi.RemoteException;

import com.ibm.mybank.exception.InsufficientFundsException;

/**

 * Remote interface for Enterprise Bean: Transfer

 */

public interface Transfer_SEI extends java.rmi.Remote {

 public void transferFunds(int fromAcctId, int toAcctId, float amount)

 throws java.rmi.RemoteException;

}

The interface definition in JAX-RPC must follow specific rules:

v The interface must extend java.rmi.Remote just like RMI.

v Methods must throw java.rmi.RemoteException.

v Method parameters cannot be remote references.

v Method parameter must be one of the parameters supported by the JAX-RPC specification. The

following list are examples of method parameters that are supported. For a complete list of method

parameters see the JAX-RPC specification.

– Primitive types: boolean, byte, double, float, short, int and long

– Object wrappers of primitive types: java.lang.Boolean, java.lang.Byte, java.lang.Double,

java.lang.Float, java.lang.Integer, java.lang.Long, java.lang.Short

– java.lang.String

– java.lang.BigDecimal

– java.lang.BigInteger

– java.lang.Calendar

– java.lang.Date

v Methods can take value objects which consist of a composite of the types previously listed, in addition

to aggregate value objects.

Chapter 12. Web services 355

A client creates a stub and invokes methods on it. The stub acts like a proxy for the Web service. From

the client code perspective, it seems like a local method invocation. However, each method invocation gets

marshaled to the remote server. Marshaling includes encoding the method invocation in XML as

prescribed by the SOAP protocol.

The following are key classes and interfaces needed to write Web services and Web service clients:

v Service interface: A factory for stubs or dynamic invocation and proxy objects used to invoke methods

v ServiceFactory class: A factory for Services.

v loadService

The loadService method is provided in WebSphere Application Server Version 6.0 to generate the

service locator which is required by a JAX-RPC implementation. If you recall, in previous versions there

was no specific way to acquire a generated service locator. For managed clients you used a JNDI

method to get the service locator and for non-managed clients, you were required to instantiate IBM’s

specific service locator ServiceLocator service=new ServiceLocator(...); which does not offer

portability. The loadService parameters include:

– wsdlDocumentLocation: A URL for the WSDL document location for the service or null.

– serviceName: A qualified name for the service

– properties: A set of implementation-specific properties to help locate the generated service

implementation class.

v isUserInRole

The isUserInRole method returns a boolean indicating whether the authenticated user for the current

method invocation on the endpoint instance is included in the specified logical role.

– role: The role parameter is a String specifying the name of the role.

v Service

v Call interface: Used for dynamic invocation

v Stub interface: Base interface for stubs

If you are using a stub to access the Web service provider, most of the JAX-RPC API details are hidden

from you. The client creates a ServiceFactory (java.xml.rpc.ServiceFactory). The client instantiates a

Service (java.xml.rpc.Service) from the ServiceFactory. The service is a factory object that creates the

port. The port is the remote service endpoint interface to the Web service. In the case of DII, the Service

object is used to create Call objects, which you can configure to call methods on the Web service’s port.

Review the API documentation for a complete list of API’s. You can also review several articles about the

development of Web services at Web services: Resources for learning.

SOAP

SOAP is a specification for the exchange of structured information in a decentralized, distributed

environment. As such, it represents the main way of communication between the three key actors in a

service oriented architecture (SOA): service provider, service requestor and service broker. The main goal

of its design is to be simple and extensible. A SOAP message is used to request a Web service.

WebSphere Application Server follows the standards outlined in SOAP 1.1.

SOAP was submitted to the World Wide Web Consortium (W3C) as the basis of the Extensible Markup

Language (XML) Protocol Working Group by several companies, including IBM and Lotus. This protocol

consists of three parts:

v An envelope that defines a framework for describing message content and processing instructions.

v A set of encoding rules for expressing instances of application-defined data types.

v A convention for representing remote procedure calls and responses.

356 Administering applications and their environment

http://developers.sun.com/techtopics/webservices/reference/api/index.html

SOAP is a protocol-independent transport and can be used in combination with a variety of protocols. In

Web services that are developed and implemented with WebSphere Application Server, SOAP is used in

combination with HTTP, HTTP extension framework, and Java Message Service (JMS). SOAP is also

operating-system independent and not tied to any programming language or component technology.

As long as the client can issue XML messages, it does not matter what technology is used to implement

the client. Similarly, the service can be implemented in any language, as long as the service can process

SOAP messages. Also, both server and client sides can reside on any suitable platform.

Review the API documentation for a complete list of API’s. You can also review several articles about the

development of Web services at Web services: Resources for learning.

SOAP with Attachments API for Java interface

SOAP with Attachments API for Java (SAAJ) interface is used for SOAP messaging that works behind the

scenes in the Java API for XML-based RPC (JAX-RPC) implementation. You can map XML to Java types

with standards supported by the JAX-RPC specification, but there are limited XML schema types, therefore

you can use the SOAPElement interface to create a custom data binder.

Web services use XML messages to exchange messages. These messages conform to XML schema and

when developing We services applications, there are limited XML APIs to work with, for example,

Document Object Model (DOM). It is more efficient to manipulate the Java objects and have the

serialization and deserialization completed during run time. To manipulate the XML schema types, you

need to map the XML schema types to Java types with a custom data binder.

Web services uses SOAP messages to represent remote procedure calls between the client and the

server. In normal JAX-RPC flows, the SOAP message is deserialized into a series of Java value-type

business objects that represent the parameters and return values. In addition, JAX-RPC provides APIs that

support applications and handlers to manipulate the SOAP message directly. Because there are a limited

number of XML schema types that are supported by JAX-RPC, the specification provides the SAAJ data

model as an extension to manipulate the message.

The primary interface in the SAAJ model is javax.xml.soap.SOAPElement, also referred to as

SOAPElement. Using this model, applications can process an SAAJ model that uses pre-existing DOM

code. It is also easier to convert pre-existing DOM objects to SAAJ objects.

Messages created using SAAJ follow SOAP standards. A SOAP message is represented in the SAAJ

model as a javax.xml.soap.SOAPMessage object. The XML content of the message is represented by a

javax.xml.soap.SOAPPart object. Each SOAP part has a SOAP envelope. This envelope is represented by

the SAAJ javax.xml.SOAPEnvelope object. The SOAP specification defines various elements that reside in

the SOAP envelope; SAAJ defines objects for the various elements in the SOAP envelope.

The SOAP message can also contain non-XML data that is called attachments. These attachments are

represented by SAAJ AttachmentPart objects that are accessible from the SOAPMessage object.

A number of reasons exist as to why handlers and applications use the generic SOAPElement API instead

of a tightly bound mapping:

v The Web service might be a conduit to another Web service. In this case, the SOAP message is only

forwarded.

v The Web service might manipulate the message using a different data model, for example a Service

Data Object (SDO). It is easier to convert the message from a SAAJ Document Object Model (DOM) to

a different data model.

v A handler, for example, a digital signature validation handler, might want to manipulate the message

generically.

Chapter 12. Web services 357

http://developers.sun.com/techtopics/webservices/reference/api/index.html

You might need to go a step further to map your XML schema types, because the SOAPElement interface

is not always the best alternative for legacy systems. In this case you might want to use a generic

programming model, such as Service Data Object (SDO), which is more appropriate for data-centric

applications.

The XML schema can be configured to include a custom data binding that pairs the SDO or data object

with the Java object. For example, the run time renders an incoming SOAP message into a SOAPElement

interface and passes it to the customer data binder for more processing. If the incoming message contains

an SDO, the run time recognizes the data object code, queries its type mapping to locate a custom binder,

and builds the SOAPElement interface that represents the SDO code. The SOAPElement is passed to the

SDOCustomBinder.

See Custom data binders for more information about the process of developing applications with

SOAPElement, SDO and custom binders.

Review the API documentation for a complete list of API’s. You can also review several articles about the

development of Web services at Web services: Resources for learning.

Web services SOAP/JMS protocol

The Web services engine supports the use of a Java Message Service (JMS)-compliant messaging

transport as an alternative to HTTP for communicating SOAP messages between clients and servers.

You can use SOAP/JMS if you need to provide implementations for the client or server components, and

need to make sure that the implementations are interoperable with the client and server components

provided by the Web services engine in WebSphere Application Server.

Client responsibilities

The client component is responsible for sending SOAP request messages and receiving SOAP response

messages while adhering to the following protocol constraints:

v The client must use either a JMS TextMessage, for example, javax.jms.TextMessage, or a

BytesMessage, for example, javax.jms.BytesMessage, to transmit the SOAP request message to the

server. If the request message contains attachments, a BytesMessage must be used. If the request

message does not contain attachments, the client can use a TextMessage or a BytesMessage. The

WebSphere product client implementation uses only a BytesMessage for the request message due to

the potential need to transmit attachments.

v The client must set the following properties on the JMS request message before sending the message

to the destination queue or topic:

– contentType - This property is similar to the Content-Type header found in an HTTP message and is

used to describe the content type of the message. A text-only SOAP message, for example, a

message with no attachments, is written as follows:

text/xml; charset="UTF-8"

The contentType property in a SOAP request message that contains attachments must be set as

follows:

multipart/related; type="text/xml"; start="<...content-id of first part...>"

This example represents a multi-part message, where the first part is of type ″text/xml″ that contains

the SOAP message. The other parts of the multi-part message contain various attachments. The

HTTP 1.1 specification contains more information about the Content-Type header.

– targetService - This property must be set to the targetService property value that is found in the

JMS-style endpoint location URL for the request. This value is used by the server component to

determine the port component in the target when dispatching the request.

– endpointURL - This property must be set to the JMS endpoint URL associated with the request.

358 Administering applications and their environment

http://developers.sun.com/techtopics/webservices/reference/api/index.html

– transportVersion - This property indicates the version number of the protocol used by the client and

server. Set the value to 1 (one).

v If the SOAP request message represents a two-way request, the client component must set the JMS

message’s replyTo property to specify the queue that is used for the reply message. The JMS

message’s setJMSReplyTo method is used for this.

v If the SOAP request message represents a one-way request, the client component must not set the

JMS message’s replyTo property.

v The client component must be prepared to handle a reply message that is a BytesMessage or a

TextMessage, regardless of the type of JMS message used to transmit the SOAP request. The

WebSphere product implementation of the server component responds with the same type of JMS

message that is received from the client, unless the response contains attachments and a

BytesMessage must be used.

v The client component can assume that the reply message correlation ID matches the original request

message ID.

Server responsibilities

The server component is responsible for receiving the SOAP request messages and sending the SOAP

response messages while adhering to the following protocol constraints:

v The server must be prepared to receive a TextMessage or a BytesMessage. If the request contains

attachments, a ByteMessage must be used. The WebSphere product implementation of the server

component responds in kind when sending the reply message back to the client, unless the response

contains attachments and a BytesMessage is used.

v The server component must process the SOAP request properly to produce an appropriate SOAP reply

message.

v The server component must send a reply message back to the client only if the JMS request message’s

replyTo property is set.

v The server component must set the following properties in the JMS reply message before sending the

message to the replyTo queue:

– contentType - See the description for this property in the client responsibilities section in this article.

– The correlation ID of the JMS reply message should be set to the message ID of the original JMS

request message. This is done by calling the JMS message’s setJMSCorrelationID method.

– transportVersion - This property indicates the version number of the protocol used by the client and

server. Set the value to 1 (one).

Example: SOAP request without attachments

The following example displays the results from calling the JMS message’s toString method for a request

message without attachments:

JMSMessage class: jms_bytes

JMSType: null

JMSDeliveryMode: 2

JMSExpiration: 0

JMSPriority: 4

JMSMessageID: ID:d438eebf04cb124aa25c5821110a134f0000000000000001

JMSTimestamp: 1092110476167

JMSCorrelationID: null

JMSDestination: topic://NewsGroupTopic?topicSpace=FvtTopicSpace

JMSReplyTo: null

JMSRedelivered: false

JMS_IBM_System_MessageID: 6B6765B36943A18C_11000001

transportVersion: 1

JMSXUserID:

targetService: NGConsumerJMS

JMSXAppID: Service Integration Bus

endpointURL: jms:/topic?destination=jms/NewsGroupTopic&connectionFactory;

Chapter 12. Web services 359

=jms/NewsGroupTCF&targetService;=NGConsumerJMS

contentType: text/xml; charset=utf-8

3c736f6170656e763a456e76656c6f706520786d6c6e733a736f6170656e763d22687474703a2f2f

736368656d61732e786d6c736f61702e6f72672f736f61702f656e76656c6f70652f2220786d6c6e

...

The following example displays the payload from the previous message example:

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

 xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<soapenv:Body soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

<postMessage><ngName xsi:type="xsd:string">news.current.events</ngName>

<msg xsi:type="xsd:string">This is a sample news item.</msg>

</postMessage>

</soapenv:Body>

</soapenv:Envelope>

Example: SOAP request with attachments

The following example displays the results from calling the JMS message’s toString method for a request

message with attachments:

JMSMessage class: jms_bytes

JMSType: null

JMSDeliveryMode: 1

JMSExpiration: 1092086312310

JMSPriority: 4

JMSMessageID: ID:4bb64ed64e7d813d59ba5fec110a134f0000000000000001

JMSTimestamp: 1092086012310

JMSCorrelationID: null

JMSDestination: queue://Logger_Q

JMSReplyTo: queue://_Q_6B6765B36943A18C_00000385

JMSRedelivered: false

JMS_IBM_System_MessageID: 6B6765B36943A18C_10000001

transportVersion: 1

JMSXUserID:

targetService: WSLoggerJMS

JMSXAppID: Service Integration Bus

endpointURL: jms:/queue?

destination=jms/Logger_Q&connectionFactory=jms/Logger_CF&targetService=WSLoggerJMS

contentType: multipart/related; type="text/xml";

start="<945414389.1092086011970.IBM.WEBSERVICES@myhost1>";

boundary="----=_Part_0_247953397.1092086011970"

0d0a2d2d2d2d2d2d3d5f506172745f305f3234373935333339372e31303932303836303131393730

0d0a436f6e74656e742d547970653a20746578742f786d6c3b20636861727365743d5554462d380d

...

The following displays the payload from the previous message example:

Content-Type: multipart/related; type="text/xml";

 start="<945414389.1092086011970.IBM.WEBSERVICES@myhost1>";

 boundary="----=_Part_0_247953397.1092086011970"

------=_Part_0_247953397.1092086011970

Content-Type: text/xml; charset=UTF-8

Content-Transfer-Encoding: binary

Content-Id: <945414389.1092086011970.IBM.WEBSERVICES@myhost1>

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

360 Administering applications and their environment

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<soapenv:Header>

<p499:InternationalizationContext soapenv:mustUnderstand="0"

 xmlns:p499="http://www.ibm.com/webservices/InternationalizationContext">

<Locales>

 <Locale>

 <LanguageCode>en</LanguageCode>

 <CountryCode>US</CountryCode>

 </Locale>

</Locales>

<TimeZoneId>America/Chicago</TimeZoneId>

</p499:InternationalizationContext>

</soapenv:Header>

<soapenv:Body>

 <sendJpegImage/>

</soapenv:Body>

<soapenv:Envelope>

------=_Part_0_247953397.1092086011970

Content-Type: image/jpeg

Content-Transfer-Encoding: binary

Content-ID: <jpegImageRequest=81380956150.1092086011880.IBM.WEBSERVICES@myhost1>

<...contents of jpeg image file...>

SOAP response

The following example displays the results from calling the JMS message’s toString method for a SOAP

reply message:

JMSMessage class: jms_bytes

JMSType: null

JMSDeliveryMode: 2

JMSExpiration: 0

JMSPriority: 4

JMSMessageID: null

JMSTimestamp: 0

JMSCorrelationID: ID:cdddb857f078a266eb9a972f110a134f0000000000000001

JMSDestination: null

JMSReplyTo: null

JMSRedelivered: false

contentType:

 multipart/related;

 type="text/xml";

 start="<961368106530.1092112854745.IBM.WEBSERVICES@yackerjr>";

 boundary="----=_Part_0_1655006754.1092112854745"

0d0a2d2d2d2d2d2d3d5f506172745f305f313635353030363735342e313039323131323835343734

350d0a436f6e74656e742d547970653a20746578742f786d6c3b20636861727365743d5554462d38

...

Review the API documentation for a complete list of API’s. You can also review several articles about the

development of Web services at Web services: Resources for learning.

Web Services-Interoperability Basic Profile

The Web Services-Interoperability (WS-I) Basic Profile is a set of non-proprietary Web services

specifications that promote interoperability.

WebSphere Application Server conforms to the WS-I Basic Profile 1.1.

The WS-I Basic Profile is governed by a consortium of industry-leading corporations, including IBM, under

direction of the WS-I Organization. The profile consists of a set of principles that relate to bringing about

open standards for Web services technology. All organizations that are interested in promoting

interoperability among Web services are encouraged to become members of the Web Services

Interoperability Organization.

Chapter 12. Web services 361

http://developers.sun.com/techtopics/webservices/reference/api/index.html

Several technology components are used in the composition and implementation of Web services,

including messaging, description, discovery, and security. Each of these components are supported by

specifications and standards, including SOAP 1.1, Extensible Markup Language (XML) 1.0, HTTP 1.1,

Web Services Description Language (WSDL) 1.1, and Universal Description, Discovery and Integration

(UDDI). The WS-I Basic Profile specifies how these technology components are used together to achieve

interoperability, and mandates specific use of each of the technologies when appropriate. You can read

more about the WS-I Basic Profile at the WS-I Organization Web site.

Each of the technology components have requirements that you can read about in more detail at the WS-I

Organization Web site. For example, support for Universal Transformation Format (UTF)-16 encoding is

required by WS-I Basic Profile. UTF-16 is a kind of Unicode encoding scheme using 16-bit values to store

Universal Character Set (UCS) characters. UTF-8 is the most common encoding that is used on the

Internet; UTF-16 encoding is typically used for Java and Windows product applications; and UTF-32 is

used by various Linux and Unix systems. Unlike UTF-8, UTF-16 has issues with big-endian and

little-endian, and often involves Byte Order Mark (BOM) to indicate the endian. BOM is mandatory for

UTF-16 encoding and it can be used in UTF-8.

See how to modify your encoding from UTF-8 to UTF-16 if you need to change from UTF-8 to UTF-16.

The following table summarizes some of the properties of each UTF:

 Bytes Encoding form

EF BB BF UTF-8

FF FE UTF-16, little-endian

FE FF UTF-16, big-endian

00 00 FE FF UTF-32, big-endian

FF FE 00 00 UTF-32, little-endian

BOM is written prior to the XML text, and it indicates to the parser how the XML is encoded. The XML

declaration contains the encoding, for example: <?xml version=xxx encoding=″utf-xxx″?>. BOM is used

with the encoding to determine how to interpret the XML. Here is an example of a SOAP message and

how BOM and UTF encoding are used:

POST http://www.whitemesa.net/soap12/add-test-rpc HTTP/1.1

Content-Type: application/soap+xml; charset=utf-16; action=""

SOAPAction:

Host: localhost: 8080

Content-Length: 562

OxFF0xFE<?xml version="1.0" encoding="utf-16"?>

<soap:Envelope xmlns:soap="http://www.w3.org/2002/12/soap-envelope"

 xmlns:soapenc="http://www.w3.org/2002/12/soap-encoding

 xmlns:tns="http://whitemesa.net/wsdl/soap12-test"

 xmlns:types="http://whitemesa.net/wsdl/soap12-test/encodedTypes"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <soap:Body>

 <q1:echoString xmlns:q1="http://soapinterop.org/">

 <inputString soap:encodingStyle="http://example.org/unknownEncoding"

 xsi:type="xsd:string">

 Hello SOAP 1.2

 </inputString>

 </q1:echoString>

 </soap:Body>

</soap:Envelope>

In the example code, 0xFF0xFE represents the byte codes, while the <?xml> declaration is the textual

representation.

362 Administering applications and their environment

RMI-IIOP using JAX-RPC

Java API for XML-based Remote Procedure Call (JAX-RPC) is the Java standard API for invoking Web

services through remote procedure calls. A transport is used by a programming language to communicate

over the Internet. You can use protocols with the transport such as SOAP and Remote Method Invocation

(RMI). You can use Remote Method Invocation over Internet Inter-ORB Protocol (RMI-IIOP) with JAX-RPC

to support non-SOAP bindings.

Using RMI-IIOP with JAX-RPC, enables WebSphere Java clients to invoke enterprise beans using a

WSDL file and the JAX-RPC programming model instead of using the standard J2EE programming model.

When a enterprise JavaBeans implementation is used to invoke a Web service, multiprotocol JAX-RPC

permits the Web service invocation path to be optimized for WebSphere Java clients. Learn more about

this by reviewing Using enterprise bean bindings to invoke an EJB from a Web services client.

Benefits of using the RMI/IIOP protocol instead of a SOAP- based protocol are:

v XML processing is not required to send and receive messages; Java serialization is used instead.

v The client JAX-RPC call can participate in a user transaction, which is not the case when SOAP is

used.

WS-I Attachments Profile

The Web Services-Interoperability (WS-I) Attachments Profile is a set of non-proprietary Web services

specifications that promote interoperability. This profile compliments the WS-I Basic Profile 1.1 to add

support for interoperable SOAP messages with attachments-based Web services.

WebSphere Application Server conforms to the WS-I Attachments Profile 1.0.

Attachments are typically used to send binary data, for example, data that is mapped in Java code to

java.awt.Image and javax.activation.DataHandler. The raw data can be sent in the SOAP message,

however, this approach is inefficient because an XML parser has to scan the data as it parses the

message.

The WS-I Attachments Profile provides a solution to the limitations that are presented by Web Services

Description Language (WSDL) 1.1. Because WSDL 1.1 attachments are not part of the XML schema type

space, they can be message parts only. As message parts, the attachments cannot be arrays or properties

of Java beans. The profile defines the wsi:swaRef XML schema type.Use the wsi:swaRef XML schema

type to overcome the limitations of WSDL 1.1 attachments.

The wsi:swaRef type is an extension of the xsd:anyURI type, where its value contains the content-ID of

the attachment.

Review the API documentation for a complete list of API’s. You can also review several articles about the

development of Web services at Web services: Resources for learning.

Web services: Resources for learning

This topic provides relevant supplemental information about Web services-related topics.

The following topics provide extended reference information about Web services:

v Web services overview

v Developing Web services:

This topic includes information about developing Web services that based on the Java 2 Platform,

Enterprise Edition (J2EE) and Java API for XML-based remote procedure call (JAX-RPC) specifications.

v Performance

Review this topic for information about key Web sites that discuss performance best practices.

v Universal Description Discovery and Integration (UDDI)

Chapter 12. Web services 363

http://developers.sun.com/techtopics/webservices/reference/api/index.html

This topic is an overview about UDDI and information about the UDDI Java API.

v The Web Services Invocation Framework (WSIF)

This topic includes a look into the Apache Software Foundation and its maintenance of WSIF.

v Web Services-Interoperability (WS-I) Basic Profile

This topic is an overview about the WS-I Basic Profile.

v SOAP

This topic is an overview about SOAP, information about the SOAP syntax and processing rules.

v Security

This topic provides a roadmap to security, the WS-Security specification, best practices, a profile of the

OASIS Security Assertion Markup Language (SAML) and more.

v Samples

This topic is the Samples Gallery for WebSphere Application Server and Samples Central for UDDI and

WSIF.

The information resides on IBM and non-IBM Internet sites, whose sponsors control the technical accuracy

of the information.

These links are provided for convenience. Often, the information is not specific to an IBM WebSphere

Application Server product, but is useful all or in part for understanding the product. When possible, links

are provided to technical papers and Redbooks that supplement the broad coverage of the release

documentation with in-depth examinations of particular product areas.

Web services overview

v WebSphere Version 6 Web Services Handbook

This IBM Redbook describes the new concept of Web services from various perspectives. It presents

the major building blocks on which Web services rely. Well-defined standards and new concepts are

presented and discussed.

v Web services (r)evolution, Part 1

This article focuses on the benefits and challenges of building Web services applications. Web services

might be an evolutionary step in designing distributed applications, however, the technology is not

without problems. Outlined are the difficulties developers face in creating a truly workable distributed

system of Web services. This article also outlines author Graham Glass’s plan for building peer-to-peer

Web applications.

Developing Web services

v Java Web Services: SOAP with Attachments API for Java (SAAJ)

This document describes the SOAP with Attachments API for Java (SAAJ) and how this API provides a

standard way to send XML documents over the Internet from the Java platform.

v JSR 109: Implementing Enterprise Web services

This document describes the J2EE specification.

v JAX-RPC: Core Web services API in the Java platform

This document reviews the JAX-RPC specification which enables Java technology developers to

develop SOAP-based interoperable and portable Web services.

v A developer introduction to the JAX-RPC specification, Part 1: Learn the ins and outs of the JAX-RPC

type-mapping system. The JAX-RPC specification is an important step forward in the quest for Web

services interoperability. This DeveloperWorks WebSphere article explains the mapping between WSDL

and XML types and Java types. It explains how the JAX-RPC standard defines this feature and some of

the important points on designing an interoperable type system.

v A developer introduction to JAX-RPC, Part 2: Mine the JAX-RPC specification to improve Web service

interoperability. This DeveloperWorks WebSphere article explains how you can achieve the next level of

Web service interoperability using the JAX-RPC standard client and server side interface definitions and

message processing model. It includes information on developing JAX-RPC handlers and handler

chains.

364 Administering applications and their environment

http://www.redbooks.ibm.com/abstracts/sg246461.html?Open
http://www-106.ibm.com/developerworks/library/ws-peer1.html
http://java.sun.com/xml/saaj/
http://jcp.org/en/jsr/detail?id=109
http://java.sun.com/xml/jaxrpc/
http://www.ibm.com/developerworks/webservices/library/ws-jaxrpc1/
http://www.ibm.com/developerworks/webservices/library/ws-jaxrpc1/
http://www.ibm.com/developerworks/webservices/library/ws-jaxrpc2/
http://www.ibm.com/developerworks/webservices/library/ws-jaxrpc2/

v Getting Started with JAX-RPC. This article explains the basic JAX-RPC programming concepts. It

describes the JAX-RPC client and server programming models and illustrates simple examples. The

article is intended to give developers a good grasp of how to use the JAX-RPC specification to develop

or use Web services.

v Web Services Description Language

This article is a detailed overview of Web Services Description Language (WSDL), which includes

programming specifications.

Performance

The following Web sites offer tips and best practices to get the best performance from your Web services

applications:

v Best practices for Web services: Part 1, Back to the basics

v SOA and Web services: Articles

v IBM WebSphere Developer Technical Journal: Web Services Architectures and Best Practices

v Web services programming tips and tricks: How to create a simple JAX-RPC handler

v Web services programming tips and tricks: Using SOAP headers with JAX-RPC

v Web services programming tips and tricks: Extend JAX-RPC Web services using SOAP headers

v Web services programming tips and tricks: Roundtrip issues in Java coding conventions

UDDI

v Universal Description, Discovery and Integration

This article is a detailed overview of the UDDI registry.

v A new approach to UDDI and WSDL: Introduction to the new OASIS UDDI WSDL Technical Note

This article is about using WSDL with UDDI. Although it is based on the UDDI Registry in WebSphere

Application Server Version 5, it remains a useful description of the recommended approach for use of

WSDL with UDDI.

v UDDI Version 3 Features List

This article is an introduction to the new features in UDDI Version 3.

WSIF

v The Apache Software Foundation. The Apache Software Foundation provides support for the Apache

community of open-source software projects. Of particular interest is the Apache Web services project.

The WSIF source code is donated by IBM to the Apache Software Foundation, and is maintained here

as an Apache project.

WS-I Basic Profile

v Web Services Interoperability Organization This Web site offers resources and guidelines for Web

services interoperability. You can also view the latest specification documents for WS-I Basic Profile

from the documentation link on the home page.

v UTF and BOM Frequently Asked Questions. This Web site offers general information about UTF-8,

UTF-16, UTF-32, along with Byte Order Mark (BOM) in a question and answer format.

SOAP

v SOAP

This article is a detailed overview of SOAP, which includes the programming specifications.

v SOAP Security Extensions: Digital Signature

This document specifies the syntax and processing rules of a SOAP header entry to carry digital

signature information within a SOAP 1.1 Envelope

Chapter 12. Web services 365

http://developer.java.sun.com/developer/technicalArticles/WebServices/getstartjaxrpc/
http://www.w3.org/TR/wsdl
http://www.ibm.com/developerworks/webservices/library/ws-best1
http://www.ibm.com/developerworks/views/webservices/articles.jsp
http://www-106.ibm.com/developerworks/websphere/techjournal/0310_brown/brown.html
http://www.ibm.com/developerworks/xml/library/ws-tipjax2.html
http://www.ibm.com/developerworks/webservices/library/ws-tipjax1.html
http://www.ibm.com/developerworks/webservices/library/ws-tip-extend/
http://www.ibm.com/developerworks/webservices/library/ws-tip-roundtrip2.html
http://www.uddi.org/about.html
http://www-106.ibm.com/developerworks/webservices/library/ws-udmod1/
http://uddi.org/pubs/uddi_v3_features.htm
http://www.apache.org
http://ws.apache.org
http://ws.apache.org/wsif/
http://ws-i.org/
http://www.unicode.org/unicode/faq/utf_bom.html
http://www.w3.org/TR/SOAP
http://www.w3.org/TR/SOAP-dsig

Security

v Security in a Web Services World: A Proposed Architecture and Roadmap

This document describes a proposed model for addressing security within a Web service environment. It

defines a comprehensive Web services security model that supports, integrates, and unifies several

popular security models, mechanisms, and technologies, including both symmetric and public key

technologies. You can enable a variety of systems to securely interoperate in a platform and

language-neutral manner. It also describes a set of specifications and scenarios that show how these

specifications can be used together.

v Web Services Security (WS-Security)

The Web Services Security (WS-Security) specifications describe enhancements to SOAP messaging to

provide the quality of protection through message integrity, message confidentiality, and single message

authentication. Use these mechanisms to accommodate a wide variety of security models and

encryption technologies. The WS-Security specification also provides a general-purpose mechanism for

associating security tokens with messages. Additionally, the specification describes how to encode

binary security tokens. Specifically, the specification describes how to encode X.509 certificates and

Kerberos tickets, as well as how to include opaque encrypted keys. It also includes extensibility

mechanisms that can be used to further describe the characteristics of the credentials that are included

with a message.

v SOAP Security Extensions: Digital Signature

This document specifies the syntax and processing rules of a SOAP header entry to carry digital

signature information within a SOAP 1.1 envelope

v Web Services Security Addendum

This document describes clarifications, enhancements, best practices, and errata of the WS-Security

specification.

v WS-Security Profile of the OASIS Security Assertion Markup Language (SAML) Working Draft 04, 10

September 2002

This document proposes a set of standards for SOAP extensions that are used to increase message

confidentiality.

v Web Services Security: SOAP Message Security Working Draft 12, Monday 21 April 2003

This document describes the support for multiple token formats, trust domains, signature formats, and

encyrption technologies.

v JSR 55:Certification Path API

This document provides a short description of the Certification Path API.

v XML-Signature Syntax and Processing

This document specifies XML digital signature processing rules and syntax. XML signatures provide

integrity, message authentication, or signer authentication services for data of any type, whether it is

located within the XML that includes the signature or elsewhere.

v Canonical XML Version 1.0

This specification describes a method for generating a physical representation or the canonical form of

an XML document that accounts for the permissible changes.

v Exclusive XML Canonicalization Version 1.0

Canonical XML [XML-C14N] specifies a standard serialization of XML that, when applied to a

subdocument, includes the subdocument ancestor context including all of the namespace declarations

and attributes in the ″xml:″namespace.

v XML Encryption Syntax and Processing

This document specifies a process for encrypting data and representing the result in XML.

v Decryption Transform for XML Signature

This document specifies an XML Signature decryption transform that enables XML Signature

applications to distinguish between those XML encryption structures that are encrypted before signing,

and must not be decrypted, and those that are encrypted after signing, and must be decrypted, for the

signature to validate.

v WS-Security

366 Administering applications and their environment

http://www-106.ibm.com/developerworks/webservices/library/ws-secmap/
http://www-106.ibm.com/developerworks/library/ws-secure/
http://www.w3.org/TR/SOAP-dsig
http://www-106.ibm.com/developerworks/library/ws-secureadd.html
http://www.oasis-open.org/committees/security/docs/draft-sstc-ws-sec-profile-04.pdf
http://www.oasis-open.org/committees/security/docs/draft-sstc-ws-sec-profile-04.pdf
http://www.oasis-open.org/committees/download.php/1686/WSS-SOAPMessageSecurity-12-04021.pdf
http://jcp.org/en/jsr/detail?id=55
http://www.w3.org/TR/xmldsig-core/
http://www.w3.org/TR/xml-c14n
http://www.w3.org/TR/xml-exc-c14n/
http://www.w3.org/TR/xmlenc-core/
http://www.w3.org/TR/xmlenc-decrypt
http://schemas.xmlsoap.org/ws/2002/04/secext/

This document specifies resources for the April 2002 WS-Security specification. The following addenda

and drafts are available:

– http://schemas.xmlsoap.org/ws/2002/07/secext/

– http://schemas.xmlsoap.org/ws/2002/07/utility/

– OASIS draft 12 for secext

– OASIS draft 12 for utility
v Specification: Web Services Security (WS-Security) Version 1.0 05 April 2002

v XML Encryption Syntax and Processing W3C Recommendation 10 December 2002

v XML-Signature Syntax and Processing W3C Recommendation 12 February 2002

v Web Services Security Addendum

v Web Services Security Core Specification Working Draft 01, 20 September 2002

v Web Services Security: SOAP Message Security Working Draft 13, Thursday, 01 May 2003

v Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile,

RFC3280, April 2002

v OASIS Web Services Security Technical Committee

Samples

v Samples Gallery

v Samples Central. Samples and associated documentation for the following Web services components

are available through the Samples Central page of the DeveloperWorks WebSphere Web site:

– The IBM WebSphere UDDI Registry.

– The Web Services Invocation Framework (WSIF).

Deploying Web services

This task explains how to deploy a Web service into WebSphere Application Server.

To deploy Web services that are based on the Web Services for Java 2 Platform, Enterprise Edition

(J2EE) specification, you need an enterprise application, also known as an enterprise archive (EAR) file

that is configured and enabled for Web services.

If you have a Web service that was deployed on a previous version of WebSphere Application Server, you

might want to run the wsdeploy command-line tool so that you can benefit from performance features that

have been added to this release.

This task is one of the steps in developing and implementing Web services.

You can use either the administrative console or the wsadmin scripting tool to deploy an EAR file. If you

are installing an application containing Web services by using the wsadmin command, specify the

-deployws option. If you are installing an application containing Web services by using the administrative

console, select Deploy WebServices in the Install New Application wizard. For more information about

installing applications using the administrative console see Installing a new application.

If the Web services application is previously deployed with the wsdeploy command, it is not necessary to

specify Web services deployment during installation.

The following actions deploy the EAR file with the wsadmin command:

1. Start install_root/bin/wsadmin from a command prompt. If you are using Linux or Unix platforms,

start install_root/bin/wsadmin.sh.

2. Enter the $AdminApp install EARfile ″-usedefaultbindings -deployws″ command at the wsadmin

prompt.

You have a Web service installed into the WebSphere Application Server product.

Chapter 12. Web services 367

http://schemas.xmlsoap.org/ws/2002/07/secext/
http://schemas.xmlsoap.org/ws/2002/07/utility/
http://schemas.xmlsoap.org/ws/2003/06/secext/
http://schemas.xmlsoap.org/ws/2003/06/utility/
http://www-106.ibm.com/developerworks/webservices/library/ws-secure/
http://www.w3.org/TR/2002/REC-xmlenc-core-20021210
http://www.w3.org/TR/2002/REC-xmldsig-core-20020212/
http://www.ibm.com/developerworks/library/secureadd.html
http://www.oasis-open.org/committees/wss/documents/WSS-Core-01-0920.pdf
http://www.oasis-open.org/committees/download.php/2314/WSS-SOAPMessageSecurity-13-050103-merged.pdf
http://www.ietf.org/rfc/rfc3280.txt
http://www.ietf.org/rfc/rfc3280.txt
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss
http://www7b.software.ibm.com/wsdd/library/samples/AppServer.html
http://www.ibm.com/websphere/developer/library/samples/AppServer.html

You can confirm that the Web services application was deployed by entering the Web service endpoint

URL in a browser, then viewing an informative page. The information page contains the following

information:

{http://webservice.pli.tc.wssvt.ibm.com}RetireWebServices

Hi there, this is a Web service!

The first line of this information is variable, depending on your Web service. The URI in the brackets is the

namespace and the string following that (in this example, RetireWebServices), is the name of the port

used to access the Web service.

The next step you might want to consider is to apply security to the applications.

Provide options to perform the Web services deployment settings

Use this panel to specify options for Web services deployment.

This administrative console panel is a step in the application installation and update wizards. To view this

panel, you must select Deploy Web services on the Select installation options panel. Thus, to view this

panel, click Applications > Install New Application > application_path > Show me all installation

options and parameters > Next > Next > Deploy Web services > Next > Step: Provide options to

perform the Web services deployment.

You can specify the Web services deployment options on this panel only when installing or updating an

application that uses Web services.

The options that you specify set parameter values for the wsdeploy command. The wsdeploy command

adds product-specific deployment classes to a Web services-compatible enterprise archive (EAR) file or an

application client Java archive (JAR) file. These classes include:

v Stubs

v Serializers and deserializers

v Implementations of service interfaces

The wsdeploy command is executed during installation after you click Finish on the Summary panel of

the wizard.

 Related tasks

 “Installing application files with the console” on page 32
Installing application files consists of placing assembled enterprise application, Web, enterprise bean

(EJB), or other installable modules on a server or cluster configured to hold the files. Installed files that

start and run properly are considered deployed.

 Related reference

 “wsdeploy command” on page 369

 “Enterprise application settings” on page 55
Use this page to configure an enterprise application.

Deploy Web services option - Classpath:

Specifies entries to add to the CLASSPATH when the generated classes are compiled.

 To specify the class paths of multiple entries, you need to separate the entries with a semicolon on

Windows platforms and on Linux, Unix, and z/OS platforms, you need to use a colon to separate the

entries. This is the same separator that is used with the CLASSPATH environment variable.

This option is the same as the wsdeploy command parameter -cp class_path.

 Data type String

Default null

368 Administering applications and their environment

Deploy Web services option - Extension Directories:

Specifies a directory that contains zipped or Java archive (JAR) files. All zipped and JAR files in this

directory are added to the CLASSPATH used to compile the generated files.

 This option is the same as the wsdeploy command parameter -jardir directory.

 Data type String

Default null

wsdeploy command

This topic explains how to use the wsdeploy command-line tool with Web services that are based on the

Web Services for Java 2 Platform, Enterprise Edition (J2EE) specification. The wsdeploy command adds

WebSphere product-specific deployment classes to a Web services-compatible enterprise application

enterprise archive (EAR) file or an application client Java archive (JAR) file. These classes include:

v Stubs

v Serializers and deserializers

v Implementations of service interfaces

This deployment step must be performed at least once, and can be performed more often. Deployment

can be performed separately using the wsdeploy command, assembly tools, or when the application is

installed. When using the wsadmin command for installation, specify the -deployws option.

The wsdeploy command operates as noted in the following list:

v Each module in the enterprise application or JAR file is examined.

v If the module contains Web services implementations, indicated by the presence of the webservices.xml

deployment descriptor, the associated Web Services Description Language (WSDL) files are located

and the WSDL2Java command is run with the role deploy-server option.

v If the module contains Web services clients, indicated by the presence of the client deployment

descriptor, the associated WSDL files are located and the WSDL2Java command is run with the role

deploy-client option.

v The files generated by the WSDL2Java command are compiled and repackaged.

See WSDL2Java command for more information about the files that are generated for deployment.

When the generated files are compiled, they can reference application-specific classes outside the EAR or

JAR file, if the EAR or JAR file is not self-contained. In this case, use either the -jardir or -cp option to

specify additional JAR or zip files to be added to CLASSPATH variable when the generated files are

compiled.

wsdeploy command syntax

The command syntax is noted in the following example:

wsdeploy Input_filename Output_filename [options]

Required options:

v Input_filename

Specifies the path to the EAR or JAR file to deploy.

v Output_filename

Specifies the path of the deployed EAR or JAR file. If output_filename already exists, it is silently

overwritten. The output_filename can be the same as the input_filename.

Other options:

Chapter 12. Web services 369

v -jardir directory

Specifies a directory that contains JAR or zip files. All JAR and zip files in this directory are added to

the CLASSPATH used to compile the generated files. This option can be specified zero or more times.

v -cp entries

Specifies entries to add to the CLASSPATH when the generated classes are compiled. Multiple entries

are separated the same as they are in the CLASSPATH environment variable, with a semicolon on

Windows platforms and a colon for Linux and Unix platforms.

v -codegen

Specifies to generate but not compile deployment code. This option implicitly specifies the -keep option.

v -debug

Includes debugging information when compiling, that is, use javac -g to compile.

v -help

Displays a help message and exit.

v -ignoreerrors

Do not stop deployment if validation or compilation errors are encountered.

v -keep

Do not delete working directories containing generated classes. A message is displayed indicating the

name of the working directory that is retained.

v -novalidate

Do not validate the Web services deployment descriptors in the input file.

v -trace

Displays processing information, including the names of the generated files.

Example The following example illustrates how the options are used with the wsdeploy command:

wsdeploy x.ear x_deployed.ear -trace -keep

Processing web service module x_client.jar.

Keeping directory: f:\temp\Base53383.tmp for module: x_client.jar.

Parsing XML file:f:\temp\Base53383.tmp\WarDeploy.wsdl

Generating f:\temp\Base53383.tmp\generatedSource\com\test\WarDeploy.java

Generating f:\temp\Base53383.tmp\generatedSource\com\test\WarDeployLocator.java

Generating f:\temp\Base53383.tmp\generatedSource\com\test\HelloWsBindingStub.java

Compiling f:\temp\Base53383.tmp\generatedSource\com\test\WarDeploy.java.

Compiling f:\temp\Base53383.tmp\generatedSource\com\test\WarDeployLocator.java.

Compiling f:\temp\Base53383.tmp\generatedSource\com\test\HelloWsBindingStub.java.

Done processing module x_client.jar.

Messages

v Flag -f is not valid.

Option f was not recognized as a valid option.

v Flag -c is ambiguous.

Options can be abbreviated, but the abbreviation must be unique. In this case, the wsdeploy command

cannot determine which option was intended.

v Flag -c is missing parameter -p.

A required parameter for an option is omitted.

v Missing p parameter.

A required option is omitted.

Configuring Web service client bindings

When a Web service application is deployed into WebSphere Application Server, an instance is created for

each application or module. The instance contains deployment information for the Web module or

enterprise JavaBean (EJB) module, including client bindings.

Deploy the Web service into WebSphere Application Server.

370 Administering applications and their environment

To complete this task, you need to know the topology of the URL endpoint address of the Web services

servers and which Web service the client depends upon. You can view the deployment descriptors in the

administrative console to find topology information. See the article View Web services server deployment

descriptors for more information.

The client bindings define the Web Services Description Language (WSDL) file name and preferred ports.

The relative path of a Web service in a module is specified within a compatible WSDL file that contains the

actual URL to be used for requests. The address is only needed if the original WSDL file did not contain a

URL, or when a different address is needed. For a service endpoint with multiple ports, you need to define

an alternative WSDL file name.

The following steps describe how to edit bindings for a Web service after these bindings are deployed on

a server. When one Web service communicates with another Web service, you must configure the client

bindings to access the downstream Web service.

You can also configure client bindings with wsadmin.

To configure client bindings through the administrative console:

1. Open the administrative console.

2. Click Applications > Enterprise Applications > application_instance > Manage Modules >

module_instance > Web services client bindings.

3. Find the Web service you want to update.

The Web services are listed in the Web Service field.

4. Select the WSDL file name from the drop down box in the WSDL file name field.

5. Click Edit in the Preferred port mappings field to configure the default port to use.

a. Specify the port type and the preferred ports in the Port type and Preferred ports fields.

Configuring the preferred port enables you to select an optimal port implementation use non-SOAP

protocols. See RMI-IIOP Web services using JAX-RPC for more information about using

non-SOAP protocols.

b. Click Apply and OK.

6. Click Edit in the Port information field to configure the request timeout, the overridden endpoint, and

the overridden binding namespace for a port.

Configuring the request timeout accommodates complex topologies that can have multiple cascaded

Web services that involve multiple hops or long-running services.

Timeout values can be configured based on observed behavior of the overall system as integration

proceeds. For example, a Web service client might time out because of changing network conditions or

the performance of an external Web service. When you have applications containing Web services

clients that timeout, you can change the request time out values for the clients.

a. Click Apply and OK.

Your Web service client bindings are configured.

Now you can finish any other configurations, start or restart the application, and verify the expected

behavior of the Web service.

Web services client bindings

The client bindings define the Web Service Description Language (WSDL) file name, preferred ports and

other port information. Use this page to specify the client bindings and the port mappings for the Web

services in a module.

A Web service can specify the relative path within the module of a compatible WSDL file containing the

actual URL to be used for requests. The relative path only needs to be specified if the original WSDL file

Chapter 12. Web services 371

does not contain a URL or when a different URL is needed. For a service endpoint with multiple ports

defined, a preferred mapping specifies the default port to use for a port type.

Web service

Identifies the name of this Web service. A module can contain one or more Web services.

EJB

Identifies the name of the EJB for the EJB modules.

WSDL file name

Specifies the WSDL file name, which is relative to the module. Locate the WSDL file name in the drop

down menu.

Preferred port mappings

Specifies and manages the preferred port type mapping for a Web service when a particular port type is

requested.

Click Edit to edit the preferred port mapping information on the Preferred port mappings panel.

Port information

Specifies additional configuration information for the ports of this Web service.

Click Edit to edit the port information on the Port information panel. You can set a request timeout,

override an endpoint and override a binding namespace for each client port.

Preferred port mappings

Use this page to view and manage a preferred portType mapping for a Web service.

When you have multiple ports that reference the same portType (service endpoint interface), a preferred

port specifies the port to use when the Service.getPort(Class SEI) method is called with only the service

endpoint interface.

To view this administrative console page, click Applications >Enterprise Application >

application_instance > Manage Modules > module_instance >Web services client bindings > Edit >

preferred_port_instance.

portType:

Specifies the portType.

 The preferred port and the portType values are both of the type java.xml.namespace.QName.

Preferred port:

Specifies the preferred port to be associated with a particular portType. The Service.getPort(Class)

method returns the preferred port associated with the specified service endpoint interface class (portType).

 The preferred ports available are listed, as well as a value of None, which indicates no preferred port is

selected.

Web services client port information

Use this page to specify a request timeout, override an endpoint, and override a binding namespace for a

Web services client port.

A Web service can have multiple ports. You can view and configure the port attributes for each defined

Web service port. The Web services are listed on the Web services client bindings panel.

372 Administering applications and their environment

To view this page, click Applications >Enterprise Applications > application_instance > Manage

Modules > module_instance >Web services client bindings > Edit.

For EJB modules, click Applications >Enterprise Applications > application_instance > Manage

Modules > module_instance >Web services client bindings > Edit.

Port:

Specifies the name of a port.

Request timeout:

Specifies the time, in seconds, that a Web service client waits for a request to complete on this port. If a

timeout is not specified, the default request timeout for the client to wait is 360 seconds. If the value is set

at 0 (zero), the client’s request does not timeout.

 A typical use for this setting is to customize the client’s behavior when it is configured to use a JMS

transport to access a Web service to make it wait longer for an expected completion. Depending upon

network conditions, or the nature of a Web service implementation, it might be necessary to tune the

timeout.

Overridden endpoint:

Specifies the name of an endpoint that is used to override the current endpoint. A client invoking a request

on this port uses this endpoint instead of the endpoint specified in the WSDL file.

 If an assembled application contains a Web service client that is statically bound, the client is locked into

using the implementation (service end point) identified in the WSDL file used during development.

Overriding the endpoint is an alternative to configuring the deployed WSDL attribute.

The overridden endpoint URI attribute is specified on a per port basis. It does not require an alternative

WSDL file within the module. The overridden endpoint URI takes precedence over the deployed WSDL

attribute. The client uses this value for the service end point URI or SOAP address, instead of the value in

the static client bindings.

Overridden binding:

Specifies the WSDL file binding namespace URI to use with this port, instead of the namespace in the

WSDL file. This binding does not need to exist in the WSDL file. A client invoking a request on this port

uses this binding instead of the binding specified in the WSDL file. An overridden binding namespace

cannot be specified unless an overridden endpoint is specified.

Getting started with the UDDI registry

This section covers the basic knowledge you need to get started either as an administrator of a UDDI

registry or as a user of a UDDI registry that has already been set up.

v Getting started for UDDI Administrators

v Getting started for UDDI users

Getting started for UDDI Administrators

Use this topic if you are involved in installing (setting up and deploying), customizing, or managing a UDDI

registry.

Chapter 12. Web services 373

This section contains a list of some of the topics that you will need to refer to as an administrator of a

UDDI registry:

v UDDI registry Terminology introduces some terms with which you will need to be familiar in order to

administer a UDDI registry

v Setting up and deploying a new UDDI registry explains how to install a UDDI registry node by setting

up the resources that it will use, and deploying the UDDI registry application.

v Migrating the UDDI registry explains how to use the scripts provided to migrate UDDI registries from the

previous version of WebSphere Application Server.

v Migrating to Version 3 of the UDDI registry explains how to migrate UDDI Version 2 registries to UDDI

Version 3, introduced in WebSphere Application Server Version 6.0, by creating a migration datasource.

v “Configuring UDDI registry security” on page 485 explains how to configure different levels of security

for the UDDI registry, and how other UDDI node settings can influence security.

v Managing the UDDI registry explains how to use the UDDI pages in the administrative console, or the

UDDI registry Administrative interface, to administer a UDDI registry node. It also covers how to back up

and restore your UDDI registry data.

v UDDI node settings explains how to view and set UDDI properties and policies, and how to manage

UDDI publishers, tiers and user entitlements.

v UDDI registry Management Interfaces covers details of programmatic interfaces that you can use to

administer a UDDI registry node (UDDI registry Administrative (JMX) Interface), to add custom Value

Set data to a UDDI registry (User Defined Value Set Support), and to export and import UDDI version 2

entities (UDDI Utility Tools).

v “Removing and reinstalling the UDDI registry” on page 481

UDDI registry troubleshooting might be useful if you encounter any problems or unexpected behavior while

using the UDDI registry, and Troubleshooter reference: Messages links to messages that you might see.

Getting started for UDDI users

Use this topic if you use a UDDI registry to publish or find UDDI entities either through a user interface or

by writing UDDI client applications.

This section contains a list of some of the topics that you might want to refer to as a user of a UDDI

registry:

v UDDI registry Terminology introduces some terms with which you might need to be familiar in order to

use a UDDI registry.

v Using the UDDI registry user interface explains how to access the UDDI User Console, which is a user

interface that allows you to find UDDI entities and carry out simple UDDI publish operations.

v UDDI registry SOAP Service End Points contains details for accessing the UDDI version 3 Inquiry,

Publish, Security, and custody transfer APIs, as well as the UDDI version 1 and version 2 APIs.

v UDDI registry Client Programming explains how to write UDDI client application programs. The

recommended client programming interface is the UDDI version 3 Client for Java.

v IBM JAXR Provider for the UDDI registry is for users who want to use the Java API for XML Registries

to access UDDI.

v User Defined Value Set Support in the UDDI registry explains how to add custom value set data to a

UDDI registry.

UDDI registry troubleshooting might be useful if you encounter any problems or unexpected behavior while

using the UDDI registry, and Troubleshooter reference: Messages links to messages that you might see.

374 Administering applications and their environment

Using the UDDI registry user interface

Configure the application server hosting the UDDI registry for UTF-8 encoding support, as described in

refer to Configuring application servers for UTF-8 encoding.

This topic describes the UDDI registry user interface (also referred to as the UDDI registry user console),

which you can use to explore the UDDI registry.

The user console provides a graphical user interface to the majority of the UDDI Version 3 API. It is not

intended to support the full API set. There is some focus on inquiry operations, as the main purpose of the

UDDI user console is to allow you to issue inquiry requests and to familiarize yourself with general UDDI

concepts. This section documents the areas for which support through the user console is not provided,

and other known restrictions to the user console.

v General

– Help is provided in the form of explanatory text on the screens.

– Maximum rows cannot be specified on finds. The single maximum rows value for the registry can be

set through the Maximum inquiry result set size general property on the administrative console.
v Find business

– The identifier feature is not supported.
v Find technical model (tModel)

– The identifier feature is not supported.
v Add business

– There is no support for adding Discovery URLs, Identifiers or Digital Signatures.
v Add technical model (tModel)

– There is no support for adding Identifiers or Digital Signatures.
v Business Relationships

– There is no support for Business Relationships

Use the related links below to find the appropriate topic for the task you want to perform using the UDDI

registry user interface.

Displaying the UDDI registry user interface

Use this task to perform actions on UDDI information through the UDDI user console. The exact behavior

of the user console depends on several configurable factors, such as:

v Whether WebSphere Application Server security is enabled.

v How the UDDI registry GUI role mappings are set. The UDDI registry supports a number of security

roles, including two for the user console: GUI_Publish_User and GUI_Inquiry_User.

v How the UDDI registry GUI SSL transport guarantee constraints are set. The UDDI registry allows SSL

settings to be configured and this includes two settings for the user console.

Chapter 12. Web services 375

The following table summarizes the behavior of the UDDI registry user console.

 Table 6.

WebSphere

Application Server

security status

URL used to access

the UDDI user

console

Behavior of the UDDI user console

Enabled http://
host_name:http_port/
uddigui

Inquiry requests do not require authentication; they use the HTTP

URL and are not secure. Publish requests do require WebSphere

Application Server authentication. When you access the publish pane

you will be dynamically redirected to use HTTPS, and will be

prompted for a user ID and password. For the request to be

successful , the authenticated user must be registered as a UDDI

publisher.

If the GUI_Inquiry_User role is mapped to all authenticated users, and

the transport guarantee in the user data constraint section for that role

is set to CONFIDENTIAL, all requests, including inquiry, require

authentication and use of HTTPS.

https://
host_name:ssl_port/
uddigui

Requests are secure; you are prompted to authenticate with a user ID

and password. For the request to be successful , the authenticated

user must be registered as a UDDI publisher.

Disabled http://
host_name:http_port/
uddigui

No requests, either publish or inquire, are authenticated and the data

flow is not secure (non SSL). Even though SSL transport-guarantee

settings are defined, they are not enforced if security is disabled. All

publish operations are performed using a user ID of

UNAUTHENTICATED or a value that can be configured using the

administrative console or the JMX management interface (this applies

to new requests only).

https://
host_name:ssl_port/
uddigui

No requests, either publish or inquire, are authenticated, but the data

flow is secure because the SSL URL and port are used explicitly. All

publish operations are performed using a user ID of

UNAUTHENTICATED or a value that can be configured using the

administrative console or the JMX management interface (this applies

to new requests only).

The variables in the table have the following values:

v host_name is the name of the machine that is running the relevant profile.

v http_port is the internal HTTP port for the profile, for example 9080.

v ssl_port is the internal SSL port for the profile, for example 9443.

1. Start the UDDI application, if it is not already running.

2. Open a browser window and ensure that cookies are enabled.

3. Access the UDDI registry user console using one of the following default URLs.

v http://host_name:http_port/uddigui

v https://host_name:ssl_port/uddigui

The user console displays the default frameset containing the following items:

v The header frame.

v The navigation frame showing find options.

v The details frame.

You can now use the UDDI user console to find, edit or publish UDDI information.

376 Administering applications and their environment

Finding an entity using the UDDI registry user interface

Make sure that the UDDI registry application is started, then display the UDDI registry user interface as

described in Displaying the user interface.

This topic describes how to use the UDDI registry user interface (also referred to as the UDDI registry

user console) to find services, businesses and technical models.

1. Activate the Find tab by clicking it, or by clicking the Find link at the top of the page or on the

Welcome page.

2. To perform a quick find, complete the following steps:

a. In the Quick Find section of the Find tab, select the kind of entity you want to find; service,

business or technical model.

b. In the Starting with field, enter name of the entity. Use the ’%’ wildcard character to search for a

partial name.

c. Click Find.

The results are displayed in the detail frame on the right.

3. To perform an advanced find, complete the following steps:

a. In the Advanced Find section of the Find tab, click the appropriate link for the kind of entity you

want to find; service, business or technical model. The advanced search form is displayed in the

frame to the right.

b. Enter your search criteria in the advanced search form, and select any find qualifiers you require.

You must enter at least one name to search for, using the Add Name link. You can use this link to

enter multiple names. You can also add multiple categorizations. To add a categorization, use the

Show category tree link in the Categorizations section to display, in the pane on the left, a tree

of categories (or taxonomies) defining the types of item to find according to various classification

systems. Expand the tree to find the category that you want, click the category to add the

information to the advanced search form, then use the Add Categorization link to include the

category in the search.

c. Click Find entities.

The results are displayed in the detail frame on the right.

Publishing an entity using the UDDI registry user interface

Make sure that the UDDI registry application is started, then display the UDDI registry user interface as

described in Displaying the user interface.

This topic describes how to use the UDDI registry user interface (also referred to as the UDDI registry

user console) to publish businesses and technical models. To publish a service, first publish a business

and then add a service to that business, as described in Editing or deleting an entity using the UDDI

registry user interface.

1. Activate the Publish tab by clicking it, or by clicking the Publish link at the top of the page or on the

Welcome page.

2. To publish an entity by name only, use the quick publish section as follows:

a. In the Quick Publish section of the Publish tab, select the kind of entity you want to publish;

business or technical model.

b. In the Name field, enter name of the entity.

c. Click Publish.

The details of the published entity are displayed in the frame on the right.

3. To publish an entity with more information, complete the following steps:

Chapter 12. Web services 377

a. In the Advanced Publish section of the Publish tab, click the appropriate link for the kind of entity

you want to publish; business or technical model. The advanced publish form is displayed in the

frame to the right.

b. Enter the details for the entity in the advanced publish form. You can enter multiple names,

descriptions, contacts or categorizations by using the relevant Add link. To add a categorization,

first use the Show category tree link in the Categorizations section to display, in the pane on the

left, a tree of categories (or taxonomies) defining the types of item to publish according to various

classification systems. Expand the tree to find the category that you want, click the category to add

the information to the advanced publish form, then click the Add Categorization link.

c. Click Publish entity to publish the business or technical model to the UDDI registry.

Editing or deleting an entity using the UDDI registry user interface

Make sure that the UDDI registry application is started, then display the UDDI registry user interface as

described in Displaying the user interface.

This topic describes how to use the UDDI registry user interface (also referred to as the UDDI registry

user console) to edit or delete the businesses and technical models that you own, including adding

services to businesses.

1. Activate the Publish tab by clicking it, or by clicking the Publish link at the top of the page or on the

Welcome page.

2. At the bottom of the Publish tab is the Registered Information section. Click Show owned entities

to show the businesses and technical models that you have registered in the UDDI registry.

3. Optional: To delete a business or technical model, click the Delete link in the Actions column for that

entity.

Note: When you delete a technical model, it is hidden rather than physically deleted, as specified by

the UDDI Version 3.0 specification. If you click the Shown owned entities link the technical

model will still appear, but you will not be able to find it using the Find function. All other entities

are deleted from the UDDI registry in the normal way.

4. Optional: To edit a business or technical model, click the Edit link in the Actions column for that

entity, fill in the required details and click Update entity to save the changes in the UDDI registry.

5. Optional: To add a service to a business, click the Add service link in the Actions column for the

business. Fill in the details and click Add Service to publish the service to the UDDI registry. The

service details are displayed.

Creating business relationships using the UDDI registry user interface

If your business has an association with another business in the UDDI registry, for example a preferred

supplier, you can describe this association in the UDDI registry by creating a business relationship.

1. The UDDI registry contains the following default relationship types:

Parent-child

A hierarchical relationship exists between the two business entities, which might represent, for

example, a large organization and a subsidiary.

Peer-peer

The two business entities represent peer organizations, for example a company and its

supplier.

Identity

The two business entities represent the same organization.

If you require a different relationship type, create a user-defined value set to represent the relationship

type that you require, as described in “User-defined value set support in the UDDI registry” on page

456.

378 Administering applications and their environment

2. Each business that is involved in the relationship must already exist in the UDDI registry.

3. Make sure that the UDDI registry application is started, then display the UDDI registry user interface as

described in Displaying the user interface.

Perform this task when you want to publicize an association between two businesses in the UDDI registry.

For example, your organization, represented by a business entity in the UDDI registry, might have several

departments, each one represented by a different business entity in the UDDI registry. You might want to

declare these departments as being linked to the parent organization, by creating parent-child relationships

between the appropriate business entities.

 1. Activate the Publish tab by clicking it, or by clicking the Publish link at the top of the page or on the

Welcome page.

 2. Under Registered Information, click Show owned entities. The entities that you own are displayed

in the detail frame on the right.

 3. In the section for the businesses that you own, find the business that you want to link from, and click

the Add relationship link for that business. The Add Business Relationship pane appears. The

business key for the business that you selected is already listed in the From section.

 4. Click Add to add the second business, the business that you want to link to. The advanced find pane

appears.

 5. Find the second business, as described in the advanced find step of “Finding an entity using the

UDDI registry user interface” on page 377.

 6. Click Select to add the second business to the relationship. If you want to change the positions of the

businesses, click Swap.

 7. Select the type of relationship from the Type list.

 8. If required, type a description in the Usage field.

 9. Click Add relationship to create the relationship. If you own both businesses, no further action is

required. The relationship appears as a publisher assertion in the list of entities that you own. The

status of the assertion is complete.

10. If you do not own the second business, the status of the assertion is pending. The owner of the

second business must create a relationship from their business to yours, for the relationship to be

complete and visible to other parties. The relationship type must match the type that you chose

earlier.

The business relationship is published to the UDDI registry. The UDDI user interface only shows publisher

assertions for entities that you own. To view other relationships, use the UDDI inquiry API provided.

For more information about publisher assertions, refer to the UDDI specification.

To remove an assertion that you own, display your owned entities and click the Delete link for the relevant

publisher assertion. If the business in the To field is owned by someone else, the status of the assertion

becomes pending, and the relationship is no longer visible to other parties.

Example: Publishing a business, service and technical model using

the UDDI registry user interface

This example describes how to use the UDDI registry user interface to publish a used car business called

Modern Cars to the UDDI registry, and how to publish a service and technical model for the business.

Before you begin, make sure that the UDDI registry application is started, then display the UDDI user

interface as described in Displaying the user interface.

Adding the Business

1. Click the Publish tab to activate the Publish pane.

2. Under Advanced Publish click Add a business. The advanced publish form is displayed on the right.

Chapter 12. Web services 379

3. Type ’Modern Cars’ in the Name field for the business. Select the language of the business name from

the drop down list, then click Add Name to add the name to the business.

4. Type a description for the business, such as ’Used cars for sale’ in the Description field. Select the

language of the description from the drop down list, then click Add Description to add the description

to the business. You can add multiple descriptions in a variety of languages as required.

5. In the Contact section, type your name as a contact for customers of the business. Select the

language as before, and click Add Contact. The business contact form is displayed. Fill in the details,

using the Add entity links to add the information as you reach the end of each subsection. Note that

all the text fields in the form are cleared when you click an Add entity link. Click Add Contact to save

the contact information into the Modern Cars business.

6. Use the Categorizations section to describe the Modern Cars business according to the NAICS 2002

categorization system:

a. Click Show category tree to display the various categorization systems.

b. Expand the NAICS 2002 tree, then in that tree expand Retail Trade [44] → Motor Vehicle and

Parts Dealers [441] → automobile Dealers [4411] → Used Car Dealers [44112]. Click the Used

Car Dealers [441120] category to add the category type, key name and key value to the advanced

publish form.

c. Click Add Categorization to add the information to the business.

d. Close the category tree by clicking the close link near the top of the tree.

7. Click Publish Business to publish the Modern Cars business to the UDDI registry. The details of the

business will be displayed.

Adding a service to the business

1. Click the Publish tab to activate the Publish pane.

2. Under Registered Information click Show owned entities to display the Modern Cars business, and

any other entities that are owned by you.

3. Click Add service in the Actions column of the Modern Cars business. The publish service page is

displayed.

4. Add a name and description for the service, in the same way as for the business itself.

5. Click Add a Service Binding to display the service binding form. Enter an access point (the URL for

the service on the network) and a description for the service binding. Click Add Technical Model

Instance Information to display a page where you can describe and publish a technical model

instance for the service binding. In the technical model information page, click Add Technical Model.

Search for the technical model which is used by the instance, select the technical model from the

results and click Add. Fill in the other fields on the form and click Add Technical Model Instance.

Click Add Binding to save the information into the service.

6. Add a categorization as you did for the business itself.

7. Click Add Service to publish the service to the UDDI registry.

Adding a technical model

1. In the Advanced Publish section on the left, click Add a technical model to display the publish

technical model form on the right.

2. Add a name and description for the technical model, in the same way as for the business and the

service.

3. Click Add an Overview Document to display the overview document form. The overview document

describes the technical model. Type the location of the overview document in the Overview URL field,

and click Add Overview Document URL. Add a description and click Add Overview Document to

save the information in the technical model.

4. Add a categorization in the same way as for the business.

5. Click Publish Technical Model to publish the technical model to the UDDI registry.

380 Administering applications and their environment

Planning to use Web services

This topic discusses how to plan your use of Web services that are developed and implemented based on

the Web Services for Java 2 Platform, Enterprise Edition (J2EE) specification.

Read the Web services scenario: Overview which tells the story of a fictional online garden supply retailer

named Plants by WebSphere and how this retailer incorporated the Web services concept. You can also

review the Samples Gallery for Web services samples. These Samples demonstrate Enterprise JavaBeans

(EJBs) and JavaBeans components that are available as Web services.

Web services reflect the service-oriented architecture approach to programming. This approach is based

on the idea of building applications by discovering and implementing network-available services, or by

invoking the available applications to accomplish a task. Web services deliver interoperability, for example,

Web services applications provide a way for components created in different programming languages to

work together as if they were created using the same language. Web services rely on existing transport

technologies, such as HTTP, and standard data encoding techniques, such as Extensible Markup

Language (XML), for invoking the implementation.

To plan to use Web services:

1. Identify your goals and design Web services to fit your e-business solution. Consider what you want to

accomplish by using Web services. Decide how Web services fit into your current topology,

applications and programming model. Determine how the Web services process requests on the server

and how the clients manage and use the Web service.

2. Design your Web services for reliability, availability, manageability and security. For example, you want

your Web services to process a transaction in a reasonable time at all hours of the day and provide

users with good security characteristics, such as authentication for buyers. Planning to use Web

services to work with WebSphere Application Server helps to meet these requirements.

3. Review the standards used in developing and deploying Web services into WebSphere Application

Server. Development and deployment are based on the J2EE and Java API for XML-based remote

procedure call (JAX-RPC) programming models. There are extensions to these standards that are also

important to review. See Extensions to the JAX-RPC and Web Services for J2EE programming models

for more information.

4. Decide what development and implementation tools to use. You can use a variety of manual

development and implementation tasks. Whether you have an existing Web service to implement or

you want to develop your own from a JavaBeans implementation or from an Enterprise JavaBeans

(EJB) module, you can choose different tasks respective to your resources. You can also use Rational

Application Developer (RAD) to complete development and implementation tasks.

See Developing Web services for information about developing Web services based on the J2EE

specification through the WebSphere Application Server administrative console and command-line

tools. To read more about RAD see the information center for the product.

5. Install WebSphere Application Server.

See Install WebSphere Application Server.

6. Review Web services Samples.

You have a design plan for implementing Web services applications into your business architecture.

Develop a Web service.

This topic explains how to develop a Web service using the Web Services for J2EE specification.

Chapter 12. Web services 381

Service-oriented architecture

A service-oriented architecture (SOA) is a collection of services that communicate with each other, for

example, passing data from one service to another or coordinating an activity between one or more

services.

Companies want to integrate existing systems to implement Information Technology (IT) support for

business processes that cover the entire business value chain. A variety of designs are used, ranging from

rigid point-to-point electronic data interchange (EDI) to Web auctions. By using the Internet, companies

can make their IT systems available to internal departments or external customers, but the interactions are

not flexible and are without standardized architecture.

Because of this increasing demand for technologies that support connecting and sharing resources and

data, a need exists for a flexible, standardized architecture. SOA is a flexible architecture that unifies

business processes by structuring large applications into building blocks, or small modular functional units

or services, for different groups of people to use inside and outside the company. The building blocks can

be one of three roles: service provider, service broker, or service requestor. See Web services approach to

a service-oriented architecture to learn more about these roles.

Requirements for an SOA

To efficiently use an SOA, follow these requirements:

v Interoperability between different systems and programming languages.

The most important basis for a simple integration between applications on different platforms is to

provide a communication protocol. This protocol is available for most systems and programming

languages.

v Clear and unambiguous description language.

To use a service offered by a provider, it is not only necessary to be able to access the provider system,

but the syntax of the service interface must also be clearly defined in a platform-independent fashion.

v Retrieval of the service.

To support a convenient integration at design time or even system run time, a search mechanism is

required to retrieve suitable services. Classify these services as computer-accessible, hierarchical or

taxonomies based on what the services in each category do and how they can be invoked.

Web services approach to a service-oriented architecture

This article describes how Web services are used in a service-oriented architecture (SOA).

You can use Web services to implement a SOA. A major focus of Web services is to make functional

building blocks accessible over standard Internet protocols that are independent from platforms and

programming languages. These services can be new applications or just wrapped around existing legacy

systems to make them network-enabled. A service can rely on another service to achieve its goals.

Each SOA building block can assume one or more of three roles:

v Service provider

The service provider creates a Web service and possibly publishes its interface and access information

to the service registry. Each provider must decide which services to expose, how to make trade-offs

between security and easy availability, how to price the services, or how to exploit free services for

other value. The provider also has to decide which category to list the service in for a given broker

service and what sort of trading partner agreements are required to use the service.

v Service broker

The service broker, also known as service registry, is responsible for making the Web service interface

and implementation access information available to any potential service requestor. The implementer of

the broker decides the scope of the broker. Public brokers are available through the Internet, while

382 Administering applications and their environment

private brokers are only accessible to a limited audience, for example, users of a company intranet.

Furthermore, some decisions need to be made about the amount of the offered information. Some

brokers specialize in many listings. Others offer high levels of trust in the listed services. Some cover a

broad landscape of services and others focus within an industry. Some brokers catalog other brokers.

Depending on the business model, brokers can attempt to maximize look-up requests, the number of

listings or the accuracy of the listings. The Universal Description, Discovery and Integration (UDDI)

specification defines a way to publish and discover information about Web services.

v Service requester

The service requestor or Web service client locates entries in the broker registry using various find

operations and then binds to the service provider to invoke one of its Web services.

Service

requester

Service

provider

Legacy

system

Service

broker

Client

Internet

12

3

.

Characteristics of the SOA

The presented SOA illustrates a loose coupling between the participants, which provides greater flexibility

in the following ways:

v A client is coupled to a service. Therefore, the integration of the server takes place outside the scope of

the client application programs.

v Old and new functional blocks or applications and systems, are encapsulated into components that work

as services.

v Functional components and their interfaces are separate so that new interfaces can be plugged in more

easily.

v Within complex applications, the control of business processes can be isolated. A business rule engine

can be incorporated to control the workflow of a defined business process. Depending on the state of

the workflow, the engine calls the respective services.

v Services can be incorporated dynamically during run time.

v Bindings are specified using configuration files and can be easily adapted to new needs.

Properties of a service-oriented architecture

The service-oriented architecture offers the following properties:

v Web services are self-contained

On the client side, no additional software is required. A programming language with Extensible Markup

Language (XML) and HTTP client support is enough to get you started. On the server side, a Web

server and a SOAP server are required. It is possible to enable an existing application for Web services

without writing a single line of code.

Chapter 12. Web services 383

v Web services are self-describing

Neither the client nor the server knows or cares about anything besides the format and content of the

request and response messages (loosely coupled application integration). The definition of the message

format travels with the message; no external metadata repositories or code generation tool are required.

v Web services can be published, located, and invoked across the Internet

This technology uses established lightweight Internet standards such as HTTP and it leverages the

existing infrastructure. Some other standards that are required include, SOAP, Web Services Description

Language (WSDL), and UDDI.

v Web services are language-independent and interoperable

The client and server can be implemented in different environments. Existing code does not have to

change in order to be Web services-enabled.

v Web services are inherently open and standard-based

XML and HTTP are the major technical foundation for Web services. A large part of the Web service

technology has been built using open-source projects.

v Web services are dynamic

Dynamic e-business can become reality using Web services because with UDDI and WSDL you can

automate the Web service description and discovery.

v Web services are composable

Simple Web services can be aggregated to more complex ones, either using workflow techniques or by

calling lower-layer Web services from a Web service implementation. Web services can be chained

together to perform higher-level business functions. This chaining shortens development time and

enables best-of-breed implementations.

v Web services are loosely coupled

Traditionally, application design has depended on tight interconnections at both ends. Web services

require a simpler level of coordination that supports a more flexible reconfiguration for an integration of

the services.

v Web services provide programmatic access

The approach provides no graphical user interface; it operates at the code level. Service consumers

need to know the interfaces to Web services, but do not need to know the implementation details of

services.

v Web services provide the ability to wrap existing applications

Already existing stand-alone applications can easily integrate into the SOA by implementing a Web

service as an interface.

Web services business models supported

The properties and benefits of using a service-oriented architecture (SOA) such as Web services is well

suited for binding small modules that perform independent tasks within a highly heterogeneous e-business

model. Web services can be easily wrapped around existing applications in your business model and

plugged into different business processes.

For connecting to a large monolithic system that does not support the implementation of different flexible

business processes, other approaches might be better suited, for example, to satisfy specialized features,

such as performance or security.

The following business models are easily implemented by using an architecture including Web services:

v Business information

Sharing of information with consumers or other businesses. Web services can be used to expand the

reach through such services as news streams, local weather reports, integrated travel planning, and

intelligent agents.

v Business integration

384 Administering applications and their environment

Providing transactional, fee-based services for customers. A global network of suppliers can be easily

created. Web services can be implemented in auctions, e-marketplaces, and reservation systems.

v Business process externalization

Web services can be used to model value chains by dynamically integrating processes to a new

solution within an organizational unit or even with those of other e-businesses. This modeling can be

achieved by dynamically linking internal applications to new partners and suppliers, to offer their

services to complement internal services.

To see how these models are implemented using all aspects of Web services, see Web services scenario:

Overview which tells the story of a fictional online garden supply retailer named Plants by WebSphere and

how this retailer incorporates the Web services concept.

Learning about the Web Services Invocation Framework (WSIF)

The Web Services Invocation Framework (WSIF) is a WSDL-oriented Java API. You use this API to invoke

Web services dynamically, regardless of the service implementation format (for example enterprise bean)

or the service access mechanism (for example Java Message Service (JMS)).

Using WSIF, you can move away from the usual Web services programming model of working directly with

the SOAP APIs, towards a model where you interact with representations of the services. You can

therefore work with the same programming model regardless of how the service is implemented and

accessed.

To learn about WSIF, see the following topics:

v “Goals of WSIF.”

1. “WSIF - Web services are more than just SOAP services” on page 386.

2. “WSIF - Tying client code to a particular protocol implementation is restricting” on page 386.

3. “WSIF - Incorporating new bindings into client code is hard” on page 386.

4. “WSIF - Multiple bindings can be used in flexible ways” on page 386.

5. “WSIF - Enabling a freer Web services environment promotes intermediaries” on page 387.

v “WSIF: Overview” on page 387.

1. “WSIF architecture” on page 387.

2. “WSIF and Web services that offer multiple bindings” on page 388.

3. “WSIF and WSDL” on page 388.

4. “WSIF usage scenarios” on page 389.

5. “Dynamic invocation” on page 390.

For more information about working with WSIF, visit the Web sites listed in Web services: Resources for

Learning.

 Related reference

 Web services: Resources for Learning
This topic provides relevant supplemental information about Web services-related topics.

Goals of WSIF

WSIF aims to extend the flexibility provided by SOAP services into a general model for invoking Web

services, irrespective of the underlying binding or access protocols.

SOAP bindings for Web services are part of the WSDL specification, therefore when most developers think

of using a Web service, they immediately think of assembling a SOAP message and sending it across the

network to the service endpoint, using a SOAP client API. For example: using Apache SOAP the client

Chapter 12. Web services 385

http://www.w3.org/TR/2000/NOTE-SOAP-20000508/
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/

creates and populates a Call object that encapsulates the service endpoint, the identification of the SOAP

operation to invoke, the parameters to send, and so on.

While this process works for SOAP, it is limited in its use as a general model for invoking Web services for

the following reasons:

v Web services are more than just SOAP services.

v Tying client code to a particular protocol implementation is restricting.

v Incorporating new bindings into client code is hard.

v Multiple bindings can be used in flexible ways.

v A freer Web services environment enables intermediaries.

The goals of the Web Services Invocation Framework (WSIF) are therefore:

v To give a binding-independent mechanism for Web service invocation.

v To free client code from the complexities of any particular protocol used to access a Web service.

v To enable dynamic selection between multiple bindings to a Web service.

v To help the development of Web service intermediaries.

WSIF - Web services are more than just SOAP services

You can deploy as a Web service any application that has a WSDL-based description of its functional

aspects and access protocols. If you are using the Java 2 platform, Enterprise Edition (J2EE) environment,

then the application is available over multiple transports and protocols.

For example, you can take a database-stored procedure, expose it as a stateless session bean, then

deploy it into a SOAP router as a SOAP service. At each stage, the fundamental service is the same. All

that changes is the access mechanism: from Java DataBase Connectivity (JDBC) to Remote Method

Invocation over Internet Inter-ORB Protocol (RMI-IIOP) and then to SOAP.

The WSDL specification defines a SOAP binding for Web services, but you can add binding extensions to

the WSDL so that, for example, you can offer an enterprise bean as a Web service using RMI-IIOP as the

access protocol. You can even treat a single Java class as a Web service, with in-thread Java method

invocations as the access protocol. With this broader definition of a Web service, you need a

binding-independent mechanism for service invocation.

WSIF - Tying client code to a particular protocol implementation is restricting

If your client code is tightly bound to a client library for a particular protocol implementation, it can become

hard to maintain.

For example, if you move from Apache SOAP to Java Message Service (JMS) or enterprise bean, the

process can take a lot of time and effort. To avoid these problems, you need a protocol

implementation-independent mechanism for service invocation.

WSIF - Incorporating new bindings into client code is hard

If you want to make an application that uses a custom protocol work as a Web service, you can add

extensibility elements to WSDL to define the new bindings. But in practice, achieving this capability is

hard.

For example you have to design the client APIs to use this protocol. If your application uses just the

abstract interface of the Web service, you have to write tools to generate the stubs that enable an

abstraction layer. These tasks can take a lot of time and effort. What you need is a service invocation

mechanism that allows you to update existing bindings, and to add new bindings.

WSIF - Multiple bindings can be used in flexible ways

To take advantage of Web services that offer multiple bindings, you need a service invocation mechanism

that can switch between the available service bindings at run time, without having to generate or recompile

a stub.

386 Administering applications and their environment

http://www.w3.org/TR/2000/NOTE-SOAP-20000508/
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/

Imagine that you have successfully deployed an application that uses a Web service which offers multiple

bindings. For example, imagine that you have a SOAP binding for the service and a local Java binding

that lets you treat the local service implementation (a Java class) as a Web service.

The local Java binding for the service can only be used if the client is deployed in the same environment

as the service. In this case, it is more efficient to communicate with the service by making direct Java calls

than by using the SOAP binding.

If your clients could switch the actual binding used based on run-time information, they could choose the

most efficient available binding for each situation.

WSIF - Enabling a freer Web services environment promotes intermediaries

Web services offer application integrators a loosely-coupled paradigm. In such environments,

intermediaries can be very powerful.

Intermediaries are applications that intercept the messages that flow between a service requester and a

target Web service, and perform some mediating task (for example logging, high-availability or

transformation) before passing on the message. The Web Services Invocation Framework (WSIF) is

designed to make building intermediaries both possible and simple. Using WSIF, intermediaries can add

value to the service invocation without needing transport-specific programming.

WSIF: Overview

The Web Services Invocation Framework (WSIF) provides a Java API for invoking Web services,

independent of the format of the service or the transport protocol through which it is invoked.

This framework addresses all of the issues identified in “Goals of WSIF” on page 385.

WSIF provides the following features:

v An API that provides binding-independent access to any Web service.

v A close relationship with WSDL, so it can invoke any service that you can describe in WSDL.

v A stubless and completely dynamic invocation of a Web service.

v The capability to plug a new or updated implementation of a binding into WSIF at run time.

v The option to defer the choice of a binding until run time.

WSIF is designed to work both in an unmanaged environment (stand-alone) and inside a managed

container. You can use the Java Naming and Directory Interface (JNDI) to find the WSIF service, or you

can use the location described in the WSDL.

For more conceptual information about WSIF and WSDL, see the following topics:

v WSIF and WSDL

v WSIF architecture

v WSIF and Web services that offer multiple bindings

v WSIF usage scenarios

v Dynamic invocation

WSIF supports Internet Protocol Version 6, and Java API for XML-based Remote Procedure Calls

(JAX-RPC) Version 1.1 for SOAP.

WSIF architecture

A diagram depicting the Web Services Invocation Framework (WSIF) architecture, and a description of

each of the major components of the architecture.

Chapter 12. Web services 387

http://www.w3.org/TR/2000/NOTE-SOAP-20000508/

The Web Services Invocation Framework (WSIF) architecture is shown in the figure.

WSDL

document

WSIF

operation

WSIF

service

1. Load WSDL
document

2. Create WSIF
service

3. Use WSIF
service to get

operation

4. Create message 5. Invoke service
with operation name

and message

Service

WSIF
provider

WSDL
describes

service
interface

WSIF

service

factory

 The components of this architecture include:

WSDL document

The Web service WSDL document contains the location of the Web service. The binding

document defines the protocol and format for operations and messages defined by a particular

portType.

WSIF service

The WSIFService interface is responsible for generating an instance of the WSIFOperation

interface to use for a particular invocation of a service operation. For more information, see

Finding a port factory or service

WSIF operation

The run-time representation of an operation, called WSIFOperation is responsible for invoking a

service based on a particular binding. For more information, see WSIF API reference: Using ports.

WSIF provider

A WSIF provider is an implementation of a WSDL binding that can run a WSDL operation through

a binding-specific protocol. WSIF includes SOAP providers, JMS providers, Java providers and

EJB providers. For more information, see Linking a WSIF service to the underlying implementation

of the service.

WSIF and Web services that offer multiple bindings

Using WSIF, a client application can choose dynamically the optimal binding to use for invoking Web

service operations.

For example, a Web service might offer a SOAP binding, and also a local Java binding so that you can

treat the local service implementation (a Java class) as a Web service. If a client application is deployed in

the same environment as the service, then this client can use the local Java binding for the service. This

provides more efficient communication between the client and the service by making direct Java calls

rather than indirect calls using the SOAP binding.

For more information about how to configure a client to dynamically select between multiple bindings, see

Developing a WSIF service.

WSIF and WSDL

There is a close relationship between the metadata-based Web Services Invocation Framework (WSIF)

and the evolving semantics of Web Services Description Language (WSDL).

In WSDL, a service is defined in three distinct sections:

v The portType. This section defines the abstract interface offered by the service. A portType defines a

set of operations. Each operation can be In-Out (request-response), In-Only, Out-Only and Out-In

(Solicit-Response). Each operation defines the input and/or output messages. A message is defined as

a set of parts, and each part has a schema-defined type.

388 Administering applications and their environment

http://www.w3.org/TR/2000/NOTE-SOAP-20000508/
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/
http://www.w3.org/TR/wsdl

v The binding. This section defines how to map between the abstract portType and a real service format

and protocol. For example the SOAP binding defines the encoding style, the SOAPAction header, the

namespace of the body (the targetURI), and so on.

v The port. This section defines the actual location (endpoint) of the available service. For example, the

HTTP Web address at which a SOAP service is available.

Currently in WSDL, each port has one and only one binding, and each binding has a single portType. But

(more importantly) each service (portType) can have multiple ports, each of which represents an

alternative location and binding for accessing that service.

The Web Services Invocation Framework (WSIF) follows the semantics of WSDL as much as possible:

v The WSIF dynamic invocation API directly exposes run-time equivalents of the model from WSDL. For

example, invocation of an operation involves executing an operation with an input message.

v WSDL has extension points that support the addition of new ports and bindings. This enables WSDL to

describe new systems. The equivalent concept in WSIF is a provider, that enables WSIF to understand

a class of extensions and thereby to support a new service implementation type.

As a metadata-based invocation framework, WSIF follows the design of the metadata. As WSDL is

extended, WSIF is updated to follow.

The implicit and primary type system of WSIF is XML schema. WSIF supports invocation using dynamic

proxies, which in turn support Java type systems, but when you use the WSIFMessage interface it is your

responsibility to populate WSIFMessage objects with data based on the XML schema types as defined in

the WSDL document. You should define your object types by a canonical and fixed mapping from schema

types into the run-time environment.

For more information about WSDL, see Web services: Resources for learning.

WSIF usage scenarios

This topic describes two brief scenarios that illustrate the role WSIF plays in the emerging Web services

environment.

Scenario: Redevelopment and redeployment

When you first implement a Web service, you create a simple prototype. When you want to move a

prototype Web service into production, you often need to redevelop and redeploy it.

The Web Services Invocation Framework (WSIF) uses the same API calls irrespective of the underlying

technologies, therefore if you use WSIF:

v You can reimplement and redeploy your services without changing the client code.

v You can use existing reliable and high-performance infrastructures like Remote Method Invocation over

Internet Inter-ORB Protocol (RMI-IIOP) and Java Message Service (JMS) without sacrificing the

location-independence that the Web service model offers.

Scenario: Service Flow composition

A service flow typically invokes a Web service, then passes the response from one Web service to the

next Web service, perhaps performing some transformation in the middle.

There are two key aspects to this flow that WSIF provides:

v A representation of the service invocation based on the metadata in WSDL.

v The ability to build invocations based solely on the portType, which can therefore be used in any

implementation.

Chapter 12. Web services 389

http://www.w3.org/TR/2000/NOTE-SOAP-20000508/

For example, imagine that you build a meta-service that uses a number of services to build a process.

Initially, several of those services are simple Java bean prototypes that are written and exposed through

SOAP, but you plan to reimplement some of them as EJB components, and to out-source others.

If you use SOAP, it ties up multiple threads for every onward invocation, because they pass through the

Web server and servlet engine and on to the SOAP router. If you use WSIF to call the beans directly, you

get much better performance compared to SOAP and you do not lose access or location transparency.

Using WSIF, you can replace the Java bean implementations with EJB implementations without changing

the client code. To move some of the Web services from local implementations to external SOAP services,

you just update the WSDL.

Dynamic invocation

The Web Services Invocation Framework (WSIF) can provide runtime support for Web services, and for

WSDL extensions and bindings, that were not known at build time.

WSIF supports WSDL extensions and bindings that were not known at build time through the use of

providers. The providers support Web services that were not known at build time by using the WSDL

description to access the target service.

Setting up and deploying a new UDDI registry

Start WebSphere Application Server, and create a server to host the UDDI registry. Use Chapter 3,

“Starting and stopping quick reference,” on page 11 for information about starting WebSphere Application

Server using either commands or the administrative console.

A UDDI registry node consists of the UDDI registry application (a J2EE application that is supplied as part

of WebSphere Application Server), a store of data (using a relational database management system)

referred to as the UDDI database, and a means to connect the application to the data (a datasource and

related elements). The ’Setting up’ sub-topics describe how to create the database (which can be local or

remote) and datasource, and how to deploy the UDDI registry application.

You can create either a default UDDI node or a customized UDDI node. The main difference between

default and customized, in the context of these set up tasks, refers to a number of mandatory UDDI

registry properties such as the UDDI node ID and description, and the prefix to be used for generated

discovery URLs.

Default UDDI node

The mandatory properties are automatically set to default values and cannot be changed. A default

UDDI node is a suitable option for initial evaluation of the UDDI registry, and for development and

test purposes.

Customized UDDI node

You must set the mandatory properties, but once set they cannot be changed for this

configuration. With a customized UDDI node you have more control over the database

management system used for the UDDI database, and the properties used to set up the UDDI

database. With a customized UDDI node, you create the UDDI database and datasource to your

own specifications before deploying the UDDI registry application. A customized node is a suitable

option for production purposes. To move from a default UDDI node to a customized node, see

“Changing the UDDI registry application environment after deployment” on page 419.

Proceed to one of the following topics:

v “Setting up a default UDDI node with a default datasource” on page 391. Use this topic if you want to

quickly set up a UDDI registry for test or development purposes. The database, datasource and UDDI

registry application are created or deployed by a single script. Note that the database type is embedded

Cloudscape.

390 Administering applications and their environment

http://www.w3.org/TR/2000/NOTE-SOAP-20000508/

v “Setting up a default UDDI node” on page 392. Use this topic if you want to create a default UDDI

registry with a database other than embedded Cloudscape, or if you want an embedded Cloudscape

database but you want to create the datasource manually.

v “Setting up a customized UDDI node” on page 405

Database considerations for production use of the UDDI registry

The UDDI registry fully supports a number of databases (see An overview of the Version 3 UDDI registry

for details) and can be used for development and test purposes, however you should be aware of the

following factors when considering which database is appropriate for your anticipated UDDI registry

production use.

It is important to consult the information supplied by your chosen database vendor for advice, but

additionally you need to consider the likely size and volume of requests, and whether the general

performance and scalability of the UDDI registry is important to you.

For example, while Cloudscape supports the full function of the UDDI registry, it is not an enterprise level

database and consequently it does not have the same characteristics (for example, scaling or

performance) as enterprise databases such as DB2.

If you need multiple connections to the UDDI registry database (for example if you are using the UDDI

registry in a cluster configuration) and Cloudscape is your preferred database, you will need to use the

network Cloudscape option as embedded Cloudscape has a limitation of allowing only one Java virtual

machine to access or load a database instance at any one time (in other words two application servers

cannot access the same Cloudscape database instance at the same time).

Note: The UDDI registry can support multiple users even if there is a single database connection.

More information on Cloudscape is available in this information center.

Setting up a default UDDI node with a default datasource

Use this task to create a UDDI node with predetermined property values and an embedded Cloudscape

database. You will not be able to change the mandatory node properties, such as node ID, either during

the creation of the node or afterwards. Such a node is suitable for initial evaluation of the UDDI registry

and for development and test purposes. If you want to choose the mandatory node properties yourself, set

up a customized node as detailed in “Setting up a customized UDDI node” on page 405.

The UDDI database and datasource are automatically created by running a single script, which also

deploys the UDDI registry application. If you want to have more control over the datasource, refer to

“Setting up a default UDDI node” on page 392.

1. Create the UDDI node by running the wsadmin script uddiDeploy.jacl from the app_server_root/bin

directory. The syntax of the command is shown below.

Note: If you are using either the UNIX or Linux operating systems, add the .sh suffix to the wsadmin

command.

wsadmin [-conntype none] [-profileName profile_name] -wsadmin_classpath app_server_root/derby/lib

 -f uddiDeploy.jacl

 node_name

 server_name

 default

where

v ’-profileName profile_name’ is optional, and is the name of the profile in which the UDDI application

is deployed. If you do not specify a profile, the default profile will be used.

v ’-conntype none’ is optional, and is only needed if the application server is not running.

Chapter 12. Web services 391

v app_server_root is the directory name of the WebSphere Application Server installation location.

v node_name is the name of the WebSphere node on which the target server runs. Note that the

node name is case sensitive.

v server_name is the name of the target server on which you wish to deploy the UDDI registry, such

as server1. Note the server name entered is case sensitive.

v ’default’ causes the command to create a UDDI node, with default policies, within a Cloudscape

database and datasource. This is a special case only for Cloudscape and creates everything

required to run a UDDI node.

If the Cloudscape database already exists, you will be asked if you want to recreate it. If you choose

to recreate the database, your existing database will be deleted and a new one created in its place.

If you choose not to recreate the database, the command will exit and a new database will not be

created.

Note: If the application server already accessed the existing Cloudscape database, the

uddiDeploy.jacl script cannot recreate the database. Use the uddiRemove.jacl script to

remove the database, as described in “Removing a UDDI registry node” on page 481, restart

the server and run the uddiDeploy.jacl script again.

For example, to create a UDDI node called ’MyNode’ on server ’server1’ on a Windows system, you

might enter the following (this assumes server1 is started):

wsadmin -wsadmin_classpath C:\Progra~1\IBM\WebSphere\AppServer\derby\lib -f uddiDeploy.jacl

MyNode server1 default

If the server is not started the command is:

wsadmin -conntype none -wsadmin_classpath C:\Progra~1\IBM\WebSphere\AppServer\derby\lib -f

uddiDeploy.jacl MyNode server1 default

(Note that these should be entered as one command on a single line)

2.

Linux

If you are using DB2, stop the server if it is running. Edit the user profile for the DB2 user

that will start the server. Modify the user profile to run the db2profile script which is located in the root

directory of the DB2 userid (for example /home/db2inst1/sqllib/db2profile). Alternatively you can run the

db2profile script manually by entering the following command, however you will need to do this every

time you restart the server :

. /home/db2inst1/sqllib/db2profile

Note: In the above example, notice that the ’.’ is followed by a single space character.

3. Click Applications → Enterprise Applications to display the installed applications. Start the UDDI

registry application by selecting the check box next to it and clicking Start. Alternatively start the

application server if it is not already running; this will automatically start the UDDI registry application.

The UDDI node is now active.

Note: Restarting the UDDI application, or the application server, will always result in the reactivation of

the UDDI node, even if the node was previously deactivated.

4. Click UDDI → UDDI Nodes > UDDI_node_id to display the properties page for the UDDI registry node.

Set Prefix for generated discoveryURLs to a valid URL for your configuration. This property specifies

the URL prefix that is applied to generated discovery URLs that are used by the HTTP GET service for

UDDI version 2.

Follow the instructions in “Using the UDDI registry Installation Verification Program (IVP)” on page 419 to

verify that you have successfully set up the UDDI node.

Setting up a default UDDI node

Use this task to create a UDDI node with predetermined property values. You will not be able to change

the mandatory node properties, such as node ID, either during the creation of the node or afterwards.

392 Administering applications and their environment

Such a node is suitable for initial evaluation of the UDDI registry and for development and test purposes. If

you want to choose the mandatory node properties yourself, set up a customized node as detailed in

“Setting up a customized UDDI node” on page 405.

1. Create a database schema to hold the UDDI registry by completing one of the following tasks,

ensuring that you use the default node options where specified:

v “Creating a DB2 distributed database for the UDDI registry”

v “Creating a DB2 for z/OS database for the UDDI registry” on page 396

v “Creating a Cloudscape database for the UDDI registry” on page 399

v “Creating an Oracle database for the UDDI registry” on page 400

2. Set up a datasource for the UDDI registry application to use to access the database, as described in

“Creating a data source for the UDDI registry” on page 401.

3. Deploy the UDDI registry application, as described in “Deploying the UDDI registry application” on

page 404.

4.

Linux

If you are using DB2, stop the server if it is running. Edit the user profile for the DB2 user

that will start the server. Modify the user profile to run the db2profile script which is located in the root

directory of the DB2 userid (for example /home/db2inst1/sqllib/db2profile). Alternatively you can run the

db2profile script manually by entering the following command, however you will need to do this every

time you restart the server :

. /home/db2inst1/sqllib/db2profile

Note: In the above example, notice that the ’.’ is followed by a single space character.

5. Click Applications → Enterprise Applications to display the installed applications. Start the UDDI

registry application by selecting the check box next to it and clicking Start. Alternatively start the

application server if it is not already running; this will automatically start the UDDI registry application.

The UDDI node is now active.

Note: Restarting the UDDI application, or the application server, will always result in the reactivation of

the UDDI node, even if the node was previously deactivated.

6. Click UDDI → UDDI Nodes > UDDI_node_id to display the properties page for the UDDI registry node.

Set Prefix for generated discoveryURLs to a valid URL for your configuration. This property specifies

the URL prefix that is applied to generated discovery URLs that are used by the HTTP GET service for

UDDI version 2.

As you have chosen to use a default UDDI node, the node will be initialized when the UDDI application is

started for the first time. Follow the instructions in “Using the UDDI registry Installation Verification Program

(IVP)” on page 419 to verify that you have successfully set up the UDDI node.

Creating a DB2 distributed database for the UDDI registry

Perform this task if you want to use DB2 on the Windows, Linux or UNIX operating systems, as the

database store for your UDDI registry data.

The steps below use a number of variables for which you need to enter appropriate values. You should

decide the values that you will use before you start. The variables used, and suggested values are:

<DataBaseName>

is the name of the UDDI registry database. A recommended value is UDDI30, and this name is

assumed throughout the UDDI documentation. If you use some other name, then you should

substitute that name whenever you see ’UDDI30’ in other sections of the documentation.

<DB2UserID>

is a DB2 userid with administrative privileges.

<DB2Password>

is the password for the DB2 userid.

Chapter 12. Web services 393

<BufferPoolName>

is the name of a buffer pool to be used by the UDDI registry database. A suggested name is

uddibp, but any name can be used, as the buffer pool is created as part of this task.

<TableSpaceName>

is the name of a table space. A suggested value is uddits, but any name can be used.

<TempTableSpaceName>

is the name of a temporary table space. A suggested value is udditstemp, but any name can be

used, as the temporary table space is created as part of this task.

You only need to perform this task once for each UDDI registry, as part of setting up and deploying a

UDDI registry.

If you are creating a remote database, use the database product documentation to familiarize yourself with

the relevant capabilities of the product before proceeding with this task.

1. Change directory to app_server_root/UDDIReg/databaseScripts.

2. Start the DB2 Command Line Processor by entering db2 at the command prompt (for Windows

platforms, enter db2cmd and then enter db2 in the new DB2 window).

3. Run the following command to setup the DB2 environment variables:

set DB2CODEPAGE=1208

4. Create the DB2 database by entering the following command:

create database <DataBaseName> using codeset UTF-8 territory en

where <DataBaseName> is the name of the database being created.

5. Configure the DB2 database by entering the following commands:

a. connect to <DataBaseName> user <DB2UserID> using <DB2Password>

b. update db cfg for <DataBaseName> using applheapsz 2048

c. update db cfg for <DataBaseName> using logfilsiz 8192

d. connect reset

e. terminate

6. Create additional database structures by entering the following commands:

a. connect to <DataBaseName> user <DB2UserID> using <DB2Password>

b. create bufferpool <BufferPoolName> size 250 pagesize 32K

c. connect reset

d. terminate

e. force application all

f. terminate

g. stop

h. start

7. Create further database structures by entering the following commands:

a. connect to <DataBaseName> user <DB2UserID> using <DB2Password>

b. create regular tablespace uddits pagesize 32K managed by system using

(’<TableSpaceName>’) extentsize 64 prefetchsize 32 bufferpool <BufferPoolName>

c. create system temporary tablespace <TempTableSpacename> pagesize 32K managed by system

using (’<TempTableSpacename>’) extentsize 32 overhead 14.06 prefetchsize 32 transferrate

0.33 bufferpool <BufferPoolName>

8. Exit the DB2 Command Line Processor and enter the following commands exactly as shown, noting

that one step uses -vf rather than -tvf (on Windows platforms, run the commands from the db2cmd

window). These commands define the database structures needed to store the UDDI data:

394 Administering applications and their environment

a. db2 -tvf uddi30crt_10_prereq_db2.sql

b. db2 -tvf uddi30crt_20_tables_generic.sql

c. db2 -tvf uddi30crt_25_tables_db2udb.sql

d. db2 -tvf uddi30crt_30_constraints_generic.sql

e. db2 -tvf uddi30crt_35_constraints_db2udb.sql

f. db2 -tvf uddi30crt_40_views_generic.sql

g. db2 -tvf uddi30crt_45_views_db2udb.sql

h. db2 -vf uddi30crt_50_triggers_db2udb.sql

i. db2 -tvf uddi30crt_60_insert_initial_static_data.sql

9. Run this step only if you want your database to be used as a default UDDI node. Enter the following

command:

db2 -tvf uddi30crt_70_insert_default_database_indicator.sql

Continue with setting up and deploying your UDDI registry node.

Creating a DB2 distributed database for the UDDI registry

Perform this task if you want to use DB2 on the Windows, Linux or UNIX operating systems, as the

database store for your UDDI registry data.

The steps below use a number of variables for which you need to enter appropriate values. You should

decide the values that you will use before you start. The variables used, and suggested values are:

<DataBaseName>

is the name of the UDDI registry database. A recommended value is UDDI30, and this name is

assumed throughout the UDDI documentation. If you use some other name, then you should

substitute that name whenever you see ’UDDI30’ in other sections of the documentation.

<DB2UserID>

is a DB2 userid with administrative privileges.

<DB2Password>

is the password for the DB2 userid.

<BufferPoolName>

is the name of a buffer pool to be used by the UDDI registry database. A suggested name is

uddibp, but any name can be used, as the buffer pool is created as part of this task.

<TableSpaceName>

is the name of a table space. A suggested value is uddits, but any name can be used.

<TempTableSpaceName>

is the name of a temporary table space. A suggested value is udditstemp, but any name can be

used, as the temporary table space is created as part of this task.

You only need to perform this task once for each UDDI registry, as part of setting up and deploying a

UDDI registry.

If you are creating a remote database, use the database product documentation to familiarize yourself with

the relevant capabilities of the product before proceeding with this task.

1. Change directory to app_server_root/UDDIReg/databaseScripts.

2. Start the DB2 Command Line Processor by entering db2 at the command prompt (for Windows

platforms, enter db2cmd and then enter db2 in the new DB2 window).

3. Run the following command to setup the DB2 environment variables:

set DB2CODEPAGE=1208

4. Create the DB2 database by entering the following command:

Chapter 12. Web services 395

create database <DataBaseName> using codeset UTF-8 territory en

where <DataBaseName> is the name of the database being created.

5. Configure the DB2 database by entering the following commands:

a. connect to <DataBaseName> user <DB2UserID> using <DB2Password>

b. update db cfg for <DataBaseName> using applheapsz 2048

c. update db cfg for <DataBaseName> using logfilsiz 8192

d. connect reset

e. terminate

6. Create additional database structures by entering the following commands:

a. connect to <DataBaseName> user <DB2UserID> using <DB2Password>

b. create bufferpool <BufferPoolName> size 250 pagesize 32K

c. connect reset

d. terminate

e. force application all

f. terminate

g. stop

h. start

7. Create further database structures by entering the following commands:

a. connect to <DataBaseName> user <DB2UserID> using <DB2Password>

b. create regular tablespace uddits pagesize 32K managed by system using

(’<TableSpaceName>’) extentsize 64 prefetchsize 32 bufferpool <BufferPoolName>

c. create system temporary tablespace <TempTableSpacename> pagesize 32K managed by system

using (’<TempTableSpacename>’) extentsize 32 overhead 14.06 prefetchsize 32 transferrate

0.33 bufferpool <BufferPoolName>

8. Exit the DB2 Command Line Processor and enter the following commands exactly as shown, noting

that one step uses -vf rather than -tvf (on Windows platforms, run the commands from the db2cmd

window). These commands define the database structures needed to store the UDDI data:

a. db2 -tvf uddi30crt_10_prereq_db2.sql

b. db2 -tvf uddi30crt_20_tables_generic.sql

c. db2 -tvf uddi30crt_25_tables_db2udb.sql

d. db2 -tvf uddi30crt_30_constraints_generic.sql

e. db2 -tvf uddi30crt_35_constraints_db2udb.sql

f. db2 -tvf uddi30crt_40_views_generic.sql

g. db2 -tvf uddi30crt_45_views_db2udb.sql

h. db2 -vf uddi30crt_50_triggers_db2udb.sql

i. db2 -tvf uddi30crt_60_insert_initial_static_data.sql

9. Run this step only if you want your database to be used as a default UDDI node. Enter the following

command:

db2 -tvf uddi30crt_70_insert_default_database_indicator.sql

Continue with setting up and deploying your UDDI registry node.

Creating a DB2 for z/OS database for the UDDI registry

Perform this task if you want to use DB2 for z/OS as the database store for your UDDI registry data.

396 Administering applications and their environment

In order to connect from a machine running a distributed operating system to a remote DB2 database on

the z/OS operating system, you must have DB2 Version 8.2 or later. You must also have a DB2 Connect

license (see the DB2 documentation for more information).

You only need to perform this task once for each UDDI registry, as part of setting up and deploying a

UDDI registry.

If you are creating a remote database, use the database product documentation to familiarize yourself with

the relevant capabilities of the product before proceeding with this task.

1. Copy the createddl.sh script supplied in app_server_root/UDDIReg/rexx, to a temporary directory of

your choice.

2. Using the UNIX System Services (USS) command prompt, edit the copy of the createddl.sh script, as

follows:

a. Search for the text ’Define some constants’.

b. If you have installed WebSphere Application Server in a non default location, update the root_dir

constant to reflect this (note that the UDDIReg directory must remain at the end of the path).

c. Update the temp_dir constant to a temporary directory of your choice, if you do not want to accept

the default.

3. Using the USS command prompt, run the copy of the createddl.sh script by entering the following

command:

createddl.sh database_name tablespace_name hlq

where the parameters are as follows:

database_name

This is the name which will be used when defining the required DB2 tables and other

components. The default is UDDI30.

tablespace_name

This is the tablespace in which the database’s tables will be defined. The default is UDDI30TS.

hlq This is the high level qualifier under which the SQL and JCL partitioned datasets (PDS) will be

created. The default is IBMUSER.

The script generates the partitioned data sets hlq.UDDI.SQL and hlq.UDDI.JCL, containing members

that are required for subsequent steps.Using the default parameters listed above, a successful

execution of the script results in the following output:

database.tablespace = UDDI30.UDDI30TS

 HLQ = IBMUSER

 (14) /WebSphere/V6R0M0/AppServer/UDDIReg/databaseScripts/uddi30crt_10_prereq_db2.sql

 (436) /WebSphere/V6R0M0/AppServer/UDDIReg/databaseScripts/uddi30crt_20_tables_generic.sql

 (136) /WebSphere/V6R0M0/AppServer/UDDIReg/databaseScripts/uddi30crt_25_tables_db2udb.sql

 (452) /WebSphere/V6R0M0/AppServer/UDDIReg/databaseScripts/uddi30crt_30_constraints_generic.sql

 (14) /WebSphere/V6R0M0/AppServer/UDDIReg/databaseScripts/uddi30crt_35_constraints_db2udb.sql

 (559) /WebSphere/V6R0M0/AppServer/UDDIReg/databaseScripts/uddi30crt_40_views_generic.sql

 (94) /WebSphere/V6R0M0/AppServer/UDDIReg/databaseScripts/uddi30crt_45_views_db2udb.sql

 (329) /WebSphere/V6R0M0/AppServer/UDDIReg/databaseScripts/uddi30crt_50_triggers_db2udb.sql

 (16) /WebSphere/V6R0M0/AppServer/UDDIReg/databaseScripts/uddi30crt_60_insert_initial_static_

 data.sql

 (39) /WebSphere/V6R0M0/AppServer/UDDIReg/databaseScripts/uddi30crt_70_insert_default_database_

 indicator.sql

 Conversion complete

 /tmp/udditmp/makedb71.jcl ===> IBMUSER.UDDI.JCL(MAKEDB71)

 /tmp/udditmp/makedb81.jcl ===> IBMUSER.UDDI.JCL(MAKEDB81)

 /tmp/udditmp/table.sql ===> IBMUSER.UDDI.SQL(TABLE)

 /tmp/udditmp/table7.sql ===> IBMUSER.UDDI.SQL(TABLE7)

 /tmp/udditmp/index.sql ===> IBMUSER.UDDI.SQL(INDEX)

 /tmp/udditmp/view.sql ===> IBMUSER.UDDI.SQL(VIEW)

 /tmp/udditmp/trigger.sql ===> IBMUSER.UDDI.SQL(TRIGGER)

Chapter 12. Web services 397

/tmp/udditmp/alter.sql ===> IBMUSER.UDDI.SQL(ALTER)

 /tmp/udditmp/initial.sql ===> IBMUSER.UDDI.SQL(INITIAL)

 /tmp/udditmp/insert.sql ===> IBMUSER.UDDI.SQL(INSERT)

4. There are two sample jobs in the JCL library for creating the DB2 database, one for DB2 version 7 and

one for DB2 version 8. The JCL for these jobs can be found in members MAKEDB71 and MAKEDB81

respectively, in the hlq.UDDI.JCL PDS. These JCL scripts are templates; modify the template in the

appropriate MAKEDB member according to your DB2 setup and whether you want a default or a

customized UDDI node:

v Add or modify the JOB accounting information, if required.

v If you used a different high level qualifier from the default when running the script in step one,

ensure that all occurrences of IBMUSER are changed to the qualifier that you specified.

v If you do not want your database to be used as a default UDDI node, comment out the line of the

job which specifies the INSERT member of the SQL PDS; this should be the last line in the job.

v Ensure that all occurrences of the LIB parameter correctly reflect the directory into which you

installed DB2.

5. Use TSO to submit the job that you modified in the previous step. The job will create the DB2

database.

Continue with setting up and deploying your UDDI registry node.

Creating a DB2 for z/OS database for the UDDI registry

Perform this task if you want to use DB2 for z/OS as the database store for your UDDI registry data.

In order to connect from a machine running a distributed operating system to a remote DB2 database on

the z/OS operating system, you must have DB2 Version 8.2 or later. You must also have a DB2 Connect

license (see the DB2 documentation for more information).

You only need to perform this task once for each UDDI registry, as part of setting up and deploying a

UDDI registry.

If you are creating a remote database, use the database product documentation to familiarize yourself with

the relevant capabilities of the product before proceeding with this task.

1. Copy the createddl.sh script supplied in app_server_root/UDDIReg/rexx, to a temporary directory of

your choice.

2. Using the UNIX System Services (USS) command prompt, edit the copy of the createddl.sh script, as

follows:

a. Search for the text ’Define some constants’.

b. If you have installed WebSphere Application Server in a non default location, update the root_dir

constant to reflect this (note that the UDDIReg directory must remain at the end of the path).

c. Update the temp_dir constant to a temporary directory of your choice, if you do not want to accept

the default.

3. Using the USS command prompt, run the copy of the createddl.sh script by entering the following

command:

createddl.sh database_name tablespace_name hlq

where the parameters are as follows:

database_name

This is the name which will be used when defining the required DB2 tables and other

components. The default is UDDI30.

tablespace_name

This is the tablespace in which the database’s tables will be defined. The default is UDDI30TS.

398 Administering applications and their environment

hlq This is the high level qualifier under which the SQL and JCL partitioned datasets (PDS) will be

created. The default is IBMUSER.

The script generates the partitioned data sets hlq.UDDI.SQL and hlq.UDDI.JCL, containing members

that are required for subsequent steps.Using the default parameters listed above, a successful

execution of the script results in the following output:

database.tablespace = UDDI30.UDDI30TS

 HLQ = IBMUSER

 (14) /WebSphere/V6R0M0/AppServer/UDDIReg/databaseScripts/uddi30crt_10_prereq_db2.sql

 (436) /WebSphere/V6R0M0/AppServer/UDDIReg/databaseScripts/uddi30crt_20_tables_generic.sql

 (136) /WebSphere/V6R0M0/AppServer/UDDIReg/databaseScripts/uddi30crt_25_tables_db2udb.sql

 (452) /WebSphere/V6R0M0/AppServer/UDDIReg/databaseScripts/uddi30crt_30_constraints_generic.sql

 (14) /WebSphere/V6R0M0/AppServer/UDDIReg/databaseScripts/uddi30crt_35_constraints_db2udb.sql

 (559) /WebSphere/V6R0M0/AppServer/UDDIReg/databaseScripts/uddi30crt_40_views_generic.sql

 (94) /WebSphere/V6R0M0/AppServer/UDDIReg/databaseScripts/uddi30crt_45_views_db2udb.sql

 (329) /WebSphere/V6R0M0/AppServer/UDDIReg/databaseScripts/uddi30crt_50_triggers_db2udb.sql

 (16) /WebSphere/V6R0M0/AppServer/UDDIReg/databaseScripts/uddi30crt_60_insert_initial_static_

 data.sql

 (39) /WebSphere/V6R0M0/AppServer/UDDIReg/databaseScripts/uddi30crt_70_insert_default_database_

 indicator.sql

 Conversion complete

 /tmp/udditmp/makedb71.jcl ===> IBMUSER.UDDI.JCL(MAKEDB71)

 /tmp/udditmp/makedb81.jcl ===> IBMUSER.UDDI.JCL(MAKEDB81)

 /tmp/udditmp/table.sql ===> IBMUSER.UDDI.SQL(TABLE)

 /tmp/udditmp/table7.sql ===> IBMUSER.UDDI.SQL(TABLE7)

 /tmp/udditmp/index.sql ===> IBMUSER.UDDI.SQL(INDEX)

 /tmp/udditmp/view.sql ===> IBMUSER.UDDI.SQL(VIEW)

 /tmp/udditmp/trigger.sql ===> IBMUSER.UDDI.SQL(TRIGGER)

 /tmp/udditmp/alter.sql ===> IBMUSER.UDDI.SQL(ALTER)

 /tmp/udditmp/initial.sql ===> IBMUSER.UDDI.SQL(INITIAL)

 /tmp/udditmp/insert.sql ===> IBMUSER.UDDI.SQL(INSERT)

4. There are two sample jobs in the JCL library for creating the DB2 database, one for DB2 version 7 and

one for DB2 version 8. The JCL for these jobs can be found in members MAKEDB71 and MAKEDB81

respectively, in the hlq.UDDI.JCL PDS. These JCL scripts are templates; modify the template in the

appropriate MAKEDB member according to your DB2 setup and whether you want a default or a

customized UDDI node:

v Add or modify the JOB accounting information, if required.

v If you used a different high level qualifier from the default when running the script in step one,

ensure that all occurrences of IBMUSER are changed to the qualifier that you specified.

v If you do not want your database to be used as a default UDDI node, comment out the line of the

job which specifies the INSERT member of the SQL PDS; this should be the last line in the job.

v Ensure that all occurrences of the LIB parameter correctly reflect the directory into which you

installed DB2.

5. Use TSO to submit the job that you modified in the previous step. The job will create the DB2

database.

Continue with setting up and deploying your UDDI registry node.

Creating a Cloudscape database for the UDDI registry

Perform this task if you want to use Cloudscape (embedded or network) as the database store (either local

or remote) for your UDDI registry. You need only perform this task once for each UDDI registry, as part of

setting up and deploying a UDDI registry.

If you are creating a remote database, use the database product documentation to familiarize yourself with

the relevant capabilities of the product before proceeding with this task.

Before you begin

Chapter 12. Web services 399

The commands below use a number of arguments for which you need to enter appropriate values. You

should decide the values that you will use before you start. The arguments used, and suggested values,

are:

arg1 is the path of the SQL files, which on a standard installation will be app_server_root/UDDIReg/
databasescripts

arg2 is the path to the location where you want to install the Cloudscape database.

 For example, app_server_root/profiles/profile_name/databases/com.ibm.uddi

arg3 is the name of the Cloudscape database. A recommended value is UDDI30, and this name is

assumed throughout the UDDI documentation. If you use another name, you should substitute that

name whenever you see ’UDDI30’ in other sections of the UDDI documentation.

arg4 is an optional argument, and must either be omitted or be the string ’DEFAULT’. DEFAULT should

only be specified if you want your database to be used as a default UDDI node. Note that this

argument is case sensitive.

1. Run the following Java -jar command from the app_server_root/UDDIReg/databaseScripts directory, to

create a UDDI Cloudscape database using UDDIDerbyCreate.jar.

Windows

java -Djava.ext.dirs=app_server_root/derby/lib;app_server_root/java/lib/ext -jar UDDIDerbyCreate.jar

arg1 arg2 arg3 arg4

AIX

Linux

HP�UX

Solaris

java -Djava.ext.dirs=app_server_root/derby/lib:app_server_root/java/lib/ext -jar UDDIDerbyCreate.jar

arg1 arg2 arg3 arg4

If the Cloudscape database already exists, you will be asked if you want to recreate it. If you choose to

recreate the database, your existing database will be deleted and a new one created in its place. If you

choose not to recreate the database, the command will exit and a new database will not be created.

Note: If the application server already accessed the existing Cloudscape database, the uddiDeploy.jacl

script cannot recreate the database. Use the uddiRemove.jacl script to remove the database, as

described in “Removing a UDDI registry node” on page 481, restart the server and run the

uddiDeploy.jacl script again.

2. If you are using a remote database (which requires network Cloudscape), or you want to use network

Cloudscape for other reasons, for example if you want to use Cloudscape with a cluster, configure the

Cloudscape Network Server framework as described in the managing derby network server section of

the Cloudscape information center.

Continue with setting up and deploying your UDDI registry node.

Creating an Oracle database for the UDDI registry

Note: Only Version 9i1 and Oracle 10g2

1.

Restrictions:

discoveryURL (Business) maximum 4000 bytes, UDDI specification 4096 characters; accessPoint (bindingTemplate)

maximum 4000 bytes, UDDI Specification 4096 characters; instanceParms (tModelInstanceInfo) maximum 4000 bytes,

UDDI specification 8192 characters; overviewURL (tModelInstanceInfo) maximum 4000 bytes, UDDI specification 4096

characters; Digital Signature maximum 4000 bytes.

2.

Restrictions:

discoveryURL (Business) maximum 4000 bytes, UDDI specification 4096 characters; accessPoint (bindingTemplate)

maximum 4000 bytes, UDDI Specification 4096 characters.

400 Administering applications and their environment

http://publib.boulder.ibm.com/infocenter/cscv/v10r1/index.jsp

Perform this task if you want to use Oracle as the database store (either local or remote) for your UDDI

registry data. You need only do this once for each UDDI registry, as part of Setting up and deploying a

UDDI registry.

If you are creating a remote database, use the database product documentation to familiarize yourself with

the relevant capabilities of the product before proceeding with this task.

Before you begin

This task creates three new schemas: ibmuddi, ibmudi30 and ibmuds30. You will be unable to complete

this task if you already have existing schemas with these names.

The steps below use a number of variables for which you need to enter appropriate values. You should

decide the values that you will use before you start. The variables used are:

<OracleUserID>

is the Oracle userid to be used to create the database.

<OraclePassword>

is the password for the Oracle userid.

1. Run the following commands:

a. sqlplus <OracleUserID>/<OraclePassword> @ uddi30crt_10_prereq_oracle.sql

b. sqlplus <OracleUserID>/<OraclePassword> @ uddi30crt_20_tables_generic.sql

c. Complete one of the following actions depending on your level of Oracle:

v For Oracle 9i:

sqlplus <OracleUserID>/<OraclePassword> @ uddi30crt_25_tables_oracle_pre10g.sql

v For Version 10g and later:

sqlplus <OracleUserID>/<OraclePassword> @ uddi30crt_25_tables_oracle.sql

d. sqlplus <OracleUserID>/<OraclePassword> @ uddi30crt_30_constraints_generic.sql

e. sqlplus <OracleUserID>/<OraclePassword> @ uddi30crt_35_constraints_oracle.sql

f. sqlplus <OracleUserID>/<OraclePassword> @ uddi30crt_40_views_generic.sql

g. sqlplus <OracleUserID>/<OraclePassword> @ uddi30crt_45_views_oracle.sql

h. sqlplus <OracleUserID>/<OraclePassword> @ uddi30crt_50_triggers_oracle.sql

i. sqlplus <OracleUserID>/<OraclePassword> @ uddi30crt_60_insert_initial_static_data.sql

2. This last command should only be run if you want the database to be used as a default UDDI node.

sqlplus <OracleUserID>/<OraclePassword> @ uddi30crt_70_insert_default_database_indicator.sql

Continue with setting up and deploying your UDDI registry node.

Creating a data source for the UDDI registry

You must have already created the database for the UDDI registry.

Note: If you are connecting to a remote DB2 database on the z/OS operating system, you must have

installed a DB2 Connect license (See the DB2 documentation for more information).

Perform this task as part of setting up and deploying a new UDDI registry. The data source is used by the

UDDI registry to access the UDDI database.

1. Create a J2C Authentication Data Entry (not required for embedded Cloudscape, but required for

network Cloudscape):

Chapter 12. Web services 401

a. Click Security → Secure administration, applications, and infrastructire → [Authentication]

Java Authentication and Authorization Service → J2C authentication data.

b. Click New to create a new J2C authentication data entry

c. Fill in the details as follows:

Alias a suitable (short) name, such as ″UDDIAlias″

Userid

 the database userid (such as db2admin for DB2 or IBMUDDI for Oracle), which is used to

read and write to the UDDI registry database. For network Cloudscape the userid can be

any value.

 If you are using a remote DB2 database on the z/OS operating system, the userid must be

one that is valid on the remote system.

Password

the password associated with the userid specified above. For network Cloudscape the

password can be any value.

Description

a suitable description to describe the chosen userid.

Click Apply and then Save the changes to the master configuration.

2. Create a JDBC Provider (if a suitable one does not already exist), using the following table to

determine the provider type and implementation type for your chosen database:

 Database Provider type Implementation type

DB2 DB2 Universal JDBC Driver Provider Connection Pool data source

Oracle Oracle JDBC Driver Connection Pool data source

Embedded Cloudscape Derby JDBC Driver Connection Pool data source

Network Cloudscape Derby Network Server JDBC Driver

provider

Connection Pool data source

For details on how to create a JDBC provider, see Creating and configuring a JDBC provider using the

administrative console.

3. Create the data source for the UDDI registry by following these steps:

a. Click Resources → JDBC → JDBC Providers.

b. Select the desired ’scope’ of the JDBC provider you selected or created earlier. For example,

select:

Server: yourservername

to show the JDBC providers at the server level.

c. Select the JDBC provider created earlier.

d. Under Additional Properties, select Data sources (not the Data sources (WebSphere

Application Server V4) option).

e. Click New to create a new data source.

f. In the Create a data source wizard, enter the following data:

Name a suitable name, such as UDDI Datasource

JNDI name

set to datasources/uddids - this value is obligatory.

Note: You must not have any other data sources using this JNDI name. If you have

another data source using this JNDI name, then you must either remove it or change

its JNDI name. For example, if you have previously created a default UDDI node

402 Administering applications and their environment

using Cloudscape, you should use the uddiRemove.jacl script with the default option

to remove the data source and the UDDI application instance, before continuing.

Component-managed authentication alias

v for DB2, Oracle or network Cloudscape, select the alias that you created in step 2 from

the pulldown. It will have the node name appended in front of it, for example

MyNode/UDDIAlias.

v for embedded Cloudscape leave this set to (none).

g. Click Next.

h. On the database specific properties page of the wizard, enter the following data:

v for DB2:

Database name

for example:

UDDI30

Notes:

– If you are using a remote database on a distributed system, the database

name is the alias that you created to reference the database. See Creating a

DB2 distributed database.

– If you are using a remote DB2 database on the z/OS operating system, the

database name is the local LOCATION value. To find this value, enter the

operator command -DIS DDF at the console (or ask your DB2 administrator

for the information). Note that this value is case sensitive.

Driver type

this applies only if you are using a remote DB2 database on the z/OS operating system.

Set this value to 4.

Server name

this applies only if you are using a remote DB2 database on the z/OS operating system.

Set this value to the IP address of the remote machine that is hosting the database. Use

the -DIS DDF operator command to find this information (or ask your DB2 administrator

for the information).

Port number

this applies only if you are using a remote DB2 database on the z/OS operating system.

Set this value to the port that the DB2 database is listening on. Use the -DIS DDF

operator command to find this information (or ask your DB2 administrator for the

information).

v for Oracle - URL - for example:

 jdbc:oracle:oci8:@<Oracle database name>

This applies to local and remote Oracle databases.

v for Cloudscape (embedded or network) - Database name - for example:

app_server_root/profiles/profile_name/databases/com.ibm.uddi/UDDI30

For network Cloudscape, also make sure that the Server name and Port number match the

network server.

Leave all other fields unchanged.

Use this Data Source in container-managed persistence (CMP)

ensure the check box is unchecked.

i. Click Next, then check the summary and click Finish.

j. Click the data source to display its properties, and add the following information:

Chapter 12. Web services 403

Description

a suitable description

Category

set to uddi

Data store helper class name

filled in for you as:

 Database Data store helper class name

DB2 com.ibm.websphere.rsadapter.DB2DataStoreHelper, or

com.ibm.websphere.rsadapter.DB2UniversalDataStoreHelper if you are using a remote DB2

database on the z/OS operating system

Oracle 9i com.ibm.websphere.rsadapter.OracleDataStoreHelper

Oracle 10g com.ibm.websphere.rsadapter.Oracle10gDataStoreHelper

Embedded

Cloudscape

com.ibm.websphere.rsadapter.DerbyDataStoreHelper

Network Cloudscape com.ibm.websphere.rsadapter.DerbyNetworkServerDataStoreHelper

Mapping-configuration alias

set to DefaultPrincipalMapping

k. Click Apply and save the changes to the master configuration.

4. Test the connection to your UDDI database by selecting the check box next to the data source and

clicking Test connection. You will see a message similar to ″Test Connection for datasource UDDI

Datasource on server server1 at node MyNode was successful″. If you do not see this message

investigate the problem with the help of the error message.

Continue with setting up and deploying your UDDI registry node.

Deploying the UDDI registry application

You must have already created the database and datasource for the UDDI registry.

Use this task as part of “Setting up a default UDDI node” on page 392 or “Setting up a customized UDDI

node” on page 405.

Run the uddiDeploy.jacl script as shown below, from the app_server_root/bin directory. This script deploys

the UDDI registry to a server specified by you.

Linux

Note: If you are using either the UNIX or Linux operating systems, add the .sh suffix to the wsadmin

command.

wsadmin [-conntype none] [-profileName profile_name] -f uddiDeploy.jacl

 node_name

 server_name

where

v ’-profileName profile_name’ is optional, and is the name of the profile in which the UDDI application is

deployed. If you do not specify a profile, the default profile will be used.

v ’-conntype none’ is optional, and is only needed if the application server is not running.

v node_name is the name of the WebSphere node on which the target server runs. Note that the node

name is case sensitive.

v server_name is the name of the target server on which you wish to deploy the UDDI registry, such as

server1. Note the server name entered is case sensitive.

404 Administering applications and their environment

For example, to deploy UDDI on node ’MyNode’ and server ’server1’ on a Windows system, (assuming

that server1 is already started):

wsadmin -f uddiDeploy.jacl MyNode server1

You can also deploy the UDDI application (the uddi.ear file) using the administrative console, in the normal

way. However, some steps that are performed automatically by the uddiDeploy.jacl script do not take place

in this scenario. If you use the administrative console to install the UDDI application, you must perform

some actions manually, according to the following steps:

1. Install the application.

2. Click Applications → Enterprise Applications > uddi_application > [Detail Properties] Class loading

and update detection.

3. Ensure that Class loader order is set to Classes loaded with application class loader first.

4. Ensure that WAR class loader policy is set to Single class loader for application.

Continue with setting up the UDDI node.

Setting up a customized UDDI node

Use this task to set up a UDDI node with property values that are chosen by you. You will not be able to

change the mandatory node properties, such as node ID, after the initialization of the node. Such a node

is suitable for production purposes.

1. Review the information in “Database considerations for production use of the UDDI registry” on page

391 to help you decide which database system to use, then create a database schema to hold the

UDDI registry by completing one of the following tasks, ensuring that you do NOT use the default node

options where specified:

v “Creating a DB2 distributed database for the UDDI registry” on page 393

v “Creating a DB2 for z/OS database for the UDDI registry” on page 396

v “Creating a Cloudscape database for the UDDI registry” on page 399

v “Creating an Oracle database for the UDDI registry” on page 400

2. Set up a datasource for the UDDI registry application to use to access the database, as described in

“Creating a data source for the UDDI registry” on page 401.

3. Deploy the UDDI registry application, as described in “Deploying the UDDI registry application” on

page 404.

4.

Linux

If you are using DB2, stop the server if it is running. Edit the user profile for the DB2 user

that will start the server. Modify the user profile to run the db2profile script which is located in the root

directory of the DB2 userid (for example /home/db2inst1/sqllib/db2profile). Alternatively you can run the

db2profile script manually by entering the following command, however you will need to do this every

time you restart the server :

. /home/db2inst1/sqllib/db2profile

Note: In the above example, notice that the ’.’ is followed by a single space character.

5. Click Applications → Enterprise Applications to display the installed applications. Start the UDDI

registry application by selecting the check box next to it and clicking Start. Alternatively start the

application server if it is not already running; this will automatically start the UDDI registry application.

The UDDI node is now active.

Note: Restarting the UDDI application, or the application server, will always result in the reactivation of

the UDDI node, even if the node was previously deactivated.

As you have chosen a user customized UDDI node, you will need to set the properties for the UDDI node

using UDDI administration, and initialize the node before it is ready to accept UDDI requests. See

“Initializing the UDDI registry node” on page 417 for details.

Chapter 12. Web services 405

Creating a DB2 distributed database for the UDDI registry

Perform this task if you want to use DB2 on the Windows, Linux or UNIX operating systems, as the

database store for your UDDI registry data.

The steps below use a number of variables for which you need to enter appropriate values. You should

decide the values that you will use before you start. The variables used, and suggested values are:

<DataBaseName>

is the name of the UDDI registry database. A recommended value is UDDI30, and this name is

assumed throughout the UDDI documentation. If you use some other name, then you should

substitute that name whenever you see ’UDDI30’ in other sections of the documentation.

<DB2UserID>

is a DB2 userid with administrative privileges.

<DB2Password>

is the password for the DB2 userid.

<BufferPoolName>

is the name of a buffer pool to be used by the UDDI registry database. A suggested name is

uddibp, but any name can be used, as the buffer pool is created as part of this task.

<TableSpaceName>

is the name of a table space. A suggested value is uddits, but any name can be used.

<TempTableSpaceName>

is the name of a temporary table space. A suggested value is udditstemp, but any name can be

used, as the temporary table space is created as part of this task.

You only need to perform this task once for each UDDI registry, as part of setting up and deploying a

UDDI registry.

If you are creating a remote database, use the database product documentation to familiarize yourself with

the relevant capabilities of the product before proceeding with this task.

1. Change directory to app_server_root/UDDIReg/databaseScripts.

2. Start the DB2 Command Line Processor by entering db2 at the command prompt (for Windows

platforms, enter db2cmd and then enter db2 in the new DB2 window).

3. Run the following command to setup the DB2 environment variables:

set DB2CODEPAGE=1208

4. Create the DB2 database by entering the following command:

create database <DataBaseName> using codeset UTF-8 territory en

where <DataBaseName> is the name of the database being created.

5. Configure the DB2 database by entering the following commands:

a. connect to <DataBaseName> user <DB2UserID> using <DB2Password>

b. update db cfg for <DataBaseName> using applheapsz 2048

c. update db cfg for <DataBaseName> using logfilsiz 8192

d. connect reset

e. terminate

6. Create additional database structures by entering the following commands:

a. connect to <DataBaseName> user <DB2UserID> using <DB2Password>

b. create bufferpool <BufferPoolName> size 250 pagesize 32K

c. connect reset

d. terminate

406 Administering applications and their environment

e. force application all

f. terminate

g. stop

h. start

7. Create further database structures by entering the following commands:

a. connect to <DataBaseName> user <DB2UserID> using <DB2Password>

b. create regular tablespace uddits pagesize 32K managed by system using

(’<TableSpaceName>’) extentsize 64 prefetchsize 32 bufferpool <BufferPoolName>

c. create system temporary tablespace <TempTableSpacename> pagesize 32K managed by system

using (’<TempTableSpacename>’) extentsize 32 overhead 14.06 prefetchsize 32 transferrate

0.33 bufferpool <BufferPoolName>

8. Exit the DB2 Command Line Processor and enter the following commands exactly as shown, noting

that one step uses -vf rather than -tvf (on Windows platforms, run the commands from the db2cmd

window). These commands define the database structures needed to store the UDDI data:

a. db2 -tvf uddi30crt_10_prereq_db2.sql

b. db2 -tvf uddi30crt_20_tables_generic.sql

c. db2 -tvf uddi30crt_25_tables_db2udb.sql

d. db2 -tvf uddi30crt_30_constraints_generic.sql

e. db2 -tvf uddi30crt_35_constraints_db2udb.sql

f. db2 -tvf uddi30crt_40_views_generic.sql

g. db2 -tvf uddi30crt_45_views_db2udb.sql

h. db2 -vf uddi30crt_50_triggers_db2udb.sql

i. db2 -tvf uddi30crt_60_insert_initial_static_data.sql

9. Run this step only if you want your database to be used as a default UDDI node. Enter the following

command:

db2 -tvf uddi30crt_70_insert_default_database_indicator.sql

Continue with setting up and deploying your UDDI registry node.

Creating a DB2 distributed database for the UDDI registry

Perform this task if you want to use DB2 on the Windows, Linux or UNIX operating systems, as the

database store for your UDDI registry data.

The steps below use a number of variables for which you need to enter appropriate values. You should

decide the values that you will use before you start. The variables used, and suggested values are:

<DataBaseName>

is the name of the UDDI registry database. A recommended value is UDDI30, and this name is

assumed throughout the UDDI documentation. If you use some other name, then you should

substitute that name whenever you see ’UDDI30’ in other sections of the documentation.

<DB2UserID>

is a DB2 userid with administrative privileges.

<DB2Password>

is the password for the DB2 userid.

<BufferPoolName>

is the name of a buffer pool to be used by the UDDI registry database. A suggested name is

uddibp, but any name can be used, as the buffer pool is created as part of this task.

<TableSpaceName>

is the name of a table space. A suggested value is uddits, but any name can be used.

Chapter 12. Web services 407

<TempTableSpaceName>

is the name of a temporary table space. A suggested value is udditstemp, but any name can be

used, as the temporary table space is created as part of this task.

You only need to perform this task once for each UDDI registry, as part of setting up and deploying a

UDDI registry.

If you are creating a remote database, use the database product documentation to familiarize yourself with

the relevant capabilities of the product before proceeding with this task.

1. Change directory to app_server_root/UDDIReg/databaseScripts.

2. Start the DB2 Command Line Processor by entering db2 at the command prompt (for Windows

platforms, enter db2cmd and then enter db2 in the new DB2 window).

3. Run the following command to setup the DB2 environment variables:

set DB2CODEPAGE=1208

4. Create the DB2 database by entering the following command:

create database <DataBaseName> using codeset UTF-8 territory en

where <DataBaseName> is the name of the database being created.

5. Configure the DB2 database by entering the following commands:

a. connect to <DataBaseName> user <DB2UserID> using <DB2Password>

b. update db cfg for <DataBaseName> using applheapsz 2048

c. update db cfg for <DataBaseName> using logfilsiz 8192

d. connect reset

e. terminate

6. Create additional database structures by entering the following commands:

a. connect to <DataBaseName> user <DB2UserID> using <DB2Password>

b. create bufferpool <BufferPoolName> size 250 pagesize 32K

c. connect reset

d. terminate

e. force application all

f. terminate

g. stop

h. start

7. Create further database structures by entering the following commands:

a. connect to <DataBaseName> user <DB2UserID> using <DB2Password>

b. create regular tablespace uddits pagesize 32K managed by system using

(’<TableSpaceName>’) extentsize 64 prefetchsize 32 bufferpool <BufferPoolName>

c. create system temporary tablespace <TempTableSpacename> pagesize 32K managed by system

using (’<TempTableSpacename>’) extentsize 32 overhead 14.06 prefetchsize 32 transferrate

0.33 bufferpool <BufferPoolName>

8. Exit the DB2 Command Line Processor and enter the following commands exactly as shown, noting

that one step uses -vf rather than -tvf (on Windows platforms, run the commands from the db2cmd

window). These commands define the database structures needed to store the UDDI data:

a. db2 -tvf uddi30crt_10_prereq_db2.sql

b. db2 -tvf uddi30crt_20_tables_generic.sql

c. db2 -tvf uddi30crt_25_tables_db2udb.sql

d. db2 -tvf uddi30crt_30_constraints_generic.sql

e. db2 -tvf uddi30crt_35_constraints_db2udb.sql

408 Administering applications and their environment

f. db2 -tvf uddi30crt_40_views_generic.sql

g. db2 -tvf uddi30crt_45_views_db2udb.sql

h. db2 -vf uddi30crt_50_triggers_db2udb.sql

i. db2 -tvf uddi30crt_60_insert_initial_static_data.sql

9. Run this step only if you want your database to be used as a default UDDI node. Enter the following

command:

db2 -tvf uddi30crt_70_insert_default_database_indicator.sql

Continue with setting up and deploying your UDDI registry node.

Creating a DB2 for z/OS database for the UDDI registry

Perform this task if you want to use DB2 for z/OS as the database store for your UDDI registry data.

In order to connect from a machine running a distributed operating system to a remote DB2 database on

the z/OS operating system, you must have DB2 Version 8.2 or later. You must also have a DB2 Connect

license (see the DB2 documentation for more information).

You only need to perform this task once for each UDDI registry, as part of setting up and deploying a

UDDI registry.

If you are creating a remote database, use the database product documentation to familiarize yourself with

the relevant capabilities of the product before proceeding with this task.

1. Copy the createddl.sh script supplied in app_server_root/UDDIReg/rexx, to a temporary directory of

your choice.

2. Using the UNIX System Services (USS) command prompt, edit the copy of the createddl.sh script, as

follows:

a. Search for the text ’Define some constants’.

b. If you have installed WebSphere Application Server in a non default location, update the root_dir

constant to reflect this (note that the UDDIReg directory must remain at the end of the path).

c. Update the temp_dir constant to a temporary directory of your choice, if you do not want to accept

the default.

3. Using the USS command prompt, run the copy of the createddl.sh script by entering the following

command:

createddl.sh database_name tablespace_name hlq

where the parameters are as follows:

database_name

This is the name which will be used when defining the required DB2 tables and other

components. The default is UDDI30.

tablespace_name

This is the tablespace in which the database’s tables will be defined. The default is UDDI30TS.

hlq This is the high level qualifier under which the SQL and JCL partitioned datasets (PDS) will be

created. The default is IBMUSER.

The script generates the partitioned data sets hlq.UDDI.SQL and hlq.UDDI.JCL, containing members

that are required for subsequent steps.Using the default parameters listed above, a successful

execution of the script results in the following output:

database.tablespace = UDDI30.UDDI30TS

 HLQ = IBMUSER

 (14) /WebSphere/V6R0M0/AppServer/UDDIReg/databaseScripts/uddi30crt_10_prereq_db2.sql

 (436) /WebSphere/V6R0M0/AppServer/UDDIReg/databaseScripts/uddi30crt_20_tables_generic.sql

 (136) /WebSphere/V6R0M0/AppServer/UDDIReg/databaseScripts/uddi30crt_25_tables_db2udb.sql

 (452) /WebSphere/V6R0M0/AppServer/UDDIReg/databaseScripts/uddi30crt_30_constraints_generic.sql

Chapter 12. Web services 409

(14) /WebSphere/V6R0M0/AppServer/UDDIReg/databaseScripts/uddi30crt_35_constraints_db2udb.sql

 (559) /WebSphere/V6R0M0/AppServer/UDDIReg/databaseScripts/uddi30crt_40_views_generic.sql

 (94) /WebSphere/V6R0M0/AppServer/UDDIReg/databaseScripts/uddi30crt_45_views_db2udb.sql

 (329) /WebSphere/V6R0M0/AppServer/UDDIReg/databaseScripts/uddi30crt_50_triggers_db2udb.sql

 (16) /WebSphere/V6R0M0/AppServer/UDDIReg/databaseScripts/uddi30crt_60_insert_initial_static_

 data.sql

 (39) /WebSphere/V6R0M0/AppServer/UDDIReg/databaseScripts/uddi30crt_70_insert_default_database_

 indicator.sql

 Conversion complete

 /tmp/udditmp/makedb71.jcl ===> IBMUSER.UDDI.JCL(MAKEDB71)

 /tmp/udditmp/makedb81.jcl ===> IBMUSER.UDDI.JCL(MAKEDB81)

 /tmp/udditmp/table.sql ===> IBMUSER.UDDI.SQL(TABLE)

 /tmp/udditmp/table7.sql ===> IBMUSER.UDDI.SQL(TABLE7)

 /tmp/udditmp/index.sql ===> IBMUSER.UDDI.SQL(INDEX)

 /tmp/udditmp/view.sql ===> IBMUSER.UDDI.SQL(VIEW)

 /tmp/udditmp/trigger.sql ===> IBMUSER.UDDI.SQL(TRIGGER)

 /tmp/udditmp/alter.sql ===> IBMUSER.UDDI.SQL(ALTER)

 /tmp/udditmp/initial.sql ===> IBMUSER.UDDI.SQL(INITIAL)

 /tmp/udditmp/insert.sql ===> IBMUSER.UDDI.SQL(INSERT)

4. There are two sample jobs in the JCL library for creating the DB2 database, one for DB2 version 7 and

one for DB2 version 8. The JCL for these jobs can be found in members MAKEDB71 and MAKEDB81

respectively, in the hlq.UDDI.JCL PDS. These JCL scripts are templates; modify the template in the

appropriate MAKEDB member according to your DB2 setup and whether you want a default or a

customized UDDI node:

v Add or modify the JOB accounting information, if required.

v If you used a different high level qualifier from the default when running the script in step one,

ensure that all occurrences of IBMUSER are changed to the qualifier that you specified.

v If you do not want your database to be used as a default UDDI node, comment out the line of the

job which specifies the INSERT member of the SQL PDS; this should be the last line in the job.

v Ensure that all occurrences of the LIB parameter correctly reflect the directory into which you

installed DB2.

5. Use TSO to submit the job that you modified in the previous step. The job will create the DB2

database.

Continue with setting up and deploying your UDDI registry node.

Creating a DB2 for z/OS database for the UDDI registry

Perform this task if you want to use DB2 for z/OS as the database store for your UDDI registry data.

In order to connect from a machine running a distributed operating system to a remote DB2 database on

the z/OS operating system, you must have DB2 Version 8.2 or later. You must also have a DB2 Connect

license (see the DB2 documentation for more information).

You only need to perform this task once for each UDDI registry, as part of setting up and deploying a

UDDI registry.

If you are creating a remote database, use the database product documentation to familiarize yourself with

the relevant capabilities of the product before proceeding with this task.

1. Copy the createddl.sh script supplied in app_server_root/UDDIReg/rexx, to a temporary directory of

your choice.

2. Using the UNIX System Services (USS) command prompt, edit the copy of the createddl.sh script, as

follows:

a. Search for the text ’Define some constants’.

b. If you have installed WebSphere Application Server in a non default location, update the root_dir

constant to reflect this (note that the UDDIReg directory must remain at the end of the path).

410 Administering applications and their environment

c. Update the temp_dir constant to a temporary directory of your choice, if you do not want to accept

the default.

3. Using the USS command prompt, run the copy of the createddl.sh script by entering the following

command:

createddl.sh database_name tablespace_name hlq

where the parameters are as follows:

database_name

This is the name which will be used when defining the required DB2 tables and other

components. The default is UDDI30.

tablespace_name

This is the tablespace in which the database’s tables will be defined. The default is UDDI30TS.

hlq This is the high level qualifier under which the SQL and JCL partitioned datasets (PDS) will be

created. The default is IBMUSER.

The script generates the partitioned data sets hlq.UDDI.SQL and hlq.UDDI.JCL, containing members

that are required for subsequent steps.Using the default parameters listed above, a successful

execution of the script results in the following output:

database.tablespace = UDDI30.UDDI30TS

 HLQ = IBMUSER

 (14) /WebSphere/V6R0M0/AppServer/UDDIReg/databaseScripts/uddi30crt_10_prereq_db2.sql

 (436) /WebSphere/V6R0M0/AppServer/UDDIReg/databaseScripts/uddi30crt_20_tables_generic.sql

 (136) /WebSphere/V6R0M0/AppServer/UDDIReg/databaseScripts/uddi30crt_25_tables_db2udb.sql

 (452) /WebSphere/V6R0M0/AppServer/UDDIReg/databaseScripts/uddi30crt_30_constraints_generic.sql

 (14) /WebSphere/V6R0M0/AppServer/UDDIReg/databaseScripts/uddi30crt_35_constraints_db2udb.sql

 (559) /WebSphere/V6R0M0/AppServer/UDDIReg/databaseScripts/uddi30crt_40_views_generic.sql

 (94) /WebSphere/V6R0M0/AppServer/UDDIReg/databaseScripts/uddi30crt_45_views_db2udb.sql

 (329) /WebSphere/V6R0M0/AppServer/UDDIReg/databaseScripts/uddi30crt_50_triggers_db2udb.sql

 (16) /WebSphere/V6R0M0/AppServer/UDDIReg/databaseScripts/uddi30crt_60_insert_initial_static_

 data.sql

 (39) /WebSphere/V6R0M0/AppServer/UDDIReg/databaseScripts/uddi30crt_70_insert_default_database_

 indicator.sql

 Conversion complete

 /tmp/udditmp/makedb71.jcl ===> IBMUSER.UDDI.JCL(MAKEDB71)

 /tmp/udditmp/makedb81.jcl ===> IBMUSER.UDDI.JCL(MAKEDB81)

 /tmp/udditmp/table.sql ===> IBMUSER.UDDI.SQL(TABLE)

 /tmp/udditmp/table7.sql ===> IBMUSER.UDDI.SQL(TABLE7)

 /tmp/udditmp/index.sql ===> IBMUSER.UDDI.SQL(INDEX)

 /tmp/udditmp/view.sql ===> IBMUSER.UDDI.SQL(VIEW)

 /tmp/udditmp/trigger.sql ===> IBMUSER.UDDI.SQL(TRIGGER)

 /tmp/udditmp/alter.sql ===> IBMUSER.UDDI.SQL(ALTER)

 /tmp/udditmp/initial.sql ===> IBMUSER.UDDI.SQL(INITIAL)

 /tmp/udditmp/insert.sql ===> IBMUSER.UDDI.SQL(INSERT)

4. There are two sample jobs in the JCL library for creating the DB2 database, one for DB2 version 7 and

one for DB2 version 8. The JCL for these jobs can be found in members MAKEDB71 and MAKEDB81

respectively, in the hlq.UDDI.JCL PDS. These JCL scripts are templates; modify the template in the

appropriate MAKEDB member according to your DB2 setup and whether you want a default or a

customized UDDI node:

v Add or modify the JOB accounting information, if required.

v If you used a different high level qualifier from the default when running the script in step one,

ensure that all occurrences of IBMUSER are changed to the qualifier that you specified.

v If you do not want your database to be used as a default UDDI node, comment out the line of the

job which specifies the INSERT member of the SQL PDS; this should be the last line in the job.

v Ensure that all occurrences of the LIB parameter correctly reflect the directory into which you

installed DB2.

5. Use TSO to submit the job that you modified in the previous step. The job will create the DB2

database.

Chapter 12. Web services 411

Continue with setting up and deploying your UDDI registry node.

Creating a Cloudscape database for the UDDI registry

Perform this task if you want to use Cloudscape (embedded or network) as the database store (either local

or remote) for your UDDI registry. You need only perform this task once for each UDDI registry, as part of

setting up and deploying a UDDI registry.

If you are creating a remote database, use the database product documentation to familiarize yourself with

the relevant capabilities of the product before proceeding with this task.

Before you begin

The commands below use a number of arguments for which you need to enter appropriate values. You

should decide the values that you will use before you start. The arguments used, and suggested values,

are:

arg1 is the path of the SQL files, which on a standard installation will be app_server_root/UDDIReg/
databasescripts

arg2 is the path to the location where you want to install the Cloudscape database.

 For example, app_server_root/profiles/profile_name/databases/com.ibm.uddi

arg3 is the name of the Cloudscape database. A recommended value is UDDI30, and this name is

assumed throughout the UDDI documentation. If you use another name, you should substitute that

name whenever you see ’UDDI30’ in other sections of the UDDI documentation.

arg4 is an optional argument, and must either be omitted or be the string ’DEFAULT’. DEFAULT should

only be specified if you want your database to be used as a default UDDI node. Note that this

argument is case sensitive.

1. Run the following Java -jar command from the app_server_root/UDDIReg/databaseScripts directory, to

create a UDDI Cloudscape database using UDDIDerbyCreate.jar.

Windows

java -Djava.ext.dirs=app_server_root/derby/lib;app_server_root/java/lib/ext -jar UDDIDerbyCreate.jar

arg1 arg2 arg3 arg4

AIX

Linux

HP�UX

Solaris

java -Djava.ext.dirs=app_server_root/derby/lib:app_server_root/java/lib/ext -jar UDDIDerbyCreate.jar

arg1 arg2 arg3 arg4

If the Cloudscape database already exists, you will be asked if you want to recreate it. If you choose to

recreate the database, your existing database will be deleted and a new one created in its place. If you

choose not to recreate the database, the command will exit and a new database will not be created.

Note: If the application server already accessed the existing Cloudscape database, the uddiDeploy.jacl

script cannot recreate the database. Use the uddiRemove.jacl script to remove the database, as

described in “Removing a UDDI registry node” on page 481, restart the server and run the

uddiDeploy.jacl script again.

2. If you are using a remote database (which requires network Cloudscape), or you want to use network

Cloudscape for other reasons, for example if you want to use Cloudscape with a cluster, configure the

Cloudscape Network Server framework as described in the managing derby network server section of

the Cloudscape information center.

Continue with setting up and deploying your UDDI registry node.

412 Administering applications and their environment

http://publib.boulder.ibm.com/infocenter/cscv/v10r1/index.jsp

Creating an Oracle database for the UDDI registry

Note: Only Version 9i3 and Oracle 10g4

Perform this task if you want to use Oracle as the database store (either local or remote) for your UDDI

registry data. You need only do this once for each UDDI registry, as part of Setting up and deploying a

UDDI registry.

If you are creating a remote database, use the database product documentation to familiarize yourself with

the relevant capabilities of the product before proceeding with this task.

Before you begin

This task creates three new schemas: ibmuddi, ibmudi30 and ibmuds30. You will be unable to complete

this task if you already have existing schemas with these names.

The steps below use a number of variables for which you need to enter appropriate values. You should

decide the values that you will use before you start. The variables used are:

<OracleUserID>

is the Oracle userid to be used to create the database.

<OraclePassword>

is the password for the Oracle userid.

1. Run the following commands:

a. sqlplus <OracleUserID>/<OraclePassword> @ uddi30crt_10_prereq_oracle.sql

b. sqlplus <OracleUserID>/<OraclePassword> @ uddi30crt_20_tables_generic.sql

c. Complete one of the following actions depending on your level of Oracle:

v For Oracle 9i:

sqlplus <OracleUserID>/<OraclePassword> @ uddi30crt_25_tables_oracle_pre10g.sql

v For Version 10g and later:

sqlplus <OracleUserID>/<OraclePassword> @ uddi30crt_25_tables_oracle.sql

d. sqlplus <OracleUserID>/<OraclePassword> @ uddi30crt_30_constraints_generic.sql

e. sqlplus <OracleUserID>/<OraclePassword> @ uddi30crt_35_constraints_oracle.sql

f. sqlplus <OracleUserID>/<OraclePassword> @ uddi30crt_40_views_generic.sql

g. sqlplus <OracleUserID>/<OraclePassword> @ uddi30crt_45_views_oracle.sql

h. sqlplus <OracleUserID>/<OraclePassword> @ uddi30crt_50_triggers_oracle.sql

i. sqlplus <OracleUserID>/<OraclePassword> @ uddi30crt_60_insert_initial_static_data.sql

3.

Restrictions:

discoveryURL (Business) maximum 4000 bytes, UDDI specification 4096 characters; accessPoint (bindingTemplate)

maximum 4000 bytes, UDDI Specification 4096 characters; instanceParms (tModelInstanceInfo) maximum 4000 bytes,

UDDI specification 8192 characters; overviewURL (tModelInstanceInfo) maximum 4000 bytes, UDDI specification 4096

characters; Digital Signature maximum 4000 bytes.

4.

Restrictions:

discoveryURL (Business) maximum 4000 bytes, UDDI specification 4096 characters; accessPoint (bindingTemplate)

maximum 4000 bytes, UDDI Specification 4096 characters.

Chapter 12. Web services 413

2. This last command should only be run if you want the database to be used as a default UDDI node.

sqlplus <OracleUserID>/<OraclePassword> @ uddi30crt_70_insert_default_database_indicator.sql

Continue with setting up and deploying your UDDI registry node.

Creating a data source for the UDDI registry

You must have already created the database for the UDDI registry.

Note: If you are connecting to a remote DB2 database on the z/OS operating system, you must have

installed a DB2 Connect license (See the DB2 documentation for more information).

Perform this task as part of setting up and deploying a new UDDI registry. The data source is used by the

UDDI registry to access the UDDI database.

1. Create a J2C Authentication Data Entry (not required for embedded Cloudscape, but required for

network Cloudscape):

a. Click Security → Secure administration, applications, and infrastructire → [Authentication]

Java Authentication and Authorization Service → J2C authentication data.

b. Click New to create a new J2C authentication data entry

c. Fill in the details as follows:

Alias a suitable (short) name, such as ″UDDIAlias″

Userid

 the database userid (such as db2admin for DB2 or IBMUDDI for Oracle), which is used to

read and write to the UDDI registry database. For network Cloudscape the userid can be

any value.

 If you are using a remote DB2 database on the z/OS operating system, the userid must be

one that is valid on the remote system.

Password

the password associated with the userid specified above. For network Cloudscape the

password can be any value.

Description

a suitable description to describe the chosen userid.

Click Apply and then Save the changes to the master configuration.

2. Create a JDBC Provider (if a suitable one does not already exist), using the following table to

determine the provider type and implementation type for your chosen database:

 Database Provider type Implementation type

DB2 DB2 Universal JDBC Driver Provider Connection Pool data source

Oracle Oracle JDBC Driver Connection Pool data source

Embedded Cloudscape Derby JDBC Driver Connection Pool data source

Network Cloudscape Derby Network Server JDBC Driver

provider

Connection Pool data source

For details on how to create a JDBC provider, see Creating and configuring a JDBC provider using the

administrative console.

3. Create the data source for the UDDI registry by following these steps:

a. Click Resources → JDBC → JDBC Providers.

b. Select the desired ’scope’ of the JDBC provider you selected or created earlier. For example,

select:

Server: yourservername

414 Administering applications and their environment

to show the JDBC providers at the server level.

c. Select the JDBC provider created earlier.

d. Under Additional Properties, select Data sources (not the Data sources (WebSphere

Application Server V4) option).

e. Click New to create a new data source.

f. In the Create a data source wizard, enter the following data:

Name a suitable name, such as UDDI Datasource

JNDI name

set to datasources/uddids - this value is obligatory.

Note: You must not have any other data sources using this JNDI name. If you have

another data source using this JNDI name, then you must either remove it or change

its JNDI name. For example, if you have previously created a default UDDI node

using Cloudscape, you should use the uddiRemove.jacl script with the default option

to remove the data source and the UDDI application instance, before continuing.

Component-managed authentication alias

v for DB2, Oracle or network Cloudscape, select the alias that you created in step 2 from

the pulldown. It will have the node name appended in front of it, for example

MyNode/UDDIAlias.

v for embedded Cloudscape leave this set to (none).

g. Click Next.

h. On the database specific properties page of the wizard, enter the following data:

v for DB2:

Database name

for example:

UDDI30

Notes:

– If you are using a remote database on a distributed system, the database

name is the alias that you created to reference the database. See Creating a

DB2 distributed database.

– If you are using a remote DB2 database on the z/OS operating system, the

database name is the local LOCATION value. To find this value, enter the

operator command -DIS DDF at the console (or ask your DB2 administrator

for the information). Note that this value is case sensitive.

Driver type

this applies only if you are using a remote DB2 database on the z/OS operating system.

Set this value to 4.

Server name

this applies only if you are using a remote DB2 database on the z/OS operating system.

Set this value to the IP address of the remote machine that is hosting the database. Use

the -DIS DDF operator command to find this information (or ask your DB2 administrator

for the information).

Port number

this applies only if you are using a remote DB2 database on the z/OS operating system.

Set this value to the port that the DB2 database is listening on. Use the -DIS DDF

operator command to find this information (or ask your DB2 administrator for the

information).

v for Oracle - URL - for example:

Chapter 12. Web services 415

jdbc:oracle:oci8:@<Oracle database name>

This applies to local and remote Oracle databases.

v for Cloudscape (embedded or network) - Database name - for example:

app_server_root/profiles/profile_name/databases/com.ibm.uddi/UDDI30

For network Cloudscape, also make sure that the Server name and Port number match the

network server.

Leave all other fields unchanged.

Use this Data Source in container-managed persistence (CMP)

ensure the check box is unchecked.

i. Click Next, then check the summary and click Finish.

j. Click the data source to display its properties, and add the following information:

Description

a suitable description

Category

set to uddi

Data store helper class name

filled in for you as:

 Database Data store helper class name

DB2 com.ibm.websphere.rsadapter.DB2DataStoreHelper, or

com.ibm.websphere.rsadapter.DB2UniversalDataStoreHelper if you are using a remote DB2

database on the z/OS operating system

Oracle 9i com.ibm.websphere.rsadapter.OracleDataStoreHelper

Oracle 10g com.ibm.websphere.rsadapter.Oracle10gDataStoreHelper

Embedded

Cloudscape

com.ibm.websphere.rsadapter.DerbyDataStoreHelper

Network Cloudscape com.ibm.websphere.rsadapter.DerbyNetworkServerDataStoreHelper

Mapping-configuration alias

set to DefaultPrincipalMapping

k. Click Apply and save the changes to the master configuration.

4. Test the connection to your UDDI database by selecting the check box next to the data source and

clicking Test connection. You will see a message similar to ″Test Connection for datasource UDDI

Datasource on server server1 at node MyNode was successful″. If you do not see this message

investigate the problem with the help of the error message.

Continue with setting up and deploying your UDDI registry node.

Deploying the UDDI registry application

You must have already created the database and datasource for the UDDI registry.

Use this task as part of “Setting up a default UDDI node” on page 392 or “Setting up a customized UDDI

node” on page 405.

Run the uddiDeploy.jacl script as shown below, from the app_server_root/bin directory. This script deploys

the UDDI registry to a server specified by you.

Linux

416 Administering applications and their environment

Note: If you are using either the UNIX or Linux operating systems, add the .sh suffix to the wsadmin

command.

wsadmin [-conntype none] [-profileName profile_name] -f uddiDeploy.jacl

 node_name

 server_name

where

v ’-profileName profile_name’ is optional, and is the name of the profile in which the UDDI application is

deployed. If you do not specify a profile, the default profile will be used.

v ’-conntype none’ is optional, and is only needed if the application server is not running.

v node_name is the name of the WebSphere node on which the target server runs. Note that the node

name is case sensitive.

v server_name is the name of the target server on which you wish to deploy the UDDI registry, such as

server1. Note the server name entered is case sensitive.

For example, to deploy UDDI on node ’MyNode’ and server ’server1’ on a Windows system, (assuming

that server1 is already started):

wsadmin -f uddiDeploy.jacl MyNode server1

You can also deploy the UDDI application (the uddi.ear file) using the administrative console, in the normal

way. However, some steps that are performed automatically by the uddiDeploy.jacl script do not take place

in this scenario. If you use the administrative console to install the UDDI application, you must perform

some actions manually, according to the following steps:

1. Install the application.

2. Click Applications → Enterprise Applications > uddi_application > [Detail Properties] Class loading

and update detection.

3. Ensure that Class loader order is set to Classes loaded with application class loader first.

4. Ensure that WAR class loader policy is set to Single class loader for application.

Continue with setting up the UDDI node.

Initializing the UDDI registry node

Use this topic to initialize a UDDI registry node after set up or migration.

You must have already set up a UDDI registry node, either as a new node or to use for migrating a UDDI

registry Version 2 node.

The UDDI registry node has various properties, some of which must be set before initializing the node.

There are two categories of UDDI registry node properties:

v Mandatory node properties. These properties must be set before the UDDI node can be initialized. You

may set these properties as many times as you wish before initialization. However, once the UDDI node

has been initialized, these properties will become read only for the lifetime of that UDDI node. It is very

important to set these properties correctly.

v All other properties. These properties may be set before, and after, initialization.

Configure these properties and initialize the node using the UDDI administrative console or JMX

management interface.

1. Click UDDI → UDDI Nodes > UDDI_node_id to display the properties page for the UDDI registry node.

2. Set the mandatory node properties to suitable, and valid, values. These properties are indicated by the

presence of a ’*’ next to the input field. The properties are listed below; more information on each

property is given in the context help of the administrative console.

Chapter 12. Web services 417

UDDI node ID

This must be a text string beginning with ’uddi:’ that is unique to this UDDI node. The default

value may be sufficient, but if you accept it you should ensure that it is unique.

UDDI node description

This is a text string describing the node.

Root key generator

This must be a text string beginning with ’uddi:’ that is unique to this UDDI node. The default

value may be sufficient but may contain text, such as ’keyspace_id’, that you should modify to

match your system. If you accept the default value, ensure that it is unique for this UDDI node.

Prefix for generated discoveryURLs

This should be a valid URL.

3. If you are migrating from Version 2 of the UDDI registry, use the table below to perform the following

steps:

v Set any properties from uddi.properties that must remain the same as Version 2.

v Set any properties from uddi.properties that you would like to keep the same (such as

dbMaxResultCount).

 Version 2 UDDI property (set in

uddi.property file)

Version 3 UDDI Property (set via

Administrative Console or UDDI

Administrative Interface)

Recommended Version 3 UDDI

property setting

dbMaxResultCount maximum inquiry response set size You might want to retain the value

from Version 2, but can safely change

this (or use the default)

persister no equivalent Not applicable

defaultLanguage default language code You are recommended to retain the

value from Version 2

operatorName UDDI node ID You must use a valid value for the

UDDI node ID. This will be applied to

your Version 2 data as it is migrated.

maxSearchKeys maximum search keys You might want to retain the value

from Version 2, but can safely change

this (or use the default)

getServletURLprefix Prefix for generated discoveryURLs You should enter a valid value for

your configuration, which should

therefore be the same as the value

used for Version 2.

getServletName no equivalent Not applicable

4. Set any other properties, such as policy values, that you wish to change from the default settings (or

these can be changed at a later time). For an explanation of policies and properties see “UDDI node

settings” on page 493.

5. Click Apply to save your changes.

Important: You cannot change mandatory node properties after initialization. If you do not save your

changes before proceeding to the initialize step, you will have to delete and recreate the

database.

6. After saving your changes, initialize the UDDI node by clicking Initialize, at the top of the pane.

If you are migrating from Version 2 of the UDDI registry, the Version 2 data is migrated now. The

initialization may take some time to complete; to track its progress, return to the node collection page

and click the refresh icon at the top of the Status column. Alternatively, open a second administrative

console window, and use the refresh icon in the same manner. The UDDI node passes through the

following states

418 Administering applications and their environment

a. Initialization pending.

b. Initialization in progress.

c. Migration in progress. (This state will only occur if you are migrating.)

d. Value set creation in progress.

e. Activated.

If you have migrated the node from a previous version, return to Migrating to Version 3 of the UDDI

registry to verify that the migration was successful. If you have created a new node, follow the instructions

in “Using the UDDI registry Installation Verification Program (IVP)” to verify that you have successfully set

up the UDDI node.

Using the UDDI registry Installation Verification Program (IVP)

This topic describes a simple test that you can carry out as an Installation Verification Program (IVP) to

verify that you have deployed a UDDI registry successfully. You should perform this task after you have

followed the instructions in Setting up and Deploying a new UDDI registry.

1. Open a browser window and enter the URL that accesses the UDDI registry User Interface (see

“Displaying the UDDI registry user interface” on page 375).

2. Under the Quick Find heading on the Find tab, click the Business radio button and enter % in the

Starting with field.

3. Click Find. If you have deployed your UDDI registry successfully, the detail frame displays the

business entity which represents this UDDI node. You can click on the business entity to see its detail.

As a further installation verification test, you can publish and find more UDDI entities by using the UDDI

registry User Interface, or you can compile and run one or more of the UDDI registry samples available

through the UDDI registry link on the Samples for WebSphere Application Server page of the IBM

developerWorks WebSphere Web site.

Changing the UDDI registry application environment after deployment

After you have deployed the UDDI registry application, you might want to change its environment. For

example, you might perform initial evaluation of the UDDI registry using a Cloudscape database, and then

want to put the UDDI registry into production using a DB2 database, or you might want to move from a

standalone application server to a network deployment cell.

1. Optional: To move from a default UDDI node to a customized UDDI node, delete the UDDI registry

database and recreate it by completing one of the following tasks, ensuring that you do NOT use the

default node options where specified:

v “Creating a DB2 distributed database for the UDDI registry” on page 393

v “Creating a DB2 for z/OS database for the UDDI registry” on page 396

v “Creating a Cloudscape database for the UDDI registry” on page 399

v “Creating an Oracle database for the UDDI registry” on page 400

Note: Any data saved in the default node (policies, properties and user data) will be lost when you

delete the database. If you do not want to delete the database, you can instead create an

entirely new customized UDDI node in a separate application server. The default UDDI node will

still exist for you to use for test purposes.

2. Optional: To change the database type for the UDDI registry, perform the following steps:

a. Stop the UDDI registry application (click Applications → Enterprise Applications, select the

relevant check box and click Stop).

Chapter 12. Web services 419

http://www.ibm.com/websphere/developer/library/samples/AppServer.html

b. Either change the JNDI name of the existing datasource from datasources/uddids to another value,

or delete the datasource. To display the datasource properties click Resources → JDBC → JDBC

providers > database_type JDBC Provider > [Additional Properties] Data sources >

uddi_datasource.

c. Create the new database by referring to one of the following topics:

v “Creating a DB2 distributed database for the UDDI registry” on page 393

v “Creating a DB2 for z/OS database for the UDDI registry” on page 396

v “Creating a Cloudscape database for the UDDI registry” on page 399

v “Creating an Oracle database for the UDDI registry” on page 400

d. To transfer your UDDI data, use the standard capabilities of the database products to export the

data from the old database, and import it into the new one.

e. Create the new datasource. See “Creating a data source for the UDDI registry” on page 401.

f. Restart the UDDI registry application.

g. Check that you can access your UDDI data, then delete the old database.

Publishing WSDL files

To publish a Web Services Description Language (WSDL) file you need an enterprise application, also

known as an enterprise archive (EAR) file, that contains a Web services-enabled module and has been

deployed into WebSphere Application Server. See Deploying Web services based on Web Services for

Java 2 platform, Enterprise Edition (J2EE).

The purpose of publishing the WSDL file is to provide clients with a description of the Web service,

including the URL identifying the location of the service.

After installing a Web services application, and optionally modifying the endpoint information, you might

need WSDL files containing the updated endpoint information. You can obtain the updated WSDL files by

publishing them to the file system. If you are a client developer or a system administrator, you can use

WSDL files to enable clients to connect to a Web service.

Before you publish a WSDL file, you can configure Web services to specify endpoint information in the

form of URL fragments to enable full URL specification of WSDL ports. Refer to the tasks describing

configuring endpoint URL information.

The WSDL files for each Web services-enabled module are published to the file system location you

specify. You can provide these WSDL files to clients that want to invoke your Web services.

You can specify endpoint information for HTTP ports, Java Message Service (JMS) ports or directly access

Enterprise JavaBeans (EJB) that are acting as Web services.

To publish a WSDL file:

1. Configure the URL endpoint information. Do one of the following depending on what kind of bindings

you are using:

v Configure the URL endpoint information for HTTP bindings.

v Configure the URL endpoint information for JMS bindings.

v Configure the URL endpoint information to directly access enterprise beans.

2. Externalize or publish the WSDL file out of the application. You can complete this task in the following

ways:

v Publish a WSDL file with the administrative console

v Publish a WSDL file through a URL.

v Publish a WSDL file with the wsadmin command tool.

420 Administering applications and their environment

Apply security to the Web service.

WSDL

Web Services Description Language (WSDL) is an Extensible Markup Language (XML)-based description

language. This language was submitted to the World-Wide Web Consortium (W3C) as the industry

standard for describing Web services. The power of WSDL is derived from two main architectural

principles: the ability to describe a set of business operations and the ability to separate the description

into two basic units. These units are a description of the operations and the details of how the operation

and the information associated with it are packaged.

A WSDL document defines services as collections of network endpoints, or ports. In WSDL, the abstract

definition of endpoints and messages is separated from their concrete network deployment or data format

bindings. This separation supports the reuse of abstract definitions: messages, which are abstract

descriptions of exchanged data, and port types, which are abstract collections of operations. The concrete

protocol and data format specifications for a particular port type constitutes a reusable binding. A port is

defined by associating a network address with a reusable binding, and a collection of ports define a

service. Therefore, a WSDL document is composed of several elements. See WSDL architecture for more

information and examples of the WSDL elements.

When creating Web services for WebSphere Application Server, you must first have an implementation

bean that includes a service endpoint interface. Then, you use the Java2WSDL command-line tool to

create a WSDL file that defines the Web services. To learn more about how the WSDL file is used in the

development process, see Developing Web services.

WSDL architecture

Web Services Description Language (WSDL) files are written in Extensible Markup Language (XML). To

learn more about XML, see Web services: Resources for learning.

The following is the structure of the information in a WSDL file:

Web service

interface

definition

Web service

implementation

Port type

Messages

Types

Bindings

Service

Ports

Operation signatures

Parameter definitions

Complex type definitions

Transport protocol and payload format

Service definition element

Supported interface bindings

A WSDL file contains the following parts:

v Web service interface definition

This is part contains the elements, as well as the namespaces.

v Web service implementation

This part contains the definition of the service and ports.

Chapter 12. Web services 421

A WSDL file describes a Web service with the following elements:

portType

The description of the operations and associated messages. The portType element defines abstract

operations.

<portType name="EightBall">

 <operation name="getAnswer">

 <input message="ebs:IngetAnswerRequest"/>

 <output message="ebs:OutgetAnswerResponse"/>

 </operation>

</portType>

message

The description of input and output parameters and return values.

<message name="IngetAnswerRequest">

 <part name="meth1_inType" type="ebs:questionType"/>

</message>

<message name="OutgetAnswerResponse">

 <part name="meth1_outType" type="ebs:answerType"/>

</message>

types

The schema for describing XML types used in the messages.

<types>

 <xsd:schema targetNamespace="...">

 <xsd:complexType name="questionType">

 <xsd:element name="question" type="string"/>

 </xsd:complexType>

 <xsd:complexType name="answerType">

 ...

</types>

binding

The bindings describe the protocol that is used to access a portType, as well as the data formats for the

messages that are defined by a particular portType element.

<binding name="EightBallBinding" type="ebs:EightBall">

 <soap:binding style="rpc" transport="schemas.xmlsoap.org/soap/http">

 <operation name="ebs:getAnswer">

 <soap:operation soapAction="urn:EightBall"/>

 <input>

 <soap:body namespace="urn:EightBall" ... />

 ...

The services and ports define the location of the Web service.

Service

The service contains the Web service name and a list of ports.

Ports

The ports contain the location of the Web service and the binding used for service access.

422 Administering applications and their environment

<service name="EightBall">

 <port binding="ebs:EightBallBinding" name="EightBallPort">

 <soap:address location="localhost:8080/axis/EightBall"/>

 </port>

</service>

Multipart WSDL best practices

WebSphere Application Server supports deployment of Web services using a multipart Web Services

Description Language (WSDL) file. In multipart WSDL files, an implementation WSDL file contains the

wsdl:service. This implementation WSDL flie imports an interface WSDL file, which contains the other

WSDL constructs. This supports multiple Web services using the same WSDL interface definition.

The <wsdl:import> element indicates a reference to another WSDL file. If the <wsdl:import> element

location attribute does not contain a URL, that is, it contains only a file name, and does not begin with

http://, https:// or file://, the imported file must be located in the same directory and must not

contain a relative path component. For example, if META-INF/wsdl/A_Impl.wsdl is in your module and

contains the <wsdl:import=″A.wsdl″ namespace=″...″/> import statement, the A.wsdl file must also be

located in the module META-INF/wsdl directory.

It is recommended that you place all WSDL files in either the META-INF/wsdl directory, if you are using

Enterprise JavaBeans (EJB), or the WEB-INF/wsdl directory, if you are using JavaBeans components, even

if relative imports are located within the WSDL files. Otherwise, implications exist with the WSDL

publication when you use a path like <location=″../interfaces/A_Interface.wsdl″namespace=″...″/>.

Using a path like this example fails because the presence of the relative path, regardless of whether the

file is located at that path or not. If the location is a Web address, it must be readable at both deployment

and server startup.

WSDL publication

You can publish the files located in the META-INF/wsdl or the WEB-INF/wsdl directory through either a URL

address or file, including WSDL or XML Schema Definition (XSD) files. For example, if the file referenced

in the <wsdl-file> element of the webservices.xml deployment descriptor is located in the META-INF/wsdl

or the WEB-INF/wsdl directory, it is publishable. If the files imported by the <wsdl-file> are located in the

wsdl/ directory or its subdirectory, they are publishable.

If the WSDL file referenced by the <wsdl-file> element is located in a directory other than wsdl, or its

subdirectories, the file and its imported files, either WSDL or XSD files, which are in the same directory,

are copied to the wsdl directory without modification when the application is installed. These types of files

can also be published.

If the <wsdl-file> imports a file located in a different directory (a directory that is not -INF/wsdl or a

subdirectory), the file is not copied to the wsdl directory and not available for publishing.

Configuring endpoint URL information for JMS bindings

WebSphere Application Server supports the use of the Java Message Service (JMS) API to transport Web

services requests, as an alternative to using HTTP.

Review the topic Using the Java Message Service to transport Web services requests.

Configuring a service endpoint is necessary to connect Web service clients to any Web services among

the components being assembled or to any external Web services. You can configure the endpoint URL

information for JMS during application installation

Chapter 12. Web services 423

In this task, enter the JMS endpoint URL prefix to use for each Web service-enabled Enterprise

JavaBeans (EJB) Java archive (JAR) file that belong to the application. The JMS endpoint URLs are

included in the Web Service Description Language (WSDL) files published for clients to use.

You can specify HTTP URL prefixes for Web services that are accessed through HTTP by using the

Provide HTTP endpoint URL information panel in the administrative console. These prefixes are used to

form complete endpoint addresses that are included in WSDL files when published.

You can specify JMS URL prefixes by using the Provide JMS and EJB endpoint URL information panel in

the administrative console during or after application installation.

To configure JMS URL prefixes:

1. Open the administrative console.

2. Click Applications > Enterprise Applications > application_instance > Provide JMS and EJB

endpoint URL information.

3. Locate the list of Web services modules that are accessible through JMS transport.

4. Type the JMS URL fragment in the URL fragment field. Enter a URL fragment that is a prefix to the

initial URL part that is obtained by examining the deployment information of the Web service. See the

usage scenario following this task for more information.

The value that you enter is used to define the location attribute of the port soap:address element within

the WSDL file that is published using the application_name_ExtendedWSDLFiles.zip or the

application_name_WSDLFiles.zip file on the Publish WSDL zip files panel.

You have a Web service that is accessible through the JMS transport and configured with JMS bindings.

Suppose an application called StockQuoteService contains an EJB JAR file that is named StockQuoteEJB,

which contains one or more Web services that are accessible through the JMS transport. In Using the

Java Message Service to transport Web services requests you defined a queue with the Java Naming and

Directory Interface (JNDI) name of jms/StockQuote_Q, and a connection factory with the JNDI name of

jms/StockQuote_CF, for your application. In this example, you specify the following string as the JMS URL

prefix within the Provide JMS and EJB endpoint URL information panel:

jms:/queue?destination=jms/StockQuote_Q&connectionFactory=jms/StockQuote_CF

The WSDL publisher uses this partial URL string to produce the actual JMS URL for each port component

that is defined in the module. The targetService=<port_name> string is added to the end of the JMS URL,

for example:

jms:/queue?destination=jms/StockQuote_Q&connectionFactory=jms/StockQuote_CF&targetService=getQuote

The published WSDL file is used by clients to invoke the Web service.

Publish WSDL files.

Provide JMS and EJB endpoint URL information

Use this page to specify endpoint URL fragments for Web services accessed through SOAP and Java

Message Service (JMS) or directly as enterprise JavaBean (EJBs). Fragments are used to form complete

endpoint addresses included in published Web Services Description Language (WSDL) files.

To view this administrative console page, click Applications >Enterprise Applications >

application_instance > Provide JMS and EJB endpoint URL information.

You can specify a fragment of the endpoint URL to be used in each Web service module. In a published

WSDL file, the URL defining the target endpoint address is found in the location attribute of the port’s

soap:address element.

424 Administering applications and their environment

If you are using Web services modules that are configured to use JMS or configured to access EJBs

directly, these modules are listed on this panel.

URL fragment for JMS

Specifies a URL fragment for Web services accessed through a JMS transport. You can enter a value that

is used to define the soap:address of a Web service. When WSDL files are published, a URL is formed

using this fragment and is contained in the WSDL files.

The URL fragment that is entered as a value is a prefix to which the targetService=property is appended

to form a complete JMS URL endpoint. The default value is obtained by examining the installed service’s

deployment information, for example, jms:/queue?destination=jms/MyQueue&connectionFactory=jms/MyCF.

This information is obtained from the Web service’s configured JMS endpoint, which is a Message Driven

Bean (MDB) defined by the endpointEnabler command-line tool. You can modify the URL fragment, for

example, by adding properties. The URL fragment is combined with the targetService property to form the

complete URL, for example, jms:/queue?destination=jms/MyQueue&connectionFactory=jms/MyCF
&priority=5&targetService=GetQuote.

URL fragment for EJB

Specifies a URL fragment for Web services accessed through an EJB binding. You can enter a value used

to define the location attribute of the port’s generic:address element of a Web service. This port address

is contained in the WSDL zip file when the zip file is published using the

application_name_ExtendedWSDLFiles.zip field on the Publish WSDL zip file panel.

The URL fragment value entered is a suffix, which is appended to the initial part of the URL obtained by

examining the Web service’s deployment information. For example, the following URL fragment can be

obtained from the EJB’s deployment information: wsejb:/
com.acme.sample.MyStockQuoteHome?jndiName=ejb/MyStockQuoteHome.

In this case, you can enter the following information in the URL fragment field,

jndiProviderURL=corbaloc:iiop:myhost.mycompany.com:2809, which results in this endpoint URL,

wsejb:/com.acme.sample.MyStockQuoteHome?jndiName=ejb/MyStockQuoteHome
&jndiProviderURL=corbaloc:iiop:myhost.mycompany.com:2809.

Configuring the scope of a Web service port

When a Web service application is deployed into WebSphere Application Server, an instance is created for

each application or module. The instance contains deployment information for the Web module or

enterprise bean module, including implementation scope, client bindings and deployment descriptor

information. There are three levels of scope that can be set: application, session and request.

Deploy the Web service into WebSphere Application Server.

Web Services for Java 2 platform Enterprise Edition (J2EE) specifies that Web services implementations

must be stateless. Therefore, to maintain specification compliance, the scope can remain at the application

level because the state relevant to the individual sessions level or the requests level is not supposed to be

maintained in the implementation. If you want to deviate from the specification and want to access a

different JavaBean instance, because you are looking for information that is located in another JavaBean

implementation, the scope settings need to change.

The setting that you configure for the scope determines how frequently a new instance of a service

implementation class is created for the Web service ports in a module. Use this task to configure the

scope of a Web service port.

You can also configure the scope with the wsadmin tool.

Chapter 12. Web services 425

To change the scope setting through the administrative console:

1. Open the administrative console.

2. Click Applications >Enterprise Applications > application_instance > Manage Modules >

module_instance >Web Services implementation Scope.

3. Set the scope to application, session or request. The application scope causes the same instance of

the implementation to be used for all requests on the application. The session scope causes the same

instance to be used for all requests in each session. The request scope causes a new instance to be

used for every request. For example, with the scope set to application, every message that comes to

the server accesses the same JavaBean instance because that is the way the scope settings are

configured.

4. Click Apply.

5. Click OK.

The scope for a Web service port is configured.

Now you can finish any other configurations, start or stop the application, and verify the expected behavior

of the Web service.

Web services implementation scope

The scope value determines when a new instance of a service implementation is created for the Web

service ports in a module. When the scope value is set to application, the same instance of the

implementation is used for all requests on the application. When the scope value is set to session, the

same instance is used for all requests on each session. When the scope value is set to request, a new

instance is created for every request.

Use this page to view and manage the scope of the ports of a Web service application.

To view this administrative console page, click Applications >Enterprise Applications >

application_instance > Manage Modules > module_instance >Web services implementation scope.

 Related tasks

 “Configuring the scope of a Web service port” on page 425
When a Web service application is deployed into WebSphere Application Server, an instance is created

for each application or module. The instance contains deployment information for the Web module or

enterprise bean module, including implementation scope, client bindings and deployment descriptor

information. There are three levels of scope that can be set: application, session and request.

Port

Specifies a port name for a Web service. A module can contain one or more Web services, each of which

can contain one or more ports.

Web service

Specifies the name of the Web service. A module can contain one or more Web services.

URI

Specifies the Uniform Resource Identifier (URI) of the binding file that defines the scope. The URI is

relative to the Web module.

Scope

Specifies the scope of a port. The valid values for scope are request, session and application.

426 Administering applications and their environment

Configuring Web services applications with the wsadmin tool

You can use the wsadmin scripting tool to complete the several tasks for a Web services application.

Develop a Web services application.

The WebSphere Application Server wsadmin tool provides the ability to run scripts. You can use the

wsadmin tool to manage a WebSphere Application Server installation, as well as configuration, application

deployment, and server run-time operations. The WebSphere Application Server only supports the Jacl

and Jython scripting languages.

To use the wsadmin tool to configure a Web services application or publish a Web Services Description

Language (WSDL) file:

1. Launch a scripting command.

2. Follow the steps in one of the following topics, depending on what task you want to complete:

v Configure Web service client bindings.

v Configure Web service client preferred port mappings .

v Configure Web service client port information .

v Configure the scope of a Web service port .

3. Configure Web service client preferred port mappings

You have configured Web services applications with the wsadmin tool.

WSIF system management and administration

Here is an overview of where and how WSIF is installed as part of WebSphere Application Server, and a

set of links to specific information about other aspects of managing your WSIF system.

The Web Services Invocation Framework (WSIF) is provided in a JAR file named

com.ibm.ws.runtime_6.1.0.jar. The JAR file contains the core WSIF classes, and the Java, EJB, SOAP

over HTTP and SOAP over JMS providers. Additional providers are packaged as separate JAR files.

When you install WebSphere Application Server, the com.ibm.ws.runtime_6.1.0.jar file is put on the

WebSphere or Java virtual machine (JVM) class path.

WSIF requires no further configuration. WSIF is a thin abstraction layer between application code and the

relevant invocation infrastructure.

For specific information about other aspects of managing your WSIF system, see the following topics:

v Maintaining the WSIF properties file

v Enabling security for WSIF

v Trace and logging for WSIF

v Troubleshooting the Web Services Invocation Framework

v WSIF messages

v WSIF - Known restrictions

Maintaining the WSIF properties file

The Web Services Invocation Framework (WSIF) properties are stored in the

com.ibm.ws.runtime_6.1.0.jar file, in a properties file named wsif.properties.

The com.ibm.ws.runtime_6.1.0.jar file is located in the app_server_root/plugins directory, where

app_server_root is the root directory for your installation of IBM WebSphere Application Server.

Chapter 12. Web services 427

http://www.w3.org/TR/2000/NOTE-SOAP-20000508/

You must keep the “as shipped” wsif.properties file on the class path, so that WSIF can find it and the

client administrator can use it to configure WSIF. However if you make any changes to the file, you do not

replace the original copy in the com.ibm.ws.runtime_6.1.0.jar file. Instead, you save the modified version

in the app_server_root/lib/properties directory.

Here is a copy of the initial contents of the wsif.properties file. All the possible properties are listed and

described.

Two properties are used to override which WSIFProvider is selected when there

exists multiple providers supporting the same namespace URI. These properties are:

wsif.provider.default.CLASSNAME=N

wsif.provider.uri.M.CLASSNAME=URI

CLASSNAME is the WSIFProvider class name

N is the number of following default wsif.provider.uri.M.CLASSNAME properties

M is a number from 1 to N to uniquely identify each wsif.provider.uri.M.CLASSNAME

property key.

For example the following two properties would override the default SOAP provider

to be the Apache SOAP provider:

wsif.provider.default.org.apache.wsif.providers.soap.ApacheSOAP.WSIFDynamicProvider_ApacheSOAP=1

wsif.provider.uri.1.org.apache.wsif.providers.soap.ApacheSOAP.WSIFDynamicProvider_ApacheSOAP=\

http://schemas.xmlsoap.org/wsdl/soap/

maximum number of milliseconds to wait for a response to a synchronous request.

Default value if not defined is to wait forever.

Timeout properties are only used by providers which support timeouts.

wsif.syncrequest.timeout=10000

maximum number of seconds to wait for a response to an async request.

if not defined on invalid defaults to no timeout

Timeout properties are only used by providers which support timeouts.

wsif.asyncrequest.timeout=60

To enable your legacy Web services to continue to work with WSIF, you might need to change the default

WSIF SOAP provider back to the former Apache SOAP provider.

Enabling security for WSIF

Here are the steps to be taken to enable the Web Services Invocation Framework (WSIF) to interact with

a security manager.

WSIF interacts with a security manager in the following ways:

v WSIF runs in the Java 2 platform, Enterprise Edition (J2EE) security context without modification.

v When WSIF is run under a J2EE container, port implementations can use the security context to pass

on security tokens or credentials as necessary.

v WSIF implementations can automatically convert J2EE security context into appropriate context for

onward services.

For WSIF to interact effectively with the WebSphere Application Server security manager, complete the

following step:

To load the WSDL file, enable the FilePermission attribute in the was.policy file. This permission is

required when a WSDL file is referred to using the file:// protocol.

Tips for troubleshooting the Web Services Invocation Framework

A set of specific tips to help you troubleshoot problems you experience with the Web Services Invocation

Framework (WSIF).

428 Administering applications and their environment

For information about resolving WebSphere-level problems, see Diagnosing and fixing problems.

To identify and resolve Web Services Invocation Framework (WSIF)-related problems, you can use the

standard WebSphere Application Server trace and logging facilities. If you encounter a problem that you

think might be related to WSIF, you can check for error messages in the WebSphere Application Server

administrative console, and in the application server stdout.log file. You can also enable the application

server debug trace to provide a detailed exception dump.

A list of the WSIF run-time system messages, with details of what each message means, is provided in

Message reference for WSIF.

A list of the main known restrictions that apply when using WSIF is provided in WSIF - Known restrictions.

Here is a checklist of major WSIF activities, with advice on common problems associated with each

activity:

Create service

 Handcrafted Web Services Description Language (WSDL) can cause numerous problems. To help

ensure that your WSDL is valid, use a tool such as WebSphere Studio Application Developer

(WSAD) to create your Web service. For more details about creating services with WSDL in a

distributed or a z/OS environment, read the WSIF and WSDL chapter of Developing and deploying

applications PDF book.

Define transport mechanism

For the Java Message Service (JMS), check that you have set up the Java Naming and Directory

Interface (JNDI) correctly, and created the necessary connection factories and queues.

 For SOAP, make sure that the deployment descriptor file dds.xml is correct - preferably by creating

it using WebSphere Studio Application Developer (WSAD) or similar tooling.

Create client - Java code

 Follow the correct format for creating a WSIF service, port, operation and message. For examples

of correct code, refer to the Address Book Sample in the Developing and deploying applications

PDF book.

Compile code (client and service)

Check that the build path against code is correct, and that it contains the correct levels of JAR

files.

 Create a valid EAR file for your service in preparation for deployment to a Web server.

Deploy service

When you install and deploy the service EAR file, check carefully any messages given when the

service is deployed.

Server setup and start

 Make sure that the WebSphere Application Server server.policy file (in the /properties

directory) has the correct security settings. For more information about setting up security, see the

Enabling security for WSIF topic in the Securing applications and their environment PDF book.

WSIF setup

 Check that the wsif.properties file is correctly set up. For more information about this file, refer

to the Maintaining the WSIF properties file topic in the Administering applications and their

environment PDF book.

Run client

 Either check that you have defined the class path correctly to include references to your client

classes, WSIF JAR files and any other necessary JAR files, or (preferably) run your client using

the WebSphere Application Server launchClient tool.

 Either check that you have defined the class path correctly to include references to your client

classes, WSIF JAR files and any other necessary JAR files, or (preferably) run your client using

Chapter 12. Web services 429

http://www.w3.org/TR/2000/NOTE-SOAP-20000508/

the WebSphere Application Server launch client tool. For more information about this tool, refer to

the Running application clients chapter of the Developing and deploying applications PDF book.

Here is a set of tips to help you troubleshoot commonly-experienced problems:

v “No class definition” errors received when running client code.

v “Cannot find WSDL” error.

v Your Web service EAR file does not install correctly onto the application server.

v There is a permissions problem or security error.

v Using WSIF with multiple clients causes a SOAP parsing error.

v Using the same names for JMS messaging queues and queue connection factories that run on

application servers on different machines can cause JNDI lookup errors.

v A JAX-RPC client running on WebSphere Application Server Version 5 uses SOAP over JMS to invoke

a Web service running on a Version 5 application server. No user ID or password is required on the

target MQ Series queue. After the application server is migrated to Version 6, and using Version 6

default messaging, client requests fail because basic authentication is now enabled.

v The current WSIF default SOAP provider (the IBM Web Service SOAP provider) does not fully

interoperate with services that are running on the former (Apache SOAP) provider.

“No class definition” errors received when running client code.

This problem usually indicates an error in the class path setup. Check that the relevant JAR files are

included.

“Cannot find WSDL” error.

Some likely causes are:

v The application server is not running.

v The server location and port number in the WSDL are not correct.

v The WSDL is badly formed (check the error messages in the application server stdout.log file).

v The application server has not been restarted since the service was installed.

You might also try the following checks:

v Can you load the WSDL into your Web browser from the location specified in the error message?

v Can you load the corresponding WSDL binding files into your Web browser?

Your Web service EAR file does not install correctly onto the application server.

It is likely that the EAR file is badly formed. Verify the installation by completing the following steps:

v For an EJB binding, run the WebSphere Application Server tool \bin\dumpnamespace. This tool lists the

current contents of the JNDI directory.

v For a SOAP over HTTP binding, open the http://pathToServer/WebServiceName/admin/list.jsp page

(if you have the SOAP administration pages installed). This page lists all currently installed Web

services.

v For a SOAP over JMS binding, complete the following checks:

– Check that the queue manager is running.

– Check that the necessary queues are defined.

– Check the JNDI setup.

– Use the “display context” option in the jmsadmin tool to list the current JNDI definitions.

– Check that the Remote Procedure Call (RPC) router is running.

There is a permissions problem or security error.

Check that the WebSphere Application Server server.policy file (in the /properties directory) has the

correct security settings. For more information about setting up security, see the Enabling security for

WSIF topic in the Securing applications and their environment PDF book.

430 Administering applications and their environment

Using WSIF with multiple clients causes a SOAP parsing error.

Before you deploy a Web service to WebSphere Application Server, you must decide on the scope of the

Web service. The deployment descriptor file dds.xml for the Web service includes the following line:

 <isd:provider type="java" scope="Application"

You can set the Scope attribute to Application or Session. The default setting is Application, and this

value is correct if each request to the Web service does not require objects to be maintained for longer

than a single instance. If Scope is set to Application the objects are not available to another request

during the execution of the single instance, and they are released on completion. If your Web service

needs objects to be maintained for multiple requests, and to be unique within each request, you must set

the scope to Session. If Scope is set to Session, the objects are not available to another request during the

life of the session, and they are released on completion of the session. If scope is set to Application

instead of Session, you might get the following SOAP error:

SOAPException: SOAP-ENV:ClientParsing error, response was:

FWK005 parse may not be called while parsing.;

nested exception is:

[SOAPException: faultCode=SOAP-ENV:Client; msg=Parsing error, response was:

FWK005 parse may not be called while parsing.;

 targetException=org.xml.sax.SAXException:

FWK005 parse may not be called while parsing.]

Using the same names for JMS messaging queues and queue connection factories

that run on application servers on different machines can cause JNDI lookup

errors.

You should not use the same names for messaging queues and queue connection factories that run on

application servers on different machines, because WSIF always looks first for JMS destinations locally,

and only uses the full JNDI reference if it cannot find the destination locally. For example, if you run a Web

service on a remote machine, and have an application server running locally that uses the same names

for the messaging queues and queue connection factories, then WSIF will find and use the local queues

even if the remote JNDI destination is provided in full in the WSDL service definition.

A JAX-RPC client running on WebSphere Application Server Version 5 uses SOAP

over JMS to invoke a Web service running on a Version 5 application server. No

user ID or password is required on the target MQ Series queue. After the

application server is migrated to Version 6, and using Version 6 default

messaging, client requests fail because basic authentication is now enabled.

The problem appears as a log message:

SibMessage W [:] CWSIT0009W: A client request failed in the application server

with endpoint <endpoint_name> in bus <your_bus> with reason: CWSIT0016E:

The user ID null failed authentication in bus <your_bus>.

For the steps to take to resolve the problem, see the following service integration technologies

troubleshooting tip: After you migrate an application server to WebSphere Application Server Version 6,

existing Web services clients can no longer use SOAP over JMS to access services hosted on the

migrated server. This tip can be found in the Tips for troubleshooting service integration bus security

section.

Chapter 12. Web services 431

The current WSIF default SOAP provider (the IBM Web Service SOAP provider)

does not fully interoperable with services that are running on the former (Apache

SOAP) provider.

This restriction is due to the fact that the IBM Web Service SOAP provider is designed to interoperate fully

with a JAX-RPC compliant Web service, and Apache SOAP cannot provide such a service. To enable

interoperation, modify either your Web service or the WSIF default SOAP provider. For information about

how to modify your provider, read the chapter WSIF SOAP provider: working with legacy applications in

the Developing and deploying applications PDF book.

Trace and logging for WSIF

The Web Services Invocation Framework (WSIF) offers trace points at the opening and closing of ports,

the invocation of services, and the responses from services. WSIF also includes a SimpleLog utility that

can run trace when you are using WSIF outside of WebSphere Application Server.

If you want to enable trace for the WSIF API within WebSphere Application Server, and have trace, stdout

and stderr for the application server written to a well-known location, see Enabling tracing and logging.

To trace the WSIF API, you need to specify the following trace string:

wsif=all=enabled

To enable the WSIF SimpleLog utility, through which you can run trace when using WSIF outside of

WebSphere Application Server, complete the following steps:

1. Create a file named commons-logging.properties with the following contents:

org.apache.commons.logging.LogFactory=org.apache.commons.logging.impl.LogFactoryImpl

org.apache.commons.logging.Log=org.apache.commons.logging.impl.SimpleLog

2. Create a file named simplelog.properties with the following contents:

org.apache.commons.logging.simplelog.defaultlog=trace

org.apache.commons.logging.simplelog.showShortLogname=true

org.apache.commons.logging.simplelog.showdatetime=true

3. Put both these files, and the commons-logging.jar file, on the class path.

The SimpleLog utility writes trace to the System.err file.

WSIF (Web Services Invocation Framework) messages

This topic contains a list of the WSIF run-time system messages, with details of what each message

means.

WebSphere system messages are logged from a variety of sources, including application server

components and applications. Messages logged by application server components and associated IBM

products start with a unique message identifier that indicates the component or application that issued the

message.

For more information about the message identifier format, see the topic Message reference.

WSIF0001E: An extension registry was not found for the element type “{0}”

Explanation: Parameters: {0} element type. No extension registry was found for the element type

specified.

 User Response: Add the appropriate extension registry to the port factory in your code.

WSIF0002E: A failure occurred in loading WSDL from “{0}”

Explanation: Parameters: {0} location of the WSDL file. The WSDL file could not be found at the

location specified or did not parse correctly

 User Response: Check that the location of the WSDL file is correct. Check that any network

connections required are available. Check that the WSDL file contains valid WSDL.

432 Administering applications and their environment

WSIF0003W: An error occurred finding pluggable providers: {0}

Explanation: Parameters: {0} specific details about the error. There was a problem locating a

WSIF pluggable provider using the J2SE 1.3 JAR file extensions to support service providers

architecture. The WSIF trace file will contain the full exception details.

 User Response: Verify that a META-INF/services/org.apache.wsif.spi.WSIFProvider file exists in a

provider jar, that each class referenced in the META-INF file exists in the class path, and that each

class implements org.apache.wsif.spi.WSIFProvider. The class in error will be ignored and WSIF

will continue locating other pluggable providers.

WSIF0004E: WSDL contains an operation type “{0}” which is not supported for “{1}”

Explanation: Parameters: {0} name of the operation type specified. {1} name of the portType for

the operation. An operation type which is not supported has been specified in the WSDL.

 User Response: Remove any operations of the unsupported type from the WSDL. If the operation

is required then make sure all messages have been correctly specified for the operation.

WSIF0005E: An error occurred when invoking the method “{1}” . (“{0}”)

Explanation: Parameters: {0} name of communication type. For example EJB or Apache SOAP.

{1} name of the method that failed. An error was encountered when invoking a method on the Web

service using the communication shown in brackets.

 User Response: Check that the method exists on the Web service and that the correct parts have

been added to the operation as described in the WSDL. Network problems might be a cause if the

method is remote and so check any required connections.

WSIF0006W: Multiple WSIFProvider found supporting the same namespace URI “{0}” . Found (“{1}”

) Explanation: Parameters: {0} the namespace URI. {1} a list of the WSIFProvider found.. There

are multiple org.apache.wsif.spi.WSIFProvider classes in the service provider path that support the

same namespace URI.

 User Response: A following WSIF0007I message will be issued notifying which WSIPFProvider

will be used. Which WSIFProvider is chosen is based on settings in the wsif.properties file, or if

not defined in the properties, the last WSIFProvider found will be used. See the wsif.properties file

for more details on how to define which provider should be used to support a namespace URI.

WSIF0007I: Using WSIFProvider “{0}” for namespaceURI “{1}”

Explanation: Parameters: {0} the classname of the WSIFProvider being used. {1} the

namespaceURI the provider will be used to support.. Either a previous WSIF0006W message has

been issued or the SetDynamicWSIFProvider method has been used to override the provider used

to support a namespaceURI.

 User Response: None. See also WSIF0006W.

WSIF0008W: WSIFDefaultCorrelationService removing correlator due to timeout. ID:“{0}”

Explanation: Parameters: {0} the ID of the correlator being removed from the correlation service.

A stored correlator is being removed from the correlation service due to its timeout expiring.

 User Response: Determine why no response has been received for the asynchronous request

within the timeout period. The wsif.asyncrequest.timeout property of the wsif.properties file defines

the length of the timeout period.

WSIF0009I: Using correlation service - “{0}”

Explanation: Parameters: {0} the name of the correlation service being used. This identifies the

name of the correlation service that will be used to process asynchronous requests.

 User Response: None. If a correlation service other than the default WSIF supplied one is

required, ensure that it is correctly registered in the JNDI java:comp/wsif/WSIFCorrelationService

namespace.

WSIF0010E: Exception thrown while processing asynchronous response - “{0}”

Explanation: Parameters: {0} the error message string of the exception. While processing the

response from an executeRequestResponseAsync call an exception was thrown.

 User Response: Use the exception error message string to determine the cause of the error. The

WSIF trace will have more details on the error including the exception stack trace.

Chapter 12. Web services 433

WSIF0011I: Preferred port “{0}” was not available

Explanation: Parameters: {0} the user’s preferred port. The preferred port set by the user on

org.apache.wsif.WSIFService is not available

 User Response: None unless this message appears for long periods of time in which case the

user might want to pick a different port as their preferred port.

WSIF - Known restrictions

This topic lists the main known restrictions that apply when using WSIF.

Threading

WSIF is not thread-safe.

External Standards

WSIF supports:

v SOAP Version 1.1 (not 1.2 or later).

v WSDL Version 1.1 (not 1.2 or later).

WSIF does not provide WS-I compliance, and it does not support the Java API for XML-based

Remote Procedure Calls (JAX-RPC) Version 1.1 (or later).

Full schema parsing

WSIF does not support full schema parsing. For example, WSDL references in complex types in

the schema are not handled, and attributes are not handled.

 XML Schema “redefine” elements are not handled and are ignored.

SOAP WSIF does not support:

v SOAP headers that are passed as <parts>.

v Unreferenced attachments in SOAP responses.

v Document Encoded style SOAP messages.

Note: This is not primarily a WSIF restriction. Although you can specify Document Encoded

style in WSDL, it is not generally considered to be a valid option and is not supported by

the Web Services Interoperability Organization (WS-I).

SOAP provider interoperability

The current WSIF default SOAP provider (the IBM Web Service SOAP provider) does not fully

interoperate with services that are running on the former (Apache SOAP) provider. This restriction

is due to the fact that the IBM Web Service SOAP provider is designed to interoperate fully with a

JAX-RPC compliant Web service, and Apache SOAP cannot provide such a service. For

information on how to overcome this restriction, see WSIF SOAP provider: working with legacy

applications.

 WSIF’s support for SOAP faults is restricted to SOAP faults originating from a Web service that

runs using the IBM Web Service SOAP provider.

Note: This is not primarily a WSIF restriction. The current SOAP faults specification does not

prescribe how to encode a SOAP fault so that it maps to a Java exception. Consequently,

each Web service run-time environment currently decides on its own SOAP fault format.

The IBM Web Service SOAP provider can understand its own response SOAP faults, but

not the SOAP faults from another provider.

Type mappings

The current WSIF default SOAP provider (the IBM Web Service SOAP provider) conforms to the

JAX-RPC type mapping rules that were finalized after the former (Apache SOAP) provider was

created. The majority of types are mapped the same way by both providers. The exceptions are:

xsd:date, xsd:dateTime, xsd:hexBinary and xsd:QName. Both client and service need to use the

same mapping rules if any of these four types are used. Below is a table detailing the mapping

rules for these four types:

434 Administering applications and their environment

http://www.ws-i.org/

XML Data Type Apache SOAP Java Mapping JAX-RPC Java Mapping

xsd:date java.util.Date Not supported

xsd:dateTime Not supported java.util.Calendar

xsd:hexBinary Hexadecimal string byte []

xsd:QName org.apache.soap.util.xml.QName javax.xml.namespace.QName

Arrays and complex types

WSIF does not support general complex types, it only handles complex types that map to Java

Beans. To use schema complex types, you must write your own custom serializers. The specific

complex type and array support for WSIF outbound invocation of Web services is as follows:

v WSIF supports Java classes generated by WebSphere Studio Application Developer -

Integration Edition (WSAD-IE) message generators (the normal case when WSDL files are

downloaded from somewhere else). The WSAD-IE-based generation happens automatically

when you use the BPEL editor, or the generation actions available on the Enterprise Services

context menu, or the Business Integration toolbar.

v WSIF does not support Java beans generated by other tools, including the base WSAD tool.

v For WSAD-IE generated Java beans, attributes defined in the WSDL do not work. That is to say

that these attributes, although they appear in the Java beans generated to represent the

complex type, do not appear in the SOAP request created by WSIF.

v WSIF does not support arrays when they are a field of a Java bean. That is to say, WSIF only

supports an array that is passed in as a named <part>. If an array is wrappered inside a Java

bean, the array is not serialized in the same way.

Object Serialization

WSIF does not support serialization of objects across different releases.

Asynchronous invocation

WSIF supports synchronous invocation for all providers. For the JMS and the SOAP over JMS

providers, WSIF also supports asynchronous invocation. You should call the supportsAsync()

method before trying to execute an asynchronous operation.

The EJB provider

The target service of the WSIF EJB provider must be a remote-home interface, it cannot be an

EJB local-home interface. In addition, the EJB stub classes must be available on the client class

path.

Running outside WebSphere Application Server

WSIF is not supported for use outside WebSphere Application Server.

Using the UDDI registry

Throughout this information, the term UDDI registry refers to the UDDI registry component that is supplied

as part of WebSphere Application Server.

Select the topic you are interested in to either open documentation locally or to find information about how

to locate documentation.

v Overview of the Version 3 UDDI registry

v UDDI registry terminology

v Getting started with the UDDI registry

v Migrating the UDDI registry

v Setting up and deploying a new UDDI registry

v Removing and reinstalling the UDDI registry

v Applying an upgrade to the UDDI registry

v Configuring the UDDI registry application

Chapter 12. Web services 435

v Managing the UDDI registry

v UDDI registry client programming

v The UDDI registry user interface

v UDDI registry management interfaces

v Java API for XML Registries (JAXR) Provider for UDDI

v UDDI registry troubleshooting

Overview of the Version 3 UDDI registry

The Universal Description, Discovery and Integration (UDDI) specification defines a way to publish and

discover information about Web services. The term ’Web service’ describes specific business functionality

exposed by a company, usually through an Internet connection, to allow another company, or its

subsidiaries, or software program to use the service. You can find the UDDI specification on the OASIS

UDDI Web page.

The UDDI specification defines a standard for the visibility, reusability and manageability essential for a

Service Oriented Architecture (SOA) registry service.

The UDDI registry is a directory for Web services that is implemented using the UDDI specification. It is a

component of WebSphere Application Server.

A critical component of IBM’s on-demand Service Oriented Architecture, the UDDI registry solves the

problem of discovery of technical components for an enterprise and its partners by:

v Providing control, flexibility and confidentiality so that an enterprise can protect its e-business

investments

v Increasing efficiency by making it easier to identify technical assets

v Leveraging existing infrastructures

For example, the UDDI registry could be used in the following way within a larger enterprise:

A company has a legacy application that provides telephone numbers and Human Resources (HR)

information about employees. This is turned into a Web service and published to the registry. A developer

in the same company needs to write an application for a procurement function that also needs to provide

HR information to the supplier. The application should allow the supplier to have access to the employee

account codes once the employee provides his name or serial number. Before Web services, the

developer would have been in one of the following situations:

v The developer would not have known about the similar application

v The developer would have known about the application, but been unable to reuse it due to technical

barriers

v The developer would have known about the application and reused it only after significant time and

negotiation

With UDDI, the developer can search for the Web service and reuse the existing technical component in

their new application for the supplier in a matter of minutes. The developer saves time and gets the

application up and running sooner than they would have otherwise, thereby increasing efficiency and

saving the company time and money. The UDDI registry was the first version 2 standard-compliant UDDI

registry for private enterprise work. The UDDI registry in this version of WebSphere Application Server

builds upon previous versions and:

v Supports the UDDI Version 3.0 specification in addition to the Version 1.0 and Version 2.0 standard

APIs.

v Leverages the proven, reliable WebSphere Application Server technology

v Uses a relational database, such as DB2, for its persistent store

436 Administering applications and their environment

http://www.uddi.org/specification.html
http://www.uddi.org/specification.html

What’s new in UDDI Version 3

The main aspects of the UDDI Version 3 specification that are provided within this version of WebSphere

Application Server are as follows (there are also some additional capabilities provided by the UDDI registry

in WebSphere Application Server which are described in a section below) :

Improved recognition of the importance of Private UDDI Registries

These are registries that are installed, owned, managed and controlled by a separate body such as a

department within a company, a company, an industry consortium or an e-marketplace.

Publisher-assigned keys

This allows the publisher of a UDDI entity to specify its key, rather than having a unique key assigned by

the registry. As well as allowing more human-friendly, URI-based keys, this also makes it easier to manage

multiple registries.

UDDI Information Model improvements

The UDDI data structures have been extended in a number of ways which improve the ability of UDDI to

represent businesses and services via metadata.

Security Enhancements

The introduction of digital signatures provides additional security. Each of the main UDDI entities can be

digitally signed, thus improving the integrity and trustworthiness of UDDI data.

Ownership transfer APIs

These allow the ownership of a UDDI entity to be transferred from one publisher to another.

UDDI Policy

Allows the behavior of a UDDI registry to be defined by setting policy, thus recognizing the various

different environments in which a UDDI registry will be used.

HTTP GET support for UDDI entities

The HTTP GET service is extended beyond the scope for discovery URLs that is a part of the UDDI

Version 2 specification. The service allows HTTP GET to be used to access XML representations of each

of the UDDI data structures.

Additional Capabilities provided by the UDDI registry

The Version 3 UDDI registry provided in this version of WebSphere Application Server provides the

following capabilities in addition to support for the UDDI Version 3 specification:

Version 2 UDDI Inquiry and Publish SOAP API compatibility

Backward compatibility is maintained for the Version 1 and Version 2 SOAP Inquiry and Publish APIs.

UDDI Administrative Console extension

The WebSphere Application Server Administrative Console includes a section which allows administrators

to manage UDDI-specific aspects of their WebSphere environment. This includes the ability to set defaults

for initialization of the UDDI node (such as its node ID), and to set the UDDI Version 3 Policy values.

Chapter 12. Web services 437

UDDI registry Administrative Interface

A JMX administrative interface allows administrators to manage UDDI-specific aspects of the WebSphere

environment programmatically.

Multi-database support

The UDDI data is persisted to a registry database. The following database products that are supported by

WebSphere Application Server are also supported for use as the persistence store for the UDDI registry.

Please refer to the Detailed system requirements page for specific details on supported levels.

v Cloudscape version 10.1

v DB2 version 8

v Oracle versions 9i and 10g

Documentation is provided elsewhere in this information center for setting up remote access to those

databases for which this is supported.

User-defined Value Set support

This allows users to create their own categorization schemes or value sets, in addition to the standard

schemes, such as NAICS, that are provided with the UDDI registry.

UDDI Utility Tools

UDDI Utility Tools allow importing and exporting of entities using the UDDI Version 2 API.

UDDI user interface

The UDDI user console supports the Inquiry and Publish APIs providing a similar level of support for the

Version 3 APIs as was offered for UDDI Version 2 in WebSphere Application Server Version 5.

UDDI Version 3 Client

The Java client for UDDI Version 3 is a Java client for UDDI which handles the construction of raw SOAP

requests for the client application. It is a JAX-RPC client and uses Version 3 datatypes generated from the

UDDI Version 3 WSDL and schema. These datatypes are serialized or deserialized to the XML which

constitutes the raw UDDI requests.

UDDI Version 2 Clients

The following clients for UDDI Version 2 requests are provided:

v UDDI4J - a Java class library for issuing UDDI requests. This was provided in WebSphere Application

Server Version 5 for both UDDI Version 1 requests (uddi4j.jar) and Version 2 requests (uddi4jv2.jar).

These class libraries continue to be supported, as part of the com.ibm.uddi_1.0.0.jar file, but are now

both deprecated.

v JAXR - the Java API for XML Registries is a Java client API for accessing UDDI and ebXML registries.

WebSphere Application Server provides a JAXR Provider for accessing the UDDI registry. It conforms to

the JAXR 1.0 specification.

v EJB - an EJB interface for issuing UDDI version 2 requests. This continues to be supported but is now

deprecated.

UDDI registry terminology

Throughout the UDDI documentation in this Information Center the directory location of WebSphere

Application Server is referred to as app_server_root.

438 Administering applications and their environment

http://www.ibm.com/support/docview.wss?rs=180&uid=swg27006921

UDDI Definitions

bindingTemplate

Technical information about a service entry point and construction specifications.

 businessEntity

Information about the party who publishes information about a family of services.

 businessService

Descriptive information about a particular service.

 Customized UDDI node

This is a UDDI node that is initialized with customized settings for the UDDI properties and UDDI

policies; in particular this kind of node will have non-default values for those properties that are

read-only after initialization.

 A customized UDDI node is recommended for anything other than simple testing purposes (for

which a default UDDI node is sufficient). You can set up a customized UDDI node by following the

instructions in Setting up a customized UDDI node.

 When a customized UDDI node is first started, you must set values for certain properties and then

initialize the node (using the Administrative Console or UDDI Administrative Interface), before the

node is ready to accept UDDI requests. The properties that need to be set control characteristics

of the UDDI node that cannot be changed after initialization.

 An advantage of using a customized UDDI node is that it allows you to set these properties to

values that are suitable for your environment and usage of UDDI.

 After a customized UDDI node has been initialized, it differs from a default UDDI node only in that

it uses customized UDDI property and policy values.

Default UDDI node

This is a UDDI node which has been initialized with default settings for the UDDI properties and

UDDI policies, including the properties that are read-only after initialization. A default UDDI node is

intended for test purposes and as a simple way to become familiar with the behavior of the UDDI

registry.

 You can set up a default UDDI node in two ways. The first is to run the uddiDeploy.jacl script,

specifying the ’default’ option, in which case the UDDI database will be a Cloudscape database

that is created for you automatically.

 The second is to create the database yourself, specifying the default option, which for Cloudscape

is the DEFAULT parameter when using the UDDIDerbyCreate.jar file, and for DB2 or Oracle the

SQL script insert_default_database_indicator.

 After a default UDDI node has been initialized, it differs from a customized UDDI node only in that

it uses default UDDI property and policy values.

Policy profile

A set of UDDI policies. The default policy profile is the profile created when the default UDDI node

is created. In this instance, the nodeID and root key generator are set to read only and are

unchangeable after installation.

 publisherAssertion

Information about a relationship between two parties, asserted by one or both.

 tModel

Short for technical model.

 A tModel is a data structure representing a reusable concept, such as a Web service type, a

protocol used by Web services, or a category system.

Chapter 12. Web services 439

tModel keys within a service description are a technical ″fingerprint″ that you can use to trace the

compatibility origins of a given service. They provide a common point of reference that allows you

to identify compatible services.

 tModels are used to establish the existence of a variety of concepts and to point to their technical

definitions. tModels that represent value sets such as category, identifier, and relationship systems

are used to provide additional data to the UDDI core entities to facilitate discovery along a number

of dimensions. This additional data is captured in keyedReferences that reside in category Bags,

identifierBags, or publisherAssertions. The tModelKey attributes in these keyedReferences refer to

the value set that relates to the concept or namespace being represented. The keyValues contain

the actual values from that value set. In some cases keyNames are significant, such as for

describing relationships and when using the general keywords value set. In all other cases,

however, keyNames are used to provide a human readable version of what is in the keyValue.

UDDI Application

The UDDI registry J2EE application.

 UDDI entitlement

An entitlement that a UDDI user or publisher has within a UDDI registry, such as the capability to

publish keyGenerators, or the tier to which the publisher is assigned (in other words, the number

of entities that the publisher is entitled to publish). Each UDDI publisher will have a range of

settings for the various UDDI entitlements. A UDDI entitlement is sometimes referred to as a ’user

entitlement’, or as the UDDI publisher’s set of ’user entitlements’.

 UDDI Node

A set of Web Services supporting at least one of the UDDI API sets, which supports interaction

with UDDI data through the UDDI APIs. There is no direct mapping between a UDDI node and a

WebSphere Application Server node. A UDDI node consists of an instance of the UDDI application

running in an application server (or a cluster of UDDI application instances running in a cluster of

application servers) together with an instance of the UDDI database containing UDDI data.

 UDDI node initialization

The process of node initialization sets up values in the UDDI database, and establishes the

″personality″ of the UDDI node. A UDDI node cannot accept UDDI API requests until it has been

initialized.

 UDDI node state

Describes the current state of the UDDI node, as opposed to the state of the UDDI application

(which is either stopped or started). The state of a UDDI node can be one of not initialized,

initialization pending, initialization in progress, migration pending, migration in progress, value set

creation pending, value set creation in progress, activated or deactivated.

 UDDI NodeId

A unique identifier of a UDDI node.

 UDDI Policy

A UDDI policy is a statement of required and expected behavior of a UDDI registry, specified via

policy values for the various policies defined in the UDDI Version Specification.

 UDDI property

A value for a property which controls the personality or behavior of a UDDI node.

 UDDI publisher

A WebSphere user who is entitled to publish UDDI entities to a specified UDDI registry. A UDDI

publisher is sometimes referred to as a ’UDDI user’, or simply as a ’publisher’ when used in a

UDDI context.

 UDDI registry

A UDDI registry comprises one or more UDDI nodes. The UDDI registry in this version of

WebSphere Application Server supports single-node UDDI registries only.

440 Administering applications and their environment

UDDI Tier

Determines the number of UDDI entities of each type (business, services per business, bindings

per service, tModel, publisher assertion) that a UDDI publisher is entitled to publish. Each UDDI

publisher will be assigned (either by default or explicitly by a UDDI administrator) to a particular

tier, and will not be able to publish more entities than are allowed for that tier. There are some

predefined tiers supplied with the UDDI registry, and a UDDI administrator can create additional

tiers. A UDDI tier is often referred to simply as a ’tier’ when used in a UDDI context.

 Version 2 UDDI registry

A shorthand term used to refer to an UDDI registry implementation which supports Version 2 of the

UDDI specification (and also Version 1). A Version 2 UDDI registry is included in WebSphere

Application Server Network Deployment Version 5.x.

 Version 3 UDDI registry

A shorthand term used to refer to an UDDI registry implementation which supports Version 3 of the

UDDI specification (and also Versions 1 and 2). A Version 3 UDDI registry is included in

WebSphere Application Server. It should be noted that the term ’Version 3 UDDI registry’ does not

indicate a registry which only supports UDDI version 3 requests.

 The following table shows how the various versions of the UDDI registry relate to the relevant OASIS

specification and WebSphere Application Server level:

 UDDI registry Version OASIS UDDI specification levels

supported

Supported on WebSphere Application

Server version

1.1 v UDDI Version 1

v UDDI Version 2

4.0.2

1.1.1 v UDDI Version 1

v UDDI Version 2

4.0.3 and later

2.0.x v UDDI Version 1

v UDDI Version 2

5.0.x

2.1.x v UDDI Version 1

v UDDI Version 2

5.1.x

3.0.2 v UDDI Version 1

v UDDI Version 2.0.4 (APIs), Version

2.0.3 (data structures)

v UDDI Version 3.0.2

6.0 and later

UDDI registry management interfaces

This topic explains interfaces and tools that you can use to manage UDDI nodes programmatically.

UDDI registry Administrative (JMX) Interface

The UDDI registry Administrative (JMX) Interface provides a Java API that allows you to manage runtime

configuration settings to control UDDI registry runtime behavior, such as setting the maximum number of

results that UDDI users can receive for inquiry requests, or creating publish limits for UDDI publishers.

Sample client code is provided for you to build on.

User Defined Value Set Support in the UDDI registry

User Defined Value Set Support in the UDDI registry explains the tooling provided to manage your own

categorization value sets, including loading value set data into a UDDI registry node.

Chapter 12. Web services 441

http://www.uddi.org/specification.html
http://www.uddi.org/specification.html

UDDI Utility Tools

UDDI Utility Tools explains the tooling and Java API for promoting version 2 entities from one UDDI

registry to another while retaining entity keys. This is particularly useful for publishing canonical tModels

with a predefined key.

UDDI registry Administrative (JMX) Interface

Each WebSphere UDDI registry application registers an MBean with an MBean identifier of ‘UddiNode’.

This MBean may be used by client applications to inspect and manage the runtime configuration of a

UDDI application. This includes managing the activation state of and information about a UDDI node,

updating properties and policies, setting publish tier limits, registration of UDDI publishers, and controlling

value set support.

You can read and invoke the UddiNode attributes and operations using standard JMX interfaces. A client

utility class UddiNodeProxy.java provides a ready-made application to connect to a UddiNode MBean and

perform all the available operations. Example classes are also provided to drive UddiNodeProxy and

demonstrate how to use the various UDDI management data types.

When WebSphere Application Server security is enabled, you can only invoke the operations of the

UddiNode MBean if you are a user in an administrative role. The operations which make updates require

the Administrator or Operator role, while get operations can be performed by Administator, Operator,

Configurator and Monitor roles.

UddiNodeProxy Usage

The following .jar files are required for compilation:

v app_server_root/plugins/com.ibm.uddi_1.0.0.jar

v app_server_root/runtimes/com.ibm.ws.admin.client_6.1.0.jar

The UddiNodeProxy class provides a utility method to programmatically interrogate the UddiNode MBean

and output all the available attributes, operations and notifications to System.out. For each operation, the

return type, operation name and parameter types are output as well as the impact property which indicates

how the operation changes the state of the UddiNode MBean (and the UDDI node). As for all MBeans, the

value for the impact property can be one of:

ACTION:

state of MBean will be changed

INFO: of the MBean remains unchanged and will return information

ACTION_INFO:

state of the MBean will change and return some information

UNKNOWN:

the impact of invoking the operation is not known

1. Invoke outputMBeanInterface:uddiNode.outputMBeanInterface();

Expected output:

java.lang.String getNodeID() [INFO]

(getter for attribute nodeID)

java.lang.String getNodeState() [INFO]

(getter for attribute nodeState)

java.lang.String getNodeDescription() [INFO]

(getter for attribute nodeDescription)

java.lang.String getNodeApplicationName() [INFO]

(getter for attribute nodeApplicationName)

void activateNode() [ACTION]

(activates UDDI node)

void deactivateNode() [ACTION]

442 Administering applications and their environment

(deactivates UDDI node)

void initNode() [ACTION]

(initializes Uddi node)

com.ibm.uddi.v3.management.Property getProperty(java.lang.String propertyId) [INFO]

(returns UDDI Property)

com.ibm.uddi.v3.management.PolicyGroup getPolicyGroup(java.lang.String policyGroupId) [INFO]

(returns UDDI PolicyGroup)

com.ibm.uddi.v3.management.Policy getPolicy(java.lang.String policyId) [INFO]

(returns UDDI Policy)

void updatePolicy(com.ibm.uddi.v3.management.Policy policy) [ACTION]

(updates UDDI Policy)

void updateProperty(com.ibm.uddi.v3.management.ConfigurationProperty property) [ACTION]

(updates UDDI Property)

void updateProperties(java.util.List properties) [ACTION]

(updates collection of UDDI properties)

void updatePolicies(java.util.List policies) [ACTION]

(updates collection of UDDI policies)

java.util.List getProperties() [INFO]

(returns the collection of UDDI properties)

java.util.List getPolicyGroups() [INFO]

(returns collection of policy groups (note that the policies are not populated))

java.util.List getValueSets() [INFO]

(returns collection of value set status objects)

com.ibm.uddi.v3.management.ValueSetStatus getValueSetDetail(java.lang.String tModelKey) [INFO]

(returns status for a value set)

com.ibm.uddi.v3.management.ValueSetProperty getValueSetProperty(java.lang.String tModelKey,java.lang.

String valueSetPropertyId) [INFO]

(returns a property of a value set)

void updateValueSet(com.ibm.uddi.v3.management.ValueSetStatus valueSet) [ACTION]

(updates value set status)

void updateValueSets(java.util.List valueSets) [ACTION]

(updates multiple value sets)

void loadValueSet(java.lang.String filePath,java.lang.String tModelKey) [ACTION]

(loads values for a value set from a UDDI registry V3/V2 taxonomy data file.)

void loadValueSet(com.ibm.uddi.v3.management.ValueSetData valueSetData) [ACTION]

(loads values for a value set with the given tModel key.)

void changeValueSetTModelKey(java.lang.String oldTModelKey,java.lang.String newTModelKey) [ACTION]

(replaces all occurrences of values belonging to original tModelKey to new tModelKey.)

void unloadValueSet(java.lang.String tModelKey) [ACTION]

(unloads values for a value set with the given tModel key.)

java.lang.Boolean isExistingValueSet(java.lang.String tModelKey) [INFO]

(Determine if Value Set data exists for the given tModel key.)

java.util.List getTierInfos() [INFO]

(returns the collection of UDDI tier descriptions.)

java.util.List getLimitInfos() [INFO]

(returns the collection of UDDI limit descriptions.)

java.util.List getEntitlementInfos() [INFO]

(returns the collection of UDDI entitlements.)

com.ibm.uddi.v3.management.Tier getTierDetail(java.lang.String tierId) [INFO]

(returns UDDI Tier detail, specifying limits to the number of entities that can be published.)

com.ibm.uddi.v3.management.Tier createTier(com.ibm.uddi.v3.management.Tier tier) [ACTION]

(creates a UDDI Tier, specifying limits to the number of entities that can be published. Returns the

new tier ID.)

com.ibm.uddi.v3.management.Tier updateTier(com.ibm.uddi.v3.management.Tier tier) [ACTION]

(updates UDDI Tier details. Returns the updated Tier.)

void deleteTier(java.lang.String tierId) [ACTION]

(deletes the UDDI Tier, if it not in use.)

void setDefaultTier(java.lang.String tierId) [ACTION]

(Specifies the tier that auto registered UDDI publishers are assigned to.)

java.lang.Integer getUserCount(java.lang.String tierId) [INFO]

(returns the number of UDDI publisher within the specified tier.)

com.ibm.uddi.v3.management.TierInfo getUserTier(java.lang.String userId) [INFO]

(returns UDDI Tier information, specifying the tier this user belongs to.)

com.ibm.uddi.v3.management.UddiUser getUddiUser(java.lang.String userId) [INFO]

(returns UDDI user details, including tier and entitlements details.)

java.util.List getUserInfos() [INFO]

(returns the collection of UDDI user names and the tier they belong to.)

Chapter 12. Web services 443

void createUddiUser(com.ibm.uddi.v3.management.UddiUser user) [ACTION]

(creates a new UDDI user.)

void createUddiUsers(java.util.List users) [ACTION]

(creates the collection of new UDDI users.)

void updateUddiUser(com.ibm.uddi.v3.management.UddiUser user) [ACTION]

(updates UDDI user details.)

void deleteUddiUser(java.lang.String userId) [ACTION]

(deletes UDDI publisher.)

void assignTier(java.util.List userIds,java.lang.String tierId) [ACTION]

(sets the tier for a List of users.)

notificationInfo: description=default UDDI event,descriptorType=notification,severity=(6),name=

uddi.node.event

notificationInfo: description=null,descriptorType=notification,severity=(6),name=jmx.attribute.

changed

See ManageNodeInfoSample class for sample code that demonstrates the attributes and operations

described in this section.

Managing UDDI Node States and Attributes

UDDI nodes can be in one of several states, depending on the way the UDDI application was installed (as

a default configuration or one where the administrator controls when initialization occurs). The UddiNode

MBean provides four read only attributes: nodeID, nodeState, nodeDescription and nodeApplicationName.

In addition the following MBean operations change UDDI node state: activateNode, deactivateNode and

initNode.

nodeID

The node ID is the unique identifier for a UDDI node. If the UDDI application is installed as a default

configuration the node ID is automatically generated. If the UDDI application is set up manually, the node

ID is set by the administrator. It must be a valid UDDI key.

 String nodeID = uddiNode.getNode();

 System.out.println("node ID: " + nodeId);

nodeState

The nodeState attribute can have one of the following values:

 nodeState value English text associated with state

node.state.uninitialized Not initialized

node.state.initialized Initialized

node.state.initPending Initialization pending

node.state.initInProgress Initialization in progress

node.state.initMigrationPending Migration pending

node.state.initMigration Migration in progress

node.state.initValueSetCreationPending Value set creation pending

node.state.initValueSetCreation Value set creation in progress

node.state.activated Activated

node.state.deactivated Deactivated

node.state.unknown Unknown

After installing a UDDI application using the default configuration, the UDDI node will be in activated state,

that is, ready to receive and process UDDI API requests. The node ID and root key generator and some

444 Administering applications and their environment

http://www.ibm.com/websphere/developer/library/samples/AppServer.html

other properties are generated and cannot be changed. For a manually installed UDDI application where

you want to specify the UDDI node ID and root key generator values, starting the UDDI application will put

the UDDI node into initPending state. In this state, you can update all writable values up until the point you

invoke the initNode operation. The initNode operation loads base tModels and value set data and writes all

the configuration data to the UDDI node’s database. During initialization the state is initInProgress. When

initialization completes, the state changes momentarily to initialized and settles at activated. At this point

the state can only be switched between activated and deactivated using deactivateNode and activateNode

MBean operations.

Each node state value is in fact a message key which can be looked up in the messages.properties

resource bundle. The attribute value can be retrieved using the getNodeState method of UddiNodeProxy:

1. Invoke getNodeState:

 String nodeStateKey = uddiNode.getNodeState();

2. Look up translated text from ResourceBundle and output:

 String messages = "com.ibm.uddi.v3.management.messages";

 ResourceBundle bundle = ResourceBundle.getBundle(messages,

 Locale.ENGLISH);

 String nodeStateText = bundle.getString(nodeStateKey);

 System.out.println("node state: " + nodeStateText);

nodeDescription

You can get the administrator assigned description for the UDDI node using the getNodeDescription

method of UddiNodeProxy:

1. Invoke getNodeDescription and output:

 String nodeDescription = uddiNode.getNodeDescription();

 System.out.println("node description: " + nodeDescription);

nodeApplicationName

The nodeApplicationName attribute is useful for discovering where the UDDI application that corresponds

to the UDDI node is installed. The value will be a concatenation of the cell, node and server names,

separated by colons. Retrieve the application location using the getApplicationId method of

UddiNodeProxy:

1. Invoke getApplicationId and output:

 String nodeApplicationId = uddiNode.getApplicationId();

 System.out.println("node application location: " +

 nodeApplicationId);

activateNode

Changes the state of the UDDI node to activated, if the UDDI node was previously deactivated.

1. . Invoke activateNode:

 uddiNode.activateNode();

deactivateNode

Changes the state of the UDDI node to deactivated, if the UDDI node was previously activated.

1. Invoke deactivateNode:

 uddiNode.deactivateNode();

Chapter 12. Web services 445

initNode

Causes UDDI node initialization, and when this completes the state of the UDDI node is ‘activated’.

1. Invoke initNode:

 uddiNode.initNode();

Managing Configuration Properties

UDDI node runtime behavior is affected by the setting of several configuration properties. The UddiNode

MBean provides operations to inspect and update their values, as follows: getProperties, getProperty,

updateProperty and updateProperties.

See ManagePropertiesSample class for sample code that demonstrates the operations described in this

section.

getProperties

Returns collection of all configuration properties as ConfigurationProperty objects.

1. Invoke getProperties:

 List properties = uddiNode.getProperties();

2. Cast each collection member to ConfigurationProperty:

 if (properties != null) {

 for (Iterator iter = properties.iterator(); iter.hasNext();) {

 ConfigurationProperty property =

 (ConfigurationProperty) iter.next();

 System.out.println(property);

 }

 }

Once you have the ConfigurationProperty objects you can inspect attributes like the ID, value, type,

whether the property is read only, required for initialization, and get name and description message keys.

For example, invoking the toString method returns results similar to:

 ConfigurationProperty

 id: operatorNodeIDValue

 nameKey: property.name.operatorNodeIDValue

 descriptionKey: property.desc.operatorNodeIDValue

 type: java.lang.String

 value: uddi:capnscarlet:capnscarlet:server1:default

 unitsKey:

 readOnly: true

 required: true

 usingMessageKeys: false

 validValues: none

You can use the nameKey and descriptionKey values to look up the translated name and description for a

given locale, using the messages.properties resource in the sample package.

getProperty

Returns ConfigurationProperty object with the specified ID. Available property IDs are specified in

PropertyConstants together with descriptions of the purpose of the corresponding properties.

1. Invoke getProperty:

 ConfigurationProperty property =

 uddiNode.getProperty(PropertyConstants.DATABASE_MAX_RESULT_COUNT);

2. To retrieve the value of the property you could use the getValue method which returns an Object, but

in this case, the property is of type integer, so it’s easier to retrieve the value using the convenience

method getIntegerValue:

446 Administering applications and their environment

http://www.ibm.com/websphere/developer/library/samples/AppServer.html

int maxResults = property.getIntegerValue();

updateProperty

Updates the value of the ConfigurationProperty object with the specified ID. Available property IDs are

specified in PropertyConstants together with descriptions of the purpose of the corresponding properties.

Although you can invoke the setter methods in a ConfigurationProperty object, the only value that is

updated in the UDDI node is the value. So to update a property, the steps are typically:

1. Create a ConfigurationProperty object and set its ID:

 ConfigurationProperty defaultLanguage = new ConfigurationProperty();

 defaultLanguage.setId(PropertyConstants.DEFAULT_LANGUAGE);

2. Set the value:

 defaultLanguage.setStringValue("ja");

3. Invoke updateProperty:

 uddiNode.updateProperty(defaultLanguage);

updateProperties

Updates several ConfigurationProperty objects in a single request. Set up the ConfigurationProperty

objects as for the updateProperty operation.

1. Add updated properties to a List:

 List updatedProperties = new ArrayList();

 updatedProperties.add(updatedProperty1);

 updatedProperties.add(updatedProperty2);

2. Invoke updateProperties:

 uddiNode.updateProperties(updatedProperties);

Managing Policies

Policies affecting behavior of the UDDI API are managed using the following UddiNode operations:

getPolicyGroups, getPolicyGroup, getPolicy, updatePolicy and updatePolicies.

See ManagePoliciesSample class for sample code that demonstrates the attributes and operations

described in this section.

getPolicyGroups

Returns collection of all policy groups as PolicyGroup objects.

1. Invoke getPolicyGroups:

 List policyGroups = uddiNode.getPolicyGroups();

2. Cast each collection member to PolicyGroup:

 if (policyGroups != null) {

 for (Iterator iter = policyGroups.iterator(); iter.hasNext();) {

 PolicyGroup policyGroup = (PolicyGroup) iter.next();

 System.out.println(policyGroup);

 }

 }

Each policy group has an ID, name and description key, which you can look up in the messages.properties

resource in the sample package. Although the PolicyGroup class does have a getPolicies method,

PolicyGroup objects that are returned by the getPolicyGroups operation do not contain any Policy objects.

Because of this behavior, clients can determine the known policy groups, and their IDs, without retrieving

the entire set of policies in one request. To retrieve the policies within a policy group, use the

getPolicyGroup operation.

Chapter 12. Web services 447

http://www.ibm.com/websphere/developer/library/samples/AppServer.html

getPolicyGroup

Returns the PolicyGroup object with the supplied ID.

1. Convert policy group ID to a String:

 String groupId = Integer.toString(PolicyConstants.REG_APIS_GROUP);

2. Invoke getPolicyGroup:

 PolicyGroup policyGroup = uddiNode.getPolicyGroup(groupId);

getPolicy

Returns the Policy object for the specified ID. Like a ConfigurationProperty, a Policy object has an ID,

name and description keys, type, value and indicators specifying if the policy is read only or required for

node initialization.

1. Convert policy ID to a String:

 String policyId = Integer.toString(

 PolicyConstants.REG_AUTHORIZATION_FOR_INQUIRY_API);

2. Invoke getPolicy:

 Policy policy = uddiNode.getPolicy(policyId);

updatePolicy

Updates the value of the Policy object with the specified ID. Available policy IDs are specified in

PolicyConstants together with descriptions of the purpose of the corresponding policies. Although you can

invoke the setter methods in a Policy object, the only value that is updated in the UDDI node is the value.

So to update a policy, the steps are typically:

1. Create a Policy object and set its ID:

 Policy updatedPolicy = new Policy();

 String policyId =

 Integer.toString(PolicyConstants.REG_SUPPORTS_UUID_KEYS);

 updatedPolicy.setId(policyId);

2. Set the value:

 updatedPolicy.setBooleanValue(true);

3. Invoke updatePolicy:

 uddiNode.updatePolicy(updatedPolicy);

updatePolicies

Updates several Policy objects in a single request. Set up the Policy objects as for the updatePolicy

operation.

1. Add updated policies to a List:

 List updatedPolicies = new ArrayList();

 updatedPolicies.add(updatedPolicy1);

 updatedPolicies.add(updatedPolicy2);

2. Invoke updatePolicies:

 uddiNode.updatePolicies(updatedPolicies);

Managing Tiers

Tiers control how many of each type of UDDI entities a publisher can save in the UDDI registry. A tier has

an ID, an administrator defined name and description, and a set of limits, one for each type of entity. Tiers

are managed using the following UddiNode operations: createTier, getTierDetail, getTierInfos,

getLimitInfos, setDefaultTier, updateTier, deleteTier and getUserCount.

448 Administering applications and their environment

See ManageTiersSample class for sample code that demonstrates the attributes and operations described

in this section.

createTier

Creates a new tier, with specified publish limits for each UDDI entity.

1. Set tier name and description in a TierInfo object.

 String tierName = "Tier 100";

 String tierDescription = "A tier with all limits set to 100.";

 TierInfo tierInfo = new TierInfo(null, tierName, tierDescription);

2. Define Limit objects for each UDDI entity:

 List limits = new ArrayList();

 Limit businessLimit = new Limit();

 businessLimit.setIntegerValue(100);

 businessLimit.setId(LimitConstants.BUSINESS_LIMIT);

 Limit serviceLimit = new Limit();

 serviceLimit.setIntegerValue(100);

 serviceLimit.setId(LimitConstants.SERVICE_LIMIT);

 Limit bindingLimit = new Limit();

 bindingLimit.setIntegerValue(100);

 bindingLimit.setId(LimitConstants.BINDING_LIMIT);

 Limit tModelLimit = new Limit();

 tModelLimit.setIntegerValue(100);

 tModelLimit.setId(LimitConstants.TMODEL_LIMIT);

 Limit assertionLimit = new Limit();

 assertionLimit.setIntegerValue(100);

 assertionLimit.setId(LimitConstants.ASSERTION_LIMIT);

 limits.add(businessLimit);

 limits.add(serviceLimit);

 limits.add(bindingLimit);

 limits.add(tModelLimit);

 limits.add(assertionLimit);

3. Create Tier object:

 Tier tier = new Tier(tierInfo, limits);

4. Invoke create Tier and retrieve created tier:

 Tier createdTier = uddiNode.createTier(tier);

5. Inspect generated tier ID of created tier:

 tierId = createdTier.getId();

 System.out.println("created tier has ID: " + tierId);

getTierDetail

Returns the Tier object for the given tier ID. The Tier class has getter methods for the tier ID, tier name

and description (as set by the administrator), and the collection of Limit objects which specify how many of

each UDDI entity type may be published by UDDI publishers allocated to the tier. The isDefault method

indicates whether the tier is the default tier, that is, the tier that is allocated to UDDI publishers when auto

registration is enabled.

1. Invoke getTierDetail:

 Tier tier = uddiNode.getTierDetail("2");

updateTier

Chapter 12. Web services 449

http://www.ibm.com/websphere/developer/library/samples/AppServer.html

Updates tier contents with the supplied Tier object.

1. Update an existing Tier object (which may have been newly instantiated, or returned by the

getTierDetail or createTier operations). This example retains the tier name and description, and all the

limit values except the limit being updated:

 modifiedTier.setName(tier.getName());

 modifiedTier.setDescription(tier.getDescription());

 Limit tModelLimit = new Limit();

 tModelLimit.setId(LimitConstants.TMODEL_LIMIT);

 tModelLimit.setIntegerValue(50);

 List updatedLimits = new ArrayList();

 updatedLimits.add(tModelLimit);

 modifiedTier.setLimits(updatedLimits);

2. Invoke updateTier:

 uddiNode.updateTier(modifiedTier);

getTierInfos

Returns collection of lightweight tier descriptor objects (TierInfo) which contain the tier ID, and tier name

and description values, and whether the tier is the default tier.

1. Invoke getTierInfos:

 List tierInfos = uddiNode.getTierInfos();

2. Output content of each TierInfo:

 if (tierInfos != null) {

 for (Iterator iter = tierInfos.iterator(); iter.hasNext();) {

 TierInfo tierInfo = (TierInfo) iter.next();

 System.out.println(tierInfo);

 }

 }

setDefaultTier

Specifies the tier with the given tier ID is the default tier. The default tier is the tier that is allocated to

UDDI publishers when auto registration is enabled. Typically this would be set to a tier with low publish

limits to prevent casual users publishing too many entities.

1. Invoke setDefaultTier:

 uddiNode.setDefaultTier("4");

deleteTier

Removes the tier with the given tier ID. Tiers can only be removed if they have no UDDI publishers

assigned to them, and the tier is not the default tier.

1. Invoke deleteTier:

 uddiNode.deleteTier("4");

getUserCount

Returns the number of UDDI publishers assigned to tier specified by the tier ID.

1. Invoke getUserCount:

 Integer userCount = uddiNode.getUserCount("4");

 System.out.println("users in tier 4: " + userCount.intValue());

getLimitInfos

450 Administering applications and their environment

Returns collection of Limit objects representing the limit values for each type of UDDI entity. Limits are

used in Tier objects.

1. Invoke getLimitInfos:

 List limits = uddiNode.getLimitInfos();

2. Output the ID and limit value for each Limit object:

 for (Iterator iter = limits.iterator(); iter.hasNext();) {

 Limit limit = (Limit) iter.next();

 System.out.println("limit ID: "

 + limit.getId()

 + ", limit value: "

 + limit.getIntegerValue());

 }

Managing UDDI Publishers

UDDI publishers are managed using the UddiNode MBean operations createUddiUser, createUddiUsers,

updateUddiUser, deleteUddiUser, getUddiUser, getUserInfos, getEntitlementInfos, assignTier, getUserTier.

An example is provided for each, making use of the UddiNodeProxy client class.

See ManagePublishersSample class for sample code that demonstrates the attributes and operations

described in this section.

createUddiUser

Registers a single UDDI publisher, in a specified tier, with specified entitlements. The UddiUser class

represents the UDDI publisher, and this is constructed using a user ID, a TierInfo object which specifies

the tier ID to allocate the UDDI publisher to, and a collection of Entitlement objects which specify what the

UDDI publisher is permitted to do.

Tip: to allocate the UDDI publisher default entitlements, set the entitlements parameter to null.

1. Create the UddiUser object:

 UddiUser user = new UddiUser("user1", new TierInfo("3"), null);

2. Invoke createUddiUser:

 uddiNode.createUddiUser(user);

createUddiUsers

Registers multiple UDDI publishers. This example shows how to register 7 UDDI publishers in one call,

with default entitlements.

1. Create TierInfo objects for tiers that publishers will be allocated to:

 TierInfo tier1 = new TierInfo("1");

 TierInfo tier4 = new TierInfo("4");

2. Create UddiUser objects for each UDDI publisher, specifying tier to allocate to:

 UddiUser publisher1 = new UddiUser("Publisher1", tier4, null);

 UddiUser publisher2 = new UddiUser("Publisher2", tier4, null);

 UddiUser publisher3 = new UddiUser("Publisher3", tier4, null);

 UddiUser publisher4 = new UddiUser("Publisher4", tier1, null);

 UddiUser publisher5 = new UddiUser("Publisher5", tier1, null);

 UddiUser cts1 = new UddiUser("cts1", tier4, null);

 UddiUser cts2 = new UddiUser("cts2", tier4, null);

3. Add the UddiUser objects to a List:

 List uddiUsers = new ArrayList();

 uddiUsers.add(publisher1);

 uddiUsers.add(publisher2);

Chapter 12. Web services 451

http://www.ibm.com/websphere/developer/library/samples/AppServer.html

uddiUsers.add(publisher3);

 uddiUsers.add(publisher4);

 uddiUsers.add(publisher5);

 uddiUsers.add(cts1);

 uddiUsers.add(cts2);

4. Invoke createUddiUsers:

 uddiNode.createUddiUsers(uddiUsers);

updateUddiUser

Updates a UDDI publisher with the details in the supplied UddiUser object. This is typically used to change

the tier of one UDDI publisher or update their entitlements. Tip: only supply the entitlements you want to

update – the remainder of available entitlements will retain their existing value.

1. Create Entitlement objects with appropriate permission. (the entitlement IDs are found in

EntitlementConstants:

 Entitlement publishUuiDKeyGenerator =

 new Entitlement(PUBLISH_UUID_KEY_GENERATOR, true);

 Entitlement publishWithUuidKey =

 new Entitlement(PUBLISH_WITH_UUID_KEY, true);

2. Add Entitlement objects to a List:

 List entitlements = new ArrayList();

 entitlements.add(publishUuiDKeyGenerator);

 entitlements.add(publishWithUuidKey);

3. Update a UddiUser object with the updated entitlements:

 user.setEntitlements(entitlements);

4. Invoke updateUddiUser:

 uddiNode.updateUddiUser(user);

getUddiUser

Retrieves details about a UDDI publisher in the form of a UddiUser object. This specifies the UDDI

publisher ID, information about the tier they are assigned to and the entitlements they possess.

1. Invoke getUddiUser:

 UddiUser user1 = uddiNode.getUddiUser("user1");

2. Output the contents of UddiUser:

 System.out.println("retrieved user: " + user1);

getUserInfos

Returns a collection of UserInfo objects. Each UserInfo represents a UDDI publisher known to the UDDI

node, and the name of the tier they are allocated to. To get details about a specific UDDI publisher,

including the tier ID, and entitlements, use the getUddiUser operation.

1. Invoke getUserInfos:

 List registeredUsers = uddiNode.getUserInfos();

2. Output the UserInfo objects:

 System.out.println("retrieved registered users: ");

 System.out.println(registeredUsers);

getEntitlementInfos

Returns a collection of Entitlement objects. Each entitlement is a property that controls whether permission

is granted to a UDDI publisher to perform a specified action.

1. Invoke getEntitlementInfos:

 List entitlementInfos = uddiNode.getEntitlementInfos();

452 Administering applications and their environment

2. Specify where to find message resources:

 String messages = "com.ibm.uddi.v3.management.messages";

 ResourceBundle bundle = ResourceBundle.getBundle(

 messages, Locale.ENGLISH);

3. Iterate through the Entitlement objects, displaying the ID, name and description:

 for (Iterator iter = entitlementInfos.iterator(); iter.hasNext();) {

 Entitlement entitlement = (Entitlement) iter.next();

 StringBuffer entitlementOutput = new StringBuffer();

 String entitlementId = entitlement.getId();

 String entitlementName =

 bundle.getString(entitlement.getNameKey());

 String entitlementDescription =

 bundle.getString(entitlement.getDescriptionKey());

 entitlementOutput.append("Entitlement id: ");

 entitlementOutput.append(entitlementId);

 entitlementOutput.append("\n name: ");

 entitlementOutput.append(entitlementName);

 entitlementOutput.append("\n description: ");

 entitlementOutput.append(entitlementDescription);

 System.out.println(entitlementOutput.toString());

 }

deleteUddiUser

Removes the UDDI publisher with the specified user name (ID) from the UDDI registry.

1. Invoke deleteUddiUser:

 uddiNode.deleteUddiUser("user1");

assignTier

Assigns UDDI publishers with supplied IDs to the specified tier. This is useful when you want to restrict

several UDDI publishers, perhaps by assigning them all to a tier that doesn’t allow publishing of any

entities.

1. Create list of publisher IDs:

 List uddiUserIds = new ArrayList();

 uddiUserIds.add("Publisher1");

 uddiUserIds.add("Publisher2");

 uddiUserIds.add("Publisher3");

 uddiUserIds.add("Publisher4");

 uddiUserIds.add("Publisher5");

 uddiUserIds.add("cts1");

 uddiUserIds.add("cts2");

2. Invoke assignTier:

 uddiNode.assignTier(uddiUserIds, "0");

getUserTier

Returns information about the tier a UDDI publisher is assigned to. The returned TierInfo has getters

methods for retrieving the tier ID, tier name, tier description, and whether the tier is the default tier.

1. Invoke getUserTier:

 TierInfo tierInfo = getUserTier("Publisher3");

2. Output the contents of the TierInfo object:

 System.out.println(tierInfo);

Chapter 12. Web services 453

Managing Value Sets

Value sets are represented in a UDDI registry as value set tModels, with a UDDI types keyedReference

with value ‘categorization’. Such value sets are backed with a set of valid values and for user defined

value sets, this data is loaded into the UDDI registry using UddiNode MBean operations (although it is

more convenient to use the User defined value set tool for this purpose). Each value set can be controlled

by policy as being supported or not supported. When a value set is supported by policy, it can be

referenced within UDDI publish requests. The UddiNode operations available to manage value sets and

their data are: getValueSets, getValueSetDetail, getValueSetProperty, updateValueSet, updateValueSets,

loadValueSet, changeValueSetTModelKey, unloadValueSet and isExistingValueSet.

See ManageValueSetsSample class for sample code that demonstrates the attributes and operations

described in this section.

getValueSets

Returns collection of ValueSetStatus objects.

1. Invoke getValueSets:

 List valueSets = uddiNode.getValueSets();

2. Cast each element to ValueSetStatus and output contents:

 for (Iterator iter = valueSets.iterator(); iter.hasNext();) {

 ValueSetStatus valueSetStatus = (ValueSetStatus) iter.next();

 System.out.println(valueSetStatus);

 }

getValueSetDetail

Returns ValueSetStatus object for the given value set tModel key.

1. Invoke getValueSetDetail:

 uddiNode.getValueSetDetail(

 "uddi:uddi.org:ubr:categorization:naics:2002");

2. Retrieve and display details:

 String name = valueSetStatus.getName();

 String displayName = valueSetStatus.getDisplayName();

 boolean supported = valueSetStatus.isSupported();

 System.out.println("name: " + name);

 System.out.println("display name: " + displayName);

 System.out.println("supported: " + supported);

3. Display value set properties:

 List properties = valueSetStatus.getProperties();

 for (Iterator iter = properties.iterator(); iter.hasNext();) {

 ValueSetProperty property = (ValueSetProperty) iter.next();

 System.out.println(property);

 }

getValueSetProperty

Returns a property of a value set as a ValueSetProperty object. This is mainly for use by the

administrative console to render properties of a value set as a row in a table. For example, one such

property is the keyedReference which indicates whether the value set is checked.

1. Invoke getValueSetProperty:

454 Administering applications and their environment

http://www.ibm.com/websphere/developer/library/samples/AppServer.html

uddiNode.getValueSetProperty(

 "uddi:uddi.org:ubr:categorization:naics:2002",

 ValueSetPropertyConstants.VS_CHECKED);

2. Read and display boolean value of the property:

 boolean checked = valueSetProperty.getBooleanValue();

 System.out.println("checked: " + checked);

updateValueSet

Updates value set status. Only the supported attribute can be updated (all other setter methods are used

by the UDDI application).

1. Create a ValueSetStatus object specifying the tModel key and the updated supported value:

 ValueSetStatus updatedStatus = new ValueSetStatus();

 updatedStatus.setTModelKey(

 "uddi:uddi.org:ubr:categorization:naics:2002");

 updatedStatus.setSupported(true);

2. Invoke updateValueSet:

 uddiNode.updateValueSet(updatedStatus);

updateValueSets

Updates value set status for multiple value sets. As for the updateValueSet operation, only the supported

attribute is updated.

1. Populate List with updated ValueSetStatus objects:

 List valueSets = new ArrayList();

 ValueSetStatus valueSetStatus = new ValueSetStatus();

 valueSetStatus.setTModelKey(

 "uddi:uddi.org:ubr:categorization:naics:2002");

 valueSetStatus.setSupported(false);

 valueSets.add(valueSetStatus);

 valueSetStatus = new ValueSetStatus();

 valueSetStatus.setTModelKey(

 "uddi:uddi.org:ubr:categorizationgroup:wgs84");

 valueSetStatus.setSupported(false);

 valueSets.add(valueSetStatus);

 valueSetStatus = new ValueSetStatus();

 valueSetStatus.setTModelKey(

 "uddi:uddi.org:ubr:identifier:iso6523:icd");

 valueSetStatus.setSupported(false);

 valueSets.add(valueSetStatus);

2. Invoke updateValueSets:

 uddiNode.updateValueSets(valueSets);

loadValueSet

Loads values for a value set from a UDDI registry V3/V2 taxonomy data file on the local file system. Note:

there is also a loadValueSet operation that takes a ValueSetData object but this is only for use by the user

defined value set tool.

1. Invoke loadValueSet:

 uddiNode.loadValueSet(

 "C:/valuesets/myvalueset.txt",

 "uddi:cell:node:server:myValueSet");

changeValueSetTModelKey

Chapter 12. Web services 455

Any value set values that were allocated to one value set tModel are allocated to the new value set

tModel.

1. Invoke changeValueSetTModelKey with old and new tModel keys:

 uddiNode.changeValueSetTModelKey(

 "uddi:cell:node:server:myValueSet",

 "uddi:cell:node:server:myNewValueSet");

unloadValueSet

Unloads values for a value set with the given tModel key.

1. Invoke unloadValueSet:

 uddiNode.unloadValueSet("uddi:myValueSet");

isExistingValueSet

Determines if value set data exists for the given tModel key.

1. Invoke isExistingValueSet and display result:

 boolean exists = uddiNode.isExistingValueSet(

 "uddi:uddi.org:ubr:categorization:naics:2002");

 System.out.println("NAICS 2002 is a value set: " + exists);

User-defined value set support in the UDDI registry

In UDDI Version 2 this was called ’Custom Taxonomy Support’.

Data is worthless if it is lost within a mass of other data and cannot be distinguished or discovered. If a

client of UDDI cannot effectively find information within a registry, the purpose of UDDI is considerably

compromised. Providing the structure and modeling tools to address this problem is at the heart of UDDI’s

design. The verification of data within UDDI is core to its mission of description, discovery and integration.

It achieves this by several means.

It allows users to define multiple value sets that can be used in UDDI. In such a way, multiple classification

schemes can be overlaid on a single UDDI entity. This capability allows organizations to extend the set of

such systems UDDI registries support. One is not tied to a single system, but can rather employ several

different classification systems simultaneously.

While default value sets are shipped with the product, the UDDI Version 3 registry provides tools enabling

’custom’ value sets to be added, potentially enabling UDDI entities to be more specifically categorized

when published and further enhancing the capability of client to find specific data.

These value sets can be either checked or unchecked, and this is indicated via a keyedReference in the

categoryBag of the tModel that represents a value set (a ″categorization tModel″). These keyedReferences

have the tModel key for uddi-org:types and are added to the categoryBag to further describe the behavior

of the categorization tModel, as follows:

checked

Marking a tModel with this classification asserts that it represents a categorization, identifier, or

namespace tModel that has a validation service to check that category values are present in a

specified value set.

unchecked

Marking a tModel with this classification asserts that it represents a categorization, identifier, or

namespace tModel that does not have a validation service.

The procedure defined below describes how to add additional user-defined value sets, and display their

allowed values in the UDDI user console value set tree display. Rational Application Developer has a Web

456 Administering applications and their environment

Services Explorer user interface that also allows addition and display of custom checked value sets. The

publisher of a value set categorization tModel may specify a ’display name’ for use in UDDI user console

implementations.

Procedure for adding a user defined value set

To add a user defined value set to the UDDI registry, perform the following tasks:

1. Publish a categorization tModel

2. Load the user defined value set data

3. Set the value set to supported status using the Administrative console. To do this you must be a user

in an administrative role. This means that user defined value sets cannot be added to the UDDI

registry without administrator permission.

The checked value set will only be referenced when the above tasks are complete. Value set data must be

provided for validating checked value sets.

Value set data may also be used by user consoles for unchecked value sets, but it is not a requirement

and is usually only used for presentation of deprecated value sets, such as unspc-org:unspc and

back-level compatibility.

If the value set is checked, any publish requests that have a categoryBag containing keyedReferences

with the new categorization tModel will be validated. If there is value set data corresponding to the

categorization tModel in the registry database, only valid values will be accepted. If there is no value set

data in the database all values will be rejected, and the publish request will fail. If the categorization

tModel is unchecked, all values will be allowed, regardless of whether there is a corresponding value set

present in the UDDI registry database. The value set tModel is not available for use until the administrator

enables support for it using the administrative console, or the JMX interface.

Suggested approach

To introduce a new value set:

1. Publish the categorization tModel with a keyedReference of type ’uddi-org:categorization:types’ with a

key value of categorization, a keyedReference of type ’uddi-org:categorization:types’ with a Key

Name of ’Checked value set’ and a Key Value of ’checked’, or a Key Name of ’Unchecked value

set’ and a Key Value of ’unchecked’ and a keyedReference of type ’uddi-
org:categorization:general_keywords’ supplying the value set display name (as described below).

2. Load user defined value set data into the UDDI registry database using the UDDIUserDefinedValueSet

utility (described below).

3. Use the administrative Console to set the status of the value set to supported (as described in Value

set settings). This can also be achieved directly using the JMX interface.

Note: The SOAP and EJB interfaces will be able to make use of categorization tModels as soon as they

are published. However, the UDDI registry user console will require a restart of the UDDI

application because it currently gathers its list of categorizations for use in the value set tree display

when the application starts.

Publishing a Checked Categorization tModel

This section describes how to publish a checked categorization tModel with the ’Checked value set’ Key

Name for use by a user defined value set.

Publish a tModel to the UDDI registry with a categoryBag containing keyedReferences as follows:

 Note tModelKey KeyName KeyValue

Chapter 12. Web services 457

1 uddi:uddi-org:categorization:types

In the UDDI registry user interface

this tModelKey can be chosen by

selecting the category type of UDDI

Types

categorization categorization

2 uddi:uddi-org:categorization:types

In the UDDI registry user interface

this tModelKey can be chosen by

selecting the category type of UDDI

Types

Checked value set checked

3 uddi:uddi-
org:categorization:general_keywords

In the UDDI registry user interface

this tModelKey can be chosen by

selecting the category type of

categorization:general_keywords

urn:x-ibm:uddi:customTaxonomy:displayName <User Defined

Value Set

displayName>

1. Indicates this tModel is a categorization tModel (required).

2. Indicates use of the tModel will be checked against a list of valid data (required). (Omitting this

keyedReference, or explicitly specifying a value of ’unchecked’ will indicate this categorization is

unchecked).

3. Indicates special use of the general keywords value set, with a proprietary uniform resource name

(URN) as the keyName value, defines a name for the user-defined value set that is intended for use in

user console implementations where the full tModel name might be too long. The value can be 1-255

characters (inclusive) long.

The displayName is intended to provide a way to label a value set such that, when the UDDI user console

displays it in a value set tree or in a pull-down list of available value sets, the meaning is clear to the user

without being restricted to 8 characters and without needing to be the same as the published tModelName,

which could be as long as 255 characters. An example is shown below:

Taxonomies

test1

udditype

unspsc

Natural Foods

geo

naics

other

unspsc7

Food

Fruit

Apples [101]

Oranges [102]

Pears [103]

Pomegranates [104]

Vegetables [20]

Categories:

Search Modifiers

Search behavior

Show category tree

Natural Foods

test1

udditype

unspec

geo

naics

other

unspsc7

Natural Foods

Locator

Type Key name

display name

The urn:x-ibm:customTaxonomy:displayName should be unique if only to avoid confusion when displayed

in user interfaces but this is not validated.

458 Administering applications and their environment

To publish a new categorization tModel using SOAP, the message would be:

<save_tModel generic="3.0" xmlns="urn:uddi-org:api_v3">

 <authInfo></authInfo>>

 <tModel tModelKey="">

 <name>Natural Foods tModel</name>

 <categoryBag>

 <keyedReference tModelKey="uddi:uddi.org:categorization:types" keyName="categorization"

 keyValue="categorization"/>

 <keyedReference tModelKey="uddi:uddi.org:categorization:types" keyName="Checked value set"

 keyValue="checked"/>

 <keyedReference tModelKey="uddi:uddi.org:categorization:general_keywords"

 keyName="urn:x-ibm:uddi:customTaxonomy:displayName" keyValue="Natural Foods"/>

 </categoryBag>

 </tModel>

</save_tModel>

Note: to specify an unchecked categorization substitute the key name ’Checked value set’ with

’Unchecked value set’ and ’checked’ Key Value with ’unchecked’ or, more simply, omit the

keyedReference completely.

Loading User Defined Value Set Data

User Defined Value Set Data File Format

Value set data is identified by a unique code value, an optional description and a parent code that

specifies its relationship with other code values. Value set data must adhere to this format:

 Column name Maximum length Description of use

Code 765 Unique value within the value set used for validation

description 765 Typically used by UDDI user consoles and optionally in the

keyedReference as the keyName value

parentcode 765 Indicates which existing code is the logical parent of this one,

and is used in tree displays

Typically columns are delimited in the value set data file by ’#’ characters as in this example:

00#Food#00

10#Fruit#00

101#Apples#10

102#Oranges#10

103#Pears#10

1031#Anjou#103

1032#Conference#103

1033#Bosc#103

104#Pomegranates#10

20#Vegetables#00

201#Carrots#20

202#Potatoes#20

203#Peas#20

204#Sprouts#20

In the example, ’Food’ is the description for the root node with child nodes of ’Fruit’ and ’Vegetables’ (both

of these have parentcode values the same as the code value for ’Food’).

The value set data in the example file could then be rendered in a tree like this:

Food

 Fruit

 Apples

 Oranges

 Pears

 Anjou

Chapter 12. Web services 459

Conference

 Bosc

 Pomegranates

 Vegetables

 Carrots

 Potatoes

 Peas

 Sprouts

The file must be saved in UTF-8 format.

Custom Taxonomy files used in UDDI Version 2 are also supported by the utility.

UDDIUserDefinedValueSet

A utility is provided to load value set data into the UDDI registry, assign existing value set data to another

tModel and unload existing value set data. This utility uses the UDDI registry’s JMX interface and therefore

requires a number of connection parameters.

Usage: UDDIUserDefinedValueSet[.sh|.bat] ’{’function’}’ [options]

function:

-load <path> <key> Load value set data from specified file

-newKey <oldKey> <newKey> Move value set to a new tModel

-unload <key> Unload existing value set

options:

-properties <path> Specify location of configuration file

-host <host name> Application Server or Deployment Manager host

-port <port> SOAP Lister port number

-node <node name> Node running a UDDI server

-server <server name> Server with UDDI deployed

-columnDelimiter <delim> Character delimiter to denote field end

-stringDelimiter <delim> Character delimiter to denote strings

Connector security parameters

-userName <name>

-password <password>

-trustStore <path>

-trustStorePassword <password>

-keyStore <name>

-keyStorePassword <password>

Note: Ensure that the command window from which the UDDIUserDefinedValueSet is run is using a

suitable codepage and font for displaying the characters contained in the value set name. Use of an

incorrect codepage/font may result in unclear messages on a successful load, and create difficulty

using the -unload and -newKey options.

The UDDIUserDefinedValueSet script is located in the app_server_root/bin directory.

If no connection parameters are supplied a connection is sought on the local host using firstly the

Deployment Managers default SOAP port number, and, if there is no Deployment Manager running, the

default Application Server SOAP port number.

Command arguments are case insensitive.

Usage examples

Load a value set data for a tModel on the local UDDI registry using the percent sign as a column marker

in the valuesetdata.txt file.

460 Administering applications and their environment

UDDIUserDefinedValueSet.xxx -load valuesetdata.txt uddi:a708b8a7-35b5-451c-aafc-718ae071fcfe -columnDelimi

ter %

where .xxx is .bat for Windows operating systems or .sh for UNIX and Linux platforms.

Move value set data from one checked tModel to another on a UDDI registry in a network deployment

configuration.

UDDIUserDefinedValueSet.xxx –newKey uddi:a708b8a7-35b5-451c-aafc-718ae071fcfe uddi:b819c9b8-46c6-562d-bb

0d-829bf1820d0f –host depmanagerhost.ibm.com –port 8879 –node uddinode –server uddiserver -override

where .xxx is .bat for Windows operating systems or .sh for UNIX and Linux platforms.

Unload a value set from a tModel from a server with security turned on supplying the connection and

security parameters in myproperties.properties file, but supplying the server and password arguments on

the command line (which augment or override those contained in the properties file).

UDDIUserDefinedValueSet.xxx –unload uddi:b819c9b8-46c6-562d-bb0d-829bf1820d0f –server uddiserver

–properties myproperties.properties –password myrealpassword

where .xxx is .bat for Windows operating systems or .sh for UNIX and Linux platforms.

The configuration file, if specified by the optional -properties parameter, determines a number of optional

parameters. These parameters can be specified on the command line and, if so, override the values in the

properties file. These parameters are largely JMX connection parameters and security parameters.

The string.delimiter is typically used where a description value contains the same character as the column

delimiter character. For example, if the column.delimiter was set to ’,’ (a comma), and there was a value

set description value of ’Fruits, citrus’, you could include this in the value set data file by setting the

string.delimiter to ″ (double quote) and enclosing the description in quotes: ’Fruits, citrus’. Note that the

quote character is escaped with a backslash (’\’) to indicate the literal character is to be used.

If an attempt is made to load a value set to a tModel that has existing value set data, a warning message

is given. To override this error provide the -override argument. This argument is also required if moving

value set data to a new tModel using -newKey where the tModel is checked, and also unloaded value set

data for a checked tModel.

 Command line arguments and

example data

Property and example data Comments

-columnDelimiter # column.delimiter=# Column delimiter used in value set

data files

-stringDelimiter \″ string.delimiter=\″ Field delimiter (must be different to

the column.delimiter value

-host ibm.com host=ibm.com Host name of the system running

Deployment Manager or Application

Server

-port 8880 port=8880 SOAP port number of Deployment

Manager or Application Server

-node ibmNode node=ibmNode Name of the Node running the

server with the UDDI registry

-server server1 server=server1 Server running the UDDI registry

-userName ibmuser security.username=ibmuser User name. Required if WebSphere

security is turned on

-password mypassword security.password=mypassword Password

-trustStore /TrustStoreLocation security.truststore=/TrustStoreLocation Truststore file location

Chapter 12. Web services 461

-keyStore ibmkeystore security.keystore=ibmkeystore Keystore name

-trustStorepassword trustpass security.truststore.password=trustpass Truststore password

-keyStorePassword keypass security.keystore.password=keypass Keystore password

Set the value set to supported

Use the administrative console to set the value set to supported by:

v Click UDDI Nodes > <node> and Value Sets (under Additional Properties on the right of the screen)

v Select the Value Set (by checking the box next to it)

v Click Enable Support above the list of Value Sets

Validation and Error Handling

The UDDI registry user console performs validation while a save tModel request is being built, that is,

before the publish occurs. For example, if the user tries to add two customTaxonomy:displayName

keyedReferences the following message is displayed:

Advice: Only one ’urn:x-ibm:uddi:customTaxonomy:displayName’ key name is allowed for the ’Other’ taxonomy.

If a keyedReference containing a keyName value that starts with ’urn:x-ibm:uddi:customTaxonomy:’ is

followed by anything other than ’displayName’, the following message is displayed:

Advice: Only key name values of ’urn:x-ibm:uddi:customTaxonomy:displayName’ are supported.

For requests where the save_tModel message may have multiple tModels, if any one of the tModels is a

categorization tModel and it fails validation, the request fails with a UDDIInvalidValueException (plus

additional information explaining the likely cause), and none of the tModels is published. For example:

E_invalidValue (20200) A value that was passed in a keyValue attribute did not pass validation.

This applies to checked categorizations, identifiers and other validated code lists. The error

text will clearly indicate the key and value combination that failed validation. Invalid ’custo

mTaxonomy:dbKey’ keyValue [naics] in keyedReference. KeyValue already in use by tModelKey[UUID:

C0B9FE13-179F-413D-8A5B-5004DB8E5BB2]

UDDI Utility Tools

The UDDI Utility Tools is a suite of functions that can be used to migrate, move or copy UDDI Version 2

entities, including child entities and their respective Version 2 entity keys, into a Version 3 UDDI registry.

Note: The UDDI Version 3 publish API supports publisher assigned keys (the Version 2 API did not) and

promotion of entities between Version 3 registries can be achieved using normal API functions.

UDDI Utility Tools supplied in this release is functionally equivalent to the version supplied in

WebSphere Application Server 5.1. However, it is important to know that all UDDI Utility Tools

functions in this release are performed using the UDDI Version 2 API. You can export from Version

2 and 3 registries (supplying only the Version 2 representation of the UDDI Entity key) and import

into the Version 3 registry, using Version 2 API types. Entities from a Version 3 registry are exported

as Version 2 entities and, as such, elements such as digital signatures will not be present. See

section Saving Version 3 entities with a supplied key for an example on how to use the Version 3

API to assign your own keys to Version 3 entities.

Other uses of the tool include:

v Search and select entities from a source UDDI registry by specifying Version 2 keys or search criteria

v Publishing canonical tModels in a UDDI registry, including child entities

v Persist UDDI (Version 2) entities in an intermediate XML representation that can be used to customize

and copy those entities to multiple target UDDI Registries, by specifying Version 2 Keys

v Update existing entities in a target UDDI registry, including child entities

462 Administering applications and their environment

v Delete selected entities from a target UDDI registry by specifying Version 2 keys

Use the UDDI Utility Tools by running the UDDIUtilityTools.jar file. This file is located in the

app_server_root/UDDIReg/scripts directory. Alternatively, you can invoke all of the functions of UDDI Utility

Tools through the supplied public Java API.

There are five main functions in UDDI Utility Tools:

Export

Given an entity type and key, or a list of entity types and keys, UDDI Utility Tools gets the UDDI

entities from the specified registry and writes them to the UDDI Entity Definition File. The entity

type for each key can be one of business, service, bindingTemplate or tModel. The Entity

Definition File contains XML that exactly describes each of the specified entities, according to the

UDDI Utility Tools schema (which includes the UDDI Version 2 schema). The UDDI Entity

Definition File separates entities by type, and automatically detects and records tModels

referenced by the specified entities. You can use the ’referenced tModels’ section of the file to

ensure a target registry includes any referenced tModels before you try to import new entities to

that registry.

Import

Given a list of UDDI entities (which can be supplied using the UDDI Entity Definition File

generated by the export function, possibly with additional editing, or programmatically in a

container object), the import function detects if the entities already exist in the target registry and,

if they do not, creates a minimal entity (″stub″) with the specified key. The entities are then

published updating the stubs with the supplied data and overwriting, or ignoring, existing entities

as specified by the user. Note that the original key is maintained throughout.

Promote

Combines the export and import steps such that the specified entities are extracted (by key) from

the source registry and then imported into the target registry in a single logical step. The

generation of a UDDI Entity Definition File is optional for this function.

Delete Deletes the specified entities from the target UDDI registry. The entities to delete are specified as

an entity type, or a list of entity types, and keys, in the same way as for the export function.

Find Matching Entities

Takes as input search criteria in the form of UDDI Inquiry API objects for each of the various entity

types. The set of entities that match the search criteria are used to generate a list of entity keys,

and this in turn can be used as input to the export, promote and delete functions.

Note: This function is available only through the programmatic API.

Chapter 12. Web services 463

The relationship between the functions, their input and output, and the source and target UDDI

Registries is shown in this conceptual overview diagram:

Setting up the configuration file

Configuration data for UDDI Utility Tools resides in a configuration properties file, which describes the

runtime environment, UDDI and database locations and access information, logging information, security

configuration, entity definition file location, and other flags to control whether referenced entities are to be

imported and/or overwritten.

UDDI Utility Tools is distributed with a sample configuration properties file (UDDIUtilityTools.properties) and

this is searched for by default in the current directory if no properties path is specified. By default, this file

is located in the app_server_root/UDDIReg/scripts directory. Modify the file, according to the following list,

and specify this modified file when running the utility tools.

v Set the classpath, which should include the current directory (.) and the UDDIUtilityTools.jar itself, plus

all the dependent jars, which are listed in the Prerequisites section later on in this topic. The classpath

must include the database driver jar (for example db2java.zip).

If you are configuring a JSSE provider, add the .jar file which contains the provider to the classpath. The

configuration of a JSSE provider is optional and is performed by setting the jsse.provider property.

The default value is com.ibm.jsse.IBMJSSEProvider. To specify the FIPS JSSE provider set the value of

the jsse.provider property to com.ibm.fips.jsse.IBMJSSEFIPSProvider.

v Set other properties, which are commented in the sample UDDIUtilityTools.properties file as shown

below.

v Change localhost to the name of your server.

v Change the port number 9080 to your internal HTTP port.

Note:

Windows

Use forward slashes in paths. Back slashes can be interpreted as escape sequences

such as tab spaces. For example,

C:\temp\definitions\entities01.xml

becomes

C: emp\definitions\entities01.xml

464 Administering applications and their environment

Runtime environment #

(if invoking via java -jar...) #

"X Y" required around paths with spaces. #

Replace WAS_HOME with your WAS home path. #

Replace DB2_HOME with the locations of DB2 #

db2java.zip is for DB2 - replace this with #

appropriate database driver file. #

classpath=.;WAS_HOME/UDDIReg/scripts/UDDIUtilityTools.jar;WAS_HOME/plugins/com.ibm.ws.runtime_6.1.0.

jar;WAS_HOME/plugins/com.ibm.uddi_1.0.0.jar;WAS_HOME/lib/j2ee.jar;"DB2_HOME/SQLLIB/java/db2java.zip"

SOAP entry points for source UDDI #

fromInquiryURL=http://localhost:9080/uddisoap/inquiryapi

fromGetURL=http://localhost:9080/uddisoap/get

SOAP entry points for target UDDI #

toInquiryURL=http://localhost:9080/uddisoap/inquiryapi

toPublishURL=http://localhost:9080/uddisoap/publishapi

UDDI Registry user information #

Note: this must match the user information #

that was used to publish the entities on #

the target UDDI registry. #

userID=UNAUTHENTICATED

password=NONE

Configuration for destination UDDI DB #

dbDriver=COM.ibm.db2.jdbc.app.DB2Driver

dbUrl=jdbc:db2:uddi30

dbUser=db2admin

dbPasswd=db2admin

Security provider configuration #

Indicates whether security is required on the target registry

secure.connection=true

The location of the truststore if security is required

trustStore.fileName=TrustFile.jks

The password for the trust store

trustStore.password=WebAS

The JSSE Provider class name

jsse.provider=com.ibm.jsse.IBMJSSEProvider

Trace and message logging configuration #

detail level of message output (all functions)

verbose=true

detail level of trace output.

1: severe

2: normal

Chapter 12. Web services 465

3: detail

traceLevel=3

path to message log file (relative or absolute)

messageLogFileName=logs/messages.log

path to trace log file (relative or absolute)

traceLogFileName=logs/trace.log

Miscellaneous Options #

indicates if existing entities are overwritten (import/promote)

Note: tModels in referencedTModels section are never overwritten,

regardless of this setting. To overwrite tModels, they must

be present in the tModels section.

overwrite=false

indicates if referenced entities will be imported (import/promote)

importReferencedEntities=true

location of entity definition file, used for (export/import)

UddiEntityDefinitionFile=definitions/entities01.xml

namespace prefix to use in definition file (export)

namespacePrefix=promote

Prerequisites

Windows

To run the UDDI Utility Tools you must use the IBM Development Kit for Java code that is

supplied with WebSphere Application Server. This Development Kit is located in app_server_root/java/bin.

Ensure that the following .jar files are available to the UDDI Utility Tools. The locations of the .jar files

should be specified in the classpath property in the UDDI Utility Tools properties file:

UDDIUtilityTools.jar

This is the tools JAR itself and is located in app_server_root/UDDIReg/scripts.

com.ibm.uddi_1.0.0.jar

This file contains the UDDI4J classes and is located in app_server_root/plugins.

j2ee.jar

This file contains some required J2EE classes and is located in app_server_root/lib.

com.ibm.ws.runtime_6.1.0.jar

This is the Apache SOAP implementation and is located in app_server_root/plugins.

DbDriver

This is the driver needed to allow the UDDIUtilityTool to connect to your target database. See the

table below for the values you need to specify for your chosen database:

 DB2 Cloudscape Oracle

DBDriverLocation

for classpath

DB2_HOME/db2java.zip app_server_root/derby/lib/
derbyclient.jar

ORACLE_HOME/jdbc/lib/
ojdbc14.jar

Driver COM.ibm.db2.jdbc.app.DB2Driver,

or com.ibm.db2.jcc.DB2Driver if

you are using a remote DB2

database (you can also set up a

local alias to the remote database

using the DB2 client)

com.ibm.db2.jcc.DB2Driver oracle.jdbc.OracleDriver

466 Administering applications and their environment

DB2 Cloudscape Oracle

URL jdbc:db2://host:database_name jdbc:db2j:net://host:1527/
database_name (see note

below)

jdbc:oracle:thin:@host:1521:

database_name

where

v app_server_root is the directory location of WebSphere Application Server.

v DB2_HOME is the directory location of DB2, for example c:\Program Files\SQLLIB\java12\

v ORACLE_HOME is the directory location of Oracle, for example c:\oracle\ora92\

v database_name is the name of the database. For Cloudscape, make sure that database_name

includes the path to the database, for example profile_root/databases/com.ibm.uddi/UDDI30

Notes:

v If you are using Cloudscape, make the database network enabled so that it can handle

multiple connections. Refer to the managing derby network server section of the

Cloudscape information center for details on how to do this.

v If you are using DB2, add DB2_HOME/sqllib/lib to your LD_LIBRARY_PATH and

LIBPATH environment variables.

The Security provider configuration section in the above properties file shows the location of the default

DummyClientTrustFile.jks file. If you are using your own truststore, ensure that the location is placed here.

The UDDI Utility Tools use UDDI Version 2 SOAP inquiry and publish interfaces. These APIs are protected

as described in Access control for UDDI registry interfaces. The UDDI Utility Tools also access the UDDI

registry database through the database driver, and access to the database is controlled by the database

management system.

The UDDI Entity Definition File

You generate this file by the export and promote functions, or you can choose to create it (either by hand,

or by modifying a version of the file output by UDDI Utility Tools specifying the export function). It is the

input to the import function.

Note: The extension to the uddi:tModel type to add a ’deleted’ attribute is not currently used in UDDI

Utility Tools.
The file is validated for well formedness and that it complies with the UDDI Utility Tools schema, shown

here.

<?xml version="1.0" encoding="UTF-8" ?>

<xsd:schema id="uddiPromote" attributeFormDefault="unqualified" elementFormDefault="qualified"

 targetNamespace="http://www.ibm.com/xmlns/prod/WebSphere/UDDIUtilityTools" xmlns:xsd="http://www.w3.org

 /2001/XMLSchema"

xmlns:uddi="urn:uddi-org:api_v2" xmlns="http://www.ibm.com/xmlns/prod/WebSphere/UDDIUtilityTools"

xmlns:promote="http://www.ibm.com/xmlns/prod/WebSphere/UDDIUtilityTools">

 <xsd:import namespace="http://www.w3.org/XML/1998/namespace" schemaLocation="xml.xsd" />

 <xsd:import namespace="urn:uddi-org:api_v2" schemaLocation="uddi_v2.xsd" />

 <!-- define a type to represent state of a tModel -->

 <xsd:simpleType name="tModelDeleted">

 <xsd:restriction base="xsd:NMTOKEN">

 <xsd:enumeration value="true" />

 <xsd:enumeration value="false" />

 </xsd:restriction>

 </xsd:simpleType>

 <!-- extend tModel with additional attribute of type tModelDeleted -->

 <!-- This is restricted to values true or false -->

Chapter 12. Web services 467

http://publib.boulder.ibm.com/infocenter/cscv/v10r1/index.jsp

<xsd:complexType name="tModel">

 <xsd:complexContent>

 <xsd:extension base="uddi:tModel">

 <xsd:attribute name="deleted" type="promote:tModelDeleted" use="optional" />

 </xsd:extension>

 </xsd:complexContent>

 </xsd:complexType>

 <!-- Top level element definitions -->

 <xsd:element name="uddiEntities" type="promote:uddiEntities" />

 <xsd:complexType name="uddiEntities">

 <xsd:sequence>

 <xsd:element ref="promote:tModels" minOccurs="0" maxOccurs="1" />

 <xsd:element ref="promote:businesses" minOccurs="0" maxOccurs="1" />

 <xsd:element ref="promote:services" minOccurs="0" maxOccurs="1" />

 <xsd:element ref="promote:bindings" minOccurs="0" maxOccurs="1" />

 <xsd:element ref="promote:referencedTModels" minOccurs="0" maxOccurs="1" />

 </xsd:sequence>

 </xsd:complexType>

 <xsd:element name="businesses" type="promote:businesses" />

 <xsd:complexType name="businesses">

 <xsd:sequence>

 <xsd:element ref="uddi:businessEntity" minOccurs="0" maxOccurs="unbounded" />

 </xsd:sequence>

 </xsd:complexType>

 <xsd:element name="tModels" type="promote:tModels" />

 <xsd:complexType name="tModels">

 <xsd:sequence>

 <xsd:element ref="uddi:tModel" minOccurs="0" maxOccurs="unbounded" />

 </xsd:sequence>

 </xsd:complexType>

 <xsd:element name="services" type="promote:services" />

 <xsd:complexType name="services">

 <xsd:sequence>

 <xsd:element ref="uddi:businessService" minOccurs="0" maxOccurs="unbounded" />

 </xsd:sequence>

 </xsd:complexType>

 <xsd:element name="bindings" type="promote:bindings" />

 <xsd:complexType name="bindings">

 <xsd:sequence>

 <xsd:element ref="uddi:bindingTemplate" minOccurs="0" maxOccurs="unbounded" />

 </xsd:sequence>

 </xsd:complexType>

 <xsd:element name="referencedTModels" type="promote:referencedTModels" />

 <xsd:complexType name="referencedTModels">

 <xsd:sequence>

 <xsd:element ref="uddi:tModel" minOccurs="0" maxOccurs="unbounded" />

 </xsd:sequence>

 </xsd:complexType>

</xsd:schema>

UDDI Entity Definition File example for canonical tModels

The example Entity Definition File following shows the five main sections for tModels, businesses,

services, bindings and referencedTModels:

UDDI Utility Tools can be used to create new UDDI entities in a target UDDI registry. A typical example of

this is to introduce a new canonical tModel, which has a publicly known tModel key.

468 Administering applications and their environment

<?xml version="1.0" encoding="UTF-8"?>

<promote:uddiEntities xmlns="urn:uddi-org:api_v2" xmlns:promote="http://www.ibm.com/xmlns/prod/WebSphere/

 UDDIUtilityTools">

 <!-- tModels -->

 <promote:tModels>

 <tModel tModelKey="uuid:ee3966a8-faa5-416e-9772-128554343571" >

 <name>http://schemas.xmlsoap.org/ws/2002/07/policytmodel</name>

 <description>WS-PolicyAttachment policy expression</description>

 </tModel>

 <tModel tModelKey="uuid:ad61de98-4db8-31b2-a299-a2373dc97212" >

 <name>uddi-org:wsdl:address</name>

 <description xml:lang="en">

This tModel is used to specify the URL fact that the address must be obtained from the WSDL deployment

file.

 </description>

 <overviewDoc>

 <overviewURL>

http://www.oasis-open.org/committees/uddi-spec/doc/tn/uddi-spec-tc-tn-wsdl-v2.htm#Address

 </overviewURL>

 </overviewDoc>

 </tModel>

 </promote:tModels>

 <!-- businesses -->

 <promote:businesses>

 </promote:businesses>

 <!-- services -->

 <promote:services>

 </promote:services>

 <!-- bindings -->

 <promote:bindings>

 </promote:bindings>

 <!-- referenced tModels -->

 <promote:referencedTModels>

 </promote:referencedTModels>

</promote:uddiEntities>

Starting UDDI Utility Tools at a command prompt

Ensure that you are using the correct level of Java code by setting the PATH statement to include the

Java code that is supplied with WebSphere Application Server. For example, from the command line, type:

v

Windows

set PATH=app_server_root\java\bin;%PATH%

v

Linux

export PATH=app_server_root/java/bin:$PATH

If you are using DB2 on UNIX and Linux platforms run the db2profile script before issuing the java

command to start UDDI Utility Tools. This script is located within the DB2 instance home directory under

sqllib and is invoked by typing:

. /$DB2_HOME/db2profile

Note: In the above example, notice that the ’.’ is followed by a single space character.

Note: On UNIX and Linux platforms the DB2 user must have a db2profile at $HOME/sqllib/db2profile.

Chapter 12. Web services 469

UDDI Utility Tools can be started using:

java - jar UDDIUtilityTools.jar <function> [options]

using a specified properties file that sets up classpath and other parameters, or it can be called

using:

java CommandLineProcessor

where CommandLineProcessor is the class which processes command line arguments for UDDI

Utility Tools, sets up configuration and invokes the appropriate function.

Note: Before executing UDDIUtilityTools.jar from the command line, ensure that you have edited the

UDDIUtilityTools.properties file. If you have saved this properties file in a different directory from the

directory containing the UDDIUtilityTools.jar file, make sure you specify the location of the properties

file as part of the command line arguments. See the Setting up the configuration file section earlier

in this topic for more details.

The usage is as follows:

Usage: java -jar UDDIUtilityTools.jar {function} [options]

function:

 -promote <entity source> Promote entities between registries

 -export <entity source> Extract entities from registry to XML

 -delete <entity source> Delete entities from registry

 -import Create entities from XML to registry

where <entity source> is one of:

 -tmodel|-business|-service|-binding <key> Specify single entity type and key

 -keysFile | -f <filename> Specify file containing entity types and keys

options:

 -properties <filename> Specify path to configuration file

 -overwrite | -o Overwrite an entity if it already exists

 -log | -v Output verbose messages

 -definitionFile <filename> Specify path to UDDI entity definition file

 -importReferenced Import entities referenced by source entities

The following options override property settings in configuration file:

 -overwrite

 -log

 -definitionFile

 -importReferenced

Example: java -jar UDDIUtilityTools.jar -promote -keysFile C:/uddikeys.txt

Below are a set of UDDI Utility Tools command line examples. The examples use the Windows operating

systems file system:

To export a single business to the EDF file specified in a properties file in the current directory.

java -jar UDDIUtilityTools.jar -export -business 28B8B928-2B2E-4EC9-A647-1E40651E4752

As above but this time using a keys file to specify the entities to be exported

java -jar UDDIUtilityTools.jar -export -keysFile C:/myKeyFiles/keyFile01.txt

As above but also specifying verbose output to appear on the command line.

java -jar UDDIUtilityTools.jar -export -keysFile C:/myKeyFiles/keyFile02.txt -v

To import the contents of the default EDF specified in a UDDIUtilitiyTools.properties file in the current

directory.

java -jar UDDIUtilityTools.jar -import

As above but also specifying that referenced tModels should be imported into the target registry.

470 Administering applications and their environment

java -jar UDDIUtilityTools.jar -import -importReferenced

To import the entities from an EDF at the specified location. Note the use of forward slashes even though

this is an example on a Windows operating systems file system.

java -jar UDDIUtilityTools.jar -import -definitionFile C:/myEDFs/entities01.xml

To import the entities from the default EDF including referenced tModels. Overwrite specifies that any

entities excluding referenced tModels that are found in the target registry should be overwritten.

java -jar UDDIUtilityTools.jar -import -overwrite -importReferenced

To promote a single service from a source to a target registry using the properties file at a specified

location.

java -jar UDDIUtilityTools.jar -promote -service 67961D67-330F-4F14-8210-E74A58E710F3

-properties C:/UUT/myUUTProps.properties

To promote a set of entities specified in a keys file.

java -jar UDDIUtilityTools.jar -promote -keysFile C:/myKeyFiles/keyFile03.txt

As above but specifying that existing entities in the target registry get overwritten.

java -jar UDDIUtilityTools.jar -promote -keysFile C:/myKeyFiles/keyFile04.txt -overwrite

To promote a set of entities specified in a keys file including referenced tModels.

java -jar UDDIUtilityTools.jar -promote -keysFile C:/myKeyFiles/keyFile05.txt -importReferenced

To promote a set of entities specified in a keys file but also create an EDF containing the promoted

entities.

java -jar UDDIUtilityTools.jar -promote -keysFile C:/myKeyFiles/keyFile06.txt

-definitionFile C:/myEDFs/entities02.xml

To logically delete a single tModel. Note that it is not possible to physically delete tModels.

java -jar UDDIUtilityTools.jar -delete -tModel UUID:1E2B9D1E-E53D-4D36-9D46-6CCC176C466A

To delete all the entities specified in the keys file. Note that with the exception tModels all other entities will

be physically deleted from the target registry.

java -jar UDDIUtilityTools.jar -delete -keysFile C:/myKeyFiles/keyFile04.txt

A keys file example

Below is an example of the keys that are to be exported, promoted or deleted from the target registry:

Keys of entities to be exported, promoted from source registry or deleted from target registry

Note: keys must be comma separated and on SAME line

Note: property names are case sensitive. (’tmodels=’ will be ignored)

businesses=97C77097-AC6C-4CA0-A6C4-452F7045C470, 4975E949-581F-4FCA-AD5F-E08280E05F9F

services=BB3864BB-1578-4833-8179-14391F14791F

bindings=

tModels=273F1727-7BFF-4FB5-A1FD-BA5C45BAFD9C

Note: If the importReferenced property is set to true, the list of tModels in the referencedTModels section

is imported to the target registry. Minimal entities are created if the referencedTModel is new. If the

referencedTModel already exists it is never overwritten, regardless of the overwrite property value.

This is so that commonly referenced tModels such as categorization tModels do not keep being

updated unnecessarily.

Chapter 12. Web services 471

Should you need to update a referencedTModel, you must manually move the referencedTModel

definition to the tModels section in the entity definition file and set overwrite to true.

Content of the log files

Below shows examples of contents of two of the log files produced by running the tool. Note that some

comments have been added in square brackets and in italic to highlight important points within the log file.

The first is the messages.log which shows successful and unsuccessful operations for export, import and

delete functions:

[29/07/04 17:39:57:531 BST] CWUDU0002I: ********** Starting UDDI Utility Tools ********** [timestamp and

 eyecatcher indicate when tool is run]

[29/07/04 17:39:57:531 BST] CWUDU0009I: Exporting entities...

[29/07/04 17:39:57:531 BST] CWUDU0015I: Exported 14 entities.

[29/07/04 17:39:57:531 BST] CWUDU0029I: Serializing...

[29/07/04 17:39:57:531 BST] CWUDU0030I: Serialized entities.

[29/07/04 17:39:57:531 BST] CWUDU0016I: Importing entities...

[29/07/04 17:39:57:531 BST] CWUDU0124I: Created tModel minimal entity with tModelKey [uuid:667e2766-4781-

4151-b3a0-809f7180a096].

[29/07/04 17:39:57:531 BST] CWUDU0121I: Created business minimal entity with businessKey [263f5526-8708-4

834-9f5d-8f8c878f5d6e].

[29/07/04 17:39:57:531 BST] CWUDU0122I: Created service minimal entity with serviceKey [0af2a30a-be70-401

f-a027-331a6c332712].

[29/07/04 17:39:57:531 BST] CWUDU0122I: Created service minimal entity with serviceKey [61012761-d02c-4c7

0-ae98-435ffd4398f9].

[29/07/04 17:39:57:531 BST] CWUDU0123I: Created binding template minimal entity with bindingKey [f97af9f9

-7cb7-47bd-8b90-b55e4db590df].

[29/07/04 17:39:57:531 BST] CWUDU0123I: Created binding template minimal entity with bindingKey [17e4c017

-d273-43ec-af4a-f9b841f94a30].

[29/07/04 17:39:57:531 BST] CWUDU0123I: Created binding template minimal entity with bindingKey [9e2c239e

-3b30-40a9-9c25-ce64edce25b9].

[29/07/04 17:39:57:531 BST] CWUDU0121I: Created business minimal entity with businessKey [49bb6949-4b0e-4

e81-88a7-e26bfbe2a7f1].

[29/07/04 17:39:57:531 BST] CWUDU0122I: Created service minimal entity with serviceKey [003d2b00-f6c0-407

1-8b84-f235a2f28445].

[29/07/04 17:39:57:531 BST] CWUDU0123I: Created binding template minimal entity with bindingKey [df1019df

-2d2f-4f32-bf18-4f21274f1835].

[29/07/04 17:39:57:531 BST] CWUDU0123I: Created binding template minimal entity with bindingKey [b229aeb2

-f2b1-4115-a06f-536753536f10].

[29/07/04 17:39:57:531 BST] CWUDU0122I: Created service minimal entity with serviceKey [84d8e584-2510-409

9-9b2a-6023f1602a0a].

[29/07/04 17:39:57:531 BST] CWUDU0123I: Created binding template minimal entity with bindingKey [62a9a762

-7fff-4f7a-8463-af0c79af63ee].

[29/07/04 17:39:57:531 BST] CWUDU0123I: Created binding template minimal entity with bindingKey [e08654e0

-b212-42c0-bcf3-655e9765f392].

[29/07/04 17:39:57:531 BST] CWUDU0115I: Imported 7 entities and 0 referenced entities. [this kind of

message indicates the operation worked!]

[29/07/04 17:39:57:531 BST] CWUDU0002I: ********** Starting UDDI Utility Tools **********

[29/07/04 17:39:57:531 BST] CWUDU0023I: Deleting entities...

[29/07/04 17:39:57:531 BST] CWUDU0028I: Deleted 7 entities.

The second log file shows a typical trace log file entry for an export:

[29/07/04 17:39:57:531 BST] ********** Starting UDDI Utility Tools ********** [eyecatcher and timestamp

 indicate when tool is run]

[29/07/04 17:39:57:531 BST] > com.ibm.uddi.promoter.PromoterAPI.setUddiEntities() [the ’>’ indicates

entry to the constructor of this class]

[29/07/04 17:39:57:531 BST] > com.ibm.uddi.promoter.export.KeyFileReader()

[29/07/04 17:39:57:531 BST] com.ibm.uddi.promoter.export.KeyFileReader() loaded tModel keys

[29/07/04 17:39:57:531 BST] com.ibm.uddi.promoter.export.KeyFileReader() loaded business keys

TransformConfiguration:

 nameSpacePrefix=promote

 uddiEntityDefinitionFile=C:\temp/MigToolFiles/Results/Promote_api_EDF_1.xml

ExportConfiguration:

 fromGetURL=http://yottskry:9080/uddisoap/

472 Administering applications and their environment

fromInquiryURL=http://yottskry:9080/uddisoap/inquiryAPI

ImportConfiguration:

 overwrite=true

 uddiEntityDefinitionFile=C:\temp/MigToolFiles/Results/Promote_api_EDF_1.xml

 importReferencedEntities=true

PublishConfiguration:

 toInquiryURL=http://davep:9080/uddisoap/inquiryAPI

 toPublishURL=http://yottskry:9080/uddisoap/publishAPI

 userID=Publisher1

 trustStoreFileName=C:\WebSphere600/AppServer/etc/DummyClientTrustFile.jks

 secureConnection=false

DatabaseConfiguration:

 dbDriver=COM.ibm.db2.jcc.DB2Driver

 dbURL=jdbc:db2:LOC1

 dbUser=db2admin

LoggerConfiguration:

 messageStream=null

 messageLogFileName=C:\temp/MigToolFiles/logs/message.log

 traceLogFileName=C:\temp/MigToolFiles/logs/trace.log

 traceLevel=3

 verbose=true

[29/07/04 17:39:57:531 BST] < com.ibm.uddi.promoter.PromoterAPI()

[29/07/04 17:39:57:531 BST] ********** Starting UDDI Utility Tools **********

[29/07/04 17:39:57:531 BST] > com.ibm.uddi.promoter.PromoterAPI.setUddiEntities()

[29/07/04 17:39:57:531 BST] > com.ibm.uddi.promoter.export.KeyFileReader()

[29/07/04 17:39:57:531 BST] com.ibm.uddi.promoter.export.KeyFileReader() loaded tModel keys [log

entries without a ’>’ or ’<’ are status messages only]

[29/07/04 17:39:57:531 BST] com.ibm.uddi.promoter.export.KeyFileReader() loaded business keys

[29/07/04 17:39:57:531 BST] com.ibm.uddi.promoter.export.KeyFileReader() loaded service keys

[29/07/04 17:39:57:531 BST] com.ibm.uddi.promoter.export.KeyFileReader() loaded binding keys

[29/07/04 17:39:57:531 BST] > com.ibm.uddi.promoter.UddiEntityKeys()

[29/07/04 17:39:57:531 BST] < com.ibm.uddi.promoter.UddiEntityKeys() [the ’<’ indicates exit from the

constructor]

[29/07/04 17:39:57:531 BST] com.ibm.uddi.promoter.export.KeyFileReader() removed duplicate, empty

and null keys

[29/07/04 17:39:57:531 BST] < com.ibm.uddi.promoter.export.KeyFileReader()

[29/07/04 17:39:57:531 BST] < com.ibm.uddi.promoter.PromoterAPI.setUddiEntities()

[29/07/04 17:39:57:531 BST] > com.ibm.uddi.promoter.PromoterAPI.deleteEntities()

[29/07/04 17:39:57:531 BST] > com.ibm.uddi.promoter.publish.EntityDeleter()

[29/07/04 17:39:57:531 BST] < com.ibm.uddi.promoter.publish.EntityDeleter()

[29/07/04 17:39:57:531 BST] > com.ibm.uddi.promoter.UDDIClient()

[29/07/04 17:39:57:531 BST] com.ibm.uddi.promoter.UDDIClient() client type: 1

Starting UDDI Utility Tools through the API

UDDI Utility Tools provides a public API to functions for exporting, importing, promoting, finding and

deleting UDDI entities. All of these functions can be invoked by using the PromoterAPI class. Usage of this

class to perform these functions is typically to:

1. Create a Configuration object and populate it from a Properties object or from a configuration

properties file.

2. Create a PromoterAPI object passing the Configuration in the constructor.

3. For keys based functions (export, delete and promote), set the keys by supplying a UDDIEntityKeys

object, the location of the keys file, or, for one entity, by specifying an entity type and a key value.

4. Invoke the corresponding method for the function required: exportEntities, promoteEntities(boolean),

importEntities, deleteEntities or extractKeysFromInquiry(FindTModel, FindBusiness, FindService,

FindBinding, FindRelatedBusinesses).

Chapter 12. Web services 473

There is some sample code for UDDI Utility Tools, demonstrating usage of the API classes, available from

Samples Central.

The ″low-level″ API classes and methods have been deprecated in this release. Refer to the API

documentation for details.

Known limitations with UDDI Utility Tools and workarounds

There are some known limitations with UDDI Utility Tools and a workaround for each. See UDDI

troubleshooting tips for more information.

Embedded Cloudscape Restriction

The ’export’ and ’delete’ functions when referencing a source registry with an embedded Cloudscape

database are supported. However, the ’import’ and ’promote’ functions are not supported when referencing

a target registry because of a limitation with the UDDI registry when working with an embedded

Cloudscape database. To allow the ’promote’ and ’import’ functions to work, the embedded Cloudscape

database needs to be made network enabled. For information about configuring network Cloudscape, refer

to the managing derby network server section of the Cloudscape information center.

Saving Version 3 entities with a supplied key

An example of saving a Version 3 business with a defined key is shown below.

<?xml version="1.0" encoding="UTF-8"?>

<Envelope xmlns="http://schemas.xmlsoap.org/soap/envelope/">

 <Body>

 <save_business xmlns="urn:uddi-org:api_v3">

 <authInfo>a399c4a3-6387-47cd-a1bd-91f7bb91bdd7</authInfo>

 <businessEntity businessKey="uddi:mycompany-p1.com:computers">

 <name xml:lang="en">WithKey</name>

 </businessEntity>

 </save_business>

 </Body>

</Envelope>

Known limitations with UDDI Utility Tools and workarounds

There are known limitations with the UDDI Utility Tools and a workaround for each:

v PublisherAssertions are not supported and will not be promoted.

Workaround: After the user has promoted the businesses that are related, he must recreate the

publisherAssertion relationship.

v Referenced businesses in service projections are not added automatically to the EDF in the same

manner as referenced tModels.

Workaround: Add the referenced business that will ’own’ the projected service to the EDF. If the

business is not present in the target registry, it should be placed before the service’s owning business in

the EDF.

v Cycle detection for service projections are not detected in the same manner as for referenced tModels.

Workaround: If a circular reference is present between two or more service projections, break the cycle

by removing one of the projections temporarily, perform the import and update the changed entity to

reestablish the cycle in the target registry.

v tModels that were deleted (in the logical sense) in the source registry are imported and promoted as

undeleted in the target registry. This is because, in the UDDI Version 2 specification, the deleted state

of tModels is not exposed as API calls.

Workaround: After importing the tModel, perform a delete. This is done using the UDDI Utility Tools

delete function, or any other UDDI registry API access method.

474 Administering applications and their environment

http://www.ibm.com/websphere/developer/library/samples/AppServer.html
http://publib.boulder.ibm.com/infocenter/cscv/v10r1/index.jsp

v BindingTemplates referenced by hostingRedirectors are not added automatically to the EDF in the same

manner as referenced tModels.

Workaround: Add the referenced bindingTemplate to the EDF.

v Businesses referenced by an ’owningBusiness’ keyedReference are not automatically added to the EDF.

Workaround: Import the referenced business into the target registry before importing the tModel that

references it.

v A few combinations of command line arguments are not validated and prevented, for example, it is

possible to specify -import with -keysFile <path to file> in the same command, although the -keysFile is

ignored.

Java API for XML Registries (JAXR) Provider for UDDI

Overview

The Java API for XML Registries (JAXR) is a Java client API for accessing both UDDI (Version 2 only) and

ebXML registries. It is part of the J2EE 1.4 specification.

The JAXR API comprises the J2EE packages javax.xml.registry and javax.xml.registry.infomodel. J2EE API

documentation can be found at http://java.sun.com/webservices/reference/api/index.html (this is a

download site). More information on JAXR, including the JAXR Version 1.0 specification, can be found at

http://java.sun.com/xml/jaxr/index.jsp.

Note that the preferred UDDI Java client APIs are ’UDDI4J Version 2’ for UDDI Version 2, and the ’UDDI

Version 3 Client for Java’ for UDDI Version 3.

JAXR Provider

The current JAXR specification (Version 1.0) defines a JAXR Provider as an implementation of the JAXR

API. A JAXR Provider may be a JAXR Provider for UDDI, a JAXR Provider for ebXML, or a pluggable

provider which supports both UDDI and ebXML. The JAXR Provider for UDDI is a provider for UDDI only.

UDDI Versions

A JAXR Provider for UDDI accesses a UDDI registry using the UDDI Version 2 SOAP APIs only. The

UDDI registry for UDDI Version 3 in this version of WebSphere Application Server supports the UDDI

Version 1, 2 and 3 SOAP APIs, and so the JAXR Provider for UDDI can be used to access this registry.

The IBM JAXR Provider can also be used to access the UDDI registry for UDDI Version 2 in WebSphere

Application Server Version 5.x. Note that to use the UDDI Version 3 SOAP APIs, JAXR cannot be used.

The UDDI Version 3 Client for Java is recommended for this.

Capability Level

The JAXR specification defines two Capability Profiles, Capability Level 0 and Capability Level 1. The

JAXR API documentation categorizes each JAXR method as either Level 0 or Level 1. A JAXR provider for

UDDI has Capability Level 0 and supports all Level 0 methods. A JAXR provider for ebXML has Capability

Level 1 and supports all Level 0 and Level 1 methods. The JAXR Provider for UDDI is a Capability Level 0

Provider, and supports only Level 0 methods.

JAXR for UDDI - getting started and advanced topics

Getting started

A simple sample

The following sample program shows how to obtain the ConnectionFactory instance, create a Connection

to the registry and save an Organization in the registry.

Chapter 12. Web services 475

http://java.sun.com/webservices/reference/api/index.html
http://java.sun.com/xml/jaxr/index.jsp

import java.net.PasswordAuthentication;

import java.util.ArrayList;

import java.util.Collection;

import java.util.HashSet;

import java.util.Properties;

import java.util.Set;

import javax.xml.registry.BulkResponse;

import javax.xml.registry.BusinessLifeCycleManager;

import javax.xml.registry.Connection;

import javax.xml.registry.ConnectionFactory;

import javax.xml.registry.JAXRException;

import javax.xml.registry.RegistryService;

import javax.xml.registry.infomodel.Key;

import javax.xml.registry.infomodel.Organization;

public class JAXRSample

{

 public static void main(String[] args) throws JAXRException

 {

 //Tell the ConnectionFactory to use the JAXR Provider for UDDI

 System.setProperty("javax.xml.registry.ConnectionFactoryClass",

 "com.ibm.xml.registry.uddi.ConnectionFactoryImpl");

 ConnectionFactory connectionFactory = ConnectionFactory.newInstance();

 //Set the URLs for the UDDI inquiry and publish APIs.

 //These must be the URLs of the UDDI version 2 APIs.

 Properties props = new Properties();

 props.setProperty("javax.xml.registry.queryManagerURL", "http://localhost:9080/uddisoap/inquiryapi");

 props.setProperty("javax.xml.registry.lifeCycleManagerURL", "http://localhost:9080/uddisoap/publishapi");

 connectionFactory.setProperties(props);

 //Create a Connection to the UDDI registry accessible at the above URLs.

 Connection connection = connectionFactory.createConnection();

 //Set the user ID and password used to access the UDDI registry.

 PasswordAuthentication pa = new PasswordAuthentication("Publisher1", new char[] { ’p’, ’a’, ’s’,

 ’s’, ’w’, ’o’, ’r’, ’d’ });

 Set credentials = new HashSet();

 credentials.add(pa);

 connection.setCredentials(credentials);

 //Get the javax.xml.registry.BusinessLifeCycleManager interface, which contains

 //methods corresponding to UDDI publish API calls.

 RegistryService registryService = connection.getRegistryService();

 BusinessLifeCycleManager lifeCycleManager = registryService.getBusinessLifeCycleManager();

 //Create an Organization (UDDI businessEntity) with name "Organization 1".

 Organization org = lifeCycleManager.createOrganization("Organization 1");

 //Add the Organization to a Collection, ready to be saved in the UDDI registry.

 Collection orgs = new ArrayList();

 orgs.add(org);

 //Save the Organization in the UDDI registry.

 BulkResponse bulkResponse = lifeCycleManager.saveOrganizations(orgs);

 //Obtain the Organization’s Key (the UDDI businessEntity’s businessKey) from the response.

 if (bulkResponse.getExceptions() == null)

 {

 //1 Organization was saved, so 1 key will be returned in the response collection

 Collection responses = bulkResponse.getCollection();

 Key organizationKey = (Key)responses.iterator().next();

 System.out.println("\nOrganization Key = " + organizationKey.getId());

 }

 }

}

476 Administering applications and their environment

Classpath

The class libraries of the JAXR Provider for UDDI are contained within the com.ibm.uddi_1.0.0.jar file,

located in the app_server_root/plugins directory. When using the JAXR API from within a J2EE application

running under WebSphere Application Server, all required classes will automatically be on the classpath.

When using the JAXR API from outside this environment, the following jars must be on the Java classpath:

v app_server_root/lib/bootstrap.jar

v app_server_root/lib/j2ee.jar

v app_server_root/plugins/com.ibm.uddi_1.0.0.jar

v app_server_root/plugins/com.ibm.ws.runtime_6.1.0

javax.xml.registry.ConnectionFactory

To use the JAXR Provider for UDDI, the name of the ConnectionFactory implementation class must first be

specified by setting the System Property “javax.xml.registry.ConnectionFactoryClass” to

“com.ibm.xml.registry.uddi.ConnectionFactoryImpl”. Failure to specify this will result in the value defaulting

to “com.sun.xml.registry,common.ConnectionFactoryImpl”, which will not be found. This will result in a

JAXRException when the ConnectionFactory.newInstance() method is called. The JAXR Provider for UDDI

does not support lookup of the ConnectionFactory via JNDI.

javax.xml.registry.Connection Properties

Connection specific properties must be specified by setting a java.util.Properties object on the JAXR

ConnectionFactory before obtaining a Connection. The JAXR specification defines the full list of these

properties. The table below lists the three most important properties, and what values they should take in

order to use the JAXR Provider for UDDI to access the UDDI registry. The only required Connection

property is “javax.xml.registry.queryManagerURL”, however it is recommended that

“javax.xml.registry.lifeCycleManagerURL” is also set, and that the default value of

“javax.xml.registry.security.authenticationMethod” is understood. The rest of the Connection properties

defined in the JAXR specification are optional, and their values are not specific to the UDDI registry. The

JAXR Provider for UDDI does not define any additional provider-specific properties.

 Property Description

javax.xml.registry.queryManagerURL The URL of the UDDI registry’s inquiry API for UDDI Version 2.

Typically this will be of the form: “http://<hostname>:<port>/
uddisoap/inquiryapi”. This property is required.

javax.xml.registry.lifeCycleManagerURL The URL of the UDDI registry’s publish API for UDDI v2. Typically

this will be of the form: “http://<hostname>:<port>/uddisoap/
publishapi”. If this property is not specified, it defaults to the

value of the javax.xml.registry.queryManagerURL property,

however the UDDI registry will typically have different URLs for

the inquiry and publish APIs, and it is recommended to specifiy

both properties.

javax.xml.registry.authenticationMethod The method of authentication to use when authenticating with the

registry. This may take one of two values,

“UDDI_GET_AUTHTOKEN” and “HTTP_BASIC”. The default

value is “UDDI_GET_AUTHTOKEN” if none is specified. See

section Authentication and Security below for more information.

Authentication and security

Authentication

Chapter 12. Web services 477

The javax.xml.registry.authenticationMethod Connection property tells the JAXR Provider which method to

use when authenticating with the UDDI registry. The two supported values of this property are

“UDDI_GET_AUTHTOKEN” and “HTTP_BASIC”. The JAXR Provider for UDDI does not support the

“CLIENT_CERTIFICATE” or “MS_PASSPORT” methods of authentication. If this property is not set, the

default authentication method is “UDDI_GET_AUTHTOKEN”.

UDDI_GET_AUTHTOKEN

The JAXR Provider uses the UDDI V2 get_authToken API to authenticate with the registry. The

get_authToken call is made automatically by the JAXR Provider when the Connection credentials are set,

and the UDDI V2 authToken returned by the call is saved by the JAXR Provider for use on subsequent

UDDI publish API calls.

HTTP_BASIC

The JAXR Provider uses HTTP basic authentication to authenticate with the registry. This is supported by

WebSphere Application Server when security is on. No UDDI V2 get_authToken API call is made, instead

the username and password are sent in the HTTP headers using HTTP basic authentication every time a

UDDI API call is made (both inquiry and publish). If the UDDI registry does not require HTTP basic

authentication, the credentials are ignored.

The JAXR Provider uses UDDI Version 2 SOAP inquiry and publish APIs. These APIs are protected as

described in Access control for UDDI registry interfaces.

USING SSL (Secure Sockets Layer)

SSL can be used to encrypt HTTP traffic between the JAXR Provider for UDDI and the UDDI registry. To

use SSL, the JAXR client program should do the following:

1. When setting the “javax.xml.registry.queryManagerURL” and “javax.xml.registry.lifeCycleManagerURL”

Connection properties, specify a URL with the protocol “https” and the correct port for using SSL to

access the UDDI registry. The UDDI registry’s default port for HTTPS is 9443. Often only the

lifeCycleManager URL (the UDDI Publish API URL) will require SSL.

2. Add a new Security Provider to the java.security.Security object, according to the JSSE (Java Secure

Sockets Extension) implementation being used. If running under the JVM provided in WebSphere

Application Server, the JSSE provided by IBM will automatically be on the classpath. Add the IBM

Security Provider as follows:

java.security.Security.addProvider(new com.ibm.jsse.JSSEProvider());

3. Set the System property “javax.net.ssl.trustStore” to be the file name of the client trust store file. The

client trust store file is a Java key store (.jks) file and must contain the server certificate of the UDDI

registry. Key store files can be managed using the ikeyman tool

4. Set the System property “javax.net.ssl.trustStorePassword”. This is the password used to open the

client trust store file.

5. If using an IBM version of JVM that is older than the level provided in this version of WebSphere

Application Server, it may be necessary to set the System property “java.protocol.handler.pkgs” to

“com.ibm.net.ssl.internal.www.protocol”. For more information on SSL and the ikeyman tool refer to

SSL and IKEYMAN within this Information Center.

Internal taxonomies

The JAXR Provider for UDDI supplies the following internal taxonomies:

 Taxonomy ClassificationScheme name

(UDDI tModel name)

ClassificationScheme id (UDDI Version 2

tModelKey)

NAICS 1997 ntis-gov:naics:1997 UUID:C0B9FE13-179F-413D-8A5B-5004DB8E5BB2

478 Administering applications and their environment

NAICS 2002 ntis-gov:naics:2002 UUID:C0B9FE13-179F-413D-8A5B-5004DB8E5BB2

UNSPSC 3.1 unspsc-org:unspsc:3-1 UUID:DB77450D-9FA8-45D4-A7BC-04411D14E384

UNSPSC 7 unspsc-org:unspsc UUID:CD153257-086A-4237-B336-6BDCBDCC6634

ISO3166 2003 ubr-uddi-org:iso-ch:3166-2003 UUID:4E49A8D6-D5A2-4FC2-93A0-0411D8D19E88

The tModels corresponding to all of these taxonomies are available in the UDDI Version 3 registry. If using

the JAXR Provider to access a UDDI Version 2 registry, only the tModels corresponding to NAICS 1997,

UNSPSC 3.1 and ISO3166 are available.

Custom internal taxonomies

A user may supply their own custom internal taxonomies. To create a new custom internal taxonomy and

make it available to the JAXR provider, follow these steps:

1. Create a text file containing the taxonomy element data. As an example, look at the file

iso3166-2003-data.txt in plugins/com.ibm.uddi_1.0.0. This is the taxonomy data file for the supplied

ISO 3166 taxonomy. The first few lines are:

iso3166#--#World#--

iso3166#AD#Andorra#--

iso3166#AE#United Arab Emirates#--

iso3166#AE-AJ#’Ajm?n#AE

iso3166#AE-AZ#Ab? Z?aby[Abu Dhabi]#AE

iso3166#AE-DU#Dubayy [Dubai]#AE

iso3166#AE-FU#Al Fujayrah#AE

iso3166#AE-RK#Ra’s al Khaymah#AE

iso3166#AE-SH#Ash Sh?riqah [Sharjah]#AE

iso3166#AE-UQ#Umm al Qaywayn#AE

iso3166#AF#Afghanistan#--

iso3166#AF-BAL#Balkh#AF

iso3166#AF-BAM#B?m??n#AF

Each line represents one element of the taxonomy, or one Concept in the taxonomy Concept tree.

Each line has the form:

<taxonomy ID>#<element value>#<element name>#<parent element value>

 Token Description

<taxonomy ID> The taxonomy ID is the same for every element of a taxonomy.

<element value> The Concept value (UDDI keyValue).

<element name> The Concept name (UDDI keyName).

<parent element value> This defines the element’s parent element in the taxonomy tree. For every element

(except the root element) in the data file, there should be another line which defines the

element’s parent element. The root element is denoted by defining itself as its own

parent. There should be only one root element, and no parentless elements.

The delimiter character. This does not have to be “#” and can be defined for each

taxonomy in the taxonomyConfig.properties file.

2. Save a ClassificationScheme (UDDI tModel) in the UDDI registry to represent the new internal

taxonomy. This can be done using the

javax.xml.registry.BusinessLifeCycleManager.saveClassificationSchemes() method.

3. Add the new taxonomy to the taxonomyConfig.properties file:

a. Copy the supplied taxonomyConfig.properties file from the root of the com.ibm.uddi_1.0.0.jar file.

The content of the supplied taxonomyConfig.properties file is:

Chapter 12. Web services 479

naics-1997 = UUID:C0B9FE13-179F-413D-8A5B-5004DB8E5BB2, naics-1997-data.txt, #

naics-2002 = UUID:1FF729F2-1948-46CF-B660-31EC107F1663, naics-2002-data.txt, #

unspsc = UUID:DB77450D-9FA8-45D4-A7BC-04411D14E384, unspsc-data.txt, #

unspsc7_data = UUID:CD153257-086A-4237-B336-6BDCBDCC6634, unspsc7-data.txt, #

iso3166-2003 = UUID:4E49A8D6-D5A2-4FC2-93A0-0411D8D19E88, iso3166-2003-data.txt,#

This file has one line per supplied internal taxonomy, which is of the form:

<taxonomy ID> = <tModelKey>,<data filename>,<data file delimiter>

 Token Description

<taxonomy ID> This is used internally by the JAXR provider to identify each taxonomy. It

does not have to be the same as the taxonomy ID in the corresponding

taxonomy data file.

<tModelKey> The tModelKey of the corresponding UDDI tModel. (The id of the

corresponding JAXR ClassificationScheme).

<data filename> The name of the corresponding taxonomy data file.

<data file delimiter> The delimiter character used in the taxonomy data file. All supplied internal

taxonomies use “#”, but user-supplied internal taxonomies may use different

delimiters.

b. Add a new line for the new taxonomy to the copy of the taxonomyConfig.properties file. Do not

remove any existing taxonomies from the file as this will make them unavailable to the JAXR

provider.

4. Add the copied taxonomyConfig.properties file to the Java classpath ahead of jaxruddi.jar.

5. If any JAXR client programs are still running that were started before the new taxonomy was added to

the taxonomyConfig.properties file, a new Connection must be created in order to pick up the new

taxonomy.

Important notes on internal taxonomies

Each internal taxonomy is loaded into memory once per JAXR Connection. The taxonomy’s

ClassificationScheme is created when the Connection is created. At this time the associated UDDI tModel

is obtained from the registry and used to populate the ClassificationScheme attributes. The taxonomy’s

Concept object tree is not created until the first time the ClassificationScheme is requested by the user. All

subsequent requests for the same internal taxonomy using the same Connection will return the same

object tree.

Modification of the Concept object tree

Because there is only one ClassificationScheme and Concept object tree per internal taxonomy per

Connection, a user should not attempt to modify programmatically any part of the Concept tree, because

all future requests for this taxonomy using the same Connection will return the modified (and now possibly

invalid) objects. Programmatic modification of the Concept tree will not result in any changes to the

associated taxonomy data file. If a user wishes to make a change to the values in a user-defined internal

taxonomy, they must first make the changes in the taxonomy data file, and then create a new Connection

to pick up the changes in a new Concept tree.

Modification of the ClassificationScheme

Similarly, a user should not attempt to modify programmatically an internal ClassificationScheme, except in

the case where a user wishes to modify and then save a user-defined internal ClassificationScheme. A

new Connection is not required to pick up programmatic changes.

Logging and messages

UDDI4J Logging

480 Administering applications and their environment

The JAXR Provider for UDDI uses UDDI4J Version 2 to communicate with the UDDI registry. UDDI4J has

its own logging which can be switched on by setting the value of the System property

“org.uddi4j.logEnabled” to “true”. This outputs to the standard error log the XML request and response

bodies of every UDDI request.

Trace

Entry, exit, exception, warning and debug trace is provided using commons-logging. See

http://jakarta.apache.org/commons/logging/ for more information on commons-logging. Trace will only be

created if the JAXR client configures it. Entry, exit and debug trace uses the debug level of logging.

Exception and warning trace uses the info level of logging. Additionally, info level logging is provided

before each UDDI4J request is made.

Standard error log messages

The InternalTaxonomyManager, EnumerationManager and PostalSchemeManager send warning messages

to System.err if error conditions occur that do not warrant an exception, but that the user should be

informed of. Examples of these are if a taxonomy data file contains an invalid line, or if a tModel

corresponding to an internal taxonomy could not be found in the registry.

Removing and reinstalling the UDDI registry

A UDDI registry node consists of a J2EE application, a store of data (using a relational database

management system) referred to as the UDDI database, and a means to connect the application to the

data (a data source and related elements). All the data relating to UDDI is stored within the UDDI

database and therefore exists irrespective of the UDDI application.

With these facts in mind, consider the following options:

v To remove a node from a WebSphere Application Server you do not have to delete the database. You

only have to delete the UDDI application and any associated resources such as the data source used

(and J2C Authentication Data if used), as the data in the UDDI database is separate from the UDDI

application.

v You do not have to remove the UDDI application to start a new UDDI registry node. Instead you can

create a new, replacement node by changing the datasource which the UDDI application uses to access

the new UDDI database.

Remove the UDDI application if you no longer want a UDDI facility on a particular WebSphere Application

Server (you can subsequently move the UDDI registry node to a different WebSphere Application Server).

Reinstall the UDDI application if you wish to continue to provide the UDDI facility on a particular

WebSphere Application Server.

To reinstall a UDDI registry node, see Reinstalling the UDDI application. To remove a UDDI application or

to remove a UDDI registry node, see Removing a UDDI Node.

Removing a UDDI registry node

To completely remove a UDDI registry node you need to remove the UDDI registry application and delete

the UDDI registry database. However there may be situations where you only want to perform one of

these tasks:

Removing the UDDI registry application from an application server.

You might want to do this in order to reinstall the application because it has become corrupted for

some reason, or to apply service. See also the topic on Reinstalling the UDDI registry application.

Chapter 12. Web services 481

http://jakarta.apache.org/commons/logging/

Deleting the UDDI registry database

You might want to do this in order to use a different database product as the persistence store for

your UDDI data, to delete all your UDDI registry data in order to publish fresh data (for example, if

you have completed a test cycle), or to cause the UDDI registry node to re-initialize with new

UDDI property settings (for example, to move from a default UDDI node to a customized UDDI

node). Note that deleting a UDDI registry database will cause all UDDI data for that UDDI registry

to be lost.

Moving a UDDI registry to another server or profile

You might want to do this if you have created a new profile and want to move the UDDI registry to

it.

Completely removing a UDDI registry node from an application server

You might want to do this to remove a UDDI registry that has been used for testing.

Depending on what you wish to achieve, complete one of the following steps:

1. Removing a UDDI registry application

To remove the UDDI application from an application server, run the wsadmin script uddiRemove.jacl,

as shown, from the app_server_root/bin directory.

The syntax of the command is as follows (this is a Windows platform example; for UNIX or Linux

platforms, add the .sh suffix to the wsadmin command):

wsadmin [-profileName profile_name] -f uddiRemove.jacl

 node_name

 server_name

 [default]

where

v ’-profileName profile_name’ is optional, and is the name of the profile in which the UDDI application

is deployed. If you do not specify a profile, the default profile will be used.

v node_name and server_name are the names of the WebSphere node and application server in

which the UDDI application is deployed (these are the names that you specified when you ran

uddiDeploy.jacl to install the UDDI application).

v ’default’ is optional and is applicable only for Cloudscape, and then only if the default option was

used when the uddiDeploy.jacl script was run to deploy the UDDI registry. Specifying default will

remove the UDDI Cloudscape datasource but not the UDDI Cloudscape database.

Output will appear on the screen by default. To direct the output to a log file, add ’> removeuddi.log’

(where removeuddi.log can be any log name of your choice) to the end of the command.

For example, to remove the UDDI application from server ’server1’ running in node ’MyNode’ on a

Windows system, and send any messages to the file removeuddi.log:

wsadmin -f uddiRemove.jacl MyNode server1 > removeuddi.log

Note: You can also remove the UDDI registry application using the administrative console in the usual

way, by selecting the application in the Enterprise Applications view and clicking Uninstall.

2. Deleting a UDDI registry database

Note that this will cause all UDDI data in that UDDI registry to be destroyed.

a. Stop the server that is hosting the UDDI registry application.

b. Delete the database:

v For DB2, use the database facilities to delete the UDDI database.

v For Oracle, delete the schemas IBMUDDI, IBMUDI30 and IBMUDS30.

v For Cloudscape, delete the directory tree containing the UDDI database. By default, this will be

located in app_server_root/profiles/profile_name/databases/com.ibm.uddi/UDDI30.

3. Moving a UDDI registry to another server or profile

a. Make sure that the UDDI database will still be accessible. For example if you are using a remote

database make sure that the new server can access it. If your database will not be accessible, or it

482 Administering applications and their environment

will be deleted after the move, copy it to a new, accessible location. For example, if you want to

move the UDDI registry to a new profile and then delete the old profile, any databases stored in

the profile (such as a Cloudscape database created as part of the creation of a default UDDI node)

will also be deleted.

b. Remove the UDDI registry application by running the uddiRemove.jacl script as described above.

c. If you ran the uddiRemove.jacl script using the default option, the datasource and related objects

have already been deleted. If the default option was not valid for your configuration, delete the

following objects:

v the UDDI datasource that references the UDDI registry database (this was created when you set

up the UDDI registry).

v any UDDI JDBC provider that was created (if you did not reuse an existing JDBC provider).

v any J2C Authentication Data Entry that was created.

d. In the new server create a J2C authentication data entry (if appropriate), JDBC provider and

datasource, to reference the existing database (for more information see the relevant steps in

Setting up a customized UDDI node).

e. Deploy the UDDI registry application as described in Deploying the UDDI registry application,

noting that you should not specify the default option even if you previously used this option to set

up a default UDDI node. If you use the default option, you might encounter an error during

deployment, or in some circumstances your existing UDDI data might be overwritten.

Note: The UDDI node name will remain the same as before. If the UDDI node name included the

node name and server name of the original server, there will be a mismatch between the

UDDI node name and the node name and server name of the new server. However this

name mismatch will not affect the functioning of the UDDI registry node.

f. Check that the UDDI data can be accessed. If you are using a copy of the original UDDI registry

database, you can now delete the original as described above.

4. Completely removing a UDDI registry node

To completely remove a UDDI registry node from an application server, you need to remove the UDDI

registry application and database, and also the resources that were used to reference the UDDI

registry database.

a. Remove the UDDI registry application by running the uddiRemove.jacl script as described above.

b. Delete the UDDI registry database, as described above.

c. If you ran the uddiRemove.jacl script using the default option, the datasource and related objects

have already been deleted so no further action is required. If the default option was not valid for

your configuration, delete the following objects:

v the UDDI datasource that references the UDDI registry database (this was created when you set

up the UDDI registry).

v any UDDI JDBC provider that was created (if you did not reuse an existing JDBC provider).

v any J2C Authentication Data Entry that was created.

Reinstalling the UDDI registry application

Perform this task if you want to continue providing UDDI services with your existing UDDI database, but

require that the UDDI application code be changed.

1. Make a note of any changes that you have made to the installed UDDI application that you wish to

keep, for example changes to security role mappings, changes to the deployment descriptor (web.xml)

in v3soap,war, v3gui.war, v3soap.war, or soap.war, or customization of the UDDI user interface (GUI).

All such changes will be lost during the reinstallation process; any changes that you wish to keep will

need to be reapplied later.

2. Run the wsadmin script uddiDeploy.jacl from the app_server_root/bin directory, as shown, noting that:

Chapter 12. Web services 483

v you should not specify the default option even if you previously used this option to set up a default

UDDI node using Cloudscape. If you use the default option, you might encounter an error during

deployment, or in some circumstances your existing UDDI data might be overwritten.

v if you are deploying the UDDI registry into a network deployment scenario, ensure that the

deployment manager is the target.

At a command prompt enter:

wsadmin [-conntype none] [-profileName profile_name] –f uddiDeploy.jacl

 node_name

 server_name

where

v ’-profileName profile_name’ is optional, and is the name of the profile in which the UDDI application

is deployed. If you do not specify a profile, the default profile will be used.

v ’-conntype none’ is optional, and is only needed if the application server or deployment manger is

not running.

v node_name and server_name are the names of the WebSphere node and application server in

which the UDDI application is deployed (these are the names that you specified when you ran

uddiDeploy.jacl to install the UDDI application).

The output from this command can optionally be redirected to a log file by adding ’> log_name.log’ at

the end of the command, where log_name.log is the name of the log file to be created.

The command removes the existing UDDI application and reinstalls it.

Note: Your existing JDBC provider, datasource and any J2C authdata entry will be unchanged by this

procedure . Your existing UDDI registry data, including UDDI entities as well as property and

policy settings, will also be unaffected.

3. If you noted any changes in step 1, reapply them now.

4. Start or restart the application server for the reapplied changes to take effect.

Applying an upgrade to the UDDI registry

Perform this task to apply an iFix, Fix Pack or Refresh Pack to the UDDI registry.

Note: Some upgrades may require additional steps; refer to the readme file for the upgrade before you

complete this task.

1. Apply the WebSphere Application Server iFix, Fix Pack or Refresh Pack to your application server or

servers using the WebSphere Application Server Update Installer. Note that this process must be

repeated for each server into which you choose to incorporate the UDDI upgrade.

2. If you have not yet deployed a UDDI registry, no further action is required as updates to the UDDI

registry will take effect when you first deploy UDDI into any of your application server profiles.

3. If you have already deployed a UDDI registry to one or more application server profiles, redeploy the

UDDI application as described in Reinstalling the UDDI registry application, to apply the upgrade. The

existing UDDI application will be removed and the updated application will be deployed.

Configuring the UDDI registry application

The UDDI registry is supplied as a Java 2 Platform, Enterprise Edition (J2EE) application file, uddi.ear.

You can configure the following aspects of the UDDI registry:

v Configuring UDDI registry security

v Configuring SOAP API and GUI services

v Multiple language encoding support in UDDI

v Customizing the UDDI registry user interface (GUI)

484 Administering applications and their environment

Configuring UDDI registry security

The UDDI Version 3 registry is designed to exploit the advantages of WebSphere Application Server

security. The registry also supports the UDDI Version 1 and Version 2 security features and the UDDI

Version 3 Security API.

For production use, it is recommended that the UDDI Version 3 registry is configured to use WebSphere

Application Server security, and that use of UDDI Version 1 and Version 2 security features and the

Version 3 Security API is avoided. However, for solutions with a strong preference for UDDI security, the

UDDI Version 3 registry can be configured to enable this, both when WebSphere Application Server

security is enabled and when it is disabled.

To configure UDDI registry security, complete the following steps:

1. Follow the appropriate link for the type of configuration you wish to set up:

v “Configuring the UDDI registry to use WebSphere Application Server security”

v “Configuring the UDDI registry to use UDDI security” on page 486

2. Review the “UDDI registry security additional considerations” on page 488.

Configuring the UDDI registry to use WebSphere Application Server security

Before starting this task complete the following two steps:

v Enable WebSphere Application Server security (see Enabling security for all application servers). This

will allow the UDDI registry to exploit the WebSphere Application Server security features.

v Ensure that WebSphere Application Server is configured to use HTTPS (SSL); this will allow the use of

secure access with the UDDI registry. WebSphere Application Server is configured by default to accept

SSL requests on port 9443, however if you need to make any additional SSL configuration changes,

refer to SSL configurations for selected scopes.

There are two aspects of WebSphere Application Server security which are exploited by the UDDI registry:

Authorization

Authorization determines whether users are allowed access to services. WebSphere Application

Server determines authorization by mapping users, or groups of users, to roles. UDDI makes use

of two WebSphere Application Server special subjects: Everyone (all users are allowed access)

and AllAuthenticatedUsers (only valid WebSphere Application Server registered users are allowed

access).

Data confidentiality

Data confidentiality determines security at the transport level. Data confidentiality for WebSphere

Application Server services can be either ’none’ (HTTP is used as the transport protocol) or

’confidential’ (requiring the use of SSL; HTTPS is used as the transport protocol).

When WebSphere Application Server security is enabled, the default settings in the UDDI Version 3

Application and Web deployment descriptors result in the following features:

v Publish, Custody Transfer and Security services are mapped to the AllAuthenticatedUsers special

subject, and data confidentiality is enforced (HTTPS is used). Authentication uses the standard

WebSphere Application Server security facilities and there is no separate registration function for the

UDDI registry. To use publish functions, users must supply their WebSphere Application Server user

name and password (unless you have modified the supplied publish role), and must also be registered

UDDI Publishers. By registering users as UDDI Publishers you control which users in the

AllAuthenticatedUsers subject can update the UDDI registry.

v Inquiry services are mapped to the Everyone special subject, and data confidentiality is not enforced

(HTTP is used). To use inquiry services, users do not need to supply a user name or password, and do

not have to be registered UDDI publishers.

Chapter 12. Web services 485

You are recommended to use the default settings as described above. However, you can change the

defaults by mapping roles to different users or user groups, or by not mapping a role to any users or user

groups, in which case all access to that role will be disabled. If you do map roles to users or groups, turn

on the Automatically register UDDI publishers property (see UDDI node settings) so that you do not

have to use two mechanisms for giving access to a subset of users.

For more information about UDDI role mappings, and a list of UDDI registry services and roles, see

Access control for UDDI registry interfaces.

To change the default settings follow the steps below:

1. To change the role mappings using the administrative console, complete the following steps:

a. In the navigation pane, click Applications → Enterprise Applications.

b. In the content pane, click the UDDI registry application.

c. Under Detail Properties click Security role to user/group mapping.

d. Make any changes you require and click OK.

2. To change the role mappings using the wsadmin command, complete the following steps:

a. Use the MapRolesToUsers option of the edit command of the AdminApp object to map the roles

defined in the UDDI registry application to special subjects (Everyone or AllAuthenticatedUsers), to

users, or to user groups. For example, the following Java command language (JACL) statement

maps the Version 3 GUI Publish role to Everyone, and the Version 3 SOAP Publish role to user

’user1’ and group ’group1’:

$AdminApp edit $AppName {-MapRolesToUsers { {"GUI_Publish_User" Yes No "" ""} {"V3SOAP_Publish_

User_Role" No No "user1" "group1"} }}

where $AppName is a variable representing the name of the UDDI registry application.

For more information about using the MapRolesToUsers option, see Options for the AdminApp

object install, installInteractive, edit, editInteractive, update, and updateInteractive commands.

3. To change the data confidentiality settings, refer to “Configuring SOAP API and GUI services” on page

490.

Configuring the UDDI registry to use UDDI security

It is possible to exploit the UDDI registry security features when WebSphere Application Server security is

either enabled or disabled. Each situation requires different configuration, and different behavior is

achieved.

Note: While useful for test purposes, it is not anticipated that WebSphere Application Server security is

disabled for production configurations.

To continue configuring the UDDI registry to use UDDI security, choose one of the following options:

v “Configuring UDDI Security with WebSphere Application Server security enabled”

v “Configuring UDDI Security with WebSphere Application Server security disabled” on page 487

Configuring UDDI Security with WebSphere Application Server security enabled:

When WebSphere Application Server security is enabled, to use the UDDI Version 1 and Version 2 publish

security features (use of authentication tokens) or the UDDI Version 3 security API, use the administrative

console to complete the following steps:

1. In the navigation pane, click Applications → Enterprise Applications.

2. In the content pane, click the UDDI registry application. Under Detail Properties click Security role to

user/group mapping.

3. Set the WebSphere Application Server security role mappings to Everyone for the following UDDI

services:

486 Administering applications and their environment

v Versions 1 and 2 SOAP publish service (SOAP_Publish _User)

v Version 3 publish service (V3SOAP_Publish_User_Role)

v Version 3 custody transfer service (V3SOAP_CustodyTransfer_User_Role)

v Version 3 security service (V3SOAP_Security_User_Role)

Changing the role mappings to Everyone prevents WebSphere Application Server security from

overriding UDDI security.

4. Ensure that UDDI Policy is set to require the use of authentication tokens for the UDDI Version 3

Publish and Custody Transfer services (use of authentication tokens is already required for Version 1

and Version 2 Publish services). To do this, click UDDI → UDDI Nodes > uddi_node_name, and under

Policy Groups click API policies. Select the Authorization for publish and Authorization for

custody transfer check boxes. (Select the Authorization for inquiry check box if you require

authentication for UDDI Inquiry services).

5. Click OK.

With this configuration, no Security Role authentication restriction is imposed, but the credentials (user

name and password) associated with the authentication token are authenticated by WebSphere Application

Server.

Note: When WebSphere Application Server security is enabled, WebSphere Application Server data

confidentiality management is independent of UDDI security and is managed as described in

“Configuring the UDDI registry to use WebSphere Application Server security” on page 485.

Configuring UDDI Security with WebSphere Application Server security disabled:

With WebSphere Application Server security disabled, neither WebSphere Application Server security roles

nor data confidentiality constraints apply. This mode may be useful for test UDDI registry configurations.

In this mode, UDDI Version 1 and Version 2 security features are active:

v UDDI Version 1 and Version 2 publish requests require UDDI Version 1 and Version 2 authentication

tokens respectively. Publishers requesting or using an authentication token must be registered

WebSphere Application Server users.

v UDDI Version 1 and Version 2 inquiry requests do not require authentication tokens.

No further configuration is required for UDDI Version 1 and Version 2 security.

For UDDI Version 3, the use of the UDDI Version 3 Security API, and the use of authentication tokens with

Version 3 Publish and Custody Transfer APIs, is optional. To make use of these UDDI Version 3 security

features, use the administrative console to complete the following steps:

1. Specify that use of authInfo is required. Click UDDI → UDDI Nodes > uddi_node_name.

2. In the General Properties section, select the Use authInfo credentials if provided check box.

3. Click OK.

Authentication tokens will now be required for publish and custody transfer requests, but not for inquiry

requests. Publishers requesting or using an authentication token must be registered WebSphere

Application Server users.

Access control for UDDI registry interfaces

Access to UDDI registry interfaces is controlled by a combination of J2EE declarative security using role

mappings, and UDDI properties and policies such as the registering of users as UDDI publishers.

Each of the UDDI registry interfaces is represented by a security role. The interfaces and their

corresponding roles are as follows:

Chapter 12. Web services 487

UDDI registry interface Security role

Version 3 SOAP inquiry V3SOAP_Inquiry_User_Role

Version 3 SOAP publish V3SOAP_Publish_User_Role

Version 3 SOAP custody transfer V3SOAP_CustodyTransfer_User_Role

Version 3 SOAP security V3SOAP_Security_User_Role

Version 3 GUI inquiry GUI_Inquiry_User

Version 3 GUI publish GUI_Publish_User

Versions 1 and 2 SOAP inquiry SOAP_Inquiry_User

Versions 1 and 2 SOAP publish SOAP_Publish_User

EJB inquiry EJB_Inquiry_Role

EJB publish EJB_Publish_Role

By default, the inquiry roles are mapped to the Everyone special subject and the non inquiry roles are

mapped to the AllAuthenticatedUsers special subject. For more information about WebSphere Application

Server role mapping and the Everyone and AllAuthenticatedUsers special subjects, see Role-based

authorization. With these default settings, after you enable WebSphere Application Server security you do

not need access control to use the UDDI registry inquiry interfaces, however to use the publish roles and

the Version 3 custody transfer role you must be authenticated using a WebSphere Application Server

userid and password. (The Version 3 security role is a special case, as this concerns use of UDDI registry

security instead of WebSphere Application Server security, and must be specially configured as described

in Configuring the UDDI registry to use UDDI security.)

For more information about UDDI registry security roles and how they can be used to control authorization

and data confidentiality, see Configuring the UDDI registry to use WebSphere Application Server security.

Roles which are mapped to AllAuthenticatedUsers (as the UDDI registry publish interfaces are by default)

are further protected in that, having successfully authenticated, the user must also be registered as a

UDDI publisher in order to publish data to the UDDI registry. An E_unknownUser error is returned in the

disposition report if the user is not registered. You can register users as UDDI publishers in one of two

ways:

v Create a new UDDI publisher using the administrative console (see UDDI Publisher collection) or the

JMX interface (see UDDI registry Administrative (JMX) Interface).

v Set the Automatically register UDDI publishers property (see UDDI node settings), in which case

users will be automatically registered as a publisher on their first publish request.

In accordance with the UDDI specification, there is additional access control in that an entity which has

been published to the UDDI registry can only be updated or deleted by the user who originally published

that entity.

The UDDI registry also provides some management interfaces which are protected by requiring

administrative permissions for certain operations; see UDDI registry Management Interfaces for details.

UDDI registry security additional considerations

In addition to the configuration of UDDI registry security, there a number of other UDDI registry settings

which may affect the behavior of the UDDI registry. Some of these settings are security specific, others are

points to bear in mind when configuring security.

Additional security considerations

UDDI registry interfaces are protected as detailed in Access control for UDDI registry interfaces.

488 Administering applications and their environment

The UDDI registry supports the use of XML Digital Signatures to sign UDDI entities. This is described in

Use of digital signatures with the UDDI registry.

Additional policy considerations

A number of the UDDI property and policy settings also determine the behavior of a UDDI registry with

respect to security.

To review or change the following property settings, click UDDI → UDDI Nodes > uddi_node_name. The

settings are also detailed in the administrative console help.

Key space requests require digital signature

This setting determines whether all tModel:keyGenerator requests for key space must be digitally

signed. To understand key space refer to UDDI registry Version 3 Entity Keys.

Use authInfo credentials if provided

This setting applies only when WebSphere Application Server security is disabled. See Configuring

UDDI Security with WebSphere Application Server security disabled.

Authentication token expiry period

The authentication token expiry period is the length of idle time (in minutes) allowed before an

authentication token becomes invalid.

Default user name

The default user name is used for publish operations when WebSphere Application Server security

is disabled and no authentication token data is supplied.

To review or change the following policy settings, click UDDI → UDDI Nodes > uddi_node_name, and

under Policy Groups, click API policies. The settings are also detailed in the administrative console help.

Authorization for inquiry

Specifies whether authorization using authentication tokens is required for inquiry API requests.

Authorization for publish

Specifies whether authorization using authentication tokens is required for publish API requests.

Authorization for custody transfer

Specifies whether authorization using authentication tokens is required for custody transfer API

requests.

The above policy settings apply when UDDI security features are being used and WebSphere Application

Server security is enabled. If the UDDI service in question is mapped to the security role

AllAuthenticatedUsers, these settings will be overridden. See Configuring UDDI Security with WebSphere

Application Server security enabled.

Other considerations

The publish related actions that a registered UDDI publisher can perform are defined by their entitlements,

as described in UDDI registry user entitlements.

In addition to the property and policy settings above, be aware that some UDDI keying and user policy

settings also influence publish behavior. These settings are not specific to security, but you should bear

them in mind as they also place restrictions on successful completion of publish requests.

To review or change the following property settings, click UDDI → UDDI Nodes > uddi_node_name. The

settings are also detailed in the administrative console help

Automatically register UDDI publishers

The UDDI registry requires publisher entitlements to be set before allowing any publish requests.

This option automatically registers users with default entitlements.

Chapter 12. Web services 489

If this option is not selected, users (and their entitlements) can be registered. See UDDI Publisher

settings.

Use tier limits

If selected, tier limits are enforced.

 If this option is selected you should have one or more tiers configured (see Tier collection and

UDDI Tier settings). You should also ensure that registered UDDI Publishers are assigned to a tier

(see UDDI Publisher settings).

To review or change the following property setting, click UDDI → UDDI Nodes > uddi_node_name, and

under Policy Groups click Keying policies. The setting is also detailed in the administrative console help.

Registry key generation

If this option is selected, publishers may request key space and, if successful, publish with

publisher assigned keys.

UDDI registry user entitlements: UDDI registry user entitlements define the set of publish related

actions that registered UDDI users are entitled to perform.

An important entitlement is the number of entities of each type that a UDDI user is entitled to publish; this

is controlled by assigning the user to a UDDI publisher tier. Any number of tiers can be defined to the

UDDI registry, and there are some predefined tiers which are supplied when the UDDI registry is deployed.

A UDDI publisher tier specifies the maximum number of each entity (business, service, binding, tModel,

and publisher assertion) that a user assigned to that tier may publish. (See UDDI Tier settings for

information about defining UDDI publisher tiers.)

Other entitlements relate to the user’s entitlement to allocate key spaces within which they can specify

publisher assigned keys when publishing UDDI entities. A key space is allocated by publishing a

keyGenerator tModel, and there are a number of entitlements relating to different kinds of key generator.

For full details of these entitlements, see UDDI Publisher settings. For more information about key

generators and publisher assigned keys, see UDDI registry Version 3 Entity Keys.

The entitlements for a UDDI user can be set using the administrative console, or through JMX using the

UDDI Administrative interface, as described in UDDI node collection and UDDI registry Administrative

(JMX) Interface.

Configuring SOAP API and GUI services

Configuring Version 1 and Version 2 SOAP API services

You can configure the following Version 1 and Version 2 SOAP interface properties:

v defaultPoolSize. This is the number of SOAP parsers with which to initialize the parser pool for the

SOAP interface. You can set this independently for the Publish (uddipublish) and Inquiry (uddi) APIs.

For example, if you expect more inquiries than publish requests through the SOAP interface, you can

set a larger pool size for the Inquiry API. The default initial size for both APIs is 10.

v Whether the API is to be secure (accessed using HTTPS) or insecure (accessed using HTTP). The

default for Publish is to use HTTPS and Inquiry to use HTTP.

To configure these properties after the UDDI application has been installed:

1. Edit the active deployment descriptor (web.xml) for the Version 1 and Version 2 SOAP module

(soap.war).

This file is located in the following directory:

 app_server_root/profiles/profile_name/config/cells/cell_name/applications/

 UDDIRegistry.node_name.server_name.ear/deployments/

 UDDIRegistry.node_name.server_name/soap.war/WEB-INF

490 Administering applications and their environment

2. To modify defaultPoolSize for Version 1 or Version 2 Publish, modify the ‘param-value’ element in the

servlet with ‘servlet-name’ = uddipublish

3. To modify defaultPoolSize for Version 1 or Version 2 Inquiry, modify the ‘param-value’ element in the

servlet with ‘servlet-name’ = uddi

4. To modify the user data constraint transport guarantee for Version 1 or Version 2 publish, which

determines whether the Publish service is to be confidential (accessed using HTTPS) or insecure

(using HTTP), find the ‘security-constraint’ with id = ‘UDDIPublishTransportConstraint’ and set its

‘user-data-constraint’ ‘transport-guarantee’ to CONFIDENTIAL or NONE.

5. Stop and restart the application server for the changes to take effect.

Configuring Version 3 SOAP API services

For the Version 3 SOAP interface, you can specify whether the Publish, Custody Transfer, Security and

Inquiry API services are to be secure (accessed using HTTPS) or insecure (accessed using HTTP). The

default for Publish, Custody Transfer and Security APIs is to use HTTPS, and Inquiry to use HTTP.

To configure these properties after the UDDI application has been installed:

1. Edit the active deployment descriptor (web.xml) for the Version 3 SOAP module (v3soap.war).

This file is located in the following directory:

 app_server_root/profiles/profile_name/config/cells/cell_name/applications/

 UDDIRegistry.node_name.server_name.ear/deployments/

 UDDIRegistry.node_name.server_name/v3soap.war/WEB-INF

2. Each type of service is represented in the deployment descriptor (web.xml) file by a

<security-constraint> element, which contains, amongst other things, a <display-name> element and

a <user-data-constraint> <transport-guarantee> element. Locate the <security-constraint>

element for the service that you want to modify by searching the deployment descriptor (web.xml) file

for the relevant <display-name> value (see the table below). When you have found the

<security-constraint> element, set its <user-data-constraint> <transport-guarantee> to either

CONFIDENTIAL (the service can only be accessed using HTTPS) or NONE (the service can be

accessed using HTTP).

 Type of UDDI service Value of <security-constraint> <display-name> element

Publish AxisServlet Publish Resource Collection

Custody transfer AxisServlet CustodyTransfer Resource Collection

Security AxisServlet Security Resource Collection

Inquiry AxisServlet Inquiry Resource Collection

3. Stop and restart the application server for the changes to take effect.

Configuring Version 3 GUI services

For the Version 3 GUI interface, you can specify whether the Publish and Inquiry API services are to be

secure (accessed using HTTPS) or insecure (accessed using HTTP). The default for Publish is to use

HTTPS, and Inquiry to use HTTP.

To configure these properties after the UDDI application has been installed:

1. Edit the active deployment descriptor (web.xml) for the Version 3 GUI module (v3gui.war).

This file is located in the following directory:

 app_server_root/profiles/profile_name/config/cells/cell_name/applications/

 UDDIRegistry.node_name.server_name.ear/deployments/

 UDDIRegistry.node_name.server_name/v3gui.war/WEB-INF

2. Use the table below to find the id value for the <user-data-constraint> element that corresponds with

the service that you want to change. Search for this value in the deployment descriptor (web.xml) file

Chapter 12. Web services 491

to find the <user-data-constraint> element, then set the <user-data-constraint>

<transport-guarantee> to either CONFIDENTIAL (the service can only be accessed using HTTPS) or

NONE (the service can be accessed using HTTP).

 Type of UDDI service Value of <user-data-constraint id>

Publish UDDIPublishTransportConstraint

Inquiry UDDIInquireTransportConstraint

3. Stop and restart the application server for the changes to take effect.

Multiple language encoding support in UDDI

UDDI API

UDDI Version 3 supports both UTF-8 and UTF-16 encoding. Internally UTF-16 characters are stored as

UTF-8. This is transparent to the user application.

UDDI User Console

The UDDI user console only supports UTF-8 encoding. To enable this, you must configure the application

server into which the UDDI registry application is installed with UTF-8 encoding enabled. To do this, refer

to ″Configuring application servers for UTF-8 encoding″ elsewhere in the WebSphere Information Center.

Customizing the UDDI registry user interface (GUI)

The look and feel of the UDDI registry user interface is determined by the styles defined in the .css files

located in the following directory: app_server_root/profiles/profile_name/installedApps/cell_name/
UDDIRegistry.node_name.server_name.ear/v3gui.war/theme.

Style class definitions in these files can be edited to alter the overall theme of the UDDI registry user

interface, including font attributes, layout and colors.

Managing the UDDI registry

You can use either the WebSphere Application Server administrative console or the Java Management

Extensions (JMX) management interface to manage UDDI Registries.

In previous versions of WebSphere Application Server and the UDDI registry, a properties file was used,

but from WebSphere Application Server Version 6, you manage all the policies and properties of the UDDI

registry through either the JMX management interface or the administrative console.

JMX can be used to monitor and configure UDDI registries programmatically, and is explained in Using

administrative programs (JMX). See UDDI registry Administrative (JMX) Interface for full details on using

the UDDI administrative interface. To manage UDDI registries using the WebSphere Application Server

administrative console, start from the UDDI link in the left navigation pane as described below.

Using the UDDI management functions available in the WebSphere Application Server administrative

console, you can perform the following operations:

v view and manage the status of all UDDI nodes in a cell

v initialize UDDI nodes with required settings

v configure general properties that affect UDDI runtime behavior

v manage UDDI policy settings

v create, view and update UDDI publishers

492 Administering applications and their environment

v create, view and update publisher tiers which limit how many UDDI entries may be published

v view and manage the status of value sets

If WebSphere Application Server security is enabled, you will need to log in to the WebSphere

Administrative Console, supplying a valid userid and password, in order to use the UDDI management

functions.

UDDI node collection

Use this page to manage the UDDI nodes in this cell. Each UDDI node represents an individual UDDI

registry application. A UDDI node will only appear in this list if its underlying UDDI application is started.

The status of the UDDI node indicates whether the node is activated (available to accept API requests),

deactivated (not allowing user requests), or not initialized. UDDI nodes that are not initialized require some

properties to be set before they can be initialized and activated.

To view this administrative console page, click UDDI → UDDI Nodes.

Each UDDI node is represented by a UDDI Node ID, Description, UDDI Application Location and Status.

To manage an individual UDDI node, click on its UDDI Node ID link. This takes you to the Configuration

page where you can manage its general properties, initialize it if the status is set to Initialization Pending,

and access pages for managing policies, UDDI publishers, tiers and value sets.

UDDI Node ID

Specifies the identifier for the UDDI node.

Description

Specifies the description of the UDDI node.

UDDI Application Location

Specifies the server in which the UDDI registry application is deployed and running.

For a cluster configuration, which will include several servers all running the UDDI registry application, you

will see a single location listed; this location could represent any of the active servers.

Status

Specifies the status of the UDDI node.

The Status of the UDDI node can be Not initialized, Initialization pending, Initialization in progress,

Migration in progress, Migration pending, Value set creation in progress, Value set creation pending,

Activated or Deactivated. If a node is in the Initialization pending state, you must initialize it before you can

activate it. If you attempt to initialize the node and it remains in a pending state, an error occurred during

migration or initialization.

To activate UDDI nodes that are Deactivated, select them by checking the corresponding check boxes in

the Select column and click Activate. Similarly to deactivate UDDI nodes, select them and click

Deactivate.

Note: Restarting the UDDI application, or the application server, will always result in the reactivation of the

UDDI node, even if the node was previously deactivated.

UDDI node settings

This topic contains details of the general properties that you can configure for a UDDI node.

To view this administrative console page, click UDDI → UDDI Nodes > UDDI_node_id.

By clicking on a node in the UDDI node ID column the UDDI node detail page is displayed. The UDDI

node detail page displays a set of General Properties for the UDDI node, some of which may be editable

Chapter 12. Web services 493

depending on the state of the node. There are also links to Additional Properties (Value sets, Tiers and

UDDI Publishers) and links to Policy Groups where you can view and change UDDI node policy.

Unless you installed the UDDI node as a default UDDI node (as defined in UDDI registry terminology),

there are some important general properties that you must set before you can initialize the UDDI node.

These properties are marked as being required (indicated by the presence of a ’*’ next to the input field).

You may set the values as many times as you wish before initialization. However, after you initialize the

UDDI node, these properties will become read only for the lifetime of that UDDI node. It is very important

to set these properties correctly. You can set other general properties of the UDDI node before, and after,

initialization.

After you set the general properties to appropriate values, click OK to save your changes and exit the

page, or Apply to save your changes and remain on the same page. At this point the changes are stored.

If the UDDI node is in the Not Initialized state, indicated on the UDDI node detail page by the presence of

an Initialize button (above the General Properties section), you can initialize UDDI node by clicking

Initialize. This operation can take a while to complete. It is important to save any changes you made to

the general properties by clicking Apply or OK, before you click Initialize.

UDDI Node ID:

Specifies the unique identifier that is given to a UDDI node in a UDDI registry. The node ID must be a

valid UDDI key. The value will also be the domain key for the UDDI node.

 The value for the node ID will also be the domain key for this UDDI node.

 Required Yes

Data type String

Default uddi:cell_name:node_name:server_name:node_id

UDDI node description:

Specifies the description of this UDDI node.

 Required Yes

Data type String

Default WebSphere UDDI registry default node

Root key generator:

Specifies the root key space of the registry. Registries intending to become affiliate registries might want to

specify a root key space in a partition below the root key generator of the parent root registry, for example,

uddi:thisregistry.com:keygenerator.

 Required Yes

Data type String

Default uddi:cell_name:node_name:server_name:keyspace_id:keygenerator

Prefix for generated discoveryURLs:

Specifies the URL prefix that is applied to generated discoveryURLs in businessEntity elements, so they

can be returned on HTTP GET requests. This property applies to UDDI version 2 API requests only. Set

this prefix to a valid URL for your configuration, and do not change it unless absolutely necessary.

494 Administering applications and their environment

The format is http://hostname:port/uddisoap/, where uddisoap is the context root of the UDDI version 2

SOAP servlet.

Although this field is not required, you should set it so that the required and valid URL is generated in

response to version 2 GET requests. After you have set the prefix you should not alter it unless a

subsequent configuration change renders it invalid; if you change the prefix, discoveryURLs generated

using the earlier prefix will no longer work.

 Required No

Data type String

Default http://localhost:9080/uddisoap

Host name for UDDI node services:

Specifies the host name root used by the UDDI node to model API services in its own node business

entity. This value must be the fully qualified domain name, or IP address, of the network host.

 The UDDI node provides Web services that implement each of the UDDI API sets that it supports. The

host name is used to generate access point URLs in the bindingTemplate elements for each of the

services. The access point URL is generated by prefixing the host name value with a protocol, such as

http, and suffixing it with the corresponding host port number. The access point URL must resolve to a

valid URL.

 Data type String

Default localhost

Host HTTP port:

Specifies the port number used to access UDDI node services with HTTP. This port number must match

the WebSphere Application Server port for HTTP requests.

 Data type Integer

Default 9080

Host HTTPS port:

Specifies the port number used to access UDDI node services with HTTPS. This port number must match

the WebSphere Application Server port for HTTPS requests.

 Data type Integer

Default 9443

Maximum inquiry result set size:

Specifies the maximum size of result set which the registry will process for an inquiry API request.

 If the result set exceeds this value, an E_resultSetTooLarge error is returned to the user. If you set this

value too low, and users use imprecise search criteria, the likelihood of receiving an E_resultSetTooLarge

error is increased. Setting the value higher allows larger result sets but can cause increased response

times.

 Data type Integer

Default 500

Range 0 to 1024

Chapter 12. Web services 495

Maximum inquiry response set size:

Specifies, for inquiry API requests, the maximum number of results returned in each response. Do not set

this value higher than the value for Maximum inquiry results.

 If the result set contains more results than this value, the response will include only a subset of those

results. The user can retrieve the remaining results using the listDescription feature as described in the

UDDI specification. If you set this value too low, the user has to make more requests to retrieve the

remainder of the result set.

 Data type Integer

Default 500

Range 0 to 1024

Maximum search names:

Specifies the maximum number of names that can be supplied in an inquiry API request. To avoid slowing

UDDI node response times, set this value no higher than 8.

 Higher values allow more complex requests to be processed by the UDDI node, however complex

requests can significantly slow the response times of the UDDI node.

 Data type Integer

Default 5

Range 1 to 64

Maximum search keys:

Specifies the maximum number of keys that can be supplied in an inquiry API request. To avoid slowing

UDDI node response times, set this value no higher than 5.

 This value limits the number of references that can be specified in categoryBag, identifierBag, tModelBag

and discoveryURLs.

Higher values allow the UDDI node to process more complex requests, however complex requests can

significantly slow the response times of the UDDI node. In exceptional cases, the UDDI node may reject

complex requests with excessive numbers of keys even if the value of maxSearchKeys is not exceeded.

 Data type Integer

Default 5

Range 1 to 64

Key space requests require digital signature:

Specifies whether tModel:keyGenerator requests must be digitally signed.

 Data type Boolean (check box)

Default False (cleared)

Use tier limits:

496 Administering applications and their environment

Specifies whether an approval manager is used to check publication tier limits. If you set this value to

false, the number of UDDI entities that can be published is unlimited.

 Data type Boolean (check box)

Default True (selected)

Use authInfo credentials if provided:

Specifies whether authInfo contents in UDDI API requests are used to validate users when WebSphere

Application Server security is off. If you set this value to true, the UDDI node will use the authInfo element

in the request, otherwise the default user name is used.

 Data type Boolean (check box)

Default True (selected)

Authentication token expiry period:

Specifies the period, in minutes, after which an authentication token is invalidated and a new

authentication token is required.

 Set this value high enough to allow the registry to operate successfully, but be aware that high values can

increase the risk of illegal use of authentication tokens.

 Data type Integer

Default 30

Range 1 to 10080 minutes (10080 minutes = 1 week)

Automatically register UDDI publishers:

Specifies whether UDDI publishers are automatically registered and assigned to the default tier.

Automatically registered UDDI publishers are given default entitlements.

 Data type Boolean (check box)

Default True (selected)

Default user name:

Specifies the user name used for publish operations when WebSphere Application Server security is

disabled and Use authInfo credentials if provided is set to false.

 Data type String

Default UNAUTHENTICATED

Default language code:

Specifies, for UDDI version 1 and version 2 requests, the default language code to be used for xml:lang,

when not otherwise specified.

 Data type String

Default en

Value set collection:

Chapter 12. Web services 497

Use this page to view and configure the value sets that are installed in a UDDI node.

 To view this administrative console page, click UDDI → UDDI Nodes > UDDI_node_id > Value Sets.

Value sets in a UDDI node are either supported or not supported by policy. By default, new value sets are

not supported. After you publish a value set tModel and loaded value set data, you can control whether

other UDDI entities can reference this value set tModel by setting the Supported policy.

To enable support for one or more value sets, select the value sets by selecting the appropriate check

boxes in the Select column. Click Enable Support. The Supported field for all the selected value sets is

updated, with a value of true, to reflect the new status.

To disable support for a value set, which might be necessary before you remove it from the UDDI node,

select the value sets in the same manner as for enabling support. Click Disable Support. The Supported

field for all the selected value sets is updated, with a value of false, to reflect the new status.

Clicking on a value set name in the list takes you to the general properties page for that value set as

described in Value set settings.

Name:

Specifies the name of the tModel that represents this value set.

tModelkey:

Specifies the key for the tModel that represents this value set.

Supported:

Specifies whether this value set is supported by policy in this UDDI node.

Value set settings:

Use this page to view the attributes of a value set in a UDDI node.

 To view this administrative console page, click UDDI → UDDI Nodes > UDDI_node_id > Value Sets >

value_set_name.

This page shows the values of keyedReferences in the tModel that represents this value set. This page

also shows the Supported status of the value set. All properties are read-only. To change the Supported

status, use the Value sets collection page.

Unvalidatable:

Specifies whether this value set is unvalidatable. The value set tModel publisher sets this value, to indicate

whether the value set is available for use by publish requests.

Checked:

Specifies whether this value set is checked. If you set this value to true, UDDI entities that reference this

value set will be validated to ensure that their values are present in this value set.

Cached:

Specifies whether this value set is cached in this UDDI node.

Externally cacheable:

498 Administering applications and their environment

Specifies whether this value set is externally cacheable.

Externally validated:

Specifies whether this value set is externally validated.

Supported:

Specifies whether this value set is supported by policy in this UDDI node.

Last cached:

Specifies the date when this value set was last cached in the UDDI node.

Tier collection:

This page contains a list of the available tiers for the UDDI node. You can modify tiers, create new tiers

and delete tiers from this page.

 To view this administrative console page, click UDDI → UDDI Nodes > UDDI_node_id > Tiers.

This page shows the available tiers for the UDDI node. Clicking a tier name will show the General

Properties for the specific tier as detailed in Tier settings. To delete a Tier from the list, select the relevant

name and click Delete. Clicking New will take you to the General Properties page with the same properties

as described in Tier settings.

One of the tiers in the collection will be marked as the default tier, indicated by (default) appearing next to

the tier’s name. The default tier will be assigned to UDDI publishers that are registered automatically when

automatic user registration is turned on. To set the default tier, select the appropriate tier in the collection

and press the Set default button. Note that it is not possible to delete a tier if it is currently marked as the

default tier, or it is currently assigned to a UDDI publisher.

Name:

Specifies the name of the tier.

Description:

Specifies the descriptive text about the tier.

UDDI Tier settings:

This topic contains details of the general properties that you can configure for a UDDI publisher tier.

 To view this administrative console page, click UDDI → UDDI Nodes > UDDI_node_id > Tiers > tier_name.

Name:

Specifies the name of the tier.

 Required Yes

Data type String

Default No default

Range 1 to 255

Description:

Chapter 12. Web services 499

Specifies a description of the purpose or usage of this tier.

 Data type String

Default No default

Range 0 to 255

Maximum properties:

 For each of the maximum fields described below, the data is:

 Required Yes

Data type Integer

Default No default

Range 0 to 2147483647

Maximum businesses:

Specifies the maximum number of businesses that UDDI publishers in this tier are allowed to publish.

Maximum services per business:

Specifies the maximum number of services that UDDI publishers in this tier are allowed to publish for each

business.

Maximum bindings per service:

Specifies the maximum number of bindings that UDDI publishers in this tier are allowed to publish for each

service.

Maximum tModels:

Specifies the maximum number of tModels that UDDI publishers in this tier are allowed to publish.

Maximum publisher assertions:

Specifies the maximum number of publisher assertions that UDDI publishers in this tier are allowed to add.

UDDI Publisher collection:

This page shows the users that are currently registered as UDDI publishers.

 To view this administrative console page, click UDDI → UDDI Nodes > UDDI_node_id > [Additional

Properties] UDDI Publishers.

To create a UDDI publisher, click New. The “UDDI Publisher settings” on page 502 page, where you can

enter details about the publisher, is displayed.

To register one or more existing WebSphere Application Server users as UDDI publishers, click Create

publishers. The “Create UDDI Publishers” on page 501 page, where you can select users and modify

their entitlements, is displayed.

You can assign multiple publishers to a tier without editing each publisher individually, by completing the

following steps:

1. Select the appropriate publishers in the collection table.

500 Administering applications and their environment

2. From the tier list at the top of the collection table, select one of the tiers that is available on the UDDI

node.

3. Click Assign tier to update the selected publishers.

To delete publishers, select them in the collection table and then click Delete.

After you register the users as UDDI publishers, you can edit their entitlements as described in “UDDI

Publisher settings” on page 502.

User name:

Specifies the name of the UDDI publisher.

Tier:

Specifies the tier to which the UDDI publisher is assigned.

Create UDDI Publishers:

Use this page to register one or more existing WebSphere Application Server users as UDDI publishers.

 To view this administrative console page, click UDDI → UDDI Nodes > UDDI_node_id > [Additional

Properties] UDDI Publishers → Create publishers.

To register as UDDI publishers one or more users that are known to the application server, complete the

following steps:

1. Enter a string to search for the required users. Use ’*’ to find all users.

2. Optionally, enter a number in the limit field to restrict the number of returned results.

3. Click Search to display a list of users that match the string.

4. Select the users that you want to register from the Available list and use the arrows to move them into

the Selected list.

5. Use the entitlements listed under General Properties to give the UDDI publishers permission to

perform specific actions. Set the entitlements by selecting the check box next to each entitlement.

6. Select a tier for the users from the Tier list.

7. Click OK to register the users as UDDI publishers with the specified entitlements and tier.

Note: If you are using a Lightweight Directory Access Protocol (LDAP) user registry, the format of the

name that is given to each UDDI Publisher is defined by the User ID map value in the LDAP

advanced settings. To view the LDAP advanced settings, click Security → Secure administration,

applications, and infrastructure, under User account repository select Standalone LDAP

registry and click Configure, then under Additional Properties click Advanced Lightweight

Directory Access Protocol (LDAP) user registry settings.

After a user has been registered as a UDDI publisher, you can edit their entitlements by clicking the user

name.

Allowed to publish keyGenerator with derived key:

Specifies whether the UDDI publisher has permission to publish tModel: keyGenerator with a derived key.

 The tModel:keyGenerator is a request for key space. An example of a legal derived key is

uddi:tempuri.com:fish:buyingService where the key is based on the derivedKey ″uddi:tempuri.com:fish″. the

string ’buyingService’ is the key’s key specific string (KSS).

Chapter 12. Web services 501

Allowed to publish keyGenerator with domain keys:

Specifies whether the UDDI publisher has permission to publish tModel: keyGenerator with a domain key.

Allowed to publish keyGenerator:

Specifies whether the UDDI publisher has permission to publish tModel: keyGenerator.

 If false, UDDI publishers cannot publish keyGenerators of any kind. In this situation all the entitlement

settings are disregarded, regardless of how they are set.

Allowed to publish with UUID key:

Specifies whether the UDDI publisher has permission to publish elements with a UUID key.

Allowed to publish keyGenerator with UUID keys:

Specifies whether the UDDI publisher has permission to publish tModel: keyGenerator with a UUID key.

Tier:

Specifies the tier to which the UDDI publisher is assigned.

UDDI Publisher settings:

Use this page to view and edit the properties of a UDDI publisher, or to create a new UDDI publisher.

 You can view this administrative console page in two ways:

v If you want to view and edit the properties of an existing UDDI publisher click UDDI → UDDI Nodes >

UDDI_node_id > UDDI Publishers > user_name

v If you want to create a new UDDI publisher click UDDI → UDDI Nodes > UDDI_node_id > UDDI

Publishers → New

This page shows the entitlements and publication limits tier for a particular UDDI publisher.

User name:

Specifies the name of the UDDI publisher.

 If you are creating a new UDDI publisher, enter the name of a user known to the application server. If you

are viewing or editing the properties of an existing publisher, the user name cannot be changed.

Allowed to publish keyGenerator with derived key:

Specifies whether the UDDI publisher has permission to publish tModel:keyGenerator with a derived key.

 The tModel:keyGenerator is a request for key space. An example of a legal derived key is

uddi:tempuri.com:fish:buyingService where the key is based on the derivedKey ″uddi:tempuri.com:fish″. the

string ’buyingService’ is the key’s key specific string (KSS).

 Data type Boolean

Default True (selected)

Allowed to publish keyGenerator with domain keys:

Specifies whether the UDDI publisher has permission to publish tModel:keyGenerator with a domain key.

502 Administering applications and their environment

Data type Boolean

Default True (selected)

Allowed to publish keyGenerator:

Specifies whether the UDDI publisher has permission to publish tModel:keyGenerator.

 If you set this value to false, the UDDI publisher cannot publish keyGenerators of any kind. In this situation

the following permissions will be disregarded irrespective of how they are set: Allowed to publish

keyGenerator with derived key, Allowed to publish keyGenerator with domain keys, Allowed to

publish with UUID key and Allowed to publish keyGenerator with UUID keys.

 Data type Boolean

Default True (selected)

Allowed to publish with UUID key:

Specifies whether the UDDI publisher has permission to publish elements with a UUID key.

 Data type Boolean

Default False (cleared)

Allowed to publish keyGenerator with UUID keys:

Specifies whether the UDDI publisher has permission to publish tModel:keyGenerator with a UUID key.

 Data type Boolean

Default False (cleared)

Tier:

Specifies the tier to which the UDDI publisher is assigned.

Policy groups:

This topic contains links to the detailed settings information for every policy group that you can configure

for a UDDI registry node.

 To view this administrative console page, click UDDI → UDDI Nodes > UDDI_node_id.

To the right of the page is a list of the Policy Groups that can be acted upon. Clicking on a specific group

will open the page for the group required.

UDDI keying policy settings:

This topic contains details of the UDDI keying settings that you can configure for a UDDI registry.

 To view this administrative console page, click UDDI → UDDI Nodes > UDDI_node_id > Keying policies.

Registry key generation:

Specifies whether publishers are allowed to publish key generator tModels. You can manage how

publishers are allowed to publish key generator tModels by configuring the entitlements in the UDDI

Publishers page.

Chapter 12. Web services 503

Data type Boolean

Default True (selected)

Registry support of UUID keys:

Specifies whether publisher supplied uuidKeys are allowed in publish requests. You can manage how

publishers are allowed to use uuidKeys by configuring the entitlements in the UDDI Publishers page.

 Data type Boolean

Default False (cleared)

UDDI node API policy settings:

This topic contains details of the API settings that you can configure for a UDDI registry node.

 To view this administrative console page, click UDDI → UDDI Nodes > UDDI_node_id > API policies.

Note: This information applies only to UDDI Version 3. The settings for Versions 1 and 2 are not

changeable; authentication tokens are required for publish requests, but not for inquiry requests

(there are no custody transfer requests in Versions 1 or 2).

Authorization for inquiry:

Specifies whether authorization using the authInfo element is required for inquiry API requests. This setting

is only relevant if the V3SOAP_Inquiry_User_Role is set to Everyone and WebSphere Application Server

security is on.

 If WebSphere Application Server security is off, this setting is ignored. If WebSphere Application Server

security is on and the V3SOAP_Inquiry_User_role is not set to Everyone, this setting is ignored.

If this setting is true an authorization token will be required to complete the request. If this setting is false,

an authorization token is not required; if one is supplied it will be ignored and the request will be

processed as if it was made by the default user defined in the UDDI node settings.

Typically, UDDI registries are configured not to require authorization for inquiry API requests.

 Data type Boolean

Default False (cleared)

Authorization for publish:

Specifies whether authorization using the authInfo element is required for publish API requests. This

setting is only relevant if the V3SOAP_Publish_User_Role is set to Everyone and WebSphere Application

Server security is on.

 If WebSphere Application Server security is off, this setting is ignored. If WebSphere Application Server

security is on and the V3SOAP_Publish_User_role is not set to Everyone, this setting is ignored.

If this setting is true an authorization token will be required to complete the request. If this setting is false,

an authorization token is not required; if one is supplied it will be ignored and the request will be

processed as if it was made by the default user defined in the UDDI node settings.

504 Administering applications and their environment

Typically, UDDI registries are configured to require authorization for publish API requests.

 Data type Boolean

Default True (selected)

Authorization for custody transfer:

Specifies whether authorization using the authInfo element is required for custody transfer API requests.

This setting is only relevant if the V3SOAP_CustodyTransfer_User_Role is set to Everyone and

WebSphere Application Server security is on.

 If WebSphere Application Server security is off, this setting is ignored. If WebSphere Application Server

security is on and the V3SOAP_CustodyTransfer_User_role is not set to Everyone, this setting is ignored.

If this setting is true an authorization token will be required to complete the request. If this setting is false,

an authorization token is not required; if one is supplied it will be ignored and the request will be

processed as if it was made by the default user defined in the UDDI node settings.

Typically, UDDI registries are configured to require authorization for custody transfer API requests.

 Data type Boolean

Default True (selected)

UDDI user policy settings:

This topic contains details of the user policy settings that you can configure for a UDDI registry node.

 To view this administrative console page, click UDDI → UDDI Nodes > UDDI_node_id > User policies.

Allow transfer of ownership:

When true, data ownership can be transferred between owners within the UDDI node.

 Data type Boolean

Default True (selected)

UDDI data custody policy settings:

This topic contains details of the data custody settings that you can configure for a UDDI registry node.

 To view this administrative console page, click UDDI → UDDI Nodes > UDDI_node_id > Data custody

policies.

Transfer token expiration period:

Specifies the length of time from the issue of a transfer token, in minutes, after which that token expires.

 If you set this value too high, you might expose the UDDI registry to a risk of misuse.

 Data type Integer

Default 1440

Range 1 to 2147483647 (for all intents and purposes, unlimited)

UDDI value set policy:

Chapter 12. Web services 505

This topic contains details of the value set policy settings that you can configure for a UDDI registry node.

 To view this administrative console page, click UDDI → UDDI Nodes > UDDI_node_id >Value set policies.

Enable checked value sets:

Specifies whether checked value sets are supported. If you set this value to false, publish requests of

value set tModels that contain a ’checked’ keyedReference will be rejected.

 Data type Boolean

Default True (selected)

UDDI node miscellaneous:

This topic contains details of the miscellaneous settings that you can configure for a UDDI node.

 To view this administrative console page, click UDDI → UDDI Nodes > UDDI_node_id > Miscellaneous

policies.

Node generates discoveryURLs:

Specifies whether a UDDI node can establish a policy on whether it generates discoveryURLs.

 Data type Boolean

Default False (cleared)

Node supports HTTP Get Service:

Specifies whether the UDDI node supports an HTTP GET service for access to the XML representations of

UDDI data structures.

 Data type Boolean

Default True (selected)

URL prefix for V3 GET servlet:

Specifies the prefix for the URL to the version 3 GET servlet that is used to retrieve the XML

representation of a published entity. This property applies to UDDI version 3 API requests only.

 The format of the prefix is http://hostname:port/uddiv3soap/, where uddisoap is the context root of the

UDDI version 3 SOAP servlet.

When a businessEntity is published, if you have set Node generates discovery URLs to true, the

discoveryURL value is generated based on this prefix value. Otherwise, the discoveryURL value will be

empty.

The UDDI Version 3 specification recommends that you do not enable generation of discoveryURLs as

they can affect the use of digital signatures. If you do enable generation of discoveryURLs, it is

recommended that you do not change the URL prefix afterwards, otherwise discoveryURLs generated

using the earlier URL prefix will no longer work.

 Data type URL

Default http://localhost:9080/uddiv3soap/

506 Administering applications and their environment

Overview of the UDDI registry Administrative Interface

The UDDI registry Administrative Interface allows you to inspect and manage the runtime configuration of

a UDDI application. This includes managing the information and the activation state about a UDDI node,

updating properties and policies, setting publish tier limits, registration of UDDI publishers, and controlling

value set support. The operations of the UDDI registry Administrative Interface can be read and invoked

using standard JMX (Java Management Extensions) interfaces.

The use of JMX is explained in Using administrative programs (JMX). See the UDDI registry Administrative

Interface for full details on using the UDDI administrative interface.

Backing up and restoring the UDDI registry database

If you want to protect the data in your UDDI registry database, you can back up and restore the database

using the facilities of the database product your UDDI node is on.

Cloudscape

To backup a Cloudscape UDDI registry database, first ensure that the UDDI application is stopped (and

hence, not accessing the Cloudscape database), and ensure that no other application is using the

Cloudscape UDDI30 database. Make a copy of the UDDI30 directory using the file system that the

directory resides upon.

To restore the database, replace the UDDI30 file structure with the back up. Note that any updates made

since the back up was taken will be lost.

Non-Cloudscape

Use the appropriate backup and restore tools for the database being used to contain the UDDI registry. To

use these tools, refer to the documentation for the database product.

Chapter 12. Web services 507

508 Administering applications and their environment

Chapter 13. Data access resources

Task overview: Accessing data from applications

Various enterprise information systems (EIS) use different methods for storing data. These backend data

stores might be relational databases, procedural transaction programs, or object-oriented databases. IBM

WebSphere Application Server provides several options for accessing an information system’s backend

data store:

v Programming directly to the database through the JDBC 2.0 optional package API or the JDBC 3.0 API.

v Programming to the procedural backend transaction through various J2EE Connector Architecture (JCA)

1.0 or 1.5 compliant connectors.

v Programming in the bean-managed persistence (BMP) bean or servlets indirectly accessing the

backend store through either the JDBC API or JCA compliant connectors.

v Using container-managed persistence (CMP) beans.

v Using embedded Structured Query Language in Java (SQLJ) support with applications that use DB2 as

a backend database.

v Using the IBM data access beans, which also use the JDBC API, but give you a rich set of features and

function that hide much of the complexity associated with accessing relational databases.

For all of these options, except for using the JCA 1.0 or 1.5 compliant connectors, the prerequisite Web

site details which databases and drivers are currently supported. Consult the IBM Web address:

http://www.ibm.com/software/webservers/appserv/doc/latest/prereq.html .

1. Develop data access applications. Develop your application to access data using the various ways

available through the WebSphere Application Server. You can access data through APIs,

container-managed persistence beans, bean-managed persistence beans, session beans, or Web

components.

2. Assemble data access applications using the assembly tool. Assemble your application by creating and

mapping resource references.

3. Prepare for deployment: Ensure that the appropriate database objects are available. Create or

configure any databases or tables required, set necessary configuration parameters to handle

expected load, and configure any necessary JDBC providers and data source objects for servlets,

enterprise beans, and client applications to use.

4. Install the application on your application server.

Resource adapter

A resource adapter is a system-level software driver that a Java application uses to connect to an

enterprise information system (EIS).

A resource adapter plugs into an application server and provides connectivity between the EIS, the

application server, and the enterprise application.

An application server vendor extends its system once to support the J2EE Connector Architecture (JCA)

and is then assured of seamless connectivity to multiple EISs. Likewise, an EIS vendor provides one

standard resource adapter with the capability to plug into any application server that supports the

connector architecture.

WebSphere Application Server provides the WebSphere Relational Resource Adapter implementation. This

resource adapter provides data access through JDBC calls to access the database dynamically. The

connection management is based on the JCA connection management architecture. It provides connection

pooling, transaction, and security support. WebSphere Application Server supports JCA versions 1.0 and

1.5.

© Copyright IBM Corp. 2006 509

http://www.ibm.com/support/docview.wss?rs=180&uid=swg27006921

Data access for container-managed persistence (CMP) beans is managed by the WebSphere Persistence

Manager indirectly. The JCA specification supports persistence manager delegation of the data access to

the JCA resource adapter without knowing the specific backend store. For the relational database access,

the persistence manager uses the relational resource adapter to access the data from the database.

You can find the supported database platforms for the JDBC API at the WebSphere Application Server

prerequisite Web site.

J2EE Connector Architecture resource adapters

A J2EE Connector Architecture (JCA) resource adapter is any resource adapter conforming to the JCA

Specification.

The product supports any resource adapter that implements version 1.0 or 1.5 of this specification. IBM

supplies resource adapters for many enterprise systems separately from the WebSphere Application

Server package, including (but not limited to): the Customer Information Control System (CICS), Host

On-Demand (HOD), Information Management System (IMS), and Systems, Applications, and Products

(SAP) R/3 .

The general approach to writing an application that uses a JCA resource adapter is to develop EJB

session beans or services with tools such as Rational Application Developer. The session bean uses the

javax.resource.cci interfaces to communicate with an enterprise information system through the resource

adapter.

WebSphere relational resource adapter settings

Use this page to view the settings of the WebSphere relational resource adapter. This adapter is

preinstalled in the product to provide access to relational databases.

Restriction: Although the default relational resource adapter settings are viewable, you cannot make

changes to them.

To view this administrative console page, click Resources > Resource adapters > Resource adapters >

WebSphere Relational Resource Adapter.

Name:

Specifies the name of the resource provider.

 Data type String

Description:

Specifies a description of the relational resource adapter.

 Data type String

Archive path:

Specifies the path to the Resource Adapter Archive (RAR) file containing the module for this resource

adapter.

 Data type String

Class path:

510 Administering applications and their environment

Specifies a list of paths or Java Archive (JAR) file names, which together form the location for the resource

provider classes.

 Data type String

Native path:

Specifies a list of paths that forms the location for the resource provider native libraries.

 Data type String

WebSphere Relational Resource Adapter

The WebSphere Relational Resource Adapter (RRA) provides enterprise applications deployed on

WebSphere Application Server access to relational databases.

The WebSphere RRA is installed and runs as part of WebSphere Application Server, and needs no further

administration.

The RRA supports both the configuration and use of JDBC data sources and J2EE Connection

Architecture (JCA) connection factories. The RRA supports the configuration and use of data sources

implemented as either JDBC data sources or J2EE Connector Architecture connection factories. Data

sources can be used directly by applications, or they can be configured for use by container-managed

persistence (CMP) entity beans.

For more information about the WebSphere Relational Resource Adapter, see the following topics:

v For information about resource adapters, see “Resource adapter” on page 509

v For information about resource adapters and data access, see “Data access portability features”

v For RRA settings, see “WebSphere relational resource adapter settings” on page 510

v For information about CMP connection factories, see “Connection factory” on page 515

v For information about enterprise beans, see EJB applications

Data access portability features

The WebSphere Application Server relational resource adapter (RRA) provides a portability feature that

enables applications to access data from different databases without changing the application. In addition,

WebSphere Application Server enables you to plug in a data source that is not supported by WebSphere

persistence. However, the data source must be implemented as either the XADataSource type or the

ConnectionPoolDataSource type, and it must be in compliance with the JDBC 2.x specification.

You can achieve application portability through the following:

DataStoreHelper interface

With this interface, each data store platform can plug in its own private data store specific

functions that the relational resource adapter run time uses. WebSphere Application Server

provides an implementation for each supported JDBC provider.

 In addition, the interface also provides a GenericDataStoreHelper class for unsupported data

sources to use. You can subclass the GenericDataStoreHelper class or other WebSphere provided

helpers to support any new data source.

Note: If you are configuring data access through a user-defined JDBC provider, do not implement

the DataStoreHelper interface directly. Either subclass the GenericDataStoreHelper class or

subclass one of the DataStoreHelper implementation classes provided by IBM (if your

database behavior or SQL syntax is similar to one of these provided classes).

For more information, see the API documentation DataStoreHelper topic (as listed in the API

documentation index).

Chapter 13. Data access resources 511

The following code segment shows how a new data store helper is created to add new error

mappings for an unsupported data source.

public class NewDSHelper extends GenericDataStoreHelper

{

 public NewDSHelper(java.util.Properties dataStoreHelperProperties)

 {

 super(dataStoreHelperProperties);

 java.util.Hashtable myErrorMap = null;

 myErrorMap = new java.util.Hashtable();

 myErrorMap.put(new Integer(-803), myDuplicateKeyException.class);

 myErrorMap.put(new Integer(-1015), myStaleConnectionException.class);

 myErrorMap.put("S1000", MyTableNotFoundException.class);

 setUserDefinedMap(myErrorMap);

 ...

 }

}

WSCallHelper class

This class provides two methods that enable you to use vendor-specific methods and classes that

do not conform to the standard JDBC APIs (and are not part of WebSphere Application Server

extension packages).

v jdbcCall() method

By using the static jdbcCall() method, you can invoke vendor-specific, nonstandard JDBC

methods on your JDBC objects. (For more information, see the API documentation

WSCallHelper topic.) The following code segment illustrates using this method with a DB2 data

source:

Connection conn = ds.getConnection();

// get connection attribute

String connectionAttribute =(String) WSCallHelper.jdbcCall(DataSource.class, ds,

 "getConnectionAttribute", null, null);

// setAutoClose to false

WSCallHelper.jdbcCall(java.sql.Connection.class,

conn, "setAutoClose",

new Object[] { new Boolean(false)},

new Class[] { boolean.class });

// get data store helper

DataStoreHelper dshelper = WSCallHelper.getDataStoreHelper(ds);

v jdbcPass() method

Use this method to exploit the nonstandard JDBC classes that some database vendors provide.

These classes contain methods that require vendors’ proprietary JDBC objects to be passed as

parameters.

In particular, implementations of Oracle can involve use of nonstandard classes furnished by the

vendor. Methods contained within these classes include:

oracle.sql.ArrayDescriptor ArrayDescriptor.createDescriptor(java.lang.String, java.sql.Connection)

oracle.sql.ARRAY new ARRAY(oracle.sql.ArrayDescriptor, java.sql.Connection, java.lang.Object)

oracle.xml.sql.query.OracleXMLQuery(java.sql.Connection, java.lang.String)

oracle.sql.BLOB.createTemporary(java.sql.Connection, boolean, int)

oracle.sql.CLOB.createTemporary(java.sql.Connection, boolean, int)

oracle.xdb.XMLType.createXML(java.sql.Connection, java.lang.String)

The following code examples demonstrate the difference between a call to the

XMLType.createXML() method over a direct connection to Oracle, and a call to the same

method within WebSphere Application Server.

1. Over a direct connection:

XMLType poXML = XMLType.createXML(conn, poString);

2. Within Application Server, using the jdbcPass() method:

XMLType poXML (XMLType)(WSCallHelper.jdbcPass(XMLType.class,

"createXML", new Object[]{conn,poString},

 new Class[]{java.sql.Connection.class, java.lang.String.class},

 new int[]{WSCallHelper.CONNECTION,WSCallHelper.IGNORE}));

512 Administering applications and their environment

There are two different jdbcPass() methods available, one for use in invoking static methods,

another for use when invoking non-static methods. See the API documentation WSCallHelper

topic.

Note: Because of the possible problems that can occur by passing an underlying object to a

method, WebSphere Application Server strictly controls which methods are allowed to be

invoked using the jdbcPass() method support. If you require support for a method that is

not listed previously in this document, please contact WebSphere Application Server

support with information on the method you require.

WARNING: Use of the jdbcPass() method causes the JDBC object to be used outside of

WebSphere’s protective mechanisms. Performing certain operations (such as setting

autoCommit, or transaction isolation settings, etc.) outside of these protective mechanisms will

cause problems with the future use of these pooled connections. IBM does not guarantee

stability of the object after invocation of this method; it is the user’s responsibility to ensure that

invocation of this method does not perform operations that harm the object. Use at your own

risk.

Example: Developing your own DataStoreHelper class: The DataStoreHelper interface supports each

data store platform plugging in its own private data store specific functions that are used by the Relational

Resource Adapter run time.

package com.ibm.websphere.examples.adapter;

import java.sql.SQLException;

import javax.resource.ResourceException;

import com.ibm.websphere.appprofile.accessintent.AccessIntent;

import com.ibm.websphere.ce.cm.*;

import com.ibm.websphere.rsadapter.WSInteractionSpec;

/**

* Example DataStoreHelper class, demonstrating how to create a user-defined DataStoreHelper.

* Implementation for each method is provided only as an example. More detail would likely be

* required for any custom DataStoreHelper created for use by a real application.

*/

public class ExampleDataStoreHelper extends com.ibm.websphere.rsadapter.GenericDataStoreHelper

{

 static final long serialVersionUID = 8788931090149908285L;

 public ExampleDataStoreHelper(java.util.Properties props)

 {

 super(props);

 // Update the DataStoreHelperMetaData values for this helper.

 getMetaData().setGetTypeMapSupport(false);

 // Update the exception mappings for this helper.

 java.util.Map xMap = new java.util.HashMap();

 // Add an Error Code mapping to StaleConnectionException.

 xMap.put(new Integer(2310), StaleConnectionException.class);

 // Add an Error Code mapping to DuplicateKeyException.

 xMap.put(new Integer(1062), DuplicateKeyException.class);

 // Add a SQL State mapping to the user-defined ColumnNotFoundException

 xMap.put("S0022", ColumnNotFoundException.class);

 // Undo an inherited StaleConnection SQL State mapping.

 xMap.put("S1000", Void.class);

 setUserDefinedMap(xMap);

 // If you are extending a helper class, it is

 // normally not necessary to issue ’getMetaData().setHelperType(...)’

 // because your custom helper will inherit the helper type from its

Chapter 13. Data access resources 513

// parent class.

 }

 public void doStatementCleanup(java.sql.PreparedStatement stmt) throws SQLException

 {

 // Clean up the statement so it may be cached and reused.

 stmt.setCursorName("");

 stmt.setEscapeProcessing(true);

 stmt.setFetchDirection(java.sql.ResultSet.FETCH_FORWARD);

 stmt.setMaxFieldSize(0);

 stmt.setMaxRows(0);

 stmt.setQueryTimeout(0);

 }

 public int getIsolationLevel(AccessIntent intent) throws ResourceException

 {

 // Determine an isolation level based on the AccessIntent.

 if (intent == null) return java.sql.Connection.TRANSACTION_SERIALIZABLE;

 return intent.getConcurrencyControl() == AccessIntent.CONCURRENCY_CONTROL_OPTIMISTIC ?

 java.sql.Connection.TRANSACTION_READ_COMMITTED :

 java.sql.Connection.TRANSACTION_REPEATABLE_READ;

 }

 public int getLockType(AccessIntent intent) {

 if (intent.getConcurrencyControl() == AccessIntent.CONCURRENCY_CONTROL_PESSIMISTIC) {

 if (intent.getAccessType() == AccessIntent.ACCESS_TYPE_READ) {

 return WSInteractionSpec.LOCKTYPE_SELECT;

 }

 else {

 return WSInteractionSpec.LOCKTYPE_SELECT_FOR_UPDATE;

 }

 }

 return WSInteractionSpec.LOCKTYPE_SELECT;

 }

 public int getResultSetConcurrency(AccessIntent intent) throws ResourceException

 {

 // Determine a ResultSet concurrency based on the AccessIntent.

 return intent == null || intent.getAccessType() == AccessIntent.ACCESS_TYPE_READ ?

 java.sql.ResultSet.CONCUR_READ_ONLY :

 java.sql.ResultSet.CONCUR_UPDATABLE;

 }

 public int getResultSetType(AccessIntent intent) throws ResourceException

 {

 // Determine a ResultSet type based on the AccessIntent.

 if (intent == null) return java.sql.ResultSet.TYPE_SCROLL_INSENSITIVE;

 return intent.getCollectionAccess() == AccessIntent.COLLECTION_ACCESS_SERIAL ?

 java.sql.ResultSet.TYPE_FORWARD_ONLY :

 java.sql.ResultSet.TYPE_SCROLL_SENSITIVE;

 }

}

514 Administering applications and their environment

ColumnNotFoundException

package com.ibm.websphere.examples.adapter;

import java.sql.SQLException;

import com.ibm.websphere.ce.cm.PortableSQLException;

/**

* Example PortableSQLException subclass, which demonstrates how to create a user-defined

* exception for exception mapping.

*/

public class ColumnNotFoundException extends PortableSQLException

{

 public ColumnNotFoundException(SQLException sqlX)

 {

 super(sqlX);

 }

}

Connection factory

An application component uses a connection factory to access a connection instance, which the

component then uses to connect to the underlying enterprise information system (EIS).

Examples of connections include database connections, Java Message Service connections, and SAP R/3

connections.

CMP connection factories collection

Use this page to view existing CMP connection factories settings.

These connection factories are used by a container-managed persistence (CMP) bean to access any

backend data store. A CMP connection factory is used by EJB model 2.x Entities with CMP version 2.x.

Connection factories listed on this page are created automatically under the WebSphere Relational

Resource Adapter when you check the box Use this Data Source in container managed persistence (CMP)

in the General Properties area on the Data Source page. You cannot modify the settings for a CMP

connection factory, and you cannot delete CMP connection factories from this collection. To remove the

CMP connection factory object, you must navigate to the data source associated with the CMP connection

factory and uncheck the Use this Data Source for CMP check box.

To view this administrative console page, click Resources > Resource Adapters > Resource Adapters

>WebSphere Relational Resource Adapter > CMP connection factories.

Name:

Specifies a list of the display names for the resources.

 Data type String

JNDI Name:

Specifies the JNDI name of the resource.

 Data type String

Description:

Specifies a description for the resource.

 Data type String

Chapter 13. Data access resources 515

Category:

Specifies a category string which can be used to classify or group the resource.

 Data type String

CMP connection factory settings:

Use this page to view the settings of a connection factory that is used by a CMP bean to access any

backend data store. This connection factory is only in ″read″ mode. It cannot be modified or deleted.

 To view this administrative console page, click Resources >Resource Adapters > Resource Adapters >

WebSphere Relational Resource Adapter> CMP Connection Factories > connection_factory

Name:

Specifies the display name for the resource.

 Data type String

JNDI name:

Specifies the JNDI name of the resource.

 Data type String

Description:

Specifies a description for the resource.

 Data type String

Category:

Specifies a category string which can be used to classify or group the resource.

 Data type String

Authentication Preference:

Specifies which of the authentication mechanisms that are defined for the corresponding resource adapter

applies to this connection factory. This property is deprecated starting with version 6.0.

 For example, if two authentication mechanism entries are defined for a resource adapter (KerbV5 and

Basic Password), this specifies one of those two types. If the authentication mechanism preference

specified is not an authentication mechanism available on the corresponding resource adapter, it is

ignored.

 Data type String

Component-managed authentication alias:

516 Administering applications and their environment

References authentication data for component-managed signon to the resource.

 Data type Drop-down list

Container-managed authentication alias:

References authentication data for container-managed signon to the resource. This property is deprecated

starting with version 6.0.

 Data type Drop-down list

JDBC providers

Installed applications use JDBC providers to interact with relational databases.

The JDBC provider object supplies the specific JDBC driver implementation class for access to a specific

vendor database. To create a pool of connections to that database, you associate a data source with the

JDBC provider. Together, the JDBC provider and the data source objects are functionally equivalent to the

J2EE Connector Architecture (JCA) connection factory, which provides connectivity with a non-relational

database.

For a current list of supported providers, see the WebSphere Application Server prerequisite Web site.

See also Hardware and software requirements for more information. For detailed descriptions of the

providers, including the supported data source classes and their required properties, refer to

“Vendor-specific data sources minimum required settings” on page 638.

Data sources

Installed applications use a data source to obtain connections to a relational database. A data source is

analogous to the J2EE Connector Architecture (JCA) connection factory, which provides connectivity to

other types of enterprise information systems (EIS).

A data source is associated with a JDBC provider, which supplies the driver implementation classes that

are required for JDBC connectivity with your specific vendor database. Application components transact

directly with the data source to obtain connection instances to your database. The connection pool that

corresponds to each data source provides connection management.

You can create multiple data sources with different settings, and associate them with the same JDBC

provider. For example, you might use multiple data sources to access different databases within the same

vendor database application. WebSphere Application Server requires JDBC providers to implement one or

both of the following data source interfaces, which are defined by Sun Microsystems. These interfaces

enable the application to run in a single-phase or two-phase transaction protocol.

v ConnectionPoolDataSource - a data source that supports application participation in local and global

transactions, excepting two-phase commit transactions.

Note: In two cases, a connection pool data source does support two-phase commit transactions: when

the JDBC provider is DB2 for z/OS Local JDBC provider (RRS), or when the data source is

making use of Last participant support. Last participant support enables a single one-phase

commit resource to participate in a global transaction with one or more two-phase commit

resources. For more information, consult the article Using one-phase and two-phase commit

resources in the same transaction.
When a connection pool data source is involved in a global transaction, transaction recovery is not

provided by the transaction manager. The application is responsible for providing the backup recovery

process if multiple resource managers are involved.

Chapter 13. Data access resources 517

v XADataSource - a data source that supports application participation in any single-phase or two-phase

transaction environment. When this data source is involved in a global transaction, the WebSphere

Application Server transaction manager provides transaction recovery.

In WebSphere Application Server releases prior to version 5.0, the function of data access was provided

by a single connection manager (CM) architecture. This connection manager architecture remains

available to support J2EE 1.2 applications, but another connection manager architecture is provided,

based on the JCA architecture supporting the new J2EE 1.3 application style (also for J2EE 1.4

applications).

These two separate architectures are represented by two types of data sources. To choose the right data

source, administrators must understand the nature of their applications, EJB modules, and enterprise

beans.

v Data source (WebSphere Application Server V4) - This data source runs under the original CM

architecture. Applications using this data source behave as if they were running in Version 4.0.

v Data source - This data source uses the JCA standard architecture to provide support for J2EE version

1.3 and 1.4 applications. It runs under the JCA connection manager and the relational resource adapter.

Choice of data source

v J2EE 1.2 application - all EJB 1.1 enterprise beans, JDBC applications, or Servlet 2.2 components must

use the 4.0 data source.

v J2EE 1.3 (and subsequent releases) application -

– EJB 1.1 Module - all EJB 1.x beans must use the 4.0 data source.

– EJB 2.0 (and subsequent releases) Module - enterprise beans that include container-managed

persistence (CMP) Version 1.x, 2.0, and beyond must use the new data source.

– JDBC applications and Servlet 2.3+ components - must use the new data source.

Data access beans

Data access beans provide a rich set of features and function, while hiding much of the complexity

associated with accessing relational databases.

They are Java classes written to the Enterprise JavaBeans specification.

You can use the data access beans in JavaBeans-compliant tools, such as the IBM Rational Application

Developer. Because the data access beans are also Java classes, you can use them like ordinary classes.

The data access beans (in the package com.ibm.db) offer the following capabilities:

Feature

Details

Caching query results

You can retrieve SQL query results all at once and place them in a cache. Programs using the

result set can move forward and backward through the cache or jump directly to any result row in

the cache.

 For large result sets, the data access beans provide ways to retrieve and manage packets,

subsets of the complete result set.

Updating through result cache

Programs can use standard Java statements (rather than SQL statements) to change, add, or

delete rows in the result cache. You can propagate changes to the cache in the underlying

relational table.

Querying parameter support

The base SQL query is defined as a Java String, with parameters replacing some of the actual

values. When the query runs, the data access beans provide a way to replace the parameters with

values made available at run time. Default mappings for common data types are provided, but you

can specify whatever your Java program and database require.

518 Administering applications and their environment

Supporting metadata

A StatementMetaData object contains the base SQL query. Information about the query (metadata)

enables the object to pass parameters into the query as Java data types.

 Metadata in the object maps Java data types to SQL data types (as well as the reverse). When

the query runs, the Java-datatyped parameters are automatically converted to SQL data types as

specified in the metadata mapping.

 When results return, the metadata object automatically converts SQL data types back into the

Java data types specified in the metadata mapping.

Connection management architecture

The connection management architecture for both relational and procedural access to enterprise

information systems (EIS) is based on the J2EE Connector Architecture (JCA) specification. The

Connection Manager (CM), which pools and manages connections within an application server, is capable

of managing connections obtained through both resource adapters (RAs) defined by the JCA specification,

and data sources defined by the Java Database Connectivity (JDBC) 2.0 (and later) Extensions

specification.

To make data source connections manageable by the CM, the WebSphere Application Server provides a

resource adapter (the WebSphere Relational Resource Adapter) that enables JDBC data sources to be

managed by the same CM that manages JCA connections. From the CM point of view, JDBC data

sources and JCA connection factories look the same. Users of data sources do not experience any

programmatic or behavioral differences in their applications because of the underlying JCA architecture.

JDBC users still configure and use data sources according to the JDBC programming model.

Applications migrating from previous versions of WebSphere Application Server might experience some

behavioral differences because of the specification changes from various J2EE requirements levels. These

differences are not related to the adoption of the JCA architecture.

If you have J2EE 1.2 applications using the JDBC API that you wish to run in WebSphere Application

Server 6.0 and later, the JDBC CM from Application Server version 4.0 is still provided as a configuration

option. Using this configuration option enables J2EE 1.2 applications to run unaltered. If you migrate a

Version 4.0 application to Version 6.0 or later, using the latest migration tools, the application automatically

uses the Version 4.0 connection manager after migration. However, EJB 2.x modules in J2EE 1.3 (or later

versions) applications cannot use the JDBC CM from WebSphere Application Server Version 4.0.

Connection pooling

Each time an application attempts to access a backend store (such as a database), it requires resources

to create, maintain, and release a connection to that datastore. To mitigate the strain this process can

place on overall application resources, WebSphere Application Server enables administrators to establish

a pool of backend connections that applications can share on an application server. Connection pooling

spreads the connection overhead across several user requests, thereby conserving application resources

for future requests.

WebSphere Application Server supports JDBC 3.0 APIs for connection pooling and connection reuse. The

connection pool is used to direct JDBC calls within the application, as well as for enterprise beans using

the database.

Benefits of connection pooling

Connection pooling can improve the response time of any application that requires connections, especially

Web-based applications. When a user makes a request over the Web to a resource, the resource

accesses a data source. Because users connect and disconnect frequently with applications on the

Internet, the application requests for data access can surge to considerable volume. Consequently, the

Chapter 13. Data access resources 519

total datastore overhead quickly becomes high for Web-based applications, and performance deteriorates.

When connection pooling capabilities are used, however, Web applications can realize performance

improvements of up to 20 times the normal results.

With connection pooling, most user requests do not incur the overhead of creating a new connection

because the data source can locate and use an existing connection from the pool of connections. When

the request is satisfied and the response is returned to the user, the resource returns the connection to the

connection pool for reuse. The overhead of a disconnection is avoided. Each user request incurs a fraction

of the cost for connecting or disconnecting. After the initial resources are used to produce the connections

in the pool, additional overhead is insignificant because the existing connections are reused.

When to use connection pooling

Use WebSphere connection pooling in an application that meets any of the following criteria:

v It cannot tolerate the overhead of obtaining and releasing connections whenever a connection is used.

v It requires Java Transaction API (JTA) transactions within WebSphere Application Server.

v It needs to share connections among multiple users within the same transaction.

v It needs to take advantage of product features for managing local transactions within the application

server.

v It does not manage the pooling of its own connections.

v It does not manage the specifics of creating a connection, such as the database name, user name, or

password

How connections are pooled together

Whenever you configure a unique data source or connection factory, you are required to give it a unique

Java Naming and Directory Interface (JNDI) name. This JNDI name, along with its configuration

information, is used to create the connection pool. A separate connection pool exists for each configured

data source or connection factory.

A separate instance of a given configured connection pool is created on each application server that uses

that data source or connection factory. For example, if you run a three server cluster in which all of the

servers use myDataSource, and myDataSource has a maximum connections setting of 10, then you can

generate up to 30 connections (three servers times 10 connections). Be sure to consider this fact when

determining how many connections to your backend resource you can support.

Other considerations for determining the maximum connections setting:

v Each entity bean transaction requires an additional database connection, dedicated to handling the

transaction.

v On UNIX platforms, a separate DB2 process is created for each connection; these processes quickly

affect performance on systems with low memory and cause errors.

v If clones are used, one data pool exists for each clone.

It is also important to note that when using connection sharing, it is only possible to share connections

obtained from the same connection pool.

Avoiding a deadlock

Deadlock can occur if the application requires more than one concurrent connection per thread, and the

database connection pool is not large enough for the number of threads. Suppose each of the application

threads requires two concurrent database connections and the number of threads is equal to the maximum

connection pool size. Deadlock can occur when both of the following are true:

v Each thread has its first database connection, and all are in use.

v Each thread is waiting for a second database connection, and none would become available since all

threads are blocked.

520 Administering applications and their environment

udat_conpoolset.dita#ConnectionPool_maxConnections_displayName

To prevent the deadlock in this case, the maximum connections value for the database connection pool

should be increased by at least one. Doing this allows for at least one of the waiting threads to obtain its

second database connection and to avoid a deadlock.

To avoid deadlock, code the application to use, at most, one connection per thread. If the application is

coded to require C concurrent database connections per thread, the connection pool must support at least

the following number of connections, where T is the maximum number of threads.

 T * (C - 1) + 1

The connection pool settings are directly related to the number of connections that the database server is

configured to support.

If the maximum number of connections in the pool is raised, and the corresponding settings in the

database are not raised, the application fails and SQL exception errors are displayed in the stderr.log

file.

Deferred Enlistment: In the WebSphere Application Server environment, deferred enlistment is a term

used to refer to the technique of waiting until a connection is first used to enlist it in its unit of work (UOW)

scope.

In one example, the technique works like this: a component calls getConnection() from within a global

transaction, and at some point later in time, the component uses the connection. The call that uses the

connection is intercepted, and the XA resource for that connection is enlisted with the transaction service

(which in turn calls XAResource.start()). Next, the actual call is sent to the resource manager.

In contrast, if a component gets a connection within a global transaction without deferred enlistment, then

the connection is enlisted in the transaction and has all the overhead associated with that transaction. For

XA connections, this includes the two phase commit (2PC) protocol to the resource manager. Deferred

enlistment offers better performance in the case where a connection is obtained, but not used within the

UOW scope. This saves all the overhead of participating in the UOW when it is not needed.

The WebSphere Application Server relational resource adapter automatically supports deferred enlistment

without any additional configuration needed.

Lazy Transaction Enlistment Optimization: The J2EE Connector Architecture (JCA) Version 1.5

specification calls the deferred enlistment technique lazy transaction enlistment optimization. This support

comes through a marker interface (LazyEnlistableManagedConnection) and a new method on the

connection manager (LazyEnlistableConnectionManager()):

package javax.resource.spi;

import javax.resource.ResourceException;

import javax.transaction.xa.Xid;

interface LazyEnlistableConnectionManager { // application server

 void lazyEnlist(ManagedConnection) throws ResourceException;

}

interface LazyEnlistableManagedConnection { // resource adapter

}

A resource adapter is not required to support this functionality. Check with the resource adapter provider if

you need to know if the resource adapter provides this functionality.

Connection and connection pool statistics: Performance Monitoring Infrastructure (PMI) method calls

that are supported in the two existing Connection Managers (JDBC and J2C) are still supported in this

version of WebSphere Application Server. The calls include:

v ManagedConnectionsCreated

v ManagedConnectionsAllocated

Chapter 13. Data access resources 521

v ManagedConnectionFreed

v ManagedConnectionDestroyed

v BeginWaitForConnection

v EndWaitForConnection

v ConnectionFaults

v Average number of ManagedConnections in the pool

v Percentage of the time that the connection pool is using the maximum number of ManagedConnections

v Average number of threads waiting for a ManagedConnection

v Average percent of the pool that is in use

v Average time spent waiting on a request

v Number of ManagedConnections that are in use

v Number of Connection Handles

v FreePoolSize

v UseTime

Java Specification Request (JSR) 77 requires statistical data to be accessed through managed beans

(Mbeans) to facilitate this. The Connection Manager passes the ObjectNames of the Mbeans created for

this pool. In the case of Java Message Service (JMS) null is passed in. The interface used is:

PmiFactory.createJ2CPerf(

 String pmiName, // a unique Identifier for JCA /JDBC. This is the

 // ConnectionFactory name.

 ObjectName providerName,// the ObjectName of the J2CResourceAdapter

 // or JDBCProvider Mbean

 ObjectName factoryName // the ObjectName of the J2CConnectionFactory

 // or DataSourceMbean.

)

The following Unified Modeling Language (UML) diagram shows how JSR 77 requires statistics to be

reported:

<<JavaInterface>>

<<JavaInterface>>

<<JavaInterface>>

<<JavaInterface>>

+ getConnections ()

+ getConnectionFactory ()

+ getCloseCount ()

+ getWaitTime ()

+ getFreePoolSize ()

+ getUseTime ()

+ getPoolSize ()

+ getWaitingThreadCount ()

+ getConnections ()

+ getConnectionPools ()

+ getManageConnectionFactory ()

+ getCreateCount ()

+ getConnectionPools ()

JCAStats

JCAConnectionStats

JCAConnectionPoolStats

JDBCStats

JDBCDataSource

<<JavaInterface>>

<<JavaInterface>>

+ getJdbcDataSource ()

+ getCreateCount ()

+ getWaitTime ()

+ getCloseCount ()

+ getUseTime ()

+ getPoolSize ()

+ Operation1 ()

+ getFreePoolSize ()

+ getWaitingThreadCount ()

JDBCConnectionStats

JDBCConnectionPoolStats

1

522 Administering applications and their environment

In WebSphere Application Server Version 5.x, the JCAStats interface was implemented by the

J2CResourceAdapter Mbean, and the JDBCStats interface was implemented by the JDBCProvider Mbean.

The JCAConnectionStats and JDBCConnectionStats interfaces are not implemented because they collect

statistics for nonpooled connections, which are not present in the JCA 1.0 Specification.

JCAConnectionPoolStats, and JDBCConnectionPoolStats do not have a direct implementing Mbean; those

statistics are gathered through a call to PMI. A J2C resource adapter, and JDBC provider each contain a

list of ConnectionFactory or DataSource ObjectNames, respectively. The ObjectNames are used by PMI to

find the appropriate connection pool in the list of PMI modules.

The JCA 1.5 Specification allows an exception from the matchManagedConnection() method that indicates

that the resource adapter requests that the connection not be pooled. In that case, statistics for that

connection are provided separately from the statistics for the connection pool.

Connection life cycle

A ManagedConnection object is always in one of three states: DoesNotExist, InFreePool, or InUse.

Before a connection is created, it must be in the DoesNotExist state. After a connection is created, it can

be in either the InUse or the InFreePool state, depending on whether it is allocated to an application.

Between these three states are transitions. These transitions are controlled by guarding conditions. A

guarding condition is one in which true indicates when you can take the transition into another legal state.

For example, you can make the transition from the InFreePool state to InUse state only if:

v the application has called the data source or connection factory getConnection() method (the

getConnection condition)

v a free connection is available in the pool with matching properties (the freeConnectionAvailable

condition)

v and one of the two following conditions are true:

– the getConnection() request is on behalf of a resource reference that is marked unsharable

– the getConnection() request is on behalf of a resource reference that is marked shareable but no

shareable connection in use has the same properties.

This transition description follows:

InFreePool > InUse:

getConnection AND

freeConnectionAvailable AND

NOT(shareableConnectionAvailable)

Here is a list of guarding conditions and descriptions.

 Condition Description

ageTimeoutExpired Connection is older then its ageTimeout value.

close Application calls close method on the Connection object.

fatalErrorNotification A connection has just experienced a fatal error.

freeConnectionAvailable A connection with matching properties is available in the

free pool.

getConnection Application calls getConnection method on a data source

or connection factory object.

markedStale Connection is marked as stale, typically in response to a

fatal error notification.

noOtherReferences There is only one connection handle to the managed

connection, and the Transaction Service is not holding a

reference to the managed connection.

noTx No transaction is in force.

Chapter 13. Data access resources 523

Condition Description

poolSizeGTMin Connection pool size is greater than the minimum pool

size (minimum number of connections)

poolSizeLTMax Pool size is less than the maximum pool size (maximum

number of connections)

shareableConnectionAvailable The getConnection() request is for a shareable

connection, and one with matching properties is in use

and available to share.

TxEnds The transaction has ended.

unshareableConnectionRequest The getConnection() request is for an unshareable

connection.

unusedTimeoutExpired Connection is in the free pool and not in use past its

unused timeout value.

Getting connections

The first set of transitions covered are those in which the application requests a connection from either a

data source or a connection factory. In some of these scenarios, a new connection to the database results.

In others, the connection might be retrieved from the connection pool or shared with another request for a

connection.

DoesNotExist

Every connection begins its life cycle in the DoesNotExist state. When an application server starts, the

connection pool does not exist. Therefore, there are no connections. The first connection is not created

until an application requests its first connection. Additional connections are created as needed, according

to the guarding condition.

getConnection AND

NOT(freeConnectionAvailable) AND

poolSizeLTMax AND

(NOT(shareableConnectionAvailable) OR

unshareableConnectionRequest)

This transition specifies that a connection object is not created unless the following conditions occur:

v The application calls the getConnection() method on the data source or connection factory

v No connections are available in the free pool (NOT(freeConnectionAvailable))

v The pool size is less than the maximum pool size (poolSizeLTMax)

v If the request is for a sharable connection and there is no sharable connection already in use with the

same sharing properties (NOT(shareableConnectionAvailable)) OR the request is for an unsharable

connection (unshareableConnectionRequest)

All connections begin in the DoesNotExist state and are only created when the application requests a

connection. The pool grows from 0 to the maximum number of connections as applications request new

connections. The pool is not created with the minimum number of connections when the server starts.

If the request is for a sharable connection and a connection with the same sharing properties is already in

use by the application, the connection is shared by two or more requests for a connection. In this case, a

new connection is not created. For users of the JDBC API these sharing properties are most often

userid/password and transaction context; for users of the Resource Adapter Common Client Interface

(CCI) they are typically ConnectionSpec, Subject, and transaction context.

InFreePool

524 Administering applications and their environment

The transition from the InFreePool state to the InUse state is the most common transition when the

application requests a connection from the pool.

InFreePool>InUse:

getConnection AND

freeConnectionAvailable AND

(unshareableConnectionRequest OR

NOT(shareableConnectionAvailable))

This transition states that a connection is placed in use from the free pool if:

v the application has issued a getConnection() call

v a connection is available for use in the connection pool (freeConnectionAvailable),

v and one of the following is true:

– the request is for an unsharable connection (unsharableConnectionRequest)

– no connection with the same sharing properties is already in use in the transaction.

(NOT(sharableConnectionAvailable)).

Any connection request that a connection from the free pool can fulfill does not result in a new connection

to the database. Therefore, if there is never more than one connection used at a time from the pool by any

number of applications, the pool never grows beyond a size of one. This number can be less than the

minimum number of connections specified for the pool. One way that a pool grows to the minimum

number of connections is if the application has multiple concurrent requests for connections that must

result in a newly created connection.

InUse

The idea of connection sharing is seen in the transition on the InUse state.

InUse>InUse:

getConnection AND

ShareableConnectionAvailable

This transition indicates that if an application requests a shareable connection (getConnection) with the

same sharing properties as a connection that is already in use (ShareableConnectionAvailable), the

existing connection is shared.

The same user (user name and password, or subject, depending on authentication choice) can share

connections but only within the same transaction and only when all of the sharing properties match. For

JDBC connections, these properties include the isolation level, which is configurable on the

resource-reference (IBM WebSphere extension) to data source default. For a resource adapter factory

connection, these properties include those specified on the ConnectionSpec object. Because a transaction

is normally associated with a single thread, you should never share connections across threads.

Note: It is possible to see the same connection on multiple threads at the same time, but this situation is

an error state usually caused by an application programming error.

Returning connections

All of the transitions discussed previously involve getting a connection for application use. With that goal,

the transitions result in a connection closing, and either returning to the free pool or being destroyed.

Applications should explicitly close connections (note: the connection that the user gets back is really a

connection handle) by calling close() on the connection object. In most cases, this action results in the

following transition:

InUse>InFreePool:

(close AND

noOtherReferences AND

NoTx AND

Chapter 13. Data access resources 525

UnshareableConnection)

OR

(ShareableConnection AND

TxEnds)

Conditions that cause the transition from the InUse state are:

v If the application or the container calls close() (producing the close condition) and there are no

references (the noOtherReferences condition) either by the application (in the application sharing

condition) or by the transaction manager (in the NoTx condition, meaning that the transaction manager

holds a reference when the connection is enlisted in a transaction), the connection object returns to the

free pool.

v If the connection was enlisted in a transaction but the transaction manager ends the transaction (the

txEnds condition), and the connection was a shareable connection (the ShareableConnection condition),

the connection closes and returns to the pool.

When the application calls close() on a connection, it is returning the connection to the pool of free

connections; it is not closing the connection to the data store. When the application calls close() on a

currently shared connection, the connection is not returned to the free pool. Only after the application

drops the last reference to the connection, and the transaction is over, is the connection returned to the

pool. Applications using unsharable connections must take care to close connections in a timely manner.

Failure to do so can starve out the connection pool, making it impossible for any application running on the

server to get a connection.

When the application calls close() on a connection enlisted in a transaction, the connection is not returned

to the free pool. Because the transaction manager must also hold a reference to the connection object, the

connection cannot return to the free pool until the transaction ends. Once a connection is enlisted in a

transaction, you cannot use it in any other transaction by any other application until after the transaction is

complete.

There is a case where an application calling close() can result in the connection to the data store closing

and bypassing the connection return to the pool. This situation happens if one of the connections in the

pool is considered stale. A connection is considered stale if you can no longer use it to contact the data

store. For example, a connection is marked stale if the data store server is shut down. When a connection

is marked as stale, the entire pool is cleaned out by default because it is very likely that all of the

connections are stale for the same reason (or you can set your configuration to clean just the failing

connection). This cleansing includes marking all of the currently InUse connections as stale so they are

destroyed upon closing. The following transition states the behavior on a call to close() when the

connection is marked as stale:

InUse>DoesNotExist:

close AND

markedStale AND

NoTx AND

noOtherReferences

This transition states that if the application calls close() on the connection and the connection is marked as

stale during the pool cleansing step (markedStale), the connection object closes to the data store and is

not returned to the pool.

Finally, you can close connections to the data store and remove them from the pool.

This transition states that there are three cases in which a connection is removed from the free pool and

destroyed.

1. If a fatal error notification is received from the resource adapter (or data source). A fatal error

notification (FatalErrorNotification) is received from the resource adaptor when something happens to

the connection to make it unusable. All connections currently in the free pool are destroyed.

2. If the connection is in the free pool for longer than the unused timeout period (UnusedTimeoutExpired)

and the pool size is greater than the minimum number of connections (poolSizeGTMin), the connection

526 Administering applications and their environment

is removed from the free pool and destroyed. This mechanism enables the pool to shrink back to its

minimum size when the demand for connections decreases.

3. If an age timeout is configured and a given connection is older than the timeout. This mechanism

provides a way to recycle connections based on age.

Unshareable and shareable connections

WebSphere Application Server supports both unshareable and shareable connections. An unshareable

connection is not shared with other components in the application. The component using this connection

has full control of this connection.

You can share a shareable connection with other components within the same transaction as long as each

getConnection() request has the same connection properties. To enable connection sharing for data

sources, the following connection properties must be the same:

v Java Naming and Directory Interface (JNDI) name. While not actually a connection property, this

requirement simply means that you can only share connections from the same data source in the same

server.

v Resource authentication

v In relational databases:

– Isolation level (corresponds to access intent policies applied to CMP beans)

– Readonly

– Catalog

– TypeMap

To enable connection sharing for resource adapters within the same transaction, the following connection

properties must be the same:

v JNDI name. While not actually a connection property, this requirement simply means that you can only

share connections from the same resource adapter in the same server.

v Resource authentication

In addition, the ConnectionSpec object used to get the connection must also be the same. For more

information on sharing a connection with a CMP bean, see Sharing a connection with a CMP bean.

Java Message Service (JMS) connections cannot be shared with non-JMS connections.

Access to a resource marked as unshareable means that there is a one-to-one relationship between the

connection handle a component is using and the physical connection with which the handle is associated.

This access implies that every call to the getConnection() method returns a connection handle solely for

the requesting user. Typically, you must choose unshareable if you might do things to the connection that

could result in unexpected behavior occurring in another application that is sharing the connection (for

example, unexpectedly changing the isolation level).

Marking a resource as shareable allows for greater scalability. Instead of creating new physical

connections on every getConnection() invocation, the physical connection (that is, managed connection) is

shared through multiple connection handles, as long as each getConnection request has the same

connection properties. However, sharing a connection means that each user must not do anything to the

connection that could change its behavior and disrupt a sharing partner (for example, changing the

isolation level). The user also cannot code an application that assumes sharing to take place because it is

up to the run time to decide whether or not to share a particular connection.

For WebSphere Application Server, all sharing of connections is relative to the current Unit of Work (UOW)

boundary. Anyone within a specific transaction, when getting a connection from a specific connection pool,

gets a handle to the same physical connection (if the sharing properties are the same).

Chapter 13. Data access resources 527

Sharing a connection with a CMP bean

WebSphere Application Server allows you to share a physical connection between a CMP bean, a BMP

bean, and a JDBC application to reduce the resource allocation or deadlock scenarios. There are several

ways to ensure that all of these entity beans and the JDBC applications are sharing the same physical

connection.

v Sharing a connection between CMP beans or methods

When all CMP bean methods use the same access intent, they all share the same physical connection.

A different access intent policy triggers the allocation of a different physical connection. For example, a

CMP bean has two methods; method 1 is associated with wsPessimisticUpdate intent, whereas method

2 has wsOptimisticUpdate access intent. Method 1 and method 2 cannot share the same physical

connection within a transaction. In other words, an XA data source is required to run in a global

transaction.

You can experience some deadlocks from a database if both methods try to access the same table.

Therefore, sharing a connection is determined by the access intents that are defined in the CMP

methods.

v Sharing a connection between CMP and BMP beans

Remember to first verify that the getConnection methods of both the BMP bean and the CMP bean set

the same connection properties. To match the authentication type of the CMP bean resource, set the

authentication type of the BMP bean resource to container-managed, which is designated in the

deployment descriptor as res-auth = Container.

Additionally, use one of the following options to ensure connection-sharing between the bean types:

– Define the same access intent on both CMP and BMP bean methods. Because both use the same

access intent, they share the same physical connection. The advantage to using this option is that

the backend is transparent to a BMP bean. However, this option also makes the BMP non-portable

because it uses the WebSphere extended API to handle the isolation level. For more information,

refer to the code example in Example: Accessing data using IBM extended APIs to share

connections between container-managed and bean-managed persistence beans.

– Determine the isolation level that the access intent uses on a CMP bean method, then use the

corresponding isolation level that is specified on the resource reference to look up a data source and

a connection. This option is more of a manual process, and the isolation level might be different from

database to database. For more information refer to the isolation level and access intent mapping

table: Access intent isolation levels and update locks and the Isolation level and resource reference

section.

v Sharing a connection between CMP and a JDBC application that is used by a servlet or a

session bean

Determine the isolation level that the access intent uses on a CMP bean method, then use the

corresponding isolation level specified on the resource reference to look up a data source and a

connection. For more information refer to Access intent isolation levels and update locks and Isolation

level and resource reference.

Factors that determine sharing

The listing here is not an exhaustive one. The product might or might not share connections under

different circumstances.

v Only connections acquired with the same resource reference (resource-ref) that specifies the

res-sharing-scope as shareable are candidates for sharing. The resource reference properties of

res-sharing-scope and res-auth and the IBM extension isolationLevel help determine if it is possible to

share a connection. IBM extension isolationLevel is stored in IBM deployment descriptor extension file;

for example: ibm-ejb-jar-ext.xmi.

v You can only share connections that are requested with the same properties.

v Connection Sharing only occurs between different component instances if they are within a transaction

(container- or user-initiated transaction).

528 Administering applications and their environment

v Connection Sharing only occurs within a sharing boundary. Current sharing boundaries include

Transactions and LocalTransactionContainment (LTC) boundaries.

v Connection Sharing rules within an LTC Scope:

– For shareable connections, only Connection Reuse is allowed within a single component instance.

Connection reuse occurs when the following actions are taken with a connection: get, use,

commit/rollback, close; get, use, commit/rollback, close. Note that if you use the LTC

resolution-control of ContainerAtBoundary then no start/commit is needed because that action is

handled by the container.

The connection returned on the second get is the same connection as that returned on the first get

(if the same properties are used). Because the connection use is serial, only one connection handle

to the underlying physical connection is used at a time, so true connection sharing does not take

place. The term ″reuse″ is more accurate.

More importantly, the LocalTransactionContainment boundary enclosing both get actions is not

complete; no cleanUp() method is invoked on the ManagedConnection object. Therefore the second

get action inherits all of the connection properties set during the first getConnection() call.
v Shareable connections between transactions (either container-managed transactions (CMT),

bean-managed transactions (BMT), or LTC transactions) follow these caching rules:

– In general, setting properties on shareable connections is not allowed because a user of one

connection handle might not anticipate a change made by another connection handle. This limitation

is part of the J2EE 1.3 standard.

– General users of resource adapters can set the connection properties on the connection factory

getConnection() call by passing them in a ConnectionSpec.

However, the properties set on the connection during one transaction are not guaranteed to be the

same when used in the next transaction. Because it is not valid to share connections outside of a

sharing scope, connection handles are moved off of the physical connection with which they are

currently associated when a transaction ends. That physical connection is returned to the free

connection pool. Connections are cleaned before going in the free pool. The next time the handle is

used, it is automatically associated with an appropriate connection. The appropriateness is based on

the security login information, connection properties, and (for the JDBC API) the isolation level

specified in the extended resource reference, passed in on the original request that returned the

current handle. Any properties set on the connection after it was retrieved are lost.

– For JDBC users, WebSphere Application Server provides an extension to enable passing the

connection properties through the ConnectionSpec.

Use caution when setting properties and sharing connections in a local transaction scope. Ensure

that other components with which the connection is shared are expecting the behavior resulting from

your settings.
v You cannot set the isolation level on a shareable connection for the JDBC API using a relational

resource adapter in a global transaction. The product provides an extension to the resource reference to

enable you to specify the isolation level. If your application requires the use of multiple isolation levels,

create multiple resource references and map them to the same data source or connection factory.

Connection sharing violations

There is a new exception, the SharingViolation exception, that the resource adapter can issue whenever

an operation violates sharing requirements. Possible violations include changing connection attributes,

security settings, or isolation levels, among others. When such a mutable operation is performed against a

managed connection, the SharingViolation exception can occur when both of the following conditions are

true:

v The number of connection handles associated with the managed connection is more than one.

v The managed connection is associated with a transaction, either local or XA.

Both the component and the J2C run time might need to detect this SharingViolation exception,

depending on when and how the managed connection becomes unshareable. If the managed connection

becomes unshareable because of an operation through the connection handle (for example, you change

the isolation level), then the component needs to process the exception. If the managed connection

Chapter 13. Data access resources 529

becomes unshareable without being recognized by the application server (due to some component

interaction with the connection handle), then the resource adapter can reject the creation of a connection

handle by issuing the SharingViolation exception.

Connection handles

A connection handle is a representation of a physical connection.

To use a backend resource (such as a relational database) in WebSphere Application Server you must get

a connection to that resource. When you call the getConnection() method, you get a connection handle

returned. The handle is not the physical connection. The physical connection is managed by the

connection manager.

There are two significant configurations that affect how connection handles are used and how they

behave. The first is the res-sharing-scope, which is defined by the resource-reference used to look up the

DataSource or Connection Factory. This property tells the connection manager whether or not you can

share this connection.

The second factor that affects connection handle behavior is the usage pattern. There are essentially two

usage patterns. The first is called the get/use/close pattern. It is used within a single method and without

calling another method that might get a connection from the same data source or connection factory. An

application using this pattern does the following:

1. gets a connection

2. does its work

3. commits (if appropriate)

4. closes the connection.

The second usage pattern is called the cached handle pattern. This is where an application:

1. gets a connection

2. begins a global transaction

3. does work on the connection

4. commits a global transaction

5. does work on the connection again

A cached handle is a connection handle that is held across transaction and method boundaries by an

application. Keep in mind the following considerations for using cached handles:

v Cached handle support requires some additional connection handle management across these

boundaries, which can impact performance. For example, in a JDBC application, Statements,

PreparedStatements, and ResultSets are closed implicitly after a transaction ends, but the connection

remains valid.

v You are encouraged not to cache the connection across the transaction boundary for shareable

connections; the get/use/close pattern is preferred.

v Caching of connection handles across servlet methods is limited to JDBC and Java Message Service

(JMS) resources. Other non-relational resources, such as Customer Information Control System (CICS)

or IMS objects, currently cannot have their connection handles cached in a servlet; you need to get,

use, and close the connection handle within each method invocation. (This limitation only applies to

single-threaded servlets because multithreaded servlets do not allow caching of connection handles.)

v You cannot pass a cached connection handle from one instance of a data access client to another

client instance. Transferring between client instances creates the problematic contingency of one

instance using a connection handle that is referenced by another. This relationship can only cause

problems because connection handle management code processes tasks for each client instance

separately. Hence, connection handle transfers result in run-time scenarios that trigger exceptions. For

example:

1. The application code of a client instance that receives a transferred handle closes the handle.

2. If the client instance that retains the original reference to the handle tries to reclaim it, the

application server issues an exception.

530 Administering applications and their environment

The following code segment shows the cached connection pattern.

Connection conn = ds.getConnection();

ut.begin();

conn.prepareStatement("....."); --> Connection runs in global transaction mode

...

ut.commit();

conn.prepareStatement("....."); ---> Connection still valid but runs in autoCommit(True);

...

Unshareable connections

Some characteristics of connection handles retrieved with a res-sharing-scope of unshareable are

described in the following sections.

v The possible benefits of unshared connections

– Your application always maintains a direct link with a physical connection (managed connection).

– The connection always has a one-to-one relationship between the connection handle and the

managed connection.

– In most cases, the connection does not close until the application closes it.

– You can use a cached unshared connection handle across multiple transactions.

– The connection can have a performance advantage in some cached handle situations. Because

unshared connections do not have the overhead of moving connection handles off managed

connections at the end of the transaction, there is less overhead in using a cached unshared

connection.

v The possible drawbacks of unshared connections

– Inefficient use of your connection resources. For example, if within a single transaction you get more

than one connection (with the same properties) using the same data source or connection factory

(same resource-ref) then you use multiple physical connections when you use unshareable

connections.

– Wasted connections. It is important not to keep the connection handle open (that is, your application

does not call the close() method) any longer then it is needed. As long as an unshareable connection

is open, the physical connection is unavailable to any other component, even if your application is

not currently using that connection. Unlike a shareable connection, an ushareable connection is not

closed at the end of a transaction or servlet call.

– Deadlock considerations. Depending on how your components interact with the database within a

transaction, using unshared connections can lead to deadlock in the database. For example, within a

transaction, component A gets a connection to data source X and updates table 1, and then calls

component B. Component B gets another connection to data source X, and updates/reads table 1

(or even worse the same row as component A). In some circumstances, depending on the particular

database, its locking scheme, and the transaction isolation level, a deadlock can occur.

In the same scenario, but with a shared connection, deadlock does not occur because all the work is

done on the same connection. It is worth noting that when writing code that uses shared

connections, you use a strategy that calls for multiple work items to be performed on the same

connection, possibly within the same transaction. If you decide to use an unshareable connection,

you must set the maximum connections property on the connection factory or data source correctly.

An exception might occur for waiting connection requests if you exceed the maximum connections

value, and unshareable connections are not being closed before the connection wait time-out is

exceeded.

Shareable connections

Some characteristics of connection handles that are retrieved with a res-sharing-scope of shareable are

described in the following sections.

v The possible benefits of shared connections

– Within an instance of connection sharing, application components can share a managed connection

with one or more connection handles, depending on how the handle is retrieved and which

connection properties are used.

Chapter 13. Data access resources 531

– They can more efficiently use resources. Shareable connections are not valid outside of their sharing

boundary. For this reason, at the end of a sharing boundary (such as a transaction) the connection

handle is no longer associated with the managed connection it was using within the sharing

boundary (this applies only when using the cached handle pattern). The managed connection is

returned to the free connection pool for reuse. Connection resources are not held longer than the

end of the current sharing scope.

If the cached handle pattern is used, then the next time the handle is used within a new sharing

scope, the application server run time ensures that the handle is reassociated with a managed

connection that is appropriate for the current sharing scope, and has the same properties with which

the handle was originally retrieved. Remember that it is not appropriate to change properties on a

shareable connection. If properties are changed, other components that share the same connection

might experience unexpected behavior. Futhermore, when using cached handles, the value of the

changed property might not be remembered across sharing scopes.

v The possible drawbacks of shared connections

– Sharing within a single component (such as an enterprise bean and its related Java objects) is not

always supported. The current specification allows resource adapters the choice of only allowing one

active connection handle at a time.

If a resource adapter chooses to implement this option then the following scenario results in an

invalid handle exception: A component using shareable connections gets a connection and uses it.

Without closing the connection, the component calls a utility class (Java object) that gets a

connection handle to the same managed connection and uses it. Because the resource adapter only

supports one active handle, the first connection handle is no longer valid. If the utility object returns

without closing its handle, the first handle is not valid and triggers an exception at any attempt to use

it.

Note: This exception occurs only when calling a utility object (a Java object).

Not all resource adapters have this limitation; it occurs only in certain implementations. The

WebSphere Relational Resource Adapter (RRA) does not have this limitation. Any data source used

through the RRA does not have this limitation. If you encounter a resource adapter with this limitation

you can work around it by serializing your access to the managed connection. If you always close

your connection handle before getting another (or close your handle before calling code that gets

another handle), and before returning from a method, you can allow two pieces of code to share the

same managed connection. You simply cannot use the connection for both events at the same time.

– Trying to change the isolation level on a shareable JDBC-based connection in a global transaction

(that is supported by the RRA) causes an exception. The correct way to get connections with

different transaction isolation levels is by configuring the IBM extended resource-reference.

– Closing connection handles for shareable connections by an application is NOT supported and

causes errors. However, you can avoid this limitation by using the Relational Resource Adapter.

Lazy connection association optimization

In WebSphere Application Server Version 5.0, the Java 2 Platform, Enterprise Edition (J2EE) Connector

(J2C) connection manager implemented smart handle support. This technology enables allocation of a

connection handle to an application while the managed connection associated with that connection handle

is used by other applications (assuming that the connection is not being used by the original application).

This concept is part of the J2EE Connector Architecture (JCA) 1.5 specification. (You can find it in the JCA

1.5 specification document in the section entitled ″Lazy Connection Association Optimization.″) Smart

handle support introduces use a method on the ConnectionManager object, the

LazyAssociatableConnectionManager() method, and a new marker interface, the

DissociatableManagedConnection class. You must configure the provider of the resource adapter to make

this functionality available in your environment. (In the case of the RRA, WebSphere Application Server

itself is the provider.) The following code snippet shows how to include smart handle support:

package javax.resource.spi;

import javax.resource.ResourceException;

532 Administering applications and their environment

interface LazyAssociatableConnectionManager { // application server

 void associateConnection(

 Object connection, ManagedConnectionFactory mcf,

 ConnectionRequestInfo info) throws ResourceException;

}

interface DissociatableManagedConnection { // resource adapter

 void dissociateConnections() throws ResourceException;

}

This DissociatableManagedConnection interface introduces another state to the Connection object:

inactive. A Connection can now be active, closed, and inactive. The connection object enters the inactive

state when a corresponding ManagedConnection object is cleaned up. The connection stays inactive until

an application component attempts to re-use it. Then the resource adapter calls back to the connection

manager to re-associate the connection with an active ManagedConnection object.

Transaction type and connection behavior

All connection usage occurs within the scope of either a global transaction or a local transaction

containment (LTC) boundary. Each transaction type places different requirements on connections and

impacts connection settings differently.

Connection sharing and reuse

You can only share connections within a global transaction scope (assuming other sharing rules are met).

However, you can serially reuse connections within an LTC scope. A get/use/close connection pattern

followed by another instance of get/use/close (to the same data source or connection factory) enables you

to reuse the same connection. See the “Unshareable and shareable connections” on page 527 topic for

more details.

JDBC AutoCommit behavior

All JDBC connections, when first obtained through a getConnection() call, contain the setting AutoCommit

= TRUE by default. However, different transaction scope and settings can result in changing, or simply

overriding, the AutoCommit value.

v If you operate within an LTC and have its resolution-control set to Application, then AutoCommit remains

TRUE unless changed by the application.

v If you operate within an LTC and have its resolution-control set to ContainerAtBoundary, then the

application should not touch the AutoCommit setting. The WebSphere Application Server run time sets

the AutoCommit value to FALSE before work begins, then commits or rolls back the work as appropriate

at the end of the LTC scope.

v If you use a connection within a global transaction, the database ignores the AutoCommit setting so that

the transaction service that controls the commit and rollback processing can manage the transaction.

This action takes place upon first use of the connection to do work, regardless of the user changing the

AutoCommit setting. After the transaction completes, the AutoCommit value returns to the value it had

before the first use of the connection. So even if the AutoCommit value is set to TRUE before the

connection is used in a global transaction, you need not set the value to FALSE since the value is

ignored by the database. In this example, after the transaction completes, the AutoCommit value of the

connection returns to TRUE.

v If you use multiple distinct connections within a global transaction, all work is guaranteed to commit or

roll back together. This is not the case for a local transaction containment (LTC scope). Within an LTC,

work done on one connection commits or rolls back independently from work done on any other

connection within the LTC.

Chapter 13. Data access resources 533

One-phase commit and two-phase commit connections

The type and number of resource managers, such as a database server, that must be accessed by an

application often determines the application transaction requirements. Consequently each type of resource

manager places different requirements on connection behavior.

v A two-phase commit resource manager can support two-phase coordination of a transaction. That

support is necessary for transactions that involve other resource managers; these transactions are

global transactions. See “Transaction support in WebSphere Application Server” on page 1795 for

further explanation.

v A one-phase commit resource manager supports only one-phase transactions, or LTC transactions, in

which that resource is the sole participating datastore. Again, see “Transaction support in WebSphere

Application Server” on page 1795 for further explanation.

One-phase commit resources are such that work being done on a one phase connection cannot mix with

other connections and ensure that the work done on all of the connections completes or fails atomically.

The product does not allow more than one one-phase commit connection in a global transaction.

Futhermore, it does not allow a one-phase commit connection in a global transaction with one or more

two-phase commit connections. You can coordinate only multiple two-phase commit connections within a

global transaction.

WebSphere Application Server provides last participant support that enables a single one-phase commit

resource to participate in a global transaction with one or more two-phase commit resources.

Note that any time you do multiple getConnection() calls using a resource reference that specifies

res-sharing-scope=Unshareable, then you get multiple physical connections. This situation also occurs

when res-sharing-scope=Shareable, but the sharing rules are broken. In either case, if you run in a global

transaction, ensure the resources involved are enabled for two-phase commit (also sometimes referred to

as JTA Enabled). Failure to do so results in an XA exception that logs the following message:

WTRN0063E: An illegal attempt to enlist a one phase capable resource with existing two phase capable resources

 has occurred.

Application scoped resources

Use this page to view brief descriptions of the resources that are bundled with your application. You can

view individual resource settings by clicking on the resource name.

To view this administrative console page, click Applications > Enterprise Applications >

application_name > Application scoped resources.

Each table row corresponds to a resource that is bundled with your application. Click a resource name or

the corresponding provider name to view an administrative console page where you can edit the object

configuration settings.

Name:

Specifies the administrative name that was assigned to this resource.

 Click this name to view a page where you can edit the configuration settings.

JNDI name:

Specifies the Java Naming and Directory Interface (JNDI) name of the resource.

 Data type String

Resource type:

534 Administering applications and their environment

Specifies the type of resource, such as a data source or a J2C connection factory.

Provider:

Specifies the resource provider that supplies the class information for this resource object.

 Click the provider name to view a page where you can edit the configuration settings.

Description:

Specifies a text description of the resource.

Cache instances

An application uses a cache instance to store, retrieve, and share data objects within the dynamic cache.

Each cache instance can be configured independently for Java Naming and Directory Interface (JNDI)

name, cache size, priority, and disk offload. Objects that are stored in a particular cache instance are not

affected by other cache instances. This means that if you store an object named object_1 with a value of

object_data in cache_instance_x, you can also store an object with the same name, but different value in

cache_instance_y.

Objects that are stored in a particular cache instance are available to applications on other servers by

accessing a cache instance of the same name. The two servers must be within the same replication

domain to share data.

There are two types of cache instances, object cache instances and servlet cache instances.

An object cache instance is a location in addition to the default shared dynamic cache where Java 2

Platform, Enterprise Edition (J2EE) applications can store, distribute, and share objects. After configuring

object cache instances, you can use the DistributedMap or DistributedObjectCache interfaces in the

com.ibm.websphere.cache package to programmatically access your cache instances.

See the Reference: Generated API documentation for more information about the DistributedMap or

DistributedObjectCache interfaces.

Servlet cache instances are locations in addition to the default dynamic cache where dynamic cache can

store, distribute, and share the output and the side effects of an invoked servlet. By configuring a servlet

cache instance, your applications have greater flexibility and better tuning of cache resources. The Java

Naming and Directory Interface (JNDI) name that is specified for the cache instance in the administrative

console maps to the <cache-instance> element in the cachespec.xml configuration file. Any <cache-entry>

elements that are specified within a <cache-instance> element are created in that specific cache instance.

Any <cache-entry> elements that are specified outside of a <cache-instance> element are stored in the

default dynamic cache instance.

See “Using servlet cache instances” on page 1936 for more information.

Data access: Resources for learning

Use the following links to find relevant supplemental information about data access. The information

resides on IBM and non-IBM Internet sites, whose sponsors control the technical accuracy of the

information.

These links are provided for convenience. Often, the information is not specific to this product but is useful

all or in part for understanding the product. When possible, links are provided to technical papers and

Redbooks that supplement the broad coverage of the release documentation with in-depth examinations of

particular product areas.

Chapter 13. Data access resources 535

View links to additional information about:

v Programming Specifications

v Container-managed relationships

v Resource adapters

v Miscellaneous articles from the Sun Developer Network and IBM developerWorks Web sites

v Rational Application Developer

v WebSphere Version 5.x Information Center

v IBM Cloudscape

v DB2 database software

v “IBM Informix”

v Supported hardware, software, and APIs

Programming Specifications

v Enterprise JavaBeans Technology (Source for download of the Enterprise Javabeans 2.1 specification)

v JavaTM 2 Platform, Enterprise Edition (J2EETM)

v JavaTM Management Extensions (JMX)

v JDBCTM 3.0 API Documentation

v J2EE Connector Architecture Version 1.5 specification

v What’s New in the J2EE Connector Architecture 1.5

v What’s New in the J2EE Connector Architecture 1.5 (Part 2)

Container-managed relationships

Though this article addresses the EJB 2.0 specification, you still might find parts of it pertinent to your

environment.

v Enterprise JavaBeansTM 2.0 Container-Managed Persistence Example

Resource adapters

v The J2EE Connector Architecture Resource Adapter

Miscellaneous articles from the Sun Developer Network and IBM developerWorks

Web sites

v Developer Technical Articles & Tips -- Articles: Database Access (Sun Developer Network)

v Sharing connections in WebSphere Application Server V5 (This article is still pertinent to WebSphere

Application Server Version 6.0. However, be aware that as of version 6.0, the container-managed

authentication type is deprecated.)

v Database authentication in WebSphere Application Server V5 (This article is still pertinent to

WebSphere Application Server Version 6.0. However, be aware that the container-managed

authentication type is now deprecated.)

v Understanding WebSphere Application Server EJB access intents

Rational Application Developer

v Rational Application Developer for WebSphere Software

WebSphere Version 5.x Information Center

v IBM WebSphereTM Version 5.x Information Center

IBM Cloudscape

v IBM Cloudscape (product section in ibm.com)

v The IBM Cloudscape information center: http://publib.boulder.ibm.com/infocenter/cscv/v10r1/index.jsp.

DB2 database software

v DB2

IBM Informix

v http://www-306.ibm.com/software/data/informix/

536 Administering applications and their environment

http://java.sun.com/products/ejb/
http://java.sun.com/j2ee/
http://java.sun.com/products/JavaManagement/
http://java.sun.com/j2se/1.3/docs/guide/jdbc/
http://java.sun.com/j2ee/connector/download.html
http://java.sun.com/developer/technicalArticles/J2EE/connectorarch1_5
http://java.sun.com/developer/technicalArticles/J2EE/connectorarch1_5/part2.html
http://developer.java.sun.com/developer/technicalArticles/ebeans/EJB20CMP/
http://java.sun.com/developer/technicalArticles/J2EE/connectorclient/resourceadapter.html
http://java.sun.com/developer/technicalArticles/Database/
http://www-106.ibm.com/developerworks/websphere/library/techarticles/0404_tang/0404_tang.html
http://www-106.ibm.com/developerworks/websphere/techjournal/0402_tang/0402_tang.html
http://www-106.ibm.com/developerworks/websphere/techjournal/0406_persson/0406_persson.html
http://www-3.ibm.com/software/ad/studiointegration/
http://www-3.ibm.com/software/webservers/appserv/infocenter.html
http://www-306.ibm.com/software/data/cloudscape/
http://publib.boulder.ibm.com/infocenter/cscv/v10r1/index.jsp.
http://www-3.ibm.com/software/data/db2/
http://www-306.ibm.com/software/data/informix/

Supported hardware, software, and APIs

v Supported hardware, software, and APIs

Configuring data access with scripting

Use these topics to learn about using scripting to configure data access.

This topic contains the following tasks:

v “Configuring a JDBC provider using scripting”

v “Configuring new data sources using scripting” on page 538

v “Configuring new connection pools using scripting” on page 540

v “Changing connection pool settings with the wsadmin tool” on page 540

v “Configuring new data source custom properties using scripting” on page 547

v “Configuring new J2CAuthentication data entries using scripting” on page 548

v “Configuring new WAS40 data sources using scripting” on page 549

v “Configuring new WAS40 connection pools using scripting” on page 550

v “Configuring new WAS40 custom properties using scripting” on page 551

v “Configuring new J2C resource adapters using scripting” on page 552

v “Configuring custom properties for J2C resource adapters using scripting” on page 553

v “Configuring new J2C connection factories using scripting” on page 554

v “Configuring new J2C authentication data entries using scripting” on page 556

v “Configuring new J2C administrative objects using scripting” on page 558

v “Configuring new J2C activation specifications using scripting” on page 557

v “Testing data source connections using scripting” on page 560

Configuring a JDBC provider using scripting

You can configure a JDBC provider using the wsadmin tool and scripting.

Before starting this task, the wsadmin tool must be running. See the Starting the wsadmin scripting client

article for more information.

1. There are two ways to perform this task. Perform one of the following:

v Using the AdminTask object:

– Using Jacl:

$AdminTask createJDBCProvider {-interactive}

– Using Jython:

AdminTask.createJDBCProvider ([’-interactive’])

v Using the AdminConfig object:

a. Identify the parent ID and assign it to the node variable. The following example uses the node

configuration object as the parent. You can modify this example to use the cell, cluster, server, or

application configuration object as the parent.

– Using Jacl:

set node [$AdminConfig getid /Cell:mycell/Node:mynode/]

– Using Jython:

node = AdminConfig.getid(’/Cell:mycell/Node:mynode/’)

print node

Example output:

mynode(cells/mycell/nodes/mynode|node.xml#Node_1)

b. Identify the required attributes:

Chapter 13. Data access resources 537

http://www.ibm.com/support/docview.wss?rs=180&uid=swg27006921

– Using Jacl:

$AdminConfig required JDBCProvider

– Using Jython:

print AdminConfig.required(’JDBCProvider’)

Example output:

Attribute Type

name String

implementationClassName String

c. Set up the required attributes and assign it to the jdbcAttrs variable. You can modify the following

example to setup non-required attributes for JDBC provider.

– Using Jacl:

set n1 [list name JDBC1]

set implCN [list implementationClassName myclass]

set jdbcAttrs [list $n1 $implCN]

Example output:

{name {JDBC1}} {implementationClassName {myclass}}

– Using Jython:

n1 = [’name’, ’JDBC1’]

implCN = [’implementationClassName’, ’myclass’]

jdbcAttrs = [n1, implCN]

print jdbcAttrs

Example output:

[[’name’, ’JDBC1’], [’implementationClassName’, ’myclass’]]

d. Create a new JDBC provider using node as the parent:

– Using Jacl:

$AdminConfig create JDBCProvider $node $jdbcAttrs

– Using Jython:

AdminConfig.create(’JDBCProvider’, node, jdbcAttrs)

Example output:

JDBC1(cells/mycell/nodes/mynode|resources.xml#JDBCProvider_1)

2. Save the configuration changes. See the Saving configuration changes with the wsadmin tool article

for more information.

3. In a network deployment environment only, synchronize the node. See the Synchronizing nodes with

the wsadmin tool article for more information.

If you modify the class path or native library path of a JDBC provider: After saving your changes (and

synchronizing the node in a network deployment environment), you must restart every application server

within the scope of that JDBC provider for the new configuration to work. Otherwise, you receive a data

source failure message.

Configuring new data sources using scripting

You can configure new data sources using scripting and the wsadmin tool.

Before starting this task, the wsadmin tool must be running. See the Starting the wsadmin scripting client

article for more information.

In WebSphere Application Server, any JDBC driver properties that are required by your database vendor

must be set as data source properties. Consult the article Vendor-specific data sources minimum required

settings in the Troubleshooting and support PDF to see a list of these properties and setting options,

ordered by JDBC provider type.

There are two ways to perform this task; use either of the following wsadmin scripting objects:

538 Administering applications and their environment

v AdminTask object

v AdminConfig object

AdminConfig gives you more configuration control than the AdminTask object. When you create a data

source using AdminTask, you supply universally required properties only, such as a JNDI name for the

data source. (Consult the article “Commands for the JDBCProviderManagement group of the AdminTask

object” on page 606 for more information.) Other properties that are required by your JDBC driver are

assigned default values by Application Server. You cannot use AdminTask commands to set or edit these

properties; you must use AdminConfig commands.

v Using the AdminConfig object to configure a new data source:

1. Identify the parent ID, which is the name and location of the JDBC provider that supports your data

source.

– Using Jacl:

set newjdbc [$AdminConfig getid /Cell:mycell/Node:mynode/JDBCProvider:JDBC1/]

– Using Jython:

newjdbc = AdminConfig.getid(’/Cell:mycell/Node:mynode/JDBCProvider:JDBC1/’)

print newjdbc

Example output:

JDBC1(cells/mycell/nodes/mynode|resources.xml#JDBCProvider_1)

2. Obtain the required attributes.

Tip: If the database vendor-required properties (which are referenced in the article “Vendor-specific

data sources minimum required settings” on page 638) are not displayed in the resulting list of

required attributes, script these properties as data source custom properties after you create

the data source.

– Using Jacl:

$AdminConfig required DataSource

– Using Jython:

print AdminConfig.required(’DataSource’)

Example output:

Attribute Type

name String

3. Set up the required attributes.

– Using Jacl:

set name [list name DS1]

set dsAttrs [list $name]

– Using Jython:

name = [’name’, ’DS1’]

dsAttrs = [name]

4. Create the data source.

– Using Jacl:

set newds [$AdminConfig create DataSource $newjdbc $dsAttrs]

– Using Jython:

newds = AdminConfig.create(’DataSource’, newjdbc, dsAttrs)

print newds

Example output:

DS1(cells/mycell/nodes/mynode|resources.xml#DataSource_1)

v Using the AdminTask object to configure a new data source:

– Using Jacl:

$AdminTask createDatasource {-interactive}

Chapter 13. Data access resources 539

– Using Jython:

AdminTask.createDatasource ([’-interactive’])

v Save the configuration changes. See the Saving configuration changes with the wsadmin tool article for

more information.

Consult your database documentation to see if the vendor recommends setting additional properties. Script

them as data source custom properties. See the article “Configuring new data source custom properties

using scripting” on page 547.

Configuring new connection pools using scripting

You can use scripting and the wsadmin tool to configure new connection pools.

Before starting this task, the wsadmin tool must be running. See the Starting the wsadmin scripting client

article for more information.

Perform the following steps:

1. Identify the parent ID:

v Using Jacl:

set newds [$AdminConfig getid /Cell:mycell/Node:mynode/JDBCProvider:JDBC1/DataSource:DS1/]

v Using Jython:

newds = AdminConfig.getid(’/Cell:mycell/Node:mynode/JDBCProvider:JDBC1/DataSource:DS1/’)

Example output:

DS1(cells/mycell/nodes/mynode|resources.xml$DataSource_1)

2. Creating connection pool:

v Using Jacl:

$AdminConfig create ConnectionPool $newds {}

v Using Jython:

print AdminConfig.create(’ConnectionPool’, newds, [])

Example output:

(cells/mycell/nodes/mynode|resources.xml#ConnectionPool_1)

3. Save the configuration changes. See the Saving configuration changes with the wsadmin tool article

for more information.

4. In a network deployment environment only, synchronize the node. See the Synchronizing nodes with

the wsadmin tool article for more information.

Changing connection pool settings with the wsadmin tool

You can use the wsadmin scripting tool to change connection pool settings.

The WebSphere Application Server wsadmin tool provides the ability to run scripts. You can use the

wsadmin tool to manage a WebSphere Application Server installation, as well as configuration, application

deployment, and server run-time operations. The WebSphere Application Server only supports the Jacl

and Jython scripting languages. To learn more about the wsadmin tool see Starting the wsadmin scripting

client.

To use the wsadmin tool to change connection pool settings:

1. Launch a scripting command. There are several options for you to run scripting commands, ranging

from running them interactively to running them in a profile.

To change connection pool settings, you use the getAttribute and setAttribute commands, run against

the various settings objects.

For example, to change the connection timeout setting, the commands are:

540 Administering applications and their environment

$AdminControl getAttribute $objectname connectionTimeout

$AdminControl setAttribute $objectname connectionTimeout 200

where:

v $ is a Jacl operator for substituting a variable name with its value

v getAttribute and setAttribute are the commands

v connectionTimeout is the object whose value you are resetting

2. For Jacl code examples of each of the connection pool settings, see “Example: Changing connection

pool settings with the wsadmin tool”

Example: Changing connection pool settings with the wsadmin tool

You can use the wsadmin tool to change connection pool settings.

The WebSphere Application Server wsadmin tool provides the ability to run scripts. The WebSphere

Application Server only supports the Jacl and Jython scripting languages.

You must start the wsadmin scripting client before you perform any other task using scripting.

Connection Timeout

The Connection timeout can be changed at any time while the pool is active. All connection requests that

are waiting for a connection are changed to the new value minus the time already waited, and are

returned to the wait state if there are no available connections.

For example, if the connection timeout is changed to 300 seconds and a connection request has waited

100 seconds, the connection request waits for 200 more seconds if no connection becomes available.

$AdminControl getAttribute $objectname connectionTimeout

$AdminControl setAttribute $objectname connectionTimeout 200

For more information about this setting, see the Connection pool settings topic in the Administering

applications and their environment PDF.

Maximum Connections

The maximum connections can be changed at any time except in the case where stuck connection

support is active.

If stuck connection support is active, an attempt to change the maximum connections is made. If the

attempt fails, an IllegalState exception occurs. See the Connection pool advanced settings topic in the

Administering applications and their environment PDF for more information.

If stuck connection support is not active, the maximum connections are changed to the new value. If the

new value is greater than the current value, the number of connections increases to the new value and

any requests waiting are notified. If the new value is less than the current value and Aged Timeout or

Reap Time is used, the number of connections decreases to the new value depending on pool activity. If

agedTimeout or Reap Time are not used, no automatic attempt will be made to reduce the total number of

connections. To manually reduce the number of connections to the new maximum connections, use the

Mbean function purgePoolContents.

$AdminControl getAttribute $objectname maxConnections

$AdminControl setAttribute $objectname maxConnections 200

For more information about this setting, see the Connection pool settings topic in the Administering

applications and their environment PDF.

Minimum Connections

The minimum connections can be changed at any time

Chapter 13. Data access resources 541

$AdminControl getAttribute $objectname minConnections

$AdminControl setAttribute $objectname minConnections 200

For more information about this setting, see the Connection pool settings topic in the Administering

applications and their environment PDF.

Reap Time

The reap time can be changed at any time. The reap time interval is changed to the new value at the next

interval.

$AdminControl getAttribute $objectname reapTime

$AdminControl setAttribute $objectname reapTime 30

Unused Timeout

The unused timeout can be changed at any time.

$AdminControl getAttribute $objectname unusedTimeout

$AdminControl setAttribute $objectname unusedTimeout 900

For more information about this setting, see the Connection pool settings topic in the Administering

applications and their environment PDF.

Aged Timeout

The Aged Timeout can be changed at any time.

$AdminControl getAttribute $objectname agedTimeout

$AdminControl setAttribute $objectname agedTimeout 900

For more information about this setting, see the Connection pool settings topic in the Administering

applications and their environment PDF.

Purge Policy

The purge policy can be changed at any time.

$AdminControl getAttribute $objectname purgePolicy

$AdminControl setAttribute $objectname purgePolicy "Failing Connection Only"

For more information about this setting, see the Connection pool settings topic in the Administering

applications and their environment PDF.

Surge Protection Support

Surge connection support starts if surgeThreshold is > -1 and surgeCreationInterval is > 0. The surge

protection properties can be changed at any time.

$AdminControl getAttribute $objectname surgeCreationInterval

$AdminControl setAttribute $objectname surgeCreationInterval 30

$AdminControl getAttribute $objectname surgeThreshold

$AdminControl setAttribute $objectname surgeThreshold 15

For more information about this setting, see the Connection pool advanced settings topic in the

Administering applications and their environment PDF.

Stuck connection Support

An attempt is made to change the stuckTime, stuckTimerTime or stuckThreshold properties. If the attempt

fails, an IllegalState exception occurs. The pool cannot have any active requests or active connections

542 Administering applications and their environment

during this request. For the stuck connection support to start, all three stuck property values must be

greater than 0, and the maximum connections value must be > 0.

If the connection pool is stuck, you cannot change the stuck or the maximum connection properties. If you

are stuck, there are active connections.

$AdminControl getAttribute $objectname stuckTime

$AdminControl setAttribute $objectname stuckTime 30

$AdminControl getAttribute $objectname stuckTimerTime

$AdminControl setAttribute $objectname stuckTimerTime 15

$AdminControl getAttribute $objectname stuckThreshold

$AdminControl setAttribute $objectname stuckThreshold 10

For more information about this setting, see the Connection pool advanced settings topic in the

Administering applications and their environment PDF.

Test Connection Support (This is only supported for a DataSource)

The test connection support starts when the testConnection property is set to true, and the interval is > 0.

The test connection properties can be changed at any time.

$AdminControl getAttribute $objectname testConnection

$AdminControl setAttribute $objectname testConnection 30

$AdminControl getAttribute $objectname testConnectionInterval

$AdminControl setAttribute $objectname testConnectionInterval 15

For more information about this setting, see the Test connection service topic in the Administering

applications and their environment PDF.

Connection Pool Partition Support

$AdminControl invoke $objectname freePoolDistributionTableSize

$AdminControl invoke $objectname numberOfFreePoolPartitions

$AdminControl invoke $objectname numberOfSharedPoolPartitions

$AdminControl invoke $objectname gatherPoolStatisticalData

$AdminControl invoke $objectname enablePoolStatisticalData

For more information about this setting, see the Connection pool advanced settings topic in the

Administering applications and their environment PDF.

Show Pool Information Support

The show pool operations can be changed at any time.

$AdminControl invoke $objectname showAllPoolContents

$AdminControl invoke $objectname showPoolContents

$AdminControl invoke $objectname showAllocationHandleList

Purge Connection Support

PurgePool can be changed at any time.

$AdminControl invoke $objectname purgePoolContents normal

$AdminControl invoke $objectname purgePoolContents immediate

Pool Control Support

Pause and resume can be changed at any time.

$AdminControl invoke $objectname pause

$AdminControl invoke $objectname resume

Chapter 13. Data access resources 543

Example: Connection factory and data source Mbean access using wsadmin

Wsadmin commands are used to access connection factory and data source MBeans. MBeans can

retrieve or update properties for a connection factory or data source.

To get a list of J2C connection factory or data source Mbean object names, from the wsadmin command

line use one of the following administrative control commands:

$AdminControl queryNames *:type=J2CConnectionFactory,*

$AdminControl queryNames *:type=DataSource,*

Example output from DataSource query:

wsadmin>$AdminControl queryNames *:type=DataSource,*

"WebSphere:name=Default Datasource,process=server1,platform=dynamicproxy,node=

system1Node01,JDBCProvider=Cloudscape JDBC Provider,j2eeType=JDBCDataSource,J2EESe

rver=server1,Server=server1,version=6.0.0.0,type=DataSource,mbeanIdentifier=cell

s/system1Node01Cell/nodes/system1Node01/servers/server1/resources.xml#DataSource

_1094760149902,JDBCResource=Cloudscape JDBC Provider,cell=system1Node01Cell"

By using the J2C connection factory or data source MBean object name, you can access the MBean. The

name follows the webSphere:name= expression. In the following example, for the first set, the default data

source name is set on variable name. For the second set, the object name is set on variable objectName.

Example using the Default Datasource

- wsadmin>set name [list Default Datasource]

Default Datasource

- wsadmin>set objectName [$AdminControl queryNames *:name=$name,*]

"WebSphere:name=Default Datasource,process=server1,platform=dynamicproxy,node=

system1Node01,JDBCProvider=Cloudscape JDBC Provider,j2eeType=JDBCDataSource,J2EESe

rver=server1,Server=server1,version=6.0.0.0,type=DataSource,mbeanIdentifier=cell

s/system1Node01Cell/nodes/system1Node01/servers/server1/resources.xml#DataSource

_1094760149902,JDBCResource=Cloudscape JDBC Provider,cell=system1Node01Cell"

Now you can use the objectName for getting help on attributes and operations available for this mbean.

$Help attributes $objectName

$Help operations $objectName

To get or set an attribute or to use an operation, use one of the following commands:

$AdminControl getAttribute $objectName "attribute name"

$AdminControl setAttribute $objectName "attribute name" value

$AdminControl invoke $objectName "operation"

Attribute, operation examples:

Get and set a attribute maxConnections (Note, if you get no value, a null value, or

a java.lang.IllegalStateException, the connection factory or data source for this

MBean has not been created. The connection factory or data source is created at first

JNDI lookup. For this example, the Default Datasource needs to be used before get,

set and invoke will work.)

wsadmin>$AdminControl getAttribute $objectName maxConnections

10

wsadmin>$AdminControl setAttribute $objectName maxConnections 20

wsadmin>$AdminControl getAttribute $objectName maxConnections

20

Using invoke

544 Administering applications and their environment

wsadmin>$AdminControl invoke $objectName showPoolContents

PoolManager name:DefaultDatasource

PoolManager object:746354514

Total number of connections: 3 (max/min 20/1, reap/unused/aged 180/1800/0,

connectiontimeout/purge 1800/EntirePool)

 (testConnection/inteval false/0, stuck timer/time

/threshold 0/0/0, surge time/connections 0/-1)

Shared Connection information (shared partitions 200)

 No shared connections

Free Connection information (free distribution table/partitions 5/1)

 (2)(0)MCWrapper id 5c6af75b Managed connection WSRdbManagedConnectionImpl@4b5

a775b State:STATE_ACTIVE_FREE

 (2)(0)MCWrapper id 3394375a Managed connection WSRdbManagedConnectionImpl@328

5f75a State:STATE_ACTIVE_FREE

 (2)(0)MCWrapper id 4795b75a Managed connection WSRdbManagedConnectionImpl@46a

4b75a State:STATE_ACTIVE_FREE

 Total number of connection in free pool: 3

UnShared Connection information

 No unshared connections

Here is an example Java program using the wsadmin tool to invoke showPoolContents: the Example:

using wsadmin to invoke showPoolContents topic in the Administering applications and their environment

PDF.

Example: Invoking showPoolContents using the wsadmin tool: The following example Java program

uses the wsadmin tool to invoke showPoolContents:

/**

 * "This sample program is provided AS IS and may be used, executed, copied and modified without royalty payment

 * by customer (a) for its own instruction and study, (b) in order to develop applications designed to run with

 * an IBM WebSphere product, either for customer’s own internal use or for redistribution by customer, as part

 * of such an application, in customer’s own products. "

 * Product 5724i63, (C) COPYRIGHT International Business Machines Corp., 2004

 *

 * All Rights Reserved * Licensed Materials - Property of IBM

 *

 * This program will display an active mbean object name and the connection pool.

 *

 * To run this program

 *

 * 1. call "%WAS_HOME%/bin/setupCmdLine.bat"

 *

 * 2. "%JAVA_HOME%\bin\java" "%CLIENTSAS%" "-Dwas.install.root=%WAS_HOME%" "-Dwas.repository.root=%CONFIG_ROOT%"

 * -Dcom.ibm.CORBA.BootstrapHost=%COMPUTERNAME% -classpath "%WAS_CLASSPATH%;%WAS_HOME%\lib\admin.jar;%WAS_HOME%

 * \lib\wasjmx.jar;." ShowPoolContents DataSource_mbean_name

 */

import java.util.Properties;

import java.util.Set;

import javax.management.*;

import com.ibm.websphere.management.AdminClient;

import com.ibm.websphere.management.AdminClientFactory;

import com.ibm.websphere.management.exception.ConnectorException;

public class ShowPoolContents {

 private AdminClient adminClient;

Chapter 13. Data access resources 545

public static void main(String[] args) {

 try {

 String name2 = null;

 String port = null;

 if(args.length <2){

 System.out.println("Enter name for the mbean and port");

 return;

 } else {

 name2 = args[0];

 port = args[1];

 System.out.println("Searching for name"+name2);

 }

 ShowPoolContents ace = new ShowPoolContents();

 // Create an AdminClient

 ace.createAdminClient(port);

 ObjectName[] cfON = ace.queryMBean("DataSource", null);

 if (cfON.length == 0) {

 System.out.println(" *Error : queryMBean did not find any active mbeans of type DataSource.");

 System.out.println(" At first touch of a DataSource, an mbean will be created. To touch a

 DataSource, use " + "getConnection");

 return;

 }

 int selectedObjectName = -1;

 String findName = name2;

 for(int i=0;i " + results);

 } catch (Exception e) {

 System.out.println(" *Exception : " + e.toString());

 e.printStackTrace(System.out);

 }

 }

 private void createAdminClient(String port) {

 // Set up a Properties object for the JMX connector attributes

 Properties connectProps = new Properties();

 connectProps.setProperty(AdminClient.CONNECTOR_TYPE, AdminClient.CONNECTOR_TYPE_SOAP);

 connectProps.setProperty(AdminClient.CONNECTOR_HOST, "localhost");

 connectProps.setProperty(AdminClient.CONNECTOR_PORT, port);

 // Get an AdminClient based on the connector properties

 try {

 adminClient = AdminClientFactory.createAdminClient(connectProps);

 } catch (ConnectorException e) {

 System.out.println("Exception creating admin client: " + e);

 System.exit(-1);

 }

 System.out.println("Connected to DeploymentManager");

 }

 // helper method to query mbean by type / name

 public ObjectName[] queryMBean(String type, String name) throws Exception {

 String s = "*:";

 if (type != null)

 s += "type=" + type;

 if (name != null)

 s += ",name=" + name;

 s += ",*";

 System.out.println("queryMBean: " + s);

 ObjectName ion = new ObjectName(s);

546 Administering applications and their environment

Set set = adminClient.queryNames(ion, null);

 Object[] o = set.toArray();

 ObjectName[] on = new ObjectName[o.length];

 for (int i = 0; i <o.length; i++) {

 on[i] = (ObjectName) o[i];

}

 return on;

 }

}

Configuring new data source custom properties using scripting

You can configure new data source custom properties using the wsadmin tool and scripting.

Before starting this task, the wsadmin tool must be running. See the Starting the wsadmin scripting client

article for more information.

Perform the following steps to configure a new data source custom property:

1. Identify the parent ID:

v Using Jacl:

set newds [$AdminConfig getid /Cell:mycell/Node:mynode/JDBCProvider:JDBC1/DataSource:DS1/]

v Using Jython:

newds = AdminConfig.getid(’/Cell:mycell/Node:mynode/JDBCProvider:JDBC1/DataSource:DS1/’)

print newds

Example output:

DS1(cells/mycell/nodes/mynode|resources.xml$DataSource_1)

2. Get the J2EE resource property set:

v Using Jacl:

set propSet [$AdminConfig showAttribute $newds propertySet]

v Using Jython:

propSet = AdminConfig.showAttribute(newds, ’propertySet’)

print propSet

Example output:

(cells/mycell/nodes/mynode|resources.xml#J2EEResourcePropertySet_8)

3. Get required attribute:

v Using Jacl:

$AdminConfig required J2EEResourceProperty

v Using Jython:

print AdminConfig.required(’J2EEResourceProperty’)

Example output:

Attribute Type

name String

4. Set up attributes:

v Using Jacl:

set name [list name RP4]

set rpAttrs [list $name]

v Using Jython:

name = [’name’, ’RP4’]

rpAttrs = [name]

5. Create a J2EE resource property:

v Using Jacl:

Chapter 13. Data access resources 547

$AdminConfig create J2EEResourceProperty $propSet $rpAttrs

v Using Jython:

print AdminConfig.create(’J2EEResourceProperty’, propSet, rpAttrs)

Example output:

RP4(cells/mycell/nodes/mynode|resources.xml#J2EEResourceProperty_8)

6. Save the configuration changes. See the Saving configuration changes with the wsadmin tool article

for more information.

7. In a network deployment environment only, synchronize the node. See the Synchronizing nodes with

the wsadmin tool article for more information.

Configuring new J2CAuthentication data entries using scripting

You can configure new J2CAuthentication data entries with the wsadmin tool and scripting.

Before starting this task, the wsadmin tool must be running. See the Starting the wsadmin scripting client

article for more information.

Perform the following steps to configure a new J2CAuthentication data entry:

1. Identify the parent ID:

v Using Jacl:

set security [$AdminConfig getid /Cell:mycell/Security:/]

v Using Jython:

security = AdminConfig.getid(’/Cell:mycell/Security:/’)

print security

Example output:

(cells/mycell|security.xml#Security_1)

2. Get required attributes:

v Using Jacl:

$AdminConfig required JAASAuthData

v Using Jython:

print AdminConfig.required(’JAASAuthData’)

Example output:

Attribute Type

alias String

userId String

password String

3. Set up required attributes:

v Using Jacl:

set alias [list alias myAlias]

set userid [list userId myid]

set password [list password secret]

set jaasAttrs [list $alias $userid $password]

Example output:

{alias myAlias} {userId myid} {password secret}

v Using Jython:

alias = [’alias’, ’myAlias’]

userid = [’userId’, ’myid’]

password = [’password’, ’secret’]

jaasAttrs = [alias, userid, password]

print jaasAttrs

Example output:

[[’alias’, ’myAlias’], [’userId’, ’myid’], [’password’, ’secret’]]

548 Administering applications and their environment

4. Create JAAS auth data:

v Using Jacl:

$AdminConfig create JAASAuthData $security $jaasAttrs

v Using Jython:

print AdminConfig.create(’JAASAuthData’, security, jaasAttrs)

Example output:

(cells/mycell|security.xml#JAASAuthData_2)

5. Save the configuration changes. See the Saving configuration changes with the wsadmin tool article

for more information.

6. In a network deployment environment only, synchronize the node. See the Synchronizing nodes with

the wsadmin tool article for more information.

Configuring new WAS40 data sources using scripting

Use scripting to configure a new WAS40 data source.

Before starting this task, the wsadmin tool must be running. See the Starting the wsadmin scripting client

article for more information.

Perform the following steps:

1. Identify the parent ID:

v Using Jacl:

set newjdbc [$AdminConfig getid "/JDBCProvider:Cloudscape JDBC Provider/"]

v Using Jython:

newjdbc = AdminConfig.getid(’/JDBCProvider:Cloudscape JDBC Provider/’)

print newjdbc

Example output:

JDBC1(cells/mycell/nodes/mynode|resources.xml$JDBCProvider_1)

2. Get required attributes:

v Using Jacl:

$AdminConfig required WAS40DataSource

v Using Jython:

print AdminConfig.required(’WAS40DataSource’)

Example output:

Attribute Type

name String

3. Set up required attributes:

v Using Jacl:

set name [list name was4DS1]

set ds4Attrs [list $name]

v Using Jython:

name = [’name’, ’was4DS1’]

ds4Attrs = [name]

4. Create WAS40DataSource:

v Using Jacl:

set new40ds [$AdminConfig create WAS40DataSource $newjdbc $ds4Attrs]

v Using Jython:

new40ds = AdminConfig.create(’WAS40DataSource’, newjdbc, ds4Attrs)

print new40ds

Example output:

Chapter 13. Data access resources 549

was4DS1(cells/mycell/nodes/mynode|resources.xml#WAS40DataSource_1)

5. Save the configuration changes. See the Saving configuration changes with the wsadmin tool article

for more information.

6. In a network deployment environment only, synchronize the node. See the Synchronizing nodes with

the wsadmin tool article for more information.

Configuring new WAS40 connection pools using scripting

You can use scripting to configure a new WAS40 connection pool.

Before starting this task, the wsadmin tool must be running. See the Starting the wsadmin scripting client

article for more information.

Perform the following steps to configure a new WAS40 connection pool:

1. Identify the parent ID:

v Using Jacl:

set new40ds [$AdminConfig getid /Cell:mycell/Node:mynode/

Server:server1/JDBCProvider:JDBC1/WAS40DataSource:was4DS1/]

v Using Jython:

new40ds = AdminConfig.getid(’/Cell:mycell/Node:mynode/

Server:server1/JDBCProvider:JDBC1/WAS40DataSource:was4DS1/’)

print new40ds

Example output:

was4DS1(cells/mycell/nodes/mynodes:resources.xml$WAS40DataSource_1)

2. Get required attributes:

v Using Jacl:

$AdminConfig required WAS40ConnectionPool

v Using Jython:

print AdminConfig.required(’WAS40ConnectionPool’)

Example output:

Attribute Type

minimumPoolSize Integer

maximumPoolSize Integer

connectionTimeout Integer

idleTimeout Integer

orphanTimeout Integer

statementCacheSize Integer

3. Set up required attributes:

v Using Jacl:

set mps [list minimumPoolSize 5]

set minps [list minimumPoolSize 5]

set maxps [list maximumPoolSize 30]

set conn [list connectionTimeout 10]

set idle [list idleTimeout 5]

set orphan [list orphanTimeout 5]

set scs [list statementCacheSize 5]

set 40cpAttrs [list $minps $maxps $conn $idle $orphan $scs]

Example output:

{minimumPoolSize 5} {maximumPoolSize 30}

{connectionTimeout 10} {idleTimeout 5}

{orphanTimeout 5} {statementCacheSize 5}

v Using Jython:

minps = [’minimumPoolSize’, 5]

maxps = [’maximumPoolSize’, 30]

conn = [’connectionTimeout’, 10]

550 Administering applications and their environment

idle = [’idleTimeout’, 5]

orphan = [’orphanTimeout’, 5]

scs = [’statementCacheSize’, 5]

cpAttrs = [minps, maxps, conn, idle, orphan, scs]

print cpAttrs

Example output:

[[minimumPoolSize, 5], [maximumPoolSize, 30],

[connectionTimeout, 10], [idleTimeout, 5],

[orphanTimeout, 5], [statementCacheSize, 5]]

4. Create was40 connection pool:

v Using Jacl:

$AdminConfig create WAS40ConnectionPool $new40ds $40cpAttrs

v Using Jython:

print AdminConfig.create(’WAS40ConnectionPool’, new40ds, 40cpAttrs)

Example output:

(cells/mycell/nodes/mynode:resources.xml#WAS40ConnectionPool_1)

5. Save the configuration changes. See the Saving configuration changes with the wsadmin tool article

for more information.

6. In a network deployment environment only, synchronize the node. See the Synchronizing nodes with

the wsadmin tool article for more information.

Configuring new WAS40 custom properties using scripting

You can use scripting and the wsadmin tool to configure a new WAS40 custom property.

Before starting this task, the wsadmin tool must be running. See the Starting the wsadmin scripting client

article for more information.

Perform the following steps to configure a new WAS40 custom properties:

1. Identify the parent ID:

v Using Jacl:

set new40ds [$AdminConfig getid /Cell:mycell/Node:mynode/

JDBCProvider:JDBC1/WAS40DataSource:was4DS1/]

v Using Jython:

new40ds = AdminConfig.getid(’/Cell:mycell/Node:mynode/

JDBCProvider:JDBC1/WAS40DataSource:was4DS1/’)

print new40ds

Example output:

was4DS1(cells/mycell/nodes/mynodes|resources.xml$WAS40DataSource_1)

2. Get required attributes:

v Using Jacl:

set propSet [$AdminConfig showAttribute $newds propertySet]

v Using Jython:

propSet = AdminConfig.showAttribute(newds, ’propertySet’)

print propSet

Example output:

(cells/mycell/nodes/mynode|resources.xml#J2EEResourcePropertySet_9)

3. Get required attribute:

v Using Jacl:

$AdminConfig required J2EEResourceProperty

v Using Jython:

print AdminConfig.required(’J2EEResourceProperty’)

Chapter 13. Data access resources 551

Example output:

Attribute Type

name String

4. Set up required attributes:

v Using Jacl:

set name [list name RP5]

set rpAttrs [list $name]

v Using Jython:

name = [’name’, ’RP5’]

rpAttrs = [name]

5. Create J2EE Resource Property:

v Using Jacl:

$AdminConfig create J2EEResourceProperty $propSet $rpAttrs

v Using Jython:

print AdminConfig.create(’J2EEResourceProperty’, propSet, rpAttrs)

Example output:

RP5(cells/mycell/nodes/mynode|resources.xml#J2EEResourceProperty_9)

6. Save the configuration changes. See the Saving configuration changes with the wsadmin tool article

for more information.

7. In a network deployment environment only, synchronize the node. See the Synchronizing nodes with

the wsadmin tool article for more information.

Configuring new J2C resource adapters using scripting

Use scripting to configure new J2C resource adapters in WebSphere Application Server.

Before starting this task, the wsadmin tool must be running. See the Starting the wsadmin scripting client

article for more information.

Perform the following steps to configure a new J2C resource adapter:

1. Identify the parent ID and assign it to the node variable. The following example uses the node

configuration object as the parent. You can modify this example to use the cell, cluster, server, or

application configuration object as the parent.

v Using Jacl:

set node [$AdminConfig getid /Cell:mycell/Node:mynode/]

v Using Jython:

node = AdminConfig.getid(’/Cell:mycell/Node:mynode/’)

print node

Example output:

mynode(cells/mycell/nodes/mynode|node.xml#Node_1)

2. Identify the required attributes:

v Using Jacl:

$AdminConfig required J2CResourceAdapter

v Using Jython:

print AdminConfig.required(’J2CResourceAdapter’)

Example output:

Attribute Type

name String

3. Set up the required attributes:

v Using Jacl:

552 Administering applications and their environment

set rarFile c:/currentScript/cicseci.rar

set option [list -rar.name RAR1]

v Using Jython:

rarFile = ’c:/currentScript/cicseci.rar’

option = ’[-rar.name RAR1]’

4. Create a resource adapter:

v Using Jacl:

set newra [$AdminConfig installResourceAdapter $rarFile mynode $option]

v Using Jython:

newra = AdminConfig.installResourceAdapter(rarFile, ’mynode’, option)

print newra

Example output:

RAR1(cells/mycell/nodes/mynode|resources.xml#J2CResourceAdapter_1)

5. Save the configuration changes. See the Saving configuration changes with the wsadmin tool article

for more information.

6. In a network deployment environment only, synchronize the node. See the Synchronizing nodes with

the wsadmin tool article for more information.

Configuring custom properties for J2C resource adapters using

scripting

You can configure custom properties for J2C resource adapters with scripting and the wsadmin tool.

Before starting this task, the wsadmin tool must be running. See the Starting the wsadmin scripting client

article for more information.

Perform the following steps to configure a new custom property for a J2C resource adapters:

1. Identify the parent ID and assign it to the newra variable.

v Using Jacl:

set newra [$AdminConfig getid /Cell:mycell/Node:mynode/J2CResourceAdapter:RAR1/]

v Using Jython:

newra = AdminConfig.getid(’/Cell:mycell/Node:mynode/J2CResourceAdapter:RAR1/’)

print newra

Example output:

RAR1(cells/mycell/nodes/mynode|resources.xml#J2CResourceAdapter_1)

2. Get the J2EE resource property set:

v Using Jacl:

set propSet [$AdminConfig showAttribute $newra propertySet]

v Using Jython:

propSet = AdminConfig.showAttribute(newra, ’propertySet’)

print propSet

Example output:

(cells/mycell/nodes/mynode|resources.xml#PropertySet_8)

3. Identify the required attributes:

v Using Jacl:

$AdminConfig required J2EEResourceProperty

v Using Jython:

print AdminConfig.required(’J2EEResourceProperty’)

Example output:

Chapter 13. Data access resources 553

Attribute Type

name String

4. Set up the required attributes:

v Using Jacl:

set name [list name RP4]

set rpAttrs [list $name]

v Using Jython:

name = [’name’, ’RP4’]

rpAttrs = [name]

5. Create a J2EE resource property:

v Using Jacl:

$AdminConfig create J2EEResourceProperty $propSet $rpAttrs

v Using Jython:

print AdminConfig.create(’J2EEResourceProperty’, propSet, rpAttrs)

Example output:

RP4(cells/mycell/nodes/mynode|resources.xml#J2EEResourceProperty_8)

6. Save the configuration changes. See the Saving configuration changes with the wsadmin tool article

for more information.

7. In a network deployment environment only, synchronize the node. See the Synchronizing nodes with

the wsadmin tool article for more information.

Configuring new J2C connection factories using scripting

Use scripting and the wsadmin tool to configure new J2C connection factories.

Before starting this task, the wsadmin tool must be running. See the Starting the wsadmin scripting client

article for more information.

Perform the following steps to configure a new J2C connection factory:

1. Identify the parent ID and assign it to the newra variable.

v Using Jacl:

set newra [$AdminConfig getid /Cell:mycell/Node:mynode/J2CResourceAdapter:RAR1/]

v Using Jython:

newra = AdminConfig.getid(’/Cell:mycell/Node:mynode/J2CResourceAdapter:RAR1/’)

print newra

Example output:

RAR1(cells/mycell/nodes/mynode|resources.xml#J2CResourceAdapter_1)

2. There are two ways to configure a new J2C connection factory. Perform one of the following:

v Using the AdminTask object:

a. List the connection factory interfaces:

– Using Jacl:

$AdminTask listConnectionFactoryInterfaces $newra

– Using Jacl:

AdminTask.listConnectionFactoryInterfaces(newra)

Example output:

javax.sql.DataSource

b. Create a J2CConnectionFactory:

– Using Jacl:

554 Administering applications and their environment

$AdminTask createJ2CConnectionFactory $newra { -name cf1

-jndiName eis/cf1 -connectionFactoryInterface

avax.sql.DataSource

– Using Jacl:

AdminTask.createJ2CConnectionFactory(newra, ’[’-name’, ’cf1’,

’-jndiName’, ’eis/cf1’, ’-connectionFactoryInterface’,

’avax.sql.DataSource’]’)

v Using the AdminConfig object:

a. Identify the required attributes:

– Using Jacl:

$AdminConfig required J2CConnectionFactory

– Using Jython:

print AdminConfig.required(’J2CConnectionFactory’)

Example output:

Attribute Type

connectionDefinition ConnectionDefinition@

b. If your resource adapter is JCA1.5 and you have multiple connection definitions defined, it is

required that you specify the ConnectionDefinition attribute. If your resource adapter is JCA1.5

and you have only one connection definition defined, it will be picked up automatically. If your

resource adapter is JCA1.0, you do not need to specify the ConnectionDefinition attribute.

Perform the following command to list the connection definitions defined by the resource

adapter:

– Using Jacl:

$AdminConfig list ConnectionDefinition $newra

– Using Jython:

print AdminConfig.list(’ConnectionDefinition’, $newra)

c. Set up the required attributes:

– Using Jacl:

set name [list name J2CCF1]

set j2ccfAttrs [list $name]

set jname [list jndiName eis/j2ccf1]

– Using Jython:

name = [’name’, ’J2CCF1’]

j2ccfAttrs = [name]

jname = [’jndiName’, eis/j2ccf1]

d. If you are specifying the ConnectionDefinition attribute, also set up the following:

– Using Jacl:

set cdattr [list connectionDefinition $cd]

– Using Jython:

cdattr = [’connectionDefinition’, $cd]

e. Create a J2C connection factory:

– Using Jacl:

$AdminConfig create J2CConnectionFactory $newra $j2ccfAttrs

– Using Jython:

print AdminConfig.create(’J2CConnectionFactory’, newra, j2ccfAttrs)

Example output:

J2CCF1(cells/mycell/nodes/mynode|resources.xml#J2CConnectionFactory_1)

3. Save the configuration changes. See the Saving configuration changes with the wsadmin tool article

for more information.

Chapter 13. Data access resources 555

4. In a network deployment environment only, synchronize the node. See the Synchronizing nodes with

the wsadmin tool article for more information.

Configuring new J2C authentication data entries using scripting

You can use scripting to configure a new J2C authentication data entry.

Before starting this task, the wsadmin tool must be running. See the Starting the wsadmin scripting client

article for more information.

Perform the following steps to configure a new J2C authentication data entry:

1. Identify the parent ID and assign it to the security variable.

v Using Jacl:

set security [$AdminConfig getid /Security:mysecurity/]

v Using Jython:

security = AdminConfig.getid(’/Security:mysecurity/’)

2. Identify the required attributes:

v Using Jacl:

$AdminConfig required JAASAuthData

v Using Jython:

print AdminConfig.required(’JAASAuthData’)

Example output:

Attribute Type

alias String

userId String

password String

3. Set up the required attributes:

v Using Jacl:

set alias [list alias myAlias]

set userid [list userId myid]

set password [list password secret]

set jaasAttrs [list $alias $userid $password]

Example output:

{alias myAlias} {userId myid} {password secret}

v Using Jython:

alias = [’alias’, ’myAlias’]

userid = [’userId’, ’myid’]

password = [’password’, ’secret’]

jaasAttrs = [alias, userid, password]

Example output:

[[alias, myAlias], [userId, myid], [password, secret]]

4. Create JAAS authentication data:

v Using Jacl:

$AdminConfig create JAASAuthData $security $jaasAttrs

v Using Jython:

print AdminConfig.create(’JAASAuthData’, security, jaasAttrs)

Example output:

(cells/mycell/nodes/mynode|resources.xml#JAASAuthData_2)

5. Save the configuration changes. See the Saving configuration changes with the wsadmin tool article

for more information.

556 Administering applications and their environment

6. In a network deployment environment only, synchronize the node. See the Synchronizing nodes with

the wsadmin tool article for more information.

Configuring new J2C activation specifications using scripting

You can configure new J2C activation specifications using scripting and the wsadmin tool.

Before starting this task, the wsadmin tool must be running. See the Starting the wsadmin scripting client

article for more information.

Perform the following steps to configure a J2C activation specifications:

1. Identify the parent ID and assign it to the newra variable.

v Using Jacl:

set newra [$AdminConfig getid /Cell:mycell/Node:mynode/J2CResourceAdapter:RAR1/]

v Using Jython:

newra = AdminConfig.getid(’/Cell:mycell/Node:mynode/J2CResourceAdapter:RAR1/’)

print newra

Example output:

RAR1(cells/mycell/nodes/mynode|resources.xml#J2CResourceAdapter_1)

2. There are two ways to configure a new J2C administrative object. Perform one of the following:

v Using the AdminTask object:

a. List the administrative object interfaces:

Using Jacl:

$AdminTask listMessageListenerTypes $newra

Using Jython:

AdminTask.listMessageListenerTypes(newra)

Example output:

javax.jms.MessageListener

b. Create a J2C administrative object:

Using Jacl:

$AdminTask createJ2CActivationSpec $newra { -name ac1

-jndiName eis/ac1 -message ListenerType

javax.jms.MessageListener}

Using Jython:

AdminTask.createJ2CActivationSpec(newra, [’-name’, ’ao1’,

’-jndiName’, ’eis/ao1’, ’-message’, ’ListenerType’,

’javax.jms.MessageListener’])

v Using the AdminConfig object:

a. Using Jacl:

$AdminConfig required J2CActivationSpec

Using Jython:

print AdminConfig.required(’J2CActivationSpec’)

Example output:

Attribute Type

activationSpec ActivationSpec@

b. If your resource adapter is JCA V1.5 and you have multiple activation specifications defined, it is

required that you specify the activation specification attribute. If your resource adapter is JCA

V1.5 and you have only one activation specification defined, it will be picked up automatically. If

your resource adapter is JCA V1.0, you do not need to specify the activationSpec attribute.

Perform the following command to list the activation specifications defined by the resource

adapter:

Chapter 13. Data access resources 557

Using Jacl:

$AdminConfig list ActivationSpec $newra

Using Jython:

print AdminConfig.list(’ActivationSpec’, $newra)

c. Set the administrative object that you need to a variable:

Using Jacl:

set ac ActivationSpecID

set name [list name J2CAC1]

set jname [jndiName eis/j2cac1]

set j2cacAttrs [list $name $jname]

Using Jython:

ac = ActivationSpecID

name = [’name’, ’J2CAC1’]

jname = [’jndiName’, ’eis/j2cac1’]

j2cacAttrs = [name, jname]

d. If you are specifying the ActivationSpec attribute, also set up the following:

Using Jacl:

set cdcttr [list activationSpec $ac]

Using Jython:

cdattr = [’activationSpec’, ac]

e. Create a J2C activation specification object:

Using Jacl:

$AdminConfig create J2CActivationSpec $newra $j2cacAttrs

Using Jython:

print AdminConfig.create(’J2CActivationSpec’, newra,j2cacAttrs)

Example output:

J2CAC1(cells/mycell/nodes/mynode|resources.xml#J2CActivationSpec_1)

3. Save the configuration changes. See the Saving configuration changes with the wsadmin tool article

for more information.

4. In a network deployment environment only, synchronize the node. See the Synchronizing nodes with

the wsadmin tool article for more information.

Configuring new J2C administrative objects using scripting

You can use scripting and the wsadmin tool to configure new J2C administrative objects.

Before starting this task, the wsadmin tool must be running. See the Starting the wsadmin scripting client

article for more information.

Perform the following steps to configure a J2C administrative object:

1. Identify the parent ID and assign it to the newra variable.

v Using Jacl:

set newra [$AdminConfig getid /Cell:mycell/Node:mynode/J2CResourceAdapter:RAR1/]

v Using Jython:

newra = AdminConfig.getid(’/Cell:mycell/Node:mynode/J2CResourceAdapter:RAR1/’)

print newra

Example output:

RAR1(cells/mycell/nodes/mynode|resources.xml#J2CResourceAdapter_1)

2. There are two ways to configure a new J2C administrative object. Perform one of the following:

v Using the AdminTask object:

a. List the administrative object interfaces:

558 Administering applications and their environment

Using Jacl:

$AdminTask listAdminObjectInterfaces $newra

Using Jython:

AdminTask.listAdminObjectInterfaces(newra)

Example output:

com.ibm.test.message.FVTMessageProvider

b. Create a J2C administrative object:

Using Jacl:

$AdminTask createJ2CAdminObject $newra { -name ao1 -jndiName eis/ao1

-adminObjectInterface com.ibm.test.message.FVTMessageProvider }

Using Jython:

AdminTask.createJ2CAdminObject(newra, [’-name’, ’ao1’, ’-jndiName’, ’eis/ao1’,

’-adminObjectInterface’, ’com.ibm.test.message.FVTMessageProvider’])

v Using the AdminConfig object:

a. Using Jacl:

$AdminConfig required J2CAdminObject

Using Jython:

print AdminConfig.required(’J2CAdminObject’)

Example output:

Attribute Type

adminObject AdminObject@

b. If your resource adapter is JCA V1.5 and you have multiple administrative objects defined, it is

required that you specify the administrative object attribute. If your resource adapter is JCA V1.5

and you have only one administrative object defined, it will be picked up automatically. If your

resource adapter is JCA V1.0, you do not need to specify the administrative object attribute.

Perform the following command to list the administrative objects defined by the resource

adapter:

Using Jacl:

$AdminConfig list AdminObject $newra

Using Jython:

print AdminConfig.list(’AdminObject’, $newra)

c. Set the administrative objects that you need to a variable:

Using Jacl:

set ao AdminObjectId

set name [list name J2CAO1]

set jname [jndiName eis/j2cao1]

set j2caoAttrs [list $name $jname]

Using Jython:

ao = AdminObjectId

name = [’name’, ’J2CAO1’]

set jname = [’jndiName’, eis/j2cao1]

j2caoAttrs = [name, jname]

d. If you are specifying the AdminObject attribute, also set up the following:

Using Jacl:

set cdattr [list adminObject $ao]

Using Jython:

cdattr = [’adminObject’, ao]

e. Create a J2C administrative object:

Using Jacl:

$AdminConfig create J2CAdminObject $newra $j2caoAttrs

Chapter 13. Data access resources 559

Using Jython:

print AdminConfig.create(’J2CAdminObject’, newra, j2caoAttrs)

Example output:

J2CAO1(cells/mycell/nodes/mynode|resources.xml#J2CAdminObject_1)

3. Save the configuration changes. See the Saving configuration changes with the wsadmin tool article

for more information.

4. In a network deployment environment only, synchronize the node. See the Synchronizing nodes with

the wsadmin tool article for more information.

Testing data source connections using scripting

You can test connections for data sources with the wsadmin tool and scripting.

Before starting this task, the wsadmin tool must be running. See the Starting the wsadmin scripting client

article for more information.

Perform the following steps to test a data source to ensure a connection to the database.

1. Identify the DataSourceCfgHelper MBean and assign it to the dshelper variable.

v Using Jacl:

set ds [$AdminConfig getid /DataSource:DS1/]

$AdminControl testConnection $ds

v Using Jython:

ds = AdminConfig.getid(’/DataSource:DS1/’)

AdminControl.testConnection(ds)

Example output:

WASX7217I: Connection to provided datasource was successful.

2. Test the connection. The following example invokes the testConnectionToDataSource operation on the

MBean, passing in the classname, userid, password, database name, JDBC driver class path,

language, and country.

v Using Jacl:

$AdminControl invoke $dshelper testConnectionToDataSource

"COM.ibm.db2.jdbc.DB2XADataSource db2admin db2admin

{{databaseName sample}} c:/sqllib/java/db2java.zip en US"

v Using Jython:

print AdminControl.invoke(dshelper, ’testConnectionToDataSource’,

’COM.ibm.db2.jdbc.DB2XADataSource dbuser1 dbpwd1

"{{databaseName jtest1}}" c:/sqllib/java12/db \"\" \"\"’)

Example output:

WASX7217I: Connection to provided data source was successful.

Commands for the EventServiceDBCommands group of the

AdminTask object

For more information about the AdminTask object, see the Commands for the AdminTask object article.

The following commands are available for the EventServiceDBCommands group of the AdminTask object:

 Command

name:

Description: Target

object:

Parameters and return

values:

Examples:

560 Administering applications and their environment

configEvent

ServiceDB

2DB

The

configEvent

ServiceDB

2DB

command

creates the

event service

database and

data sources

for DB2 on a

server or

cluster.

None v Parameters:

- createDB

The command

generates the DDL

database scripts and

creates the database

when this parameter is

set to true. The

command only

generates the DDL

database scripts when

this parameter is set to

false. To create the

database, the current

machine must be

already configured to

run the database

commands. The default

value is false if not

specified.

- overrideDataSource

Optional database

script output directory.

When this parameter is

specified, the command

generates the event

service database

scripts in the specified

directory. If the

specified directory does

not contain a full path,

the command creates

the specified directory

in app_server_root/
profiles/profile_name/
bin. The default

database script output

directory is

app_server_root/
profiles/profile/
databases/event/node/
server/dbscripts/dbtype

if this parameter is not

specified.

- nodeName

The name of the node

that contains the server

where the event

service data source

should be created. If

this parameter is

specified, then the

serverName parameter

must be set. You must

not specify this

parameter if the

clusterName

parameter is specified.

Batch mode example usage:

v Using Jacl:

$AdminTask configEventServiceDB2DB

{-createDB true -overrideDataSour

ce true -nodeName nodename -server

Name servername -jdbcClassPath

c:\sqllib\java -dbUser db2inst1

-dbPassword dbpassword -dbHost

Name hostname -dbPort 50000 }

v Using Jython string:

AdminTask.configEventServiceDB2DB

(’[-createDB true -overrideData

Source true -nodeName nodename

-serverName servername -jdbcClass

Path c:\sqllib\java -dbUser

db2inst1 -dbPassword dbpassword

-dbHostName hostname -dbPort

50000]’)

v Using Jython list:

AdminTask.configEventServiceDB2

DB([’-createDB’, ’true’, ’-over

rideDataSource’, ’true’, ’-node

Name’, ’nodename’, ’-serverName’,

’servername’, ’-jdbcClassPath’,

’c:\sqllib\java’, ’-dbUser’,

’db2inst1’, ’-dbPassword’,

’dbpassword ’, ’-dbHostName’,

’hostname’, ’-dbPort’, ’50000 ’])

Interactive mode example usage:

v Using Jacl:

$AdminTask configEventService

DB2DB -interactive

v Using Jython string:

AdminTask.configEventService

DB2DB(’[-interactive]’)

v Using Jython list:

AdminTask.configEventService

DB2DB([’-interactive’])

Chapter 13. Data access resources 561

- serverName

The name of the server

where the event service

data source should be

created. If this parameters

is specified without the

nodeName parameter,

the command will use the

node name of the current

WebSphere profile. You

must not specify this

parameter if the

clusterName parameter

is specified.

- clusterName

The name of the cluster

where the event service

data source should be

created. If this parameter

is specified, then the

serverName and

nodeName parameters

must not be set. You must

not specify this parameter

if the serverName and

nodeName parameters

are specified.

- jdbcClassPath

The path to the JDBC

driver. Specify only the

path to the driver file; do

not include the file name

in the path. This

parameter is required.

- dbNodeName

The DB2 node name (this

must be 8 characters or

less). This node must be

already catalogued and

configured to

communicate with the

DB2 server. This

parameter must be set if

the current machine is

configured as a DB2

client and the parameter

createDB is set to true.

562 Administering applications and their environment

- dbHostName

The host name of the

machine where the

database server is

installed. This parameter

is required.

- dbPort

DB2 instance port. The

default value is 50 000 if

not specified.

- dbName

The database name to be

created. The default value

is event if not specified.

- dbUser

DB2 user ID that has

privileges to create and

drop the databases. The

default value is db2inst1

if not specified.

- dbPassword

DB2 password. This

parameter is required.

- outputScriptDir

Optional database script

output directory. When

this parameter is

specified, the command

generates the event

service database scripts

in the specified directory.

If the specified directory

does not contain a full

path, the command

creates the specified

directory in

app_server_root/profiles/
profile_name/bin. The

default database script

output directory is

app_server_root/profiles/
profile/databases/event/
node/server/dbscripts/db2

if this parameter is not

specified.

v Returns: None

Chapter 13. Data access resources 563

configEvent

ServiceDB2

iSeriesDB

The

configEvent

ServiceDB2

iSeriesDB

command

generates the

DDL

database

scripts,

creates the

event service

database for

DB2 iSeries

on the native

platform, and

creates data

sources on a

server or

cluster.

None v Parameters:

- createDB

The command

generates the DDL

database scripts and

creates the database

when this parameter is

set to true. The

command only

generates the DDL

database scripts when

this parameter is set to

false. To create the

database, the current

machine must be

already configured to

run the database

commands. The default

value is false if not

specified.

- overrideDataSource

When this parameter is

set to true, the

command removes any

existing event service

data source at the

specified scope before

creating a new one.

When this parameter is

set to false, the

command does not

create an event service

data source at the

specified scope if

another event service

data source is found at

the same scope. The

default value is false if

not specified.

- nodeName

The name of the node

that contains the server

where the event

service data source

should be created. If

this parameter is

specified, then the

serverName parameter

must be set. You must

not specify this

parameter if the

clusterName

parameter is specified.

Batch mode example usage:

v Using Jacl:

$AdminTask configEventService

DB2iSeriesDB {createDB true

-overrideDataSource true

-nodeName nodename -serverName

servername -dbUser db2user

-dbPassword dbpassword

-nativeJdbcClassPath /myDB2

ClassPath -collection event}

v Using Jython string:

AdminTask.configEventService

DB2iSeriesDB(’[-createDB true

-overrideDataSource true

-nodeName nodename -serverName

servername -nativeJdbcClass

Path /myDB2ClassPath -colle

ction event]’)

v Using Jython list:

AdminTask.configEventService

DB2iSeriesDB([’-createDB’,

’true’, ’-overrideDataSource’,

’true’, ’-nodeName’, ’nodename’,

’-serverName’, ’servername’,

’-nativeJdbcClassPath’,

’/myDB2ClassPath’, ’-collec

tion’, ’event’])

Interactive mode example usage:

v Using Jacl:

$AdminTask configEventService

DB2iSeriesDB -interactive

v Using Jython string:

AdminTask.configEventService

DB2iSeriesDB(’[-interactive]’)

v Using Jython list:

AdminTask.configEventService

DB2iSeriesDB([’-interactive’])

564 Administering applications and their environment

- serverName

The name of the server

where the event service

data source should be

created. If this parameters

is specified without the

nodeName parameter,

the command will use the

node name of the current

WebSphere profile. You

must not specify this

parameter if the

clusterName parameter

is specified.

- clusterName

The name of the cluster

where the event service

data source should be

created. If this parameter

is specified, then the

serverName and

nodeName parameters

must not be set. You must

not specify this parameter

if the serverName and

nodeName parameters

are specified.

- toolboxJdbcClassPath

The path to the IBM

Toolbox for Java DB2

JDBC driver. Specify only

the path to the driver file;

do not include the file

name. You must specify

either this parameter or

the jdbcClassPath

parameter.

- nativeJdbcClassPath

The path to the DB2 for

iSeries native JDBC

driver. Specify only the

path to the driver file; do

not include the file name

in the path. You must

specify either this

parameter or the

toolboxJdbcClassPath

parameter.

Chapter 13. Data access resources 565

- dbHostName

The host name of the

machine where the DB2

for iSeries database

server is installed. This

parameter is required if

you are using the IBM

Toolbox for Java DB2

JDBC driver.

- dbName

The DB2 for iSeries

database name. The

default value is *LOCAL if

not specified.

- collection

DB2 for iSeries library

SQL collection. The

maximum length for the

collection name is 10

characters. The default

value is an empty string if

not specified.

- dbUser

DB2 user ID that has

privileges to create and

drop the databases. This

parameter is required.

- dbPassword

Password of the database

user ID. This parameter is

required.

- outputScriptDir

Optional database script

output directory. When

this parameter is

specified, the command

generates the event

service database scripts

in the specified directory.

If the specified directory

does not contain a full

path, the command

creates the specified

directory in

app_server_root/profiles/
profile_name/bin. The

default database script

output directory is

app_server_root/profiles/
profile/databases/event/
node/server/dbscripts/
db2iseries if this

parameter is not

specified.

v Returns: None

566 Administering applications and their environment

configEvent

ServiceDB

2ZOSDB

The

configEvent

ServiceDB

2ZOSDB

command

creates the

event service

database and

data sources

for DB2 z/OS

on a server or

cluster.

None v Parameters:

- createDB

The command

generates the DDL

database scripts and

creates the database

when this parameter is

set to true. The

command only

generates the DDL

database scripts when

this parameter is set to

false. To create the

database, the current

machine must be

already configured to

run the database

commands. The default

value is false if not

specified.

- overrideDataSource

When this parameter is

set to true, the

command removes any

existing event service

data source at the

specified scope before

creating a new one.

When this parameter is

set to false, the

command does not

create an event service

data source at the

specified scope if

another event service

data source is found at

the same scope. The

default value is false if

not specified.

- nodeName

The name of the node

that contains the server

where the event

service data source

should be created. If

this parameter is

specified, then the

serverName parameter

must be set. You must

not specify this

parameter if the

clusterName

parameter is specified.

Batch mode example usage:

v Using Jacl:

$AdminTask configEventService

DB2ZOSDB {-createDB true

-overrideDataSource true

-nodeName nodename -server

Name servername -jdbcClassPath

c:\sqllib\java -dbUser db2user

-dbPassword dbpassword -dbHost

Name hostname -dbPort 5027

-dbSubSystemName db2zos81

-dbAliasName event -storageGroup

sysdeflt -bufferPool4K BP9

-bufferPool8K BP8K9 -bufferPool

16K BP16K9}

$AdminTask removeEventService

DB2ZOSDB {-removeDB true -node

Name nodename -serverName server

name -dbAliasName event -dbUser

db2user -dbPassword dbpassword }

v Using Jython string:

AdminTask.configEventServiceDB2

ZOSDB(["-createDB", "true",

"-overrideDataSource", "true",

"-nodeName", "nodename", "-server

Name", "servername", "-jdbc

ClassPath", "c:\sqllib\java",

"-dbUser", "db2user", "-dbPassword",

"dbpassword", "-dbHostName",

"hostname", "-dbPort", "5027",

"-dbSubSystemName", "db2zos81",

"-dbAliasName", "event", "-storage

Group", "sysdeflt", "-bufferPool

4K" "BP9", "-bufferPool8K",

"BP8K9", "-bufferPool16K",

"BP16K9"])

AdminTask.removeEventServiceDB2

ZOSDB(["-removeDB", "true",

"-nodeName", "nodename", "-server

Name", "servername", "-dbAlias

Name", "event", "-dbUser",

"db2user", "-dbPassword", "dbpass

word"])

v Using Jython list:

AdminTask.configEventServiceDB2

ZOSDB(’[-createDB true -overrid

eDataSource true -nodeName node

name -serverName servername

-jdbcClassPath c:\sqllib\java

-dbUser db2user -dbPassword

dbpassword -dbHostName hostname

-dbPort 5027 -dbSubSystemName

db2zos81 -dbAliasName event

-storageGroup sysdeflt -buffer

Pool4K BP9 -bufferPool8K BP8K9

-bufferPool16K BP16K9]’)

AdminTask.removeEventServiceDB2

ZOSDB(’[-removeDB true -node

Name nodename -serverName

servername -dbAliasName event

-dbUser db2user -dbPassword

dbpassword]’)

Chapter 13. Data access resources 567

- serverName

The name of the server

where the event service

data source should be

created. If this parameters

is specified without the

nodeName parameter,

the command will use the

node name of the current

WebSphere profile. You

must not specify this

parameter if the

clusterName parameter

is specified.

- clusterName

The name of the cluster

where the event service

data source should be

created. If this parameter

is specified, then the

serverName and

nodeName parameters

must not be set. You must

not specify this parameter

if the serverName and

nodeName parameters

are specified.

- jdbcClassPath

The path to the JDBC

driver. Specify only the

path to the driver file; do

not include the file name

in the path. This

parameter is required.

- dbHostName

The host name of the

machine where the

database server is

installed. This parameter

is required.

Interactive mode example usage:

v Using Jacl:

$AdminTask configEventServ

iceDB2ZOSDB -interactive

v Using Jython string:

AdminTask.configEventServ

iceDB2ZOSDB(’[-interactive]’)

v Using Jython list:

AdminTask.configEventServi

ceDB2ZOSDB [’-interactive’])

568 Administering applications and their environment

- dbPort

DB2 for z/OS instance

port. The default value is

5027 if not specified.

- dbAliasName

The name of the

cataloged database on

the DB2 client machine.

This parameter is required

when the createDB

parameter is set to true.

- dbSubSystemName

The DB2 z/OS subsystem

that you want to create.

This parameter is

required.

- eventDBName

The event database name

that you want to create.

The default value is event

if you do not specify a

value.

- eventCatalogDBName

The event catalog

database that you want to

create. The default value

is eventcat if you do not

specify a value.

- dbDiskSizeInMB

Specify the disk size in

MB for the event service

database. This value must

be at least 10 MB. The

default value is 100 MB if

not specified.

Chapter 13. Data access resources 569

- dbUser

DB2 user ID that has

privileges to create and

drop the databases. This

parameter is required.

- dbPassword

Password of the database

user ID. This parameter is

required.

- storageGroup

The storage group for the

event database and the

event catalog database.

The storage group must

already be created and

active.

- bufferPool4K

The name of the 4K

buffer pool. This buffer

pool must be active

before the database DDL

scripts can be run.

- bufferPool8K

The name of the 8K

buffer pool. This buffer

pool must be active

before the dabase DDL

scripts can be run.

- bufferPool16K

The name of the 16K

buffer pool. This buffer

pool must be active

before the database DDL

scripts can be run.

- outputScriptDir

Optional database script

output directory. When

this parameter is

specified, the command

generates the event

service database scripts

in the specified directory.

If the specified directory

does not contain a full

path, the command

creates the specified

directory in

app_server_root/profiles/
profile_name/bin. The

default database script

output directory is

app_server_root/profiles/
profile/databases/event/
node/server/dbscripts/
db2zos if this parameter

is not specified.

v Returns: None

570 Administering applications and their environment

configEvent

ServiceDer

byDB

The

configEvent

ServiceDer

byDB

command

creates the

event service

database and

data sources

for Derby on

a server or

cluster.

None v Parameters:

- createDB

The command

generates the DDL

database scripts and

creates the database

when this parameter is

set to true. The

command only

generates the DDL

database scripts when

this parameter is set to

false. To create the

database, the current

machine must be

already configured to

run the database

commands. The default

value is false if not

specified.

- overrideDataSource

When this parameter is

set to true, the

command removes any

existing event service

data source at the

specified scope before

creating a new one.

When this parameter is

set to false, the

command does not

create an event service

data source at the

specified scope if

another event service

data source is found at

the same scope. The

default value is false if

not specified.

- nodeName

The name of the node

that contains the server

where the event

service data source

should be created. If

this parameter is

specified, then the

serverName parameter

must be set. You must

not specify this

parameter if the

clusterName

parameter is specified.

Batch mode example usage:

v Using Jacl:

$AdminTask configEventSer

viceDerbyDB {-createDB true

-overrideDataSource true

-nodeName nodename -server

Name servername}

v Using Jython string:

AdminTask.configEventServi

ceDerbyDB(’[-createDB true

-overrideDataSource true

-nodeName nodename -server

Name servername]’)

v Using Jython list:

AdminTask.configEventServi

ceDerbyDB([’-createDB’,

’true’, ’-overrideDataSource’,

’true’, ’-nodeName’, ’node

name’, ’-serverName’,

’servername’])

Interactive mode example usage:

v Using Jacl:

$AdminTask configEventSer

viceDerbyDB -interactive

v Using Jython string:

AdminTask.configEventServ

iceDerbyDB(’[-interactive]’)

v Using Jython list:

AdminTask.configEventServ

iceDerbyDB([’-interactive’])

Chapter 13. Data access resources 571

- serverName

The name of the server

where the event service

data source should be

created. If this parameters

is specified without the

nodeName parameter,

the command will use the

node name of the current

WebSphere profile. You

must not specify this

parameter if the

clusterName parameter

is specified.

- clusterName

The name of the cluster

where the event service

data source should be

created. If this parameter

is specified, then the

serverName and

nodeName parameters

must not be set. You must

not specify this parameter

if the serverName and

nodeName parameters

are specified.

- dbHostName

The host name of the

network Derby database.

To create the Derby

network data source,

specify this parameter

and the dbPort

parameter. To create the

Derby local data source,

do not specify this

parameter and the dbPort

parameter.

- dbPort

The port number of the

network Derby database.

To create the Derby

network data source,

specify this parameter

and the dbHostName

parameter. To create the

Derby local data source,

do not specify this

parameter and the

dbHostName parameter.

572 Administering applications and their environment

- dbName

The database name to be

created. The default value

is event if not specified.

- dbUser

The user ID used by the

data source for the Derby

database authentication.

This parameter is optional

when the WebSphere

domain security is

disabled. If you specify

this parameter, you also

must specify the

dbPassword parameter.

This parameter is required

when the WebSphere

domain security is

enabled.

- dbPassword

The password used by

the data source for the

Derby database

authentication. This

parameter is optional

when the WebSphere

domain security is

disabled. If you specify

this parameter, you also

must specify the dbUser

parameter. This

parameter is required

when the WebSphere

domain security is

enabled.

- outputScriptDir

Optional database script

output directory. When

this parameter is

specified, the command

generates the event

service database scripts

in the specified directory.

If the specified directory

does not contain a full

path, the command

creates the specified

directory in

app_server_root/profiles/
profile_name/bin. The

default database script

output directory is

app_server_root/profiles/
profile/databases/event/
node/server/dbscripts/
derby if this parameter is

not specified.

v Returns: None

Chapter 13. Data access resources 573

configEvent

ServiceInfo

rmixDB

The

configEvent

ServiceIn

formixDB

command

creates the

event service

database and

data sources

for Informix

on a server or

cluster.

None v Parameters:

- createDB

The command

generates the DDL

database scripts and

creates the database

when this parameter is

set to true. The

command only

generates the DDL

database scripts when

this parameter is set to

false. To create the

database, the current

machine must be

already configured to

run the database

commands. The default

value is false if not

specified.

- overrideDataSource

Optional database

script output directory.

When this parameter is

specified, the command

generates the event

service database

scripts in the specified

directory. If the

specified directory does

not contain a full path,

the command creates

the specified directory

in app_server_root/
profiles/profile_name/
bin. The default

database script output

directory is

app_server_root/
profiles/profile/
databases/event/node/
server/dbscripts/dbtype

if this parameter is not

specified.

- nodeName

The name of the node

that contains the server

where the event

service data source

should be created. If

this parameter is

specified, then the

serverName parameter

must be set. You must

not specify this

parameter if the

clusterName

parameter is specified.

Batch mode example usage:

v Using Jacl:

$AdminTask configEventService

InformixDB {-createDB true

-overrideDataSource true -node

Name nodename -serverName

servername -jdbcClassPath

"c:\program files\ibm\informix

\jdbc\lib" -dbInformixDir

"c:\program files\ibm\informix"

-dbUser informix -dbPassword

dbpassword -dbHostName host

name -dbPort 1526 -dbServer

Name ol_server }

v Using Jython string:

AdminTask.configEventService

InformixDB(’[-createDB true

-overrideDataSource true -node

Name nodename -serverName

servername -jdbcClassPath

"c:\program files\ibm\informix

\jdbc\lib" -dbInformixDir

"c:\program files\ibm\informix"

-dbUser informix -dbPassword

dbpassword -dbHostName host

name -dbPort 1526 -dbServer

Name ol_server]’)

v Using Jython list:

AdminTask.configEventService

InformixDB([’-createDB’,

’true’, ’-overrideDataSource’,

’true’, ’-nodeName’, ’nodename’,

’-serverName’, ’servername’,

’-jdbcClassPath’, ’c:\program

files\ibm\informix\jdbc\lib’,

’-dbInformixDir’, ’c:\program

files\ibm\informix’, ’-dbUser’,

’informix ’, ’-dbPassword’,

’dbpassword’, ’-dbHostName’,

’hostname’, ’-dbPort’, ’1526’,

’-dbServerName’, ’ol_server’])

Interactive mode example usage:

v Using Jacl:

$AdminTask configEventServ

iceInformixDB -interactive

v Using Jython string:

AdminTask.configEventServi

ceInformixDB(’[-interactive]’)

v Using Jython list:

AdminTask.configEventServ

iceInformixDB([’-interactive’])

574 Administering applications and their environment

- serverName

The name of the server

where the event service

data source should be

created. If this parameters

is specified without the

nodeName parameter,

the command will use the

node name of the current

WebSphere profile. You

must not specify this

parameter if the

clusterName parameter

is specified.

- clusterName

The name of the cluster

where the event service

data source should be

created. If this parameter

is specified, then the

serverName and

nodeName parameters

must not be set. You must

not specify this parameter

if the serverName and

nodeName parameters

are specified.

- jdbcClassPath

The path to the JDBC

driver. Specify only the

path to the driver file; do

not include the file name

in the path. This

parameter is required.

- dbInformixDir

The directory where the

Informix database is

installed. This parameter

must be specified when

the parameter createDB

is set to true. This

parameter is required.

Chapter 13. Data access resources 575

- dbHostName

The host name of the

machine where the

database server is

installed. This parameter

is required.

- dbServerName

Informix server instance

name (for example,

ol_servername). This

parameter is required.

- dbPort

Informix instance port.

The default value is 1526

if not specified.

- dbName

The database name to be

created. The default value

is event if not specified.

- dbUser

The Informix database

schema user ID that will

own the event service

database tables. The

WebSphere data source

uses this user ID to

authenticate the Informix

database connection. This

parameter is required.

- dbPassword

The password of the

schema user ID that owns

the event service Informix

tables. The WebSphere

data source uses this

password to authenticate

the Informix database

connection. This

parameter is required.

576 Administering applications and their environment

- ceiInstancePrefix

The command uses the

event service instance

name to group the

database files in a

directory with unique

names. The default value

is ceiinst1 if not

specified.

- outputScriptDir

Optional database script

output directory. When

this parameter is

specified, the command

generates the event

service database scripts

in the specified directory.

If the specified directory

does not contain a full

path, the command

creates the specified

directory in

app_server_root/profiles/
profile_name/bin. The

default database script

output directory is

app_server_root/profiles/
profile/databases/event/
node/server/dbscripts/
informix if this parameter

is not specified.

v Returns: None

Chapter 13. Data access resources 577

configEvent

ServiceOra

cleDB

The

configEvent

ServiceOra

cleDB

command

creates the

event service

tables and

data sources

for Oracle on

a server or

cluster. The

command

does not

create the

database; the

Oracle SID

must already

exist.

None v Parameters:

- createDB

The command

generates the DDL

database scripts and

creates the database

when this parameter is

set to true. The

command only

generates the DDL

database scripts when

this parameter is set to

false. To create the

database, the current

machine must be

already configured to

run the database

commands. The default

value is false if not

specified.

- overrideDataSource

Optional database

script output directory.

When this parameter is

specified, the command

generates the event

service database

scripts in the specified

directory. If the

specified directory does

not contain a full path,

the command creates

the specified directory

in app_server_root/
profiles/profile_name/
bin. The default

database script output

directory is

app_server_root/
profiles/profile/
databases/event/node/
server/dbscripts/dbtype

if this parameter is not

specified.

- nodeName

The name of the node

that contains the server

where the event

service data source

should be created. If

this parameter is

specified, then the

serverName parameter

must be set. You must

not specify this

parameter if the

clusterName

parameter is specified.

Batch mode example usage:

v Using Jacl:

$AdminTask configEventServ

iceOracleDB {-createDB true

-overrideDataSource true

-nodeName nodename -server

Name servername -jdbcClass

Path c:\oracle\ora92\jdbc\

lib -oracleHome c:\oracle\

ora92 -dbUser ceiuser

-dbPassword ceipassword

-dbHostName hostname -dbPort

1521 -sysUser sys -sysPass

word syspassword}

v Using Jython string:

AdminTask.configEventService

OracleDB(’[-createDB true

-overrideDataSource true

-nodeName nodename -server

Name servername -jdbcClass

Path c:\oracle\ora92\jdbc\

lib -oracleHome c:\oracle\

ora92 -dbUser ceiuser

-dbPassword ceipassword

-dbHostName hostname -dbPort

1521 -sysUser sys -sysPass

word syspassword]’)

v Using Jython list:

AdminTask.configEventService

OracleDB([’-createDB’, ’true’,

’-overrideDataSource’, ’true’,

’-nodeName’, ’nodename’,

’-serverName’, ’servername’,

’-jdbcClassPath’, ’c:\oracle\

ora92\jdbc\lib’, ’-oracleHome’,

’c:\oracle\ora92’, ’-dbUser’,

’ceiuser’, ’-dbPassword’,

’ceipassword’, ’-dbHostName’,

’hostname’, ’-dbPort’, ’1521’,

’-sysUser’, ’sys’, ’-sysPass

word’, ’syspassword’])

Interactive mode example usage:

v Using Jacl:

$AdminTask configEventSer

viceOracleDB -interactive

v Using Jython string:

AdminTask.configEventServi

ceOracleDB(’[-interactive]’)

v Using Jython list:

AdminTask.configEventServi

ceOracleDB([’-interactive’])

578 Administering applications and their environment

- serverName

The name of the server

where the event service

data source should be

created. If this parameters

is specified without the

nodeName parameter,

the command will use the

node name of the current

WebSphere profile. You

must not specify this

parameter if the

clusterName parameter

is specified.

- clusterName

The name of the cluster

where the event service

data source should be

created. If this parameter

is specified, then the

serverName and

nodeName parameters

must not be set. You must

not specify this parameter

if the serverName and

nodeName parameters

are specified.

- jdbcClassPath

The path to the JDBC

driver. Specify only the

path to the driver file; do

not include the file name

in the path. This

parameter is required.

- oracleHome

The ORACLE_HOME

directory. This parameter

must be set when the

parameter createDB is

set to true.

Chapter 13. Data access resources 579

- dbHostName

The host name of the

machine where the Oracle

database server is

installed. The default

value is localhost if not

specified.

- dbPort

Oracle instance port. The

default value is 1521 if

not specified.

- dbName

The Oracle system

identifier (SID). The SID

must already exist and

must be available for the

event service command to

create the tables and

populate the tables with

data. The default value is

orcl if not specified.

- dbUser

The Oracle schema user

ID that will own the event

service Oracle tables. The

user ID will be created

during the database

creation; the WebSphere

data source uses this

user ID to authenticate

the Oracle database

connection. The default

value is ceiuser if not

specified.

- dbPassword

The password of the

schema user ID. The

password will be created

during the database

creation; the WebSphere

data source uses this

password to authenticate

the Oracle database

connection. This

parameter is required.

580 Administering applications and their environment

- sysUser

Oracle sys user ID. This

must be a user that has

SYSDBA privileges. The

default value is sys if not

specified.

- sysPassword

The password for the user

specified by the sysUser

parameter. The default

value is an empty string if

not specified.

- ceiInstancePrefix

The command uses the

event service instance

name to group the

database files in a

directory with unique

names. The default value

is ceiinst1 if not

specified.

- outputScriptDir

Optional database script

output directory. When

this parameter is

specified, the command

generates the event

service database scripts

in the specified directory.

If the specified directory

does not contain a full

path, the command

creates the specified

directory in

app_server_root/profiles/
profile_name/bin. The

default database script

output directory is

app_server_root/profiles/
profile/databases/event/
node/server/dbscripts/
oracle if this parameter is

not specified.

v Returns: None

Chapter 13. Data access resources 581

configEvent

ServiceSQL

ServerDB

The

configEvent

ServiceSQL

ServerDB

command

creates the

event service

database and

data sources

for SQL

Server on a

server or

cluster.

None v Parameters:

- createDB

The command

generates the DDL

database scripts and

creates the database

when this parameter is

set to true. The

command only

generates the DDL

database scripts when

this parameter is set to

false. To create the

database, the current

machine must be

already configured to

run the database

commands. The default

value is false if not

specified.

- overrideDataSource

Optional database

script output directory.

When this parameter is

specified, the command

generates the event

service database

scripts in the specified

directory. If the

specified directory does

not contain a full path,

the command creates

the specified directory

in app_server_root/
profiles/profile_name/
bin. The default

database script output

directory is

app_server_root/
profiles/profile/
databases/event/node/
server/dbscripts/dbtype

if this parameter is not

specified.

- nodeName

The name of the node

that contains the server

where the event

service data source

should be created. If

this parameter is

specified, then the

serverName parameter

must be set. You must

not specify this

parameter if the

clusterName

parameter is specified.

Batch mode example usage:

v Using Jacl:

$AdminTask configEventService

SQLServerDB {-createDB true

-overrideDataSource true

-nodeName nodename -server

Name servername -dbUser cei

user -dbPassword ceipassword

-dbServerName sqlservername

-dbHostName hostname -dbPort

1433 -saUser sa -saPassword

sapassword}

v Using Jython string:

AdminTask.configEventService

SQLServerDB(’[-createDB true

-overrideDataSource true

-nodeName nodename -server

Name servername -dbUser cei

user -dbPassword ceipassword

-dbServerName sqlservername

-dbHostName hostname -dbPort

1433 -saUser sa -saPassword

sapassword]’)

v Using Jython list:

AdminTask.configEventService

SQLServerDB([’-createDB’,

’true’, ’-overrideDataSource’,

’true’, ’-nodeName’, ’node

name’, ’-serverName’, ’server

name’, ’-dbUser’, ’ceiuser’,

’-dbPassword’, ’ceipassword’,

’-dbServerName’, ’sqlserver

name’, ’-dbHostName’, ’host

name’, ’-dbPort’, ’1433’,

’-saUser’, ’sa’, ’-saPassword’,

’sapassword’])

Interactive mode example usage:

v Using Jacl:

$AdminTask configEventServi

ceSQLServerDB -interactive

v Using Jython string:

AdminTask.configEventServi

ceSQLServerDB(’[-interactive]’)

v Using Jython list:

AdminTask.configEventService

SQLServerDB([’-interactive’])

582 Administering applications and their environment

- serverName

The name of the server

where the event service

data source should be

created. If this parameters

is specified without the

nodeName parameter,

the command will use the

node name of the current

WebSphere profile. You

must not specify this

parameter if the

clusterName parameter

is specified.

- clusterName

The name of the cluster

where the event service

data source should be

created. If this parameter

is specified, then the

serverName and

nodeName parameters

must not be set. You must

not specify this parameter

if the serverName and

nodeName parameters

are specified.

- dbServerName

The server name of the

SQL Server database.

This parameter must be

set when the parameter

createDB is set to true.

- dbHostName

The host name of the

machine where the SQL

Server database is

running.

Chapter 13. Data access resources 583

- dbPort

SQL Server instance port.

The default value is 1433

if not specified.

- dbName

The database name to be

created. The default value

is event if not specified.

- dbUser

The SQL Server user ID

that will own the event

service tables. The default

value is ceiuser if not

specified.

- dbPassword

The password of the SQL

Server user ID specified

by the dbUser parameter.

This parameter is

required.

- saUser

User ID that has

privileges to create and

drop databases and

users. This parameter is

required when the

createDB parameter is

set to true. The default

value is sa if not

specified.

- saPassword

The sa password. You

must not specify this

parameter if the sa user

ID does not have a

password.

584 Administering applications and their environment

- ceiInstancePrefix

The command uses the

event service instance

name to group the

database files in a

directory with unique

names. The default value

is ceiinst1 if not

specified.

- outputScriptDir

Optional database script

output directory. When

this parameter is

specified, the command

generates the event

service database scripts

in the specified directory.

If the specified directory

does not contain a full

path, the command

creates the specified

directory in

app_server_root/profiles/
profile_name/bin. The

default database script

output directory is

app_server_root/profiles/
profile/databases/event/
node/server/dbscripts/
sqlserver if this parameter

is not specified.

v Returns: None

Chapter 13. Data access resources 585

configEvent

ServiceSyb

aseDB

The

configEvent

ServiceSyb

aseDB

command

creates the

event service

database and

data sources

for Sybase on

a server or

cluster.

None v Parameters:

- createDB

The command

generates the DDL

database scripts and

creates the database

when this parameter is

set to true. The

command only

generates the DDL

database scripts when

this parameter is set to

false. To create the

database, the current

machine must be

already configured to

run the database

commands. The default

value is false if not

specified.

- overrideDataSource

Optional database

script output directory.

When this parameter is

specified, the command

generates the event

service database

scripts in the specified

directory. If the

specified directory does

not contain a full path,

the command creates

the specified directory

in app_server_root/
profiles/profile_name/
bin. The default

database script output

directory is

app_server_root/
profiles/profile/
databases/event/node/
server/dbscripts/dbtype

if this parameter is not

specified.

- nodeName

The name of the node

that contains the server

where the event

service data source

should be created. If

this parameter is

specified, then the

serverName parameter

must be set. You must

not specify this

parameter if the

clusterName

parameter is specified.

Batch mode example usage:

v Using Jacl:

$AdminTask configEventService

SybaseDB {-createDB true

-overrideDataSource true

-nodeName nodename -server

Name servername -dbUser cei

user -dbPassword ceipassword

-createLogin true -dbServer

Name sybaseservername

-dbHostName hostname -dbPort

5000 -saUser sa -saPassword

sapassword -firstDeviceNumber

10 -dbCacheSizeInMB 10

-dbDishSizeInMB 100 -dbInstall

Dir c:\sybase}

v Using Jython string:

AdminTask.configEventService

SybaseDB(’[-createDB true

-overrideDataSource true -node

Name nodename -serverName

servername -dbUser ceiuser

-dbPassword ceipassword

-createLogin true -dbServer

Name sybaseservername -dbHost

Name hostname -dbPort 5000

-saUser sa -saPassword sapass

word -firstDeviceNumber 10

-dbCacheSizeInMB 10 -dbDish

SizeInMB 100 -dbInstallDir

c:\sybase]’)

v Using Jython list:

AdminTask.configEventService

SybaseDB([’-createDB’, ’true’,

’-overrideDataSource’, ’true’,

’-nodeName’, ’nodename’,

’-serverName’, ’servername’,

’-dbUser’, ’ceiuser’, ’-dbPass

word’, ’ceipassword’, ’-create

Login’, ’true’, ’-dbServerName’,

’sybaseservername’, ’-dbHost

Name’, ’hostname’, ’-dbPort’,

’5000’, ’-saUser’, ’sa’,

’-saPassword’, ’sapassword’,

’-firstDeviceNumber’, ’10’,

’-dbCacheSizeInMB’, ’10’,

’-dbDishSizeInMB’, ’100’,

’-dbInstallDir’, ’c:\sybase’])

Interactive mode example usage:

v Using Jacl:

$AdminTask configEventSer

viceSybaseDB -interactive

v Using Jython string:

AdminTask.configEventServi

ceSybaseDB(’[-interactive]’)

v Using Jython list:

AdminTask.configEventServi

ceSybaseDB([’-interactive’])

586 Administering applications and their environment

- serverName

The name of the server

where the event service

data source should be

created. If this parameters

is specified without the

nodeName parameter,

the command will use the

node name of the current

WebSphere profile. You

must not specify this

parameter if the

clusterName parameter

is specified.

- clusterName

The name of the cluster

where the event service

data source should be

created. If this parameter

is specified, then the

serverName and

nodeName parameters

must not be set. You must

not specify this parameter

if the serverName and

nodeName parameters

are specified.

- jdbcClassPath

The path to the JDBC

driver. Specify only the

path to the driver file; do

not include the file name

in the path. This

parameter is required.

- dbInstallDir

The directory where the

Sybase database is

installed. This parameter

must be set when the

parameter createDB is

set to true.

Chapter 13. Data access resources 587

- dbServerName

The name of the Sybase

server instance. The

server is defined in the

Sybase configuration.

This parameter is

required.

- dbHostName

The host name of the

machine where Sybase is

running. The default value

is localhost if not

specified.

- dbPort

Sybase instance port. The

default value is 5000 if

not specified.

- dbName

The database name to be

created. The default value

is event if not specified.

- firstDeviceNumber

The event database

creates six devices. This

parameter identifies the

value of the first device

number that should be

assigned to the new

devices. This parameter

must be set when the

parameter createDB is

set to true. The default

value is 10 if not

specified.

- dbCacheSizeInMB

The memory cache size

will be used for

transaction logs. This

parameter must be set

when the parameter

createDB is set to true.

The lowest valid value is

10. The default value is

10 MB if not specified.

588 Administering applications and their environment

- dbDiskSizeInMB

The database size in MB

to be created for the

event service. This

parameter must be set

when the parameter

createDB is set to true.

The lowest valid value is

100. The default value is

100 MB if not specified.

- dbUser

The user ID that will own

the event service Sybase

tables. The WebSphere

data source uses this

user ID to authenticate

the Sybase database

connection. The default

value is ceiuser if not

specified.

- dbPassword

The password of the user

ID that owns the event

service Sybase tables.

The WebSphere data

source uses this

password to authenticate

the Sybase database

connection. This

parameter is required.

- createLogin

The

configEventServiceSybaseDB

command creates the

login user ID that will own

the event service Sybase

tables when this

parameter is set to true.

The command does not

create the user ID when

the parameter is set to

false. The default value

is true if not specified.

Chapter 13. Data access resources 589

- saUser

The Sybase sa userid that

has privileges to create

tables and users. The

default value is sa if not

specified.

- saPassword

The password of the

Sybase sa user ID. You

must not specify this

parameter if the sa user

ID does not have a

password.

- ceiInstancePrefix

The command uses the

event service instance

name to group the

database files in a

directory with unique

names. The default value

is ceiinst1 if not

specified.

- outputScriptDir

Optional database script

output directory. When

this parameter is

specified, the command

generates the event

service database scripts

in the specified directory.

If the specified directory

does not contain a full

path, the command

creates the specified

directory in

app_server_root/profiles/
profile_name/bin. The

default database script

output directory is

app_server_root/profiles/
profile/databases/event/
node/server/dbscripts/
sybase if this parameter is

not specified.

v Returns: None

590 Administering applications and their environment

removeEv

entServic

eDB2DB

The

removeEv

entService

DB2DB

command

removes the

event service

database and

data sources

for DB2 from

a server or

cluster.

None v Parameters:

- removeDB

The command removes

the database when this

parameter is set to

true and does not

remove the database

when set to false. To

remove the database,

the current machine

must already

configured to run the

database commands.

- nodeName

The name of the node

that contains the server

where the event

service data source

should be removed. If

this parameter is

specified, then the

serverName parameter

must be set. You must

not specify this

parameter if the

clusterName

parameter is specified.

- serverName

The name of the server

where the event

service data source

should be removed. If

this parameter is

specified without the

nodeName parameter,

the command will use

the node name of the

current WebSphere

profile. You must not

specify this parameter

if the clusterName

parameter is specified.

- clusterName

The name of the

cluster where the event

service data source

should be removed. If

this parameter is

specified, then the

serverName and

nodeName parameters

must not be set. You

must not specify this

parameter if the

serverName and

nodeName parameters

are specified.

Batch mode example usage:

v Using Jacl:

$AdminTask removeEventServ

iceDB2DB {-removeDB true

-nodeName nodename -server

Name servername -dbUser

db2inst1 -dbPassword

dbpassword }

v Using Jython string:

AdminTask.removeEventServi

ceDB2DB(’[-removeDB true

-nodeName nodename -server

Name servername -dbUser

db2inst1 -dbPassword

dbpassword]’)

v Using Jython list:

AdminTask.removeEventServi

ceDB2DB([’-removeDB’, ’true’,

’-nodeName’, ’nodename’,

’-serverName’, ’servername’,

’-dbUser’, ’db2inst1’,

’-dbPassword’, ’dbpassword’])

Interactive mode example usage:

v Using Jacl:

$AdminTask removeEventServ

iceDB2DB -interactive

v Using Jython string:

AdminTask.removeEventServ

iceDB2DB(’[-interactive]’)

v Using Jython list:

AdminTask.removeEventServ

iceDB2DB([’-interactive’])

Chapter 13. Data access resources 591

- dbUser

DB2 user ID that has

privileges to create and

drop the databases. This

parameter must be set

when the parameter

removeDB is set to true.

The default value is

db2inst1 if not specified.

- dbPassword

DB2 password. This

parameter must be set

when the parameter

removeDB is set to true.

- dbScriptDir

The directory containing

the database scripts

generated by the event

service database

configuration command. If

specified, the command

will run the scripts in this

directory to remove the

event service database.

The default database

script output directory is

app_server_root/profiles/
profile/databases/event/
node/server/dbscripts/db2.

v Returns: None

592 Administering applications and their environment

removeE

ventServi

ceDB2iS

eriesDB

The removeE

ventServ

iceDB2i

SeriesDB

command

removes the

DB2 for

iSeries data

sources from

a server or

cluster. The

database

must be

removed

manually.

None v Parameters:

- nodeName

The name of the node

that contains the server

where the event

service data source

should be removed. If

this parameter is

specified, then the

serverName parameter

must be set. You must

not specify this

parameter if the

clusterName

parameter is specified.

- serverName

The name of the server

where the event

service data source

should be removed. If

this parameter is

specified without the

nodeName parameter,

the command will use

the node name of the

current WebSphere

profile. You must not

specify this parameter

if the clusterName

parameter is specified.

- clusterName

The name of the

cluster where the event

service data source

should be removed. If

this parameter is

specified, then the

serverName and

nodeName parameters

must not be set. You

must not specify this

parameter if the

serverName and

nodeName parameters

are specified.

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask removeEventSer

viceDB2iSeriesDB {-node

Name nodename -server

Name servername }

v Using Jython string:

AdminTask.removeEventServ

iceDB2iSeriesDB(’[-node

Name nodename -serverName

servername]’)

v Using Jython list:

AdminTask.removeEventSer

viceDB2iSeriesDB([’-node

Name’, ’nodename’, ’-server

Name’, ’servername’])

Interactive mode example usage:

v Using Jacl:

$AdminTask removeEventServi

ceDB2iSeriesDB -interactive

v Using Jython string:

AdminTask.removeEventServic

eDB2iSeriesDB(’[-interactive]’)

v Using Jython list:

AdminTask.removeEventService

DB2iSeriesDB([’-interactive’])

Chapter 13. Data access resources 593

removeEv

entServic

eDB2ZO

SDB

The removeE

ventServ

iceDB2Z

OSDB

command

removes the

event service

database and

data sources

for DB2 z/OS

from a server

or cluster.

None v Parameters:

- removeDB

The command removes

the database when this

parameter is set to

true and does not

remove the database

when set to false. To

remove the database,

the current machine

must already

configured to run the

database commands.

- nodeName

The name of the node

that contains the server

where the event

service data source

should be removed. If

this parameter is

specified, then the

serverName parameter

must be set. You must

not specify this

parameter if the

clusterName

parameter is specified.

- serverName

The name of the server

where the event

service data source

should be removed. If

this parameter is

specified without the

nodeName parameter,

the command will use

the node name of the

current WebSphere

profile. You must not

specify this parameter

if the clusterName

parameter is specified.

- clusterName

The name of the

cluster where the event

service data source

should be removed. If

this parameter is

specified, then the

serverName and

nodeName parameters

must not be set. You

must not specify this

parameter if the

serverName and

nodeName parameters

are specified.

Batch mode example usage:

v Using Jacl:

$AdminTask removeEventService

DB2ZOSDB {-removeDB true

-nodeName nodename -server

Name servername -dbUser

db2user -dbPassword dbpassword

v Using Jython string:

AdminTask.removeEventService

DB2ZOSDB(’[-removeDB true

-nodeName nodename -server

Name servername -dbUser

db2user -dbPassword dbpass

word]’)

v Using Jython list:

AdminTask.removeEventService

DB2ZOSDB([’-removeDB’, ’true’,

’-nodeName’, ’nodename’,

’-serverName’, ’servername’,

’-dbUser’, ’db2user’, ’-dbPass

word’, ’dbpassword’])

Interactive mode example usage:

v Using Jacl:

$AdminTask removeEventServ

iceDB2ZOSDB -interactive

v Using Jython string:

AdminTask.removeEventServi

ceDB2ZOSDB(’[-interactive]’)

v Using Jython list:

AdminTask.removeEventServi

ceDB2ZOSDB([’-interactive’])

594 Administering applications and their environment

- dbName

The DB2 database name.

On the DB2 client

machine, it is the name of

the catalogued database.

On the native z/OS

machine, it is the name of

the database subsystem.

This parameter must be

set when the parameter

removeDB is set to true.

The default value is event

if not specified.

- dbUser

DB2 user ID that has

privileges to create and

drop the databases. This

parameter must be set

when the parameter

removeDB is set to true.

- dbPassword

DB2 password. This

parameter must be set

when the parameter

removeDB is set to true.

- dbScriptDir

The directory containing

the database scripts

generated by the event

service database

configuration command. If

specified, the command

will run the scripts in this

directory to remove the

event service database.

The default database

script output directory is

app_server_root/profiles/
profile/databases/event/
node/server/dbscripts/
db2zos.

v Returns: None

Chapter 13. Data access resources 595

removeE

ventServ

iceDerb yDB

The removeE

ventServ

iceDer byDB

command

removes the

Event Service

database and

data source

for Derby

from a server

or cluster.

None v Parameters:

- removeDB

The command removes

the database when this

parameter is set to

true and does not

remove the database

when set to false. To

remove the database,

the current machine

must already

configured to run the

database commands.

- nodeName

The name of the node

that contains the server

where the event

service data source

should be removed. If

this parameter is

specified, then the

serverName parameter

must be set. You must

not specify this

parameter if the

clusterName

parameter is specified.

- serverName

The name of the server

where the event

service data source

should be removed. If

this parameter is

specified without the

nodeName parameter,

the command will use

the node name of the

current WebSphere

profile. You must not

specify this parameter

if the clusterName

parameter is specified.

Batch mode example usage:

v Using Jacl:

$AdminTask removeEventService

DerbyDB {-removeDB true -node

Name nodename -serverName

servername}

v Using Jython string:

AdminTask.removeEventService

DerbyDB(’[-removeDB true

-nodeName nodename -server

Name servername]’)

v Using Jython list:

AdminTask.removeEventService

DerbyDB([’-removeDB’, ’true’,

’-nodeName’, ’nodename’,

’-serverName’, ’servername’])

Interactive mode example usage:

v Using Jacl:

$AdminTask removeEventServ

iceDerbyDB -interactive

v Using Jython string:

AdminTask.removeEventServic

eDerbyDB(’[-interactive]’)

v Using Jython list:

AdminTask.removeEventServic

eDerbyDB([’-interactive’])

596 Administering applications and their environment

- clusterName

The name of the cluster

where the event service

data source should be

removed. If this parameter

is specified, then the

serverName and

nodeName parameters

must not be set. You must

not specify this parameter

if the serverName and

nodeName parameters

are specified.

- dbScriptDir

The directory containing

the database scripts

generated by the event

service database

configuration command. If

specified, the command

will run the scripts in this

directory to remove the

event service database.

The default database

script output directory is

app_server_root/profiles/
profile/databases/event/
node/server/dbscripts/
derby.

v Returns: None

Chapter 13. Data access resources 597

removeE

ventServ

iceInfor

mixDB

The removeE

ventServ

iceInfor

mixDB

command

removes the

event service

database and

data sources

for Informix

from a server

or cluster.

None v Parameters:

- removeDB

The command removes

the database when this

parameter is set to

true and does not

remove the database

when set to false. To

remove the database,

the current machine

must already

configured to run the

database commands.

- nodeName

The name of the node

that contains the server

where the event

service data source

should be removed. If

this parameter is

specified, then the

serverName parameter

must be set. You must

not specify this

parameter if the

clusterName

parameter is specified.

- serverName

The name of the server

where the event

service data source

should be removed. If

this parameter is

specified without the

nodeName parameter,

the command will use

the node name of the

current WebSphere

profile. You must not

specify this parameter

if the clusterName

parameter is specified.

Batch mode example usage:

v Using Jacl:

$AdminTask removeEventService

InformixDB {-removeDB true

-nodeName nodename -server

Name servername}

v Using Jython string:

AdminTask.removeEventService

InformixDB(’[-removeDB true

-nodeName nodename -server

Name servername]’)

v Using Jython list:

AdminTask.removeEventService

InformixDB([’-removeDB’,

’true’, ’-nodeName’, ’node

name’, ’-serverName’,

’servername’])

Interactive mode example usage:

v Using Jacl:

$AdminTask removeEventServi

ceInformixDB -interactive

v Using Jython string:

AdminTask.removeEventServi

ceInformixDB(’[-interactive]’)

v Using Jython list:

AdminTask.removeEventServi

ceInformixDB([’-interactive’])

598 Administering applications and their environment

- clusterName

The name of the cluster

where the event service

data source should be

removed. If this parameter

is specified, then the

serverName and

nodeName parameters

must not be set. You must

not specify this parameter

if the serverName and

nodeName parameters

are specified.

- dbScriptDir

The directory containing

the database scripts

generated by the event

service database

configuration command. If

specified, the command

will run the scripts in this

directory to remove the

event service database.

The default database

script output directory is

app_server_root/profiles/
profile/databases/event/
node/server/dbscripts/
informix.

v Returns: None

Chapter 13. Data access resources 599

removeE

ventServ

iceOrac

leDB

The removeE

ventServ

iceOra cleDB

command

removes the

event service

tables and

data sources

for Oracle

from a server

or cluster.

The

command

does not

remove the

database.

None v Parameters:

- removeDB

The command removes

the event service tables

when this parameter is

set to true and does

not remove the tables

when set to false.

- nodeName

The name of the node

that contains the server

where the event

service data source

should be removed. If

this parameter is

specified, then the

serverName parameter

must be set. You must

not specify this

parameter if the

clusterName

parameter is specified.

- serverName

The name of the server

where the event

service data source

should be removed. If

this parameter is

specified without the

nodeName parameter,

the command will use

the node name of the

current WebSphere

profile. You must not

specify this parameter

if the clusterName

parameter is specified.

Batch mode example usage:

v Using Jacl:

$AdminTask removeEventService

OracleDB {-removeDB true -node

Name nodename -serverName

servername -sysUser sys -sys

Password syspassword}

v Using Jython string:

AdminTask.removeEventService

OracleDB(’[-removeDB true

-nodeName nodename -serverName

servername -sysUser sys -sys

Password syspassword]’)

v Using Jython list:

AdminTask.removeEventService

OracleDB([’-removeDB’, ’true’,

’-nodeName’, ’nodename’,

’-serverName’, ’servername’,

’-sysUser’, ’sys’, ’-sysPass

word’, ’syspassword’])

Interactive mode example usage:

v Using Jacl:

$AdminTask removeEventServi

ceOracleDB -interactive

v Using Jython string:

AdminTask.removeEventService

OracleDB(’[-interactive]’)

v Using Jython list:

AdminTask.removeEventServi

ceOracleDB([’-interactive’])

600 Administering applications and their environment

- clusterName

The name of the cluster

where the event service

data source should be

removed. If this parameter

is specified, then the

serverName and

nodeName parameters

must not be set. You must

not specify this parameter

if the serverName and

nodeName parameters

are specified.

- sysUser

Oracle database sys user

ID. The default value is

sys if not specified.

- sysPassword

The password for the user

specified by the sysUser

parameter.

- dbScriptDir

The directory containing

the database scripts

generated by the event

service database

configuration command. If

specified, the command

will run the scripts in this

directory to remove the

event service database.

The default database

script output directory is

app_server_root/profiles/
profile/databases/event/
node/server/dbscripts/
oracle.

v Returns: None

Chapter 13. Data access resources 601

removeE

ventServ

iceSQL

ServerDB

The

removeE

ventServ

iceOra cleDB

command

removes the

event service

database and

data sources

for SQL

Server from a

server or

cluster.

None v Parameters:

- removeDB

The command removes

the database when this

parameter is set to

true and does not

remove the database

when set to false. To

remove the database,

the current machine

must already

configured to run the

database commands.

- nodeName

The name of the node

that contains the server

where the event

service data source

should be removed. If

this parameter is

specified, then the

serverName parameter

must be set. You must

not specify this

parameter if the

clusterName

parameter is specified.

- serverName

The name of the server

where the event

service data source

should be removed. If

this parameter is

specified without the

nodeName parameter,

the command will use

the node name of the

current WebSphere

profile. You must not

specify this parameter

if the clusterName

parameter is specified.

Batch mode example usage:

v Using Jacl:

$AdminTask removeEventService

SQLServerDB {-removeDB true

-nodeName nodename -serverName

servername -dbUser ceiuser

-saUser sa -saPassword sapass

word -dbServerName sqlserver

name}

v Using Jython string:

AdminTask.removeEventService

SQLServerDB(’[-removeDB true

-nodeName nodename -server

Name servername -dbUser cei

user -saUser sa -saPassword

sapassword -dbServerName

sqlservername]’)

v Using Jython list:

AdminTask.removeEventService

SQLServerDB([’-removeDB’,

’true’, ’-nodeName’, ’node

name’, ’-serverName’, ’server

name’, ’-dbUser’, ’ceiuser’,

’-saUser’,’sa’, ’-saPassword’,

’sapassword’, ’-dbServerName’,

’sqlservername’])

Interactive mode example usage:

v Using Jacl:

$AdminTask removeEventServi

ceSQLServerDB -interactive

v Using Jython string:

AdminTask.removeEventServic

eSQLServerDB(’[-interactive]’)

v Using Jython list:

AdminTask.removeEventServic

eSQLServerDB([’-interactive’])

602 Administering applications and their environment

- clusterName

The name of the cluster

where the event service

data source should be

removed. If this parameter

is specified, then the

serverName and

nodeName parameters

must not be set. You must

not specify this parameter

if the serverName and

nodeName parameters

are specified.

- dbServerName

The server name of the

SQL Server database.

This parameter must be

set when the parameter

removeDB is set to true.

- dbUser

SQL Server user ID that

owns the event service

tables. The default value

is ceiuser if not specified.

- saUser

User ID that has

privileges to drop the

databases and users. The

default value is sa if not

specified.

- saPassword

The password specified

by the saUser parameter.

This parameter is required

when the parameter

removeDB is set to true.

- dbScriptDir

The directory containing

the database scripts

generated by the event

service database

configuration command. If

specified, the command

will run the scripts in this

directory to remove the

event service database.

The default database

script output directory is

app_server_root/profiles/
profile/databases/event/
node/server/dbscripts/
sqlserver.

v Returns: None

Chapter 13. Data access resources 603

removeE

ventServ

iceSyba

seDB

The removeE

ventServ

iceSybas

eDB

command

removes the

event service

database and

data sources

for Sybase

from a server

or cluster.

None v Parameters:

- removeDB

The command removes

the database when this

parameter is set to

true and does not

remove the database

when set to false. To

remove the database,

the current machine

must already

configured to run the

database commands.

- nodeName

The name of the node

that contains the server

where the event

service data source

should be removed. If

this parameter is

specified, then the

serverName parameter

must be set. You must

not specify this

parameter if the

clusterName

parameter is specified.

- serverName

The name of the server

where the event

service data source

should be removed. If

this parameter is

specified without the

nodeName parameter,

the command will use

the node name of the

current WebSphere

profile. You must not

specify this parameter

if the clusterName

parameter is specified.

Batch mode example usage:

v Using Jacl:

$AdminTask removeEventService

SybaseDB {-removeDB true

-nodeName nodename -server

Name servername -dbUser cei

user -removeLogin true -saUser

sa -saPassword sapassword

-dbServerName sybaseservername}

v Using Jython string:

AdminTask.removeEventService

SybaseDB(’[-removeDB true

-nodeName nodename -server

Name servername -dbUser cei

user -removeLogin true -sa

User sa -saPassword sapass

word -dbServerName sybase

servername]’)

v Using Jython list:

AdminTask.removeEventService

SybaseDB([’-removeDB’, ’true’,

’-nodeName’, ’nodename’,

’-serverName’, ’servername’,

’-dbUser’, ’ceiuser’, ’-remove

Login’, ’true’, ’-saUser’,

’sa’, ’-saPassword’, ’sapass

word’, ’-dbServerName’,

’sybaseservername’])

Interactive mode example usage:

v Using Jacl:

$AdminTask removeEventServ

iceSybaseDB -interactive

v Using Jython string:

AdminTask.removeEventServ

iceSybaseDB(’[-interactive]’)

v Using Jython list:

AdminTask.removeEventServi

ceSybaseDB([’-interactive’])

604 Administering applications and their environment

- clusterName

The name of the cluster

where the event service

data source should be

removed. If this parameter

is specified, then the

serverName and

nodeName parameters

must not be set. You must

not specify this parameter

if the serverName and

nodeName parameters

are specified.

- dropLogin

The

removeEventServiceSybaseDB

command drops the user

ID that owns the event

service tables when this

parameter is set to true.

The command will not

drop the user ID when

this parameter is set to

false. This parameter

must be set when the

parameter removeDB is

set to true. The default

value is true if not

specified.

- dbServerName

The name of the Sybase

server instance. The

server is defined in the

Sybase configuration.

This parameter is required

when the removeDB

parameter is set to true.

Chapter 13. Data access resources 605

- dbUser

The user ID that owns the

event service tables. The

default value is ceiuser if

not specified.

- saUser

The Sybase sa userid that

has privileges to drop

tables and users. The

default value is sa if not

specified.

- saPassword

The password of the

Sybase sa user ID. You

must not specify this

parameter if the sa user

ID does not have a

password.

- dbScriptDir

The directory containing

the database scripts

generated by the event

service database

configuration command. If

specified, the command

will run the scripts in this

directory to remove the

event service database.

The default database

script output directory is

app_server_root/profiles/
profile/databases/event/
node/server/dbscripts/
sybase.

v Returns: None

Commands for the JDBCProviderManagement group of the AdminTask

object

For more information about the AdminTask object, see the Commands for the AdminTask object article.

The following commands are available for the JDBCProviderManagement group of the AdminTask object:

 Command

name:

Description: Target

object:

Parameters and return

values:

Examples:

606 Administering applications and their environment

create

Datasource

The create

Datasource

command

creates a new

data source

to access the

back end data

store.

Application

components

use the data

source to

access

connection

instances to

your

database.

JDBC

Provider

Object ID

- The

configuration

object of

the JDBC

provider

to which

the new

data

source

will

belong.

v Parameters:

- name

The name of the data

source. (String,

required)

- jndiName

The Java Naming and

Directory Interface

(JNDI) name. (String,

required)

- description

The description of the

data source. (String,

optional)

- category

The category that you

can use to classify a

group of data sources.

(String, optional)

-

dataStoreHelperClassName

The name of the

DataStoreHelper

implementation class

that extends the

capabilities of the

selected JDBC driver

implementation class to

perform data-specific

functions. WebSphere

Application Server

provides a set of

DataStoreHelper

implementation classes

for each of the JDBC

provider drivers it

supports. (String,

required)

-

componentManagedAuthenticationAlias

The alias used for

database authentication

at run time. This alias

is only used when the

application resource

reference is using

res-auth=Application.

(String, optional)

-

containerManagedPersistence

Specifies if the data

source is used for

container managed

persistence for

enterprise beans. The

default value is true.

(Boolean, optional)

Interactive mode example usage:

v Using Jacl:

$AdminTask createDatasource {-interactive}

v Using Jython string:

AdminTask.createDatasource (’[-interactive]’)

v Using Jython list:

AdminTask.createDatasource ([’-interactive’])

Chapter 13. Data access resources 607

v Parameters for step one:

configureResourceProperties

This command step

configures the resource

properties that are

required by the data

source. (Required) You

can specify the

following parameters

for this step:

name

The name of the

resource property.

(String, required)

type

The type of the

resource property.

(String, required)

value

The value of the

resource property.

(String, required)

v Returns: The object ID of

the created data source

configuration object.

608 Administering applications and their environment

createJDBC

Provider

The

createJDBC

Provider

command

creates a new

Java

database

connectivity

provider

(JDBC) that

you can use

to connect to

a relational

database for

data access.

None v Parameters:

- scope

The scope for the new

JDBC provider. The

default is none. (String,

required)

- databaseType

The type of database

that will be used by the

JDBC provider. For

example, DB2, Derby,

Informix, Oracle, and

so on. (String, required)

- providerType

The JDBC provider

type that will be used

by the JDBC provider.

(String, required)

- implementationType

The implementation

type for this JDBC

provider. Use

Connection pool data

source if your

application runs in a

single phase or a local

transaction. Otherwise,

use XA data source to

run in a global

transaction. (String,

required)

- name

The name of the JDBC

provider. The default is

the value from the

provider template.

(String, optional)

- description

The description for the

JDBC provider. (String,

optional)

-

implementationClassName

Specifies the Java

class name for the

JDBC driver

implementation. (String,

optional)

- classpath

Specifies a list of paths

or JAR file names that

form the location for

the resource provider

classes. (String,

optional)

Interactive mode example usage:

v Using Jacl:

$AdminTask createJDBCProvider {-interactive}

v Using Jython string:

AdminTask.createJDBCProvider (’[-interactive]’)

v Using Jython list:

AdminTask.createJDBCProvider ([’-interactive’])

Chapter 13. Data access resources 609

- nativePath

Specifies a list of paths

that form the location for

the resource provider

native libraries. (String,

optional)

v Returns: The ID of the

JDBC provider object that

you created.

listDatasources Use the

listData

sources

command to

list data

sources that

are contained

in the

specified

scope.

None v Parameters:

- scope

The scope for the data

sources that will be

listed. The valid values

include cell, node,

server, or cluster.

(String, optional)

v Returns: A list of data

sources.

Interactive mode example usage:

v Using Jacl:

$AdminTask listDatasources {-interactive}

v Using Jython string:

AdminTask.listDatasources (’[-interactive]’)

v Using Jython list:

AdminTask.listDatasources ([’-interactive’])

listJDBC

Providers

The listJDBC

Providers

command

lists JDBC

providers that

are contained

in the

specified

scope.

None v Parameters:

- scope

The scope for the

JDBC providers that

will be listed. The valid

values include cell,

node, server, or cluster.

(String, optional)

v Returns: A list of JDBC

providers.

Interactive mode example usage:

v Using Jacl:

$AdminTask listJDBCProviders {-interactive}

v Using Jython string:

AdminTask.listJDBCProviders (’[-interactive]’)

v Using Jython list:

AdminTask.listJDBCProviders ([’-interactive’])

Administering data access applications

These administrative tasks consist primarily of configuring the objects, or resources, through which

applications connect with a backend, and tuning those resources to handle the volume of connection

requests.

1. If your application contains Web modules or EJB modules that require access to a backend, configure

resources according to your type of EIS:

v For a relational database, follow the steps outlined in the “Configuring a JDBC provider and data

source” on page 636 topic.

v For a non-relational database, or another type of EIS such as the Customer Information Control

System (CICS), you must configure a resource adapter and connection factories. The topic

Accessing data using J2EE Connector Architecture connectors provides information on setting up

these objects.

2. Configure an authentication alias for the new Web module or EJB module resource only if the

application code, rather than WebSphere Application Server, authenticates connections with the

backend. This security configuration is called component-managed authorization, and is indicated in

the application deployment descriptor as res-auth = Application.

Container-managed authorization, which is designated as res-auth = Container, indicates that

Application Server performs signon for backend connections. The container-managed authentication

alias must be specified on the application resource reference. This task can be done during application

assembly or deployment, along with mapping the resource reference to a data source or connection

factory resource. After application deployment, however, you can alter the container-managed

610 Administering applications and their environment

authentication alias using the administrative console. Click Applications > Enterprise Applications >

application_name, and select the link to the appropriate mapping page. For example, if you want to

alter the alias of an EJB module resource, you might click 1.x CMP bean data sources or 2.x CMP

bean data sources. For a Web module resource, click Resource References.

Consult the “J2EE connector security” on page 633 topic for detailed reference on resource

authentication.

3. If your application contains a client module that requires data access, see Configuring data access for

application clients. In this single configuration process, you can define authentication data for either

component-managed or container-managed signon.

4. Specify connection pool settings.

5. Test a connection to the new data source. See the article “Test connection service” on page 699 for

information on the available methods for testing connections. This article also addresses important

data source settings that can affect the accuracy of your test connection results.

6. Gather connection pool statistics by activating the “JDBC connection pool counters” on page 2064 or

the “J2C connection pool counters” on page 2067. Alternatively, you can use Performance Monitoring

Infrastructure (PMI) method calls to gather connection statistics .

7. Tune the resources to manage connection volume. Consult the topic “Tuning parameters for data

access resources” on page 722.

Installing a Resource Adapter Archive (RAR) file

WebSphere Application Server uses the classes and other code that comprise a Resource Adapter Archive

(RAR) file to support the resource adapters that you configure.

A RAR file, which is often called a J2EE Connector Architecture (JCA) connector, must comply with the

JCA Specification. Meet these requirements by using a supported assembly tool (as described in the

Assembly tools article) to assemble a collection of Java archive (JAR) files, other runnable components,

utility classes, and so on, into a deployable RAR file. Then you are ready to install your RAR file in

Application Server.

A RAR file provides the classes and other code to support a resource adapter for access to a specific

enterprise information system (EIS), such as the Customer Information Control System (CICS). Hence you

configure resource adapters for an EIS only after you install the appropriate RAR file.

1. Click Resources.

2. Click Resource Adapters.

3. Click Install RAR. The Install RAR button opens a dialog for both installing a RAR file and configuring

an associated resource adapter. Only click New if you want to configure a new resource adapter for a

previously installed RAR file.

Limitation: When installing a RAR file using this dialog, the scope you define on the Resource

Adapters page has no effect on where the RAR file is installed. You can install RAR files

only at the node level, which you specify on the Install RAR page.

4. Browse to find the appropriate RAR file.

v If your RAR file is located on your local workstation, select Local path and browse to find the file.

v If your RAR file is located on your server, select Server path and specify the fully qualified path to

the file.

5. Click Next.

6. Enter the resource adapter name and any other properties needed under General Properties. If you

install a JCA resource adapter that includes Native path elements, consider the following: If you have

more than one native path element, and one of the native libraries (native library A) is dependent on

another library (native library B), then you must copy native library B to a system directory. Because of

limitations on Windows NT and most Unix platforms, an attempt to load a native library does not look

in the current directory.

Chapter 13. Data access resources 611

7. Click OK.

Installing resource adapters within applications

1. Assemble an application with resource adapter archive (RAR) modules in it. See Assembling

applications.

2. Install the application following the steps in Installing a new application. In the Map modules to

servers step, specify target servers or clusters for each RAR file. Be sure to map all other modules

that use the resource adapters defined in the RAR modules to the same targets. Also, specify the Web

servers as targets that serve as routers for requests to this application. The plug-in configuration file

(plugin-cfg.xml) for each Web server is generated based on the applications that are routed through

it.

Note: When installing a RAR file onto a server, WebSphere Application Server looks for the manifest

(MANIFEST.MF) for the connector module. It looks first in the connectorModule.jar file for the

RAR file and loads the manifest from the _connectorModule.jar file. If the class path entry is in

the manifest from the connectorModule.jar file, then the RAR uses that class path.

To ensure that the installed connector module finds the classes and resources that it needs,

check the Class path setting for the RAR using the console. For more information, see

“Resource Adapter settings” on page 614 and “WebSphere relational resource adapter settings”

on page 510

3. Click Finish > Save to save the changes.

4. Create connection factories for the newly installed application.

a. Open the administrative console.

b. Click Resources > Resource Adapters > Resource Adapters > resource_adapter > J2C

connection factories.

c. Click New to create a new connection factory, or click on an existing connection factory to update

it.

If you install a J2C Resource Adapter that includes Native path elements, consider the following: If

you have more than one native path element, and one of the native libraries (native library A) is

dependent on another library (native library B), then you must copy native library B to a system

directory. Because of limitations on Windows NT and most Unix platforms, an attempt to load a

native library does not look in the current directory.

After you create and save the connection factories, you can modify the resource references defined

in various modules of the application and specify the Java Naming and Directory Interface (JNDI)

names of the connection factories wherever appropriate.

Note: A given native library can only be loaded one time for each instance of the Java virtual machine

(JVM). Because each application has its own classloader, separate applications with embedded

RAR files cannot both use the same native library. The second application receives an

exception when it tries to load the library.

If any application deployed on the application server uses an embedded RAR file that includes

native path elements, then you must always ensure that you shut down the application server

cleanly, with no outstanding transactions. If the application server does not shut down cleanly it

performs recovery upon server restart and loads any required RAR files and native libraries. On

completion of recovery, do not attempt any application-related work. Shut down the server and

restart it. No further recovery is attempted by the application server on this restart, and normal

application processing can proceed.

Install RAR

Use this page to install a RAR file in one of two ways. You can either upload a RAR file from the local file

system, or specify an existing RAR file on a server. The RAR file must be installed at the node level, and

you can select the node below.

612 Administering applications and their environment

For information on installing a resource adapter, see the article ″Installing a Resource Adapter Archive

(RAR) file.″

 Related tasks

 “Installing a Resource Adapter Archive (RAR) file” on page 611
WebSphere Application Server uses the classes and other code that comprise a Resource Adapter

Archive (RAR) file to support the resource adapters that you configure.

 Related reference

 Administrative console buttons
This page describes the button choices that are available on various pages of the administrative

console, depending on which product features you enable.

 Administrative console page features
This topic provides information about the basic elements of an administrative console page, such as

the various tabs.

 Administrative console preference settings
Use the preference settings to specify how you want information to display on an administrative

console page.

Local path:

Specifies the local path of the RAR.

 Data type String

Server path:

Specifies the server path where the RAR is located.

 Data type String

Scope:

Specifies the scope of the resource adapter. Only applications that are installed within this scope can use

this adapter.

Resource Adapters collection

This page contains the list of installed and configured resource adapters and is used to install new

resource adapters, create additional configurations of installed resource adapters or delete resource

adapter configurations.

A resource adapter is an implementation of the J2EE Connector Architecture (JCA) Specification that

provides access for applications to resources outside of the server or provides access for an enterprise

information system (EIS) to applications on the server. It can provide application access to resources such

as DB2, CICS, SAP and PeopleSoft. It can provide an EIS with the ability to communicate with

message-driven beans that are configured on the server. Some resource adapters are provided by IBM;

however, third party vendors can provide their own resource adapters. A resource adapter implementation

is provided in a resource adapter archive file; this file has an extension of .rar. A resource adapter can be

provided as a standalone adapter or as part of an application, in which case it is referred to as an

embedded adapter. Use this panel to install a standalone resource adapter archive file. Embedded

adapters are installed as part of the application installation. This panel can be used to work with either

kind of adapter.

To view this administrative console page, click Resources > Resource Adapters > Resource Adapters.

Name:

Chapter 13. Data access resources 613

Specifies the name of the resource adapter.

 A string with no spaces meant to be a meaningful text identifier for the resource adapter.

 Data type String

Scope:

Specifies the level to which this resource adapter is visible. For general information, see Administrative

console scope settings in the Related Reference section.

 Some considerations that you should keep in mind for this particular panel are:

v Changing the scope enables you to see which resource adapter definitions exist at that level.

v Changing the scope does not have any effect on installation. Installations are always done under a

scope of node, no matter what you set the scope to.

v When you create a new resource adapter from this panel, you must change the scope to what you want

it to be before clicking New.

Resource Adapter settings:

Use this page to specify settings for a Resource Adapter.

 A resource adapter is an implementation of the J2EE Connector Architecture (JCA) Specification that

provides access for applications to resources outside of the server or provides access for an enterprise

information system (EIS) to applications on the server. It can provide application access to resources such

as DB2, CICS, SAP and PeopleSoft. It can provide an EIS with the ability to communicate with message

driven beans that are configured on the server. Some resource adapters are provided by IBM; however,

third party vendors can provide their own resource adapters. A resource adapter implementation is

provided in a resource adapter archive file; this file has an extension of .rar. A resource adapter can be

provided as a standalone adapter or as part of an application, in which case it is referred to as an

embedded adapter. Use this panel to install a standalone resource adapter archive file. Embedded

adapters are installed as part of the application installation.

To view this administrative console page, click Resources >Resource Adapters > Resource Adapters >

resource_adapter.

Scope:

Specifies the level to which this resource definition is visible. For general information, see Administrative

console scope settings in the Related Reference section.

 The Scope field is a read only string field that shows where the particular definition for a resource adapter

is located. This is set either when the resource adapter is installed (which can only be at the node level) or

when a new resource adapter definition is added.

Name:

Specifies the name of the resource adapter definition.

 This property is required.

A string with no spaces meant to be a meaningful text identifier for the resource adapter.

 Data type String

614 Administering applications and their environment

Description:

Specifies a text description of the resource adapter.

 A free-form text string to describe the resource adapter and its purpose.

 Data type String

Archive path:

Specifies the path to the RAR file containing the module for this resource adapter.

 This property is required.

 Data type String

Class path:

Specifies a list of paths or JAR file names which together form the location for the resource adapter

classes.

 This includes any additional libraries needed by the resource adapter. The resource adapter code base

itself is automatically added to the class path, but if anything outside the RAR is needed it can be

specified here.

 Data type String

Native path:

Specifies a list of paths which forms the location for the resource adapter native libraries.

 The resource adapter code base itself is automatically added to the class path, but if anything outside the

RAR is needed it can be specified here.

 Data type String

ThreadPool Alias:

Specifies the name of a thread pool that is configured in the server that is used by the resource adapter’s

Work Manager.

 If there is no thread pool configured in the server with this name, the default configured thread pool

instance, named Default, is used. This property is only necessary if this resource adapter uses Work

Manager.

This field does not apply for the z/OS platform.

 Data type String

Chapter 13. Data access resources 615

Configuring J2EE Connector connection factories in the administrative

console

 1. Click Resources.

 2. Click Resource Adapters.

 3. Select a resource adapter under Resource Adapters.

 4. Click J2C Connection Factories under Additional Properties .

 5. Click New.

 6. Specify General Properties .

 7. Select the authentication preference.

 8. Select aliases for component-managed authentication, container-managed authentication, or

both. If none are available, or you want to define a different one, click Apply > J2C Authentication

Data Entries under Related Items.

a. Click J2C Auth Data Entries under Related Items.

b. Click New.

c. Specify General Properties.

d. Click OK.

 9. Click OK.

10. Click the J2C connection factory you just created.

11. Under Additional Properties click Connection Pool.

12. Change any values desired by clicking the property name.

13. Click OK.

14. Click Custom Properties under Additional Properties.

15. Click any property name to change its value. Note that UserName and Password if present, are

overridden by the component-managed authentication alias you specified in a previous step.

16. Click Save.

17. Restart the Deployment Manager, node agent, and application server for the changes to take effect.

Connection pool settings

Use this page to configure connection pool settings.

This administrative console page is common to a range of resource types: for example, JDBC data

sources and JMS queue connection factories. To view this page, the path depends on the type of

resource, but generally you select an instance of the resource provider, then an instance of the resource

type, then click Connection Pool.

For example: click Resources > JDBC > JDBC Providers > JDBC_provider > Data Sources >

data_source > Connection Pool. The path for JMS queue connection factories is slightly more involved:

Resources > JMS > JMS Providers > Default Messaging > JMS Queue Connection Factory >

JMS_queue_connection_factory > Connection Pool Properties.

Connection Timeout:

Specifies the interval, in seconds, after which a connection request times out and a

ConnectionWaitTimeoutException is thrown.

 This value indicates the number of seconds a request for a connection waits when there are no

connections available in the free pool and no new connections can be created, usually because the

maximum value of connections in the particular connection pool has been reached. For example, if

Connection Timeout is set to 300, and the maximum number of connections are all in use, the pool

manager waits for 300 seconds for a physical connection to become available. If a physical connection is

616 Administering applications and their environment

not available within this time, the pool manager initiates a ConnectionWaitTimeout exception. It usually

does not make sense to retry the getConnection() method; if a longer wait time is required you should

increase the Connection Timeout setting value. If a ConnectionWaitTimeout exception is caught by the

application, the administrator should review the expected connection pool usage of the application and

tune the connection pool and database accordingly.

If the Connection Timeout is set to 0, the pool manager waits as long as necessary until a connection

becomes available. This happens when the application completes a transaction and returns a connection

to the pool, or when the number of connections falls below the value of Maximum Connections, allowing a

new physical connection to be created.

If Maximum Connections is set to 0, which enables an infinite number of physical connections, then the

Connection Timeout value is ignored.

 Data type Integer

Units Seconds

Default 180

Range 0 to max int

Maximum Connections:

Specifies the maximum number of physical connections that you can create in this pool.

 These are the physical connections to the backend resource. Once this number is reached, no new

physical connections are created and the requester waits until a physical connection that is currently in

use returns to the pool, or a ConnectionWaitTimeoutException is thrown. For example: If the Max

Connections value is set to 5, and there are five physical connections in use, the pool manager waits for

the amount of time specified in Connection Timeout for a physical connection to become free.

Knowing the number of connection pools that can potentially request connections from the backend

resource (such as a DB2 database or a CICS server) helps you determine a value to specify for the

Maximum Connections property.

For multiple standalone application servers that use the same data source configuration, or J2C

connection factory configuration, a separate physical connection pool exists for each server. If you clone

these same application servers, WebSphere Application Server implements a separate connection pool for

each clone.

All of these connection pools correspond to the same data source or connection factory configuration.

Hence all of these connection pools can potentially request connections from the same backend resource,

at the same time. The single Maximum Connections value that you set on this console panel applies to

every one of these connection pools. Consequently, setting a high Maximum Connections value can result

in a load of connection requests that overwhelms your backend resource.

 Data type Integer

Default 10

Range 0 to maximum integer

If Max Connections is set to 0, the Connection Timeout

value is ignored.

Tip: For better performance, set the value for the connection pool lower than the value for the Max

Connections option in the Web container. Lower settings, such as 10-30 connections, perform better

than higher settings, such as 100.

Chapter 13. Data access resources 617

You can use the Tivoli Performance Viewer to find the optimal number of connections in a pool. If the

number of concurrent waiters is greater than 0, but the CPU load is not close to 100%, consider

increasing the connection pool size. If the Percent Used value is consistently low under normal

workload, consider decreasing the number of connections in the pool.

Minimum Connections:

Specifies the minimum number of physical connections to maintain.

 If the size of the connection pool is at or below the minimum connection pool size, the Unused Timeout

thread does not discard physical connections. However, the pool does not create connections solely to

ensure that the minimum connection pool size is maintained. Also, if you set a value for Aged Timeout,

connections with an expired age are discarded, regardless of the minimum pool size setting.

For example, if the Minimum Connections value is set to 3, and one physical connection is created, the

Unused Timeout thread does not discard that connection. By the same token, the thread does not

automatically create two additional physical connections to reach the Minimum Connections setting.

 Data type Integer

Default 1

Range 0 to max int

Reap Time:

Specifies the interval, in seconds, between runs of the pool maintenance thread.

 For example, if Reap Time is set to 60, the pool maintenance thread runs every 60 seconds. The Reap

Time interval affects the accuracy of the Unused Timeout and Aged Timeout settings. The smaller the

interval, the greater the accuracy. If the pool maintenance thread is enabled, set the Reap Time value less

than the values of Unused Timeout and Aged Timeout. When the pool maintenance thread runs, it

discards any connections remaining unused for longer than the time value specified in Unused Timeout,

until it reaches the number of connections specified in Minimum Connections. The pool maintenance

thread also discards any connections that remain active longer than the time value specified in Aged

Timeout.

The Reap Time interval also affects performance. Smaller intervals mean that the pool maintenance thread

runs more often and degrades performance.

To disable the pool maintenance thread set Reap Time to 0, or set both Unused Timeout and Aged

Timeout to 0. The recommended way to disable the pool maintenance thread is to set Reap Time to 0, in

which case Unused Timeout and Aged Timeout are ignored. However, if Unused Timeout and Aged

Timeout are set to 0, the pool maintenance thread runs, but only physical connections which timeout due

to non-zero timeout values are discarded.

 Data type Integer

Units Seconds

Default 180

Range 0 to max int

Unused Timeout:

Specifies the interval in seconds after which an unused or idle connection is discarded.

 Set the Unused Timeout value higher than the Reap Timeout value for optimal performance. Unused

physical connections are only discarded if the current number of connections exceeds the Minimum

618 Administering applications and their environment

Connections setting. For example, if the unused timeout value is set to 120, and the pool maintenance

thread is enabled (Reap Time is not 0), any physical connection that remains unused for two minutes is

discarded. Note that accuracy of this timeout, as well as performance, is affected by the Reap Time value.

See Reap Time for more information.

 Data type Integer

Units Seconds

Default 1800

Range 0 to max int

Aged Timeout:

Specifies the interval in seconds before a physical connection is discarded.

 Setting Aged Timeout to 0 supports active physical connections remaining in the pool indefinitely. Set the

Aged Timeout value higher than the Reap Timeout value for optimal performance. For example, if the

Aged Timeout value is set to 1200, and the Reap Time value is not 0, any physical connection that

remains in existence for 1200 seconds (20 minutes) is discarded from the pool. The only exception is if the

connection is involved in a transaction when the aged timeout is reached. If it is the connection is closed

immediately after the transaction completes.

Note that accuracy of this timeout, as well as performance, are affected by the Reap Time value. See

Reap Time for more information.

 Data type Integer

Units Seconds

Default 0

Range 0 to max int

Purge Policy:

Specifies how to purge connections when a stale connection or fatal connection error is detected.

 Valid values are EntirePool and FailingConnectionOnly.

 Data type String

Defaults v EntirePool for J2C connection factories and

JMS-related connection factories

v EntirePool for WebSphere Version 4.0 data sources

v EntirePool for current version data sources that you

create through the administrative console

v EntirePool for current version data sources that you

script through wsadmin AdminConfig commands,

invoking JDBC templates that are built into WebSphere

Application Server (For information on the command

createUsingTemplate, see the information center

article ″Commands for the AdminConfig object.″)

v FailingConnectionOnly for data sources that you script

in wsadmin without invoking JDBC templates

:

Chapter 13. Data access resources 619

Range

EntirePool

All connections in the pool are marked stale. Any

connection not in use is immediately closed. A

connection in use is closed and issues a stale

connection Exception during the next operation

on that connection. Subsequent getConnection()

requests from the application result in new

connections to the database opening. When

using this purge policy, there is a slight possibility

that some connections in the pool are closed

unnecessarily when they are not stale. However,

this is a rare occurrence. In most cases, a purge

policy of EntirePool is the best choice.

FailingConnectionOnly

Only the connection that caused the stale

connection exception is closed. Although this

setting eliminates the possibility that valid

connections are closed unnecessarily, it makes

recovery from an application perspective more

complicated. Because only the currently failing

connection is closed, there is a good possibility

that the next getConnection() request from the

application can return a connection from the pool

that is also stale, resulting in more stale

connection exceptions.

 The connection pretest function attempts to

insulate an application from pooled connections

that are not valid. When a backend resource,

such as a database, goes down, pooled

connections that are not valid might exist in the

free pool. This is especially true when the purge

policy is failingConnectionOnly; in this case, the

failing connection is removed from the pool.

Depending on the failure, the remaining

connections in the pool might not be valid.

Connection pool advanced settings

Use this page to specify connection pooling related settings.

This administrative console page is common to a range of resource types: for example, JDBC data

sources and JMS queue connection factories. To view this page, the path depends on the type of

resource, but generally you select an instance of the resource provider, then an instance of the resource

type, then click Connection Pool > Advanced connection pool properties.

For example: click Resources > JDBC > JDBC Providers > JDBC_provider > Data Sources >

data_source > Connection Pool > Advanced connection pool properties. The path for JMS queue

connection factories is slightly more involved: Resources > JMS > JMS Providers > Default Messaging

> JMS Queue Connection Factory > JMS_queue_connection_factory > Connection Pool Properties >

Advanced connection pool properties.

Properties-shared partitions, free pool partitions, and free pool distribution table size are properties related

to reducing the time a thread needs to wait for a synchronization lock.

 Related concepts

 “Resource adapter” on page 509
A resource adapter is a system-level software driver that a Java application uses to connect to an

enterprise information system (EIS).

620 Administering applications and their environment

“Connection factory” on page 515
An application component uses a connection factory to access a connection instance, which the

component then uses to connect to the underlying enterprise information system (EIS).

 “JDBC providers” on page 517
Installed applications use JDBC providers to interact with relational databases.

Number of shared partitions:

Specifies the number of partitions that are created in each of the shared pools.

 Partition support is always enabled. The default values of 0 should be used to enable the connection pool

to pick the best values for performance. In some cases where large multiprocessor systems are used,

adjusting the partition support properties might help performance.

 Data type integer

Default value 0

Range 0 to max int

Number of free pool partitions:

Specifies the number of partitions that are created in each of the free pools.

 Data type integer

Default value 0

Range 0 to max int

Free pool distribution table size:

Determines the distribution of Subject and CRI hash values in the table that indexes connection usage

data.

 These hash values are used to match connection request credentials with the connections. A free pool

distribution table size larger than 1 can yield more efficient distribution of hash values, to help minimize

search collisions within the table. Fewer collisions can result in faster retrieval of a connection that

matches a request. Use a larger value for free pool distribution table size if your resource receives many

incoming requests with varying credentials. Smaller values (1) should be used if the same credentials

apply to all incoming requests for the resource. The value of 0 means random distribution.

 Data type integer

Default value 0

Range 0 to max int

Surge threshold:

Specifies the number of connections created before surge protection is activated.

 Surge protection is designed to prevent overloading of a data source when too many connections are

created at the same time. Surge protection is controlled by two properties, surge threshold and surge

creation interval.

The surge threshold property specifies the number of connections created before surge protection is

activated. After you reach the specified number of connections, you enter surge mode.

Chapter 13. Data access resources 621

The surge creation interval property specifies the amount of time, in seconds, between the creation of

connections when in surge mode.

For example, assume the follow settings:

v maxConnections = 50

v surgeThreshold = 10

v surgeCreationInterval = 30 seconds

If the connection pool receives 15 connection requests, 10 connections are created at about the same

time. The 11th connection is created 30 seconds after the first 10 connections. The 12th connection is

created 30 seconds after the 11th connection. Connections continue to be created every 30 seconds until

there are no more new connections needed or you reach the maxConnections value.

Surge connection support starts if the surge threshold is > -1 and the surge creation interval is > 0. The

surge threshold property has a default value of -1, which indicates that it is turned off.

wsadmin examples

$AdminControl getAttribute $objectname surgeCreationInterval

$AdminControl setAttribute $objectname surgeCreationInterval 30

$AdminControl getAttribute $objectname surgeThreshold

$AdminControl setAttribute $objectname surgeThreshold 15

 Data type integer

Default value -1

Range -1 to max int

Surge creation interval:

Specifies the amount of time between connection creates when you are in surge protection mode.

 If the number of connections specified in the surge threshold property have been made, each request for a

new connection must wait to be created on the surge creation interval. This property has a default value of

20, which indicates that at least 20 seconds should pass between connections being created. Valid values

for this property are any positive integer.

 Data type integer

Default value 20

Range 0 to max int

Stuck timer time:

A stuck connection is an active connection that is not responding or returning to the connection pool. If the

pool appears to be stuck (you have reached the stuck threshold), a resource exception is given to all new

connection requests until the pool is unstuck. The stuck timer time property is the interval for the timer.

This is how often the connection pool checks for stuck connections. The default value is 5 seconds.

 If an attempt to change the stuck time, stuck timer time, or stuck threshold properties using the wsadmin

scripting tool fails, an IllegalState exception occurs. The pool cannot have any active requests or active

connections during this request. For the stuck connection support to start, all three stuck property values

must be greater than 0 and maximum connections must be greater than 0.

Also, the stuck timer time, if it is set, must be less than the stuck time value. In fact, it is suggested that

the stuck timer time should be one-quarter to one-sixth the value of stuck time so that the connection pool

checks for stuck connections 4 to 6 times before a connection is declared stuck. This reduces the

likelihood of false positives

622 Administering applications and their environment

wsadmin examples

$AdminControl getAttribute $objectname stuckTime

$AdminControl setAttribute $objectname stuckTime 30

$AdminControl getAttribute $objectname stuckTimerTime

$AdminControl setAttribute $objectname stuckTimerTime 15

$AdminControl getAttribute $objectname stuckThreshold

$AdminControl setAttribute $objectname stuckThreshold 10

 Data type integer

Default value 5

Range 0 to max int

Stuck time:

A stuck connection is an active connection that is not responding or returning to the connection pool. If the

pool appears to be stuck (you have reached the stuck threshold), a resource exception is given to all new

connection requests until the pool is unstuck. The stuck time property is the interval, in seconds, allowed

for a single active connection to be in use to the backend resource before it is considered to be stuck.

 Data type integer

Default value 0

Range 0 to max int

Stuck threshold:

A stuck connection is an active connection that is not responding or returning to the connection pool. If the

pool appears to be stuck (you have reached the stuck threshold), a resource exception is given to all new

connection requests until the pool is unstuck. An application can explicitly catch this exception and

continue processing. The pool will continue to periodically check for stuck connections when the number of

stuck connections is past the threshold. If the number of stuck connections drops below the stuck

threshold, the pool will detect this during its periodic checks and enable the pool to begin servicing

requests again. The stuck threshold is the number of connections that need to be considered stuck for the

pool to be in stuck mode.

 Data type integer

Default value 0

Range 0 to max int

Connection pool (Version 4) settings

Use this page to create a connection pool for a Version 4.0 data source.

You can access this administrative console page in one of two ways:

v Resources > JDBC > JDBC Providers > JDBC_provider > Data Sources (WebSphere Application

Server V4) > data_source > Connection pool properties (version 4)

v Resources > JDBC > Data Sources (WebSphere Application Server V4) > data_source >

Connection pool properties (version 4)

Scope: Resources such as JDBC providers, namespace bindings, or shared libraries can be defined at

multiple scopes, with resources defined at more specific scopes overriding duplicates which are defined at

more general scopes.

Note that no matter what the scope of a defined resource, the resource’s properties only apply at an

individual server level. For example, if you define the scope of a data source at the cell level, all users in

Chapter 13. Data access resources 623

that cell can look up and use that data source, which is unique within that cell. However, resource property

settings are local to each server in the cell. For example, if you define max connections to 10, then each

server in that cell can have 10 connections.

When resources are created, they are always created into the current scope selected in the panel. To view

resources in other scopes, specify a different node or server in the scope selection form.

For general information, see Administrative console scope settings in the Related Reference section.

 Data type String

Minimum Pool Size:

Specifies the minimum number of connections to maintain in the pool.

 The minimum pool size can affect the performance of an application. Smaller pools require less overhead

when the demand is low because fewer connections are held open to the database. When the demand is

high, the first applications experience a slow response because new connections are created if all others

in the pool are in use.

 Data type Integer

Default 1

Range Any non-negative integer.

Maximum Pool Size:

Specifies the maximum number of connections to maintain in the pool.

 If the maximum number of connections is reached and all connections are in use, additional requests for a

connection wait up to the number of seconds specified as the connection timeout. The maximum pool size

can affect the performance of an application. Larger pools require more overhead when demand is high

because there are more connections open to the database at peak demand. These connections persist

until idled out of the pool. If the maximum value is smaller, longer wait times or possible connection

timeout errors during peak times can occur. Ensure that the database can support the maximum number

of connections in the application server, in addition to any load that it has outside of the application server.

 Data type Integer

Default 10

Range Any positive integer

Connection Timeout:

Specifies the maximum number of seconds an application waits for a connection from the pool before

timing out and triggering a ConnectionWaitTimeout exception. WebSphere Application Server acts on this

value only if you set the maximum pool size property, in which case the number of maximum connections

serves as a trigger for enforcing the wait timeout property.

 Data type Integer

Units Seconds

Default 180

Range Any non-negative integer

Setting this value to 0 disables the connection timeout.

624 Administering applications and their environment

If you accept the default value, Application Server issues the ResourceAllocation exception immediately

after the pool manager indicates that the maximum number of connections are in use. If you disable

connection timeout, Application Server does not issue an exception. Instead, the pool manager queues

subsequent connection requests until it can allocate a connection.

Idle Timeout:

Specifies the maximum number of seconds that an idle (unallocated) connection can remain in the pool

before being removed to free resources.

 Connections need to idle out of the pool because keeping connections open to the database can cause

database memory problems. However, not all connections are idled out of the pool, even if they are older

than the Idle Timeout setting. A connection is not idled if removing the connection would cause the pool to

shrink below its minimum size. Setting this value to 0 disables the idle timeout.

 Data type Integer

Units Seconds

Default 1800

Range Any non-negative integer

Orphan Timeout:

Specifies the maximum number of seconds that an application can hold a connection without using it

before the connection returns to the pool

 If there is no activity on an allocated connection for longer than the Orphan Timeout setting, the

connection is marked for orphaning. After another Orphan Timeout number of seconds, if the connection

still has no activity, the connection returns to the pool. If the application tries to use the connection again, it

is issued a stale connection exception. Connections that are enlisted in a transaction are not orphaned.

Setting this value to 0 disables the orphan timeout.

 Data type Integer

Units Seconds

Default 1800

Range Any non-negative integer

Statement Cache Size:

Specifies the number of cached prepared statements to keep per connection.

 The largest value you would need to set your cache size to if you do not want any cache discards is

determined as follows: for each application that uses this data source on a particular server, add up the

number of unique prepared statements (as determined by the sql string, concurrency, and the scroll type).

This is the maximum number of possible prepared statements that can be cached on a given connection

over the life of the server. Setting the cache size to this value means you never have cache discards. This

provides better performance. However, because of potential resource limitations, this might not always be

possible.

 Data type Integer

Default 10

Range Any non-negative integer

Auto Connection Cleanup:

Chapter 13. Data access resources 625

Specifies whether or not the connection pooling software automatically closes connections from this data

source at the end of a transaction.

 The default is false, which indicates that when a transaction completes, WebSphere Application Server

closes the connection and returns it to the pool. Any use of the connection after the transaction has ended

results in a stale connection exception because the connection is closed and has returned to the pool.

This mechanism ensures that connections are not held indefinitely by the application. If the value is set to

true, the connection is not returned to the pool at the end of a transaction. In this case, the application

must return the connection to the pool by calling close(). If the application does not close the connection,

the pool can run out of connections for other applications to use.

 Data type Check box

Default False (clear)

Configuring connection factories for resource adapters within applications

To access an enterprise information system (EIS), applications require connection factories, which are

objects that instantiate resource adapter classes for establishing and maintaining resource connections.

 1. Click Applications.

 2. Click Install New Application.

 3. Browse to find the appropriate EAR file, which contains an RAR file.

 4. Click Next.

 5. Select resource ref mapping to a J2C Connection Factory, then click Next.

 6. After the application installs, click Applications.

 7. Select the application just installed.

 8. Click Connector Modules under Related Items.

 9. Select an RAR file name on the Connector Modules page.

10. Click Resource Adapter under Additional Properties.

11. Click J2C Connection Factories under Additional Properties.

12. Click New.

13. Specify General Properties.

14. Select a Component-managed authentication alias if any application components with Application

or Per connection factory authentication specified in the resource reference are going to be getting

connections from this connection factory using the empty-argument getConnection() method. For

resources supporting XA, you can optionally specify an Authentication alias for XA recovery. If a

desired alias is not available, or you want to define a different one, click Apply > J2C Authentication

Data Entries under Related Items.

a. Click J2C Auth Data Entries under Related Items.

b. Click New.

c. Specify General Properties.

d. Click OK.

15. Click OK.

16. Click the J2C connection factory you just created.

17. Click Connection Pool under Additional Properties .

18. Change any values desired by clicking on the property name.

19. Click OK.

20. Click Custom Properties under Additional Properties.

21. Click any property name to change its value. Note that UserName and Password if present, are

overridden by the component-managed authentication alias you specified in a previous step.

22. Click Save.

626 Administering applications and their environment

J2C Connection Factories collection

Use this page to view Java 2 Connector (J2C) connection factories, which represent sets of connection

configuration values.

Application components such as enterprise beans have resource reference descriptors that refer to the

connection factory, not the resource adapter. The connection factory is really a configuration properties list

holder. In addition to the arbitrary set of configuration properties defined by the vendor of the resource

adapter, there are several standard configuration properties that apply to the connection factory. These

standard properties are used by the Java 2 Connectors connection pool manager in the application server

run time and are not known by the vendor-supplied resource adapter code.

You can access this administrative console page in one of two ways:

v Resources > Resource Adapters > J2C connection factories

v Resources > Resource Adapters > Resource Adapters > resource_adapter > J2C connection

factories

Name:

Specifies a list of the connection factory display names.

 Data type String

JNDI name:

Specifies the Java Naming and Directory Interface (JNDI) name of this connection factory.

 Data type String

Scope:

Specifies the scope of the connection factory. Only applications that are installed within this scope can use

this connection factory.

Provider:

Specifies the resource adapter that WebSphere Application Server uses for this connection factory.

Description:

Specifies a text description of this connection factory.

 Data type String

Connection factory interface:

Specifies the fully qualified name of the interface that provides the implementation class for the connection

factory.

Category:

Specifies a string that you can use to classify or group this connection factory.

 Data type String

Chapter 13. Data access resources 627

J2C Connection Factories settings:

Use this page to specify settings for a connection factory.

 You can access this administrative console page in one of two ways:

v Resources > Resource Adapters > J2C connection factories > J2C_connection_factory

v Resources > Resource Adapters > Resource Adapters > resource_adapter > J2C connection

factories > J2C_connection_factory

Scope:

Specifies the scope of the resource adapter that connects applications to an enterprise information system

(EIS) through this connection factory. Only applications that are installed within this scope can use this

connection factory.

Provider:

Specifies the resource adapter that WebSphere Application Server uses for this connection factory.

 Provider is displayed in this location only when you create a new connection factory. The list shows all of

the existing resource adapters that are defined at the relevant scope. Select one from the list if you want

to use an existing resource adapter as Provider.

Create New Provider:

Provides the option of configuring a new resource adapter for the new connection factory.

 Create New Provider is displayed only when you create, rather than edit, a connection factory.

Clicking Create New Provider triggers the console to display the resource adapter configuration page,

where you create a new adapter. After you click OK to save your settings, you see the connection factory

collection page. Click New to define a new connection factory for use with the new resource adapter; the

console now displays a configuration page that lists the resource adapter as the new connection factory

Provider.

Name:

Specifies a list of connection factory display names.

 This is a required property.

 Data type String

JNDI Name:

Specifies the JNDI name of this connection factory.

 For example, the name could be eis/myECIConnection.

After you set this value, save it and restart the server. You can see this string when you run the

dumpNameSpace tool. This is a required property. If you do not specify a JNDI name, it is filled in by

default using the Name field.

 Data type String

Default eis/display name

628 Administering applications and their environment

Description:

Specifies a text description of this connection factory.

 Data type String

Connection Factory Interface:

Specifies the fully qualified name of the Connection Factory Interfaces supported by the resource adapter.

 This is a required property. For new objects, the list of available classes is provided by the resource

adapter in a drop-down list. After you create the connection factory, the field is a read only text field.

 Data type Drop-down list or text

Category:

Specifies a string that you can use to classify or group this connection factory.

 Data type String

Component-managed Authentication Alias:

Specifies authentication data for component-managed signon to the resource.

 Select an alias from the list.

To define a new alias that is not displayed in the list:

v Click Apply. Under Related Items, you now see a listing for J2EE Connector Architecture (J2C)

authentication data entries.

v Click J2EE Connector Architecture (J2C) authentication data entries.

v Click New.

v Define an alias.

v Click OK. The console now displays an alias collection page. This page contains a table that lists all of

your configured aliases. Before the table, this page also displays the name of your connection factory.

v Click the name of your J2C connection factory. You now see the configuration page for the connection

factory.

v Select the new alias in the Component-managed authentication alias list.

v Click Apply.

 Data type List

Authentication Alias for XA Recovery:

This optional field is used to specify the authentication alias that should be used during XA recovery

processing.

 If the resource adapter does not support XA transactions, then this field will not be displayed. The default

value will come from the selected alias for application authentication (if specified).

Use Component-managed Authentication Alias

Selecting this radio button specifies that the alias set for component-managed authentication is

used at XA recovery time.

Chapter 13. Data access resources 629

Data type Radio button

Specify:

Selecting this radio button enables you to choose an authentication alias from a drop-down list of

configured aliases.

 Data type Radio button

Container-managed Authentication Alias (deprecated):

Specifies authentication data (a string path converted to userid and password) for container-managed

signon to the resource.

Note: Beginning with WebSphere Application Server Version 6.0, the container-managed authentication

alias is superseded by the specification of a login configuration on the resource-reference mapping

at deployment time, for components with res-auth=Container.

Select an alias from the list.

To define a new alias that is not displayed in the list:

v Click Apply. Under Related Items, you now see a listing for J2EE Connector Architecture (J2C)

authentication data entries.

v Click J2EE Connector Architecture (J2C) authentication data entries.

v Click New.

v Define an alias.

v Click OK. The console now displays an alias collection page. This page contains a table that lists all of

your configured aliases. Before the table, this page also displays the name of your connection factory.

v Click the name of your J2C connection factory. You now see the configuration page for the connection

factory.

v Select the new alias in the Container-managed authentication alias list.

v Click Apply.

 Data type Pick-list

Authentication Preference (deprecated):

Specifies the authentication mechanisms defined for this connection factory.

Note: Beginning with WebSphere Application Server Version 6.0, the authentication preference is

superseded by the combination of the <res-auth> application component deployment descriptor

setting and the specification of a login configuration on the resource-reference mapping at

deployment time.

This setting specifies which of the authentication mechanisms defined for the corresponding resource

adapter applies to this connection factory. Common values, depending on the capabilities of the resource

adapter, are: KERBEROS, BASIC_PASSWORD, and None.

If None is chosen, the application component is expected to manage authentication (<res-
auth>Application</res-auth>). In this case, the user ID and password are taken from one of the following:

v The component-managed authentication alias

v UserName, Password Custom Properties

v Strings passed on the getConnection method

630 Administering applications and their environment

For example, if two authentication mechanism entries are defined for a resource adapter in the ra.xml

document:

v <authentication-mechanism-type>BasicPassword</authentication-mechanism-type>

v <authentication-mechanism-type>Kerbv5</authentication-mechanism-type>

the authentication preference specifies the mechanism to use for container-managed authentication. An

exception is issued during server startup if a mechanism that is not supported by the resource adapter is

selected.

 Data type Pick-list

Default BASIC_PASSWORD

Mapping-Configuration Alias (deprecated):

Specifies the authentication alias for the Java Authentication and Authorization Service (JAAS) mapping

configuration that is used by this connection factory.

Note: Beginning with WebSphere Application Server Version 6.0, the Mapping-Configuration Alias is

superseded by the specification of a login configuration on the resource-reference mapping at

deployment time, for components with res-auth=Container.

Click Security > Secure administration, applications, and infrastructure > Java Authentication and

Authorization Service > Application logins and select an alias from the table.

The DefaultPrincipalMapping JAAS configuration maps the authentication alias to the userid and

password. You may define and use other mapping configurations.

 Data type Pick-list

Provider:

Specifies the resource adapter that WebSphere Application Server uses for this connection factory.

 Provider is displayed in this location only when you edit the settings of an existing connection factory.

J2C Connection Factory advanced settings:

Use this page to specify settings for a connection factory.

 You can access this administrative console page in one of two ways:

v Resources > Resource Adapters > J2C connection factories > J2C_connection_factory > Advanced

connection factory properties

v Resources > Resource Adapters > Resource Adapters > resource_adapter > J2C connection

factories > J2C_connection_factory > Advanced connection factory properties

 Related concepts

 “Resource adapter” on page 509
A resource adapter is a system-level software driver that a Java application uses to connect to an

enterprise information system (EIS).

 “Connection factory” on page 515
An application component uses a connection factory to access a connection instance, which the

component then uses to connect to the underlying enterprise information system (EIS).

 “JDBC providers” on page 517
Installed applications use JDBC providers to interact with relational databases.

Chapter 13. Data access resources 631

Log missing transaction contexts:

Specifies whether or not the container logs that there is a missing transaction context when a connection

is obtained.

 Data type Checkbox

Cached handles:

Specifies whether cached handles (handles held in inst vars in a bean) should be tracked by the

container.

 Data type Checkbox

Connection factory JNDI name tips

Distributed computing environments often employ naming and directory services to obtain shared

components and resources. Naming and directory services associate names with locations, services,

information, and resources.

Naming services provide name-to-object mappings. Directory services provide information on objects and

the search tools required to locate those objects. There are many naming and directory service

implementations, and the interfaces to them vary.

Java Naming and Directory Interface (JNDI) provides a common interface that is used to access the

various naming and directory services. After you have set this value, saved it, and restarted the server,

you should be able to see this string when you invoke name space dump tool.

For WebSphere Application Server specifically, when you create a data source the default JNDI name is

set to jdbc/data_source_name. When you create a connection factory, its default name is

eis/j2c_connection_factory_name. You can, of course, override these values by specifying your own.

In addition, if you click the checkbox for the Use this data source for container managed persistence

(CMP) option when you create the data source, another reference is created with the name of

eis/jndi_name_of_datasource_CMP. For example, if a data source has a JNDI name of

jdbc/myDatasource, the CMP JNDI name is eis/jdbc/myDatasource_CMP. This name is used internally by

CMP and is provided simply for informational purposes.

When creating a connection factory or data source, a JNDI name is given by which the connection factory

or data source can be looked up by a component. Preferably an ″indirect″ name with the java:comp/env

prefix should be used and must be used in future releases. An ″indirect″ name makes any

resource-reference data associated with the application available to the connection management runtime,

to better manage resources based on the res-auth, res-isolation-level, res-sharing-scope, and

res-resolution-control settings.

Though you can use a direct JNDI name, this naming method is deprecated in Version 6 of WebSphere

Application Server. Application Server assigns default values to the resource-reference data when you use

this method. An informational message, resembling the following, is logged to document the defaults:

J2CA0294W: Deprecated usage of direct JNDI lookup of resource jdbc/IOPEntity.

The following default values are used: [Resource-ref settings]

 res-auth: 1 (APPLICATION)

 res-isolation-level: 0 (TRANSACTION_NONE)

 res-sharing-scope: true (SHAREABLE)

 loginConfigurationName: null

 loginConfigProperties: null

[Other attributes]

632 Administering applications and their environment

res-resolution-control: 999 (undefined)

isCMP1_x: false (not CMP1.x)

isJMS: false (not JMS)

These default values can lead to unexpected behavior in your resources. For example, an application

component (such as a JAAS login module) that accesses a resource with container-managed

authentication data might fail to authenticate with the backend resource. Because the res-auth setting is

assigned the default level of Application, rather than Container, the application server cannot find it.

This message can occur when you try using the fully qualified names of resources when looking up

resources through Java Naming Directory Interface (JNDI). The J2EE programming model recommends

the use of resource references and the local JNDI java:comp/env context. To correct this problem, modify

the application to use the preferred J2EE programming model with resource references and the local JNDI

java:comp/env context.

J2EE connector security

The J2EE connector architecture defines a standard architecture for connecting the Java 2 Platform,

Enterprise Edition (J2EE) to heterogeneous enterprise information systems (EIS). Examples of EIS include

Enterprise Resource Planning (ERP), mainframe transaction processing (TP) and database systems.

The connector architecture enables an EIS vendor to provide a standard resource adapter for its EIS. A

resource adapter is a system-level software driver that is used by a Java application to connect to an EIS.

The resource adapter plugs into an application server and provides connectivity between the EIS, the

application server, and the enterprise application. Accessing information in EIS typically requires access

control to prevent unauthorized accesses. J2EE applications must authenticate to the EIS to open a

connection to it.

The J2EE Connector security architecture is designed to extend the end-to-end security model for

J2EE-based applications to include integration with EISs. An application server and an EIS collaborate to

ensure the proper authentication of a resource principal, which establishes a connection to an underlying

EIS. The connector architecture identifies the following mechanisms as the commonly-supported

authentication mechanisms, although other mechanisms can be defined:

v BasicPassword: Basic user-password-based authentication mechanism that is specific to an EIS

v Kerbv5: Kerberos Version 5-based authentication mechanism

Applications define whether to use application-managed signon or container-managed signon in the

resource-ref elements in the deployment descriptor. Each resource-ref element describes a single

connection factory reference binding. The res-auth element in a resource-ref element, whose value is

either Application or Container, indicates whether the enterprise bean code can perform signon or

whether WebSphere Application Server can signon to the resource manager using the principal mapping

configuration. The resource-ref element is typically defined at application assembly time with an assembly

tool such as the Application Server Toolkit (AST) or Rational Web Developer.assembly tool. The

resource-ref can also be defined, or redefined, at deployment time.

Application managed signon

To access an EIS system, applications locate a connection factory from the Java Naming and Directory

Interface (JNDI) namespace and invoke the getConnection method on that connection factory object. The

getConnection method might require a user ID and password argument. A J2EE application can pass in a

user ID and password to the getConnection method, which subsequently passes the information to the

resource adapter. Specifying a user ID and password in the application code has some security

implications, however.

The user ID and password, if coded into the Java source code, are available to developers and testers in

the organization. Also, the user ID and password are visible to users if they decompile the Java class.

Chapter 13. Data access resources 633

The user ID and password cannot be changed without first requiring a code change. Alternatively,

application code might retrieve sets of user IDs and passwords from persistent storage or from an external

service. This approach requires that IT administrators configure and manage a user ID and password

using the application-specific mechanism.

WebSphere Application Server supports a component-managed authentication alias to be specified on a

resource. This authentication data is common to all references to the resource. On the Resources >

Resource Adapters > J2C connection factories > configuration_name panel, select Use

component-managed authentication alias.

When res-auth=Application, the authentication data is taken from the following elements, in order:

1. The user ID and password that are passed to the getConnection method

2. The component-managed authentication alias in the connection factory or the data source

3. The custom properties user name and password in the data source

The user name and password properties can be initially defined in the resource adapter archive (RAR) file

and can also be defined in the administrative console or with wsadmin scripting under custom properties.

Container-managed signon

The user ID and password for the target enterprise information systems (EIS) can be supplied by the

application server. WebSphere Application Server provides container-managed signon functionality. The

Application Server locates the proper authentication data for the target EIS to enable the client to establish

a connection. Application code does not have to provide a user ID and password in the getConnection call

when it is configured to use container-managed signon, nor does authentication data have to be common

to all references to a resource. WebSphere Application Server uses a Java Authentication and

Authorization Service (JAAS) pluggable authentication mechanism to use a pre-configured JAAS login

configuration, and LoginModule to map a client security identity and credentials on the running thread to a

pre-configured user ID and password.

WebSphere Application Server ships a default many-to-one credential mapping LoginModule module that

maps any client identity on the running thread to a preconfigured user ID and password for a specified

target EIS. The default mapping module is a special purpose JAAS LoginModule module that returns a

PasswordCredential credential that is specified by the configured Java 2 Connector (J2C) authentication

data entry. The default mapping LoginModule module performs a table lookup, but does not perform actual

authentication. The user ID and password are stored together with an alias in the J2C Authentication data

list.

The J2C Authentication data list is located on the Secure administration, applications, and infrastructure

panel under Java Authentication and Authorization Service > J2C Authentication data. The default

principal and credential mapping function is defined by the DefaultPrincipalMapping application JAAS login

configuration.

J2C Authentication data that is modified using the administrative console takes effect when the

modification is saved into the repository and TestConnection is performed. Also, J2C Authentication data

that is modified using wsadmin scripting takes effect when any application is started or restarted for a

given WebSphere Application Server server process. J2C Authentication Data modification takes effect by

invoking the SecurityAdmin MBean method, updateAuthDataCfg. Set the HashMap parameter to null to

enable the Securityadmin MBean to refresh the J2C Authentication data using the latest values in the

repository.

Do not modify the DefaultPrincipalMapping login configuration because WebSphere Application Server

added performance enhancements to this frequently used default mapping configuration. WebSphere

Application Server does not support modifying the DefaultPrincipalMapping configuration, changing the

default LoginModule module, or stacking a custom LoginModule module in the configuration.

634 Administering applications and their environment

For most systems, the default method with a many-to-one mapping is sufficient. However, WebSphere

Application Server does support custom principal and credential mapping configurations. Custom mapping

modules can be added to the application logins JAAS configuration by creating a new JAAS login

configuration with a unique name. For example, a custom mapping module can provide one-to-one

mapping or Kerberos functionality.

You also can use the WebSphere Application Server administrative console to bind the resource manager

connection factory references to one of the configured resource factories. If the value of the res-auth

element is Container within the deployment descriptor for your application, you must specify the mapping

configuration. To specify the mapping configuration, use the Resource references link under References

on the Applications > Enterprise applications > application_name panel. See Mapping resource references

to references for additional directions.

J2C mapping modules and mapping properties

Mapping modules are special JAAS login modules that provide principal and credential mapping

functionality. You can define and configure custom mapping modules using the administrative console.

You also can define and pass context data to mapping modules by using login options in each JAAS login

configuration. In WebSphere Application Server, you also can define context data using mapping

properties on each connection factory reference binding.

Login options that are defined under each JAAS login configuration are shared among all resources that

use the same JAAS login configuration and mapping modules. Mapping properties that are defined for

each connection factory reference binding are used exclusively by that resource reference.

Consider a usage scenario where an external mapping service is used.

For example, you might use the Tivoli Access Manager Global Sign-On (GSO) service. Use the Tivoli

Access Manager GSO to locate authentication data for both back-end servers.

You have two EIS servers: DB2 and MQ. The authentication data for DB2 is different from that for MQ,

however. Use the login option in a mapping JAAS login configuration to specify the parameters that are

required to establish a connection to the Tivoli Access Manager GSO service. Use the mapping properties

in a connection factory reference binding to specify which EIS server requires the user ID and password.

For more detailed information about developing a mapping module, see the J2C principal mapping

modules article.

Note:

v WebSphere Application Server Version configures container-managed signon under each

enterprise application. This action is different than WebSphere Application Server Version 5,

which configures container-managed signon for each connection factory.

v The deprecated way of configuration at the Resources > Resource Adapters > J2C

connection factories > configuration_name panel still works in WebSphere Application Server

Version 6.1. The advantage to configuring at this level is that the configuration has an application

scope and is not visible to other applications. However, the mapping configuration that is defined

at this level is visible to other applications.

v The mapping configuration at the connection factory has moved to the resource manager

connection factory reference. The mapping login modules that are developed using WebSphere

Application Server Version 5 JAAS callback types can be used by the resource manager

connection factory reference, but the mapping login modules cannot take advantage of the

custom mapping properties feature.

v Connection factory reference binding supports mapping properties, and passes those properties

to mapping login modules by way of a new WSMappingPropertiesCallback callback. In addition,

Chapter 13. Data access resources 635

the WSMappingPropertiesCallback callback and the new WSManagedConnectionFactoryCallback

callback are defined in the com.ibm.wsspi package. Use the new mapping login modules with the

new callback types.

Security of lookups with component managed authentication

External Java clients (stand alone clients or servers from other cells) with Java Naming and Directory

Interface (JNDI) access can look up a Java 2 Connector (J2C) resource such as a data source or Java

Message Service (JMS) queue. However, they are not permitted to take advantage of the component

managed authentication alias defined on the resource. This alias is a default value used when the user

and password are not supplied on the getConnection() call. Therefore, if an external client needs to get a

connection, it must assume responsibility for the authentication by passing it through arguments on the

getConnection() call.

Any client running in the WebSphere Application Server process (such as a Servlet or an enterprise bean)

within the same cell that can look up a resource in the JNDI namespace can obtain connections without

explicitly providing authentication data on the getConnection() call. In this case, if the component’s

res-auth setting is Application, authentication is taken from the component-managed authentication alias

defined on the connection factory. With res-auth set to Container, authentication is taken from the login

configuration defined on the component’s resource-reference. It is important to note that J2C

authentication alias is per cell. An enterprise bean or Servlet in one application server cannot look up a

resource in another server process which is in a different cell, because the alias would not be resolved.

Mapping resource references to references

You can use the WebSphere Application Server administrative console to bind the resource manager

connection factory references to one of the configured resource factories.

If the value of the res-auth element is Container within the deployment descriptor for your application, you

must specify the mapping configuration.

1. Click Applications > Enterprise applications > application_name.

2. Under Additional Properties, select Resource references.

3. Select the application module and specify an authentication method for the selected connection factory

reference binding. Select either Use default method or Use custom login configuration. If you

select the Use default method option, the WebSphere Application Server DefaultPrincipalMapping

login configuration is selected. You must select an authentication data alias from the list.

4. After you make a selection, click Apply for the configuration to take effect.

5. If you select the Use custom login configuration option, you must select a mapping JAAS login

configuration from the drop-down list.

6. Click Apply. The selected login configuration name and an Mapping properties button display in the

login configuration field of the particular connection factory reference binding.

7. Click Mapping properties > New to specify the properties for your configuration. Click OK after

specifying the properties on the mapping properties panel.

8. Click OK and Save on the Resource references panel to save your changes to the master

configuration.

Configuring a JDBC provider and data source

For access to relational databases, applications use the JDBC drivers and data sources that you configure

for the application server.

Each vendor database requires different JDBC driver implementation classes for JDBC connectivity.

Configure a JDBC provider to encapsulate those vendor-specific driver files for use by an application

server. The application server also requires data sources to obtain and manage the physical connections

between applications and databases. Configure at least one data source for association with each of your

JDBC providers.

636 Administering applications and their environment

1. Determine the version of data source that you need according to your code specification level.

v The Enterprise JavaBean (EJB) 1.0 specification and the Java Servlet 2.2 specification require the

Version 4.0 Data source.

v More advanced releases of these specifications require the current version data source (which is

designated in WebSphere Application Server simply as ″Data source,″ with no associated version

number).

2. Determine the data source requirements for your application and database.

Those requirements include JDBC provider types, JDBC driver files, and data source connection

properties. Consult the article “Vendor-specific data sources minimum required settings” on page 638

for detailed listings of this information per data source implementation.

3. Create a JDBC provider.

From the administrative console, see Creating a JDBC provider using the administrative console.

OR

Using the wsadmin scripting client, see “Configuring a JDBC provider using scripting” on page 537.

OR

Using the Java Management Extensions (JMX) API, see Creating a JDBC provider and data source

using the Java Management Extensions API.

4. Create a data source.

From the administrative console, see Creating a data source using the administrative console.

OR

Using the wsadmin scripting client, see “Configuring new data sources using scripting” on page 538.

(For V4 data sources, see “Configuring new WAS40 data sources using scripting” on page 549.)

OR

Using the JMX API, see Creating a JDBC provider and data source using the Java Management

Extensions API.

Required properties: Different database vendors require different properties for implementations of

their JDBC drivers. Set these properties on the WebSphere Application Server

data source. Because Application Server contains templates for many vendor

JDBC implementations, the administrative console surfaces the required

properties and prompts you for them in the Create data source wizard.

However, if you script your data source configurations, you must consult the

article “Vendor-specific data sources minimum required settings” on page 638

for the required properties and settings options.

5. Optional: Configure custom properties. Like the required properties, custom properties for specific

vendor JDBC drivers must be set on the Application Server data source. Consult your database

documentation for information about available custom properties.

6. Bind resource references to the data source. See the article Data source lookups for enterprise beans

and Web modules .

7. Test the connection (for non-container-managed persistence usage). See the “Test connection service”

on page 699 article.

If your data source fails, you can find miscellaneous troubleshooting tips by consulting the article“Cannot

access a data source” on page 726. If a DB2 data source fails in a 64-bit Application Server environment,

consult the technote at the following URL: http://www-1.ibm.com/support/docview.wss?rs=180
&context=SSEQTP&dc=DB520&dc=D600&dc=DB530&dc=D700&dc=DB500&dc=DB540&dc=DB510
&dc=DB550&q1=AMD&uid=swg21212809&loc=en_US&cs=utf-8&lang=en for information on fixing

incomplete DB2 installation files.

Chapter 13. Data access resources 637

http://www-1.ibm.com/support/docview.wss?rs=180&context=SSEQTP&dc=DB520&dc=D600&dc=DB530&dc=D700&dc=DB500&dc=DB540&dc=DB510&dc=DB550&q1=AMD&uid=swg21212809&loc=en_US&cs=utf-8&lang=en
http://www-1.ibm.com/support/docview.wss?rs=180&context=SSEQTP&dc=DB520&dc=D600&dc=DB530&dc=D700&dc=DB500&dc=DB540&dc=DB510&dc=DB550&q1=AMD&uid=swg21212809&loc=en_US&cs=utf-8&lang=en
http://www-1.ibm.com/support/docview.wss?rs=180&context=SSEQTP&dc=DB520&dc=D600&dc=DB530&dc=D700&dc=DB500&dc=DB540&dc=DB510&dc=DB550&q1=AMD&uid=swg21212809&loc=en_US&cs=utf-8&lang=en

Vendor-specific data sources minimum required settings

Use this table as an at-a-glance reference of JDBC providers that can be defined for use with WebSphere

Application Server Version 6.x, to establish data sources for transacting with relational databases. A list

that contains detailed requirements for creating data sources with these providers follows the table. (The

list also contains information about JDBC providers that are deprecated in WebSphere Application Server

Version 6.x.)

Database type JDBC Provider Transaction support

Version and other

considerations

DB2 on Windows, UNIX,

or workstation-based

LINUX

DB2 Universal JDBC

Provider

One phase only

DB2 Universal JDBC

Provider (XA)

One and two phase The XA implementation is

not supported in

WebSphere Application

Server run on

workstation-based LINUX

DB2 legacy CLI-based Type

2 JDBC Provider

Deprecated in WebSphere

Application Server v.6.1

One phase only

DB2 legacy CLI-based Type

2 JDBC Provider (XA)

Deprecated in WebSphere

Application Server v.6.1

One and two phase

638 Administering applications and their environment

Database type JDBC Provider Transaction support

Version and other

considerations

DB2 UDB for iSeries

DB2 UDB for iSeries

(Native)

One phase only Recommended for use with

WebSphere Application

Server run on iSeries

DB2 UDB for iSeries

(Native XA)

One and two phase Recommended for use with

WebSphere Application

Server run on iSeries

DB2 UDB for iSeries

(Toolbox)

One phase only

DB2 UDB for iSeries

(Toolbox XA)

One and two phase

DB2 Universal JDBC

Provider (XA)

One and two phase -Only for use with

WebSphere Application

Server run on z/OS

-Only driver type 4 is

supported

-Does not support Version 4

data sources

DB2 legacy CLI-based Type

2 JDBC Provider

Deprecated in WebSphere

Application Server v.6.1

One phase only -Only for use with

WebSphere Application

Server run on Windows,

UNIX, or workstation-based

LINUX

- Requires the DB2

Connect driver (available

from DB2)

DB2 legacy CLI-based Type

2 JDBC Provider (XA)

Deprecated in WebSphere

Application Server v.6.1

One and two phase -Only for use with

WebSphere Application

Server run on Windows,

UNIX, or workstation-based

LINUX

- Requires the DB2

Connect driver (available

from DB2)

Chapter 13. Data access resources 639

Database type JDBC Provider Transaction support

Version and other

considerations

DB2 on z/OS

DB2 for z/OS Local JDBC

Provider (RRS), using the

Legacy DB2 for OS/390

and z/OS JDBC Driver

Removed

support: WebSphere

Application Server v6.1

does not support this

provider. Use the DB2

Universal JDBC Driver

provider instead. See

″Migrating from the

JDBC/SQLJ Driver for

OS/390 and z/OS to the

DB2 Universal JDBC

Driver″ in the Information

Management Software for

z/OS Solutions Information

Center.

One and two phase Only for use with

WebSphere Application

Server run on z/OS

DB2 Universal JDBC

Provider

One phase only

DB2 Universal JDBC

Provider (XA)

One and two phase -Only driver type 4 is

supported in WebSphere

Application Server run on

z/OS

-Does not support Version 4

data sources in WebSphere

Application Server run on

z/OS

DB2 legacy CLI-based Type

2 JDBC Provider

Deprecated in WebSphere

Application Server v.6.1

One phase only -Only for use with

WebSphere Application

Server run on Windows,

UNIX, or workstation-based

LINUX

- Requires the DB2

Connect program (available

from DB2)

DB2 legacy CLI-based Type

2 JDBC Provider (XA)

Deprecated in WebSphere

Application Server v.6.1

One and two phase -Only for use with

WebSphere Application

Server run on Windows,

UNIX, or workstation-based

LINUX

- Requires the DB2

Connect program (available

from DB2)

640 Administering applications and their environment

Database type JDBC Provider Transaction support

Version and other

considerations

Cloudscape Version

10.1.x

Cloudscape v10.1.x

provides the Apache Derby

runtime.

JDBC naming

requirements: Because

the new Cloudscape code

base is the product of the

Apache Derby Project,

Cloudscape v10.1.x uses

Derby JDBC classes.

Therefore you must specify

Derby JDBC provider

names, Derby JDBC driver

classes, and Derby data

source classes to configure

JDBC access to

Cloudscape v10.1.x.

Derby JDBC Provider One phase only - Not for use in clustered

environment: accessible

from a single JVM only

- Does not support Version

4 data sources

Derby JDBC Provider (XA) One and two phase - Not for use in clustered

environment: accessible

from a single JVM only

- Does not support Version

4 data sources

Derby Network Server

Provider using the Universal

JDBC driver

Deprecated in WebSphere

Application Server v.6.1

One phase only - Can be used in clustered

environment: a database

instance can be accessed

by multiple JVMs

- Does not support XA

- Does not support Version

4 data sources

Derby Network Server using

Derby Client provider

One phase only - Can be used in clustered

environment: a database

instance can be accessed

by multiple JVMs

- Does not support Version

4 data sources

- Only for use with

Cloudscape 10.1.x

databases that run on the

same node as WebSphere

Application Server

Derby Network Server using

Derby Client provider (XA)

One and two phase - Can be used in clustered

environment: a database

instance can be accessed

by multiple JVMs

- Does not support Version

4 data sources

- Only for use with

Cloudscape 10.1.x

databases that run on the

same node as WebSphere

Application Server

Informix

Informix JDBC Provider One phase only

Informix JDBC Provider

(XA)

One and two phase

Sybase

Sybase jConnect for JDBC

Provider

One phase only

Sybase jConnect for JDBC

Provider (XA)

One and two phase

Chapter 13. Data access resources 641

Database type JDBC Provider Transaction support

Version and other

considerations

Oracle

Oracle JDBC Provider One phase only

Oracle JDBC Provider(XA) One and two phase

Microsoft SQL Server

DataDirect ConnectJDBC

Provider, type 4 driver, for

MS SQL Server

One phase only - Only for use with the

corresponding driver from

DataDirect Technologies

- Version 3.5, Service pack

2 of the DataDirect

ConnectJDBC type 4 driver

can support access to both

MS SQL Server 2005 and

MS SQL Server 2000

DataDirect ConnectJDBC

Provider, type 4 driver, for

MS SQL Server (XA)

One and two phase - Only for use with the

corresponding driver from

DataDirect Technologies

- Version 3.5, Service pack

2 of the DataDirect

ConnectJDBC type 4 driver

can support access to both

MS SQL Server 2005 and

MS SQL Server 2000

IBM WebSphere embedded

ConnectJDBC Provider for

MS SQL Server

One phase only - Cannot be used outside of

WebSphere Application

Server environment

- Version 3.5, Service pack

2 of the driver can support

access to both MS SQL

Server 2005 and MS SQL

Server 2000

IBM WebSphere embedded

ConnectJDBC Provider for

MS SQL Server (XA)

One and two phase - Cannot be used outside of

WebSphere Application

Server environment

- Version 3.5, Service pack

2 of the driver can support

access to both MS SQL

Server 2005 and MS SQL

Server 2000

Detailed data source requirements per JDBC provider and platform

The following list contains the requirements for creating data sources with every JDBC provider type that is

supported in WebSphere Application Server Version 6.x. Specific fields are designated for the user and

password properties. Inclusion of a property in the list does not imply that you should add it to the data

source custom properties list. Rather, inclusion in the list means that a value is typically required for that

field.

Important: After you determine the type of JDBC provider that suits your application and environment,

ensure that you acquire the corresponding JDBC driver at a release level supported by this version of

WebSphere Application Server. Consult the WebSphere Application Server prerequisite Web site.

Use these links to find your provider and data source information:

642 Administering applications and their environment

v DB2 on Windows, UNIX, or workstation-based LINUX

v DB2 UDB for iSeries

v DB2 on z/OS, connecting to Application Server on Windows, UNIX, or workstation-based LINUX

v “Cloudscape v10.x” on page 652

– Formerly known as Derby

– Comprised of the Derby code base

– Not supported as a production database with this version of WebSphere Application Server

– Cloudscape v10.1.x: The Cloudscape 10.1.x package that is bundled with WebSphere Application

Server is backed by full IBM Quality Assurance (QA).
v Informix

v Sybase

v Oracle

v MS SQL Server

DB2 on Windows, UNIX, or workstation-based LINUX

1. DB2 Universal JDBC Provider

The DB2 Universal JDBC Driver is an architecture-neutral JDBC driver for distributed and local DB2

access. Because the Universal Driver architecture is independent of any particular JDBC driver

connectivity or target platform, it allows both Java connectivity (Type 4) or Java Native Interface (JNI)

based connectivity (Type 2) in a single driver instance to DB2.

This JDBC driver allows applications to use both JDBC and Structured Query Language in Java

(SQLJ) access.

The DB2 Universal JDBC Driver Provider supports one phase data source:

com.ibm.db2.jcc.DB2ConnectionPoolDataSource

Requires JDBC driver files:

v db2jcc.jar After you install DB2, you can find this jar file in the DB2 java directory. For Type 4

JDBC driver support from a client machine where DB2 is not installed, copy this file to the local

machine. If you install any fixes or upgrades to DB2, you must update this file as well. You must

also set the DB2UNIVERSAL_JDBC_DRIVER_PATH path variable to point to the db2jcc.jar file.

See the Cloudscape section for more information on the DB2UNIVERSAL_JDBC_DRIVER_PATH

path variable.

Note: To find out the version of the universal driver you are using, issue this DB2 command:

java com.ibm.db2.jcc.DB2Jcc -version

The output for the above example is:

IBM DB2 JDBC Universal Driver Architecture 2.2.xx

v db2jcc_license_cu.jar This is the DB2 Universal JDBC driver license file that allows access to the

DB2 Universal database. Use this jar file or the next one to gain access to the database. This jar file

ships with WebSphere Application Server in a directory defined by

${UNIVERSAL_JDBC_DRIVER_PATH}environment variable.

v db2jcc_license_cisuz.jar This is the DB2 Universal JDBC driver license file that allows access to

the following databases:

– DB2 Universal

– DB2 for iSeries

– DB2 for z/OS

– SQLDS

The db2jcc_license_cisuz.jar does not ship with Websphere Application Server and should be

located in the same directory as the db2jcc.jar file, so that the

DB2UNIVERSAL_JDBC_DRIVER_PATH points to both.

Chapter 13. Data access resources 643

The classpath for this provider is set as follows:

 <classpath>${DB2UNIVERSAL_JDBC_DRIVER_PATH}/db2jcc.jar </classpath>

 <classpath>${UNIVERSAL_JDBC_DRIVER_PATH}/db2jcc_license_cu.jar</classpath>

 <classpath>${DB2UNIVERSAL_JDBC_DRIVER_PATH}/db2jcc_license_cisuz.jar</classpath>

Note: The license jar files are independent of each other; therefore, order does not matter.

Requires DataStoreHelper class:

com.ibm.websphere.rsadapter.DB2UniversalDataStoreHelper

Requires a valid authentication alias.

Requires properties:

v databaseName This is an actual database name if the driverType is set to 4, or a locally

cataloged database name if the driverType is set to 2.

v driverType The JDBC connectivity type of a data source. There are two permitted values: 2 and 4.

If you want to use Universal JDBC Type 2 driver, set this value to 2. If you want to use Universal

JDBC Type 4 driver, set this value to 4.

v serverName The TCP/IP address or host name for the Distributed Relational Database Architecture

(DRDA) server. Provide a value for this property only if your driverType is set to 4. This property is

not required if your driverType is set to 2.

v portNumber The TCP/IP port number where the DRDA server resides. Provide a value for this

property only if your driverType is set to 4. This property is not required if your driverType is set to

2.

v useTransactionRedirect Configure this property as a data source custom property if your backend

uses the Database Partitioning Feature (DPF) of DB2 UDB Version 8.2, fix pack 10, and your

partitioning key remains constant throughout a transaction. Activating the property affects how the

DB2 Universal JDBC Driver directs each connection request that begins a transaction with DB2. The

JDBC driver is triggered to send those connection requests to the DPF node that contains the target

data of the first directable statement in the transaction, if such a statement exists. DB2 then directs

the SQL statement to different partitions as needed; the transaction proceeds normally from the

viewpoint of WebSphere Application Server.

You can use useTransactionRedirect for both driverType 2 and driverType 4 data sources. To

configure the property, use either the wsadmin scripting tool or the administrative console page.

Assign the property the value of true. For more information on using the scripting tool or the

administrative console for this task, see either the Configuring new data source custom properties

using scripting or J2EE resource provider or connection factory custom properties collection

chapters in the Administering applications and their environment PDF book.
2. DB2 Universal JDBC Provider (XA)

The DB2 Universal JDBC Provider (XA) is an architecture-neutral JDBC provider for distributed and

local DB2 access. Whether you use this provider for Java connectivity or Java Native Interface (JNI)

based connectivity depends on the version of DB2 you are running. Application Server Version 6.0

minimally requires DB2 8.1 Fix Pack 6. This version of DB2 only supports XA connectivity over the

Java Native Interface (JNI) based connectivity (Type 2) driver. In order to use XA connectivity with the

Type 4 driver, DB2 8.1 Fix Pack 7 or higher is required.

The DB2 Universal JDBC Driver (XA) supports two phase transactions and the more advanced data

source option offered by Application Server (as opposed to the other option, Version 4 data sources).

This driver also allows applications to use both JDBC and SQLJ access.

The DB2 Universal JDBC Driver Provider supports the two phase data source:

com.ibm.db2.jcc.DB2XADataSource

Requires JDBC driver files:

v db2jcc.jar This is the DB2 Universal JDBC Driver JAR file. After you install DB2, you can find this

JAR file in the DB2 Java directory. For Type 4 JDBC driver support from a client machine where

DB2 is not installed, copy this file to the local machine. If you install any fixes or upgrades to DB2,

you must update this file as well. You must also specify the fully qualified path of db2jcc.jar as the

value of the DB2UNIVERSAL_JDBC_DRIVER_PATH environment variable:

644 Administering applications and their environment

${DB2UNIVERSAL_JDBC_DRIVER_PATH}/db2jcc.jar

v db2jcc_License_cu.jar This is the DB2 Universal JDBC driver license file that allows access to the

DB2 Universal database. Use this JAR file or the next one to gain access to the database. This JAR

file ships with WebSphere Application Server in the WAS_HOME/universalDriver/lib directory. Class

path:

${UNIVERSAL_JDBC_DRIVER_PATH}/db2jcc_License_cu.jar

v db2jcc_License_cisuz.jar This is the DB2 Universal JDBC driver license file that allows access to

the following databases:

– DB2 Universal

– DB2 for iSeries

– DB2 for z/OS

– SQLDS

Class path:

${DB2UNIVERSAL_JDBC_DRIVER_PATH}/db2jcc_License_cisuz.jar

You must use the right license JAR file to access a specific database backend.

v The native files required by the DB2 Universal JDBC Driver in WebSphere Application Server. Use

the following library path:

${DB2UNIVERSAL_JDBC_DRIVER_NATIVEPATH}

Requires DataStoreHelper class:

com.ibm.websphere.rsadapter.DB2UniversalDataStoreHelper

Requires a valid authentication alias.

Requires properties:

v databaseName This is an actual database name if the driverType is set to 4, or a locally

cataloged database name if the driverType is set to 2.

v driverType The JDBC connectivity type of a data source. There are two permitted values: 2 and 4.

If you want to use Universal JDBC Type 2 XA driver, set this value to 2. If you want to use Universal

JDBC Type 4 XA driver (which requires DB2 8.1 Fix Pack 7 or higher), set this value to 4.

v serverName The TCP/IP address or host name for the Distributed Relational Database Architecture

(DRDA) server. Provide a value for this property only if your driverType is set to 4. This property is

not required if your driverType is set to 2.

v portNumber The TCP/IP port number where the DRDA server resides. Provide a value for this

property only if your driverType is set to 4. This property is not required if your driverType is set to

2.

v useTransactionRedirect Configure this property as a data source custom property if your backend

uses the Database Partitioning Feature (DPF) of DB2 UDB Version 8.2, fix pack 10, and your

partitioning key remains constant throughout a transaction. Activating the property affects how the

DB2 Universal JDBC Driver directs each connection request that begins a transaction with DB2. The

JDBC driver is triggered to send those connection requests to the DPF node that contains the target

data of the first directable statement in the transaction, if such a statement exists. DB2 then directs

the SQL statement to different partitions as needed; the transaction proceeds normally from the

viewpoint of WebSphere Application Server.

You can use useTransactionRedirect for both driverType 2 and driverType 4 data sources. To

configure the property, use either the wsadmin scripting tool or the administrative console page

“J2EE resource provider or connection factory custom properties collection” on page 684. Assign the

property the value of true.

Tip: To find the level of universal driver you are using, issue the following DB2 command:

java com.ibm.db2.jcc.DB2Jcc -version

example output of the above:

 IBM DB2 JDBC Universal Driver Architecture 2.2.xx

3. DB2 legacy CLI-based Type 2 JDBC Driver

Chapter 13. Data access resources 645

Deprecated in Version 6.1: This JDBC provider is deprecated in WebSphere Application Server

Version 6.1. Therefore it is no longer an available choice among provider

types in the administrative console. Select the DB2 Universal JDBC

Provider instead.

The DB2 legacy CLI-based Type 2 JDBC Driver Provider is built on top of DB2 CLI (Call Level

Interface). It uses the DB2 CLI interface to communicate with DB2 UDB servers.

DB2 legacy CLI-based Type 2 JDBC Driver supports one phase data source:

COM.ibm.db2.jdbc.DB2ConnectionPoolDataSource

Requires JDBC driver files: db2java.zip (Note: If you run SQLJ in DB2 Version 8, db2jcc.jar is also

required.)

Requires DataStoreHelper class:

com.ibm.websphere.rsadapter.DB2DataStoreHelper

Does not require a valid authentication alias if Application Server is running on the same machine as

the database. Otherwise, connectivity through this driver does require an alias.

Requires properties:

v databaseName The name of the database from which the data source obtains connections.

Example: Sample.
4. DB2 legacy CLI-based Type 2 JDBC Driver (XA)

Deprecated in Version 6.1: This JDBC provider is deprecated in WebSphere Application Server

Version 6.1. Therefore it is no longer an available choice among provider

types in the administrative console. Select the DB2 Universal JDBC

Provider (XA) instead.

The DB2 legacy CLI-based Type 2 JDBC Driver (XA) is built on top of DB2 CLI (Call Level Interface).

It uses the DB2 CLI interface to communicate with DB2 UDB servers.

DB2 legacy CLI-based Type 2 JDBC Driver (XA) supports two phase data source:

COM.ibm.db2.jdbc.DB2XADataSource

Requires JDBC driver files: db2java.zip (Note: If you run SQLJ in DB2 Version 8, db2jcc.jar is also

required.)

Requires DataStoreHelper class:

com.ibm.websphere.rsadapter.DB2DataStoreHelper

Does not require a valid authentication alias if Application Server is running on the same machine as

the database. Otherwise, connectivity through this driver does require an alias.

Requires properties:

v databaseName The name of the database from which the data source obtains connections.

Example: Sample.

For more information on DB2, visit the DB2 Web site at: http://www.ibm.com/software/data/db2/.

DB2 UDB for iSeries

1. DB2 UDB for iSeries (Native)

The iSeries Developer Kit for Java contains this Type 2 JDBC driver that is built on top of the iSeries

DB2 Call Level Interface (CLI) native libraries. Only use this driver for local DB2 connections on

iSeries. It is not recommended for remote access. Use this driver for iSeries V5R2, or later releases.

DB2 UDB for iSeries (Native V5R2 and later) supports one phase data source:

com.ibm.db2.jdbc.app.UDBConnectionPoolDataSource

Requires JDBC driver files: db2_classes.jar

Requires DataStoreHelper class:

com.ibm.websphere.rsadapter.DB2AS400DataStoreHelper

Does not require an authentication alias.

646 Administering applications and their environment

http://www-3.ibm.com/software/data/db2/

Requires properties:

v databaseName The name of the relational database to which the data source connections are

established. This name must appear in the iSeries Relational Database Directory. The default is

*LOCAL.
2. DB2 UDB for iSeries (Native XA)

The iSeries Developer Kit for Java contains this XA-compliant Type 2 JDBC driver built on top of the

iSeries DB2 Call Level Interface (CLI) native libraries. Only use this driver for local DB2 connections on

iSeries. It is not recommended for remote access. Use this driver for iSeries V5R2 or later releases.

DB2 UDB for iSeries (Native XA - V5R2 and later) supports two phase data source:

com.ibm.db2.jdbc.app.UDBXADataSource

Requires JDBC driver files: db2_classes.jar

Requires DataStoreHelper class:

com.ibm.websphere.rsadapter.DB2AS400DataStoreHelper

Does not require an authentication alias.

Requires properties:

v databaseName The name of the relational database to which the data source connections are

established. This name must appear in the iSeries Relational Database Directory. The default is

*LOCAL.
3. DB2 UDB for iSeries (Toolbox)

This JDBC driver, also known as iSeries Toolbox driver for Java, is provided in the DB2 for iSeries

database server. Use this driver for remote DB2 connections on iSeries. We recommend you use this

driver instead of the IBM Developer Kit for Java JDBC Driver to access remote DB2 UDB for iSeries

systems.

DB2 UDB for iSeries (Toolbox) supports one phase data source:

com.ibm.as400.access.AS400JDBCConnectionPoolDataSource

Requires JDBC driver files: jt400.jar

Requires DataStoreHelper class:

com.ibm.websphere.rsadapter.DB2AS400DataStoreHelper

Does not require an authentication alias if WebSphere Application Server and DB2 UDB for iSeries are

installed in the same server. If they are installed in different servers, the user ID and password are

required.

Requires properties:

v serverName The name of the server from which the data source obtains connections. Example:

myserver.mydomain.com.
4. DB2 UDB for iSeries (Toolbox XA)

This XA compliant JDBC driver, also known as iSeries Toolbox XA compliant driver for Java, is

provided in the DB2 for iSeries database server. Use this driver for remote DB2 connections on

iSeries. We recommend you use this driver instead of the IBM Developer Kit for Java JDBC Driver to

access remote DB2 UDB for iSeries systems.

DB2 UDB for iSeries (Toolbox XA) supports two phase data source:

com.ibm.as400.access.AS400JDBCXADataSource

Requires JDBC driver files: jt400.jar

Requires DataStoreHelper class:

com.ibm.websphere.rsadapter.DB2AS400DataStoreHelper

Does not require an authentication alias if WebSphere Application Server and DB2 UDB for iSeries are

installed in the same server. If they are installed in different servers, the user ID and password are

required.

Requires properties:

v serverName The name of the server from which the data source obtains connections. Example:

myserver.mydomain.com.

Chapter 13. Data access resources 647

5. DB2 legacy CLI-based Type 2 JDBC Driver

Deprecated in Version 6.1: This JDBC provider is deprecated in WebSphere Application Server

Version 6.1. Therefore it is no longer an available choice among provider

types in the administrative console. Select the DB2 Universal JDBC

Provider instead.

The DB2 legacy CLI-based Type 2 JDBC Driver Provider is built on top of DB2 CLI (Call Level

Interface). It uses the DB2 CLI interface to communicate with DB2 UDB servers. This provider is

intended for remote connections to DB2 running on iSeries; for use with Application Server on

Windows, UNIX, or workstation-based LINUX, it therefore requires the DB2 Connect Driver (which is

available from DB2).

DB2 legacy CLI-based Type 2 JDBC Driver supports one phase data source:

COM.ibm.db2.jdbc.DB2ConnectionPoolDataSource

Requires JDBC driver files: db2java.zip (Note: If you run SQLJ in DB2 Version 8, db2jcc.jar is also

required.)

Requires DataStoreHelper class:

com.ibm.websphere.rsadapter.DB2DataStoreHelper

Does not require a valid authentication alias.

Requires properties:

v databaseName The name of the database from which the data source obtains connections.

Example: Sample.
6. DB2 legacy CLI-based Type 2 JDBC Driver (XA)

Deprecated in Version 6.1: This JDBC provider is deprecated in WebSphere Application Server

Version 6.1. Therefore it is no longer an available choice among provider

types in the administrative console. Select the DB2 Universal JDBC

Provider (XA) instead.

The DB2 legacy CLI-based Type 2 JDBC Driver (XA) is built on top of DB2 CLI (Call Level Interface).

It uses the DB2 CLI interface to communicate with DB2 UDB servers. This provider is intended for

remote connections to DB2 running on iSeries; for use with Application Server on Windows, UNIX, or

workstation-based LINUX, it therefore requires the DB2 Connect Driver (which is available from DB2).

DB2 legacy CLI-based Type 2 JDBC Driver (XA) supports two phase data source:

COM.ibm.db2.jdbc.DB2XADataSource

Requires JDBC driver files: db2java.zip

Requires DataStoreHelper class:

com.ibm.websphere.rsadapter.DB2DataStoreHelper

Does not require a valid authentication alias.

Requires properties:

v databaseName The name of the database from which the data source obtains connections.

Example: Sample.
7. DB2 UDB for iSeries (Native - Version 5 Release 1 and earlier) -- Deprecated

This JDBC provider is deprecated because it corresponds to a version of the iSeries operating system

that WebSphere Application Server Version 6.x does not support. You must now use iSeries V5R2 or a

later release of the iSeries operating system, for which the WebSphere Application Server

administrative console lists one native iSeries DB2 non-XA provider: DB2 UDB for iSeries (Native).

The iSeries Developer Kit for Java contains this Type 2 JDBC driver that is built on top of the iSeries

DB2 Call Level Interface (CLI) native libraries. Only use this driver for local DB2 connections on

iSeries. It is not recommended for remote access. Use this driver for iSeries V5R1, or earlier releases.

DB2 UDB for iSeries (Native V5R1 and earlier) supports one phase data source:

com.ibm.db2.jdbc.app.DB2StdConnectionPoolDataSource

Requires JDBC driver files: db2_classes.jar

648 Administering applications and their environment

Requires DataStoreHelper class:

com.ibm.websphere.rsadapter.DB2AS400DataStoreHelper

Does not require an authentication alias.

Requires properties:

v databaseName The name of the relational database to which the data source connections are

established. This name must appear in the iSeries Relational Database Directory. The default is

*LOCAL.
8. DB2 UDB for iSeries (Native XA - Version 5 Release 1 and earlier) -- Deprecated

This JDBC provider is deprecated because it corresponds to a version of the iSeries operating system

that WebSphere Application Server Version 6.x does not support. You must now use iSeries V5R2 or a

later release of the iSeries operating system, for which the administrative console lists one native

iSeries DB2 XA provider: DB2 UDB for iSeries (Native XA).

The iSeries Developer Kit for Java contains this XA-compliant Type 2 JDBC driver built on top of the

iSeries DB2 Call Level Interface (CLI) native libraries. Only use this driver for local DB2 connections on

iSeries. It is not recommended for remote access. Use this driver for iSeries V5R1, or earlier releases.

DB2 UDB for iSeries (Native XA - V5R1 and earlier) supports two phase data source:

com.ibm.db2.jdbc.app.DB2StdXADataSource

Requires JDBC driver files: db2_classes.jar

Requires DataStoreHelper class:

com.ibm.websphere.rsadapter.DB2AS400DataStoreHelper

Does not require an authentication alias.

Requires properties:

v databaseName The name of the relational database to which the data source connections are

established. This name must appear in the iSeries Relational Database Directory. The default is

*LOCAL.

For more information on DB2 UDB for iSeries, visit the DB2 Web site at: http://www.ibm.com/software/
data/db2/

DB2 on z/OS, connecting to Application Server on Windows, UNIX, or workstation-based

LINUX

1. DB2 Universal JDBC Provider

The DB2 Universal JDBC Driver is an architecture-neutral JDBC driver for distributed and local DB2

access. Because the Universal Driver architecture is independent of any particular JDBC driver

connectivity or target platform, it allows both Java connectivity (Type 4) or Java Native Interface (JNI)

based connectivity (Type 2) in a single driver instance to DB2. Starting with WebSphere Application

Server Version 5.0.2, the product now supports both Type 2 and Type 4 JDBC drivers. To use the Type

4 driver, you must install DB2 Version 8.1 or a later version. To use the Type 2 driver, you must install

DB2 Version 8.1 Fix Pack 2 or a later version.

This JDBC driver allows applications to use both JDBC and Structured Query Language in Java

(SQLJ) access.

The DB2 Universal JDBC Driver Provider supports one phase data source:

com.ibm.db2.jcc.DB2ConnectionPoolDataSource

Requires JDBC driver files:

v db2jcc.jar After you install DB2, you can find this jar file in the DB2 java directory. For Type 4

JDBC driver support from a client machine where DB2 is not installed, copy this file to the local

machine. If you install any fixes or upgrades to DB2, you must update this file as well. You must

also set the DB2UNIVERSAL_JDBC_DRIVER_PATH path variable to point to the db2jcc.jar file.

See the Cloudscape section for more information on the DB2UNIVERSAL_JDBC_DRIVER_PATH

path variable.

Chapter 13. Data access resources 649

http://www-3.ibm.com/software/data/db2/
http://www-3.ibm.com/software/data/db2/

Note: To find out the version of the universal driver you are using, issue this DB2 command:

java com.ibm.db2.jcc.DB2Jcc -version

The output for the above example is:

IBM DB2 JDBC Universal Driver Architecture 2.2.xx

v db2jcc_license_cu.jar This is the DB2 Universal JDBC driver license file that allows access to the

DB2 Universal database. Use this jar file or the next one to gain access to the database. This jar file

ships with WebSphere Application Server in a directory defined by

${UNIVERSAL_JDBC_DRIVER_PATH}environment variable.

v db2jcc_license_cisuz.jar This is the DB2 Universal JDBC driver license file that allows access to

the following databases:

– DB2 Universal

– DB2 for iSeries

– DB2 for z/OS

– SQLDS

The db2jcc_license_cisuz.jar does not ship with Websphere Application Server and should be

located in the same directory as the db2jcc.jar file, so that the

DB2UNIVERSAL_JDBC_DRIVER_PATH points to both.
 The classpath for this provider is set as follows:

 <classpath>${DB2UNIVERSAL_JDBC_DRIVER_PATH}/db2jcc.jar </classpath>

 <classpath>${DB2UNIVERSAL_JDBC_DRIVER_PATH}/db2jcc_license_cu.jar</classpath>

 <classpath>${DB2UNIVERSAL_JDBC_DRIVER_PATH}/db2jcc_license_cisuz.jar</classpath>

Note: The license jar files are independent of each other; therefore, order does not matter.

Requires DataStoreHelper class:

com.ibm.websphere.rsadapter.DB2UniversalDataStoreHelper

Requires a valid authentication alias.

Requires properties:

v databaseName This is an actual database name if the driverType is set to 4, or a locally

cataloged database name if the driverType is set to 2.

v driverType The JDBC connectivity type of a data source. There are two permitted values: 2 and 4.

If you want to use Universal JDBC Type 2 driver, set this value to 2. If you want to use Universal

JDBC Type 4 driver, set this value to 4.

v serverName The TCP/IP address or host name for the Distributed Relational Database Architecture

(DRDA) server. Provide a value for this property only if your driverType is set to 4. This property is

not required if your driverType is set to 2.

v portNumber The TCP/IP port number where the DRDA server resides. Provide a value for this

property only if your driverType is set to 4. This property is not required if your driverType is set to

2.
2. DB2 Universal JDBC Provider (XA)

The DB2 Universal JDBC Driver (XA) is an architecture-neutral JDBC driver for distributed and local

DB2 access. In WebSphere Application Server Version 5.0.2, this driver only supports Java Native

Interface (JNI) based connectivity (Type 2) in a single driver instance to DB2. To use this driver, you

must install DB2 Version 8.1 Fix Pack 2 or a later version. This driver supports two phase transactions

and the WebSphere Application Server Version 5.0 data source. This driver allows applications to use

both JDBC and SQLJ access.

The DB2 Universal JDBC Driver Provider supports the two phase data source:

com.ibm.db2.jcc.DB2XADataSource

Requires JDBC driver files:

v db2jcc.jar After you install DB2, you can find this .jar file in the DB2 java directory. For Type 4

JDBC driver support from a client machine where DB2 is not installed, copy this file to the local

machine. If you install any fixes or upgrades to DB2, you must update this file as well. You must

also set the DB2UNIVERSAL_JDBC_DRIVER_PATH environment variable to point to the

650 Administering applications and their environment

db2jcc.jar file. See the Cloudscape section for more information on the

DB2UNIVERSAL_JDBC_DRIVER_PATH environment variable.

Note: To find the level of universal driver you are using, issue the following DB2 command:

java com.ibm.db2.jcc.DB2Jcc -version

example output of the above:

 IBM DB2 JDBC Universal Driver Architecture 2.2.xx

v db2jcc_license_cu.jar This is the DB2 Universal JDBC driver license file that allows access to the

DB2 Universal database. Use this jar file or the next one to gain access to the database. This jar file

ships with WebSphere Application Server in the WAS_HOME/universalDriver/lib directory.

v db2jcc_license_cisuz.jar This is the DB2 Universal JDBC driver license file that allows access to

the following databases:

– DB2 Universal

– DB2 for iSeries

– DB2 for z/OS

– SQLDS

You must use the right license jar file to access a specific database backend.

Requires DataStoreHelper class:

com.ibm.websphere.rsadapter.DB2UniversalDataStoreHelper

Requires a valid authentication alias.

Requires properties:

v databaseName This is a locally cataloged database name.

v driverType This is the JDBC connectivity type of a data source. If you are running a version of

DB2 prior to DB2 V8.1 FP6, you are restricted to using only the type 2 driver.

v serverName The TCP/IP address or host name for the Distributed Relational Database Architecture

(DRDA) server. Provide a value for this property only if your driverType is set to 4. This property is

not required if your driverType is set to 2.

v portNumber The TCP/IP port number where the DRDA server resides. Provide a value for this

property only if your driverType is set to 4. This property is not required if your driverType is set to

2.
3. DB2 legacy CLI-based Type 2 JDBC Driver

Deprecated in Version 6.1: This JDBC provider is deprecated in WebSphere Application Server

Version 6.1. Therefore it is no longer an available choice among provider

types in the administrative console. Select the DB2 Universal JDBC

Provider instead.

The DB2 legacy CLI-based Type 2 JDBC Driver Provider is built on top of DB2 CLI (Call Level

Interface). It uses the DB2 CLI interface to communicate with DB2 UDB servers. For use with

Application Server on Windows, UNIX, or workstation-based LINUX, this provider requires DB2

Connect (which is available from DB2).

DB2 legacy CLI-based Type 2 JDBC Driver supports one phase data source:

COM.ibm.db2.jdbc.DB2ConnectionPoolDataSource

Requires JDBC driver files: db2java.zip (Note: If you run SQLJ in DB2 Version 8, db2jcc.jar is also

required.)

Requires DataStoreHelper class:

com.ibm.websphere.rsadapter.DB2DataStoreHelper

Does not require a valid authentication alias.

Requires properties:

v databaseName The name of the database from which the data source obtains connections.

Example: Sample.
4. DB2 legacy CLI-based Type 2 JDBC Driver (XA)

Chapter 13. Data access resources 651

Deprecated in Version 6.1: This JDBC provider is deprecated in WebSphere Application Server

Version 6.1. Therefore it is no longer an available choice among provider

types in the administrative console. Select the DB2 Universal JDBC

Provider (XA) instead.

The DB2 legacy CLI-based Type 2 JDBC Driver (XA) is built on top of DB2 CLI (Call Level Interface).

It uses the DB2 CLI interface to communicate with DB2 UDB servers. For use with Application Server

on Windows, UNIX, or workstation-based LINUX, this provider requires DB2 Connect (which is

available from DB2).

DB2 legacy CLI-based Type 2 JDBC Driver (XA) supports two phase data source:

COM.ibm.db2.jdbc.DB2XADataSource

Requires JDBC driver files: db2java.zip (Note: If you run SQLJ in DB2 Version 8, db2jcc.jar is also

required.)

Requires DataStoreHelper class:

com.ibm.websphere.rsadapter.DB2DataStoreHelper

Does not require a valid authentication alias.

Requires properties:

v databaseName The name of the database from which the data source obtains connections.

Example: Sample.

For more information on DB2 for z/OS, visit the DB2 Web site at: http://www.ibm.com/software/data/db2/.

Cloudscape v10.x

(Cloudscape v10.0 through Cloudscape 10.1.x)

v

Requirement: To configure JDBC access, you must specify Derby JDBC provider names, Derby JDBC

driver classes, and Derby data source classes. Because the new Cloudscape code base

is the product of the Apache Derby Project, the database uses Derby JDBC classes.

v

Restriction: Do not use Cloudscape v10.x as a production database. Use it for development and test

purposes only.
1. Derby JDBC Provider

The Derby JDBC driver provides JDBC access to the Cloudscape v10.x database by using the

framework that is already embedded in WebSphere Application Server for Cloudscape. However, you

cannot use any Version 4.0 data sources with Cloudscape v10.x.

The Derby JDBC Provider supports one phase data source:

org.apache.derby.jdbc.EmbeddedConnectionPoolDataSource

Requires JDBC driver files: derby.jar; full path name: ${WAS_APP_SERVER_ROOT}/derby/lib/derby.jar

Requires DataStoreHelper class:

com.ibm.websphere.rsadapter.DerbyDataStoreHelper

Does not require a valid authentication alias.

Requires properties:

v databaseName The name of the database from which the data source obtains connections. If you

do not specify a fully qualified path name, Application Server uses the default location of

WAS_HOME/derby (or the equivalent default for a UNIX or LINUX environment).

– Example database path name for Windows: c:\temp\sampleDB

– Example database path name for UNIX or LINUX: /tmp/sampleDB

If no database currently exists for the path name you want to specify, simply append ;create=true

to the path name to create a database dynamically. (For example: c:\temp\sampleDB;create=true)

652 Administering applications and their environment

http://www-3.ibm.com/software/data/db2/

2. Derby JDBC Provider (XA)

The Derby JDBC driver (XA) provides JDBC access to the Cloudscape v10.x database by using the

framework that is already embedded in WebSphere Application Server for Cloudscape. However, you

cannot use any Version 4.0 data sources with Cloudscape v10.x.

The Derby JDBC Provider (XA) supports two phase data source:

org.apache.derby.jdbc.EmbeddedXADataSource

Requires JDBC driver files: derby.jar; full path name: ${WAS_APP_SERVER_ROOT}/derby/lib/derby.jar

Requires DataStoreHelper class:

com.ibm.websphere.rsadapter.DerbyDataStoreHelper

Does not require a valid authentication alias.

Requires properties:

v databaseName The name of the database from which the data source obtains connections. If you

do not specify a fully qualified path name, Application Server uses the default location of

WAS_HOME/derby (or the equivalent default for a UNIX or LINUX environment).

– Example database path name for Windows: c:\temp\sampleDB

– Example database path name for UNIX or LINUX: /tmp/sampleDB

If no database currently exists for the path name you want to specify, simply append ;create=true

to the path name to create a database dynamically. (For example: c:\temp\sampleDB;create=true)
3.

Derby Network Server using Universal JDBC driver -- Deprecated

This JDBC provider is deprecated in WebSphere Application Server Version 6.1. Therefore it is no

longer an available choice among provider types in the administrative console.

This Derby driver takes advantage of the Network Server support that the DB2 universal Type 4 JDBC

driver provides. You cannot use any Version 4.0 data sources with Cloudscape v10.x.

Use the following one phase data source for the Derby Network Server using the Universal JDBC

driver:

 com.ibm.db2.jcc.DB2ConnectionPoolDataSource

Requires JDBC driver files:

v db2jcc.jar If you install and run DB2, you must use the db2jcc.jar file that comes with DB2. To do

that, the classpath in the JDBC template for Derby Network Server is set to be:

<classpath>${DB2UNIVERSAL_JDBC_DRIVER_PATH}/db2jcc.jar</classpath>

<classpath>${CLOUDSCAPE_JDBC_DRIVER_PATH}/otherJars/db2jcc.jar</classpath>

<classpath>${UNIVERSAL_JDBC_DRIVER_PATH}/db2jcc_license_cu.jar</classpath>

which means that the db2jcc.jar from DB2 always takes precedence. Note that this also means that

you must set the DB2 environment variable DB2UNIVERSAL_JDBC_DRIVER_PATH in WebSphere

Application Server when you set up your DB2 data source. This is instead of hard coding the path of

the db2jcc.jar for DB2 data sources.

v db2jcc_license_cu.jar This file is the DB2 Universal JDBC license file that provides access to the

Derby databases using the Network Server framework. Use this file to gain access to the database.

This file ships with WebSphere and is located in ${UNIVERSAL_JDBC_DRIVER_PATH}.

Note: UNIVERSAL_JDBC_DRIVER_PATH is a WebSphere environment variable that is already

mapped to the location in Websphere Application Server where the license jar file is located,

and will only be used if the DB2UNIVERSAL_JDBC_DRIVER_PATH is not set. DB2 users

should ensure that DB2UNIVERSAL_JDBC_DRIVER_PATH is set to avoid loading multiple

versions of the db2jcc.jar file.

Note: DB2UNIVERSAL_JDBC_DRIVER_PATH is a WebSphere environment variable that you

must set to point to the location of db2jcc.jar file (that comes with DB2). This variable is set

only if you create a DB2 provider.

Chapter 13. Data access resources 653

Note: Derby requires only db2jcc_license_c.jar; however, WebSphere Application Server uses

db2jcc_license_cu.jar because this works for both DB2 UDB and Derby.

Requires DataStoreHelper class:

com.ibm.websphere.rsadapter.DerbyNetworkServerDataStoreHelper

Requires a valid authentication alias.

Requires properties:

v databaseName The name of the database from which the data source obtains connections. If you

do not specify a fully qualified path name, Application Server uses the default location of

WAS_HOME/derby (or the equivalent default for a UNIX or LINUX environment).

– Example database path name for Windows: c:\temp\sampleDB

– Example database path name for UNIX or LINUX: /tmp/sampleDB

If no database currently exists for the path name you want to specify, simply append ;create=true

to the path name to create a database dynamically. (For example: c:\temp\sampleDB;create=true)

v driverType Only the Type 4 driver is allowed.

v serverName The TCP/IP address or the host name for the Distributed Relational Database

Architecture (DRDA) server.

v portNumber The TCP/IP port number where the DRDA server resides. The default value is port

1527.

v retrieveMessagesfromServerOnGetMessage This property is required by WebSphere Application

Server, not the database. The default value is false. You must set the value of this property to true,

to enable text retrieval using the SQLException.getMessage() method.
4. Derby Network Server using Derby Client provider

Use this provider to access only Cloudscape 10.1.x databases that run on the same node as

WebSphere Application Server.

Use the following one phase data source for the Derby Network Server using Derby Client provider:

 org.apache.derby.jdbc.ClientConnectionPoolDataSource

Cloudscape v10.1.x does not support Version 4.0 data sources.

Requires the following JDBC driver file:

v derbyclient.jar

v

Requires DataStoreHelper class:

com.ibm.websphere.rsadapter.DerbyNetworkServerDataStoreHelper

Requires the databaseName property: The name of the database from which the data source obtains

connections. If you do not specify a fully qualified path name, Application Server uses the default

location of WAS_HOME/derby (or the equivalent default for a UNIX or LINUX environment).

v Example database path name for Windows: c:\temp\sampleDB

v Example database path name for UNIX or LINUX: /tmp/sampleDB

If no database currently exists for the path name you want to specify, append ;create=true to the path

name to create a database dynamically. (For example: c:\temp\sampleDB;create=true)

5. Derby Network Server using Derby Client provider (XA)

Use this provider to access only Cloudscape 10.1.x databases that run on the same node as

WebSphere Application Server.

Use the following XA data source for this Derby Network Server using Derby Client provider:

 org.apache.derby.jdbc.XADataSource

Cloudscape v10.1.x does not support Version 4.0 data sources.

Requires the following JDBC driver file:

v derbyclient.jar

v

Requires DataStoreHelper class:

654 Administering applications and their environment

com.ibm.websphere.rsadapter.DerbyNetworkServerDataStoreHelper

Requires the databaseName property: The name of the database from which the data source obtains

connections. If you do not specify a fully qualified path name, Application Server uses the default

location of WAS_HOME/derby (or the equivalent default for a UNIX or LINUX environment).

v Example database path name for Windows: c:\temp\sampleDB

v Example database path name for UNIX or LINUX: /tmp/sampleDB

If no database currently exists for the path name you want to specify, append ;create=true to the path

name to create a database dynamically. (For example: c:\temp\sampleDB;create=true)

For more information on the new Cloudscape code base, visit the Apache Derby Project Web site at:

http://incubator.apache.org/derby/.

Informix

1. Informix JDBC Driver

The Informix JDBC Driver is a Type 4 JDBC driver that provides JDBC access to the Informix

database.

Informix JDBC Driver supports one phase data source:

 com.informix.jdbcx.IfxConnectionPoolDataSource

Requires JDBC driver files:

 ifxjdbc.jar

 ifxjdbcx.jar

Requires DataStoreHelper class:

com.ibm.websphere.rsadapter.InformixDataStoreHelper

Requires a valid authentication alias.

Requires properties:

v serverName The name of the Informix instance on the server. Example: ol_myserver.

v portNumber The port on which the instances listen. Example: 1526.

v ifxIFXHOST Either the IP address or the host name of the machine that is running the Informix

database to which you want to connect. Example: myserver.mydomain.com.

To support IPv6: On AIX and Solaris, IBM Informix Dynamic Server 10.00 with fix pack 1 supports

the IPv6 standard. To enable IPv6 on your WebSphere Application Server

connection with one of these Informix releases, input your full IPv6 host name for

the ifxIFXHOST property.

v databaseName The name of the database from which the data source obtains connections.

Example: Sample.

v informixLockModeWait Although not required, this property enables you to set the number of

seconds that Informix software waits for a lock. By default, Informix code throws an exception if it

cannot immediately acquire a lock. Example: 2.
2. Informix JDBC Driver (XA)

The Informix JDBC Driver (XA) is a Type 4 JDBC driver that provides XA-compliant JDBC access to

the Informix database.

Informix JDBC Driver (XA) supports two phase data source:

com.informix.jdbcx.IfxXADataSource

Requires JDBC driver files:

 ifxjdbc.jar

 ifxjdbcx.jar

To use SQLJ: This provider also requires driver file ifxsqlj.jar if you plan to use SQLJ for queries.

Requires DataStoreHelper class:

com.ibm.websphere.rsadapter.InformixDataStoreHelper

Requires a valid authentication alias.

Chapter 13. Data access resources 655

http://incubator.apache.org/derby/

Requires properties:

v serverName The name of the Informix instance on the server. Example: ol_myserver.

v portNumber The port on which the instances listen. Example: 1526.

v ifxIFXHOST Either the IP address or the host name of the machine that is running the Informix

database to which you want to connect. Example: myserver.mydomain.com.

To support IPv6: On AIX and Solaris, IBM Informix Dynamic Server 10.00 with fix pack 1 supports

the IPv6 standard. To enable IPv6 on your WebSphere Application Server

connection with one of these Informix releases, input your full IPv6 host name for

the ifxIFXHOST property.

v databaseName The name of the database from which the data source obtains connections.

Example: Sample.

v ifxIFX_XASPEC Turn on this property when multiple users access the same database. Activating

the property enforces tight coupling of XA transactions within the same global transaction ID, and

requires the transactions to share lock space. These parameters help prevent transaction

management errors from occurring in cases of multiple client requests. Turn on the ifxIFX_XASPEC

property by assigning it the value of Y or y; either character works because the setting is not

case-specific. Turn the property off by assigning it the value of N or n. WebSphere Application Server

ignores all other values. Your setting for the property overrides the Informix database system setting.

v informixLockModeWait Although not required, this property enables you to set the number of

seconds that Informix software waits for a lock. By default, Informix code throws an exception if it

cannot immediately acquire a lock. Example: 2.

For more information on Informix, visit the Informix Web site at: http://www.ibm.com/software/data/informix/

Sybase

1. Sybase jConnect for JDBC driver

The Sybase jConnect JDBC driver is a Type 4 JDBC driver that provides JDBC access to the Sybase

database.

Sybase jConnect JDBC driver supports one phase data source:

com.sybase.jdbc2.jdbc.SybConnectionPoolDataSource

Requires JDBC driver files: jconn2.jar.

For IPv6 support: For applications that access Sybase in an IPv6 environment, you must use the

Sybase jConnect JDBC driver version 6.0 EBF 12884. This implementation uses

different classes and therefore requires a different JAR file and a different

implementation class designation. You can define the jConnect JDBC driver v6.0

EBF 12884 in the administrative console by selecting User-defined as the

database type on the New JDBC provider page. On the JDBC provider general

configuration page, replace the default JAR file name with jconn3.jar. For the

implementation class, input com.sybase.jdbc3.jdbc.SybConnectionPoolDataSource.

The data store helper class and required properties are the same for all Sybase

JDBC drivers.

Requires DataStoreHelper class:

com.ibm.websphere.rsadapter.SybaseDataStoreHelper

Requires a valid authentication alias.

Requires properties:

v serverName The name of the database server. Example: myserver.mydomain.com.

v databaseName The name of the database from which the data source obtains connections.

Example: Sample.

v portNumber The TCP/IP port number through which all communications to the server take place.

Example: 4100.

v connectionProperties A custom property required for applications containing EJB 2.0 enterprise

beans. Value: SELECT_OPENS_CURSOR=true(Type: java.lang.String)

656 Administering applications and their environment

http://www-3.ibm.com/software/data/informix/

2. Sybase jConnect for JDBC driver (XA)

The Sybase jConnect JDBC driver (XA) is a Type 4 JDBC driver that provides XA-compliant JDBC

access to the Sybase database.

Sybase jConnect JDBC driver (XA) supports two phase data source:

com.sybase.jdbc2.jdbc.SybXADataSource

Requires JDBC driver files: jconn2.jar.

For IPv6 support: For applications that access Sybase in an IPv6 environment, you must use the

Sybase jConnect JDBC driver version 6.0 EBF 12884. This implementation uses

different classes and therefore requires a different JAR file and a different

implementation class designation. You can define the jConnect JDBC driver v6.0

EBF 12884 in the administrative console by selecting User-defined as the

database type on the New JDBC provider page. On the JDBC provider general

configuration page, replace the default JAR file name with jconn3.jar. For the

implementation class, input com.sybase.jdbc3.jdbc.SybXADataSource. The data

store helper class and required properties are the same for all Sybase JDBC

drivers.

Requires DataStoreHelper class:

com.ibm.websphere.rsadapter.SybaseDataStoreHelper

Requires a valid authentication alias.

Requires properties:

v serverName The name of the database server. Example: myserver.mydomain.com

v databaseName The name of the database from which the data source obtains connections.

Example: Sample.

v portNumber The TCP/IP port number through which all communications to the server take place.

Example: 4100.

v connectionProperties A custom property required for applications containing EJB 2.0 enterprise

beans. Value: SELECT_OPENS_CURSOR=true(Type: java.lang.String)

For more information on Sybase, visit the Sybase Web site at: http://www.sybase.com/

Oracle

1. Oracle JDBC Driver

The Oracle JDBC Driver provides JDBC access to the Oracle database. This JDBC driver supports

both Type 2 JDBC access and Type 4 JDBC access.

Oracle JDBC Driver supports one phase data source:

 oracle.jdbc.pool.OracleConnectionPoolDataSource

Requires JDBC driver files: ojdbc14.jar. (Note: If you require Oracle trace, use ojdbc14_g.jar.)

Requires DataStoreHelper class:

com.ibm.websphere.rsadapter.OracleDataStoreHelper

(Note: If you are running Oracle10g, use com.ibm.websphere.rsadapter.Oracle10gDataStoreHelper.)

Requires a valid authentication alias.

Requires properties:

v URL The URL that indicates the database from which the data source obtains connections.

Example: jdbc:oracle:thin:@myServer:1521:myDatabase, where myServer is the server name, 1521

is the port it is using for communication, and myDatabase is the database name.
2. Oracle JDBC Driver (XA)

The Oracle JDBC Driver (XA) provides XA-compliant JDBC access to the Oracle database. This JDBC

driver supports both Type 2 JDBC access and Type 4 JDBC access.

Oracle JDBC Driver (XA) supports two phase data source:

oracle.jdbc.xa.client.OracleXADataSource

Chapter 13. Data access resources 657

http://www.sybase.com/

Requires JDBC driver files: ojdbc14.jar. (Note: If you require Oracle trace, use ojdbc14_g.jar.)

Requires DataStoreHelper class:

com.ibm.websphere.rsadapter.OracleDataStoreHelper

(Note: If you are running Oracle10g, use com.ibm.websphere.rsadapter.Oracle10gDataStoreHelper.)

Requires a valid authentication alias.

Requires properties:

v URL The URL that indicates the database from which the data source obtains connections.

Example: jdbc:oracle:thin:@myServer:1521:myDatabase, where myServer is the server name, 1521

is the port it is using for communication, and myDatabase is the database name.

For more information on Oracle, visit the Oracle Web site at: http://www.oracle.com/

MS SQL Server

MS SQL Server 2005: WebSphere Application Server Version 6.10 supports JDBC transactions with the

new Microsoft SQL Server 2005, as well as Microsoft SQL Server 2000. For

access to either version of the database, use Version 3.5, Service pack 2, of either

of the following JDBC providers:

v DataDirect ConnectJDBC Provider, type 4 driver, for MS SQL Server -- including

the XA implementation

v IBM WebSphere embedded ConnectJDBC Provider for MS SQL Server --

including the XA implementation

These JDBC drivers provide the same function for MS SQL Server 2005 as MS SQL Server 2000. As long

as you use only those new features of MS SQL Server 2005 that have no impact on JDBC transactions,

you generally risk no exceptions by upgrading to the new version. WebSphere Application Server does,

however, support two new options for setting isolation level in MS SQL Server 2005: SNAPSHOT and

READ_COMMITTED_SNAPSHOT. The following chart describes these isolation levels as well as the few

requirements and concerns for using MS SQL Server 2005 with Application Server v6.1.

658 Administering applications and their environment

http://www.oracle.com/

Compatibility or New Usage concern Resolution or Recommended action

New

requirements:

Specifying your database version You do not have to specify your version of MS SQL Server.

Specify the name of your database as usual. WebSphere

Application Server detects the version and makes any

necessary class attribute adjustments.

Parenthesis requirement for locking

hints

MS SQL Server 2005 requires that you place parentheses

around locking hints. For example:

select value from t1 (holdlock)

where name = ?

New syntax for joining multiple locking

hints

v MS SQL Server 2005 requires use of the keyword with

to join multiple locking hints. For example:

select value from t1 with (updlock rowlock)

where name = ?

v For MS SQL Server 2000, no keyword is required. For

example:

select value from t1 (updlock rowlock)

where name = ?

Use of the alternate servers custom

data source property

Verify that all application component clients of the data

source issue commands that are valid for both database

versions before you configure the alternate servers

property to include both MS SQL Server 2005 and Server

2000 machines.

Deprecated data types Microsoft deprecated three data types for SQL Server 2005,

which are shown in the following list along with each

replacement data type:

v text, replaced by varchar(max)

v ntext, replaced by nvarchar(max)

v image, replaced by varbinary(max)

Chapter 13. Data access resources 659

Compatibility or New Usage concern Resolution or Recommended action

New

features:

SNAPSHOT isolation level This new isolation level implements optimistic locking for

transactions in which MS SQL Server 2005 serializes the

data.

You must configure the ALLOW_SNAPSHOT_ISOLATION

setting on the database, and then set the isolation level in

one of two ways:

v By isolation level constant: Invoke the method

setTransactionIsolation with one of three new

attributes:

– conn.setTransactionIsolation

(com.ibm.websphere.jdbc.extensions.

ExtConstants.TRANSACTION_SNAPSHOT)

– conn.setTransactionIsolation

(com.ddtek.jdbc.extensions.

ExtConstants.TRANSACTION_SNAPSHOT)

– conn.setTransactionIsolation(16)

v By custom data source property:

– Set the new data source custom property

snapshotSerializable to true, and

– Invoke the method setTransactionIsolation with the

attribute:

conn.setTransactionIsolation

(java.sql.Connection.TRANSACTION_SERIALIZABLE)

READ_COMMITTED_SNAPSHOT

isolation level

This isolation level is a new implementation of Read

committed. The policy enforces optimistic locking for read

operations with MS SQL Server 2005.

You must configure the isolation level on the database.

Then invoke the method setTransactionIsolation with the

attribute:

conn.setTransactionIsolation

(java.sql.Connection.TRANSACTION_READ_COMMITTED)

Transact-SQL enhancements, including:

new functions, additional data types,

and the ability to create recursive

queries

WebSphere Application Server does not currently support

these features; do not use them with WebSphere

Application Server Version 6.10.

Consult the Microsoft Web page at http://msdn2.microsoft.com/en-us/library/ms143232(en-
US.SQL.90).aspx for a complete list of deprecated items, as well as backward compatibility provisions, for

MS SQL Server 2005.

For the MS SQL Server JDBC drivers that support both database versions, perform the same steps and

set the same class paths and properties that were previously required for MS SQL Server 2000.

1. DataDirect ConnectJDBC type 4 driver for MS SQL Server

DataDirect ConnectJDBC type 4 driver for MS SQL Server is a Type 4 JDBC driver that provides

JDBC access to the MS SQL Server 2005 and MS SQL Server 2000 databases. This provider is for

use only with the Connect JDBC driver purchased from DataDirect Technologies.

This JDBC provider supports this data source:

 com.ddtek.jdbcx.sqlserver.SQLServerDataSource

Requires JDBC driver files:

sqlserver.jar,

base.jar and util.jar

660 Administering applications and their environment

http://msdn2.microsoft.com/en-us/library/ms143232.aspx
http://msdn2.microsoft.com/en-us/library/ms143232.aspx

(The spy.jar file is optional. You need this file to enable spy logging. The spy.jar file is not in the

same directory as the other three jar files. Instead, it is located in the ../spy/ directory.)

Requires DataStoreHelper class:

com.ibm.websphere.rsadapter.ConnectJDBCDataStoreHelper

Requires a valid authentication alias.

Requires properties:

v serverName The name of the server in which MS SQL Server resides. Example:

myserver.mydomain.com

v portNumber The TCP/IP port that MS SQL Server uses for communication. Port 1433 is the

default.

v databaseName The name of the database from which the data source obtains connections.

Example: Sample.
2. DataDirect ConnectJDBC type 4 driver for MS SQL Server (XA)

DataDirect ConnectJDBC type 4 driver for MS SQL Server (XA) is a Type 4 JDBC driver which

provides XA-compliant JDBC access to the MS SQL Server 2005 and MS SQL Server 2000

databases. This provider is for use only with the Connect JDBC driver purchased from DataDirect

Technologies.

This JDBC provider supports this data source:

com.ddtek.jdbcx.sqlserver.SQLServerDataSource.

Requires JDBC driver files:

sqlserver.jar,

base.jar and util.jar.

(The spy.jar file is optional. You need this file to enable spy logging. The spy.jar file is not in the

same directory as the other three jar files. Instead, it is located in the ../spy/ directory.)

Requires DataStoreHelper class:

com.ibm.websphere.rsadapter.ConnectJDBCDataStoreHelper

Requires a valid authentication alias.

Requires properties:

v serverName The name of the server in which MS SQL Server resides. Example:

myserver.mydomain.com

v portNumber The TCP/IP port that MS SQL Server uses for communication. Port 1433 is the

default.

v databaseName The name of the database from which the data source obtains connections.

Example: Sample.

For more information on the DataDirect ConnectJDBC driver, visit the DataDirect Web site at:

http://www.datadirect-technologies.com/

3. IBM WebSphere embedded ConnectJDBC driver for MS SQL Server

WebSphere embedded ConnectJDBC driver for MS SQL Server is a Type 4 JDBC driver that provides

JDBC access to the MS SQL Server 2005 and MS SQL Server 2000 databases. This JDBC driver

ships with WebSphere Application Server. Only use this provider with the Connect JDBC driver

embedded in WebSphere; it cannot be used with a Connect JDBC driver purchased separately from

DataDirect Technologies.

This JDBC provider supports this data source:

com.ibm.websphere.jdbcx.sqlserver.SQLServerDataSource.

Requires JDBC driver files:

sqlserver.jar

base.jar and

util.jar.

Chapter 13. Data access resources 661

http://www.datadirect-technologies.com/

(The spy.jar file is optional. You need this file to enable spy logging. The spy.jar file for the

WebSphere embedded Connect JDBC driver ships with WebSphere Application Server. All the files are

located in the WAS_HOME/lib/ directory.)

Requires DataStoreHelper class:

com.ibm.websphere.rsadapter.WSConnectJDBCDataStoreHelper

Requires a valid authentication alias.

Requires properties:

v serverName The name of the server in which MS SQL Server resides. Example:

myserver.mydomain.com

v portNumber The TCP/IP port that MS SQL Server uses for communication. Port 1433 is the

default.

v databaseName The name of the database from which the data source obtains connections.

Example: Sample.
4. IBM WebSphere embedded ConnectJDBC driver for MS SQL Server (XA)

WebSphere embedded ConnectJDBC driver for MS SQL Server (XA) is a Type 4 JDBC driver that

supports two-phase commit transactions on connections with the MS SQL Server 2005 and MS SQL

Server 2000 databases. This JDBC driver ships with WebSphere Application Server. Use this provider

with the IBM WebSphere Connect JDBC driver embedded in WebSphere Application Server. Do not

use it with the DataDirect Connect JDBC driver purchased separately from DataDirect Technologies.

The ConnectJDBC provider supports the following data source:

 com.ibm.websphere.jdbcx.sqlserver.SQLServerDataSource.

Requires JDBC driver files:

sqlserver.jar

base.jar and

util.jar.

An additional file, the spy.jar file, is optional. You need spy.jar for spy logging, which is a form of

JDBC driver-level trace.

All of the JAR files in the previous list are shipped with WebSphere Application Server and are

installed automatically with the product. They are also updated automatically when you apply

WebSphere Application Server service packs.

Requires DataStoreHelper class:

com.ibm.websphere.rsadapter.WSConnectJDBCDataStoreHelper

Requires a valid authentication alias.

Requires properties:

v serverName The name of the server in which MS SQL Server resides. Example:

myserver.mydomain.com

v portNumber The TCP/IP port that MS SQL Server uses for communication. Port 1433 is the

default.

v databaseName The name of the database from which the data source obtains connections.

Example: Sample.

Patches to the IBM WebSphere Connect JDBC driver jar files are installed automatically when you

apply WebSphere Application Server service packs. However, to update Microsoft SQL Server-side

programs for this JDBC driver, you must go to the IBM FTP site for WebSphere Application Server

embedded product updates. Use the following URL:

ftp://ftp.software.ibm.com/software/websphere/info/tools/DataDirect/datadirect.htm

An important server-side program is Stored Procedures for the Java Transaction API (JTA). Whether

you need to run one or two phase transactions with the XA-enabled IBM WebSphere Connect JDBC

driver, you must install Stored Procedures for JTA on all machines that run Microsoft SQL. The

WebSphere Application Server installation disks contain a base level of Stored Procedures for JTA. Go

to the previously listed FTP site for updates to this API.

Install Stored Procedures for JTA by performing the following steps:

662 Administering applications and their environment

ftp://ftp.software.ibm.com/software/websphere/info/tools/DataDirect/datadirect.htm

a. Determine whether you are running the 32-bit or 64-bit MS SQL Server and select the appropriate

sqljbc.dll and instjdbc.sql files.

b. Stop your MS SQL Server service.

c. Copy the sqljdbc.dll file into your %SQL_SERVER_INSTALL%\Binn\ directory.

d. Restart the MS SQL Server service.

e. Run the instjdbc.sql script. (The script can be run by the MS SQL Server Query Analyzer or the

ISQL utility).
ftp://ftp.software.ibm.com/software/websphere/info/tools/DataDirect/datadirect.htm

5. DataDirect SequeLink type 3 JDBC driver for MS SQL Server -- Deprecated

This type 3 JDBC driver for MS SQL Server is deprecated in WebSphere Application Server Version

6.0. Therefore it is no longer an available choice among provider types in the administrative console.

For best results with WebSphere Application Server JDBC access to MS SQL Server, use only JDBC

drivers that are not marked for deprecation. However, if you must continue using a deprecated driver

for JDBC access to MS SQL Server, you can configure it through the WebSphere Application Server

administrative console. Be sure to select User-defined for the database type. This selection triggers

the console to display default class files, data source interfaces, and so on for your user-defined JDBC

provider type. Replace those defaults with the following settings that are specific to the DataDirect

SequeLink type 3 JDBC driver. For information on this task, read the Configuring a JDBC provider

using the administrative console section of the Administering applications and their environment PDF

book.

Incompatible with MS SQL Server 2005: Use this JDBC driver for access to MS SQL Server 2000

only.

DataDirect SequeLink type 3 JDBC driver supports the following data source:

 com.ddtek.jdbcx.sequelink.SequeLinkDataSource

Requires JDBC driver files:

 sljc.jar and

 spy-sl.jar

(The JDBC driver shipped with WebSphere Application Server requires the sljc.jar and the

spy-sl.jar files. The JDBC driver purchased from DataDirect requires the sljc.jar and the spy.jar

files. The spy.jar and spy-sl.jar files are optional. You need these files to enable spy logging.)

Requires DataStoreHelper class:

com.ibm.websphere.rsadapter.SequeLinkDataStoreHelper

Requires a valid authentication alias.

Requires properties:

v serverName The name of the server in which SequeLink Server resides. Example:

myserver.mydomain.com

v portNumber The TCP/IP port that SequeLink Server uses for communication. By default,

SequeLink Server uses port 19996.

v databaseName The name of the database from which the data source obtains connections.

Example: Sample.

v enable2phase This property is necessary only if your application must participate in two-phase

transactions. By default, Application Server sets a user-defined implementation type to a connection

pool data source. The connection pool data source supports only one-phase transactions. Configure

two-phase transaction support by setting the enable2Phase custom property on each data source

that you create with your user-defined JDBC provider. Follow these steps:

a. Go to the Custom properties administrative console page by clicking Resources > JDBC

Providers > your_JDBC_provider > Data sources > your_data_source > Custom properties.

b. Click New.

c. Input enable2Phase as the property name and assign it the value of true. For Version 4 data

sources, use a property that works in the opposite manner: Input disable2Phase and assign it

the value of false.

Chapter 13. Data access resources 663

ftp://ftp.software.ibm.com/software/websphere/info/tools/DataDirect/datadirect.htm

The DataDirect SequeLink type 3 JDBC driver requires installation of SequeLink Server on all

machines running MS SQL Server. See the readme.html file found in the DataDirect folder on the

WebSphere Application Server CD for instructions on how to install SequeLink Server. (Install

SequeLink Server from the WebSphere Application Server CD only if you are using the SequeLink

JDBC driver embedded in WebSphere. Otherwise, install a copy of SequeLink Server purchased from

DataDirect Technologies.)

Patches to the IBM WebSphere SequeLink JDBC driver jar files are installed automatically when

applying WebSphere Application Server service packs. If updates are ever needed for the Microsoft

SQL Server-side installables (SequeLink server) for the IBM WebSphere SequeLink JDBC driver, they

will be made available from the following FTP site:

ftp://ftp.software.ibm.com/software/websphere/info/tools/DataDirect/datadirect.htm

For more information on the DataDirect SequeLink type 3 JDBC driver, visit the DataDirect Web site at:

http://www.datadirect-technologies.com/

6. Microsoft JDBC driver for MS SQL Server 2000 -- Deprecated

This type 4 JDBC driver for MS SQL Server 2000 is deprecated in WebSphere Application Server

Version 6.0. Therefore it is no longer an available choice among provider types in the administrative

console.

For best results with WebSphere Application Server JDBC access to MS SQL Server, use only JDBC

drivers that are not marked for deprecation. However, if you must continue using a deprecated driver

for JDBC access to MS SQL Server, you can configure it through the WebSphere Application Server

administrative console. Be sure to select User-defined for the database type. This selection triggers

the console to display default class files, data source interfaces, and so on for your user-defined JDBC

provider type. Replace those defaults with the following settings that are specific to the Microsoft JDBC

driver for MS SQL Server 2000. Follow the steps listed in Configuring a JDBC provider using the

administrative console section of the Administering applications and their environment PDF book..

Microsoft JDBC driver for MS SQL Server 2000 supports the following data source:

com.microsoft.jdbcx.sqlserver.SQLServerDataSource

Requires JDBC driver files:

mssqlserver.jar,

msbase.jar and msutil.jar

(The spy.jar file is optional. You need it to enable spy logging. However, Microsoft does not ship the

spy.jar file. Contact Microsoft about this issue.)

Requires DataStoreHelper class:

com.ibm.websphere.rsadapter.ConnectJDBCDataStoreHelper

Requires a valid authentication alias.

Requires properties:

v serverName The name of the server in which MS SQL Server resides. Example:

myserver.mydomain.com

v portNumber The TCP/IP port that MS SQL Server uses for communication. Port 1433 is the default.

v databaseName The name of the database from which the data source obtains connections.

Example: Sample.

v enable2phase This property is necessary only if your application must participate in two-phase

transactions. By default, Application Server sets a user-defined implementation type to a connection

pool data source. The connection pool data source supports only one-phase transactions. Configure

two-phase transaction support by setting the enable2Phase custom property on each data source

that you create with your user-defined JDBC provider. Follow these steps:

a. Go to the Custom properties administrative console page by clicking Resources > JDBC

Providers > your_JDBC_provider > Data sources > your_data_source > Custom properties.

b. Click New.

c. Input enable2Phase as the property name and assign it the value of true. For Version 4 data

sources, use a property that works in the opposite manner: Input disable2Phase and assign it

the value of false.

664 Administering applications and their environment

ftp://ftp.software.ibm.com/software/websphere/info/tools/DataDirect/datadirect.htm
http://www.datadirect-technologies.com/

For more information on the Microsoft JDBC driver for MS SQL Server 2000, visit the Microsoft Web

site at:

http://www.microsoft.com/sql

Configuring a JDBC provider using the administrative console

To create connections between an application and a relational database, WebSphere Application Server

uses the driver implementation classes that are encapsulated by the JDBC provider.

Each JDBC provider is essentially an object that represents vendor-specific JDBC driver classes to

Application Server, for establishing access to that particular vendor database. JDBC providers are

prerequisites for data sources, which supply applications with the physical connections to a database.

Consult the JDBC provider table to identify the appropriate JDBC provider for your database and

application requirements.

Configure at least one JDBC provider for each database server that you plan to use at a particular scope

within your WebSphere Application Server environment.

 1. Open the administrative console.

 2. Click Resources > JDBC > JDBC Providers.

 3. Select the scope at which applications can use the JDBC provider. (This scope becomes the scope of

any data source that you associate with this provider.) You can choose a cell, node, cluster, or server.

For more information, see Administrative console scope settings.

 4. Click New. This action causes the Create a new JDBC Provider wizard to launch.

 5. Use the first drop-down list to select the database type of the JDBC provider that you need to create.

The User-Defined option: Select User-Defined for your database type if you encounter either of the

following scenarios:

v You do not see your database type.

v You cannot select the JDBC provider type that you need in the next

step.

The user-defined selection triggers the wizard page to display your

provider type as a User-defined JDBC provider, and your implementation

type as User-defined. Consult your database documentation for the JDBC

driver class files, data source properties, and so on that are required for

your user-defined provider. You must supply this information on the next

two wizard pages: one page for database class path information, and the

other page for database-specific properties.

 6. Select your JDBC provider type if it is displayed in the second drop-down list. Select Show

Deprecated to trigger the display of both current and deprecated providers. If you cannot find your

provider in this expanded list, then select User-Defined from the previous list of database types.

 7. From the third drop-down list, select the implementation type that is necessary for your application. If

your application does not require that connections support two-phase commit transactions, choose

Connection Pool Data Source. Choose XA Data Source, however, if your application requires

connections that support two-phase commit transactions. Applications that use this data source

configuration have the benefit of container-managed transaction recovery.

After you select an implementation type, the wizard fills the name and the description fields for your

JDBC provider. You can type different values for these fields; they exist for administrative purposes

only.

 8. Click Next to see the Enter database class path information wizard page.

 9. In the Class path field, type the full path location of the database JDBC driver class files. Your class

path information becomes the value of the WebSphere environment variable that is displayed on this

page, in the form of ${DATABASE_JDBC_DRIVER_PATH}. WebSphere Application Server uses the

variable to define your JDBC provider; this practice eliminates the need to specify static JDBC class

Chapter 13. Data access resources 665

http://www.microsoft.com/sql

paths for individual applications. Remember that if you do not provide the full, correct JDBC driver

class path for the variable, your data source ultimately fails. If the field already displays a fully

qualified class path, you can accept that variable definition by completing the rest of this wizard page

and clicking Next.

10. Use the Native library path field to specify additional class files that your JDBC driver might require

to function properly on your WebSphere Application Server platform. Type the full directory path name

of these class files.

11. Click Next to see a summary of your JDBC provider settings.

12. Click Finish if you are satisfied with the entire JDBC provider configuration. You now see the JDBC

provider collection page, which displays your new JDBC provider in a table along with other providers

that are configured for the same scope.

Your next step is to create a data source for association with your JDBC provider. For detailed information,

see “Configuring a data source using the administrative console” on page 672.

JDBC provider collection:

Use this page to view JDBC providers. The JDBC provider object encapsulates the specific JDBC driver

implementation class for the data sources that you define and associate with the provider.

 To view this administrative console page, click Resources > JDBC > JDBC providers .

Name:

Specifies a text identifier for this provider.

 For example, this field can be DB2 JDBC Provider (XA).

 Data type String

Scope:

Specifies the scope of the JDBC provider; if you use any scope other than the default of Node, the

provider might not be available in other scope contexts. Data sources that are created with this JDBC

provider inherit this scope.

Description:

Specifies a text string describing this provider.

 Data type String

JDBC provider settings:

Use this page to modify JDBC provider settings.

 To view this administrative console page, click Resources > JDBC > JDBC providers > JDBC_provider.

Important: If you use this page to modify the class path or native library path of an existing JDBC

provider: After you apply and save the new settings, you must restart every application server

within the scope of that JDBC provider for the new configuration to work. Otherwise, you

receive a data source failure message.

Scope:

666 Administering applications and their environment

Specifies the scope of the JDBC provider; data sources that are created with this JDBC provider inherit

this scope.

Name:

Specifies the name of the resource provider.

 Data type String

Description:

Specifies a text description for the resource provider.

 Data type String

Class path:

Specifies a list of paths or JAR file names which together form the location for the resource provider

classes.

 For example, D:/SQLLIB/java/db2java.zip.

Class path entries are separated by using the ENTER key and must not contain path separator characters

(such as ’;’ or ’:’). Class paths contain variable (symbolic) names which you can substitute using a variable

map. Check the driver installation notes for the specific required JAR file names.

 Data type String

Native Library Path:

Specifies a list of paths that forms the location for the resource provider native libraries.

 Native path entries are separated by using the ENTER key and must not contain path separator

characters (such as ’;’ or ’:’). Native paths can contain variable (symbolic) names which you can substitute

using a variable map.

 Data type String

Implementation class name:

Specifies the Java class name of the JDBC driver implementation.

 This class is available in the driver file mentioned in the class path description above. For example,

COM.ibm.db2.jdbc.DB2XADataSource.

Note: If you modify the implementation class name of the JDBC provider after you have created the

provider, you might disconnect the provider from the template used to create it. As a result, data

sources created from this JDBC provider do not have an associated template; you must manually

configure a working data source through setting custom properties.

 Data type String

Chapter 13. Data access resources 667

JDBC provider summary:

Database type JDBC Provider Transaction support

Version and other

considerations

DB2 on Windows, UNIX,

or workstation-based

LINUX

DB2 Universal JDBC

Provider

One phase only

DB2 Universal JDBC

Provider (XA)

One and two phase The XA implementation is

not supported in

WebSphere Application

Server run on

workstation-based LINUX

DB2 legacy CLI-based Type

2 JDBC Provider

Deprecated in WebSphere

Application Server v.6.1

One phase only

DB2 legacy CLI-based Type

2 JDBC Provider (XA)

Deprecated in WebSphere

Application Server v.6.1

One and two phase

668 Administering applications and their environment

Database type JDBC Provider Transaction support

Version and other

considerations

DB2 UDB for iSeries

DB2 UDB for iSeries

(Native)

One phase only Recommended for use with

WebSphere Application

Server run on iSeries

DB2 UDB for iSeries

(Native XA)

One and two phase Recommended for use with

WebSphere Application

Server run on iSeries

DB2 UDB for iSeries

(Toolbox)

One phase only

DB2 UDB for iSeries

(Toolbox XA)

One and two phase

DB2 Universal JDBC

Provider (XA)

One and two phase -Only for use with

WebSphere Application

Server run on z/OS

-Only driver type 4 is

supported

-Does not support Version 4

data sources

DB2 legacy CLI-based Type

2 JDBC Provider

Deprecated in WebSphere

Application Server v.6.1

One phase only -Only for use with

WebSphere Application

Server run on Windows,

UNIX, or workstation-based

LINUX

- Requires the DB2

Connect driver (available

from DB2)

DB2 legacy CLI-based Type

2 JDBC Provider (XA)

Deprecated in WebSphere

Application Server v.6.1

One and two phase -Only for use with

WebSphere Application

Server run on Windows,

UNIX, or workstation-based

LINUX

- Requires the DB2

Connect driver (available

from DB2)

Chapter 13. Data access resources 669

Database type JDBC Provider Transaction support

Version and other

considerations

DB2 on z/OS

DB2 for z/OS Local JDBC

Provider (RRS), using the

Legacy DB2 for OS/390

and z/OS JDBC Driver

Removed

support: WebSphere

Application Server v6.1

does not support this

provider. Use the DB2

Universal JDBC Driver

provider instead. See

″Migrating from the

JDBC/SQLJ Driver for

OS/390 and z/OS to the

DB2 Universal JDBC

Driver″ in the Information

Management Software for

z/OS Solutions Information

Center.

One and two phase Only for use with

WebSphere Application

Server run on z/OS

DB2 Universal JDBC

Provider

One phase only

DB2 Universal JDBC

Provider (XA)

One and two phase -Only driver type 4 is

supported in WebSphere

Application Server run on

z/OS

-Does not support Version 4

data sources in WebSphere

Application Server run on

z/OS

DB2 legacy CLI-based Type

2 JDBC Provider

Deprecated in WebSphere

Application Server v.6.1

One phase only -Only for use with

WebSphere Application

Server run on Windows,

UNIX, or workstation-based

LINUX

- Requires the DB2

Connect program (available

from DB2)

DB2 legacy CLI-based Type

2 JDBC Provider (XA)

Deprecated in WebSphere

Application Server v.6.1

One and two phase -Only for use with

WebSphere Application

Server run on Windows,

UNIX, or workstation-based

LINUX

- Requires the DB2

Connect program (available

from DB2)

670 Administering applications and their environment

Database type JDBC Provider Transaction support

Version and other

considerations

Cloudscape Version

10.1.x

Cloudscape v10.1.x

provides the Apache Derby

runtime.

JDBC naming

requirements: Because

the new Cloudscape code

base is the product of the

Apache Derby Project,

Cloudscape v10.1.x uses

Derby JDBC classes.

Therefore you must specify

Derby JDBC provider

names, Derby JDBC driver

classes, and Derby data

source classes to configure

JDBC access to

Cloudscape v10.1.x.

Derby JDBC Provider One phase only - Not for use in clustered

environment: accessible

from a single JVM only

- Does not support Version

4 data sources

Derby JDBC Provider (XA) One and two phase - Not for use in clustered

environment: accessible

from a single JVM only

- Does not support Version

4 data sources

Derby Network Server

Provider using the Universal

JDBC driver

Deprecated in WebSphere

Application Server v.6.1

One phase only - Can be used in clustered

environment: a database

instance can be accessed

by multiple JVMs

- Does not support XA

- Does not support Version

4 data sources

Derby Network Server using

Derby Client provider

One phase only - Can be used in clustered

environment: a database

instance can be accessed

by multiple JVMs

- Does not support Version

4 data sources

- Only for use with

Cloudscape 10.1.x

databases that run on the

same node as WebSphere

Application Server

Derby Network Server using

Derby Client provider (XA)

One and two phase - Can be used in clustered

environment: a database

instance can be accessed

by multiple JVMs

- Does not support Version

4 data sources

- Only for use with

Cloudscape 10.1.x

databases that run on the

same node as WebSphere

Application Server

Informix

Informix JDBC Provider One phase only

Informix JDBC Provider

(XA)

One and two phase

Sybase

Sybase jConnect for JDBC

Provider

One phase only

Sybase jConnect for JDBC

Provider (XA)

One and two phase

Chapter 13. Data access resources 671

Database type JDBC Provider Transaction support

Version and other

considerations

Oracle

Oracle JDBC Provider One phase only

Oracle JDBC Provider(XA) One and two phase

Microsoft SQL Server

DataDirect ConnectJDBC

Provider, type 4 driver, for

MS SQL Server

One phase only - Only for use with the

corresponding driver from

DataDirect Technologies

- Version 3.5, Service pack

2 of the DataDirect

ConnectJDBC type 4 driver

can support access to both

MS SQL Server 2005 and

MS SQL Server 2000

DataDirect ConnectJDBC

Provider, type 4 driver, for

MS SQL Server (XA)

One and two phase - Only for use with the

corresponding driver from

DataDirect Technologies

- Version 3.5, Service pack

2 of the DataDirect

ConnectJDBC type 4 driver

can support access to both

MS SQL Server 2005 and

MS SQL Server 2000

IBM WebSphere embedded

ConnectJDBC Provider for

MS SQL Server

One phase only - Cannot be used outside of

WebSphere Application

Server environment

- Version 3.5, Service pack

2 of the driver can support

access to both MS SQL

Server 2005 and MS SQL

Server 2000

IBM WebSphere embedded

ConnectJDBC Provider for

MS SQL Server (XA)

One and two phase - Cannot be used outside of

WebSphere Application

Server environment

- Version 3.5, Service pack

2 of the driver can support

access to both MS SQL

Server 2005 and MS SQL

Server 2000

Configuring a data source using the administrative console

Application components use a data source to access connection instances to a relational database.

WebSphere Application Server supports two different versions of data source. Determine the data source

for your environment according to the enterprise bean and servlet specification levels that are the basis of

your applications:

v Data sources (WebSphere Application Server Version 4) are for use with the Enterprise JavaBeans

(EJB) 1.0 specification and the Java Servlet 2.2 specification.

v Data sources of the latest standard version are for use with applications that implement the more

advanced releases of these specifications.

Potential deprecation issue: This task gives you the option to create a new JDBC provider for the data

source. Consult the article “Vendor-specific data sources minimum required

672 Administering applications and their environment

settings” on page 638 to see which JDBC providers are deprecated. The

following procedure includes steps for designating a deprecated provider if

necessary.

When you create a data source, you associate it with a JDBC provider that is configured for access to a

specific vendor database. WebSphere Application Server requires both objects for your applications to

make calls to that particular database and receive data from it. The data source provides connection

management capabilities that physically make possible these exchanges between your applications and

your databases.

 1. Open the administrative console.

 2. You can access the necessary console page either by clicking Resources > JDBC > Data sources,

or by clicking Resources > JDBC > JDBC providers > JDBC_provider > Data sources.

 3. Select the scope at which applications can use the data source. You can choose a cell, node, cluster,

or server. For more information, see the Administrative console scope settings article.

 4. Click New. This action causes the Create a data source wizard to launch and display the Enter

basic data source information page. The first field is the scope field, which is read-only. This field

displays your previous scope selection.

 5. Type a data source name in the Data source name field. This name identifies the data source for

administrative purposes only.

 6. Type a Java Naming and Directory Interface (JNDI) name in the JNDI name field. WebSphere

Application Server uses the JNDI name to bind application resource references to this data source.

For more information on JNDI, consult the “Naming” on page 1726 article.

 7. Set a component-managed alias to secure your data source. A component-managed alias represents

a combination of ID and password that is specified in an application for data source authentication.

Therefore, the alias that you set on the data source must be identical to the alias in the application

code. For more information on Java 2 Connector (J2C) security, see the Managing J2EE Connector

Architecture authentication data entries article.

Configuring an alias is an optional step. If you do not require application components to authenticate

with the data source, select (none) from the drop-down list.

To set a component-managed alias, either select an existing alias or create a new one.

v Use the drop-down list to select an existing component-managed authentication alias.

v To create a new alias, click the create a new one link. This action closes the data source wizard

and triggers the administrative console to display the J2C authentication data collection page. Click

New to define a new alias. Click OK to save your settings and view the new alias on the J2C

authentication data collection page. Restart the data source wizard by navigating back to the data

source collection page, selecting the appropriate scope, and clicking New.

 8. Click Next to see the wizard page Select JDBC provider.

 9. Either select an existing JDBC provider, or create a new provider.

To select an existing JDBC provider:

a. Click Select an existing JDBC provider.

b. Select a JDBC driver from the drop-down list.

c. Click Next. You now see the page entitled Enter database specific properties for the data source.

To create a new JDBC provider:

a. Click Create new JDBC provider.

b. Click Next to see the Create JDBC provider page.

c. Use the first drop-down list to select the database type of the JDBC provider that you need to

create.

The User-Defined option: Select User-Defined for your database type if you encounter either of

the following scenarios:

Chapter 13. Data access resources 673

v You do not see your database type.

v You cannot select the JDBC provider type that you need in the next

step.

The user-defined selection triggers the wizard page to display your

provider type as a User-defined JDBC provider, and your

implementation type as User-defined. Consult your database

documentation for the JDBC driver class files, data source properties,

and so on that are required for your user-defined provider. You must

supply this information on the next two wizard pages: one page for

database class path information, and the other page for

database-specific properties.

d. Select your JDBC provider type if it is displayed in the second drop-down list. Select Show

Deprecated to trigger the display of both current and deprecated providers. If you cannot find

your provider in this expanded list, then select User-Defined from the previous list of database

types.

e. From the third drop-down list, select the implementation type that is necessary for your

application. If your application does not require that connections support two-phase commit

transactions, choose Connection Pool Data Source. Choose XA Data Source, however, if your

application requires connections that support two-phase commit transactions. Applications that

use this data source configuration have the benefit of container-managed transaction recovery.

After you select an implementation type, the wizard fills the name and the description fields for

your JDBC provider. You can type different values for these fields; they exist for administrative

purposes only.

f. Click Next after you have defined your database type, provider type, and implementation type.

Now you see the wizard page Enter database class path information.

g. In the class path field, type the full path location of the database JDBC driver class files. Your

class path information becomes the value of the WebSphere environment variable that is

displayed on this page, in the form of ${DATABASE_JDBC_DRIVER_PATH}. WebSphere

Application Server uses the variable to define your JDBC provider; this practice eliminates the

need to specify static JDBC class paths for individual applications. Remember that if you do not

provide the full, correct JDBC driver class path for the variable, your data source ultimately fails. If

the field already displays a fully qualified class path, you can accept that variable definition by

completing the rest of this wizard page and clicking Next.

h. Use the Native library path field to specify additional class files that your JDBC driver might

require to function properly on your WebSphere Application Server platform. Type the full directory

path name of these class files.

i. Click Next . You now see the page entitled Enter database specific properties for the data source.

10. Complete all of the fields on the Enter database specific properties page.

v Click Use this data source in container managed persistence (CMP) if container managed

persistence (CMP) enterprise beans must access this data source.

v Any other property fields that are displayed on this wizard page are specific to your database type.

Consult the article “Vendor-specific data sources minimum required settings” on page 638 for

information on these property settings. The article addresses both current and deprecated JDBC

providers that are pre-defined in WebSphere Application Server.

User-defined data sources: This wizard page does not display additional property fields for data

sources that correspond with your user-defined JDBC providers.

However, from the JDBC driver class files that you installed,

Application Server can generally extract the necessary data source

property names. Application Server defines them as data source

custom properties, displays them on a custom properties console

page, and assigns them default values. Consult your database

documentation about setting these properties and any other

674 Administering applications and their environment

requirements for your user-defined data source. After you create the

data source, navigate to the corresponding custom properties

collection page in the administrative console by clicking Data

sources > my_new_data_source > Custom properties. Review the

property default values and modify them if necessary.

11. Click Finish to save the configuration and exit the wizard. You now see the Data source collection

page, which displays your new configuration in a table along with other data sources that are

configured for the same scope.

You can override the default values for some required data source properties, as well as configure

non-required properties. Consult the following topics:

v “Connection pool settings” on page 616

v “WebSphere Application Server data source properties” on page 679

v “J2EE resource provider or connection factory custom properties collection” on page 684

Data source collection:

Use this page to view configured data sources, which are the resources that provide connections to your

relational database.

 You can access this administrative console page in one of two ways:

v Resources > JDBC > Data sources

v Resources > JDBC > JDBC providers > JDBC_provider > Data sources

Version requirement: If you are using the Enterprise JavaBean (EJB) 1.0 specification and the Java

Servlet 2.2 specification, you must use the Data sources (WebSphere

Application Server Version 4) console page.

Name:

Specifies the display name of this data source.

 Click a data source name to edit the data source configuration settings.

 Data type String

JNDI name:

Specifies the Java Naming and Directory Interface (JNDI) name for this data source.

 Data type String

Scope:

Specifies the scope of the JDBC provider that encapsulates the driver implementation classes to support

this data source. Only applications that are installed within this scope can use this data source.

Provider:

Specifies the JDBC provider that encapsulates the appropriate classes.

Description:

Specifies a text description of the data source.

Chapter 13. Data access resources 675

Data type String

Category:

Specifies a string that you can use to classify or group a data source.

 Data type String

Data source settings:

Use this page to edit the properties of a data source.

 You can access this administrative console page in one of two ways:

v Resources > JDBC > Data sources > data_source

v Resources > JDBC > JDBC providers > JDBC_provider > Data sources > data_source

Version requirements: If your application uses an Enterprise JavaBean (EJB) 1.1 or a Java Servlet 2.2

module, you must use the Data sources (WebSphere Application Server V4) >

data_source console page.

Test connection:

Activates the test connection service for validating application connections to the data source.

 Before you click Test connection, set your data source properties and click Apply.

Scope:

Specifies the scope of the JDBC provider that supports this data source. Only applications that are

installed within this scope can use this data source.

Provider:

Specifies the JDBC provider that encapsulates the driver implementation classes to support this data

source.

Name:

Specifies the display name for the data source.

 Valid characters for this name include letters and numbers, but NOT most of the special characters. For

example you can set this field to Test Data Source. But any name starting with a period (v) or containing

special characters (\ / , : ; ″ * ? < > | = + & % ’ `) is not a valid name.

 Data type String

JNDI name:

Specifies the Java Naming and Directory Interface (JNDI) name.

 Distributed computing environments often employ naming and directory services to obtain shared

components and resources. Naming and directory services associate names with locations, services,

information, and resources.

676 Administering applications and their environment

Naming services provide name-to-object mappings. Directory services provide information on objects and

the search tools required to locate those objects.

There are many naming and directory service implementations, and the interfaces to them vary. JNDI

provides a common interface that is used to access the various naming and directory services.

For example, you can use the name jdbc/markSection.

If you leave this field blank a JNDI name is generated from the name of the data source. For example, a

data source name of markSection generates a JNDI name of jdbc/markSection.

After you set this value, save it, and restart the server, you can see this string when you run the dump

name space tool.

 Data type String

Container-managed persistence:

Specifies if this data source is used for container-managed persistence of enterprise beans.

 If this field is checked, a CMP Connector Factory that corresponds to this data source is created for the

relational resource adapter.

 Data type Checkbox

Default Enabled (The field is checked.)

Description:

Specifies a text description for the resource.

 Data type String

Category:

Specifies a category string you can use to classify or group the resource.

 Data type String

Data store helper class name:

Specifies the name of the DataStoreHelper implementation class that extends the capabilities of your

selected JDBC driver implementation class to perform database-specific functions.

 WebSphere Application Server provides a set of DataStoreHelper implementation classes for each of the

JDBC provider drivers it supports. These implementation classes are in the package

com.ibm.websphere.rsadapter. For example, if your JDBC provider is DB2, then your default

DataStoreHelper class is com.ibm.websphere.rsadapter.DB2DataStoreHelper. The administrative console

page you are viewing, however, might make multiple DataStoreHelper class names available to you in a

drop-down list; be sure to select the one required by your database configuration. Otherwise, your

application might not work correctly. If you want to use a DataStoreHelper other than those displayed in

the drop-down list, select Specify a user-defined DataStoreHelper and type a fully qualified class name.

Refer to the Information Center topic ″Example: Developing your own DataStoreHelper class.″

Chapter 13. Data access resources 677

Data type Drop-down list or string (if user-defined DataStoreHelper

is selected)

Component-managed Authentication Alias:

This alias is used for database authentication at run time.

 The Component-managed Authentication Alias is only used when the application resource reference is

using res-auth = Application.

If your database (for example, Cloudscape) does not support user ID and password, then do not set the

alias in the component-managed authentication alias or container-managed authentication alias fields.

Otherwise, you see the warning message in the system log to indicate that the user and password are not

valid properties. (This message is only a warning message; the data source is still created successfully.)

If you do not set an alias (component-managed or otherwise), and your database requires the user ID and

password to get a connection, then you receive an exception during run time.

 Data type Drop-down list

Authentication Alias for XA Recovery:

This optional field is used to specify the authentication alias that should be used during XA recovery

processing.

 If the resource adapter does not support XA transactions, then this field will not be displayed. The default

value will come from the selected alias for application authentication (if specified).

Use Component-managed Authentication Alias

Selecting this radio button specifies that the alias set for Component-managed Authentication is

used at XA recovery time.

 Data type Radio button

Specify:

Selecting this radio button enables you to choose an authentication alias from a drop-down list of

configured aliases.

 Data type Radio button

Container-managed Authentication Alias (deprecated):

Specifies authentication data (a string path converted to userid and password) for container-managed

sign-on to the resource.

Note: Beginning with WebSphere Application Server Version 6.0, the container-managed authentication

alias is superseded by the specification of a login configuration on the resource-reference mapping

at deployment time, for components with res-auth=Container.

Select an alias from the list.

To define a new alias that is not displayed in the list:

v Click Apply. Under Related Items, you now see a listing for J2EE Connector Architecture (J2C)

authentication data entries.

678 Administering applications and their environment

v Click J2EE Connector Architecture (J2C) authentication data entries.

v Click New.

v Define an alias.

v Click OK. The console now displays an alias collection page. This page contains a table that lists all of

your configured aliases. Before the table, this page also displays the name of your connection factory.

v Click the name of your J2C connection factory. You now see the configuration page for the connection

factory.

v Select the new alias in the Container-managed authentication alias list.

v Click Apply.

 Data type Drop-down list

Mapping-Configuration Alias (deprecated):

Specifies the authentication alias for the Java Authentication and Authorization Service (JAAS) mapping

configuration that is used by this connection factory.

Note: Beginning with WebSphere Application Server Version 6.0, the Mapping-Configuration Alias is

superseded by the specification of a login configuration on the resource-reference mapping at

deployment time, for components with res-auth=Container.

Click Security > Secure administration, applications, and infrastructure > Java Authentication and

Authorization Service > Application logins and select an alias from the table.

The DefaultPrincipalMapping JAAS configuration maps the authentication alias to the userid and

password. You may define and use other mapping configurations.

 Data type Drop-down list

Important data source properties: These properties are specific to the data source that corresponds to

your selected JDBC provider. They are either required by the data source, or are especially useful for the

data source. You can find a complete list of the properties required for all supported JDBC providers in the

topic ″Vendor-specific data sources minimum required settings″ in the Information Center.

WebSphere Application Server data source properties:

Use this page to set advanced WebSphere Application Server data source properties. These properties

activate and configure services that WebSphere Application Server applies to data sources, to customize

connection use within the application server. These properties do not affect the use of connections within

the database.

 You can access this administrative console page in one of two ways:

v Resources > JDBC > Data sources > data_source > WebSphere Application Server connection

properties

v Resources > JDBC > JDBC providers > JDBC_provider > Data sources > data_source >

WebSphere Application Server connection properties

Statement Cache Size:

Specifies the number of statements that can be cached per connection. WebSphere Application Server

caches a statement after the user closes it.

 The WebSphere Application Server data source optimizes the processing of prepared statements and

callable statements by caching those statements that are not being used in an active connection. Both

statement types help maximize the performance of transactions between your application and datastore.

Chapter 13. Data access resources 679

v A prepared statement is a precompiled SQL statement that is stored in a PreparedStatement object.

Application Server uses this object to run the SQL statement multiple times, as required by your

application run time, with values that are determined by the run time.

v A callable statement is an SQL statement that contains a call to a stored procedure, which is a series of

precompiled statements that perform a task and return a result. The statement is stored in the

CallableStatement object. Application Server uses this object to run a stored procedure multiple times,

as required by your application run time, with values that are determined by the run time.

If the statement cache is not large enough, useful entries are discarded to make room for new entries. To

determine the largest value for your cache size to avoid any cache discards, add the number of uniquely

prepared statements and callable statements (as determined by the sql string, concurrency, and the scroll

type) for each application that uses this data source on a particular server. This value is the maximum

number of possible statements that can be cached on a given connection over the life of the server.

Setting the cache size to this value means you never have cache discards. In general, the more

statements your application has, the larger the cache should be.

Note: This statement cache size setting is different from WebSphere Application Server V4.0.x. In V4.0.x,

the maximum number of possible prepared statements is cached for the data source within an

application server. In V5 and higher, statement cache size is defined on a given physical

connection.

You can also use the Tivoli Performance Viewer to minimize cache discards. Use a standard workload that

represents a typical number of incoming client requests, use a fixed number of iterations, and use a

standard set of configuration settings. Note: The higher the statement cache, the more system resources

are delayed. Therefore, if you set the number too high, you could lack resources because your system is

not able to open that many prepared statements.

In test applications, tuning the statement cache improved throughput by 10-20%. However, because of

potential resource limitations, this might not always be possible.

 Data type Integer

Default Depends on the database. Most are 10. Informix versions

7.3, 9.2, 9.3, and 9.4, without the respective latest fixes,

must be 0. A default of 0 means there is no cache

statement.

Enable Multithreaded Access Detection: If checked, the application server detects the existence of

access by multiple threads.

Enable Database Reauthentication: If checked, there cannot be an exact match on connections retrieved

out of the WebSphere Application Server connection pool (that is, connection pool search criteria do not

include user name and password). Instead, the reauthentication of connection is done in the

doConnectionSetupPerTransaction() of the DataStoreHelper class. Note that WebSphere Application

Server runtime does NOT provide connection reauthentication implementation. Therefore, when this box is

checked you MUST extend the DataStoreHelper class to provide implementation of the

doConnectionSetupPerTransaction() method where the reauthentication takes place. Failure to do that

results in wrong connections being handed out to users. For more information, refer to the API

documentation for com.ibm.websphere.rsadapter.DataStoreHelper#doConnectionSetupPerTransaction(...).

Connection reauthentication can help improve performance by reducing the overhead of opening and

closing connections, particularly for applications that always request connections with different user names

and passwords.

Enable JMS One Phase Optimization Support: If checked, the application server allows JMS to get

optimized connections from this data source. This property prevents JDBC applications from sharing

connections with CMP applications.

680 Administering applications and their environment

Cached handles: Specifies whether the container tracks cached handles, which are connection handles

that an application component holds active across transaction and method boundaries. Use this property

for debugging purposes. Tracking handles can cause large performance overhead during runtime.

Log missing transaction context: Specifies whether the container issues an entry to the activity log when

an application obtains a connection without a transaction context. These are exceptions to the J2EE

programming model connection requirements.

PreTest existing pooled connections: If checked, the application server tries to connect to this data

source before it attempts to send data to or receive data from this data source. If you select this property,

you can specify how often, in seconds, the application server retries to make a connection if the initial

attempt fails.

Retry interval: When PreTest existing pooled connections is checked, use this property to specify how

long, in seconds, the application server waits before retrying to make a connection if the initial attempt

fails.

Pretest new connections: Specifies whether the connection manager tests a new database connection

that fulfills the initial connection request of an application. This operation can expose a database that

returns bad connections. For example, bad connections can result from a database that fulfills connection

requests before the database is completely functional.

Number of retries: Specifies the number of times you want to retest the initial connection to a database

after the first pretest operation fails.

Retry interval: When PreTest new connections is checked, use this property to specify how long, in

seconds, the application server waits before retrying to make a connection if the initial attempt fails.

PreTest SQL String:

Specifies the string of data that the application server sends to the database to test the connection. Use a

query that is likely to have little impact on performance.

 Data type Integer

Data sources (WebSphere Application Server V4):

Use this page to view the settings of a WebSphere Application Server Version 4.0 data source.

 These data sources use the WebSphere Application Server Version 4.0 Connection Manager architecture.

All EJB 1.1 modules must use a WebSphere Application Server Version 4.0 data source.

You can access this administrative console page in one of two ways:

v Resources > JDBC> Data sources (WebSphere Application Server V4)

v Resources > JDBC > JDBC providers > JDBC_provider > Data sources (WebSphere Application

Server V4)

Name:

Specifies a text identifier of the data source.

 Data type String

JNDI Name:

Chapter 13. Data access resources 681

Specifies the Java Naming and Directory Interface (JNDI) name of the data source.

 Data type String

Scope:

Specifies the scope of the JDBC provider that encapsulates the driver implementation classes to support

this data source. Only applications that are installed within this scope can use this data source.

Provider:

Specifies the JDBC provider that encapsulates the appropriate classes.

Description:

Specifies a text description of the data source.

 Data type String

Category:

Specifies a text string that you can use to classify or group the data source.

 Data type String

Data source (WebSphere Application Server Version 4) settings:

Use this page to create a Version 4.0 style data source. This data source uses the WebSphere Application

Server Version 4.0 connection manager architecture. All of your EJB1.x modules must use this data

source.

 You can access this administrative console page in one of two ways:

v Resources > JDBC> Data sources (WebSphere Application Server V4) > data_source

v Resources > JDBC > JDBC providers > JDBC_provider > Data sources (WebSphere Application

Server V4) > data_source

Scope:

Specifies the scope of the JDBC provider that encapsulates the driver implementation classes to support

this data source. Only applications that are installed within this scope can use this data source.

Provider:

Specifies the JDBC provider that WebSphere Application Server uses for this data source.

 The list shows all of the existing JDBC providers that are defined at the relevant scope. Select one from

the list if you want to use an existing JDBC provider as Provider.

Create New Provider:

Provides the option of configuring a new JDBC provider for the new data source.

 Create New Provider is displayed only when you create, rather than edit, a data source.

682 Administering applications and their environment

Clicking Create New Provider causes the Create a new JDBC provider wizard to launch. Complete all of

the wizard panels, then click Finish. The administrative console now displays the Data sources

(WebSphere Application Server V4) configuration page again, where you see the new JDBC provider

name in the Provider field.

Name:

Specifies the display name for the resource.

 For example, you can set this field to Test Data Source.

 Data type String

JNDI Name:

Specifies the Java Naming and Directory Interface (JNDI) name.

 Distributed computing environments often employ naming and directory services to obtain shared

components and resources. Naming and directory services associate names with locations, services,

information, and resources.

Naming services provide name-to-object mappings. Directory services provide information on objects and

the search tools required to locate those objects.

There are many naming and directory service implementations, and the interfaces to them vary. JNDI

provides a common interface that is used to access the various naming and directory services.

For example, you can use the name jdbc/markSection.

If you leave this field blank a JNDI name is generated from the name of the data source. For example, a

data source name of markSection generates a JNDI name of jdbc/markSection.

After you set this value, save it, and restart the server, you can see this string when you run the dump

name space tool.

 Data type String

Description:

Specifies a text description for the resource.

 Data type String

Category:

Specifies a category string that you can use to classify or group the resource.

 Data type String

Database Name:

Specifies the name of the database that this data source accesses.

Chapter 13. Data access resources 683

For example, you can call the database SAMPLE.

 Data type String

Default User ID:

Specifies the user name to use for connecting to the database.

 For example, you can use the ID db2admin.

 Data type String

Default Password:

Specifies the password used for connecting to the database.

 For example, you can use the password db2admin.

 Data type String

J2EE resource provider or connection factory custom properties collection:

Use this page to view the custom properties of a J2EE resource provider or connection factory.

 You can configure custom property collections for numerous resource types. According to the resource

type with which a collection is associated, your ability to add, delete, and modify individual properties and

settings varies. Begin the configuration process by clicking on the Required field to sort those column

values in descending order. All of the required (true) values are then sorted at the beginning of the page.

Be sure to set all required properties.

Deprecations: The following list displays three custom properties that are deprecated in WebSphere

Application Server Version 6.10. The product now offers these properties as

pre-configured options, which are the replacement properties in the following list. To avoid

runtime error messages, permanently disable the original custom properties by deleting

them from the table on this administrative console page.

v dbFailOverEnabled -- replaced by Pretest new connection

v validateNewConnection -- replaced by Number of retries

v connRetriesDuringDBFailover -- replaced by Retry interval

To set the replacement properties, click Data sources > my_data_source > WebSphere

Application Server data source properties.

Name:

Specifies the property name.

 You must ensure that the resource provider has the setting for this name.

 Data type String

Value:

Specifies the property value.

684 Administering applications and their environment

Data type Variable; see “Custom property settings” for more

information.

Description:

Specifies text to describe any bounds or well-defined values for this property.

 Data type String

Required:

Specifies whether this property is required for the resource provider.

 Data type Boolean or Check box

Custom property settings:

Use this page to specify the attributes of custom properties that might be required for resource providers

and resource factories.

 According to the resource type with which a property collection is associated, your ability to modify

individual property settings varies. Therefore, consider the following descriptions as a general reference for

custom property settings. (The administrative console page that you are using to configure your custom

property may only allow you to modify a subset of the following settings.)

Deprecations: The following list displays three custom properties that are deprecated in WebSphere

Application Server Version 6.10. The product now offers these properties as

pre-configured options, which are the replacement properties in the following list.

v dbFailOverEnabled -- replaced by Pretest new connection

v validateNewConnection -- replaced by Number of retries

v connRetriesDuringDBFailover -- replaced by Retry interval

Set the replacement properties on the WebSphere Application Server data source

properties console page. Click Data sources > my_data_source > WebSphere

Application Server data source properties.

Required:

Specifies properties that are required for this resource.

 Data type Check box

Name:

Specifies the name associated with this property (PortNumber, ConnectionURL, etc).

 Data type String

Value:

Specifies the value associated with this property in this property set.

Chapter 13. Data access resources 685

Data type Determined by the Type setting, which you select from a

drop-down list. If the type is java.lang.String then the

value is of type String; if the type is java.lang.Integer,

then the value is of type Integer; and so on.

Description:

Specifies text to describe any bounds or well-defined values for this property.

 Data type String

Type:

Specifies the fully qualified Java data type of this property .

 There are specific types that are valid:

v java.lang.Boolean

v java.lang.String

v java.lang.Integer

v java.lang.Double

v java.lang.Byte

v java.lang.Short

v java.lang.Long

v java.lang.Float

v java.lang.Character

 Data type Drop-down list

Custom Properties (Version 4) collection:

Use this page to view properties for a WebSphere Application Server Version 4.0 data source.

 You can access this administrative console page in one of two ways:

v Resources > JDBC > Data Sources (WebSphere Application Server V4) > data_source > Custom

Properties

v Resources > JDBC > JDBC Providers > JDBC_provider > Data Sources (WebSphere Application

Server V4) > data_source > Custom Properties

Name:

Specifies the name of the custom property

 Data type String

Value:

Specifies the value of the custom property.

 Data type Integer

Description:

Specifies text to describe any bounds or well-defined values for this property.

686 Administering applications and their environment

Data type String

Required:

Specifies properties that are required for this resource.

 Data type String

Custom property (Version 4) settings:

Use this page to add properties for a WebSphere Application Server Version 4.0 data source.

 To view this administrative console page, click Resources > JDBC > JDBC Providers> JDBC_provider >

Data Sources (WebSphere Application Server V4) > data_source > Custom Properties >

custom_property.

Scope:

Specifies the level to which this resource definition is visible -- the cell, node, or server level.

 Resources such as JDBC providers, namespace bindings, or shared libraries can be defined at multiple

scopes, with resources defined at more specific scopes overriding duplicates which are defined at more

general scopes.

Note that no matter what the scope of a defined resource, the resource’s properties only apply at an

individual server level. For example, if you define the scope of a data source at the cell level, all users in

that cell can look up and use that data source, which is unique within that cell. However, resource property

settings are local to each server in the cell. For example, if you define max connections to 10, then each

server in that cell can have 10 connections.

Cell The most general scope. Resources defined at the cell scope are visible from all nodes and

servers, unless they are overridden. To view resources defined in the cell scope, do not specify a

server or a node name in the scope selection form.

Node The default scope for most resource types. Resources defined at the node scope override any

duplicates defined at the cell scope and are visible to all servers on the same node, unless they

are overridden at a server scope on that node. To view resources defined in a node scope, do not

specify a server, but select a node name in the scope selection form.

Server

The most specific scope for defining resources. Resources defined at the server scope override

any duplicate resource definitions defined at the cell scope or parent node scope and are visible

only to a specific server. To view resources defined in a server scope, specify a server name as

well as a node name in the scope selection form.

When resources are created, they are always created into the current scope selected in the panel. To view

resources in other scopes, specify a different node or server in the scope selection form.

 Data type String

Required:

Specifies properties that are required for this resource.

 Data type Check box

Name:

Chapter 13. Data access resources 687

Specifies the name associated with this property (PortNumber, ConnectionURL, etc).

 Data type String

Value:

Specifies the value associated with this property in this property set.

 Data type Integer

Description:

Specifies text to describe any bounds or well-defined values for this property.

 Data type String

Type:

Specifies the fully qualified Java type of this property (java.lang.Integer, java.lang.Byte).

 Data type String

Creating and configuring a JDBC provider and data source using the Java

Management Extensions API

If your application requires access to a JDBC connection pool from a J2EE 1.3 or 1.4 level WebSphere

Application Server component, you can create the necessary JDBC provider and data source objects

using the Java Management Extensions (JMX) API exclusively. Alternatively, you can use the JMX API in

combination with the WSadmin - scripting tool.

Note: Use the JMX API to create only data sources for which the product does not provide a template.

For every JDBC provider WebSphere Application Server supports, the product provides a

corresponding data source template. You can create supported providers and associated data

sources through the administrative console, or by using the WSadmin - scripting tool. For a

complete list of supported JDBC providers (and therefore a complete list of data sources that must

be created using a template), refer to the topic “Vendor-specific data sources minimum required

settings” on page 638.

These steps outline the general procedure for using the JMX API to create a JDBC provider and data

source, on WebSphere Application Server running on Windows platforms:

1. Put the appropriate JAR files in your classpath.

You need two JAR files in your classpath -- wsexception.jar and wasjmx.jar.

The following command is an example for setting your classpath:

set classpath=%classpath%;D:\WebSphere\AppServer\lib\wsexception.jar;D:\WebSphere\AppServer\lib\wasjmx.jar

2. Look up the host and get an administration client handle.

3. Get a configuration service handle.

4. Update the resource.xml file using the configuration service as desired.

a. Add a JDBC provider.

b. Add the data source.

c. Add the connection factory. This step is necessary only for data sources that must support

container-managed persistence.

688 Administering applications and their environment

5. Reload the resource.xml file to bind the newly created data source into the JNDI namespace. Perform

this step if you want to use the newly created data source right away without restarting the application

server.

a. Locate the DataSourceConfigHelper MBean using the name.

b. Put together the signature and parameters for the call.

c. Invoke the reload() call.

6. Attention: If you modify the class path or native library path of an existing JDBC provider, you must

restart every application server within the scope of that JDBC provider for the new configuration to

work. Otherwise, you receive a data source failure message.

Example: Using the Java Management Extensions API to create a JDBC driver and data source for

container-managed persistence:

//

// "This program may be used, executed, copied, modified and distributed

// without royalty for the purpose of developing, using, marketing, or

// distributing."

//

// Product 5630-A36, (C) COPYRIGHT International Business Machines

// Corp., 2001, 2002

// All Rights Reserved * Licensed Materials - Property of IBM

//

import java.util.*;

import javax.sql.*;

import javax.transaction.*;

import javax.management.*;

import com.ibm.websphere.management.*;

import com.ibm.websphere.management.configservice.*;

import com.ibm.ws.exception.WsException;

/**

 * Creates a node scoped resource.xml entry for a DB2 XA datasource.

 * The datasource created is for CMP use.

 *

* We need following to run

 * set classpath=%classpath%;D:\WebSphere\AppServer\lib\wsexception.jar;

 D:\WebSphere\AppServer\lib\wasjmx.jar;D:\$WAS_HOME\lib\wasx.jar

 */

public class CreateDataSourceCMP {

 String dsName = "markSection"; // ds display name , also jndi name and

 CF name

 String dbName = "SECTION"; // database name

 String authDataAlias = "db2admin"; // an authentication data alias

 String uid = "db2admin"; // userid

 String pw = "db2admin"; // password

 String dbclasspath = "D:/SQLLIB/java/db2java.zip"; // path to the db driver

 /**

 * Main method.

 */

 public static void main(String[] args) {

 CreateDataSourceCMP cds = new CreateDataSourceCMP();

 try {

 cds.run(args);

 } catch (com.ibm.ws.exception.WsException ex) {

 System.out.println("Caught this " + ex);

 ex.printStackTrace();

Chapter 13. Data access resources 689

//ex.getCause().printStackTrace();

 } catch (Exception ex) {

 System.out.println("Caught this " + ex);

 ex.printStackTrace();

 }

 }

 /**

 * This method creates the datasource using JMX.

* The datasource created here is only written into resources.xml.

 * It is not bound into namespace until the server is restarted, or

 an application started

 */

 public void run(String[] args) throws Exception {

 try {

 // Initialize the AdminClient.

 Properties adminProps = new Properties();

 adminProps.setProperty(AdminClient.CONNECTOR_TYPE,

 AdminClient.CONNECTOR_TYPE_SOAP);

 adminProps.setProperty(AdminClient.CONNECTOR_HOST, "localhost");

 adminProps.setProperty(AdminClient.CONNECTOR_PORT, "8880");

 AdminClient adminClient =

 AdminClientFactory.createAdminClient(adminProps);

 // Get the ConfigService implementation.

 com.ibm.websphere.management.configservice.ConfigServiceProxy

 configService =

 new com.ibm.websphere.management.configservice.

 ConfigServiceProxy(adminClient);

 Session session = new Session();

 // Use this group to add to the node scoped resource.xml.

 ObjectName node1 = ConfigServiceHelper.createObjectName(null,

 "Node", null);

 ObjectName[] matches = configService.queryConfigObjects(session,

 null, node1, null);

 node1 = matches[0]; // use the first node found

 // Use this group to add to the server1 scoped resource.xml.

 ObjectName server1 = ConfigServiceHelper.createObjectName(null,

 "Server", "server1");

 matches = configService.queryConfigObjects(session, null, server1,

 null);

 server1 = matches[0]; // use the first server found

 // Create the JDBCProvider

 String providerName = "DB2 JDBC Provider (XA)";

 System.out.println("Creating JDBCProvider " + providerName);

 // Prepare the attribute list

 AttributeList provAttrs = new AttributeList();

 provAttrs.add(new Attribute("name", providerName));

 provAttrs.add(new Attribute("implementationClassName",

 "COM.ibm.db2.jdbc.DB2XADataSource"));

 provAttrs.add(new Attribute("description","DB2 JDBC2-compliant

 XA Driver"));

 //create it

 ObjectName jdbcProv = configService.createConfigData(session,node1,

 "JDBCProvider", "resources.jdbc:JDBCProvider",provAttrs);

 // now plug in the classpath

configService.addElement(session,jdbcProv,"classpath",dbclasspath,-1);

690 Administering applications and their environment

// Search for RRA so we can link it to the datasource

 ObjectName rra = ConfigServiceHelper.createObjectName(null,

 "J2CResourceAdapter", null);

 matches = configService.queryConfigObjects(session, node1, rra,

 null);

 rra = matches[0]; // use the first J2CResourceAdapter segment for

 builtin_rra

 // Prepare the attribute list

 AttributeList dsAttrs = new AttributeList();

 dsAttrs.add(new Attribute("name", dsName));

 dsAttrs.add(new Attribute("jndiName", "jdbc/" + dsName));

 dsAttrs.add(new Attribute("datasourceHelperClassname",

 "com.ibm.websphere.rsadapter.DB2DataStoreHelper"));

 dsAttrs.add(new Attribute("statementCacheSize", new Integer(10)));

 dsAttrs.add(new Attribute("relationalResourceAdapter", rra));

 // this is where we make the link to "builtin_rra"

 dsAttrs.add(new Attribute("description", "JDBC Datasource for

 mark section CMP 2.0 test"));

 dsAttrs.add(new Attribute("authDataAlias",authDataAlias));

 // Create the datasource

 System.out.println(" ** Creating datasource");

 ObjectName dataSource =

 configService.createConfigData(session,jdbcProv,"DataSource",

 "resources.jdbc:DataSource",dsAttrs);

 // Add a propertySet.

 AttributeList propSetAttrs = new AttributeList();

 ObjectName resourcePropertySet =

 configService.createConfigData(session,dataSource,"propertySet",

 "",propSetAttrs);

 // Add resourceProperty databaseName

 AttributeList propAttrs1 = new AttributeList();

 propAttrs1.add(new Attribute("name", "databaseName"));

 propAttrs1.add(new Attribute("type", "java.lang.String"));

 propAttrs1.add(new Attribute("value", dbName));

 configService.addElement(session,resourcePropertySet,

 "resourceProperties",propAttrs1,-1);

// Now Create the corresponding J2CResourceAdapter Connection Factory object.

 ObjectName jra = ConfigServiceHelper.createObjectName(null,

 "J2CResourceAdapter",null);

 // Get all the J2CResourceAdapter, and I want to add my datasource

 System.out.println(" ** Get all J2CResourceAdapter’s");

 ObjectName[] jras = configService.queryConfigObjects(session, node1,

 jra, null);

 int i=0;

 for (;i< jras.length;i++) {

 System.out.println(ConfigServiceHelper.getConfigDataType(jras[i])+

 " " + i + " = "

 + jras[i].getKeyProperty(SystemAttributes.

 _WEBSPHERE_CONFIG_DATA_DISPLAY_NAME)

 + "\nFrom scope ="

 + jras[i].getKeyProperty(SystemAttributes.

 _WEBSPHERE_CONFIG_DATA_ID));

 // quit on the first builtin_rra

 if (jras[i].getKeyProperty(SystemAttributes.

 _WEBSPHERE_CONFIG_DATA_DISPLAY_NAME)

 .equals("WebSphere Relational Resource Adapter")) {

 break;

Chapter 13. Data access resources 691

}

 }

 if (i >= jras.length) {

 System.out.println("Did not find builtin_rra J2CResourceAdapter

 object creating CF anyways");

 } else {

 System.out.println("Found builtin_rra J2CResourceAdapter

 object at index " + i + " creating CF");

 }

 // Prepare the attribute list

 AttributeList cfAttrs = new AttributeList();

 cfAttrs.add(new Attribute("name", dsName + "_CF"));

 cfAttrs.add(new Attribute("authMechanismPreference","BASIC_PASSWORD"));

 cfAttrs.add(new Attribute("authDataAlias",authDataAlias));

 cfAttrs.add(new Attribute("cmpDatasource", dataSource));

 // this is where we make the link to DataSource’s xmi:id

 ObjectName cf = configService.createConfigData(session,jras[i],

 "CMPConnectorFactory", "resources.jdbc:CMPConnectorFactory",cfAttrs);

 // ===== start Security section

 System.out.println("Creating an authorization data alias " +

 authDataAlias);

 // Find the parent security object

 ObjectName security = ConfigServiceHelper.createObjectName(null,

 "Security", null);

 ObjectName[] securityName = configService.queryConfigObjects(session,

 null, security, null);

 security=securityName[0];

 // Prepare the attribute list

 AttributeList authDataAttrs = new AttributeList();

 authDataAttrs.add(new Attribute("alias", authDataAlias));

 authDataAttrs.add(new Attribute("userId", uid));

 authDataAttrs.add(new Attribute("password", pw));

 authDataAttrs.add(new Attribute("description","Auto created alias

 for datasource"));

 //create it

 ObjectName authDataEntry = configService.createConfigData

 (session,security,"authDataEntries", "JAASAuthData",authDataAttrs);

 // ===== end Security section

 // Save the session

 System.out.println("Saving session");

 configService.save(session, false);

 // reload resources.xml to bind the new datasource into the name space

 reload(adminClient,true);

 } catch (Exception ex) {

 ex.printStackTrace(System.out);

 throw ex;

 }

 }

 /**

 * Get the DataSourceConfigHelperMbean and call reload() on it

 *

 * @param adminClient

 * @param verbose true - print messages to stdout

 */

 public void reload(AdminClient adminClient,boolean verbose) {

 if (verbose) {

692 Administering applications and their environment

System.out.println("Finding the Mbean to call reload()");

 }

 // First get the Mbean

 ObjectName handle = null;

 try {

 ObjectName queryName = new ObjectName("WebSphere:type=

 DataSourceCfgHelper,*");

 Set s = adminClient.queryNames(queryName, null);

 Iterator iter = s.iterator();

 if (iter.hasNext()) handle = (ObjectName)iter.next();

 } catch (MalformedObjectNameException mone) {

 System.out.println("Check the program variable queryName" + mone);

 } catch (com.ibm.websphere.management.exception.ConnectorException ce) {

 System.out.println("Cannot connect to the application server" + ce);

 }

 if (verbose) {

 System.out.println("Calling reload()");

 }

 Object result = null;

 try {

 result = adminClient.invoke(handle, "reload", new Object[] {},

 new String[] {});

 } catch (MBeanException mbe) {

 if (verbose) {

 System.out.println("\tMbean Exception calling reload" + mbe);

 }

 } catch (InstanceNotFoundException infe) {

 System.out.println("Cannot find reload ");

 } catch (Exception ex) {

 System.out.println("Exception occurred calling reload()" + ex);

 }

 if (result==null && verbose) {

 System.out.println("OK reload()");

 }

 }

}

Example: Using the Java Management Extensions API to create a JDBC driver and data source for

bean-managed persistence, session beans, or servlets:

//

// "This program may be used, executed, copied, modified and distributed without royalty for the

// purpose of developing, using, marketing, or distributing."

//

// Product 5630-A36, (C) COPYRIGHT International Business Machines Corp., 2001, 2002

// All Rights Reserved * Licensed Materials - Property of IBM

//

import java.util.*;

import javax.sql.*;

import javax.transaction.*;

import javax.management.*;

import com.ibm.websphere.management.*;

import com.ibm.websphere.management.configservice.*;

import com.ibm.ws.exception.WsException;

/**

 * Creates a node scoped resource.xml entry for a DB2 XA datasource.

 * The datasource created is for BMP use.

 *

 * We need following to run

 * set classpath=%classpath%;D:\WebSphere\AppServer\lib\wsexception.jar;

Chapter 13. Data access resources 693

* D:\WebSphere\AppServer\lib\wasjmx.jar;D:\$WAS_HOME\lib\wasx.jar

 */

public class CreateDataSourceBMP {

 String dsName = "markSection"; // ds display name , also jndi name and CF name

 String dbName = "SECTION"; // database name

 String authDataAlias = "db2admin"; // an authentication data alias

 String uid = "db2admin"; // userid

 String pw = "db2admin"; // password

 String dbclasspath = "D:/SQLLIB/java/db2java.zip"; // path to the db driver

 /**

 * Main method.

 */

 public static void main(String[] args) {

 CreateDataSourceBMP cds = new CreateDataSourceBMP();

 try {

 cds.run(args);

 } catch (com.ibm.ws.exception.WsException ex) {

 System.out.println("Caught this " + ex);

 ex.printStackTrace();

 //ex.getCause().printStackTrace();

 } catch (Exception ex) {

 System.out.println("Caught this " + ex);

 ex.printStackTrace();

 }

 }

 /**

 * This method creates the datasource using JMX.

 *

 * The datasource created here is only written into resources.xml.

 * It is not bound into namespace until the server is restarted, or an application started

 */

 public void run(String[] args) throws Exception {

 try {

 // Initialize the AdminClient.

 Properties adminProps = new Properties();

 adminProps.setProperty(AdminClient.CONNECTOR_TYPE, AdminClient.CONNECTOR_TYPE_SOAP);

 adminProps.setProperty(AdminClient.CONNECTOR_HOST, "localhost");

 adminProps.setProperty(AdminClient.CONNECTOR_PORT, "8880");

 AdminClient adminClient = AdminClientFactory.createAdminClient(adminProps);

 // Get the ConfigService implementation.

 com.ibm.websphere.management.configservice.ConfigServiceProxy configService =

 new com.ibm.websphere.management.configservice.ConfigServiceProxy(adminClient);

 Session session = new Session();

 // Use this group to add to the node scoped resource.xml.

 ObjectName node1 = ConfigServiceHelper.createObjectName(null, "Node", null);

 ObjectName[] matches = configService.queryConfigObjects(session, null, node1, null);

 node1 = matches[0]; // use the first node found

 // Use this group to add to the server1 scoped resource.xml.

 ObjectName server1 = ConfigServiceHelper.createObjectName(null, "Server", "server1");

 matches = configService.queryConfigObjects(session, null, server1, null);

 server1 = matches[0]; // use the first server found

 // Create the JDBCProvider

 String providerName = "DB2 JDBC Provider (XA)";

694 Administering applications and their environment

System.out.println("Creating JDBCProvider " + providerName);

 // Prepare the attribute list

 AttributeList provAttrs = new AttributeList();

 provAttrs.add(new Attribute("name", providerName));

 provAttrs.add(new Attribute("implementationClassName", "COM.ibm.db2.jdbc.DB2XADataSource"));

 provAttrs.add(new Attribute("description","DB2 JDBC2-compliant XA Driver"));

 //create it

 ObjectName jdbcProv = configService.createConfigData(session,node1,"JDBCProvider",

 "resources.jdbc:JDBCProvider",provAttrs);

 // now plug in the classpath

 configService.addElement(session,jdbcProv,"classpath",dbclasspath,-1);

 // Search for RRA so we can link it to the datasource

 ObjectName rra = ConfigServiceHelper.createObjectName(null, "J2CResourceAdapter", null);

 matches = configService.queryConfigObjects(session, node1, rra, null);

 rra = matches[0]; // use the first J2CResourceAdapter segment for builtin_rra

 // Prepare the attribute list

 AttributeList dsAttrs = new AttributeList();

 dsAttrs.add(new Attribute("name", dsName));

 dsAttrs.add(new Attribute("jndiName", "jdbc/" + dsName));

 dsAttrs.add(new Attribute("datasourceHelperClassname","com.ibm.websphere.rsadapter.DB2DataStoreHelper"));

 dsAttrs.add(new Attribute("statementCacheSize", new Integer(10)));

 dsAttrs.add(new Attribute("relationalResourceAdapter", rra));

 // this is where we make the link to "builtin_rra"

 dsAttrs.add(new Attribute("description", "JDBC Datasource for mark section CMP 2.0 test"));

 dsAttrs.add(new Attribute("authDataAlias",authDataAlias));

 // Create the datasource

 System.out.println(" ** Creating datasource");

 ObjectName dataSource = configService.createConfigData(session,jdbcProv,"DataSource",

 "resources.jdbc:DataSource",dsAttrs);

 // Add a propertySet.

 AttributeList propSetAttrs = new AttributeList();

 ObjectName resourcePropertySet =configService.createConfigData(session,dataSource,

 "propertySet","",propSetAttrs);

 // Add resourceProperty databaseName

 AttributeList propAttrs1 = new AttributeList();

 propAttrs1.add(new Attribute("name", "databaseName"));

 propAttrs1.add(new Attribute("type", "java.lang.String"));

 propAttrs1.add(new Attribute("value", dbName));

 configService.addElement(session,resourcePropertySet,"resourceProperties",propAttrs1,-1);

 // ===== start Security section

 System.out.println("Creating an authorization data alias " + authDataAlias);

 // Find the parent security object

 ObjectName security = ConfigServiceHelper.createObjectName(null, "Security", null);

 ObjectName[] securityName = configService.queryConfigObjects(session, null, security, null);

 security=securityName[0];

 // Prepare the attribute list

 AttributeList authDataAttrs = new AttributeList();

 authDataAttrs.add(new Attribute("alias", authDataAlias));

 authDataAttrs.add(new Attribute("userId", uid));

 authDataAttrs.add(new Attribute("password", pw));

 authDataAttrs.add(new Attribute("description","Auto created alias for datasource"));

Chapter 13. Data access resources 695

//create it

 ObjectName authDataEntry = configService.createConfigData(session,security,"authDataEntries",

 "JAASAuthData",authDataAttrs);

 // ===== end Security section

 // Save the session

 System.out.println("Saving session");

 configService.save(session, false);

 // reload resources.xml

 reload(adminClient,true);

 } catch (Exception ex) {

 ex.printStackTrace(System.out);

 throw ex;

 }

 }

 /**

 * Get the DataSourceConfigHelperMbean and call reload() on it

 *

 * @param adminClient

 * @param verbose true - print messages to stdout

 */

 public void reload(AdminClient adminClient,boolean verbose) {

 if (verbose) {

 System.out.println("Finding the Mbean to call reload()");

 }

 // First get the Mbean

 ObjectName handle = null;

 try {

 ObjectName queryName = new ObjectName("WebSphere:type=DataSourceCfgHelper,*");

 Set s = adminClient.queryNames(queryName, null);

 Iterator iter = s.iterator();

 if (iter.hasNext()) handle = (ObjectName)iter.next();

 } catch (MalformedObjectNameException mone) {

 System.out.println("Check the program variable queryName" + mone);

 } catch (com.ibm.websphere.management.exception.ConnectorException ce) {

 System.out.println("Cannot connect to the application server" + ce);

 }

 if (verbose) {

 System.out.println("Calling reload()");

 }

 Object result = null;

 try {

 result = adminClient.invoke(handle, "reload", new Object[] {}, new String[] {});

 } catch (MBeanException mbe) {

 if (verbose) {

 System.out.println("\tMbean Exception calling reload" + mbe);

 }

 } catch (InstanceNotFoundException infe) {

 System.out.println("Cannot find reload ");

 } catch (Exception ex) {

 System.out.println("Exception occurred calling reload()" + ex);

 }

 if (result==null && verbose) {

 System.out.println("OK reload()");

 }

 }

}

696 Administering applications and their environment

Example: Creating a JDBC provider and data source using Java Management Extensions API and

the scripting tool: The following code is a JACL (WSadmin - scripting tool) script used to create a data

source. Use this script to create only data sources for which the product does not provide a template. For

every JDBC provider WebSphere Application Server supports, the product provides a corresponding data

source template. See the topic Creating configuration objects using the wsadmin tool for instructions on

how to use the createUsingTemplate command to establish these data sources. For a complete list of

supported JDBC providers (and therefore a complete list of data sources that must be created using a

template), refer to the topic “Vendor-specific data sources minimum required settings” on page 638.

This script sets up the following sample JDBC objects:

v Creates a data source fvtDS_1

v Creates a 4.0 data source fvtDS_3

v Creates a container-managed persistence (CMP) data source linked to fvtDS_1

Attention: If you later modify the class path or native library path of the JDBC provider associated with

your data source, you must restart every application server within the scope of that JDBC provider for the

new configuration to work. Otherwise, you receive a data source failure message.
#AWE -- Set up XA DB2 data sources, both Version 4.0 and J2EE Connector architecture (JCA)-compliant data sources

#UPDATE THESE VALUES:

#The classpath that will be used by your database driver

set driverClassPath "c:/sqllib/java/db2java.zip"

set server "server1"

set fvtbase "c:/wssb/fvtbase"

#Users and passwords..

set defaultUser1 "dbuser1"

set defaultPassword1 "dbpwd1"

set aliasName "alias1"

set databaseName1 "jtest1"

set databaseName2 "jtest2"

#END OF UPDATES

puts "Add an alias alias1"

set cell [$AdminControl getCell]

set sec [$AdminConfig getid /Cell:$cell/Security:/]

#---

Create a JAASAuthData object for component-managed authentication

#---

puts "create JAASAuthData object for alias1"

set alias_attr [list alias $aliasName]

set desc_attr [list description "Alias 1"]

set userid_attr [list userId $defaultUser1]

set password_attr [list password $defaultPassword1]

set attrs [list $alias_attr $desc_attr $userid_attr $password_attr]

set authdata [$AdminConfig create JAASAuthData $sec $attrs]

$AdminConfig save

puts "Installing DB2 datasource for XA"

puts "Finding the old JDBCProvider.."

#Remove the old jdbc provider...

set jps [$AdminConfig list JDBCProvider]

foreach jp $jps {

 set jpname [lindex [lindex [$AdminConfig show $jp {name}] 0] 1]

 if {($jpname == "FVTProvider")} {

Chapter 13. Data access resources 697

puts "Removing old JDBC Provider"

 $AdminConfig remove $jp

 $AdminConfig save

 }

}

#Get the server name...

puts "Finding the server $server"

set servlist [$AdminConfig list Server]

set servsize [llength $servlist]

foreach srvr $servlist {

 set sname [lindex [lindex [$AdminConfig show $srvr {name}] 0] 1]

 if {($sname == $server)} {

 puts "Found server $srvr"

 set serv $srvr

 }

}

set desiredNodeName "myNode"

puts "Finding the Node"

set nodelist [$AdminConfig list Node]

foreach node $nodelist {

 set nodename [lindex [lindex [$AdminConfig show $node {name}] 0] 1]

 if {($nodename == $desiredNodeName)} {

 puts "node = $node"

 break

 }

}

puts "Finding the Resource Adapter"

set ralist [$AdminConfig list J2CResourceAdapter $node]

set ralistlen [llength $ralist]

foreach ra $ralist {

 set raname [lindex [lindex [$AdminConfig show $ra {name}] 0] 1]

 if {($raname == "WebSphere Relational Resource Adapter")} {

 set rsadapter $ra

 }

}

#Now create a JDBC Provider for the data sources

puts "Creating the provider for COM.ibm.db2.jdbc.DB2XADataSource"

set attrs1 [subst {{classpath $driverClassPath}

 {implementationClassName COM.ibm.db2.jdbc.DB2XADataSource}{name "FVTProvider2"}

 {description "DB2 JDBC Provider"} {xa "true"}}]

set provider1 [$AdminConfig create JDBCProvider $serv $attrs1]

#Create the first data source

puts "Creating the datasource fvtDS_1"

set attrs2 [subst {{name fvtDS_1} {description "FVT DataSource 1"}}]

set ds1 [$AdminConfig create DataSource $provider1 $attrs2]

#Set the properties for the data source.

set propSet1 [$AdminConfig create J2EEResourcePropertySet $ds1 {}]

set attrs3 [subst {{name databaseName} {type java.lang.String} {value $databaseName1}}]

$AdminConfig create J2EEResourceProperty $propSet1 $attrs3

set attrs10 [subst {{jndiName jdbc/fvtDS_1} {statementCacheSize 10}

 {datasourceHelperClassname com.ibm.websphere.rsadapter.DB2DataStoreHelper}

 {relationalResourceAdapter {$rsadapter}} {authMechanismPreference "BASIC_PASSWORD"}

 {authDataAlias $aliasName}}]

$AdminConfig modify $ds1 $attrs10

#Create the connection pool object...

$AdminConfig create ConnectionPool $ds1 {{connectionTimeout 1000}

698 Administering applications and their environment

{maxConnections 30} {minConnections 1} {agedTimeout 1000}

 {reapTime 2000} {unusedTimeout 3000} }

#Now create the 4.0 data sources..

puts "Creating the 4.0 datasource fvtDS_3"

set ds3 [$AdminConfig create WAS40DataSource $provider1 {{name fvtDS_3} {description "FVT 4.0 DataSource"}}]

#Set the properties on the data source

set propSet3 [$AdminConfig create J2EEResourcePropertySet $ds3 {}]

#These attributes should be the same as fvtDS_1

set attrs4 [subst {{name user} {type java.lang.String} {value $defaultUser1}}]

set attrs5 [subst {{name password} {type java.lang.String} {value $defaultPassword1}}]

$AdminConfig create J2EEResourceProperty $propSet3 $attrs3

$AdminConfig create J2EEResourceProperty $propSet3 $attrs4

$AdminConfig create J2EEResourceProperty $propSet3 $attrs5

set attrs10 [subst {{jndiName jdbc/fvtDS_3} {databaseName $databaseName1}}]

$AdminConfig modify $ds3 $attrs10

$AdminConfig create WAS40ConnectionPool $ds3 {{orphanTimeout 3000} {connectionTimeout 1000}

 {minimumPoolSize 1} {maximumPoolSize 10} {idleTimeout 2000}}

#Now add a CMP connection factory for the JCA-compliant data source. This step is not necessary for

#Version 4 data sources, as they contain built-in CMP connection factories.

puts "Creating the CMP Connector Factory for fvtDS_1"

set attrs12 [subst {{name "FVT DS 1_CF"} {authMechanismPreference BASIC_PASSWORD}

 {cmpDatasource $ds1} {authDataAlias $aliasName}}]

set cf1 [$AdminConfig create CMPConnectorFactory $rsadapter $attrs12]

#Set the properties for the data source.

$AdminConfig create MappingModule $cf1 {{mappingConfigAlias "DefaultPrincipalMapping"} {authDataAlias "alias1"}}

$AdminConfig save

Verifying a connection

Many connection problems can be easily fixed by verifying some configuration parameters. This article

provides a checklist of steps that you must complete to enable a successful connection. Click on the link

for more information on a specific step.

If your connection is still not successful after completing these steps and reviewing the applicable

information, check the SystemOut.log for warning or exception messages. Then use the technical support

search function to find known problems.

1. Create the authentication data alias.

2. Create the JDBC provider.

3. Create a data source.

4. Save the data source.

5. If you created a new authentication alias, restart the server for which you need to verify connectivity.

6. Test the connection

You can test your connection from the data source collection view or the data source details view.

Access either view in the administrative console, and then select a connection from the list. Click the

Test Connection button on the connection.

Test connection service

WebSphere Application Server provides a test connection service for testing connections to a data source.

If you associate your data sources with WebSphere variables, see the Configuring WebSphere variables

topic to verify that you configure them correctly. A variable cannot be found exception results from

attempted use of a data source that is invoked through an incorrectly defined variable.

Chapter 13. Data access resources 699

http://www.ibm.com/support/search/index.html
http://www.ibm.com/support/search/index.html

Activating the test connection service

There are three ways to activate the test connection service: through the administrative console, the

wsadmin tool, or a Java stand-alone program. Each process invokes the same methods on the same

MBean.

Administrative console

WebSphere Application Server allows you to test a connection from the administrative console by simply

pushing a button: the Data source collection, Data source settings, Version 4 data source collection, and

Version 4 data source settings pages all have Test Connection buttons. After you define and save a data

source, you can click this button to ensure that the parameters in the data source definition are correct. On

the collection page, you can select several data sources and test them all at once. Note that there are

certain conditions that must be met first. For more information, see Testing a connection with the

administrative console.

WsAdmin tool

The wsadmin tool provides a scripting interface to a full range of WebSphere Application Server

administration activities. Because the Test Connection functionality is implemented as a method on an

MBean, and wsadmin can invoke MBean methods, wsadmin can be utilized to test connections to data

sources. You have two options for testing a data source connection through wsadmin:

The AdminControl object of wsadmin has a testConnection operation that tests the configuration properties

of a data source object. For information, see Testing a connection using wsadmin.

You can also test a connection by invoking the MBean operation. Use Example: Testing data source

connection using wsadmin as a guide for this technique.

Java stand-alone program

Finally, you can test a connection by executing the testConnection() method on the DataSourceCfgHelper

MBean. This method allows you to pass the configuration ID of the configured data source. The Java

program connects to a running Java Management Extensions (JMX) server to access the MBean. In a

base installation of Application Server, you connect to the JMX server running in the application server,

usually on port 8880.

The return value from this invocation is either 0, a positive number, or an exception. 0 indicates that the

operation completed successfully, with no warnings. A positive number indicates that the operation

completed successfully, with the number of warnings. An exception indicates that the test of the connection

failed.

You can find an example of this code in Example: Test a connection using testConnection(ConfigID).

Testing a connection with the administrative console

After you have defined and saved a data source, you can click the Test Connection button to ensure that

the parameters in the data source definition are correct.

You can select multiple data sources on the data source collection page and test them as a group. Be

sure that the following conditions are met before using the Test Connection button:

v If you are testing a connection using a WebSphere Application Server Version 4.0 type of data source,

ensure that the user and password information is set.

v Designate variables appropriately.

700 Administering applications and their environment

If you used a WebSphere environment entry for the class path or other fields, such as

${DB2_JDBC_DRIVER_PATH}/db2java.zip, make sure that you assign it a value in the WebSphere

Variables page.

v Restart the application server after you define or edit WebSphere variables.

v Restart the application server after you create or edit an authentication alias for the data source.

v You can now test a connection to the data source. On the data source collection page in the

administrative console, select the data source and click Test Connection .

A Test Connection operation can have three different outcomes, each resulting in a different message

being displayed in the messages panel of the page on which you press the Test Connection button.

1. The test can complete successfully, meaning that a connection is successfully obtained to the

database using the configured data source parameters. The resulting message states: Test

Connection for data source DataSourceName on process ProcessName at node NodeName was

successful.

2. The test can complete successfully with warnings. This means that while a connection is

successfully obtained to the database, warnings were issued. The resulting message states: Test

Connection for data source DataSourceName on process ProcessName at node NodeName was

successful with warning(s). View the JVM Logs for more details.

The View the JVM Logs text is a hyperlink that takes you to the JVM Logs console screen for the

process.

3. The test can fail. A connection to the database with the configured parameters is not obtained. The

resulting message states: Test Connection failed for data source DataSourceName on process

ProcessName at node NodeName with the following exception: ExceptionText. View the JVM Logs

for more details.

Again, the text for View the JVM Logs is a hyperlink to the appropriate logs screen.

Testing a connection using wsadmin

The AdminControl object of wsadmin has a testConnection operation that tests the configuration properties

of a data source object.

The testConnection operation takes a data source configuration ID as an argument.

Note: This invocation cannot accept user IDs and passwords that must be defined in the database itself.

This invocation can only be used for databases that do not require a user ID and password to make

a connection (such as DB2 on a Windows machine), or for data sources that have a

component-managed or container-managed authentication alias set on the data source object.

1. Invoke the getid() method for your data source.

2. Set the value of the configuration id to a variable.

set myds [$AdminConfig getid /JDBCProvider:mydriver/DataSource:mydatasrc/]

where /JDBCProvider:mydriver/DataSource:mydatasrc/ is the data source you want to test. After you

have the configuration ID of the data source, you can test the connection to the database.

3. Test the connection to the database.

$AdminControl testConnection $myds

Example: Test a connection using testConnection(ConfigID): This program uses JMX to connect to a

running server and invoke the testConnection method on the DataSourceCfgHelper MBean.

/**

 * Description

 * Resource adapter test program to make sure that the MBean interfaces work.

 * Following interfaces are tested

 *

 * --- testConnection()

 *

 *

 * We need following to run

Chapter 13. Data access resources 701

* C:\src>java -Djava.ext.dirs=C:\WebSphere\AppServer\lib;C:\WebSphere\AppServer\java\jre\lib\ext testDSGUI

 * must include jre for log.jar and mail.jar, else get class not found exception

 *

 *

 */

import java.util.Iterator;

import java.util.Locale;

import java.util.Properties;

import java.util.Set;

import javax.management.InstanceNotFoundException;

import javax.management.MBeanException;

import javax.management.MalformedObjectNameException;

import javax.management.ObjectName;

import javax.management.RuntimeMBeanException;

import javax.management.RuntimeOperationsException;

import com.ibm.websphere.management.AdminClient;

import com.ibm.websphere.management.AdminClientFactory;

import com.ibm.ws.rsadapter.exceptions.DataStoreAdapterException;

public class testDSGUI {

//Use port 8880 for base installation or port 8879 for ND installation

String port = "8880";

// String port = "8879";

String host = "localhost";

final static boolean verbose = true;

// eg a configuration ID for DataSource declared at the node level for base

private static final String resURI = "cells/cat/nodes/cat:resources.xml#DataSource_1";

// eg a 4.0 DataSource declared at the node level for base

// private static final String resURI = "cells/cat/nodes/cat:resources.xml#WAS40DataSource_1";

// eg Cloudscape DataSource declared at the server level for base

//private static final String resURI = "cells/cat/nodes/cat/servers/server1/resources.xml#DataSource_6";

// eg node level DataSource for ND

//private static final String resURI = "cells/catNetwork/nodes/cat:resources.xml#DataSource_1";

// eg server level DataSource for ND

//private static final String resURI = "cells/catNetwork/nodes/cat/servers/server1:resources.xml#DataSource_4";

// eg cell level DataSource for ND

//private static final String resURI = "cells/catNetwork:resources.xml#DataSource_1";

 public static void main(String[] args) {

 testDSGUI cds = new testDSGUI();

 cds.run(args);

 }

/**

 * This method tests the ResourceMbean.

 *

 * @param args

 * @exception Exception

 */

 public void run(String[] args) {

 try {

 System.out.println("Connecting to the application server.......");

 /***/

 /** Initialize the AdminClient */

702 Administering applications and their environment

/***/

 Properties adminProps = new Properties();

 adminProps.setProperty(AdminClient.CONNECTOR_TYPE, AdminClient.CONNECTOR_TYPE_SOAP);

 adminProps.setProperty(AdminClient.CONNECTOR_HOST, host);

 adminProps.setProperty(AdminClient.CONNECTOR_PORT, port);

 AdminClient adminClient = null;

 try {

 adminClient = AdminClientFactory.createAdminClient(adminProps);

 } catch (com.ibm.websphere.management.exception.ConnectorException ce) {

 System.out.println("NLS: Cannot make a connection to the application server\n");

 ce.printStackTrace();

 System.exit(1);

 }

 /***/

 /** Locate the Mbean */

 /***/

 ObjectName handle = null;

 try {

 // Send in a locator string

 // eg for a Baseinstallation this is enough

 ObjectName queryName = new ObjectName("WebSphere:type=DataSourceCfgHelper,*");

 // for ND you need to specify which node/process you would like to test from

 // eg run in the server

//ObjectName queryName = new OjectName

 ("WebSphere:cell=catNetwork,node=cat,process=server1,type=DataSourceCfgHelper,*");

 // eg run in the node agent

//ObjectName queryName = new ObjectName

 ("WebSphere:cell=catNetwork,node=cat,process=nodeagent,type=DataSourceCfgHelper,*");

// eg run in the Deployment Manager

//ObjectName queryName = new ObjectName

 ("WebSphere:cell=catNetwork,node=catManager,process=dmgr,type=DataSourceCfgHelper,*");

 Set s = adminClient.queryNames(queryName, null);

 Iterator iter = s.iterator();

 while (iter.hasNext()) {

 // use the first MBean that is found

 handle = (ObjectName) iter.next();

 System.out.println("Found this ->" + handle);

 }

 if (handle == null) {

 System.out.println("NLS: Did not find this MBean>>" + queryName);

 System.exit(1);

 }

 } catch (MalformedObjectNameException mone) {

 System.out.println("Check the program variable queryName" + mone);

 } catch (com.ibm.websphere.management.exception.ConnectorException ce) {

 System.out.println("Cannot connect to the application server" + ce);

 }

 /***/

 /** Build parameters to pass to Mbean */

 /***/

 String[] signature = { "java.lang.String" };

 Object[] params = { resURI };

 Object result = null;

 if (verbose) {

 System.out.println("\nTesting connection to the database using " + handle);

 }

 try {

 /***/

 /** Start to test the connection to the database */

 /***/

 result = adminClient.invoke(handle, "testConnection", params, signature);

 } catch (MBeanException mbe) {

Chapter 13. Data access resources 703

// ****** all user exceptions come in here

 if (verbose) {

 Exception ex = mbe.getTargetException(); // this is the real exception from the Mbean

 System.out.println("\nNLS:Mbean Exception was received contains " + ex);

 ex.printStackTrace();

 System.exit(1);

 }

 } catch (InstanceNotFoundException infe) {

 System.out.println("Cannot find " + infe);

 } catch (RuntimeMBeanException rme) {

 Exception ex = rme.getTargetException();

 ex.printStackTrace(System.out);

 throw ex;

 } catch (Exception ex) {

 System.out.println("\nUnexpected Exception occurred: " + ex);

 ex.printStackTrace();

 }

 /***/

 /** Process the result. The result will be the number of warnings */

 /** issued. A result of 0 indicates a successful connection with */

 /** no warnings. */

 /***/

 //A result of 0 indicates a successful connection with no warnings.

 System.out.println("Result= " + result);

 } catch (RuntimeOperationsException roe) {

 Exception ex = roe.getTargetException();

 ex.printStackTrace(System.out);

 } catch (Exception ex) {

 System.out.println("General exception occurred");

 ex.printStackTrace(System.out);

 }

 }

}

Configuring data access for the Application Client

Configuring data access for the Application Client involves specifying the resource reference and

associated database information required for data access. This specification is done as part of the

assembly and deployment steps for the Application Client.

There are two tools needed to configure data sources used by J2EE application clients:

v An assembly tool such as the Application Server Toolkit (AST) or Rational Application Developer for

defining the resource reference in the deployment descriptor; and

v The Application Client Resource Configuration Tool (ACRCT) for defining the connection to the database

in the client deployment environment.

Data access from an application client uses the JDBC driver connection functions directly from the client

side. It does not take advantage of the additional pooling support available in the WebSphere Application

Server run time. Configuring data access for an application client does not require configuration of a JDBC

provider and data source on the WebSphere Application Server server machine.

If you want to take advantage of the pooling and additional database functions provided by WebSphere

Application Server, it is recommended that your client application utilize an enterprise bean running on the

server side to perform data access.

Defining an application client resource reference using an assembly tool

1. Assemble your application client module as described in Assembling application clients.

2. Create a new resource reference:

704 Administering applications and their environment

a. In a Project Explorer view, right-click your application client module and click Open With >

Deployment Descriptor Editor.

b. On the References tab, click Add > Resource reference > Next.

c. On the Resource Reference page, enter the Name of this resource reference. The Application

Client for WebSphere Application Server run time uses this name for two purposes: to bind the

object into the java:comp/env portion of the JNDI namespace, and to find client specific

configuration information. If the code for the Application Client performs a lookup for

java:comp/env/jdbc/myDB, the name of the resource reference should be jdbc/myDB.

d. For Type, select javax.sql.DataSource for JDBC connections.

e. For Authentication, select Application if your client application intends to provide authentication

information. If the Application Client for WebSphere Application Server run time provides the

authentication information (as configured by the Application Client Resource Configuration tool),

select Container.

f. Ignore the Sharing scope setting; it is unused in an application client resource reference. All

Application Client resources are not shared.

g. Click Finish.

h. Close the deployment descriptor and save your changes.

The JNDI name field appears under WebSphere Bindings after your add the reference.

Client configuration with the ACRCT

There are two client resources for you to configure in the Application Client Resource Configuration Tool

(ACRCT) to enable data access from an application client: a data source provider and a data source.

Notes

Note: The following WebSphere objects, which can be bound into the server name space, are not

supported on the client:

v Java 2 Connector (J2C) objects

v Connection manager objects

The WebSphere Application Server Client does not provide client database drivers. If your client

application uses a database directly, rather than using an enterprise bean, you must provide the

database drivers on the client machine. This action can involve contacting your database vendor to

acquire client database driver code and licenses.

Instead of accessing the database directly, it is recommended that your client application use an

enterprise bean. Accessing a database through an enterprise bean eliminates the need to have

database drivers on the client machine because the database access is handled by the enterprise

bean running on the WebSphere Application Server. Enterprise beans can also take advantage of

the additional database functions provided by the WebSphere Application Server run time.

1. Configure a new data source provider as described in Configuring new data source providers. This

provider describes the JDBC database implementation for your client application.

2. Enter the following information on the General tab:

a. A name for this data source provider.

b. Optional: A description.

c. The classpath to the data source provider implementation classes or JAR files. This is optional if

the implementation classes or JAR files are already in the class path configuration of the client.

d. The name of the implementation class. For example, for DB2 this value is

COM.ibm.db2.jdbc.DB2DataSource. Remember this class must implement the

javax.sql.DataSource class. The ACRCT does not verify this class and you receive an error when

you run your client application if the class does not implement javax.sql.DataSource.

Chapter 13. Data access resources 705

Use the Custom tab to configure non-standard properties of the data source provider. This panel

enables you to enter property-value pairs. During run time the implementation class name is created

and any custom properties added on this panel are set on the newly created data source object using

reflection. Any properties configured on this panel must have an appropriate set method on the data

source class. For example, assume there is a property called use2Phase and its value should be 1.

On the custom panel you enter the value use2Phase into the name column and the value 1 into the

value column. The Application Client for WebSphere Application Server run time then uses reflection to

find a property on the data source class called, typically setUse2Phase and call that method passing

the value of 1. See your database product documentation for valid properties on your data source

implementation.

3. Click OK.

4. Configure a new data source as described in Configuring new data sources for application clients. This

describes the client properties of the database your client application uses.

5. Enter the following information on the General tab:

a. A Name. This field is required and identifies a name for the Application Client Resource

Configuration Tool to use. This name is not used by your client application program.

b. Optional: A description.

c. The JNDI name. This field is required and must match the value entered in the Name field on the

Add Resource Reference page of the assembly tool. In the example above, set this value to

jdbc/myDB.

d. Optional: The Database Name.

e. Optional: Your userid in the User field.

f. Optional: Your password in the Password field. This password does not display.

g. Your password again to confirm in the Re-Enter password field. Note: The User and Password

fields are used only when the Authentication field on the Add Resource Reference page of the

assembly tool is set to Container.

Resource references

Use this page to designate how the resource references of application modules map to the actual

resources that are configured for the application.

To view this administrative console page, click Applications > Enterprise Applications >

application_name > Resource references.

Guidelines for using this administrative console page:

v If your application uses any of the following resource types, you can set or reset their mapping

configurations:

– Mail session

– URL configuration

– Data source

– J2C connection factory

– JMS queue connection factory for the JMS provider of WebSphere MQ

– JMS queue destination for WebSphere MQ

– JMS topic connection factory for WebSphere MQ

– JMS topic destination for WebSphere MQ

– Unified JMS connection factory for WebSphere MQ

– Generic JMS connection factory

v The page is comprised of sections that correspond to each applicable resource type. Each section

heading is the class name for the resource. If your application contains only one applicable resource

type, you see only one section.

706 Administering applications and their environment

v Each section contains a table. Each table row depicts a resource reference within a specific module of

your application.

v The rows contain the JNDI names of resource mapping targets for your references only if you bound

them together during application assembly. You can modify those bindings on this administrative

console page.

v To set your mappings:

1. Select a row. Be aware that if you check multiple rows on this page, the resource mapping target

that you select in step 2 applies to all of those references.

2. Click Browse to select a resource from the new page that is displayed, the Available Resources

page. The Available Resources page shows all resources that are available mapping targets for your

application references.

3. Click Apply. The console displays the Resource references page again. In the rows that you

previously selected, you now see the JNDI name of the new resource mapping target.

4. Repeat the previous steps as necessary.

5. Click OK. You now return to the general configuration page for your enterprise application.

v For data sources and connection factories: Sections for these resource types contain an additional

set of steps for modifying your security settings. Use the last column in the displayed table to view the

authorization type for each resource configuration per application module. You can modify the

corresponding authentication method only if the authorization type is container. Container-managed

authorization indicates that the product performs signon to the resource rather than the enterprise bean

code. The reconfiguring process differs slightly for each authentication method option:

– If you select None:

1. Determine which resource configurations to designate with no authentication method.

2. Select the appropriate table rows.

3. Select None from the list of authentication method options that precede the table.

4. Click Apply.

– If you select Default:

1. Determine which resources to designate with the WebSphere Application Server

DefaultPrincipalMapping login configuration. You must apply this option to each resource

individually if you want to designate different authentication data aliases. See the ″J2EE

Connector security″ Information center topic for more information on the default mapping

configuration.

2. Select the appropriate table rows.

3. Select Use default method from the list of authentication method options that precede the table.

4. Select an authentication data entry or alias from the list.

5. Click Apply.

– If you select Custom login configuration:

1. Determine which resources to designate with a custom Java Authentication and Authorization

Service (JAAS) login configuration. See the ″J2EE Connector security″ Information center topic

for more information on custom JAAS login configurations.

2. Select the appropriate table row.

3. Select Use custom login configuration from the list of authentication method options that

precede the table.

4. Select an application login configuration from the list.

5. Click Apply.

6. To edit the properties of the custom login configuration, click Mapping Properties in the table

cell.

Table column heading descriptions:

Chapter 13. Data access resources 707

Select

Select the check boxes of the rows that you want to edit.

Module

The name of a module in the application.

EJB

The name of an enterprise bean that is contained by the module.

URI

Specifies location of the module relative to the root of the application EAR file.

Reference binding

The name of a resource reference that is used in the enterprise bean, if applicable, and is declared in the

deployment descriptor of the application module.

JNDI name

The Java Naming and Directory Interface (JNDI) name of the resource that is the mapping target of the

resource reference.

 Data type String

Login configuration

This column applies to data sources and connection factories only and refers to the authorization type and

the authentication method for securing the resource.

Performing platform-specific tasks for JDBC access

This article provides miscellaneous tips for using supported databases. See also the related links.

Most of the following tasks are performed outside of the WebSphere Application Server administrative

tools, using the database product tools. Always refer to the documentation that accompanies your

database JDBC driver as the authoritative and complete source of driver information. The Supported

hardware and software web page lists drivers that are supported by Application Server for specific

platforms.

v Enable Java Transaction API (JTA) drivers for DB2 on Windows NT systems by following these

steps:

1. Bind the necessary packages to the database. From the DB2 Command Line Processor window,

issue the following commands:

db2=> connect to mydb2jta

db2=> bind db2home\bnd\@db2cli.lst

db2=> bind db2home\bnd\@db2ubind.lst

db2=> disconnect mydb2jta

where mydb2jta is the name of the database to enable for the JTA, and db2home is the DB2 root

installation directory path (for example, D:\ProgramFiles\SQLLIB\bnd\@db2cli.lst).

2. Specify the following settings when you use an IBM WebSphere Application Server administrative

client (such as the administrative console) to configure a JDBC driver:

– Server class path = %DB2_ROOT%/Sqllib/java/db2java.zip

– Implementation class name = COM.ibm.db2.jdbc.DB2XADataSource

v Enable JTA drivers on UNIX systems by following these steps:

1. Stop all DB2 services.

2. Stop the IBM WebSphere Application Server administrative service.

3. Stop any other processes that use the db2java.zip file.

4. Make sure that you already enabled JDBC 2.0.

708 Administering applications and their environment

http://www.ibm.com/support/docview.wss?rs=180&uid=swg27006921
http://www.ibm.com/support/docview.wss?rs=180&uid=swg27006921

5. Start the DB2 services.

6. Bind the necessary packages to the database. From the DB2 command-line process or window,

issue the following commands:

db2=> connect to mydb2jta

db2=> bind db2home\bnd\@db2cli.lst

db2=> bind db2home\bnd\@db2ubind.lst

db2=> disconnect mydb2jta

7. Specify the following settings when you use an IBM WebSphere Application Server administrative

client (such as the administrative console) to configure a JDBC driver:

– Server class path = $INSTHOME/sqllib/java12/db2java.zip

For example, if $INSTHOME is /home/test, the path will be /home/test/sqllib/java12/
db2java.zip

– Implementation class name = COM.ibm.db2.jdbc.DB2XADataSource

v Enable JTA drivers for Sybase products on AIX systems by following these steps:

1. Enable the Data Transaction Manager (DTM) by issuing these commands (one per line) at a

command prompt:

 isql -Usa -Ppassword -Sservername

 sp_configure "enable DTM", 1

 go

2. Stop the Sybase Adaptive Server database and start it again.

3. Grant the appropriate role authorization to the enterprise bean user at a command prompt:

 isql -Usa -Ppassword -Sservername

 grant role dtm_tm_role to EJB

 go

v Sybase Java Transaction API drivers on all platforms: Do not use a Sybase Java Transaction API

(JTA) connection in an enterprise bean method with an unspecified transaction context. A Sybase JTA

connection does not support the local transaction mode. The implication is that you must use the

Sybase JTA connection in a global transaction context.

v Enable multiple session clients for local DB2 databases on AIX by working around the limit for

shared memory segments per process. AIX, by default, does not permit 32-bit applications to attach to

more than 11 shared memory segments per process. Of these 11 shared segments, a maximum of 10

can be used for local DB2 connections. To use EXTSHM with DB2 and avoid stale connections when

there are large numbers of session clients, do the following:

– In DB2 client environment (that is, the WebSphere Application Server run-time environment in this

case):

export EXTSHM=ON

– In DB2 UDB Server environment:

 export EXTSHM=ON

 db2set DB2ENVLIST=EXTSHM

v Source the db2profile script on UNIX systems before starting WebSphere Application Server to host

data access applications. Run the command

. ~db2inst1/sqllib/db2profile

where db2inst1 is the user created during DB2 installation.

Pretesting pooled connections to ensure validity

When a database fails, pooled connections that are not valid might exist in the free pool. This scenario is

likely to occur when you have a failingConnectionOnly purge policy, which mandates that only failing

connections be removed from the pool. Whether the remaining connections in the pool are valid varies

with the cause of the failure. Connection pretesting is a way to test connections from the free pool before

giving them to the client.

Chapter 13. Data access resources 709

If your application uses pooled connections, you can enable the PreTest Connections feature in the

administrative console to help prevent your application from obtaining connections that are no longer valid.

The feature is particularly useful for routine database outages. Because these outages are usually

scheduled for periods of low use, connections to the database are likely to be in the free pool rather than

in active use. Active connections are not pretested; pretesting impedes performance during normal

operation. Pretesting ensures that users do not waste time trying to resume connections that became bad

before the outage.

1. In the administrative console, click Resources > JDBC providers.

2. Select a provider and click Data Sources under Additional properties.

3. Select a data source and click WebSphere Application Server data source properties under

Additional properties.

4. Select the PreTest Connections check box.

5. Type a value for the PreTest Connection Retry Interval, which is measured in seconds. This property

determines the frequency with which a new connection request is made after a pretest operation fails.

6. Type a valid SQL statement for the PreTest SQL String. Use a reliable SQL command, with minimal

performance impact; this statement is processed each time a connection is obtained from the free

pool.

For example, you might specify SELECT COUNT(*) from TESTTABLE. (For an Oracle database, use

SELECT USER FROM DUAL.)

Passing client information to a database

Using a WebSphere Application Server API or trace function, you can pass unique client information on

every connection that originates from the same data source.

Some databases, such as DB2, support a data source custom property that triggers your database servers

to extract client information from WebSphere Application Server connections. (Consult the database

documentation to see whether your product supports this capability and which property the product

requires.) Be aware, however, that these properties introduce a very limited functionality in Application

Server. Consequently, an application server connection manager incurs the following risky behaviors,

which can result in the transfer of wrong client information to the database.

v The connection manager cannot change client information on the data source, or the connections

obtained from that data source, dynamically.

v The connection manager must set the same client information on all connections that are obtained from

that data source. For example, if you set ApplicationName as part of the data source clientInformation

property, all connections from that data source have the same application name.

Application Server offers two methods of passing client information that provide the necessary connection

management flexibility. Using either method, you can set client information on some connections and not

others, as well as set different client information on different database connections from the same data

source.

v Use the IBM proprietary setClientInformation(Properties) API. The API is defined on the WSConnection

class, which is part of the com.ibm.websphere.rsadapter package.

1. Cast the connection objects in your applications to com.ibm.websphere.rsadapter.WSConnection

before calling the API.

2. Optionally, set a properties object for adding new client information on a connection if and when new

information is introduced by the backend database:

public void setClientInformation (Properties props)throws SQLException;

v You can also activate the function implicitly (that is, within Application Server) by using the

WAS.clientinfo trace string. Enable this trace dynamically, from the administrative console, just as you

activate any other trace. For more information about passing client information implicitly, see “Implicitly

set client information” on page 711.

710 Administering applications and their environment

See “Example: setClientInformation(Properties) API.”

Example: setClientInformation(Properties) API

Usage Scenario

This API enables you to set client information on the WebSphere Application Server connection. Some of

the client information is passed on to the backend database if that database supports such functionality.

Example

import com.ibm.websphere.rsadapter.WSConnection;

.....

try {

 InitialContext ctx = new InitialContext();

 //Perform a naming service lookup to get the DataSource object.

 DataSource ds = (javax.sql.DataSource)ctx.lookup("java:comp/jdbc/myDS");

 }catch (Exception e) {System.out.println("got an exception during lookup: " + e);}

 WSConnection conn = (WSConnection) ds.getConnection();

 Properties props = new properties();

 props.setProperty(WSConnection.CLIENT_ID, "user123");

 props.setProperty(WSConnection.CLIENT_LOCATION, "127.0.0.1");

 props.setProperty(WSConnection.CLIENT_ACCOUNTING_INFO, "accounting");

 props.setProperty(WSConnection.CLIENT_APPLICATION_NAME, "appname");

 props.setProperty(WSConnection.CLIENT_OTHER_INFO, "cool stuff");

 conn.setClientInformation(props);

 conn.close()

Parameters

props contains the client information to be passed. Possible values are:

v WSConnection.CLIENT_ACCOUNTING_INFO

v WSConnection.CLIENT_LOCATION

v WSConnection.CLIENT_ID

v WSConnection.CLIENT_APPLICATION_NAME

v WSConnection.CLIENT_OTHER_INFO

v WSConnection.OTHER_CLIENT_TYPE

Refer to the WSConnection documentation for more details on which client information is passed to the

backend database. To reset the client information, call the method with a null parameter.

Exceptions

This API creates an SQL exception if the database issues an exception when setting the data.

Passing client info to a db cdat_clientinfo

Implicitly set client information

You can choose to explicitly pass the client information of application requests to database connections by

calling an IBM proprietary API, setClientInformation(Properties), on the

com.ibm.websphere.rsadapter.WSConnection object within your application code. In some cases, however,

you might want WebSphere Application Server to handle the passing of client information to database

connections. This method of setting the client information is referred to as implicit. You might choose the

implicit method because:

v You want to keep your application free of proprietary APIs, or

v Your application uses container-managed persistence (CMP), in which case you cannot use the

proprietary API to set client information on database connections.

Chapter 13. Data access resources 711

The WebSphere Application Server trace facility provides the capability for setting client information

implicitly. You can designate one of two special trace groups to enable or disable client information

passing: “WAS.clientinfo trace” or “WAS.clientinfopluslogging trace” on page 713.

Possible run-time scenarios

v Connection sharing

In the case of connection sharing, WebSphere Application Server sets the client information on the first

acquired connection handle only. If connection sharing is enabled and two or more getConnection

methods are called (resulting in two handles on the same connection), only the first getConnection call

causes the client information to pass to the backend database. This scenario does not apply to the

explicit process of passing client information; in such cases every setClientinformation method is relayed

to the database regardless of connection sharing.

v Implicit/explicit co-existence

When you use both the explicit and implicit procedures for relaying client information, some combination

of the explicitly set data and implicitly set data is combined, but the explicit setting usually takes

precedence. For example, if the application sets the client accounting information to

″myAccountingInfo″, the final accountingInfo string that is passed to the backend database looks

something like the following sample code:

000325_WSRdbManagedConnectionImpl@1234_myAccountingInfo:

where 000325 is the thread id and WSRdbManagedConnectionImpl@1234 is the WebSphere connection

instance.

v Client information reset

When you configure Application Server to pass client information, it does reset client information when a

connection is returned to the pool, but only if the WAS.clientinfo and WAS.clientinfopluslogging trace

mechanisms are disabled (that is, WAS.clientinfo=all=disabled:WAS.clientinfopluslogging=all=disabled).

In the explicit case, however, the reset operation is done only when the application issues

setClientInformation(null) on the WSConnection connection.

WAS.clientinfo trace

By default, the implicit mechanism is disabled. You can turn on this mechanism dynamically, without

stopping and starting your application server, or statically by setting the WebSphere Application Server

trace group WAS.clientinfo=all=enabled.

The information implicitly collected and set on the database connection consists of the user name, user

location and application name.

Important: User name and user location can only be implicitly collected and set on the database

connection if you enable global security.

user name

The name of the user that initiates the application request. This option is collected and passed to

the backend database (when supported) only if global security is enabled. Information here is

collected by calling the WSSecurityHelper.getFirstCaller method.

user location

The name of the location of the user, in the form of cell:node:server. This option is collected and

passed to the backend database, when appropriate, only when global security is enabled.

Information here is collected by calling the WSSecurityHelper.getFirstServer method.

application name

The name of the application running. This value is the output of the getApplication method from

the J2EEName object. This value is collected regardless of the Global Security setting.

712 Administering applications and their environment

WAS.clientinfopluslogging trace

When debugging database problems, such as deadlocks, there is a set of information that is needed to

help with the debugging effort. This information is typically obtained by enabling a WebSphere Relational

Resource Adapter (RRA) trace, and an Enterprise JavaBean (EJB) container trace. However, there are

some cases where timing is an issue when reproducing a given problem. Having too much tracing

information can alter the behavior of the application, such as change the timing, and the problem might no

longer occur.

Because of this situation, a new trace group is provided where only a minimum set of information is

collected. This trace group is WAS.clientinfopluslogging. This function sets the client information implicitly

on the connection, just like the WAS.clientinfo trace, as well as logs and traces important application

activities. Those activities are:

v SQL Strings that are run (such as, select userId from tabl1 where id=? for update).

v Start, commit, and rollback of transactions.

v EJB calls (such as, Create, Remove, findByPrimaryKey, and so on).

Setting client information traces with the administrative console

Enabling the WAS.clientinfo and WAS.clientinfopluslogging traces is done through the administrative

console.

1. Open the administrative console.

2. Select Troubleshooting.

3. Select Log and Trace.

4. Select the server you want to use.

5. Select Change log detail levels.

6. Select the Configuration or Run time tab.

7. In the Trace Specification entry field, type WAS.clientinfopluslogging=all. This starts the

WAS.clientinfopluslogging trace, which passes the client information to the backend data store (if your

database supports receiving client information in this manner) and logs important client activities. Type

WAS.clientinfo=all to pass client information to the backend without tracing of client activities. To

deactivate either trace, simply type the trace group name followed by =off (without spacing between

characters).

About Cloudscape v10.1.x

WebSphere Application Server Version 6.1.x requires Cloudscape to run at a minimal version of v10.1x,

which differs radically from previous releases of the database.

Use Cloudscape v10.1.x as a test and development database only.

The new code base

Unlike versions 5.1.60x and earlier, the new Cloudscape is a pure Java database server. The Cloudscape

v10.1.x code base, which the open source community calls Derby, is a product of the Apache Software

Foundation (ASF) open source relational database project. The new Cloudscape includes Derby without

any modification to the underlying source code. Learn more about Derby code at the Apache Derby

website: http://db.apache.org/derby/.

Support for two phase-commit transactions over the Network Server framework

Only the Network Server framework provides support for multiple Java virtual machines (JVMs), such as

application servers, to access Cloudscape. Earlier versions of Cloudscape cannot conduct two

Chapter 13. Data access resources 713

http://db.apache.org/derby/

phase-commit transactions over the Network Server framework. However, the new Cloudscape can

conduct XA transactions over Network Server; the new Derby Client JDBC driver gives Cloudscape

v10.1.x that capability.

New Tools

Cloudscape v10.1.x is equipped with the following .bat/sh tools:

v sysinfo: displays database version information

v ij: manipulates the database instances

transition: Use ij as an alternative for the old Cloudscape cview tool, which does not exist in version

10.1.x.

v dblook: dumps DDL information

v networkServerControl: controls the networkServer process (can be used for functions such as ping and

trace)

v startNetworkServer: starts the networkServer process

v stopNetworkServer: stops the networkServer process

Note: When you run ij, surround the dbname by double quotation marks (″ ″) if it includes the full path

name; for example: ij> connect ’″c:\temp;create=true″’

This is ’ ″ ″ ’ without spaces.

Continued support

The new Cloudscape package that is bundled with WebSphere Application Server shares this important

feature with earlier packages: It is backed by full IBM Quality Assurance (QA).

Verifying the Cloudscape v10.1.x automatic migration

WebSphere Application Server Version 6.1.x requires Cloudscape to run at a minimal version of v10.1.x.

(Note that Cloudscape v10.1.x is comprised of the Derby code base.) During the Application Server v6.1.x

upgrade, the migration tool automatically upgrades the database instances that are accessed through the

embedded framework by some internal components, such as the UDDI registry. The tool also attempts to

upgrade Cloudscape instances that your applications access through the embedded framework. You must

verify the migration results for these backend databases.

Do not use Cloudscape v10.1.x as a production database. Use it for development and test purposes only.

Learn more: The new version of Cloudscape combines the Derby runtime with additional benefits, such

as IBM Quality Assurance (QA) and national language support (NLS). For information about

the Cloudscape v10.1.x open source code base, see the Cloudscape section of ibm.com:

http://www-306.ibm.com/software/data/cloudscape/.

The migration tool attempts to upgrade Cloudscape database instances that are accessed through the

embedded framework only. You must manually upgrade Cloudscape instances that transact with

application servers on the Network Server framework. (See the “Upgrading Cloudscape manually” on page

717 article.) This requirement eliminates the risk of corrupting third party applications that use the Network

Server framework to access the same database instances as WebSphere Application Server.

Cloudscape requires the Network Server framework to transact with more than one Java Virtual Machine

(JVM) concurrently. Within WebSphere Application Server, each application server is a JVM; hence you

can use a single instance of Cloudscape Network Server framework with a clustered or coexistence

implementation of Application Server. For more information on the Network Server framework, consult the

IBM Cloudscape information center at http://publib.boulder.ibm.com/infocenter/cscv/v10r1/index.jsp.

714 Administering applications and their environment

http://www-306.ibm.com/software/data/cloudscape/
http://publib.boulder.ibm.com/infocenter/cscv/v10r1/index.jsp

For database instances that your applications access through the embedded framework, the automatic

migration can succeed completely, fail completely, or succeed with warnings. A migration that produces

warning messages does create a Cloudscape v10.1.x database with your data, but does not migrate all of

your configured logic and other settings, such as:

v keys

v checks

v views

v triggers

v aliases

v stored statements

To distinguish between a partially and a completely successful migration, you must verify the

auto-migration results by checking both the general post-upgrade log and the individual database logs.

Performing these tasks gives you vital diagnostic data to troubleshoot the partially migrated databases as

well as those that fail auto-migration completely. Ultimately, you migrate these databases through a

manual process.

1. Open the post-upgrade log of each new WebSphere Application Server Version 6.1x profile. The path

name of the log is WAS_HOME/profiles/profileName/logs/WASPostUpgrade.timestamp.log.

2. Examine the post-upgrade log for database error messages. These exceptions indicate database

migration failures. The following lines are an example of post-upgrade log content, in which the

database error code is DSRA7600E. (The migration tool references all database exceptions with the

prefix DSRA.)

MIGR0344I: Processing configuration file /opt/WebSphere51/AppServer/cloudscape

/db2j.properties.

MIGR0344I: Processing configuration file /opt/WebSphere51/AppServer/config/cells

/migr06/applications/MyBankApp.ear/deployments/MyBankApp/deployment.xml.

DSRA7600E: Cloudscape migration of database instance /opt/WebSphere61/Express

/profiles/default/databases/_opt_WebSphere51_AppServer_bin_DefaultDB failed,

reason: java.sql.SQLException: Failure creating target db

MIGR0430W: Cloudscape Database /fvt/temp/51BaseXExpress/PostUpgrade50BaseFVTTest9

/testRun/pre/websphere_backup/bin/DefaultDB failed to migrate <new database name>

Important: Call IBM WebSphere Application Server Support if you see a migration failure message for

a Cloudscape instance that is accessed by a WebSphere internal component (that is, a

component that helps comprise WebSphere Application Server rather than one of your

applications).

3. Open the individual database migration log that corresponds with each of your backend Cloudscape

databases. These logs have the same timestamp as that of the general post-upgrade log. The logs

display more detail about errors that are listed in the general post-upgrade log, as well as expose

errors that are not documented by the general log.

The path name of each database log is WAS_HOME/profiles/profileName/logs/
myFulldbPathName_migrationLogtimestamp.log.

4. Examine each database migration log for errors. For a completely successful migration, the log

displays a message that is similar to the following text:

MIGR0429I: Cloudscape Database F:\temp\51BaseXExpress\PostUpgrade50BaseFVTTest2\testRun

\pre\websphere_backup\bin\DefaultDB was successfully migrated. See log C:\WebSphere61

\Express\profiles\default\logs\DefaultDB_migrationLogSun-Dec-18-13.31.40-CST-2005.log

Otherwise, the log displays error messages in the format of the following example:

Chapter 13. Data access resources 715

connecting to source db <jdbc:db2j:/fvt/temp/51BaseXExpress/PostUpgrade50BaseFVTTest9

/testRun/pre/websphere_backup/bin/DefaultDB>

connecting to source db <jdbc:db2j:/fvt/temp/51BaseXExpress/PostUpgrade50BaseFVTTest9

/testRun/pre/websphere_backup/bin/DefaultDB> took 0.26 seconds

creating target db <jdbc:derby:/opt/WebSphere61/Express/profiles/default/databases

/_opt_WebSphere51_AppServer_bin_DefaultDB>

 ERROR: An error occurred during migration. See debug.log for more details.

shutting down databases

shutting down databases took 0.055 seconds

5. For more data about a migration error, consult the debug log that corresponds with the database

migration log. The WebSphere Application Server migration utility triggers a debug migration trace by

default; this trace function generates the database debug logs. The full path name of a debug log is

WAS_HOME/profiles/profileName/logs/myFulldbPathName_migrationDebugtimestamp.log.

The following lines are a sample of debug text. The lines display detailed exception data for the error

that is referenced in the previous sample of database migration log data.

java.sql.SQLException: Database_opt_WebSphere51_AppServer_bin_DefaultDB already exists. Aborting migration

 at com.ibm.db2j.tools.migration.MigrateFrom51Impl.go(Unknown Source)

 at com.ibm.db2j.tools.migration.MigrateFrom51Impl.doMigrate(Unknown Source)

 at com.ibm.db2j.tools.MigrateFrom51.doMigrate(Unknown Source)

 at com.ibm.ws.adapter.migration.CloudscapeMigrationUtility.migr

v The WebSphere Application Server migration utility changes your Cloudscape JDBC configurations

whether or not it successfully migrates the database instances that are accessed by your applications.

The tool changes Cloudscape JDBC provider class paths, data source implementation classes, and

data source helper classes. The following table depicts these changes:

 Table 7. New class information

Class type Old value New value

JDBC provider class path ${CLOUDSCAPE_JDBC_DRIVER_PATH}/
db2j.jar

${DERBY_JDBC_DRIVER_PATH}/
derby.jar

v Where DERBY_JDBC_DRIVER_PATH is

the WebSphere environment

variable that defines your

Cloudscape JDBC provider

v Where derby.jar is the base name

of the JDBC driver class file (In

your environment, reference the

JDBC driver class file by the full

path name.)

Data source implementation class:

Connection pool

com.ibm.db2j.jdbc.DB2jConnectionPool

DataSource

org.apache.derby.jdbc.EmbeddedConnection

PoolDataSource

Data source implementation class: XA com.ibm.db2j.jdbc.DB2jXADataSource org.apache.derby.jdbc.EmbeddedXADataSource

Data source helper class com.ibm.websphere.rsadapter.Cloudscape

DataStoreHelper

com.ibm.websphere.rsadapter.Derby

DataStoreHelper

Additionally, the db2j.properties file changes:

– The name WAS_HOME/cloudscape/dbj.properties changes to WAS_HOME/derby/derby.properties

– Within the file, property names change from db2j.drda.* to derby.drda.*

v A partial or a completely successful database migration changes the location and name of the database

according to the following example:

– Old database name: c:\temp\mydb

716 Administering applications and their environment

– New database name: WAS_HOME\profiles\profilename\databases\c_temp_mydb

Note the exact path names: For both partial and failed migrations, the log messages contain the exact

old and new database path names that you must use to run the manual

migration. Note these new path names precisely.

If you experience a partial migration, attempt to troubleshoot the new v10.1.x database only if you have

expert knowledge of Cloudscape. Otherwise, delete the new database. Perform the manual migration

procedure on the original database, just as you do for each database that completely fails auto-migration.

Consult “Upgrading Cloudscape manually” for instructions.

Upgrading Cloudscape manually

During the WebSphere Application Server v6.1.x upgrade, the migration tool attempts to upgrade instances

of Cloudscape that are accessed through the embedded framework only. (The new version of Cloudscape

is version 10.1.x, which is based on Derby.) The automatic upgrade excludes Cloudscape instances that

transact with applications through the Network Server framework. This exclusion eliminates the risk of

corrupting third party applications that access the same database instances as WebSphere Application

Server. You must manually upgrade database instances that are accessed through the Network Server

framework. Do the same for databases that fail the automatic migration.

Do not use Cloudscape v10.1.x as a production database. Use it for development and test purposes only.

Learn more: The new version of Cloudscape combines the Derby runtime with additional benefits, such

as IBM Quality Assurance (QA) and national language support (NLS).

v For information about the Cloudscape v10.1.x open source code base, see the

Cloudscape section of ibm.com: http://www-306.ibm.com/software/data/cloudscape/.

v You can investigate incompatibilities between Cloudscape v10.1.x and v5.1.60x (plus

versions prior to v5.1.60x) by consulting the Cloudscape migration document at

http://publib.boulder.ibm.com/epubs/html/c1894711.html.

For instances of Cloudscape that are accessed through the embedded framework, determine which

instances completely failed the automatic upgrade process and which ones were only partially upgraded.

The article “Verifying the Cloudscape v10.1.x automatic migration” on page 714 documents how to uncover

database errors and diagnostic data from various migration logs. The log messages contain the exact old

and new database path names that you must use to run the manual migration. Note these new path

names precisely.

To minimize the risk of migration errors for databases that were only partially upgraded during the

automatic migration process, delete the new database. Troubleshoot the original database according to the

log diagnostic data, then perform manual migration on the original database.

The following section consists of steps to migrate Cloudscape instances that are accessed through both

frameworks: the embedded as well as the Network Server framework. Steps that apply only to the

Cloudscape Network Server framework are marked accordingly. As a migration best practice, ensure that

your user ID has one of the following authorities:

v Administrator of the application server that accesses the Cloudscape instance

v A umask that can access the database instance

Otherwise, you might see runtime errors about the database instance being read-only.

1. Network Server framework only: Ensure that every client of the Cloudscape database can support

Cloudscape v10.1.x. WebSphere Application Server clients of the database must run versions 6.1.x or

6.02.x of Application Server.

Chapter 13. Data access resources 717

http://www-306.ibm.com/software/data/cloudscape/
http://publib.boulder.ibm.com/epubs/html/c1894711.html

2. Network Server framework only: Take the database offline. No clients can access it during the

migration process.

3. Examine a sample Cloudscape migration script that Application Server provides: either

db2jmigrate.bat, or db2jmigrate.sh. The path of both scripts is WAS_HOME\derby\bin\embedded\... .

You can modify the script according to the requirements of your environment. Consult the Cloudscape

migration document at http://publib.boulder.ibm.com/epubs/html/c1894711.html for information about

options that you can use with the script. For example, you can use the option

-DB2j.migrate.ddlFile=filename to specify the DDL file for the new database.

4. To generate database debug logs when you run the migration script, ensure that the debug migration

trace is active. By default, this trace function is enabled. To reactivate the debug trace if it is disabled,

set one of the following trace options:

v all traces*=all

v com.ibm.ws.migration.WASUpgrade=all

5. Specify your old database name and the full post-migration path of the new database name when you

run the script. For example: E:\WebSphere\AppServer\derby\bin\embedded>db2jMigrate.bat myOldDB

myNewDB The logs from the automatic migration provide the exact path names to specify for both the old

database and the target database. You must use this target database name to specify the new

database, because your migrated Cloudscape data sources (updated by the WebSphere Application

Server migration utilities) now point to the target database name. The following sample text

demonstrates how log messages display target database names:

DSRA7600E: Cloudscape migration of database instance C:\temp\migration2\profiles\AppSrv01\

installedApps\ghongellNode01Cell\DynamicQuery.ear\EmployeeFinderDB to new database instance

C:\WebSphere\AppServer\profiles\AppSrv01\databases\C__WAS602_AppServer_profiles_AppSrv01_

installedApps_ghongellNode01Cell_DynamicQuery.ear_EmployeeFinderDB failed,

reason: java.sql.SQLException: Failure creating target db

For instances of Cloudscape that are accessed through the Network Server framework, input any

name that you want for the new database. Remember to modify your existing data sources to point to

the new database name.

6. When the migration process ends, examine the database migration log to verify the results. The path

name of each database migration log is WAS_HOME/logs/derby/myFulldbPathName_migrationLog.log.

For a successful migration, the database migration log displays a message that is similar to the

following text:

Check E:\WebSphere\AppServer\derby\myOldDB_migrationLog.log for progress

Migration Completed Successfully

E:\WebSphere\AppServer\derby\bin\embedded>

Otherwise, the log displays error messages in the format of the following example:

Check E:\WebSphere\AppServer\derby\myOldDB_migrationLog.log for progress

ERROR: An error occurred during migration. See debug.log for more details.

ERROR XMG02: Failure creating target db

java.sql.SQLException: Failure creating target db

 at com.ibm.db2j.tools.migration.MigrationState.getCurrSQLException(Unknown Source)

 at com.ibm.db2j.tools.migration.MigrateFrom51Impl.handleException(Unknown Source)

 at com.ibm.db2j.tools.migration.MigrateFrom51Impl.go(Unknown Source)

 at com.ibm.db2j.tools.migration.MigrateFrom51Impl.main(Unknown Source)

 at com.ibm.db2j.tools.MigrateFrom51.main(Unknown Source)

...

7. For more data about a migration error, consult the debug log that corresponds with the database

migration log. The full path name of a debug log file is WAS_HOME/logs/derby/
myFulldbPathName_migrationDebug.log

The following lines are a sample of debug text.

sourceDBURL=jdbc:db2j:E:\WebSphere\myOldDB

 newDBURL=jdbc:derby:e:\tempo\myNewDB

 ddlOnly=false

connecting to source db <jdbc:db2j:E:\WebSphere\myOldDB>

718 Administering applications and their environment

http://publib.boulder.ibm.com/epubs/html/c1894711.html

connecting to source db <jdbc:db2j:E:\WebSphere\myOldDB> took 0.611 seconds

creating target db <jdbc:derby:e:\tempo\myNewDB>

creating target db <jdbc:derby:e:\tempo\myNewDB> took 6.589 seconds

initializing source db data structures

initializing source db data structures took 0.151 seconds

recording DDL to create db <E:\WebSphere\myOldDB>

recording DDL to create db <E:\WebSphere\myOldDB> took 5.808 seconds

As indicated in the previous steps, the database migration log displays either a Migration Completed

Successfully message, or a message containing migration failure exceptions.

v For databases that fail migration, troubleshoot according to the logged error data. Then rerun the

migration script.

v To access successfully upgraded databases through the embedded framework, modify your data

sources to point to the new database names.

v To access successfully upgraded databases through the Network Server framework, you can use either

the DB2 Universal JDBC driver or the Derby Client JDBC driver.

– If you want your existing JDBC configurations to continue to use the DB2 Universal JDBC driver,

modify your data sources to point to the new database names.

– If you want to use the Derby Client JDBC driver, which can support XA data sources, modify your

JDBC providers to use the new Derby Client JDBC driver class and the new data source

implementation classes. Then reconfigure every existing data source to use the correct Derby data

source helper class, and to point to the new database name.

Consult the article in the information center on vendor-specific data sources minimum required

settings for all of the new class names.

Database performance tuning

Database performance tuning can dramatically affect the throughput of your application. For example, if

your application requires high concurrency (multiple, simultaneous interactions with backend data), an

improperly tuned database can result in a bottleneck. Database access threads accumulate in a backlog

when the database is not configured to accept a sufficient number of incoming requests.

Because WebSphere Application Server supports the integration of many different database products,

each one with unique tuning configurations, consult your database vendor documentation for

comprehensive tuning information. This information center provides introductory material on DB2 tuning

parameters for your convenience.

DB2 tuning parameters

DB2 has many parameters that you can configure to optimize database performance. For complete DB2

tuning information, refer to the DB2 UDB Administration Guide: Performance document.

DB2 logging

v Description: DB2 has corresponding log files for each database that provides services to

administrators, including viewing database access and the number of connections. For systems with

multiple hard disk drives, you can gain large performance improvements by setting the log files for each

database on a different hard drive from the database files.

v How to view or set: At a DB2 command prompt, issue the command: db2 update db cfg for

[database_name] using newlogpath [fully_qualified_path].

v Default value: Logs reside on the same disk as the database.

v Recommended value: Use a separate high-speed drive, preferably performance enhanced through a

redundant array of independent disk (RAID) configuration.

For more information about using AIX with DB2 see Tuning AIX systems.

DB2 configuration advisor

Chapter 13. Data access resources 719

Located in the DB2 Control Center, this advisor calculates and displays recommended values for the DB2

buffer pool size, the database, and the database manager configuration parameters, with the option of

applying these values. See more information about the advisor in the online help facility within the Control

Center.

Number of connections to DB2 - MaxAppls and MaxAgents

When configuring the data source settings for the databases, confirm the DB2 MaxAppls setting is greater

than the maximum number of connections for the data source. If you are planning to establish clones, set

the MaxAppls value as the maximum number of connections multiplied by the number of clones. The

same relationship applies to the session manager number of connections. The MaxAppls setting must be

equal to or greater than the number of connections. If you are using the same database for session and

data sources, set the MaxAppls value as the sum of the number of connection settings for the session

manager and the data sources.

For example, MaxAppls = (number of connections set for the data source + number of connections in the

session manager) multiplied by the number of clones.

After calculating the MaxAppls settings for the WebSphere Application Server database and each of the

application databases, verify that the MaxAgents setting for DB2 is equal to or greater than the sum of all

of the MaxAppls values. For example, MaxAgents = sum of MaxAppls for all databases.

DB2 buffpage

v Description: Improves database system performance. Buffpage is a database configuration parameter.

A buffer pool is a memory storage area where database pages containing table rows or index entries

are temporarily read and changed. Data is accessed much faster from memory than from disk.

v How to view or set: To view the current value of buffpage for database x, issue the DB2 command get

db cfg for x and look for the value BUFFPAGE. To set BUFFPAGE to a value of n, issue the DB2

command update db cfg for x using BUFFPAGE n and set NPAGES to -1 as follows:

db2 <-- go to DB2 command mode, otherwise the following "select" does not work as is

 connect to x <-- (where x is the particular DB2 database name)

 select * from syscat.bufferpools

 (and note the name of the default, perhaps: IBMDEFAULTBP)

 (if NPAGES is already -1, there is no need to issue following command)

 alter bufferpool IBMDEFAULTBP size -1

 (re-issue the above "select" and NPAGES now equals -1)

You can collect a snapshot of the database while the application is running and calculate the buffer pool

hit ratio as follows:

1. Collect the snapshot:

a. Issue the update monitor switches using bufferpool on command.

b. Make sure that bufferpool monitoring is on by issuing the get monitor switches command.

c. Clear the monitor counters with the reset monitor all command.
2. Run the application.

3. Issue the get snapshot for all databases command before all applications disconnect from the

database, otherwise statistics are lost.

4. Issue the update monitor switches using bufferpool off command.

5. Calculate the hit ratio by looking at the following database snapshot statistics:

– Buffer pool data logical reads

– Buffer pool data physical reads

– Buffer pool index logical reads

– Buffer pool index physical reads
v Default value: 250

v Recommended value: Continue increasing the value until the snapshot shows a satisfactory hit rate.

720 Administering applications and their environment

The buffer pool hit ratio indicates the percentage of time that the database manager did not need to load a

page from disk to service a page request. That is, the page is already in the buffer pool. The greater the

buffer pool hit ratio, the lower the frequency of disk input and output. Calculate the buffer pool hit ratio as

follows:

v P = buffer pool data physical reads + buffer pool index physical reads

v L = buffer pool data logical reads + buffer pool index logical reads

v Hit ratio = (1-(P/L)) * 100%

DB2 query optimization level

v Description: Sets the amount of work and resources that DB2 puts into optimizing the access plan.

When a database query runs in DB2, various methods are used to calculate the most efficient access

plan. The range is from 0 to 9. An optimization level of 9 causes DB2 to devote a lot of time and all of

its available statistics to optimizing the access plan.

v How to view or set: The optimization level is set on individual databases and can be set with either the

command line or with the DB2 Control Center. Static SQL statements use the optimization level that is

specified on the prep and bind commands. If the optimization level is not specified, DB2 uses the

default optimization as specified by the dft_queryopt setting. Dynamic SQL statements use the

optimization class that is specified by the current query optimization special register, which is set using

the SQL Set statement. For example, the following statement sets the optimization class to 1:

Set current query optimization = 1

If the current query optimization register is not set, dynamic statements are bound using the default

query optimization class.

v Default value: 5

v Recommended value: Set the optimization level for the needs of the application. Use high levels only

when there are very complicated queries.

DB2 reorgchk

v Description: Obtains the current statistics for data and rebinding. Use this parameter because SQL

statement performance can deteriorate after many updates, deletes or inserts.

v How to view or set: Use the DB2 reorgchk update statistics on table all command to perform the

runstats operation on all user and system tables for the database to which you are currently connected.

Rebind packages using the bind command. If statistics are available, issue the db2 -v ″select tbname,

nleaf, nlevels, stats_time from sysibm.sysindexes″ command on DB2 CLP. If no statistic updates

exist, nleaf and nlevels are -1, and stats_time has an empty entry (for example: ″-″). If the runstats

command was previously run, the real-time stamp from completion of the runstats operation also

displays under stats_time. If you think the time shown for the previous runstats operation is too old, run

the runstats command again.

v Default value: None

v Recommended value: None

DB2 locktimeout

v Description: Specifies the number of seconds that an application waits to obtain a lock. Setting this

property helps avoid global deadlocks for applications.

v How to view or set: To view the current value of the lock timeout property for database xxxxxx, issue

the DB2 get db cfg for xxxxxx command and look for the value, LOCKTIMEOUT. To set

LOCKTIMEOUT to a value of n, issue the DB2 update db cfg for xxxxxx command using

LOCKTIMEOUT n, where xxxxxx is the name of the application database and n is a value between 0

and 30 000 inclusive.

v Default value: -1, meaning lock timeout detection is turned off. In this situation, an application waits for

a lock if one is not available at the time of the request, until either of the following events occurs:

– The lock is granted

– A deadlock occurs

Chapter 13. Data access resources 721

v Recommended value: If your database access pattern tends toward a majority of writes, set this value

so that it gives you early warning when a timeout occurs. A setting of 30 seconds suits this purpose. If

your pattern tends toward a majority of reads, either accept the default lock timeout value, or set the

property to a value greater than 30 seconds.

DB2 maxlocks

v Description: Specifies the percentage of the lock list that is reached when the database manager

performs escalation, from row to table, for the locks held by the application. Although the escalation

process does not take much time, locking entire tables versus individual rows decreases concurrency,

and potentially decreases overall database performance for subsequent attempts to access the affected

tables.

v How to view or set: To view the current value of the maxlocks property for database xxxxxx, issue the

DB2 get db cfg for xxxxxx command and look for the MAXLOCKS value. To set MAXLOCKS to a

value of n, issue the DB2 update db cfg for xxxxxx command using MAXLOCKS n, where xxxxxx is

the name of the application database and n is a value between 1 and 100 inclusive.

v Default value: Refer to the current database information for property default values per operating

system.

v Recommended value: If lock escalations are causing performance concerns, you might need to

increase the value of this parameter or the locklist parameter, which is described in the following

paragraph. You can use the database system monitor to determine if lock escalations are occurring.

DB2 locklist

v Description: Specifies the amount of storage that is allocated to the lock list.

v How to view or set: To view the current value of the locklist property for database xxxxxx, issue the

DB2 get db cfg for xxxxxx command and look for the LOCKLIST value . To set LOCKLIST to a value

of n, issue the DB2 update db cfg for xxxxxx command using LOCKLIST n, where xxxxxx is the

name of the application database and n is a value between 4 and 60 000 inclusive.

v Default value: Refer to the current database information for property default values per operating

system.

v Recommended value: If lock escalations are causing performance concerns, you might need to

increase the value of this parameter or the maxlocks parameter, which is described in the previous

paragraph. You can use the database system monitor to determine if lock escalations are occurring.

Refer to the DB2 Administration Guide: Performance document for more details.

Tuning parameters for data access resources

For better application performance, you can tune some data access resources through the WebSphere

Application Server administrative console.

Tune these properties of data sources and connection pools to optimize the performance of transactions

between your application and datastore. See the Administering applications and their environment PDF for

more information.

Data source tuning

To view the administrative console page where you configure the following properties, click Resources >

JDBC Providers > JDBC_provider > Data sources > data_source > WebSphere Application Server

connection properties.

Enable JMS one phase optimization support

If your application does not use JMS messaging, do not select this option. Activating this support

enables the Java Message Service (JMS) to get optimized connections from the data source.

Activating this support also prevents JDBC applications from obtaining connections from the data

source. For further explanation of JMS one phase support, refer to the article entitled ″Sharing

connections to benefit from one phase commit optimization″ in this information center.

722 Administering applications and their environment

Statement cache size

Specifies the number of statements that can be cached per connection.

 The WebSphere Application Server data source optimizes the processing of prepared statements

and callable statements by caching those statements that are not being used in an active

connection. Both statement types help reduce overhead for transactions with backend data.

v A prepared statement is a precompiled SQL statement that is stored in a PreparedStatement

object. Application Server uses this object to run the SQL statement multiple times, as required

by your application run time, with values that are determined by the run time.

v A callable statement is an SQL statement that contains a call to a stored procedure, which is a

series of precompiled statements that perform a task and return a result. The statement is

stored in the CallableStatement object. Application Server uses this object to run a stored

procedure multiple times, as required by your application run time, with values that are

determined by the run time.

In general, the more statements your application has, the larger the cache should be. Be aware,

however, that specifying a larger statement cache size than needed wastes application memory

and does not improve performance.

 Determine the value for your cache size by adding the number of uniquely prepared statements

and callable statements (as determined by the SQL string, concurrency, and the scroll type) for

each application that uses this data source on a particular server. This value is the maximum

number of possible statements that can be cached on a given connection over the life of the

server. See the Administering applications and their environment PDF for more information.

 Default: For most databases the default is 10. Zero means there is no cache statement.

Connection pool tuning

To view the administrative console page where you configure the following properties, click Resources >

JDBC Providers > JDBC_provider > Data sources > data_source > Connection pool settings.

Maximum connections

Specifies the maximum number of physical connections that can be created in this pool. These are

the physical connections to the backend datastore. When this number is reached, no new physical

connections are created; requestors must wait until a physical connection that is currently in use is

returned to the pool.

 For optimal performance, set the value for the connection pool lower than the value for the Web

container threadpool size. Lower settings, such as 10 to 30 connections, might perform better than

higher settings, such as 100. See the Administering applications and their environment PDF for

more information.

 Default: 10

Minimum connections

Specifies the minimum number of physical connections to maintain. Until this number is exceeded,

the pool maintenance thread does not discard physical connections.

 If you set this property for a higher number of connections than your application ultimately uses at

run time, you do not waste application resources. WebSphere Application Server does not create

additional connections to achieve your minimum setting. Of course, if your application requires

more connections than the value you set for this property, application performance diminishes as

connection requests wait for fulfillment. See the Administering applications and their environment

PDF for more information.

 Default: 1

Chapter 13. Data access resources 723

Managing resources through JCA lifecycle management operations

You can manage the run-time status of your data source and connection factory resources to perform

some data access administrative tasks without restarting the application server. This topic outlines the

process for managing those resources through the administrative console.

When you manage the run-time status of connection factories or data sources, you are applying J2EE

Connector Architecture (JCA) lifecycle management operations to the MBeans that are associated with

these resources. The management operations are PAUSE and RESUME. Pausing an MBean halts

outbound communication to the backend, such as a database. This action affects all applications that use

the corresponding connection factory or data source on the same server.

With these management operations, you can perform some administrative tasks dynamically, without

restarting your application server:

v Respond to a security threat, and prevent new connection requests from reaching the backend

v Perform maintenance on the backend

v Apply configuration changes to non-required properties of the connection factory or data source, such

as turning JDBC trace on or off, or modifying preferences for collecting client information

1. Navigate to the administrative console page that corresponds to the resource type that you want to

manage.

v For connection factories, use either of the following paths:

– Resources > Resource Adapters > J2C connection factories

– Resources > Resource Adapters > Resource Adapters > resource_adapter > J2C

connection factories

v For data sources, use either of the following paths:

– Resources > JDBC > Data sources

– Resources > JDBC > JDBC providers > JDBC_provider > Data sources

2. Select the connection factory or data source configurations that you want to manage, and click

Manage state. The administrative console now displays the JCA lifecycle management page, which

contains a table that depicts the full scope configuration of your previous selection.

The table is comprised of three columns:

v JNDI name: The Java Naming and Directory Interface (JNDI) name of the connection factory or

data source configuration.

v Running object scope: The server that is running the connection factory or data source MBean.

v Status: The status of the connection factory or data source MBean.

3. Select the rows that represent each invocation of the resource, per running server, that you want to

manage. Be aware that when you click your management operation, WebSphere Application Server

applies it to every resource object in your selection.

Restriction: If the MBean status of a row has a value of NOT_ACCESSED, you cannot apply JCA

lifecycle management operations to that MBean. The NOT_ACCESSED state indicates

that the MBean exists on the specified server, but no applications performed a JNDI

namespace lookup on the corresponding connection factory or data source.

4. Click Pause or Resume. The status column of the table changes to reflect the new state of the

MBean.

JCA lifecycle management

Use this page to perform JCA lifecycle management operations on data source and connection factory

MBeans. With these management operations, you can control the runtime status of the corresponding data

source and connection factory resources.

724 Administering applications and their environment

You can view this administrative console page in different locations, depending on whether you want to

manage data sources or J2C connection factories. For example:

v For connection factories: Click Resources > Resource adapters > J2C connection factories. Select

the connection factory configurations that you want to manage, and click Manage state.

v For data sources: Click Resources > JDBC > Data sources. Select the data source configurations that

you want to manage, and click Manage state.

Guidelines for using this administrative console page:

v The table displays a list of Version 6.0.2-compatible MBeans that correspond to the data sources or

connection factories in your selection from the previous console page.

v You can only perform JCA lifecycle management actions on MBeans that are in the active state. In this

context, an MBean is considered active when an application performs a Java Naming and Directory

Interface (JNDI) name space lookup on the corresponding data source or connection factory resource.

v Pausing an MBean halts outbound communication to the backend, such as a database. This action

affects all applications that use the resource on the selected server.

Table column heading descriptions:

Name (JNDI name):

The name of the connection factory or data source configuration, followed by the Java Naming and

Directory Interface (JNDI) name in parenthesis.

Running object scope:

The server that is running the connection factory or data source MBean.

Status:

The state of the connection factory or data source MBean.

 Possible values:

 State Indications

ACTIVE v The resource that corresponds with the MBean is

ready to provide an application with connections to a

backend.

v An application performed a JNDI namespace lookup on

this resource.

You can apply the JCA lifecycle management operation of

PAUSE to an MBean in this state.

PAUSED v All outbound communication to the backend through

the corresponding resource is stopped, as a result of a

JCA lifecycle management operation that was applied

previously to the MBean.

v An application performed a JNDI namespace lookup on

the resource.

You can apply the JCA lifecycle management operation of

RESUME to an MBean in this state.

Chapter 13. Data access resources 725

State Indications

NOT_ACCESSED v The MBean exists on the specified server, but no

applications performed a JNDI name space lookup on

the corresponding connection factory or data source.

You cannot apply JCA lifecycle management operations

to an MBean in this state.

Cannot access a data source

WebSphere Application Server diagnostic tools provide services to help troubleshoot database connection

problems. Additionally, the IBM Web site provides flexible searching capabilities for finding documented

solutions to database-specific connection problems.

The following steps help you quickly isolate connectivity problems.

1. Browse the log files of the application server for clues.

See Viewing JVM logs. By default, these files are app_server_root/server_name/SystemErr.log and

SystemOut.log.

2. Browse the Helper Class property of the data source to verify that it is correct and that it is on the

WebSphere Application Server class path. Mysterious errors or behavior might result from a missing or

misnamed Helper Class name. If WebSphere Application Server cannot load the specified class, it

uses a default helper class that might not function correctly with your database manager.

3. Verify that the Java Naming and Directory Interface (JNDI) name of the data source matches the name

used by the client attempting to access it. If error messages indicate that the problem might be

naming-related, such as referring to the name server or naming service, or including error IDs

beginning with NMSV, look at the Naming related problems and Troubleshooting the naming service

component topics.

4. Enable tracing for the resource adapter using the trace specification, RRA=all=enabled. Follow the

instructions for dumping and browsing the trace output, to narrow the origin of the problem.

For a comprehensive list of database-specific troubleshooting tips, see the WebSphere support page at

http://www-306.ibm.com/software/webservers/appserv/was/support/. In the Search Support field, type a

database vendor name among your search terms. Select Solve a problem, then click Search.

Remember that you can always find Support references in the Troubleshooting help from IBM article of

this information center.

Currently this information center provides a limited number of troubleshooting tips for the following

databases:

v Oracle

v DB2

v SQL Server

v Cloudscape

v Sybase

v General data access problems

General data access problems

v An exception ″IllegalConnectionUseException″ occurs

v WTRN0062E: An illegal attempt to enlist multiple one phase capable resources has occurred.

v ConnectionWaitTimeoutException.

v com.ibm.websphere.ce.cm.StaleConnectionException: [IBM][CLI Driver] SQL1013N The database alias

name or database name ″NULL″ could not be found. SQLSTATE=42705

v java.sql.SQLException: java.lang.UnsatisfiedLinkError:

726 Administering applications and their environment

http://www-306.ibm.com/software/webservers/appserv/was/support/

v ″J2CA0030E: Method enlist caught java.lang.IllegalStateException″ wrapped in error ″WTRN0063E: An

illegal attempt to enlist a one phase capable resource with existing two phase capable resources has

occurred″ when attempting to execute a transaction.

v java.lang.UnsatisfiedLinkError:xaConnect exception when attempting a database operation

v ″J2CA0114W: No container-managed authentication alias found for connection factory or datasource

datasource″ when attempting a database operation

v An error is thrown if you use the ws_ant command to perform the database customization for Structured

Query Language in Java on HP platforms

v Container-managed persistence (CMP) cannot successfully obtain the database access function as

defined.

IllegalConnectionUseException

This error can occur because a connection obtained from a WAS40DataSource is being used on more

than one thread. This usage violates the J2EE 1.3 programming model, and an exception generates when

it is detected on the server. This problem occurs for users accessing a data source through servlets or

bean-managed persistence (BMP) enterprise beans.

To confirm this problem, examine the code for connection sharing. Code can inadvertently cause sharing

by not following the programming model recommendations, for example by storing a connection in an

instance variable in a servlet, which can cause use of the connection on multiple threads at the same time.

WTRN0062E: An illegal attempt to enlist multiple one phase capable resources has

occurred

This error can occur because:

v An attempt was made to share a single-phase connection, when each getConnection method has

different connection properties; such as the AccessIntent. This attempt causes a non-shareable

connection to be created.

v An attempt was made to have more than one unshareable connection participate in a global transaction,

when the data source is not an XA resource.

v An attempt was made to have a one-phase resource participate in a global transaction while an XA

resource or another one-phase resource already participated in this global transaction.

– Within the scope of a global transaction you try to get a connection more than once and at least one

of the resource-refs you use specifies that the connection is unshareable, and the data source is not

configured to support two-phase commit transactions. It does not support an XAResource. If you do

not use a resource-ref, you default to unshareable connections.

– Within the scope of a global transaction you try to get a connection more than once and at least one

of the resource-refs you use specifies that the connection is shareable and the data source is not

configured to support two-phase commit transactions. That is, it does not support an XAResource. In

addition, even though you specify that connections are shareable, each getConnection request is

made with different connection properties (such as IsolationLevel or AccessIntent). In this case, the

connections are not shareable, and multiple connections are handed back.

– Multiple components (servlets, session beans, BMP entity beans, or CMP entity beans) are accessed

within a global transaction. All use the same data source, all specify shareable connections on their

resource-refs, and you expect them to all share the same connection. If the properties are different,

you get multiple connections. AccessIntent settings on CMP beans change their properties. To share

a connection, the AccessIntent setting must be the same. For more information about CMP beans

sharing a connection with non-CMP components, see the Data access application programming

interface support and Example: Accessing data using IBM extended APIs to share connections

between container-managed and bean-managed persistence beans topics in the DataAccess section

of the information center.

To correct this error:

v Check what your client code passes in with its getConnection requests, to ensure they are consistent

with each other.

Chapter 13. Data access resources 727

v Check the connection sharing scope from the resource binding, using an assembly tool.

– If you are running an unshareable connection scope, verify that your data source is an XA data

source.

– If you are running a shareable connection scope, verify that all connection properties, including

AccessIntent, are sharable.
v Check the JDBC provider implementation class from the Manage JDBC resource panel of the

administrative console to ensure that it is a class that supports XA-type transactions.

ConnectionWaitTimeoutException accessing a data source or resource adapter

If your application receives exceptions like a com.ibm.websphere.ce.cm.ConnectionWaitTimeoutException

or com.ibm.websphere.ce.j2c.ConnectionWaitTimeoutException when attempting to access a WebSphere

Application Server data source or JCA-compliant resource adapter, respectively, some possible causes

are:

v The maximum number of connections for a given pool is set too low. The demand for concurrent use of

connections is greater then the configured maximum value for the connection pool. One indication that

this situation is the problem is that you receive these exceptions regularly, but your CPU utilization is

not high. This exception indicates that there are too few connections available to keep the threads in the

server busy.

v Connection Wait Time is set too low. Current demand for connections is high enough such that

sometimes there is not an available connection for short periods of time. If your connection wait timeout

value is too low, you might timeout shortly before a user returns a connection back to the pool.

Adjusting the connection wait time can give you some relief. One indication of this problem is that you

use close to the maximum number of connections for an extended period and receiving this error

regularly.

v You are not closing some connections or you are returning connections back to the pool at a very slow

rate. This situation can happen when using unshareable connections, when you forget to close them, or

you close them long after you are finished using them, keeping the connection from returning to the

pool for reuse. The pool soon becomes empty and all applications get

ConnectionWaitTimeoutExceptions. One indication of this problem is you run out of connections in the

connection pool and you receive this error on most requests.

v You are driving more load than the server or backend system have resources to handle. In this case

you must determine which resources you need more of and upgrade configurations or hardware to

address the need. One indication of this problem is that the application or database server CPU is

nearly 100% busy.

To correct these problems, either:

v Modify an application to use fewer connections

v Properly close the connections.

v Change the pool settings of MaxConnections or ConnnectionWaitTimeout.

v Adjust resources and their configurations.

com.ibm.websphere.ce.cm.StaleConnectionException: [IBM][CLI Driver] SQL1013N

The database alias name or database name ″NULL″ could not be found.

SQLSTATE=42705

This error occurs when a data source is defined but the databaseName attribute and the corresponding

value are not added to the custom properties panel.

To add the databaseName property:

1. Click Resources>Manage JDBC Providers link in the administrative console.

2. Select the JDBC provider that supports the problem data source.

3. Select Data Sources and then select the problem data source.

4. Under Additional properties click Custom Properties.

728 Administering applications and their environment

5. Select the databaseName property, or add one if it does not exist, and enter the actual database

name as the value.

6. Click Apply or OK, and then click Save from the action bar.

7. Access the data source again.

java.sql.SQLException: java.lang.UnsatisfiedLinkError:

This error indicates that the directory containing the binary libraries which support a database are not

included in the LIBPATH environment variable for the environment in which the WebSphere Application

Server starts.

The path containing the DBM vendor libraries vary by dbm. One way to find them is by scanning for the

missing library specified in the error message. Then you can correct the LIBPATH variable to include the

missing directory, either in the .profile of the account from which WebSphere Application Server is

executed, or by adding a statement in a .sh file which then executes the startServer program.

″J2CA0030E: Method enlist caught java.lang.IllegalStateException″ wrapped in

error ″WTRN0063E: An illegal attempt to enlist a one phase capable resource with

existing two phase capable resources has occurred″ when attempting to execute a

transaction.

This error can occur when last participant support is missing or disabled. last participant support allows a

one-phase capable resource and a two-phase capable resource to enlist within the same transaction.

Last participant support is only available if the following are true:

v WebSphere Application Server Programming Model Extensions (PME) is installed. PME is included in

the Application Server Integration Server product.

v The Additional Integration Server Extensions option is enabled when PME is installed. If you perform a

typical installation, this function is enabled by default. If you perform a custom installation, you have the

option to disable this function, which disables last participant support.

v The application enlisting the one-phase resource is deployed with the Accept heuristic hazard option

enabled. This deployment is done with an assembly tool such as the Application Server Toolkit (AST) or

Rational Web Developer.

java.lang.UnsatisfiedLinkError:xaConnect exception when attempting a database

operation

This problem has two main causes:

v The most common cause is that the jdbc driver which supports connectivity to the database is missing,

or is not the correct version, or that native libraries which support the driver are on the system’s path.

– To resolve this problem on a Windows platform, verify that the JDBC driver jar file is on the system

PATH environment variable:

- If you are using DB2,verify that at least the DB2 client product has been installed on the

WebSphere host

v On DB2 version 7.2 or earlier, the file where the client product is installed on the WebSphere

Application Server is db2java.zip. Verify that the usejdbc2.bat program has been executed after

the database install and after any upgrade to the database product.

v On DB2 version 8.1 or later, use the DB2 Universal JDBC Provider Driver when defining a

JDBC provider in WebSphere Application Server. The driver file is db2jcc.jar. If you use the type

2 (default) option, verify that at least the DB2 client product is installed on the WebSphere

Application Server host. If you specify the type 4 option, the DB2 client does not need to be

installed, but the file db2jcc.jar still must be present.

When specifying the location of the driver file, it is recommended to that you specify the path

and file name of the target DB2 installation, rather than simply copying the file to a local

Chapter 13. Data access resources 729

directory, if possible. Otherwise, you may be exposed to problems if the target DB2 installation

is upgraded and the driver used by WebSphere Application Server is not. If you choose DB2

Legacy CLI-based type 2 JDBC Driver when defining a JDBC provider in WebSphere

Application Server, then you must still follow the steps to ensure that you have the correct

version of the db2java.zip file (see instructions for DB2 7.2 or earlier).

– On operating systems such as AIX or Linux, ensure that any native libraries required to support the

database client of your database product are specified in the LD_LIBRARY_PATH environment

variable in the profile of the account under which WebSphere Application Server executes.

If you are using DB2 The native library is libdb2jdbc.so. The best way to ensure that this library is

accessed correctly by WebSphere is to call the db2profile script supplied with DB2 from the .profile

script of the account (such as ″root″) under which WebSphere runs.

- If you are using DB2 version 7.2 or earlier, ensure that the usejdbc2,script provided with DB2 is

called from the profile of the account under which WebSphere Application server is launched.

- If you are using DB2 version 8.1 or later, see the previous instructions for the Windows operating

system.

v If the database manager is DB2, you may have chosen the option to create a 64-bit

instance. Sometimes a 64-bit configuration is not supported. If this has happened, remove the

database instance and create a new one with the default 32-bit setting.

If you are using a CLI driver or a Universal JDBC T2 driver, WebSphere Application Server does

support interaction with a DB2 UDB 64-bit server, but it must be through a DB2 UDB 32-bit client. The

WebSphere Application Server environment (CLASSPATH and so on) must use the 32-bit client code to

ensure correct function.

With a Universal JDBC T4 driver, you do not need the 32-bit DB2 client. You need only configure the

CLASSPATH to include db2jcc.jar and its license files in the WebSphere Application Server

environment.

Note: For general help in configuring JDBC drivers and data sources in WebSphere Application Server,

see the topic Accessing data from applications.

″J2CA0114W: No container-managed authentication alias found for connection

factory or datasource datasource″ when attempting a database operation

This error might occur in the SystemOut.log file when you run an application to access a data source after

creating the data source using JACL script.

The error message occurs because the JACL script did not set container-managed authentication alias for

CMP connection factory. The JACL is missing the following line:

$AdminConfig create MappingModule $cmpConnectorFactory "{mappingConfigAlias

DefaultPrincipalMapping} {authDataAlias $authDataAlias}

To correct this problem, add the missing line to the JACL script and run the script again. See “Example:

Creating a JDBC provider and data source using Java Management Extensions API and the scripting tool”

on page 697 for a sample JACL script.

An error is thrown if you use the ws_ant command to perform the database

customization for Structured Query Language in Java on HP platforms

If you use the ws_ant command to perform the database customization for Structured Query Language in

Java (SQLJ) on HP platforms, you can receive an error similar to the following:

[java] [ibm][db2][jcc][sqlj]

[java] [ibm][db2][jcc][sqlj] Begin Customization

[java] [ibm][db2][jcc][sqlj] encoding not supported!!

730 Administering applications and their environment

The cause of this error might be that your databases were created using the HP default character set. The

Java Common Client (JCC) driver depends on the software development kit (SDK) to perform the

codepage conversions. The SDK shipped with this product, however, does not support the HP default

codepage.

You need to set your LANG to the ISO locale before creating the databases. It should be similar to the

following:

export LANG=en_US.iso88591

Refer to the DB2 Tech Notes at http://www-3.ibm.com/software/data/db2/udb/ad/v8/bldg/t0004877.htm

for details.

Container-managed persistence (CMP) cannot successfully obtain the database

access function as defined.

When WebSphere Application Server is caching certain generated code that is accessed in the database

on the connection factory, and if any changes in the Java archive (JAR) file require regeneration of the

database access, the changes are not effective until you stop and restart the server.

Examples of when this failure might occur include:

v Adding an enterprise bean custom finder method; a NullPointerException exception is created.

v Updating an enterprise bean custom finder method; the new SQL statement does not run.

v Changing schema mapping; the new SQL statement does not run.

In summary, if you add or update an enterprise bean that contains a custom finder method, you must stop

and then restart the server.

Problems accessing an Oracle data source

This article provides troubleshooting tips for accessing Oracle data sources.

What kind of error do you see when you try to access your Oracle-based data source?

v “An invalid Oracle URL is specified”

v “″DSRA0080E: An exception was received by the data store adapter. See original exception message:

ORA-00600″ when connecting to or using an Oracle data source” on page 732

v “DSRA8100E: Unable to get a {0} from the DataSource. Explanation: See the linkedException for more

information.” on page 732

v “″Error while trying to retrieve text for error″ error when connecting to an Oracle data source” on page

732

v “″java.lang.UnsatisfiedLinkError:″ connecting to an Oracle data source” on page 732

v “java.lang.NullPointerException referencing 8i classes, or ″ internal error: oracle.jdbc.oci8. OCIEnv″

connecting to an Oracle data source” on page 733

v “WSVR0016W: Classpath entry for the Oracle JDBC Thin Driver has an invalid variable” on page 733

v “Transaction recovery failure (for XA data sources)” on page 733

An invalid Oracle URL is specified

This error might be caused by an incorrectly specified URL on the URL property of the target data source.

Examine the URL property for the data source object in the administrative console. For the 8i OCI driver,

verify that oci8 is used in the URL. For the 9i OCI driver, you can use either oci8 or oci.

Examples of Oracle URLs:

v For the thin driver: jdbc:oracle:thin:@hostname.rchland.ibm.com:1521:IBM

v For the thick (OCI) driver: jdbc:oracle:oci8:@tnsname1

Chapter 13. Data access resources 731

″DSRA0080E: An exception was received by the data store adapter. See original exception

message: ORA-00600″ when connecting to or using an Oracle data source

A possible reason for this exception is that the version of the Oracle JDBC driver being used is older than

the Oracle database. It is possible that more than one version of the Oracle JDBC driver is configured on

the WebSphere Application Server.

Examine the version of the JDBC driver. Sometimes you can determine the version by looking at the class

path to determine what directory the driver is in.

If you cannot determine the version this way, use the following program to determine the version. Before

running the program, set the class path to the location of your JDBC driver files.

import java.sql.*;

 import oracle.jdbc.driver.*;

 class JDBCVersion

 {

 public static void main (String args[])

 throws SQLException

 {

 // Load the Oracle JDBC driver

 DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());

 // Get a connection to a database

 Connection conn = DriverManager.getConnection

 ("jdbc:oracle:thin:@appaloosa:1521:app1","sys","change_on_install");

 // Create Oracle DatabaseMetaData object

 DatabaseMetaData meta = conn.getMetaData();

 // gets driver info:

 System.out.println("JDBC driver version is " + meta.getDriverVersion());

 }

 }

If the driver and the database are at different versions, replace the JDBC driver with the correct version. If

multiple drivers are configured, remove any that occur at the incorrect level.

DSRA8100E: Unable to get a {0} from the DataSource. Explanation: See the

linkedException for more information.

When using an oracle thin driver, Oracle creates a ″java.sql.SQLException: invalid arguments in call″ error

if no user name or password is specified when getting a connection. If you see this error while running

WebSphere Application Server, the alias is not set.

To remove the exception, define the alias on the data source.

″Error while trying to retrieve text for error″ error when connecting to an Oracle data

source

The most likely cause of this error is that the Oracle 8i OCI driver is being used with an ORACLE_HOME

property that is either not set or is set incorrectly.

To correct the error, examine the user profile that WebSphere Application Server is running under to verify

that the $ORACLE_HOME environment variable is set correctly.

″java.lang.UnsatisfiedLinkError:″ connecting to an Oracle data source

The environment variable LIBPATH might not be set or is set incorrectly, if your data source creates an

UnsatisfiedLinkError error, and the full exception indicates that the problem is related to an Oracle

module, as in the following examples.

Example of invalid an LIBPATH for the 8i driver:

732 Administering applications and their environment

Exception in thread "main" java.lang.UnsatisfiedLinkError:

/usr/WebSphere/AppServer/java/jre/bin/libocijdbc8.so:

load ENOENT on shared library(s)

/usr/WebSphere/AppServer/java/jre/bin/libocijdbc8.so libclntsh.a

Example of an invalid LIBPATH for the 9i driver:

Exception in thread "main" java.lang.UnsatisfiedLinkError:

no ocijdbc9 (libocijdbc9.a or .so) in java.library.path

at java.lang.ClassLoader.loadLibrary(ClassLoader.java(Compiled Code))

at java.lang.Runtime.loadLibrary0(Runtime.java:780)

To correct the problem, examine the user profile under which the WebSphere Application Server is running

to verify that the LIBPATH environment variable includes Oracle libraries. Scan for the lobocijdbc8.so file

to find the right directory.

java.lang.NullPointerException referencing 8i classes, or ″ internal error: oracle.jdbc.oci8.

OCIEnv″ connecting to an Oracle data source

The problem might be that the 9i OCI driver is being used on an AIX 32-bit machine, the LIBPATH is set

correctly, but the ORACLE_HOME environment variable is not set or is set incorrectly. You can encounter

an exception similar to either of the following when your application attempts to connect to an Oracle data

source:

Exception example for the java.lang.NullPointerException:

Exception in thread "main" java.lang.NullPointerException

at oracle.jdbc.oci8.OCIDBAccess.check_error(OCIDBAccess.java:1743)

at oracle.jdbc.oci8.OCIEnv.getEnvHandle(OCIEnv.java:69)

at oracle.jdbc.oci8.OCIDBAccess.logon(OCIDBAccess.java:452)

at oracle.jdbc.driver.OracleConnection. <init>(OracleConnection.java:287)

Exception example for the java.sql.SQLException:

Exception in thread "main" java.sql.SQLException:

internal error: oracle.jdbc.oci8. OCIEnv@568b1d21

at oracle.jdbc.dbaccess.DBError.throwSqlException(DBError.java:184)

at oracle.jdbc.dbaccess.DBError.throwSqlException(DBError.java:226)

at oracle.jdbc.oci8.OCIEnv.getEnvHandle(OCIEnv.java:79)

To correct the problem, examine the user profile that WebSphere Application Server is running under to

verify that it has the $ORACLE_HOME environment variable set correctly, and that the $LIBPATH includes

$ORACLE_HOME/lib.

WSVR0016W: Classpath entry for the Oracle JDBC Thin Driver has an invalid variable

This error occurs when there is no environment variable defined for the property,

ORACLE_JDBC_DRIVER_PATH.

Verify this problem in the administrative console. Go to Environment > Manage WebSphere Variables to

verify whether the variable ORACLE_JDBC_DRIVER_PATH is defined.

To correct the problem, click New and define the variable. For example, name :

ORACLE_JDBC_DRIVER_PATH , value : c:\oracle\jdbc\lib. Use a value that names the directory in your

operating system that contains the ojdbc14.jar file (or the ojdbc14_g.jar file to enable Oracle trace).

Transaction recovery failure (for XA data sources)

Problem

Chapter 13. Data access resources 733

When WebSphere Application Server attempts to recover Oracle database transactions, the transaction

service issues following exception:

WTRN0037W: The transaction service encountered an error on an xa_recover operation.

The resource was com.ibm.ws.rsadapter.spi.WSRdbXaResourceImpl@1114a62.

The error code was XAER_RMERR. The exception stack trace follows:

javax.transaction.xa.XAException

at oracle.jdbc.xa.OracleXAResource.recover(OracleXAResource.java:726)

at com.ibm.ws.rsadapter.spi.WSRdbXaResourceImpl.recover(WSRdbXaResourceImpl.java:954)

at com.ibm.ws.Transaction.JTA.XARminst.recover(XARminst.java:137)

at com.ibm.ws.Transaction.JTA.XARecoveryData.recover(XARecoveryData.java:609)

at com.ibm.ws.Transaction.JTA.PartnerLogTable.recover(PartnerLogTable.java:511)

at com.ibm.ws.Transaction.JTA.RecoveryManager.resync(RecoveryManager.java:1784)

at com.ibm.ws.Transaction.JTA.RecoveryManager.run(RecoveryManager.java:2241)

Cause

Oracle requires services such as the WebSphere Application Server transaction service to have special

permissions for performing transaction recoveries.

Solution

As user SYS, run the following commands on your Oracle server:

grant select on pending_trans$ to public;

grant select on dba_2pc_pending to public;

grant select on dba_pending_transactions to public;

grant execute on dbms_system to < user>;

This problem is mentioned under Oracle bug: 3979190. Running the preceding commands solves the

problem.

Problems accessing a DB2 database

This article provides troubleshooting tips for accessing DB2 databases.

What kind of problem are you having accessing your DB2 database?

v “SQL0567N ″DB2ADMIN ″ is not a valid authorization ID. SQLSTATE=42602” on page 735

v “SQL0805N Package package-name was not found” on page 735

v “SQL0805N Package ″NULLID.SQLLC300″ was not found. SQLSTATE=51002” on page 735

v “SQL30082N Attempt to establish connection failed with security reason "17" ("UNSUPPORTED

FUNCTION’) SQLSTATE=08001” on page 735

v “SQLException, with ErrorCode -99,999 and SQLState 58004, with Java ″StaleConnectionException:

COM.ibm.db2.jdbc.DB2Exception: [IBM][CLI Driver] CLI0119E Unexpected system failure.

SQLSTATE=58004″, when using WAS40-type data source” on page 736

v “Error message java.lang.reflect.InvocationTargetException: com.ibm.ws.exception.WsException:

DSRA0023E: The DataSource implementation class ″COM.ibm.db2.jdbc.DB2XADataSource″ could not

be found. when trying to access a DB2 database” on page 736

v “CLI0119E System error. SQLSTATE=58004 - DSRA8100 : Unable to get a XAconnection or

DSRA0011E: Exception: COM.ibm.db2.jdbc.DB2Exception: [IBM][CLI Driver] CLI0119E Unexpected

system failure. SQLSTATE=5800” on page 737

v “COM.ibm.db2.jdbc.DB2Exception: [IBM][CLI Driver][DB2/NT] SQL0911N The current transaction has

been rolled back because of a deadlock or timeout. Reason code ″2″. SQLSTATE=40001” on page 737

v “″COM.ibm.db2.jdbc.DB2ConnectionPoolDataSource″ could not be found for data source

([data-source-name])″” on page 738

v “ java.sql.SQLException: Failure in loading T2 native library db2jcct2 DSRA0010E: SQL State = null,

Error Code = -99,999 ” on page 738

v Lock contention exception occurs in database when data source implementation type is XA

v “″DSRA8050W: Unable to find the DataStoreHelper class specified″ exception occurs when trying to

use a DB2 Universal Datasource in a mixed release cell.” on page 739

734 Administering applications and their environment

v “Receive "’SYSTEM’ is not a valid authorization ID" message when trying to access DB2 on a Windows

machine where WebSphere Application Server is also installed.” on page 740

v “XAException: XAER_NOTA on XA prepare call in DB2 Universal JDBC Driver type 4 after one phase

transaction rollback” on page 740

v “java.rmi.MarshalException logged for application client due to incompatibility of JDBC driver file

versions” on page 741

v “Database failure triggers problematic -99999 exception for applications that use DB2 Universal Driver

type 4” on page 741

v “Cannot access DB2 on Linux when using the DB2 Universal JDBC Driver” on page 742

v “Test connection operation fails for DB2 legacy CLI-based Type 2 driver that is used to access DB2

running on 64-bit Linux” on page 743

v “Illegal conversion occurs on any VARCHAR FOR BIT DATA column in a container-managed persistent

bean” on page 743

v Check the IBM support page for information on problems that occur when using connection pooling with

DB2.

SQL0567N ″DB2ADMIN ″ is not a valid authorization ID. SQLSTATE=42602

If you encounter this error when attempting to access a DB2 Universal Database (UDB):

1. Verify that your user name and password in the data source properties page in the administrative

console are correct.

2. Ensure that the user ID and password do not contain blank characters before, in between, or after.

SQL0805N Package package-name was not found

Possible reasons for these exceptions:

v If the package name is NULLID.SQLLC300, see SQL0805N Package ″NULLID.SQLLC300″ was not

found. SQLSTATE=51002. for the reason.

v You are attempting to use an XA-enabled JDBC driver on a DB2 database that is not XA-ready.

To correct the problem on a DB2 Universal Database (UDB), run this one-time procedure, using the

db2cmd interface while connected to the database in question:

1. DB2 bind @db2ubind.lst blocking all grant public

2. DB2 bind @db2cli.lst blocking all grant public

The db2ubind.lst and db2cli.lst files are in the bnd directory of your DB2 installation root. Run the

commands from that directory.

SQL0805N Package ″NULLID.SQLLC300″ was not found. SQLSTATE=51002

This error can occur because:

v The underlying database was dropped and recreated.

v DB2 was ugpraded and its packages are not rebound correctly.

To resolve this problem, rebind the DB2 packages by running the db2cli.lst script found in the bnd

directory. For example: db2>@db2cli.lst.

SQL30082N Attempt to establish connection failed with security reason ″17″

(″UNSUPPORTED FUNCTION’) SQLSTATE=08001

This error can occur when the security mechanism specified by the client is not valid for this server. Some

typical examples:

v The client sent a new password value to a server that does not support the change password function.

v The client sent SERVER_ENCRYPT authentication information to a server that does not support

password encryption.

Chapter 13. Data access resources 735

http://www-1.ibm.com/support/docview.wss?uid=swg21106851

v The client sent a userid, but no password, to a server that does not support authentication by userid

only.

v The client has not specified an authentication type, and the server has not responded with a supported

type. This can include the server returning multiple types from which the client is unable to choose.

To resolve this problem, ensure that your client and server use the same security mechanism. For

example, if this is an error on your data source, verify that you have assigned a user id and password or

authentication alias.

SQLException, with ErrorCode -99,999 and SQLState 58004, with Java

″StaleConnectionException: COM.ibm.db2.jdbc.DB2Exception: [IBM][CLI Driver] CLI0119E

Unexpected system failure. SQLSTATE=58004″, when using WAS40-type data source

An unexpected system failure usually occurs when running in XA mode (two-phase commit). Among the

many possible causes are:

v An invalid username or password was provided.

v The database name is incorrect.

v Some DB2 packages are corrupted.

To determine whether you have a user name or password problem, look in the db2diag.log file to view the

actual error message and SQL code. A message like the following example, with an SQLCODE of -1403,

indicates an invalid user ID or password:

2002-07-26-14.19.32.762905 Instance:db2inst1 Node:000

PID:9086(java) Appid:*LOCAL.db2inst1.020726191932

XA DTP Support sqlxa_open Probe:101

DIA4701E Database "POLICY2" could not be opened

for distributed transaction processing.

String Title: XA Interface SQLCA PID:9086 Node:000

SQLCODE = -1403

To resolve these problems:

1. Correct your user name and password. If you specify your password on the GUI for the data source,

ensure that the user name and password you specify on the bean are correct. The user name and

password you specify on the bean overwrite whatever you specify when creating the data source.

2. Use the correct database name.

3. Rebind the packages (in the bnd directory) as follows:

db2connect to dbname

c:\SQLLIB\bnd>DB2 bind @db2ubind.lst blocking all grant public

c:\SQLLIB\bnd>DB2 bind @db2cli.lst blocking all grant public

4. Ensure that the \WebSphere\AppServer\properties\wsj2cdpm.properties file has the right user ID and

password.

Error message java.lang.reflect.InvocationTargetException:

com.ibm.ws.exception.WsException: DSRA0023E: The DataSource implementation class

″COM.ibm.db2.jdbc.DB2XADataSource″ could not be found. when trying to access a DB2

database

One possible reason for this exception is that a user is attempting to use a JDBC 2.0 DataSource, but

DB2 is not JDBC 2.0-enabled. This situation frequently happens with new installations of DB2 because

DB2 provides separate drivers for JDBC 1.X and 2.0, with the same physical file name. By default, the

JDBC 1.X driver is on the class path.

To confirm this problem:

v On Windows systems, look for the inuse file in the java12 directory in your DB2 installation root. If the

file missing, you are using the JDBC 1.x driver.

v On operating systems such as AIX or Linux, check the class path for your data source. If the class path

does not point to the db2java.zip file in the java12 directory, you are using the JDBC 1.x driver.

736 Administering applications and their environment

To correct this problem:

v On Windows systems, stop DB2. Run the usejdbc2.bat file from the java12 directory in your DB2

instalation root. Run this file from a command line to verify that it completes successfully.

v On operating systems such as AIX or Linux, change the class path for your data source to point to the

db2java.zip file in the java12 directory of your DB2 installation root.

CLI0119E System error. SQLSTATE=58004 - DSRA8100 : Unable to get a XAconnection or

DSRA0011E: Exception: COM.ibm.db2.jdbc.DB2Exception: [IBM][CLI Driver] CLI0119E

Unexpected system failure. SQLSTATE=5800

If you encounter this error when attempting to access a DB2 Universal Database (UDB) data source:

1. On the data source properties page in the administrative console, verify that the correct database

name is specified on the data source.

2. On the custom properties page, check your user name and password custom properties. Verify that

they are correct.

3. Ensure the user ID and password do not contain any blank characters, before, in between, or after.

4. Check that the WAS.policy file exists for the application, for example, D:\WebSphere\AppServer\
installedApps\markSection.ear\META-INF\was.policy.

5. View the entire exception listing for an underlying SQL error, and look it up using the DBM vendor

message reference.

If you encounter this error while running DB2 on Red Hat Linux, the max queues system wide parameter

is too low to support DB2 while it acquires the necessary resources to complete the transaction. When this

problem exists, the exceptions J2CA0046E and DSRA0010E can precede the exception DSRA8100E.

To correct this problem, edit the /proc/sys/kernal/msgmni file to increase the value of the max queues

system wide parameter to a value greater than 128.

COM.ibm.db2.jdbc.DB2Exception: [IBM][CLI Driver][DB2/NT] SQL0911N The current

transaction has been rolled back because of a deadlock or timeout. Reason code ″2″.

SQLSTATE=40001

This problem is probably an application-caused DB2 deadlock, particularly if you see an error similar to the

following when accessing a DB2 data source:

ERROR CODE: -911

COM.ibm.db2.jdbc.DB2Exception: [IBM][CLI Driver][DB2/NT] SQL0911N

The current transaction has been rolled back because of a deadlock or timeout.

Reason code "2". SQLSTATE=40001

To diagnose the problem:

1. Execute these DB2 commands:

a. db2 update monitor switches using LOCK ON

b. db2 get snapshot for LOCKS on dbName >

The directory_name\lock_snapshot.log now has the DB2 lock information.

2. Turn off the lock monitor by running: db2 update monitor switches using LOCK OFF

To verify that you have a deadlock:

1. Look for an application handle that has a lock-wait status, and then look for the ID of the agent

holding lock to verify the ID of the agent.

2. Go to that handle to verify it has a lock-wait status, and the ID of the agent holding the lock for it. If it

is the same agent ID as the previous one, then you know that you have a circular lock (deadlock).

To resolve the problem:

1. Examine your application and use a less restrictive isolation level if no concurrency access is needed.

2. Use caution when changing the accessIntent value to move to a lower isolation level. This change

can result in data integrity problems.

Chapter 13. Data access resources 737

3. For DB2/UDB Version 7.2 and earlier releases, you can set the DB2_RR_TO_RS flag from the DB2

command line window to eliminate unnecessary deadlocks, such as when the accessIntent defined on

the bean method is too restrictive, for example, PessimisticUpdate. The DB@_RR_TO_RS setting has

two impacts:

v If RR is your chosen isolation level, it is effectively downgraded to RS.

v If you choose another isolation level, and the DB2_RR_TO_RS setting is on, a scan skips over

rows that are deleted but not committed, even though the row might qualify for the scan. The

skipping behavior affects the RR, Read Stability (RS), and Cursor Stability (CS) isolation levels.

For example, consider the scenario where transaction A deletes the row with column1=10 and

transaction B does a scan where column1>8 and column1<12. With DB2_RR_TO_RS off, transaction

B waits for transaction A to commit or rollback. If transaction A rolls back, the row with column1=10 is

included in the result set of the transaction B query. With DB2_RR_TO_RS on, transaction B does not

wait for transaction A to commit or rollback. Transaction B immediately receives query results that do

not include the deleted row. Setting DB2_RR_TO_RS effectively changes locking behavior, thus

avoiding deadlocks.

″COM.ibm.db2.jdbc.DB2ConnectionPoolDataSource″ could not be found for data source

([data-source-name])″

This error is denoted by message DSRA8040I: Failed to connect to the DataSource.

This error usually occurs when the class path of the DB2 JDBC driver is set correctly to

${DB2_JDBC_DRIVER_PATH}/db2java.zip but the environment variable DB2_JDBC_DRIVER_PATH is not

set.

This error can also occur if you are using DB2 Version 7.1 or 7.2 and you have not yet run usejdbc2. This

might be the problem if your path is correct but you still receive this error.

To confirm this problem:

1. Go to the Manage WebSphere Variables panel.

2. Select Environment to verify that there is no entry for the variable DB2_JDBC_DRIVER_PATH.

To correct this problem: Add the variable DB2_JDBC_DRIVER_PATH with value equal to the directory

path containing the db2java.zip file.

java.sql.SQLException: Failure in loading T2 native library db2jcct2 DSRA0010E: SQL

State = null, Error Code = -99,999

The Failure in loading message indicates one of two things:

v Usually this happens when the machine was not rebooted after installing DB2. Reboot the machine

getting the error and try it again.

v The DB2 context is not getting set up correctly for the user running WebSphere Application Server.

Source the db2profile file on the machine, and ensure that the environment contains pointers to the DB2

native libraries.

Lock contention exception occurs in database when data source implementation type is

XA

Note: Because a lock contention exception can be caused by many factors, consider the following

explanation and recommended response as a strategy for eliminating the possible reasons for your

lock contention problem.

 Symptom A lock contention exception occurs in a DB2 database that

your application accesses through a data source of

implementation type XA.

738 Administering applications and their environment

Problem Your application is trying to access database records that

are locked by an XA transaction that is in ended (e) state,

but cannot be prepared by the transaction manager.

Description An XA transaction to DB2 that ends, but cannot be

prepared, is in ended (e) state. Because it is not

considered to be in doubt, the transaction manager cannot

recover this transaction. DB2 does not return it in the list

of in doubt transactions. DB2 also does not roll the

transaction back immediately; it waits until all connections

to the database are released. During this period of

inaction, the transaction continues to hold locks on the

database.

Due to certain policies of WebSphere Application Server

workload management, your application server might not

disconnect all connections from the database to allow

rollback of the transaction. Therefore the ended

transaction persists in locking the same database records.

If your application attempts to access these locked

records, a lock contention exception occurs in DB2.

Recommended response DB2 Version 8.2 is shipped with a sample application that

connects to a defined DB2 server and uses the available

DB2 APIs to obtain a list of these particular ended

transactions. The application offers a configuration setting

that enables you to designate an amount of time after

which the application rolls these transactions back. Locate

the sample application in the sqllib/samples/db2xamon.c

directory of DB2 Version 8.2 and run it.

″DSRA8050W: Unable to find the DataStoreHelper class specified″ exception occurs when

trying to use a DB2 Universal Datasource in a mixed release cell.

This error usually occurs when you are using WebSphere Application Server Version 6.0 or above in

conjunction with a previous version and attempt to create a DB2 Universal Datasource on the previous

version.

This can happen because the DB2 Universal Datasource was not available on Version 5 and previous

versions, but the Version 6 administrative console allows you to build one.

To correct this problem: create the datasource on Version 6.0 or later.

Chapter 13. Data access resources 739

Receive ″’SYSTEM’ is not a valid authorization ID″ message when trying to access DB2 on

a Windows machine where WebSphere Application Server is also installed.

 Symptom For a WebSphere Application Server on Windows installation that uses DB2 as the

backend, you see the following exception in the JVM log:

java.sql.SQLException: [IBM][CLI Driver] SQL0567N "SYSTEM" is not a valid

authorization ID. SQLSTATE=42602 DSRA0010E: SQL State = 42602, Error Code = -567

 at COM.ibm.db2.jdbc.app.SQLExceptionGenerator.throw_SQLException

 (Unknown Source)

 at COM.ibm.db2.jdbc.app.SQLExceptionGenerator.check_return_code

 (Unknown Source)

 at COM.ibm.db2.jdbc.app.DB2Connection.connect(Unknown Source)

 at COM.ibm.db2.jdbc.app.DB2Connection.<init>(Unknown Source)

 at COM.ibm.db2.jdbc.app.DB2ReusableConnection.<init>(Unknown Source)

 at COM.ibm.db2.jdbc.DB2PooledConnection.getConnection(Unknown Source)

 at com.ibm.ws.rsadapter.spi.WSRdbDataSource.getConnection

 (WSRdbDataSource.java:1035)

 at com.ibm.ws.rsadapter.spi.WSManagedConnectionFactoryImpl.

 createManagedConnection(WSManagedConnectionFactoryImpl.java:937)

 at com.ibm.ejs.j2c.poolmanager.FreePool.

 createManagedConnectionWithMCWrapper(FreePool.java:1502)

Problem This exception occurs for configurations in which WebSphere Application Server is a client

to the DB2 server. The underlying problem is an authorization conflict between WebSphere

Application Server on Windows and DB2 that arises when an application attempts to

connect to DB2 without providing a user ID and a password.

Description When a DB2 client and the DB2 database run on the same machine, DB2 allows the client

to connect without a user ID and password. The connection is made under the credentials

of the user that owns the client process: in this case, the application server JVM. However,

if WebSphere Application Server runs as a Windows service, and the ″Log on as″ option is

set to ″Local System Account″, the application server JVM is categorized as a

subcomponent of a special Windows user called SYSTEM. This user is not allowed to

connect to DB2, resulting in the previously shown exception.

Recommended

response

You have two options:

v Modify the WebSphere Application Server service to use a Log on as option of This

account, and provide an account with permission to connect to DB2. Or

v Configure your application server to provide credentials on the DB2 connection by using

container-managed or component-managed authentication.

XAException: XAER_NOTA on XA prepare call in DB2 Universal JDBC Driver type 4 after

one phase transaction rollback

Symptom

For applications that use the DB2 Universal JDBC Driver type 4 XA available with DB2 v8.2, a connection

might fail and trigger an XAER_NOTA XAException error. The following code block is an example of this

exception:

J2CA0027E: An exception occurred while invoking prepare

on an XA Resource Adapter from dataSource jdbc/SDOSVT,

within transaction ID {XidImpl: formatId(57415344),

gtrid_length(36), bqual_length(54),

data(000000ff5191398200000001000000296cac5c42fe3c6838631cbaafc8b5a9253b846544

000000ff5191398200000001000000296cac5c42fe3c6838631cbaafc8b5a9253b8465440000000

10000000000000000000000000002)}:

javax.transaction.xa.XAException: XAER_NOTA

at com.ibm.db2.jcc.a.xb.a(xb.java:1682)

at com.ibm.db2.jcc.a.xb.a(xb.java:841)

740 Administering applications and their environment

at com.ibm.db2.jcc.a.xb.prepare(xb.java:812)

at com.ibm.ws.rsadapter.spi.WSRdbXaResourceImpl.prepare

(WSRdbXaResourceImpl.java:837)

...

Problem

If a DB2 Universal JDBC Driver type 4 XA connection is used in a single-phase transaction, such as a

local transaction with autocommit set to false, and that single-phase transaction is rolled back, the next

use of the connection in a two-phase transaction fails on the prepare call.

A problem in the DB2 Universal JDBC Driver type 4 XA support causes the XA prepare call to fail. This

problem does not occur if the single-phase transaction is committed, and it does not occur when using the

DB2 Universal JDBC Driver in type 2 mode.

Solution

Upgrade to DB2 Version 8.2 Fix Pack 1, which is equivalent to Version 8.1 Fix Pack 8. The Universal

JDBC Driver XA that is available with these releases solves the previously described issue for type 4

mode.

java.rmi.MarshalException logged for application client due to incompatibility of JDBC

driver file versions

Symptom

For an application that includes a J2EE application client, the following error message is displayed in the

client log file of the application server:

java.rmi.MarshalException: CORBA MARSHAL

0x4942f89a No; nested exception is:

org.omg.CORBA.MARSHAL: Unable to read value from

underlying bridge : Mismatched serialization

UIDs : Source (Rep.

IDRMI:com.ibm.db2.jcc.c.SqlException:63EEE52211DCD763:82CE0C0DA2B0A000)

= 82CE0C0DA2B0A000 whereas Target (Rep. ID

RMI:com.ibm.db2.jcc.c.SqlException:63EEE52211DCD763:91C6171BC645E41B)

= 91C6171BC645E41B vmcid: 0x4942f000 minor code:

2202 completed: No

Problem

The db2jcc.jar files on the application client machine and on your application server are from versions of

DB2 that are not compatible with each other, or are not compatible with the version of DB2 that functions

as the datastore.

Solution

Check the db2jcc.jar files on the application client machine, your application server, and your DB2 server.

On the client machine and the application server, install files of the same version that is compatible with

the DB2 server.

Database failure triggers problematic -99999 exception for applications that use DB2

Universal Driver type 4

Symptom

Chapter 13. Data access resources 741

If you use the DB2 Universal Driver type 4 for access to DB2 or Cloudscape Network Server, and your

database fails, the database server issues a generic -99999 exception in response to every JDBC

getConnection request. This exception, which is exemplified in the following code excerpt, can cause

unexpected behavior in your applications.

java.sql.SQLException: IO Exception opening socket to

 server bs8.rchland.ibm.com on port 1527.

The DB2 Server may be down.DSRA0010E: SQL State = null,

 Error Code = -99,999DSRA0010E: SQL State = null,

Error Code = -99,999

at com.ibm.db2.jcc.b.a.<init>(a.java:125)

at com.ibm.db2.jcc.b.b.a(b.java:1011)

at com.ibm.db2.jcc.c.l.<init>(l.java:197)

at com.ibm.db2.jcc.b.b.<init>(b.java:258)

at com.ibm.db2.jcc.DB2PooledConnection.

 <init>(DB2PooledConnection.java:44)

at com.ibm.db2.jcc.DB2ConnectionPoolDataSource.getPooledConnectionX

 (DB2ConnectionPoolDataSource.java:80)

at com.ibm.db2.jcc.DB2ConnectionPoolDataSource.getPooledConnection

 (DB2ConnectionPoolDataSource.java:45)

at com.ibm.ws.rsadapter.DSConfigurationHelper$1.run

 (DSConfigurationHelper.java:945)

Problem

When running in type 4 mode, some versions of the DB2 Universal Driver trigger a generic exception for

database failure rather than a specific error code that WebSphere Application Server can map to a stale

connection exception. This problem occurs with versions of the driver that are associated with DB2 8.1 Fix

Pack 6 or Fix Pack 7, and DB2 8.2.

Solution

Upgrade to DB2 Version 8.2 Fix Pack 1, equivalent to Version 8.1 Fix Pack 8, which provides a valid error

code in the previously described scenario. WebSphere Application Server maps this error code to a

StaleConnectionException, as expected.

Cannot access DB2 on Linux when using the DB2 Universal JDBC Driver

Symptom

In the WebSphere Application Server on Linux environment, applications that use the DB2 Universal JDBC

Driver to access DB2 on Linux might not connect with the database. The database server can issue the

following exceptions to the application server error log:

v java.security.AccessControlException: Access denied

(java.lang.RuntimePermission accessClassInPackage.sun.io)

v If you run 64-bit Linux:

com.ibm.db2.jcc.b.SqlException: Failure in loading T2 native library db2jcct2

Problem

The process for configuring DB2 on Linux to work with the Universal JDBC Driver is not complete.

Solution

v Verify that the setup requirements for the Java™ SDK 1.4.2 for the Linux platform are complete.

v Configure your development environment for building Java applications on Linux with DB2 JDBC

support. See the instructions at http://www.ibm.com/software/data/db2/udb/ad/v8/bldg/t0004878.htm.

v If you run DB2 on the Linux/IA64 platform and are using DB2 v8.1 Fix Pack 7A, perform the additional

step that is described at http://www.ibm.com/support/docview.wss?uid=swg21189945. This step is

742 Administering applications and their environment

http://www.ibm.com/software/data/db2/udb/ad/v8/bldg/t0004878.htm
http://www.ibm.com/support/docview.wss?uid=swg21189945

necessary only for Fix Pack 7A. This step is not necessary for DB2 v8.1 Fix Pack 7 or earlier versions

of DB2; this step is not necessary for DB2 v8.1 Fix Pack 8 or later versions of DB2.

Test connection operation fails for DB2 legacy CLI-based Type 2 driver that is used to

access DB2 running on 64-bit Linux

Symptom

If you run DB2 on 64-bit Linux using the AMD OpteronTM processor, the test connection operation fails for

data sources that are configured with the DB2 legacy CLI-based Type 2 driver. You see the following error

message in the WebSphere Application Server administrative console:

[3/8/05 16:27:19:020 CST] 0000003c DataSourceCon E DSRA8040I:

Failed to connect to the DataSource.

Encountered "": java.lang.UnsatisfiedLinkError:

COM/ibm/db2/jdbc/app/DB2Connection.SQLConnect

(Ljava/lang/String;II)I

Problem

Your version of 64-bit DB2, Version 8.1 Fix Pack 8, does not support the DB2 legacy CLI-based Type 2

driver on the ADM64 platform. This version of DB2 does not have the library libdb2jdbc.so, which is

required by the driver.

Solution

Upgrade DB2 v8.1 to fix pack 9.

Illegal conversion occurs on any VARCHAR FOR BIT DATA column in a

container-managed persistent bean

When enterprise beans with container-managed persistent (CMP) types that have any VARCHAR FOR

BIT DATA columns defined on a DB2 table are deployed in the DB2 universal JDBC type 4 driver to

persist the data, an SQLException of illegal conversion is thrown at run time. This exception only occurs

when you use the DB2 universal JDBC type 4 driver and with the deferPrepares property being set to true.

When the deferPrepares property is set to true, the DB2 universal JDBC type 4 driver uses the standard

JDBC data mapping.

Currently, the generated deployed code does not follow the standard JDBC specification mapping. The

failure at execution time is because of a problem in the tool that prepared the enterprise beans for

execution.

To avoid receiving this exception, choose one of the following options:

v Set the deferPrepares property to false in the data source configuration.

v Do not use the DB2 universal JDBC type 4 driver if your table has any VARCHAR FOR BIT DATA or

LONG VARCHAR FOR BIT DATA columns. Use the DB2 legacy CLI-based JDBC driver to persist the

data. Refer to DB2 V8.1 readme for more details.

Problems accessing a SQL server data source

This article provides troubleshooting tips for accessing SQL server data sources.

What kind of problem are you having accessing your SQL Server database?

v “ERROR CODE: 20001 and SQL STATE: HY000 accessing SQLServer database” on page 744

v “Application fails with message stating ″Cannot find stored procedure...″ accessing an SQLServer

database” on page 744

v “ERROR CODE: SQL5042 when running a Java application ” on page 744

v “Cannot connect to SQL Server 2000 running on Windows Server 2003 when using XA data source” on

page 744

Chapter 13. Data access resources 743

ERROR CODE: 20001 and SQL STATE: HY000 accessing SQLServer database

The problem might be that the distributed transaction coordinator service is not started. Look for an error

similar to the following example when attempting to access an SQL server database:

ERROR CODE: 20001

SQL STATE: HY000

java.sql.SQLException: [Microsoft][SQLServer JDBC Driver]

[SQLServer]xa_open (0) returns -3

at com.microsoft.jdbc.base.BaseExceptions.createException(Unknown Source) ...

at com.microsoft.jdbcx.sqlserver.SQLServerDataSource.getXAConnection

(Unknown Source) ...

To confirm this problem:

1. Go to the Windows Control Panel and click Services(or click Control Panel > Administrative Tools

> Services)

2. Verify whether the service Distributed Transaction Coordinator or DTC is started.

3. If not, start the Distributed Transaction Coordinator service.

Application fails with message stating ″Cannot find stored procedure...″ accessing an

SQLServer database

This error can occur because the stored procedures for the Java Transaction API (JTA) feature are not

installed on the Microsoft SQL Server.

To resolve the problem: Repeat the installation for the stored procedures for the JTA feature, according to

the ConnectJDBC installation guide.

ERROR CODE: SQL5042 when running a Java application

This error can occur when you configure your application to run in the following manner:

1. you use a type 2 (application) driver running on the gateway to the OS 390

2. your application is an XA application.

OS 390 does not use XA, but uses SPM. To resolve the problem:

1. Check your dbm cfg to see that the SPM is not started on the gateway.

2. Assign a port and set the db2comm variable to TCPIP.

3. Update the dbm cfg value SPM_NAME to use your machine name.

4. Start the SPM on the gateway.

Cannot connect to SQL Server 2000 running on Windows Server 2003 when using XA data

source

Symptom

When using XA data source to connect to SQL Server 2000, running on Windows® 2003, you receive the

following exception:

java.sql.SQLException: [IBM][SQLServer JDBC Driver][SQLServer]xa_open (0) returns -3

You might also see the following exceptions in WebSphere Application Server SystemOut.log:

[9/21/04 16:57:53:284 CST] 558bbb0a FreePool E J2CA0046E:

Method createManagedConnctionWithMCWrapper caught an exception

during creation of the ManagedConnection for resource jdbc/lmDS,

throwing ResourceAllocationException. Original exception:

com.ibm.ws.exception.WsException: DSRA8100E: Unable to get a

XAConnection from the DataSource.

744 Administering applications and their environment

at

com.ibm.ws.rsadapter.exceptions.DataStoreAdapterException.<init>

(DataStoreAdapterException.java:244)

 at

 com.ibm.ws.rsadapter.exceptions.DataStoreAdapterException.<init>

(DataStoreAdapterException.java:171)

 at

com.ibm.ws.rsadapter.AdapterUtil.createDataStoreAdapterException

(AdapterUtil.java:209)

 at

com.ibm.ws.rsadapter.DSConfigurationHelper.getPooledConnection

(DSConfigurationHelper.java:911)

 at

com.ibm.ws.rsadapter.spi.WSRdbDataSource.getPooledConnection

(WSRdbDataSource.java:675)

....

Caused by: java.sql.SQLException: [IBM][SQLServer JDBC Driver]

[SQLServer]xa_open (0) returns -3

 at com.ibm.websphere.jdbc.base.BaseExceptions.createException

(Unknown Source)

---- Begin backtrace for nested exception

java.sql.SQLException: [IBM][SQLServer JDBC Driver][SQLServer]

xa_open (0) returns -3

 at com.ibm.websphere.jdbc.base.BaseExceptions.createException

(Unknown Source)

 at com.ibm.websphere.jdbc.base.BaseExceptions.getException

(Unknown Source)

Problem

XA transactions are disabled by default on Windows Server 2003. Microsoft® Windows Server 2003,

Microsoft Distributed Transaction Coordinator (MS DTC) requires the creation of registry values for all XA

DLLs that you plan to use.

Solution

Connect JDBC Drivers (DataDirect Connect JDBC, IBM® WebSphere® embedded Connect JDBC) have

the XA DLL sqljdbc.dll that is normally installed on SQLServer_Install_Root\MSSQL\Binn. For example:

c:\Program Files\Microsoft SQL Server\MSSQL\Binn) The registry values required for XA transactions are

not created automatically. You must create the values manually as follows:

1. Turn on support for XA transactions:

a. Open Component Services.

b. Expand the tree view to locate the computer where you want to turn on support for XA

transactions; for example, My Computer.

c. Right-click the computer name, then click Properties.

d. Click the MSDTC tab, then click Security Configuration.

e. Under Security Settings, click the check box for XA Transactions to turn on this support.

f. Click OK, then click OK again.

2. Create a registry named-value:

a. Use Registry Editor and navigate to registry key:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\MSDTC\XADLL

b. Create a new registry named-value:

v Name is the file name of the XA DLL (in the format dllname.dll)

v Type is String (REG_SZ)

v Value is the full path name (including the file name) of the DLL file

Chapter 13. Data access resources 745

Name Type Value

sqljdbc.dll String (REG_SZ) c:\Program Files\Microsoft SQL

Server\MSSQL\Binn\sqljdbc.dll

Note: You must create an entry for each XA DLL file that you plan to use. Also, if you are

configuring MS DTC on a cluster, you must create these registry entries on each node in the

cluster.

For more details, see the following Microsoft document:

INFO: Registry Entries Are Required for XA Transaction Support

Problems accessing a Cloudscape database

This article provides troubleshooting tips for accessing Cloudscape databases.

What kind of problem are you having accessing your Cloudscape database?

v “Unexpected IOException wrapped in SQLException, accessing Cloudscape database”

v “The ″select for update″ operation causes table lock and deadlock when accessing Cloudscape”

v “ERROR XSDB6: Another instance of Cloudscape may have already booted the database ″database″”

v “Error ″The version of the IBM Universal JDBC driver in use is not licensed for connectivity to

Cloudscape databases″” on page 747

v “Running an application causes a runtime exception which produces an unreadable message.” on page

747

Tip: Cloudscape errorCodes (2000, 3000, 4000) indicate levels of severity, not specific error conditions. In

diagnosing Cloudscape problems, pay attention to the given sqlState value.

Unexpected IOException wrapped in SQLException, accessing Cloudscape database

This problem can occur because Cloudscape databases use a large number of files. Some operating

systems, such as the Solaris Operating Environment, limit the number of files an application can open at

one time. If the default is a low number, such as 64, you can get this exception.

If your operating system lets you configure the number of file descriptors, you can correct the problem by

setting the number to a high value, such as 1024.

The ″select for update″ operation causes table lock and deadlock when accessing

Cloudscape

If a select for update operation on one row locks the entire table, which creates a deadlock condition,

there might be undefined indexes on that table. The lack of an index on the columns you use in the where

clause can cause Cloudscape to create a table lock rather than a row level lock.

To resolve this problem, create an index on the affected table.

ERROR XSDB6: Another instance of Cloudscape may have already booted the database

″database″

This problem occurs because Cloudscape embedded framework only allows one Java virtual machine

(JVM) to access the database instance at a time.

To resolve this problem:

1. Verify that you do not have other JDBC client programs, such as ij or cview running on that database

instance, when WebSphere Application Server is running.

746 Administering applications and their environment

http://support.microsoft.com/default.aspx?scid=kb%3ben-us%3b817066

2. Verify that you do not use the same instance of the database for more than one data source or use the

networkServer framework, which doesn’t have this limitation.

3. If there are no connections to Cloudscape, delete the db.lck lock file. This file can be found in the

directory where the Cloudscape database is mounted, under the schema directory. For example, if the

database is mounted at /myCloudscapeDB, issue the command: rm /myCloudscapeDB/schemaName/
db.lck

Error ″The version of the IBM Universal JDBC driver in use is not licensed for connectivity to Cloudscape

databases″

Error ″The version of the IBM Universal JDBC driver in use is not licensed for connectivity

to Cloudscape databases″

At the client runtime, an error similar to the following occurs:

The version of the IBM Universal JDBC driver in use is not

licensed for connectivity to Cloudscape databases. To connect

to this DB2 server, please obtain a licensed copy of the IBM DB2

Universal Driver for JDBC and SQLJ. An appropriate license file

db2jcc_license_*.jar for this target platform must be installed to

the application classpath. Connectivity to Cloudscape databases is

enabled by any of the following license files:

{ db2jcc_license_c.jar, b2jcc_license_cu.jar, db2jcc_license_cisuz.jar }

The problem occurs because an incorrect JDBC driver jar file name is specified in the class path for JDBC

provider. For example, the jar file name may have an extra ’_’, as follows:

${UNIVERSAL_JDBC_DRIVER_PATH}/db2jcc_license__cu.jar

To resolve the problem:

1. Correct the UNIVERSAL_JDBC_DRIVER_PATH jar file name in the JACL script

2. Restart the cluster.

3. Rerun the client.

Running an application causes a runtime exception which produces an unreadable

message.

At client runtime, you may receive a message similar to the following: Caused by:

com.ibm.db2.jcc.a.SqlException: DB2 SQL error: SQLCODE: -1, SQLSTATE: 42X05, SQLERRMC:

ANNUITYHOLDER20^T42X05

The problem occurs because the property retrieveMessagesfromServerOnGetMessage, which is required

by WebSphere Application Server, has not been set.

To resolve the problem, on the admininstrative console

1. Click Resources -> JDBC Providers

2. Click on a Cloudscape provider

3. Scroll down and click on Data Sources

4. Select your data source (or add a new one)

5. Scroll down and select Custom Properties

6. If the property retrieveMessagesFromServerOnGetMessage already exists, set its value to true. If the

property does not exist, select Newand add the property retrieveMessagesFromServerOnGetMessage

with a value true

7. Rerun the client

The SystemOut.log will now generate readable messages so that you can resolve the underlying problem.

Chapter 13. Data access resources 747

Problems accessing a Sybase data source

This article provides troubleshooting tips for accessing Sybase data sources.

What kind of problem are you having accessing your Sybase database?

v ″Sybase Error 7713: Stored Procedure can only be executed in unchained transaction mode″ error.

v ″JZ0XS: The server does not support XA-style transactions. Please verify that the transaction feature is

enabled and licensed on this server.″

v A container managed persistence (CMP) enterprise bean is causing exceptions.

v “Sybase JDBC data source fails with ″Incorrect URL format″ exception in IPv6 environment” on page

749

v “Executing the DatabaseMetaData.getBestRowIdentifier() method in an XA transaction causes errors” on

page 749

v “Sybase requirements for using the escapes and DatabaseMetaData methods” on page 750

v “Database deadlocks and XA_PROTO errors occur when using Sybase” on page 750

v “Executing a stored procedure containing a SELECT INTO command causes exception” on page 751

v “Error is incorrectly reported about IMAGE to VARBINARY conversion” on page 751

v “JDBC 1.0 standard methods are not implemented and generate a SQL exception when used” on page

751

v “Sybase transaction manager fails after trying to alleviate a deadlock error” on page 751

v “Starting an XA transaction when the autoCommit value of the connection is false causes error” on page

751

v “Sybase does not throw an exception when an incorrect database name is specified” on page 752

″Sybase Error 7713: Stored Procedure can only be executed in unchained transaction

mode″ error

This error occurs when either:

v The JDBC attempts to put the connection in autocommit(true) mode.

v A stored procedure is not created in a compatible mode.

To fix the autocommit(true) mode problem, let the application change the connection to chained mode

using the Connection.setAutoCommit(false) mode, or use a set chained on language command.

To resolve the stored procedure problem, use the sp_procxmode procedure_name "anymode" command.

″JZ0XS: The server does not support XA-style transactions. Please verify that the

transaction feature is enabled and licensed on this server.″

This error occurs when XA-style transactions are attempted on a server that does not have Distributed

Transaction Management (DTM) installed.

To resolve this problem, use the instructions in the Sybase Manual titled: Using Adaptive Server

Distributed Transaction Management Features to enable Distributed Transaction Management (DTM). The

main steps in this procedure are:

1. Install the DTM option.

2. Check the license.dat file to verify that the DTM option is installed.

3. Restart the license manager.

4. Enable DTM in ISQL.

5. Restart the ASE service.

A container managed persistence (CMP) enterprise bean is causing exceptions

This error is caused by improper use of reserved words. Reserved words cannot be used as column

names.

748 Administering applications and their environment

To correct this problem: Rename the variable to remove the reserved word. You can find a list of reserved

words in the Sybase Adaptive Server Enterprise Reference Manual; Volume 1: Building Blocks, Chapter 4.

This manual is available online at: http://manuals.sybase.com/onlinebooks/group-as/asg1250e/refman.

Sybase JDBC data source fails with ″Incorrect URL format″ exception in IPv6 environment

Problem

If you configure a Sybase JDBC data source through the administrative console and attempt to use it in an

IPv6 environment, you can experience the following exception:

java.sql.SQLException: JZ0NE: Incorrect URL format

Cause

The Sybase JDBC drivers that are listed as selections for JDBC provider type in the administrative console

do not support IPv6. The administrative console does not contain a pre-formatted template for the Sybase

jConnect JDBC driver v6.0 EBF12884, which is the version required to connect to the database in an IPv6

environment.

However, you can still use the administrative console to define the Sybase jConnect JDBC driver v6.0

EBF12884.

Solution

Complete the following steps to define the Sybase jConnect JDBC driver v6.0 EBF12884:

1. In the administrative console, go to Resources > JDBC Providers and click New.

2. Select User-defined for the database type. This selection triggers the console to set your provider type

to User-defined JDBC provider and implementation type to User-defined.

3. Click Next to go to the JDBC provider general configuration page.

4. In the Class path field, replace the default JAR file name with jconn3.jar.

5. For Implementation class name:

v For a data source implementation that supports only one phase transactions, input

com.sybase.jdbc3.jdbc.SybConnectionPoolDataSource

v For an implementation that supports two phase transactions, input

com.sybase.jdbc3.jdbc.SybXADataSource

6. Click Apply. Then click the Data sources link.

7. Click New to define the general properties of your data source.

8. Click Apply after defining the general data source properties. Then click the Custom properties link.

9. Define the following properties as custom properties. To set these properties, click New. Input the

property name and a valid value for each one.

v databaseName

v serverName

v portNumber

Executing the DatabaseMetaData.getBestRowIdentifier() method in an XA transaction

causes errors

Executing the DatabaseMetaData.getBestRowIdentifier() method while in an XA transaction causes the

following errors:

SQL Exception: The ’CREATE TABLE’ command is not allowed within a

multi-statement transaction in the ’tempdb’ database. Calling

DatabaseMetaData.getBestRowIdentifier()

Chapter 13. Data access resources 749

http://manuals.sybase.com/onlinebooks/group-as/asg1250e/refman

Currently, this method fails when using Sybase. This problem occurs with other methods as well, including:

v getBestRowIdentifier();

v getVersionColumns();

v getTablePrivileges();

v getProcedureColumns();

v getPrimaryKeys();

v getIndexInfo();

v getImportedKeys();

v getExportedKeys();

v getCrossReference();

v getColumns();

v getColumnPrivileges();

Case 10880427 has been opened with Sybase to resolve this problem.

Sybase requirements for using the escapes and DatabaseMetaData methods

To use the escapes and DatabaseMetaData methods, you must install stored procedures on the Adaptive

Server Enterprise or Adaptive Server Anywhere database where you want to use these methods. These

stored procedures are also required by some of the connection methods.

To check for the presence of LOCATE ():

1. Open a Sybase isql command prompt.

2. Type the command use master.

3. Type the command go.

4. Type the SQL command and select * from jdbc_function_escapes.

5. Type the command go.

The following appears:

escape_name map_string

 abs abs(%1)

 acos acos(%1)

 asin asin(%1)

 atan atan(%1)

 atan2 atn2(%1, %2)

 ceiling ceiling(%1)

::

locate charindex ((convert (varchar, %1)), (convert (varchar, %2)))

If the function does not exist, upgrade jConnect to at least Version 5.2 EBF 10635 and run the following

command:

java IsqlApp -U sa -P -S jdbc:sybase:Tds:hostname:4100 -I %JDBC_HOME%\sp\sql_server12.sql -c go

Database deadlocks and XA_PROTO errors occur when using Sybase

When using Sybase with the IBM WebSphere Application Server, do one of the following to prevent

database deadlocks and errors:

v Change the transaction isolation level on the connection to TRANSACTION_READ_COMMITTED. Set

the isolation level on the connection for unshareable connections or, for shareable connections, define

the isolation levels in the resource reference for your data source using an assembly tool.

v Modify Sybase by doing one of the following:

– If you want to use the existing tables, modify the table locking scheme using the alter table table

name lock datarows command to get a row lock level granularity.

– If you want to set the system-wide locking scheme to data rows, all subsequently created tables

inherit that value and have a locking scheme of data rows.

750 Administering applications and their environment

Note: You must drop your original databases and tables.

Executing a stored procedure containing a SELECT INTO command causes exception

An attempt to execute a stored procedure containing a SELECT INTO command results in the following

exception:

SVR-ERROR: SQL Exception SELECT INTO command not allowed within multi-statement transaction

Case 10868947 has been opened with Sybase to resolve this problem.

Error is incorrectly reported about IMAGE to VARBINARY conversion

The following error is incorrectly reported:

com.sybase.jdbc2.jdbc.SybSQLException: Implicit conversion from data type ’IMAGE’ to ’VARBINARY’ is not allowed.

 Use the CONVERT function to run this query.

The error is about a VARBINARY column only and causes confusion if you also have an IMAGE column.

Do one of the following to work around this problem:

v Use a PreparedStatement.setBytes() method instead of a PreparedStatement.setBinaryStream() method

v Use a LONG VARBINARY for the column type if you want to continue using the setBinaryStream()

method. You might want to make this change because the size limit for VARBINARY is 255 bytes.

For example:

// ***************CORRECTION*****************************

 // setBinaryStream fails for column type of VARBINARY , use setBytes() instead

 //stmt4.setBinaryStream(8,new java.io.ByteArrayInputStream(tempbyteArray),tempbyteArray.length);

 stmt4.setBytes(8,tempbyteArray);

JDBC 1.0 standard methods are not implemented and generate a SQL exception when

used

The following JDBC 1.0 standard methods are not implemented and generate a SQL exception when

used:

v ResultSetMetaData.getSchemaName()

v ResultSetMetaData.getTableName() (implemented only for text and image datatypes)

v ResultSetMetaData.getCatalogName()

Sybase transaction manager fails after trying to alleviate a deadlock error

If an application encounters a deadlock, Sybase detects the deadlock and throws an exception. Because

of this detection, the transaction manager calls an xa_end with a TMFAIL in it.

The call succeeds, but causes another Sybase exception, XAERR_PROTO. This exception only appears in the

error log and does not cause any functional problems. All applications should continue to run, therefore no

workaround is necessary.

Case 10869169 has been opened with Sybase to resolve this problem.

Starting an XA transaction when the autoCommit value of the connection is false causes

error

The exception thrown is javax.transaction.xa.XAException with stack trace similar to the following:

 at com.sybase.jdbc2.jdbc.SybXAResource.sendRPC(SybXAResource.java:711)

 at com.sybase.jdbc2.jdbc.SybXAResource.sendRPC(SybXAResource.java:602)

 at com.sybase.jdbc2.jdbc.SybXAResource.start(SybXAResource.java:312)

Chapter 13. Data access resources 751

This problem affects you when you do both local and global transactions. If, in a local transaction, the

autoCommit default value is set to false, and a global or XA transaction starts (either a user transaction

started by you, or a container transaction started by a container), the exception occurs.

This problem is a Sybase bug as the start() method can fail unexpectedly, regardless of the value of

autoCommit. Currently, there is no workaround for this problem, therefore it is not recommended that you

mix local and global transactions. Case 10880792 has been opened to resolve this problem.

Sybase does not throw an exception when an incorrect database name is specified

Verify that your database name is correctly entered on the data source properties.

Most databases (DB2, Oracle, Informix , MS SQL Server and Cloudscape) throw an exception when the

database specified does not exist. But Sybase does not throw an exception when an incorrect database

name is specified. Sybase generates an SQL warning and then connects to the default database. If you

misspell the requested database name, Sybase connects you to the master or the default database where

the table you requested is not found.

If none of these steps fixes your problem, check to see if the problem has been identified and documented

by looking at the available online support (hints and tips, technotes, and fixes). If you do not find your

problem listed there, contact IBM Support.

JDBC trace configuration

If your application displays JDBC-related exception messages, activate the JDBC trace service. The

resulting log text can help you identify the problem.

Trace strings for JDBC data sources

Turn on tracing for most database JDBC implementations through the administrative console; see the

article Enabling trace at server startup for instructions. This method activates JDBC trace for all

applications that run in the server you specify. Identify your database type by selecting the trace group

WAS.database and typing one of the following trace strings in the console:

v com.ibm.ws.database.logwriter Trace string for databases that use the GenericDataStoreHelper. You

can also use this trace string for unsupported databases.

v com.ibm.ws.db2.logwriter Trace string for DB2 databases.

v com.ibm.ws.oracle.logwriter Trace string for Oracle databases.

v com.ibm.ws.derby.logwriter Trace string for Derby databases.

v com.ibm.ws.informix.logwriter Trace string for Informix databases.

v com.ibm.ws.sqlserver.logwriter Trace string for Microsoft SQL Server databases.

v com.ibm.ws.sybase.logwriter Trace string for Sybase databases.

A few JDBC drivers require that you set trace differently, at the data source level. These drivers include:

v DB2 legacy CLI-based JDBC driver

v WebSphere embedded ConnectJDBC driver for MS SQL Server

v DataDirect ConnectJDBC driver for MS SQL Server

v DataDirect SequeLink JDBC driver for MS SQL Server, which is deprecated in WebSphere Application

Server V6.0

v Microsoft JDBC driver for MS SQL Server 2000, which is deprecated in WebSphere Application Server

V6.0

Configuring trace for these drivers through the WAS.database group results in corrupt trace information.

WebSphere Application Server sets trace for the group at the server level, causing the trace service to

begin only after your application establishes an initial connection. Because that first connection does not

carry trace information, re-use of it is never tracked. Consequently the application cannot accurately match

trace information to connection use.

752 Administering applications and their environment

Set trace for the previously mentioned JDBC drivers through data source custom properties. For example,

use custom property spyAttributes to enable the JDBC trace for SequeLink or Connect JDBC drivers.

Consult your driver documentation for details on the custom property that enables trace for your JDBC

implementation.

Additional resources

If the JDBC tracing service cannot help you isolate and fix your problem, consult the IBM Support website

for WebSphere Application Server at http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP
&tc1=SSCMP9Y. Use the site search function to find current information on known problems and their

resolutions. Locating the right troubleshooting tip can save time that, otherwise, you might spend on

opening and tracking a PMR.

Learn about other IBM Support options in the articles Diagnosing and fixing problems: Resources for

learning and Troubleshooting help from IBM.

Deploying data access applications

Frequently, deploying data access applications involves more than installing your WAR or EAR file onto a

server. Deployment can include tasks for configuring your application to use the data access resources of

the server and overall run-time environment.

You can only deploy application code that is assembled into the appropriate modules. The topic

Assembling data access applications provides guidelines for this process.

Perform the following steps if your application requires access to a relational database (RDB). If your

application requires access to a different type of enterprise information system (EIS), such as an

object-oriented database or the Customer Information Control System (CICS), consult the topics “J2EE

Connector Architecture resource adapters” on page 510 and Accessing data using J2EE Connector

Architecture connectors.

1. If your RDB configuration does not already exist:

a. Create a database to hold the data.

b. Create tables required by your application.

If your application uses CMP entity beans to access the data

You can create the tables using the data definition language (DDL) generated from the

enterprise bean configuration. For more information, see Recreating database tables from

the exported table data definition language.

If your application uses BMP entity beans, or does not use entity beans

You must use your database server interfaces to create the tables.

You can also use the EJB to RDB Mapping wizard of an assembly tool to create your database

tables for either type of entity bean. Select the top-down mapping option in the wizard. Keep in

mind, however, that this option does not give you direct control in naming the RDB elements or

choosing column types. Additionally, because the top-down process is automatic, it might not

provide mappings to reflect the precise relationships that you intend.

If you use the Application Server Toolkit (AST), consult the that product information center about

the mapping wizard. To learn about all of your assembly tool options, consult the Assembly tools

article in this information center.

c. Check Minimum required properties for vendor-specific data sources to see any database vendor

requirements for connecting to an application server.

2. If necessary, map your entity beans to the database tables through the meet-in-the-middle mapping

option of an assembly tool. This step is necessary only if you did not create your database schema

through the top-down mapping option, did not generate your mapping relationships through bottom-up

mapping, or did not generate mappings during the application assembly process. For information on

the top-down mapping option refer to the Application Server Toolkit information center.

Chapter 13. Data access resources 753

http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCMP9Y
http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCMP9Y

3. Install your application onto the application server. Consult “Installing application files” on page 28.

When you install the application, you can alter data access settings that were made during application

assembly, or set them for the first time if they were omitted from the assembly process. These settings

include resource bindings and resource authentication aliases, which are addressed in the following

substeps:

a. Bind application resource references to the data sources, or other resource objects, that provide

database connectivity. For details on the concept of binding, see the Data source lookups for

enterprise beans and Web modules topic.

Tip: After deployment, you can use the WebSphere Application Server administrative console to

alter resource bindings. Click Applications > Enterprise Applications > application_name,

and select the link to the appropriate mapping page. For example, if you want to alter the

binding of an EJB module resource, you might click 1.x CMP bean data sources or 2.x CMP

bean data sources. For a Web module resource, click Resource references.

b. Define authentication alias data for resources that must be authenticated with the backend through

container-managed authorization. In this security configuration, WebSphere Application Server

performs EIS signon for data source or connection factory connections. Consult the “J2EE

connector security” on page 633 topic for detailed reference on resource authentication.

4. Start the deployed application files using the administrative console , the wsadmin startApplication

command, or your own Java program.

5. Save the changes to your administrative configuration.

6. Test the application. For example, point a Web browser at the URL for a deployed application and

examine the performance of the application.

If the application does not perform as desired, update the application, then save and test it again.

Available resources

Use this page to select configured resources that you want to bind to the resource references of the

enterprise beans or Web modules in your application.

To view this administrative console page:

1. Click Applications > Enterprise Applications > Application_name.

2. Click the link for any of these resource configuration pages:

v Resource references

v Map data sources for all 2.x CMP beans

v Provide default data source mapping for modules containing 2.x entity beans

3. Locate the table row of the EJB or Web module that you want to map to a different resource.

4. Within the row, locate the JNDI name of the resource that is currently bound to the EJB or Web

module.

5. Click Browse.

You now see Available resources.

Each table row corresponds to a resource that you can bind to your enterprise bean or Web module.

Select

Select the resource that you want to bind to the resource reference of your module.

JNDI name

The Java Naming and Directory Interface (JNDI) name of the resource that you want to bind to the

resource reference of your module.

 Data type String

754 Administering applications and their environment

Scope

The scope of the resource. Note that this administrative console page displays only resources that are

configured for a scope at which your application operates.

Description

The text description of the resource.

1.x CMP bean data sources

Use this page to designate how the container-managed persistence (CMP) 1.x beans of an application

map to data sources that are available to the application.

To view this administrative console page, click Applications > Enterprise Applications >

application_name > 1.x CMP bean data sources.

Guidelines for using this administrative console page:

v The table depicts the 1.x CMP bean contents of your application.

v Each table row corresponds to a CMP bean within a specific EJB module. A row shows the JNDI name

of the data source mapping target of the bean only if you bound them together during application

assembly or installation. For every data source that is displayed, you see the corresponding security

configuration.

v To set your mappings:

1. Select a row. Be aware that if you check multiple rows on this page, the data source mapping target

that you select in step 2 applies to all of those CMP beans.

2. Click Browse to select a data source from the new page that is displayed, the Available Resources

page. The Available Resources page shows all data sources that are available mapping targets for

your CMP beans.

3. Click Apply. The console displays the 1.x CMP bean data sources page again. In the rows that you

previously selected, you now see the JNDI name of the new resource mapping target.

4. Before you click OK to save your new configuration, set the security parameters for the data source.

Use the following steps.

v To specify data source security settings:

1. Select one or more rows in the table.

2. Type in a user name and password that comprise the authentication alias for signing on to the data

source. If these entries are not listed in the application J2EE Connector (J2C) authentication data

list, you must input them into the list after saving your settings on this page. Read the Managing

J2EE Connector Architecture authentication data entries information center topic for instruction.

3. Click Apply that immediately follows the user name and password input fields.

v Repeat all of the previous steps as necessary.

v Click OK to save your settings.

Table column heading descriptions:

Select

Select the check boxes of the rows that you want to edit.

EJB

The name of an enterprise bean in the application.

EJB Module

The name of the module that contains the enterprise bean.

Chapter 13. Data access resources 755

URI

Specifies location of the module relative to the root of the application EAR file.

JNDI name

The Java Naming and Directory Interface (JNDI) name of the data source that is configured for the

enterprise bean.

 Data type String

User name

The user name and password that comprise the authentication alias for securing the data source.

1.x entity bean data sources

Use this page to set the default data source mapping for EJB modules that contain 1.x container-managed

persistence (CMP) beans. Unless you configure individual data sources for your 1.x CMP beans, this

default mapping applies to all beans within the module.

To view this administrative console page, click Applications > Enterprise Applications >

application_name > 1.x entity bean data sources.

Guidelines for using this administrative console page:

v The page displays a table that depicts the EJB modules in your application that contain 1.x CMP beans.

v Each table row corresponds to a module. A row shows the JNDI name of the data source mapping

target of the EJB module only if you bound them together during application assembly. For every data

source that is displayed, you see the corresponding security configuration.

v To set your default data source mappings:

1. Select a row. Be aware that if you check multiple rows on this page, the data source mapping target

that you select in step 2 applies to all of those EJB modules.

2. Click Browse to select a data source from the new page that is displayed, the Available Resources

page. The Available Resources page shows all data sources that are available mapping targets for

your EJB modules.

3. Click Apply. The console displays the 1.x entity bean data sources page again. In the rows that you

previously selected, you now see the JNDI name of the new resource mapping target.

4. Before you click OK to save your new configuration, set the security parameters for the data source.

Use the following steps.

v To specify security settings for the default data source:

1. Select a row. Be aware that if you check multiple rows on this page, the security settings that you

select later apply to all of those data sources.

2. Type in a user name and password that comprise the authentication alias for signing on to the data

source. If these entries are not listed in the application J2EE Connector (J2C) authentication data

list, you must input them into the list after saving your settings on this page. Read the Managing

J2EE Connector Architecture authentication data entries information center topic for instruction.

3. Click Apply that immediately follows the user name and password input fields.

v Repeat all of the previous steps as necessary.

v Click OK to save your work.

Table column heading descriptions:

Select

Select the check boxes of the rows that you want to edit.

756 Administering applications and their environment

EJB Module

The name of the module that contains the 1.x enterprise beans.

URI

Specifies location of the module relative to the root of the application EAR file.

JNDI name

The Java Naming and Directory Interface (JNDI) name of the default data source for the EJB module.

 Data type String

User name

The user name and password that comprise the authentication alias for securing the data source.

2.x CMP bean data sources

Use this page to designate how the container-managed persistence (CMP) 2.x beans of an application

map to data sources that are available to the application.

To view this administrative console page, click Applications > Enterprise Applications >

application_name > 2.x CMP bean data sources.

Guidelines for using this administrative console page:

v The page displays a table that depicts the 2.x CMP bean contents of your application.

v Each table row corresponds to a CMP bean within a specific EJB module. A row shows the JNDI name

of the data source mapping target of the bean only if you bound them together during application

assembly. For every data source that is displayed, you see the corresponding security configuration.

v To set your mappings:

1. Select a row. Be aware that if you check multiple rows on this page, the data source mapping target

that you select in step 2 applies to all of those CMP beans.

2. Click Browse to select a data source from the new page that is displayed, the Available Resources

page. The Available Resources page shows all data sources that are available mapping targets for

your CMP beans.

3. Click Apply. The console displays the 2.x CMP bean data sources page again. In the rows that you

previously selected, you now see the JNDI name of the new resource mapping target.

4. Before you click OK to save your new configuration, set the security parameters for the data source.

Use the following steps.

v To define data source security:

1. Select a row. Be aware that if you check multiple rows on this page, the security settings that you

select later apply to all of those data sources.

2. Select either Container or Application from the displayed list. Container-managed authorization

indicates that WebSphere Application Server performs signon to the data source.

Application-managed authorization indicates that the enterprise bean code performs signon. Click

Apply.

3. To modify the authorization method of a data source with container-managed authorization, you

have three options: None, Default, or Custom login configuration. The reconfiguring process differs

slightly for each option:

– If you select None:

a. Determine which data source configurations to designate with no authentication method.

b. Select the appropriate table rows.

c. Select None from the list of authentication method options that precede the table.

d. Click Apply.

Chapter 13. Data access resources 757

– If you select Default:

a. Determine which data source configurations to designate with the WebSphere Application

Server DefaultPrincipalMapping login configuration. You must apply this option to each data

source individually if you want to designate different authentication data aliases. See the

″J2EE Connector security″ information center topic for more information on the default

mapping configuration.

b. Select the appropriate table rows.

c. Select Use default method from the list of authentication method options that precede the

table.

d. Select an authentication data entry or alias from the list.

e. Click Apply.

– If you select Custom login configuration:

a. Determine which data source configurations to designate with a custom Java Authentication

and Authorization Service (JAAS) login configuration. See the ″J2EE Connector security″

information center topic for more information on custom JAAS login configurations.

b. Select the appropriate table row.

c. Select Use custom login configuration from the list of authentication method options that

precede the table.

d. Select an application login configuration from the list.

e. Click Apply.

f. To edit the properties of the custom login configuration, click Mapping Properties in the table

cell.

v Repeat all of the previous steps as necessary.

v Click OK to save your work. You now return to the general configuration page for your enterprise

application.

Table column heading descriptions:

Select

Select the check boxes of the rows that you want to edit.

EJB

The name of an enterprise bean in the application.

EJB Module

The name of the module that contains the enterprise bean.

URI

Specifies location of the module relative to the root of the application EAR file.

JNDI name

The Java Naming and Directory Interface (JNDI) name of the data source that is configured for the

enterprise bean.

 Data type String

Resource authorization

The authorization type and the authentication method for securing the data source.

758 Administering applications and their environment

2.x entity bean data sources

Use this page to set the default data source mapping for EJB modules that contain 2.x container-managed

persistence (CMP) beans. Unless you configure individual data sources for your 2.x CMP beans, this

default mapping applies to all beans within the module.

To view this administrative console page, click Applications > Enterprise Applications >

application_name > 2.x entity bean data sources.

Guidelines for using this administrative console page:

v The page displays a table that depicts the EJB modules in your application that contain 2.x CMP beans.

v Each table row corresponds to a module. A row shows the JNDI name of the data source mapping

target of the EJB module only if you bound them together during application assembly. For every data

source that is displayed, you see the corresponding security configuration.

v To set your default data source mappings:

1. Select a row. Be aware that if you check multiple rows on this page, the data source mapping target

that you select in step 2 applies to all of those EJB modules.

2. Click Browse to select a data source from the new page that is displayed, the Available Resources

page. The Available Resources page shows all data sources that are available mapping targets for

your EJB modules.

3. Click Apply. The console displays the 2.x entity bean data sources page again. In the rows that you

previously selected, you now see the JNDI name of the new resource mapping target.

4. Before you click OK to save your new configuration, set the security parameters for the data source.

Use the following steps.

v To define data source security:

1. Select a row. Be aware that if you check multiple rows on this page, the security settings that you

select later apply to all of those data sources.

2. Select either Container or Application from the displayed list. Container-managed authorization

indicates that WebSphere Application Server performs signon to the data source.

Application-managed authorization indicates that the enterprise bean code performs signon. Click

Apply.

3. To modify the authorization method of a data source with container-managed authorization, you

have three options: None, Default, or Custom login configuration. The reconfiguring process differs

slightly for each option:

– If you select None:

a. Determine which data source configurations to designate with no authentication method.

b. Select the appropriate table rows.

c. Select None from the list of authentication method options that precede the table.

d. Click Apply.

– If you select Default:

a. Determine which data source configurations to designate with the WebSphere Application

Server DefaultPrincipalMapping login configuration. You must apply this option to each data

source individually if you want to designate different authentication data aliases. See the

″J2EE Connector security″ information center topic for more information on the default

mapping configuration.

b. Select the appropriate table rows.

c. Select Use default method from the list of authentication method options that precede the

table.

d. Select an authentication data entry or alias from the list.

e. Click Apply.

– If you select Custom login configuration:

Chapter 13. Data access resources 759

a. Determine which data source configurations to designate with a custom Java Authentication

and Authorization Service (JAAS) login configuration. See the ″J2EE Connector security″

information center topic for more information on custom JAAS login configurations.

b. Select the appropriate table row.

c. Select Use custom login configuration from the list of authentication method options that

precede the table.

d. Select an application login configuration from the list.

e. Click Apply.

f. To edit the properties of the custom login configuration, click Mapping Properties in the table

cell.

v Repeat all of the previous steps as necessary.

v Click OK to save your work. You now return to the general configuration page for your enterprise

application.

Table column heading descriptions:

Select

Select the check boxes of the rows you want to edit.

EJB Module

The name of the module that contains the 2.x enterprise beans.

URI

Specifies location of the module relative to the root of the application EAR file.

JNDI name

The Java Naming and Directory Interface (JNDI) name of the default data source for the EJB module.

 Data type String

Resource authorization

The authorization type and the authentication method for securing the data source.

760 Administering applications and their environment

Chapter 14. Messaging resources

Using asynchronous messaging

These topics describe how enterprise applications can use asynchronous messaging as a method of

communication based on the Java Message Service (JMS). With the support provided by WebSphere

Application Server, applications can make use of JMS resources and message-driven beans.

WebSphere Application Server support for JMS is provided by one or more JMS providers, and associated

services and resources, that you configure for use by enterprise applications. You can deploy EJB 2.1

applications that use the JMS 1.1 interfaces and EJB 2.0 applications that use the JMS 1.0.2 interfaces.

You can use the WebSphere administrative console to administer the WebSphere Application Server

support for asynchronous messaging. For example, you can configure messaging providers and their

resources, and can control the activity of messaging services.

For more information about implementing WebSphere enterprise applications that use asynchronous

messaging, see the following topics:

v Learning about messaging with WebSphere

v Installing a messaging provider

v Using the default messaging provider

v “Maintaining Version 5 default messaging resources” on page 800

v “Using the JMS resources provided by WebSphere MQ” on page 833

v “Using JMS resources of a generic provider” on page 916

v “Administering support for message-driven beans” on page 925

v Programming to use asynchronous messaging

v Troubleshooting WebSphere messaging

Learning about messaging with WebSphere Application Server

Use this topic to learn about the use of asynchronous messaging for enterprise applications with

WebSphere Application Server.

WebSphere Application Server supports asynchronous messaging as a method of communication based

on the Java Message Service (JMS) and Java Connector Architecture (JCA) programming interfaces.

These interfaces provide a common way for Java programs (clients and J2EE applications) to create,

send, receive, and read asynchronous requests, as messages. For additional information about messaging

resources, see: Messaging resources.

v JMS providers

v Styles of messaging in applications

v JMS interfaces - explicit polling for messages

v Message-driven beans - automatic message retrieval

v “Configuring JMS resources for the WebSphere MQ messaging provider” on page 906

v Components of message-driven bean support

v Security considerations for asynchronous messaging

JMS providers

This topic provides an overview of the support for JMS providers by WebSphere Application Server.

Overview

WebSphere Application Server supports asynchronous messaging through the use of a JMS provider and

its related messaging system. JMS providers must conform to the JMS specification version 1.1. To use

© Copyright IBM Corp. 2006 761

message-driven beans the JMS provider must support the optional Application Server Facility (ASF)

function defined within that specification, or support an inbound resource adapter as defined in the JCA

specification version 1.5.

WebSphere Application Server supports JMS messaging using the following:

v Service integration default messaging provider

v WebSphere MQ JMS provider

v Version 5 default provider

v Generic JMS provider

WebSphere applications can use messaging resources provided by any of these JMS providers. However

the choice of provider is most often dictated by requirements to use or integrate with an existing

messaging system. For example, you may already have a messaging infrastructure based on WebSphere

MQ. In this case you may either connect directly using the included support for WebSphere MQ as a JMS

provider, or configure a service integration bus with links to a WebSphere MQ network and then access

the bus through the default messaging provider.

Service integration default provider

The service integration technologies of WebSphere Application Server can act as a messaging system

when you have configured a service integration bus that is accessed through the default messaging

provider. This support is installed as part of WebSphere Application Server, administered through the

administrative console, and is fully integrated with the WebSphere Application Server runtime.

WebSphere MQ JMS provider

WebSphere Application Server also includes support for the WebSphere MQ JMS provider. This is

provided for use with supported versions of WebSphere MQ.

Version 5 default provider

For backwards compatibility with earlier releases, WebSphere Application Server also includes support for

the V5 default messaging provider which enables you to configure resources for use with the WebSphere

Application Server version 5 Embedded Messaging system. The V5 default messaging provider can also

be used with a service integration bus.

The V5 default messaging provider is the version 5 embedded WebSphere MQ provider. It is designed for

use with applications that still use version 5 resources to communicate with version 5 nodes in mixed

version cells that use embedded messaging.

Generic JMS provider

WebSphere Application Server also includes support for the generic JMS provider. This is provided for use

with any third party messaging system. If you want to use message-driven beans, the messaging system

must support ASF.

For additional information about connecting to WebSphere MQ, see Ways of interoperating with

WebSphere MQ

For more information about connecting to WebSphere MQ, see Learning about WebSphere MQ server

762 Administering applications and their environment

Styles of messaging in applications

This topic describes the ways that applications can use point-to-point and publish/subscribe messaging.

Applications can use the following styles of asynchronous messaging:

Point-to-Point

Point-to-point applications use queues to pass messages between each other. The applications

are called point-to-point, because a client sends a message to a specific queue and the message

is picked up and processed by a server listening to that queue. It is common for a client to have

all its messages delivered to one queue. Like any generic mailbox, a queue can contain a mixture

of messages of different types.

Publish/subscribe

Publish/subscribe systems provide named collection points for messages, called topics. To send

messages, applications publish messages to topics. To receive messages, applications subscribe

to topics; when a message is published to a topic, it is automatically sent to all the applications

that are subscribers of that topic. By using a topic as an intermediary, message publishers are

kept independent of subscribers.

Both styles of messaging can be used in the same application.

Applications can use asynchronous messaging in the following ways:

One-way

An application sends a message, and does not want a response. This pattern of use is often

referred to as a datagram.

Request / response

An application sends a request to another application and expects to receive a response in return.

One-way and forward

An application sends a request to another application, which sends a message to yet another

application.

These messaging techniques can be combined to produce a variety of asynchronous messaging

scenarios.

For more information about how such messaging scenarios are used by WebSphere enterprise

applications, see the following topics:

v An overview of asynchronous messaging with JMS

v An overview of asynchronous messaging with message-driven beans

For more information about these messaging techniques and the Java Message Service (JMS), see Sun’s

Java Message Service (JMS) specification documentation (http://developer.java.sun.com/developer/
technicalArticles/Networking/messaging/).

For more information about message-driven bean and inbound messaging support, see Sun’s Enterprise

JavaBeans specification (http://java.sun.com/products/ejb/docs.html).

For information about JCA inbound messaging processing, see Sun’s J2EE Connector Architecture

specification (http://java.sun.com/j2ee/connector/download.html).

JMS interfaces - explicit polling for messages

This topic provides an overview of applications that use JMS interfaces to explicitly poll for messages on a

destination then retrieve messages for processing by business logic beans (enterprise beans).

WebSphere Application Server supports asynchronous messaging as a method of communication based

on the Java Message Service (JMS) programming interfaces. JMS provides a common way for Java

programs (clients and J2EE applications) to create, send, receive, and read asynchronous requests, as

JMS messages.

Chapter 14. Messaging resources 763

http://developer.java.sun.com/developer/technicalArticles/Networking/messaging/
http://developer.java.sun.com/developer/technicalArticles/Networking/messaging/
http://developer.java.sun.com/developer/technicalArticles/Networking/messaging/
http://java.sun.com/products/ejb/docs.html
http://java.sun.com/products/ejb/docs.html
http://java.sun.com/j2ee/connector/download.html
http://java.sun.com/j2ee/connector/download.html

The base support for asynchronous messaging using JMS, shown in the following figure, provides the

common set of JMS interfaces and associated semantics that define how a JMS client can access the

facilities of a JMS provider. This enables WebSphere J2EE applications, as JMS clients, to exchange

messages asynchronously with other JMS clients by using JMS destinations (queues or topics).

Applications can use both point-to-point and publish/subscribe messaging (referred to as “messaging

domains” in the JMS specification), while supporting the different semantics of each domain.

WebSphere Application Server supports applications that use JMS 1.1 domain-independent interfaces

(referred to as the “common interfaces” in the JMS specification). With JMS 1.1, the preferred approach for

implementing applications is to use the common interfaces. The JMS 1.1 common interfaces provide a

simpler programming model than domain-specific interfaces. Also, applications can create both queues

and topics in the same session and coordinate their use in the same transaction.

The common interfaces are also parents of domain-specific interfaces. These domain-specific interfaces

(provided for JMS 1.0.2 in WebSphere Application Server version 5) are supported only to provide

inter-operation and backward compatibility with applications that have already been implemented to use

those interfaces.

A WebSphere application can use the JMS interfaces to explicitly poll a JMS destination to retrieve an

incoming message, then pass the message to a business logic bean. The business logic bean uses

standard JMS calls to process the message; for example, to extract data or to send the message on to

another JMS destination.

 WebSphere applications can use standard JMS calls to process messages, including any responses or

outbound messaging. Responses can be handled by an enterprise bean acting as a sender bean, or

handled in the enterprise bean that receives the incoming messages. Optionally, this process can use

two-phase commit within the scope of a transaction. This level of functionality for asynchronous messaging

JMS destination

Business logic
bean

EJB
client

JDBC

JMS destination

Enterprise
application

MessageJMS
client

Figure 3. Asynchronous messaging using JMS. This figure shows an enterprise application polling a JMS destination

to retrieve an incoming message, which it processes with a business logic bean. The business logic bean uses

standard JMS calls to process the message; for example, to extract data or to send the message on to another JMS

destination. For more information, see the text that accompanies this figure.

764 Administering applications and their environment

is called bean-managed messaging, and gives an enterprise bean complete control over the messaging

infrastructure; for example, for connection and session pool management. The application server has no

role in bean-managed messaging.

WebSphere applications can also use message-driven beans, as described in related topics.

For more details about JMS, see Sun’s Java Message Service (JMS) specification documentation.

Message-driven beans - automatic message retrieval

WebSphere Application Server supports the use of message-driven beans as asynchronous message

consumers.

Messaging with message-driven beans is shown in the figure Messaging with message-driven beans.

A client sends messages to the destination (or endpoint) for which the message-driven bean is deployed

as the message listener. When a message arrives at the destination, the EJB container invokes the

message-driven bean automatically without an application having to explicitly poll the destination. The

message-driven bean implements some business logic to process incoming messages on the destination.

Message-driven beans can be configured as listeners on a Java Connector Architecture (JCA) 1.5

resource adapter or against a listener port (as in WebSphere Application Server version 5). With a JCA 1.5

resource adapter, message-driven beans can handle generic message types, not just JMS messages. This

makes message-driven beans suitable for handling generic requests inbound to WebSphere Application

Server from enterprise information systems through the resource adapter. In the JCA 1.5 specification,

such message-driven beans are commonly called message endpoints or simply endpoints.

All message-driven beans must implement the MessageDrivenBean interface. For JMS messaging, a

message-driven bean must also implement the message listener interface, javax.jms.MessageListener.

A message driven bean can be registered with the EJB timer service for time-based event notifications if it

implements the javax.ejb.TimedObject interface in addition to the message listener interface.

You are recommended to develop a message-driven bean to delegate the business processing of

incoming messages to another enterprise bean, to provide clear separation of message handling and

business processing. This also enables the business processing to be invoked by either the arrival of

incoming messages or, for example, from a WebSphere J2EE client.

Messages arriving at a destination being processed by a message-driven bean have no client credentials

associated with them; the messages are anonymous. Security depends on the role specified by the RunAs

Identity for the message-driven bean as an EJB component. For more information about EJB security, see

EJB component security.

For JMS messaging, message-driven beans can use a JMS provider that has a JCA 1.5 resource adapter,

such as the default messaging provider that is part of WebSphere Application Server version 6. With a

JCA 1.5 resource adapter, you deploy EJB 2.1 message-driven beans as JCA 1.5-compliant resources, to

use a J2C activation specification. If the JMS provider does not have a JCA 1.5 resource adapter, such as

the V5 Default Messaging and WebSphere MQ, you must configure JMS message-driven beans against a

listener port (as in WebSphere Application Server version 5).

Chapter 14. Messaging resources 765

http://developer.java.sun.com/developer/technicalArticles/Networking/messaging/

Message-driven beans - JCA components

This topic provides an overview of the administrative components that you configure for message-driven

beans as listeners on a Java Connector Architecture (JCA) 1.5 resource adapter.

Components for a JCA resource adapter

To handle non-JMS requests inbound to WebSphere Application Server from enterprise information

systems, message-driven beans use a Java Connector Architecture (JCA) 1.5 resource adapter written by

a third party for that purpose.

With a Java Connector Architecture (JCA) 1.5 resource adapter, a message-driven bean acts as a listener

on a specific endpoint. In the JCA 1.5 specification, such message-driven beans are commonly called

message endpoints or simply endpoints.

Each application configuring one or more message-driven beans must specify the resource adapter that

sends messages to the endpoint. To specify the resource adapter, you configure the message-driven bean

to use an activation specification that has been configured by the administrator for the resource adapter.

Message
Listener

JMS destination Message-driven
bean

Business logic
bean

EJB
client

JDBC

JMS destination

Enterprise
application

JMS
client

Figure 4. Messaging with message-driven beans. This figure shows an incoming message being passed automatically

to the onMessage() method of a message-driven bean that is deployed as a listener for the destination. The

message-driven bean processes the message, in this case passing the message on to a business logic bean for

business processing. For more information, see the text that accompanies this figure.

766 Administering applications and their environment

The administrator creates a J2C activation specification for the appropriate resource adapter to provide

information to the deployer about the configuration properties of an endpoint instance (message-driven

bean) related to the processing of the inbound messages. Properties specified on an activation

specification can be overridden by appropriately named activation-configuration properties in the

deployment descriptor of an associated EJB 2.1 message-driven bean.

When a deployed message-driven bean is installed, it is associated with an activation specification for an

endpoint. When a message arrives on the endpoint, the message is passed to a new instance of a

message-driven bean for processing.

Administered object definitions and classes are provided by a resource adapter when you install it. Using

this information, the administrator can create and configure J2C administered objects with JNDI names

that are then available for applications to use. Some messaging styles may need applications to use

special administered objects for sending and synchronously receiving messages (through connection

objects using programming interfaces specific to a messaging style). Administered objects can also be

used to perform transformations on an asynchronously-received message in a way that is specific to a

message provider. Administered objects can be accessed by a component by using either a message

destination reference (preferred) or a resource environment reference.

JMS components used with a JCA messaging provider

Message-driven beans that implement the javax.jms.MessageListener interface can be used for JMS

messaging. For JMS messaging, message-driven beans can use a JCA-based messaging provider such

as the SIB JMS Resource Adapter (which is the default messaging provider listed under JMS providers)

that is part of WebSphere Application Server and configure message-driven beans to use a JCA activation

specification.

Figure 5. Message-driven bean components for a JCA resource adapter. This figure shows the main components of

WebSphere support for message-driven beans for use with an external JCA resource adapter.

Chapter 14. Messaging resources 767

With the SIB JMS Resource Adapter, a message-driven bean acts as a listener on a specific JMS

destination.

The administrator creates a JMS activation specification (which, the WebSphere administrative console

shows on the panel Resources → JMS providers → Default messaging → JMS activation specifications)

to provide information to the deployer about the configuration properties of a message-driven bean related

to the processing of the inbound messages. WebSphere provides additional support for JCA activation

specifications that are JMS-based and shows the JMS-specific panel rather than the generic JCA

activation specification panel. For example, a JMS activation specification specifies the name of the

service integration bus to connect to, and includes information about the message acknowledgement

modes, message selectors, destination types, and whether or not durable subscriptions are shared across

connections with members of a server cluster. Properties specified on an activation specification can be

overridden by appropriately named activation-configuration properties in the deployment descriptor of an

associated EJB 2.1 message-driven bean.

The administrator also creates other administered objects that configure the JMS destination and the

associated resources of a service integration bus that are used to implement messaging with that JMS

destination.

For more information about JMS resources and service integration, see:

v Learning about the default messaging provider

J2C activation specification configuration and use

This topic provides an overview about the configuration and use of J2C activation specifications, used in

the deployment of message-driven beans for JCA 1.5 resources.

J2C activation specifications are part of the configuration of inbound messaging support that can be part of

a JCA 1.5 resource adapter. Each JCA 1.5 resource adapter that supports inbound messaging defines one

or more types of message listener in its deployment descriptor (messagelistener in the ra.xml). The

message listener is the interface that the resource adapter uses to communicate inbound messages to the

message endpoint. A message-driven bean (MDB) is a message endpoint and implements one of the

message listener interfaces provided by the resource adapter. By allowing multiple types of message

Figure 6. Message-driven bean components for the default messaging provider. This figure shows the main

components of WebSphere support for message-driven beans for use with the default messaging provider.

768 Administering applications and their environment

listener, a resource adapter can support a variety of different protocols. For example, the interface

javax.jms.MessageListener, is a type of message listener that supports JMS messaging. For each type of

message listener that a resource adapter implements, the resource adapter defines an associated

activation specification (activationspec in the ra.xml). The activation specification is used to set

configuration properties for a particular use of the inbound support for the receiving endpoint.

When an application containing a message-driven bean is deployed, the deployer must select a resource

adapter that supports the same type of message listener that the message-driven bean implements. As

part of the message-driven bean deployment, the deployer needs to specify the properties to set on the

J2C activation specification. Later, during application startup, a J2C activation specification instance is

created, and these properties are set and used to activate the endpoint (that is, to configure the resource

adapter’s inbound support for the specific message-driven bean).

Applications with message-driven beans can also specify all, some, or none of the configuration properties

needed by the ActivationSpec class, to override those defined by the resource adapter-scoped definition.

These properties, specified as activation-config properties in the application’s deployment descriptor, are

configured when the application is assembled. To change any of these properties requires redeploying the

application. These properties are unique to this applications use and are not shared with other

message-driven beans. Any properties defined in the application’s deployment descriptor take precedence

over those defined by the resource adapter-scoped definition. This allows application developers to choose

the best defaults for their applications.

WebSphere activation specification optional binding properties

Binding properties that you can specify for activation specifications to be deployed on WebSphere

Application Server.

J2C authentication alias

If you provide values for user name and password as custom properties on an activation

specification, you may not want to have those values exposed in clear text for security reasons.

WebSphere security allows you to securely define an authentication alias for such cases.

Configuration of activation specifications, both as an administrative object and during application

deployment, enable you to use the authentication alias instead of providing the user name and

password.

 If you set the authentication alias field, then you should not set the user name and password

custom properties fields. Also, authentication alias properties set as part of application deployment

take precedence over properties set on an activation specification administrative object.

 Only the authentication alias is ever written to file in an unencrypted form, even for purposes of

transaction recovery logging. The security service is used to protect the real user name and

password.

 During application startup, when the activation specification is being initialized as part of endpoint

activation, the server uses the authentication alias to retrieve the real user name and password

from security then set it on the activation specification instance.

Destination JNDI name

For resource adapters that support JMS you need to associate javax.jms.Destinations with an

activation specification, such that the resource adapter can service messages from the JMS

destination. In this case, the administrator configures a J2C Administered Object which implements

the javax.jms.Destination interface and binds it into JNDI.

 You can configure a J2C Administered Object to use an ActivationSpec class that implements a

setDestination(javax.jms.Destination) method. In this case, you can specify the destination JNDI

name (that is, the JNDI name for the J2C Administered object that implements the

javax.jms.Destination).

 A destination JNDI name set as part of application deployment take precedence over properties

set on an activation specification administrative object.

Chapter 14. Messaging resources 769

During application startup, when the activation specification is being initialized as part of endpoint

activation, the server uses the destination JNDI name to look up the destination administered

object then set it on the activation specification instance.

Message-driven beans - transaction support

Message-driven beans can handle messages on destinations (or endpoints) within the scope of a

transaction.

Destination transaction handling

If transaction handling is specified for a destination, the message-driven bean starts a global transaction

before it reads any incoming message from that destination. When the message-driven bean processing

has finished, it commits or rolls back the transaction (using JTA transaction control).

All messages retrieved from a specific destination have the same transactional behavior.

If messages are queued to be sent within a global transaction they are sent when the transaction is

committed. If the processing of a message causes the transaction to be rolled back, then the message

that caused the bean instance to be invoked is left on the JMS destination.

Inbound resource adapter transaction handling

A message-driven bean can be set up to either have Bean or Container transaction handling. The

resource adapter owner must tell the message-driven bean developer how to set up the message-driven

bean for transaction handling.

Asynchronous messaging - security considerations

This topic describes considerations that you should be aware of if you want to use security for

asynchronous messaging with WebSphere Application Server.

Security for messaging is enabled only when WebSphere Application Server security is enabled.

The user ID and password do not need to be provided by the application. If authentication is successful,

then the JMS connection is created; if the authentication fails then the connection request is ended.

When WebSphere Application Server security is enabled, JMS connections made to the JMS provider are

authenticated, and access to JMS resources owned by the JMS provider are controlled by access

authorizations. Also, all requests to create new connections to the JMS provider must provide a user ID

and password for authentication. The user ID and password do not need to be provided by the application.

If authentication is successful, then the JMS connection is created; if the authentication fails then the

connection request is ended.

Standard J2C authentication is used for a request to create a new connection to the JMS provider. If your

resource authentication (res-auth) is set to Application, set the alias in the Component-managed

Authentication Alias. If the application that tries to create a connection to the JMS provider specifies a user

ID and password, those values are used to authenticate the creation request. If the application does not

specify a user ID and password, the values defined by the Component-managed Authentication Alias are

used. If the connection factory is not configured with a Component-managed Authentication Alias, then you

receive a runtime JMS exception when an attempt is made to connect to the JMS provider.

Restriction:

1. User IDs longer than 12 characters cannot be used for authentication with the version 5

default messaging provider or WebSphere MQ. For example, the default Windows NT

user ID, Administrator, is not valid for use, because it contains 13 characters.

770 Administering applications and their environment

Therefore, an authentication alias for a WebSphere JMS provider or WebSphere MQ

connection factory must specify a user ID no longer than 12 characters.

2. If you want to use Bindings transport mode for JMS connections to WebSphere MQ, you

set the property Transport type=BINDINGS on the WebSphere MQ Queue Connection

Factory. You must also choose one of the following options:

v To use security credentials, ensure that the user specified is the currently logged on

user for the WebSphere Application Server process. If the user specified is not the

current logged on user for the WebSphere Application Server process, then the

WebSphere MQ JMS Bindings authentication throws the error MQJMS2013 invalid

security authentication supplied for MQQueueManager error.

v Do not specify security credentials. On the WebSphere MQ Connection Factory,

ensure that both the Component-managed Authentication Alias and the

Container-managed Authentication Alias properties are not set.

Authorization to access messages stored by the default messaging provider is controlled by authorization

to access the service integration bus destinations on which the messages are stored. For information

about authorizing permissions for individual bus destinations, see Administering destination permissions.

Messaging: Resources for learning

Use the following links to find relevant supplementary information about messaging. The information

resides on IBM and non-IBM Internet sites, whose sponsors control the technical accuracy of the

information.

v Sun’s Java Message Service (JMS) specification documentation.

Provides details about the Java Message Service (JMS).

v Sun’s J2EE Connector Architecture specification (http://java.sun.com/j2ee/connector/download.html).

Provides details about inbound messaging processing using the J2EE Connector architecture.

v J2EE specification

Provides details about the J2EE specification, including messaging considerations.

v WebSphere MQ Using Java.

Provides information about using JMS with WebSphere MQ as a messaging provider.

v http://www-3.ibm.com/software/ts/mqseries/library/manualsa/manuals/platspecific.html

Provides WebSphere MQ messaging platform-specific books.

v WebSphere MQ Event Broker Web site at http://www-4.ibm.com/software/ts/mqseries/platforms/#eventb

Provides books about WebSphere MQ Event Broker as a publish/subscribe messaging broker.

v WebSphere MQ Integrator Web site at http://www-4.ibm.com/software/ts/mqseries/platforms/#integrator

Provides books about WebSphere MQ Integrator as a publish/subscribe messaging broker.

v IBM Publications Center

This Web site provides a wide range of IBM publications, including publications about messaging

products.

Installing and configuring a JMS provider

This topic describes the different ways that you can use JMS providers with WebSphere Application

Server. A JMS provider enables use of the Java Message Service (JMS) and other message resources in

WebSphere Application Server.

IBM WebSphere Application Server supports asynchronous messaging through the use of a JMS provider

and its related messaging system. JMS providers must conform to the JMS specification version 1.1. To

use message-driven beans the JMS provider must support the optional Application Server Facility (ASF)

function defined within that specification, or support an inbound resource adapter as defined in the JCA

specification version 1.5.

Chapter 14. Messaging resources 771

http://developer.java.sun.com/developer/technicalArticles/Networking/messaging/
http://java.sun.com/j2ee/connector/download.html
http://java.sun.com/j2ee/j2ee-1_3-fr-spec.pdf
http://publibfp.boulder.ibm.com/epubs/html/csqzaw11/csqzaw11tfrm.htm
http://www-3.ibm.com/software/ts/mqseries/library/manualsa/manuals/platspecific.html
http://www-4.ibm.com/software/ts/mqseries/platforms/#eventb
http://www-4.ibm.com/software/ts/mqseries/platforms/#integrator
http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi

The service integration technologies of IBM WebSphere Application Server can act as a messaging

system when you have configured a service integration bus that is accessed through the default

messaging provider. This support is installed as part of WebSphere Application Server, administered

through the administrative console, and is fully integrated with the WebSphere Application Server runtime.

WebSphere Application Server also includes support for the following JMS providers:

WebSphere MQ

Provided for use with supported versions of WebSphere MQ.

Generic

Provided for use with any 3rd party messaging system. If you want to use message-driven beans,

the messaging system must support ASF.

For more information about the support for JMS providers, see “JMS providers” on page 761.

For more information about installing and using JMS providers, see the following topics:

v Installing the default messaging provider

v Using WebSphere MQ as a JMS provider. Installing WebSphere MQ as a JMS provider.

Note:

– You can install WebSphere MQ in addition to the default messaging provider. The preferred

solution for publish/subscribe messaging with WebSphere MQ as a JMS provider is a full

message broker such as WebSphere MQ Event Broker.

– If you install WebSphere MQ as a JMS provider, you can use the WebSphere administrative

console to administer the JMS resources provided by WebSphere MQ, such as queue

connection factories. However, you cannot administer MQ security, which is administered

through WebSphere MQ.

For more information about scenarios and considerations for using WebSphere MQ with IBM

WebSphere Application Server, see the White Papers and Red books provided by WebSphere MQ; for

example, through the WebSphere MQ library Web page at http://www-3.ibm.com/software/ts/mqseries/
library/

v Installing another JMS provider, which must conform to the JMS specification and, to use

message-driven beans, support the ASF function. If you want to use a JMS provider other than the

default messaging provider or WebSphere MQ, you should complete the following steps:

1. Installing and configuring the JMS provider and its resources by using the tools and information

provided with the product.

2. Defining the JMS provider to WebSphere Application Server as a generic messaging provider.

Note: You can use the WebSphere administrative console to administer JMS connection factories and

destinations (within WebSphere Application Server) for a generic provider, but cannot administer

the JMS provider or its resources outside of WebSphere Application Server.

Installing the default messaging provider

Use this task to install the default messaging provider of IBM WebSphere Application Server.

The default messaging provider is installed as a fully-integrated component of WebSphere Application

Server, and needs no separate installation steps. However, ensure that there is enough space in the file

systems where you want to store messaging data.

You can use the WebSphere administrative console to for the default messaging provider.

For more information about the default messaging provider, see Using the default messaging provider .

772 Administering applications and their environment

http://www-3.ibm.com/software/ts/mqseries/library/
http://www-3.ibm.com/software/ts/mqseries/library/

JMS providers collection

A JMS provider enables messaging based on the Java Message Service (JMS). It provides J2EE

connection factories to create connections for JMS destinations.

In the administrative console page, to view this page click Resources → JMS → JMS providers

To browse or change the properties of a listed item, select its name in the list.

To act on one or more of the listed items, select the check boxes next to the names of the items that you

want to act on, then use the buttons provided.

To change what entries are listed, or to change what information is shown for entries in the list, use the

Filter settings.

This page lists the JMS providers that are available to WebSphere applications. For each JMS provider in

the list, the entry indicates the scope level at which JMS resource definitions are visible to applications.

You can create the same type of JMS provider at different Scope settings, to offer JMS resources at

different levels of visibility to applications.

If you want to manage existing JMS resource definitions, or create a new JMS resource definition, you can

select the name of one of the JMS providers in the list.

If you want to define your own JMS provider, other than the default messaging provider or WebSphere

MQ, select the Scope setting at which JMS resource definitions are to be visible for that provider, then

click New.

General properties

Name The name of the JMS provider.

Description

A description of the JMS provider.

Scope The level to which this resource definition is visible; for example, the cell, node, cluster, or server

level.

Buttons

 New Click this button to create a new JMS resource of this

type.

Delete Click this button to delete the selected items.

Select JMS resource provider

Select the provider with which to create the {0}. The following providers support the selected resource type

and are available at the selected scope. The variable, {0}, indicates the type of JMS resource that you are

creating.

You select the scope setting on an earlier page. The choice of JMS providers depends on the scope that

you selected. You might see a choice like the following list:

v Default messaging provider.

Select this option if you want to the type of JMS resource to be provided by a service integration bus,

as part of WebSphere Application Server.

v My JMSprovider

Select this option if you want the type of JMS resource to be provided by your own JMS provider; not

the default messaging provider or WebSphere MQ. You assign the name, in this example “My

Chapter 14. Messaging resources 773

JMSprovider”, when you define the JMS provider to WebSphere Application Server. You must have

installed and configured your own JMS provider before applications can use the JMS resources.

v WebSphere MQ messaging provider

Select this option if you want the type of JMS resource to be provided by WebSphere MQ. You must

have installed and configured WebSphere MQ before applications can use the JMS resources.

Activation specification collection

A JMS activation specification is associated with one or more message-driven beans and provides

configuration necessary for them to receive messages.

In the administrative console page, to view this page click Resources → JMS → Activation specification.

To browse or change the properties of a listed item, select its name in the list.

To act on one or more of the listed items, select the check boxes next to the names of the items that you

want to act on, then use the buttons provided.

To change what entries are listed, or to change what information is shown for entries in the list, use the

Filter settings.

This page lists the JMS activation specifications that are available to WebSphere applications at the scope

indicated by the Scope field.

Use a JMS activation specification if you want to use a message-driven bean as a Java Connector

Architecture (JCA) 1.5 resource, to act as a listener on the default messaging provider.

General properties

Name The name of the activation specification.

Provider

This JMS resource is for the Default messaging provider, provided by service integration

technologies as part of WebSphere Application Server.

Description

A description of the activation specification.

Scope The level to which this resource definition is visible; for example, the cell, node, cluster, or server

level.

Buttons

 New Click this button to create a new JMS resource of this

type.

Delete Click this button to delete the selected items.

Connection factory collection

Use this page to create connections to the associated JMS provider for JMS destinations.

In the administrative console page, to view this page click Resources → JMS → Connection factory.

To browse or change the properties of a listed item, select its name in the list.

To act on one or more of the listed items, select the check boxes next to the names of the items that you

want to act on, then use the buttons provided.

774 Administering applications and their environment

To change what entries are listed, or to change what information is shown for entries in the list, use the

Filter settings.

This page lists the JMS connection factories that are available to WebSphere applications at the scope

indicated by the Scope field.

A JMS connection factory is used to create connections to JMS destinations. When an application needs a

JMS connection, an instance can be created by the factory of the JMS provider named in the Provider

column of the list.

This type of connection factory is for applications that use the JMS 1.1 domain-independent interfaces

(referred to as the “common interfaces” in the JMS specification).

This type of JMS connection factory can also be used by the domain-specific (queue and topic) interfaces,

as used in JMS 1.0.2, so applications can still use those interfaces without the need for you to create a

domain-specific connection factory, such as a queue connection factory.

General properties

Name The name of the connection factory.

Provider

Specifies a JMS provider, which enables asynchronous messaging based on the Java Message

Service (JMS). It provides J2EE connection factories to create connections for specific JMS queue

or topic destinations. JMS provider administrative objects are used to manage JMS resources for

the associated JMS provider.

Description

A description of the connection factory.

Scope The level to which this resource definition is visible; for example, the cell, node, cluster, or server

level.

Buttons

 New Click this button to create a new JMS resource of this

type.

Delete Click this button to delete the selected items.

Queue connection factory collection

A queue connection factory is used to create connections to the associated JMS provider of the JMS

queue destinations, for point-to-point messaging.

In the administrative console page, to view this page click Resources → JMS → Queue connection

factory.

To browse or change the properties of a listed item, select its name in the list.

To act on one or more of the listed items, select the check boxes next to the names of the items that you

want to act on, then use the buttons provided.

To change what entries are listed, or to change what information is shown for entries in the list, use the

Filter settings.

This page lists the JMS queue connection factories that are available to WebSphere applications at the

scope indicated by the Scope field.

Chapter 14. Messaging resources 775

A JMS connection factory is used to create connections to JMS destinations. When an application needs a

JMS connection, an instance can be created by the factory for the JMS provider that is named in the

Provider column of the list.

This type of connection factory is for applications that use the JMS 1.0.2 queue-specific interfaces.

General properties

Name The name of the queue connection factory.

Provider

The type of JMS provider that provides the JMS resource. For example, for Default messaging

provider resources are provided by service integration technologies as part of WebSphere

Application Server; for WebSphere MQ messaging provider resources are provided by a separate

WebSphere MQ installation.

Description

A description of the queue connection factory.

Scope The level to which this resource definition is visible; for example, the cell, node, cluster, or server

level.

Buttons

 New Click this button to create a new JMS resource of this

type.

Delete Click this button to delete the selected items.

Queue collection

A JMS queue is used as a destination for point-to-point messaging.

In the administrative console page, to view this page click Resources → JMS → Queue.

To browse or change the properties of a listed item, select its name in the list.

To act on one or more of the listed items, select the check boxes next to the names of the items that you

want to act on, then use the buttons provided.

To change what entries are listed, or to change what information is shown for entries in the list, use the

Filter settings.

This page lists the JMS queue destinations that are available to WebSphere applications at the scope

indicated by the Scope field.

Use topic destination administrative objects to manage JMS queues for the JMS provider that is named in

the Provider column of the list. Connections to the queue are created by a connection factory (or queue

connection factory) for that JMS provider.

General properties

Name The name of the queue.

Provider

Specifies a JMS provider, which enables asynchronous messaging based on the Java Message

Service (JMS). It provides J2EE connection factories to create connections for specific JMS queue

or topic destinations. JMS provider administrative objects are used to manage JMS resources for

the associated JMS provider.

776 Administering applications and their environment

Description

A description of the queue.

Scope The level to which this resource definition is visible; for example, the cell, node, cluster, or server

level.

Buttons

 New Click this button to create a new JMS resource of this

type.

Delete Click this button to delete the selected items.

Topic connection factory collection

A topic connection factory is used to create connections to the associated JMS provider of JMS topic

destinations, for publish and subscribe messaging.

In the administrative console page, to view this page click Resources → JMS → Topic connection factory.

To browse or change the properties of a listed item, select its name in the list.

To act on one or more of the listed items, select the check boxes next to the names of the items that you

want to act on, then use the buttons provided.

To change what entries are listed, or to change what information is shown for entries in the list, use the

Filter settings.

This page lists the JMS topic connection factories that are available to WebSphere applications at the

scope indicated by the Scope field.

A JMS connection factory is used to create connections to JMS destinations. When an application needs a

JMS connection, an instance can be created by the factory for the JMS provider that is named in the

Provider column of the list.

This type of connection factory is for applications that use the JMS 1.0.2 topic-specific interfaces.

General properties

Name The name of the topic connection factory.

Provider

The type of JMS provider that provides the JMS resource. For example, for Default messaging

provider resources are provided by service integration technologies as part of WebSphere

Application Server; for WebSphere MQ messaging provider resources are provided by a separate

WebSphere MQ installation.

Description

A description of the topic connection factory.

Scope The level to which this resource definition is visible; for example, the cell, node, cluster, or server

level.

Buttons

 New Click this button to create a new JMS resource of this

type.

Delete Click this button to delete the selected items.

Chapter 14. Messaging resources 777

Topic collection

A JMS topic is used as a destination for publish/subscribe messaging.

In the administrative console page, to view this page click Resources → JMS → Topic.

To browse or change the properties of a listed item, select its name in the list.

To act on one or more of the listed items, select the check boxes next to the names of the items that you

want to act on, then use the buttons provided.

To change what entries are listed, or to change what information is shown for entries in the list, use the

Filter settings.

This page lists the JMS topic destinations that are available to WebSphere applications at the scope

indicated by the Scope field.

Use topic destination administrative objects to manage JMS topics for the JMS provider that is named in

the Provider column of the list. Connections to the topic are created by a connection factory (or topic

connection factory) for that JMS provider.

General properties

Name The name of the topic.

Provider

The type of JMS provider that provides the JMS resource. For example, for Default messaging

provider resources are provided by service integration technologies as part of WebSphere

Application Server; for WebSphere MQ messaging provider resources are provided by a separate

WebSphere MQ installation.

Description

A description of the topic.

Scope The level to which this resource definition is visible; for example, the cell, node, cluster, or server

level.

Buttons

 New Click this button to create a new JMS resource of this

type.

Delete Click this button to delete the selected items.

Configuring messaging with scripting

Use these topics to learn about configuring messaging with scripting and the wsadmin tool.

This topic contains the following tasks:

Configuring the message listener service using scripting

Use scripting to configure the message listener service.

Before starting this task, the wsadmin tool must be running. See the Starting the wsadmin scripting client

article for more information.

778 Administering applications and their environment

Perform the following steps to configure the message listener service for an application server:

1. Identify the application server and assign it to the server variable:

v Using Jacl:

set server [$AdminConfig getid /Cell:mycell/Node:mynode/Server:server1/]

v Using Jython:

server = AdminConfig.getid(’/Cell:mycell/Node:mynode/Server:server1/’)

print server

Example output:

server1(cells/mycell/nodes/mynode/servers/server1|server.xml#Server_1)

2. Identify the message listener service belonging to the server and assign it to the mls variable:

v Using Jacl:

set mls [$AdminConfig list MessageListenerService $server]

v Using Jython:

mls = AdminConfig.list(’MessageListenerService’, server)

print mls

Example output:

(cells/mycell/nodes/mynode/servers/server1|server.xml#MessageListenerService_1)

3. Modify various attributes with one of the following examples:

v This example command changes the thread pool attributes:

– Using Jacl:

$AdminConfig modify $mls {{threadPool {{inactivityTimeout 4000}

{isGrowable true} {maximumSize 100} {minimumSize 25}}}}

– Using Jython:

AdminConfig.modify(mls, [[’threadPool’, [[’inactivityTimeout’, 4000],

[’isGrowable’, ’true’], [’maximumSize’, 100], [’minimumSize’, 25]]]])

v This example modifies the property of the first listener port:

– Using Jacl:

set lports [$AdminConfig showAttribute $mls listenerPorts]

set lport [lindex $lports 0]

$AdminConfig modify $lport {{maxRetries 2}}

– Using Jython:

lports = AdminConfig.showAttribute(mls, ’listenerPorts’)

cleanLports = lports[1:len(lports)-1]

lport = cleanLports.split(" ")[0]

AdminConfig.modify(lport, [[’maxRetries’, 2]])

v This example adds a listener port:

– Using Jacl:

set new [$AdminConfig create ListenerPort $mls {{name my}

{destinationJNDIName di} {connectionFactoryJNDIName jndi/fs}}]

$AdminConfig create StateManageable $new {{initialState START}}

– Using Jython:

new = AdminConfig.create(’ListenerPort’, mls, [[’name’, ’my’],

[’destinationJNDIName’, ’di’], [’connectionFactoryJNDIName’, ’jndi/fsi’]])

print new

print AdminConfig.create(’StateManageable’, new, [[’initialState’, ’START’]])

Example output:

my(cells/mycell/nodes/mynode/servers/server1:server.xml#ListenerPort_1079471940692)

(cells/mycell/nodes/mynode/servers/server1:server.xml#StateManageable_107947182623)

4. Save the configuration changes. See the Saving configuration changes with the wsadmin tool article

for more information.

Chapter 14. Messaging resources 779

5. In a network deployment environment only, synchronize the node. See the Synchronizing nodes with

the wsadmin tool article for more information.

Configuring new JMS providers using scripting

You can use the wsadmin tool and scripting to configure a new JMS provider.

Before starting this task, the wsadmin tool must be running. See the Starting the wsadmin scripting client

article for more information.

Perform the following steps to configure a new JMS provider:

1. Identify the parent ID:

v Using Jacl:

set node [$AdminConfig getid /Cell:mycell/Node:mynode/]

v Using Jython:

node = AdminConfig.getid(’/Cell:mycell/Node:mynode/’)

print node

Example output:

mynode(cells/mycell/nodes/mynode|node.xml#Node_1)

2. Get required attributes:

v Using Jacl:

$AdminConfig required JMSProvider

v Using Jython:

print AdminConfig.required(’JMSProvider’)

Example output:

Attribute Type

name String

externalInitialContextFactory String

externalProviderURL String

3. Set up required attributes:

v Using Jacl:

set name [list name JMSP1]

set extICF [list externalInitialContextFactory

"Put the external initial context factory here"]

set extPURL [list externalProviderURL "Put the external provider URL here"]

set jmspAttrs [list $name $extICF $extPURL]

v Using Jython:

name = [’name’, ’JMSP1’]

extICF = [’externalInitialContextFactory’,

"Put the external initial context factory here"]

extPURL = [’externalProviderURL’, "Put the external provider URL here"]

jmspAttrs = [name, extICF, extPURL]

print jmspAttrs

Example output:

{name JMSP1} {externalInitialContextFactory {Put the external

initial context factory here }} {externalProviderURL

{Put the external provider URL here}}

4. Create the JMS provider:

v Using Jacl:

set newjmsp [$AdminConfig create JMSProvider $node $jmspAttrs]

v Using Jython:

newjmsp = AdminConfig.create(’JMSProvider’, node, jmspAttrs)

print newjmsp

780 Administering applications and their environment

Example output:

JMSP1(cells/mycell/nodes/mynode|resources.xml#JMSProvider_1)

5. Save the configuration changes. See the Saving configuration changes with the wsadmin tool article

for more information.

6. In a network deployment environment only, synchronize the node. See the Synchronizing nodes with

the wsadmin tool article for more information.

Configuring new JMS destinations using scripting

You can use scripting and the wsadmin tool to configure a new JMS destination.

Before starting this task, the wsadmin tool must be running. See the Starting the wsadmin scripting client

article for more information.

Perform the following steps to configure a new JMS destination:

1. Identify the parent ID:

v Using Jacl:

set newjmsp [$AdminConfig getid /Cell:mycell/Node:myNode/JMSProvider:JMSP1]

v Using Jython:

newjmsp = AdminConfig.getid(’/Cell:mycell/Node:myNode/JMSProvider:JMSP1’)

print newjmsp

Example output:

JMSP1(cells/mycell/nodes/mynode|resources.xml#JMSProvider_1)

2. Get required attributes:

v Using Jacl:

$AdminConfig required GenericJMSDestination

v Using Jython:

print AdminConfig.required(’GenericJMSDestination’)

Example output:

Attribute Type

name String

jndiName String

externalJNDIName String

3. Set up required attributes:

v Using Jacl:

set name [list name JMSD1]

set jndi [list jndiName jms/JMSDestination1]

set extJndi [list externalJNDIName jms/extJMSD1]

set jmsdAttrs [list $name $jndi $extJndi]

v Using Jython:

name = [’name’, ’JMSD1’]

jndi = [’jndiName’, ’jms/JMSDestination1’]

extJndi = [’externalJNDIName’, ’jms/extJMSD1’]

jmsdAttrs = [name, jndi, extJndi]

print jmsdAttrs

Example output:

{name JMSD1} {jndiName jms/JMSDestination1} {externalJNDIName jms/extJMSD1}

4. Create generic JMS destination:

v Using Jacl:

$AdminConfig create GenericJMSDestination $newjmsp $jmsdAttrs

v Using Jython:

print AdminConfig.create(’GenericJMSDestination’, newjmsp, jmsdAttrs)

Chapter 14. Messaging resources 781

Example output:

JMSD1(cells/mycell/nodes/mynode|resources.xml#GenericJMSDestination_1)

5. Save the configuration changes. See the Saving configuration changes with the wsadmin tool article

for more information.

6. In a network deployment environment only, synchronize the node. See the Synchronizing nodes with

the wsadmin tool article for more information.

Configuring new JMS connections using scripting

Use scripting and the wsadmin tool to configure a new JMS connection.

Before starting this task, the wsadmin tool must be running. See the Starting the wsadmin scripting client

article for more information.

Perform the following steps to configure a new JMS connection:

1. Identify the parent ID:

v Using Jacl:

set newjmsp [$AdminConfig getid /Cell:mycell/Node:myNode/JMSProvider:JMSP1]

v Using Jython:

newjmsp = AdminConfig.getid(’/Cell:mycell/Node:myNode/JMSProvider:JMSP1’)

print newjmsp

Example output:

JMSP1(cells/mycell/nodes/mynode|resources.xml#JMSProvider_1)

2. Get required attributes:

v Using Jacl:

$AdminConfig required GenericJMSConnectionFactory

v Using Jython:

print AdminConfig.required(’GenericJMSConnectionFactory’)

Example output:

Attribute Type

name String

jndiName String

externalJNDIName String

3. Set up required attributes:

v Using Jacl:

set name [list name JMSCF1]

set jndi [list jndiName jms/JMSConnFact1]

set extJndi [list externalJNDIName jms/extJMSCF1]

set jmscfAttrs [list $name $jndi $extJndi]

Example output:

{name JMSCF1} {jndiName jms/JMSConnFact1} {externalJNDIName jms/extJMSCF1}

v Using Jython:

name = [’name’, ’JMSCF1’]

jndi = [’jndiName’, ’jms/JMSConnFact1’]

extJndi = [’externalJNDIName’, ’jms/extJMSCF1’]

jmscfAttrs = [name, jndi, extJndi]

print jmscfAttrs

Example output:

[[name, JMSCF1], [jndiName, jms/JMSConnFact1], [externalJNDIName, jms/extJMSCF1]]

4. Create generic JMS connection factory:

v Using Jacl:

$AdminConfig create GenericJMSConnectionFactory $newjmsp $jmscfAttrs

782 Administering applications and their environment

v Using Jython:

print AdminConfig.create(’GenericJMSConnectionFactory’, newjmsp, jmscfAttrs)

Example output:

JMSCF1(cells/mycell/nodes/mynode|resources.xml#GenericJMSConnectionFactory_1)

5. Save the configuration changes. See the Saving configuration changes with the wsadmin tool article

for more information.

6. In a network deployment environment only, synchronize the node. See the Synchronizing nodes with

the wsadmin tool article for more information.

Configuring new WebSphere queue connection factories using

scripting

You can use scripting and the wsadmin tool to configure new queue connection factories in WebSphere

Application Server.

Before starting this task, the wsadmin tool must be running. See the Starting the wsadmin scripting client

article for more information.

Perform the following steps to configure a new WebSphere queue connection factory:

1. Identify the parent ID:

v Using Jacl:

set newjmsp [$AdminConfig getid /Cell:mycell/Node:mynode/JMSProvider:JMSP1/]

v Using Jython:

newjmsp = AdminConfig.getid(’/Cell:mycell/Node:myNode/JMSProvider:JMSP1/’)

print newjmsp

Example output:

JMSP1(cells/mycell/nodes/mynode|resources.xml#JMSProvider_1)

2. Get required attributes:

v Using Jacl:

$AdminConfig required WASQueueConnectionFactory

v Using Jython:

print AdminConfig.required(’WASQueueConnectionFactory’)

Example output:

Attribute Type

name String

jndiName String

3. Set up required attributes:

v Using Jacl:

set name [list name WASQCF]

set jndi [list jndiName jms/WASQCF]

set mqcfAttrs [list $name $jndi]

Example output:

{name WASQCF} {jndiName jms/WASQCF}

v Using Jython:

name = [’name’, ’WASQCF’]

jndi = [’jndiName’, ’jms/WASQCF’]

mqcfAttrs = [name, jndi]

print mqcfAttrs

Example output:

[[name, WASQCF], [jndiName, jms/WASQCF]]

4. Create was queue connection factories:

Chapter 14. Messaging resources 783

v Using Jacl:

$AdminConfig create WASQueueConnectionFactory $newjmsp $mqcfAttrs

v Using Jython:

print AdminConfig.create(’WASQueueConnectionFactory’, newjmsp, mqcfAttrs)

Example output:

WASQCF(cells/mycell/nodes/mynode|resources.xml#WASQueueConnectionFactory_1)

5. Save the configuration changes. See the Saving configuration changes with the wsadmin tool article

for more information.

6. In a network deployment environment only, synchronize the node. See the Synchronizing nodes with

the wsadmin tool article for more information.

Configuring new WebSphere topic connection factories using scripting

Use scripting and the wsadmin tool to configure new WebSphere topic connection factories.

Before starting this task, the wsadmin tool must be running. See the Starting the wsadmin scripting client

article for more information.

Perform the following steps to configure a new WebSphere topic connection factory:

1. Identify the parent ID:

v Using Jacl:

set newjmsp [$AdminConfig getid /Cell:mycell/Node:mynode/JMSProvider:JMSP1/]

v Using Jython:

newjmsp = AdminConfig.getid(’/Cell:mycell/Node:myNode/JMSProvider:JMSP1/’)

print newjmsp

Example output:

JMSP1(cells/mycell/nodes/mynode|resources.xml#JMSProvider_1)

2. Get required attributes:

v Using Jacl:

$AdminConfig required WASTopicConnectionFactory

v Using Jython:

print AdminConfig.required(’WASTopicConnectionFactory’)

Example output:

Attribute Type

name String

jndiName String

port ENUM(DIRECT, QUEUED)

3. Set up required attributes:

v Using Jacl:

set name [list name WASTCF]

set jndi [list jndiName jms/WASTCF]

set port [list port QUEUED]

set mtcfAttrs [list $name $jndi $port]

Example output:

{name WASTCF} {jndiName jms/WASTCF} {port QUEUED}

v Using Jython:

name = [’name’, ’WASTCF’]

jndi = [’jndiName’, ’jms/WASTCF’]

port = [’port’, ’QUEUED’]

mtcfAttrs = [name, jndi, port]

print mtcfAttrs

Example output:

784 Administering applications and their environment

[[name, WASTCF], [jndiName, jms/WASTCF], [port, QUEUED]]

4. Create was topic connection factories:

v Using Jacl:

$AdminConfig create WASTopicConnectionFactory $newjmsp $mtcfAttrs

v Using Jython:

print AdminConfig.create(’WASTopicConnectionFactory’, newjmsp, mtcfAttrs)

Example output:

WASTCF(cells/mycell/nodes/mynode|resources.xml#WASTopicConnectionFactory_1)

5. Save the configuration changes. See the Saving configuration changes with the wsadmin tool article

for more information.

6. In a network deployment environment only, synchronize the node. See the Synchronizing nodes with

the wsadmin tool article for more information.

Configuring new WebSphere queues using scripting

You can use scripting to configure a new WebSphere queue.

Before starting this task, the wsadmin tool must be running. See the Starting the wsadmin scripting client

article for more information.

Perform the following steps to configure a new WebSphere queue:

1. Identify the parent ID:

v Using Jacl:

set newjmsp [$AdminConfig getid /Cell:mycell/Node:mynode/JMSProvider:JMSP1/]

v Using Jython:

newjmsp = AdminConfig.getid(’/Cell:mycell/Node:myNode/JMSProvider:JMSP1/’)

print newjmsp

Example output:

JMSP1(cells/mycell/nodes/mynode|resources.xml#JMSProvider_1)

2. Get required attributes:

v Using Jacl:

$AdminConfig required WASQueue

v Using Jython:

print AdminConfig.required(’WASQueue’)

Example output:

Attribute Type

name String

jndiName String

3. Set up required attributes:

v Using Jacl:

set name [list name WASQ1]

set jndi [list jndiName jms/WASQ1]

set wqAttrs [list $name $jndi]

Example output:

{name WASQ1} {jndiName jms/WASQ1}

v Using Jython:

name = [’name’, ’WASQ1’]

jndi = [’jndiName’, ’jms/WASQ1’]

wqAttrs = [name, jndi]

print wqAttrs

Example output:

Chapter 14. Messaging resources 785

[[name, WASQ1], [jndiName, jms/WASQ1]]

4. Create was queue:

v Using Jacl:

$AdminConfig create WASQueue $newjmsp $wqAttrs

v Using Jython:

print AdminConfig.create(’WASQueue’, newjmsp, wqAttrs)

Example output:

WASQ1(cells/mycell/nodes/mynode|resources.xml#WASQueue_1)

5. Save the configuration changes. See the Saving configuration changes with the wsadmin tool article

for more information.

6. In a network deployment environment only, synchronize the node. See the Synchronizing nodes with

the wsadmin tool article for more information.

Configuring new WebSphere topics using scripting

You can configure new WebSphere topics using the wsadmin tool and scripting.

Before starting this task, the wsadmin tool must be running. See the Starting the wsadmin scripting client

article for more information.

Perform the following steps to configure a new WebSphere topic:

1. Identify the parent ID:

v Using Jacl:

set newjmsp [$AdminConfig getid /Cell:mycell/Node:mynode/JMSProvider:JMSP1/]

v Using Jython:

newjmsp = AdminConfig.getid(’/Cell:mycell/Node:myNode/JMSProvider:JMSP1/’)

print newjmsp

Example output:

JMSP1(cells/mycell/nodes/mynode|resources.xml#JMSProvider_1)

2. Get required attributes:

v Using Jacl:

$AdminConfig required WASTopic

v Using Jython:

print AdminConfig.required(’WASTopic’)

Example output:

Attribute Type

name String

jndiName String

topic String

3. Set up required attributes:

v Using Jacl:

set name [list name WAST1]

set jndi [list jndiName jms/WAST1]

set topic [list topic "Put your topic here"]

set wtAttrs [list $name $jndi $topic]

Example output:

{name WAST1} {jndiName jms/WAST1} {topic {Put your topic here}}

v Using Jython:

786 Administering applications and their environment

name = [’name’, ’WAST1’]

jndi = [’jndiName’, ’jms/WAST1’]

topic = [’topic’, "Put your topic here"]

wtAttrs = [name, jndi, topic]

print wtAttrs

Example output:

[[name, WAST1], [jndiName, jms/WAST1], [topic, "Put your topic here"]]

4. Create was topic:

v Using Jacl:

$AdminConfig create WASTopic $newjmsp $wtAttrs

v Using Jython:

print AdminConfig.create(’WASTopic’, newjmsp, wtAttrs)

Example output:

WAST1(cells/mycell/nodes/mynode|resources.xml#WASTopic_1)

5. Save the configuration changes. See the Saving configuration changes with the wsadmin tool article

for more information.

6. In a network deployment environment only, synchronize the node. See the Synchronizing nodes with

the wsadmin tool article for more information.

Configuring new MQ connection factories using scripting

You can use scripting to configure a new MQ connection factory.

Before starting this task, the wsadmin tool must be running. See the Starting the wsadmin scripting client

article for more information.

Perform the following steps to configure a new MQ connection factory:

1. Identify the parent ID:

v Using Jacl:

set newjmsp [$AdminConfig getid /Cell:mycell/Node:mynode/JMSProvider:WebSphere MQ JMS Provider/]

v Using Jython:

newjmsp = AdminConfig.getid(’/Cell:mycell/Node:myNode/JMSProvider:WebSphere MQ JMS Provider’)

print newjmsp

Example output:

WebSphere MQ JMS Provider(cells/mycell/nodes/mynode|resources.xml#builtin_mqprovider)

2. Get required attributes:

v Using Jacl:

$AdminConfig required MQConnectionFactory

v Using Jython:

print AdminConfig.required(’MQConnectionFactory’)

Example output:

ttribute Type

name String

jndiName String

connectionPool ConnectionPool

3. Set up required attributes:

v Using Jacl:

set name [list name MQCF]

set jndi [list jndiName jms/MQCF]

set mqcfAttrs [list $name $jndi]

Example output:

{name MQCF} {jndiName jms/MQCF}

Chapter 14. Messaging resources 787

v Using Jython:

name = [’name’, ’MQCF’]

jndi = [’jndiName’, ’jms/MQCF’]

mqcfAttrs = [name, jndi]

print mqcfAttrs

Example output:

[[name, MQCF], [jndiName, jms/MQCF]]

4. Set up a template:

v Using Jacl:

set template [lindex [$AdminConfig listTemplates MQConnectionFactory] 0]

v Using Jython:

import java

lineseparator = java.lang.System.getProperty(’line.separator’)

template = AdminConfig.listTemplates(’MQConnectionFactory’).split(lineseparator)[0]

print template

Example output:

Example non-XA WMQ ConnectionFactory(templates/

system:JMS-resource-provider-templates.xml

#MQConnectionFactory_3)

5. Create MQ connection factory:

v Using Jacl:

$AdminConfig createUsingTemplate MQConnectionFactory

$newjmsp $mqcfAttrs $template

v Using Jython:

print AdminConfig.createUsingTemplate(’MQConnectionFactory’,

newjmsp, mqcfAttrs, template)

Example output:

MQCF(cells/mycell/nodes/mynode:resources.xml#MQConnectionFactory_1)

6. Save the configuration changes. See the Saving configuration changes with the wsadmin tool article

for more information.

7. In a network deployment environment only, synchronize the node. See the Synchronizing nodes with

the wsadmin tool article for more information.

Configuring new MQ queue connection factories using scripting

You can use scripting to configure a new MQ queue connection factory.

Before starting this task, the wsadmin tool must be running. See the Starting the wsadmin scripting client

article for more information.

Perform the following steps to configure a new MQ queue connection factory:

1. Identify the parent ID:

v Using Jacl:

set newjmsp [$AdminConfig getid /Cell:mycell/Node:mynode/JMSProvider:JMSP1/]

v Using Jython:

newjmsp = AdminConfig.getid(’/Cell:mycell/Node:myNode/JMSProvider:JMSP1’)

print newjmsp

Example output:

JMSP1(cells/mycell/nodes/mynode|resources.xml#JMSProvider_1)

2. Get required attributes:

v Using Jacl:

$AdminConfig required MQQueueConnectionFactory

788 Administering applications and their environment

v Using Jython:

print AdminConfig.required(’MQQueueConnectionFactory’)

Example output:

Attribute Type

name String

jndiName String

3. Set up required attributes:

v Using Jacl:

set name [list name MQQCF]

set jndi [list jndiName jms/MQQCF]

set mqqcfAttrs [list $name $jndi]

Example output:

{name MQQCF} {jndiName jms/MQQCF}

v Using Jython:

name = [’name’, ’MQQCF’]

jndi = [’jndiName’, ’jms/MQQCF’]

mqqcfAttrs = [name, jndi]

print mqqcfAttrs

Example output:

[[name, MQQCF], [jndiName, jms/MQQCF]]

4. Set up a template:

v Using Jacl:

set template [lindex [$AdminConfig listTemplates MQQueueConnectionFactory] 0]

v Using Jython:

import java

lineseparator = java.lang.System.getProperty(’line.separator’)

template = AdminConfig.listTemplates(’MQQueueConnectionFactory’).split(lineseparator)[0]

print template

Example output:

Example non-XA WMQ QueueConnectionFactory(templates/

system:JMS-resource-provider-templates.xml

#MQQueueConnectionFactory_3)

5. Create MQ queue connection factory:

v Using Jacl:

$AdminConfig createUsingTemplate MQQueueConnectionFactory

$newjmsp $mqqcfAttrs $template

v Using Jython:

print AdminConfig.createUsingTemplate(’MQQueueConnectionFactory’,

newjmsp, mqqcfAttrs, template)

Example output:

MQQCF(cells/mycell/nodes/mynode:resources.xml#MQQueueConnectionFactory_1)

6. Save the configuration changes. See the Saving configuration changes with the wsadmin tool article

for more information.

7. In a network deployment environment only, synchronize the node. See the Synchronizing nodes with

the wsadmin tool article for more information.

Configuring new MQ topic connection factories using scripting

Use scripting and the wsadmin tool to configure a new MQ topic connection factory.

Before starting this task, the wsadmin tool must be running. See the Starting the wsadmin scripting client

article for more information.

Chapter 14. Messaging resources 789

Perform the following steps to configure a new MQ topic connection factory:

1. Identify the parent ID:

v Using Jacl:

set newjmsp [$AdminConfig getid /Cell:mycell/Node:mynode/JMSProvider:JMSP1/]

v Using Jython:

newjmsp = AdminConfig.getid(’/Cell:mycell/Node:myNode/JMSProvider:JMSP1’)

print newjmsp

Example output:

JMSP1(cells/mycell/nodes/mynode:resources.xml#JMSProvider_1)

2. Get required attributes:

v Using Jacl:

$AdminConfig required MQTopicConnectionFactory

v Using Jython:

print AdminConfig.required(’MQTopicConnectionFactory’)

Example output:

Attribute Type

name String

jndiName String

3. Set up required attributes:

v Using Jacl:

set name [list name MQTCF]

set jndi [list jndiName jms/MQTCF]

set mqtcfAttrs [list $name $jndi]

Example output:

{name MQTCF} {jndiName jms/MQTCF}

v Using Jython:

name = [’name’, ’MQTCF’]

jndi = [’jndiName’, ’jms/MQTCF’]

mqtcfAttrs = [name, jndi]

print mqtcfAttrs

Example output:

[[name, MQTCF], [jndiName, jms/MQTCF]]

4. Set up a template:

v Using Jacl:

set template [lindex [$AdminConfig listTemplates MQTopicConnectionFactory] 0]

v Using Jython:

import java

lineseparator = java.lang.System.getProperty(’line.separator’)

template = AdminConfig.listTemplates(’MQTopicConnectionFactory’).split(lineseparator)[0]

print template

Example output:

Example non-XA WMQ TopicConnectionFactory(templates/system:

JMS-resource-provider-templates.xml

#MQTopicConnectionFactory_5)

5. Create mq topic connection factory:

v Using Jacl:

$AdminConfig create MQTopicConnectionFactory $newjmsp $mqtcfAttrs $template

v Using Jython:

print AdminConfig.create(’MQTopicConnectionFactory’, newjmsp, mqtcfAttrs, template)

Example output:

790 Administering applications and their environment

MQTCF(cells/mycell/nodes/mynode:resources.xml#MQTopicConnectionFactory_1)

6. Save the configuration changes. See the Saving configuration changes with the wsadmin tool article

for more information.

7. In a network deployment environment only, synchronize the node. See the Synchronizing nodes with

the wsadmin tool article for more information.

Configuring new MQ queues using scripting

You can use scripting and the wsadmin tool to configure a new MQ queue.

Before starting this task, the wsadmin tool must be running. See the Starting the wsadmin scripting client

article for more information.

Perform the following steps to configure a new MQ queue:

1. Identify the parent ID:

v Using Jacl:

set newjmsp [$AdminConfig getid /Cell:mycell/Node:mynode/JMSProvider:JMSP1/]

v Using Jython:

newjmsp = AdminConfig.getid(’/Cell:mycell/Node:myNode/JMSProvider:JMSP1’)

print newjmsp

Example output:

JMSP1(cells/mycell/nodes/mynode|resources.xml#JMSProvider_1)

2. Get required attributes:

v Using Jacl:

$AdminConfig required MQQueue

v Using Jython:

print AdminConfig.required(’MQQueue’)

Example output:

Attribute Type

name String

jndiName String

baseQueueName String

3. Set up required attributes:

v Using Jacl:

set name [list name MQQ]

set jndi [list jndiName jms/MQQ]

set baseQN [list baseQueueName "Put the base queue name here"]

set mqqAttrs [list $name $jndi $baseQN]

Example output:

{name MQQ} {jndiName jms/MQQ} {baseQueueName {Put the base queue name here}}

v Using Jython:

name = [’name’, ’MQQ’]

jndi = [’jndiName’, ’jms/MQQ’]

baseQN = [’baseQueueName’, "Put the base queue name here"]

mqqAttrs = [name, jndi, baseQN]

print mqqAttrs

Example output:

[[name, MQQ], [jndiName, jms/MQQ], [baseQueueName, "Put the base queue name here"]]

4. Set up a template:

v Using Jacl:

set template [lindex [$AdminConfig listTemplates MQQueue] 0]

v Using Jython:

Chapter 14. Messaging resources 791

import java

lineseparator = java.lang.System.getProperty(’line.separator’)

template = AdminConfig.listTemplates(’MQQueue’).split(lineseparator)[0]

print template

Example output:

Example.JMS.WMQ.Q1(templates/system:JMS-resource-provider-

templates.xml#MQQueue_1)

5. Create MQ queue factory:

v Using Jacl:

$AdminConfig createUsingTemplate MQQueue $newjmsp $mqqAttrs $template

v Using Jython:

print AdminConfig.createUsingTemplate(’MQQueue’, newjmsp, mqqAttrs, template)

Example output:

MQQ(cells/mycell/nodes/mynode|resources.xml#MQQueue_1)

6. Save the configuration changes. See the Saving configuration changes with the wsadmin tool article

for more information.

7. In a network deployment environment only, synchronize the node. See the Synchronizing nodes with

the wsadmin tool article for more information.

Configuring new MQ topics using scripting

You can use scripting to configure a new MQ topic.

Before starting this task, the wsadmin tool must be running. See the Starting the wsadmin scripting client

article for more information.

Perform the following steps to configure a new MQ topic:

1. Identify the parent ID:

v Using Jacl:

set newjmsp [$AdminConfig getid /Cell:mycell/Node:mynode/JMSProvider:JMSP1/]

v Using Jython:

newjmsp = AdminConfig.getid(’/Cell:mycell/Node:myNode/JMSProvider:JMSP1’)

print newjmsp

Example output:

JMSP1(cells/mycell/nodes/mynode|resources.xml#JMSProvider_1)

2. Get required attributes:

v Using Jacl:

$AdminConfig required MQTopic

v Using Jython:

print AdminConfig.required(’MQTopic’)

Example output:

Attribute Type

name String

jndiName String

baseTopicName String

3. Set up required attributes:

v Using Jacl:

set name [list name MQT]

set jndi [list jndiName jms/MQT]

set baseTN [list baseTopicName "Put the base topic name here"]

set mqtAttrs [list $name $jndi $baseTN]

Example output:

792 Administering applications and their environment

{name MQT} {jndiName jms/MQT} {baseTopicName {Put the base topic name here}}

v Using Jython:

name = [’name’, ’MQT’]

jndi = [’jndiName’, ’jms/MQT’]

baseTN = [’baseTopicName’, "Put the base topic name here"]

mqtAttrs = [name, jndi, baseTN]

print mqtAttrs

Example output:

[[name, MQT], [jndiName, jms/MQT], [baseTopicName, "Put the base topic name here"]]

4. Create MQ topic factory:

v Using Jacl:

$AdminConfig create MQTopic $newjmsp $mqtAttrs

v Using Jython:

print AdminConfig.create(’MQTopic’, newjmsp, mqtAttrs)

Example output:

MQT(cells/mycell/nodes/mynode|resources.xml#MQTopic_1)

5. Save the configuration changes. See the Saving configuration changes with the wsadmin tool article

for more information.

6. In a network deployment environment only, synchronize the node. See the Synchronizing nodes with

the wsadmin tool article for more information.

Commands for the JCA management group of the AdminTask object

For more information about the AdminTask object, see the Commands for the AdminTask object article.

The following commands are available for the JCA management group of the AdminTask object:

 Command

name:

Description: Target

object:

Parameters and return

values:

Examples:

Chapter 14. Messaging resources 793

copyResource

Adapter

Use the

copyResource

Adapter

command to

create a Java

2 Connector

(J2C)

resource

adapter under

the scope that

you specify.

J2C

Resource

Adapter

object ID

v Parameters:

- name

Indicates the name of

the new J2C resource

adapter. This

parameter is required.

- scope

Indicates the scope

object ID. This

parameter is required.

- useDeepCopy

If you set this

parameter to true, all

of the J2C connection

factory, J2C activation

specification, and J2C

administrative objects

will be copied to the

new J2C resource

adapter (deep copy). If

you set this parameter

to false, the objects

are not created

(shallow copy). The

default is false.

v Returns: J2C resource

adapter object ID

Batch mode example usage:

v Using Jacl:

$AdminTask copyResourceAdapter

$ra [subst {-name newRA -scope

$scope}]

v Using Jython string:

AdminTask.copyResourceAdapter

(ra, ’[-name newRA -scope

scope]’)

v Using Jython list:

AdminTask.copyResourceAdapter

(ra, [’-name’, ’newRA’, ’-sco

pe’, ’scope’])

Interactive mode example usage:

v Using Jacl:

$AdminTask copyResource

Adapter {-interactive}

v Using Jython string:

AdminTask.copyResource

Adapter (’[-interactive]’)

v Using Jython list:

AdminTask.copyResource

Adapter ([’-interactive’])

794 Administering applications and their environment

createJ2C

Activation

Spec

Use the

createJ2C

Activation

Spec

command to

create a Java

2 Connector

(J2C)

activation

specification

under a J2C

resource

adapter and

the attributes

that you

specify. Use

the

messageListenerType

parameter to

indicate the

activation

specification

that is defined

for the J2C

resource

adapter.

J2C

Resource

Adapter

object ID

v Parameters:

- messageListenerType

Identifies the activation

specification for the

J2C activation

specification to be

created. Use this

parameter to identify

the activation

specification template

for the J2C resource

adapter that you

specify.

- name

Indicates the name of

the J2C activation

specification that you

are creating.

- jndiName

Indicates the name of

the Java Naming and

Directory Interface

(JNDI).

- destinationJndiName

Indicates the name of

the Java Naming and

Directory Interface

(JNDI) of

corresponding

destination.

- authenticationAlias

Indicates the

authentication alias of

the J2C activation

specification that you

are creating.

- description

Description of the

created J2C activation

specification.

v Returns: J2CActivationSpec

object ID

Batch mode example usage:

v Using Jacl:

$AdminTask createJ2CActiva

tionSpec $ra {-name J2CAct

Spec -jndiName eis/ActSpec1

-messageListenerType javax.

jms.MessageListener }

v Using Jython string:

AdminTask.createJ2CActivati

onSpec(ra, ’[-name J2CActSpec

-jndiName eis/ActSpec1 -mess

ageListenerType javax.jms.

MessageListener]’)

v Using Jython list:

AdminTask.createJ2CActivation

Spec(ra, [’-name’, ’J2CActS

pec’, ’-jndiName’, ’eis/Act

Spec1’, ’-messageListenerTy

pe’, ’javax.jms.MessageLis

tener’])

Interactive mode example usage:

v Using Jacl:

$AdminTask createJ2CActiv

ationSpec {-interactive}

v Using Jython string:

AdminTask.createJ2CActiv

ationSpec (’[-interactive]’)

v Using Jython list:

AdminTask.createJ2CActiva

tionSpec ([’-interactive’])

Chapter 14. Messaging resources 795

createJ2C

AdminObject

Use the

createJ2C

AdminObject

command to

create an

administrative

object under

a resource

adapter with

attributes that

you specify.

Use the

administrative

object

interface to

indicate the

administrative

object that is

defined in the

resource

adapter.

J2C

Resource

Adapter

object ID

v Parameters:

-adminObjectInterface

Specifies the

administrative object

interface to identify the

administrative object for

the resource adapter

that you specify. This

parameter is required.

-name

Indicates the name of

the administrative

object.

-jndiName

Specifies the name of

the Java Naming and

Directory Interface

(JNDI).

-description

Description of the

created J2C admin

object.

v Returns: J2CAdminObject

object ID

Batch mode example usage:

v Using Jacl:

$AdminTask createJ2CAdmin

Object $ra {-adminObject

Interface fvt.adapter.mess

age.FVTMessageProvider

-name J2CA01 -jndiName

eis/J2CA01}

v Using Jython string:

AdminTask.createJ2CAdminOb

ject(ra, ’[-adminObjectIn

terface fvt.adapter.messag

e.FVTMessageProvider -name

J2CA01 -jndiName

eis/J2CA01]’)

v Using Jython list:

AdminTask.createJ2CAdminObj

ect(ra, [’-adminObjectInte

rface’, ’fvt.adapter.messa

ge.FVTMessageProvider’,

’-name’, ’J2CA01’,

’-jndiName’, ’eis/J2CA01’])

Interactive mode example usage:

v Using Jacl:

$AdminTask createJ2CAdmin

Object {-interactive}

v Using Jython string:

AdminTask.createJ2CAdmin

Object (’[-interactive]’)

v Using Jython list:

AdminTask.createJ2CAdmin

Object ([’-interactive’])

796 Administering applications and their environment

createJ2C

Connection

Factory

Use the

createJ2C

Connection

Factory

command to

create a Java

2 connection

factory under

a Java 2

resource

adapter and

the attributes

that you

specify. Use

the

connection

factory

interfaces to

indicate the

connection

definitions

that are

defined for

the Java 2

resource

adapter.

J2C

Resource

Adapter

object ID

v Parameters:

-connectionFactoryInterface

Identifies the

connection definition for

the Java 2 resource

adapter that you

specify. This parameter

is required.

-name

Indicates the name of

the connection factory.

-jndiName

Indicates the name of

the Java Naming and

Directory Interface

(JNDI).

-description

Description of the

created J2C connection

factory.

v Returns: The J2C

connection factory object

ID.

Batch mode example usage:

v Using Jacl:

$AdminTask createJ2CConne

ctionFactory $ra {-connec

tionFactoryInterfaces

javax.sql.DataSource

-name J2CCF1 -jndiName

eis/J2CCF1}

v Using Jython string:

AdminTask.createJ2CConne

ctionFactory(ra, ’[-conn

ectionFactoryInterfaces

javax.sql.DataSource

-name J2CCF1 -jndi

Name eis/J2CCF1]’)

v Using Jython list:

AdminTask.createJ2CConnec

tionFactory(ra, [’-connect

ionFactoryInterfaces’,

’javax.sql.DataSource’,

’-name’, ’J2CCF1’,

’-jndiName’, ’eis/J2CCF1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask createJ2CConne

ctionFactory {-interactive}

v Using Jython string:

AdminTask.createJ2CConnec

tionFactory (’[-interactive]’)

v Using Jython list:

AdminTask.createJ2CConnect

ionFactory ([’-interactive’])

listAdmin

ObjectInt

erfaces

Use the

listAdmin

ObjectIn

terfaces

command to

list the

administrative

object

interfaces that

are defined

under the

resource

adapter that

you specify.

J2C

Resource

Adapter

object ID

v Parameters: None

v Returns: A list of

administrative object

interfaces.

Batch mode example usage:

v Using Jacl:

$AdminTask listAdminObjectInterfaces $ra

v Using Jython string:

AdminTask.listAdminObjectInterfaces(ra)

v Using Jython list:

AdminTask.listAdminObjectInterfaces(ra)

Interactive mode example usage:

v Using Jacl:

$AdminTask listAdminObject

Interfaces {-interactive}

v Using Jython string:

AdminTask.listAdminObject

Interfaces (’[-interactive]’)

v Using Jython list:

AdminTask.listAdminObjectIn

terfaces ([’-interactive’])

Chapter 14. Messaging resources 797

listConnec

tionFactory

Interfaces

Use the

listConnec

tionFactory

Interfaces

command to

list all of the

connection

factory

interfaces that

are defined

under the

Java 2

connector

resource

adapter that

you specify.

J2C

Resource

Adapter

object ID

v Parameters: None

v Returns: A list of connection

factory interfaces.

Batch mode example usage:

v Using Jacl:

$AdminTask listConnectionFactoryInterfaces $ra

v Using Jython string:

AdminTask.listConnectionFactoryInterfaces(ra)

v Using Jython list:

AdminTask.listConnectionFactoryInterfaces(ra)

Interactive mode example usage:

v Using Jacl:

$AdminTask listConnectionFac

toryInterfaces {-interactive}

v Using Jython string:

AdminTask.listConnectionFac

toryInterfaces (’[-intera

ctive]’)

v Using Jython list:

AdminTask.listConnectionFac

toryInterfaces ([’-interac

tive’])

listJ2CAct

ivationSpecs

Use the

listJ2CAc

tivation

Specs

command to

list the

activation

specifications

that are

contained

under the

resource

adapter and

message

listener type

that you

specify.

J2C

Resource

Adapter

object ID

v Parameters:

-messageListenerType

Specifies the message

listener type for the

resource adapter for

which you are making

a list. This parameter is

required.

v Returns: A list of activation

specifications that has

specified messageListener

type.

Batch mode example usage:

v Using Jacl:

$AdminTask listJ2CActivation

Specs $ra {-messageListener

Type javax.jms.MessageLis

tener}

v Using Jython string:

AdminTask.listJ2CActivation

Specs(ra, ’[-messageListener

Type javax.jms.MessageLis

tener]’)

v Using Jython list:

AdminTask.listJ2CActivation

Specs(ra, [’-messageListener

Type’, ’javax.jms.Message

Listener’])

Interactive mode example usage:

v Using Jacl:

$AdminTask listJ2CActivat

ionSpecs {-interactive}

v Using Jython string:

AdminTask.listJ2CActivat

ionSpecs (’[-interactive]’)

v Using Jython list:

AdminTask.listJ2CActivati

onSpecs ([’-interactive’])

798 Administering applications and their environment

listJ2CAdmin

Objects

Use the

listJ2CAdm

inObjects

command to

list

administrative

objects that

contain the

administrative

object

interface that

you specify.

J2C

Resource

Adapter

object ID

v Parameters:

-adminObjectInterface

Specifies the

administrative object

interface for which you

want to list. This

parameter is required.

v Returns: A list of

administrative objects that

has specified

adminObjectInterface.

Batch mode example usage:

v Using Jacl:

$AdminTask listJ2CAdminOb

jects $ra {-adminObject

Interface fvt.adaptor.

message.FVTMessageProvider}

v Using Jython string:

AdminTask.listJ2CAdminObj

ects(ra, ’[-adminObjectIn

terface fvt.adaptor.me

ssage.FVTMessageProvider]’)

v Using Jython list:

AdminTask.listJ2CAdminObj

ects(ra, [’-adminObjectIn

terface’, ’fvt.adaptor.

message.FVTMessageProvider’])

Interactive mode example usage:

v Using Jacl:

$AdminTask listJ2CAdmin

Objects {-interactive}

v Using Jython string:

AdminTask.listJ2CAdminO

bjects (’[-interactive]’)

v Using Jython list:

AdminTask.listJ2CAdminOb

jects ([’-interactive’])

Chapter 14. Messaging resources 799

listJ2CConnec

tionFactories

Use the

listJ2CConne

ctionFactories

command to

list the Java 2

connector

connection

factories

under the

resource

adapter and

connection

factory

interface that

you specify.

J2C

Resource

Adapter

object ID

v Parameters:

-connectionFactoryInterface

Indicates the name of

the connection factory

that you want to list.

This parameter is

required.

v Returns: A list of J2C

connectionFactory that has

the specified

connectionFactoryInterface.

Batch mode example usage:

v Using Jacl:

$AdminTask listJ2CConnection

Factories $ra {-connectionFa

ctoryInterface javax.sql.

DataSource}

v Using Jython string:

AdminTask.listJ2CConnection

Factories(ra, ’[-connection

FactoryInterface javax.

sql.DataSource]’)

v Using Jython list:

AdminTask.listJ2CConnection

Factories(ra, [’-connection

FactoryInterface’, ’javax.

sql.DataSource’])

Interactive mode example usage:

v Using Jacl:

$AdminTask listJ2CConnect

ionFactories {-interactive}

v Using Jython string:

AdminTask.listJ2CConnection

Factories (’[-interactive]’)

v Using Jython list:

AdminTask.listJ2CConnection

Factories ([’-interactive’])

listMessage

ListenerTypes

Use the

listMessage

ListenerTypes

command to

list the

message

listener types

that are

defined under

the resource

adapter that

you specify.

J2C

Resource

Adapter

object ID

v Parameters: None

v Returns: A list of message

listener types.

Batch mode example usage:

v Using Jacl:

$AdminTask listMessageListenerTypes $ra

v Using Jython string:

AdminTask.listMessageListenerTypes(ra)

v Using Jython list:

AdminTask.listMessageListenerTypes(ra)

Interactive mode example usage:

v Using Jacl:

$AdminTask listMessageList

enerTypes {-interactive}

v Using Jython string:

AdminTask.listMessageList

enerTypes (’[-interactive]’)

v Using Jython list:

AdminTask.listMessageListe

nerTypes ([’-interactive’])

Maintaining Version 5 default messaging resources

This topic is the entry-point into a set of topics about maintaining messaging resources provided for

WebSphere Application Server Version 5 applications by the default messaging provider.

800 Administering applications and their environment

WebSphere application server Version 5 applications can use JMS resources provided by the default

messaging provider of WebSphere application server version 6. You can use the WebSphere

administrative console to manage the JMS connection factories and destinations for WebSphere

Application Server Version 5 applications. Such JMS resources are maintained as V5 Default Messaging

resources.

V5 Default Messaging provides a JMS transport to a messaging engine of a service integration bus that

supports the default messaging provider of WebSphere Application Server version 6. The messaging

engine emulates the service of a Version 5 JMS server.

You can also use the administrative console to manage a JMS server on a Version 5 node.

For more information about maintaining Version 5 default messaging resources, see the following topics:

v “Listing Version 5 default messaging resources”

v “Configuring Version 5 default JMS resources” on page 825

v

v “Configuring authorization security for a Version 5 default messaging provider” on page 828

Listing Version 5 default messaging resources

Use the WebSphere administrative console to list JMS resources for the Version 5 default messaging

provider, for administrative purposes.

You use the WebSphere administrative console to list JMS resources, if you want to view, modify or delete

any of the following resources:

v Connection factory (unified)

v Queue connection factory

v Topic connection factory

v Queue

v Topic

v Activation specification

When you use the Administrative Console to locate these resources, two different navigation pathways are

available:

v Provider-centric navigation. This lets you view all providers (or just those for a specified scope if

required), then navigate to a specific resource for a specific provider. This is the traditional way of

navigating to a resource when you know which provider owns it. Any navigation that starts with

Resources → JMS → JMS Providers is provider-centric.

v Resource-centric navigation lets you view all resources of a specified type, then navigate to a resource.

This is useful if you want to find a resource, but you do not know which provider owns it (you can list all

resources of a given type across all scopes, for all providers, in a single panel). Any navigation that

follows the pattern Resources → JMS → [resource], where [resource] is one of the resource types listed

above is resource-centric.

To use provider-centric navigation, for example to navigate to a specified connection factory, complete the

following steps:

1. Start the WebSphere administrative console.

2. In the navigation pane, expand Resources → JMS → JMS Providers. This opens the providers

collection which lists all currently configured providers across all scopes (you can modify the scope if

required).

3. From the providers collection, select the required provider. This opens the configuration tab for that

provider. The configuration tab contains a set of links to all the resources owned by that provider.

4. From the configuration tab, click the link for a resource type, for example the connection factories link.

This opens the connection factories collection which lists all the connection factories for that provider.

Chapter 14. Messaging resources 801

5. From the connection factories collection, select the required connection factory. You can now view and

work with the connection factory’s properties

To use resource-centric navigation, for example to navigate to a specified connection factory, complete the

following steps:

1. Start the WebSphere administrative console.

2. In the navigation pane, expand Resources → JMS → Connection factories. This opens the connection

factories collection which lists all the connection factories across all providers.

3. From the connection factories collection, select the required connection factory. You can now view and

work with the connection factory’s properties.

You can use either of these navigation pathways to locate resources of any type.

JMS provider settings

Use this panel to view the configuration properties of a selected JMS provider. You cannot change the

properties of a default messaging provider or a WebSphere MQ messaging provider.

To view this page, use the administrative console to complete one of the following steps:

v In the navigation pane, click Resources → JMS → JMS Providers. This displays a list of JMS providers

in the content pane. For each JMS provider in the list, the entry indicates the scope level at which JMS

resource definitions are visible to applications. You can create the same type of JMS provider at

different Scope settings, to offer JMS resources at different levels of visibility to applications.

v If you want to manage JMS resources that are defined at a different scope setting, change the Scope

setting to the required level.

v In the Providers column of the list displayed, click the name of a JMS provider.

If you want to browse or change JMS resources of the JMS provider, click the link for the type of resource

under Additional Properties. For more information about the administrative console panels for the types of

JMS resources, see the related topics.

For default messaging providers and WebSphere MQ messaging providers, only the scope, name, and

description properties are displayed for information only. You cannot change these properties.

For another type of JMS provider that you have defined yourself, extra properties are displayed that you

can change.

The default messaging provider is installed and runs as part of WebSphere Application Server, and is

based on service integration technologies. For more information, see Using the default messaging

provider. For information about V5 default messaging resources, see Listing Version 5 default messaging

resources.

Scope:

The level to which this resource definition is visible; the cell, node, or server level.

 Resources such as messaging providers, namespace bindings, or shared libraries can be defined at

multiple scopes, with resources defined at more specific scopes overriding duplicates which are defined at

more general scopes. For more information about the scope setting, see Scope settings.

Name:

The name by which the JMS provider is known for administrative purposes.

 Data type String

802 Administering applications and their environment

Default v Default messaging provider.

For JMS resources to be provided by a service

integration bus, as part of WebSphere Application

Server.

v My JMSprovider

For JMS resources to be provided by your own JMS

provider; not the default messaging provider or

WebSphere MQ. You assign the name, in this example

“My JMSprovider”, when you define the JMS provider to

WebSphere Application Server. You must have installed

and configured your own JMS provider before

applications can use the JMS resources.

v WebSphere MQ messaging provider

For JMS resources to be provided by WebSphere MQ.

You must have installed and configured WebSphere

MQ before applications can use the JMS resources.

v V5 default messaging provider.

For JMS resources to be provided by a WebSphere

Application Server version 5 node in a deployment

manager cell.

Description:

A description of the JMS provider, for administrative purposes within WebSphere Application Server.

 Data type String

Classpath:

A list of paths or JAR file names which together form the location for the JMS provider classes. Each class

path entry is on a separate line (separated by using the Enter key) and must not contain path separator

characters (such as ’;’ or ’: ’). Class paths can contain variable (symbolic) names to be substituted using a

variable map. Check your driver installation notes for specific JAR file names that are required.

 This property does not apply to default messaging providers or WebSphere MQ providers.

 Data type String

Native library path:

An optional path to any native libraries (*.dll, *.so). Each native path entry is on a separate line (separated

by using the Enter key) and must not contain path separator characters (such as ’;’ or ’: ’). Native paths

can contain variable (symbolic) names to be substituted using a variable map.

 This property does not apply to default messaging providers or WebSphere MQ providers.

 Data type String

External initial context factory:

The Java classname of the initial context factory for the JMS provider.

 This property does not apply to default messaging providers or WebSphere MQ providers.

Chapter 14. Messaging resources 803

For example, for an LDAP service provider the value has the form: com.sun.jndi.ldap.LdapCtxFactory.

 Data type String

Default Null

External provider URL:

The JMS provider URL for external JNDI lookups.

 This property does not apply to default messaging providers or WebSphere MQ providers.

For example, an LDAP URL for a messaging provider has the form: ldap://hostname.company.com/
contextName.

 Data type String

Default Null

Version 5 JMS server collection

On a WebSphere Application Server Version 5 node, a JMS server provides the functions of the JMS

provider. Use this panel to list JMS servers on WebSphere Application Server Version 5 nodes within the

administration domain, or to select a JMS server to view or change its configuration properties.

There can be at most one JMS server on each Version 5 node in the administration domain, and any

application server within the domain can access JMS resources served by any JMS server on any node in

the domain.

To view this page, use the administrative console to complete the following step:

1. In the navigation pane, select Servers → Version 5 JMS Servers.

To browse or change the properties of a JMS server, select its name in the list displayed.

To act on one or more of the JMS servers listed, click the check box next to the server name, then use the

buttons provided.

Version 5 JMS server settings:

The JMS functions on a Version 5 node within a deployment manager cell are served by a JMS server.

Use this panel to view or change the configuration properties of the selected JMS server.

 JMS servers are supported only to aid migration of WebSphere Application Server Version 5 nodes to

WebSphere Application Server version 6.

You can use this panel to configure a general set of JMS server properties, which add to the default

values of properties configured automatically for the Version 5 default messaging provider.

Note: JMS servers make use of WebSphere MQ properties and, in general, the default values of those

properties are adequate. However, if you are running high messaging loads, you may need to

change some WebSphere MQ properties; for example, properties for log file locations, file pages,

and buffer pages. For more information about configuring WebSphere MQ properties, see the

WebSphere MQ System Administration book, SC33-1873, which is available from the IBM

Publications Center or from the WebSphere MQ collection kit, SK2T-0730.

Name:

804 Administering applications and their environment

http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi
http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi

The name by which the JMS server is known for administrative purposes within IBM WebSphere

Application Server.

 This name should not be changed.

 Data type String

Units Not applicable

Default WebSphere Internal JMS Server

Range Not applicable

Description:

A description of the JMS server, for administrative purposes within IBM WebSphere Application Server.

 This string should not be changed.

 Data type String

Default WebSphere Internal JMS Server

Number of threads:

The number of concurrent threads to be used by the publish/subscribe matching engine

 The number of concurrent threads should only be set to a small number.

 Data type Integer

Units Threads

Default 1

Range Greater than or equal to 1.

Queue Names:

The names of the queues hosted by this JMS server. Each queue name must be added on a separate

line.

 Each queue listed in this field must have a separate queue administrative object with the same

administrative name. To make a queue available to applications, define a WebSphere queue and add its

name to this field on the JMS Server panel for the host on which you want the queue to be hosted.

 Data type String

Units Queue name

Range Each entry in this field is a queue name of up to 45

characters, which must match exactly (including use of

upper- and lowercase characters) the WebSphere queue

administrative object defined for the queue.

Initial State:

The state that you want the JMS server to have when it is next restarted.

 Data type Enum

Default Started

Chapter 14. Messaging resources 805

Range Started

The JMS server is started automatically.

Stopped

The JMS server is not started automatically. If

any deployed enterprise applications are to use

JMS server functions provided by the JMS

server, the system administrator must start the

JMS server manually or select the Started value

of this property then restart the JMS server.

To restart a JMS server on a Version 5 node, stop then

restart that JMS server.

Version 5 WebSphere Queue connection factory collection

Use this panel to list JMS queue connection factories for point-to-point messaging, for use by WebSphere

Application Server version 5 applications. These configuration properties control how connections are

created between the JMS provider and the default messaging system that it uses.

This panel shows a list of the JMS queue connection factories with a summary of their configuration

properties.

To view this page, use the administrative console to complete the following steps:

1. In the navigation pane, click Resources → JMS Providers → V5 Default Messaging.

2. (Optional) In the content pane, change the Scope setting to the level at which JMS resources are

visible to applications. If you define a Version 5 JMS resource at the Cell scope level, all users in the

cell can look up and use that JMS resource. However, the JMS resource has only the subset of

properties that apply to WebSphere Application Server Version 5. If you want to define a JMS resource

at Cell level for use on non-Version 5 nodes, you should define the JMS resource for the Version 6

default messaging provider.

3. Under Additional Resources, click WebSphere queue connection factories. This displays a list of any

existing JMS queue connection factories.

To define a new JMS queue connection factory, click New.

To browse or change the properties of a connection factory, select its name in the list displayed.

To act on one or more of the connection factories listed, click the check box next to the name of the

connection factory, then use the buttons provided.

Version 5 WebSphere queue connection factory settings:

Use this panel to browse or change the configuration properties of the selected JMS queue connection

factory for point-to-point messaging for use by WebSphere Application Server version 5 applications.

 A WebSphere queue connection factory is used to create JMS connections to the default messaging

provider for use by WebSphere Application Server version 5 applications.

To view this page, use the administrative console to complete the following steps:

1. In the navigation pane, click Resources → JMS Providers → V5 Default Messaging.

2. (Optional) In the content pane, change the Scope setting to the level at which JMS resources are

visible to applications. If you define a Version 5 JMS resource at the Cell scope level, all users in the

cell can look up and use that JMS resource.

3. Under Additional Resources, click WebSphere queue connection factories. This displays a list of any

existing JMS queue connection factories.

4. Click the name of the JMS queue connection factory that you want to work with.

806 Administering applications and their environment

A queue connection factory for the embedded WebSphere JMS provider has the following properties:

Scope:

Specifies the level to which this resource definition is visible to applications.

 Resources such as messaging providers, namespace bindings, or shared libraries can be defined at

multiple scopes, with resources defined at more specific scopes overriding duplicates which are defined at

more general scopes.

The scope displayed is for information only, and cannot be changed on this panel. If you want to browse

or change this resource (or other resources) at a different scope, change the scope on the messaging

provider settings panel, then click Apply, before clicking the link for the type of resource.

 Data type String

Name:

The name by which this JMS queue connection factory is known for administrative purposes within IBM

WebSphere Application Server. The name must be unique within the JMS connection factories across the

WebSphere administrative domain.

 Data type String

Default Null

JNDI name:

The JNDI name that is used to bind the JMS connection factory into the name space.

 As a convention, use the fully qualified JNDI name; for example, in the form jms/Name, where Name is the

logical name of the resource.

This name is used to link the platform binding information. The binding associates the resources defined

by the deployment descriptor of the module to the actual (physical) resources bound into JNDI by the

platform.

 Data type String

Description:

A description of this connection factory for administrative purposes within IBM WebSphere Application

Server.

 Data type String

Default Null

Category:

A category used to classify or group this connection factory, for your IBM WebSphere Application Server

administrative records.

 Data type String

Node:

Chapter 14. Messaging resources 807

The WebSphere node name of the administrative node where the JMS server runs for this connection

factory. Connections created by this factory connect to that JMS server.

 Data type Enum

Default Null

Range Pull-down list of Version 5 nodes in the WebSphere

administrative domain.

Component-managed Authentication Alias:

This alias specifies a user ID and password to be used to authenticate connection to the messaging

provider for application-managed authentication.

 This property provides a list of the J2C authentication data entry aliases that have been defined to

WebSphere Application Server. You can select a data entry alias to be used to authenticate the creation of

a new connection to the JMS provider.

If you have enabled security for WebSphere Application Server, select the alias that specifies the user ID

and password used to authenticate the creation of a new connection to the messaging provider. The use

of this alias depends on the resource authentication (res-auth) setting declared in the connection factory

resource reference of an application component’s deployment descriptors.

Note: User IDs longer than 12 characters cannot be used for authentication with the Version 5 default

messaging provider. For example, the default Windows NT user ID, Administrator, is not valid

because it contains 13 characters. Therefore, an authentication alias for a WebSphere queue

connection factory must specify a user ID no longer than 12 characters.

Container-managed Authentication Alias:

This alias specifies a user ID and password to be used to authenticate connection to the messaging

provider for container-managed authentication.

 This field is deprecated in 6.0. The specification of a login configuration and associated properties on the

component resource reference determines the container-managed authentication strategy when the

res-auth value is Container. If the ’DefaultPrincipalMapping’ login configuration is used, the associated

property is a container-managed authentication alias. This field is used only in the absence of a

loginConfiguration on the component resource reference. To define a new alias, see the related item J2EE

Connector Architecture (J2C) authentication data entries.

This property provides a list of the J2C authentication data entry aliases that have been defined to

WebSphere Application Server. You can select a data entry alias to be used to authenticate the creation of

a new connection to the JMS provider.

If you have enabled security for WebSphere Application Server, select the alias that specifies the user ID

and password used to authenticate the creation of a new connection to the messaging provider. The use

of this alias depends on the resource authentication (res-auth) setting declared in the connection factory

resource reference of an application component’s deployment descriptors.

Note: User IDs longer than 12 characters cannot be used for authentication with the Version 5 default

messaging provider. For example, the default Windows NT user ID, Administrator, is not valid

because it contains 13 characters. Therefore, an authentication alias for a WebSphere topic

connection factory must specify a user ID no longer than 12 characters.

Mapping-Configuration Alias:

The module used to map authentication aliases.

808 Administering applications and their environment

This field is deprecated in 6.0. The specification of a login configuration and associated properties on the

component resource reference determines the container-managed authentication strategy when the

res-auth value is Container. This field is used only in the absence of a loginConfiguration on the

component resource reference.

This field provides a list of the modules that have been configured on the Security → JAAS Configuration

→ Application Logins Configuration property. For more information about the mapping configurations,

see Java Authentication and Authorization service configuration entry settings.

 Data type Enum

Default Null

Range ClientContainer

The client container maps authentication aliases.

WSLogin

The WSLogin module maps authentication

aliases.

DefaultPrincipalMapping

The JAAS configuration maps an authentication

alias to its userid and password.

XA Enabled:

Specifies whether the connection factory is for XA or non-XA coordination of messages and controls if the

application server uses XA QCF/TCF. Enable XA if multiple resources are used in the same transaction.

 If you clear this checkbox property (for non-XA coordination), the JMS session is still enlisted in a

transaction, but uses the resource manager local transaction calls (session.commit and session.rollback)

instead of XA calls. This can lead to an improvement in performance. However, this means that only a

single resource can be enlisted in a transaction in WebSphere Application Server.

Last participant support enables you to enlist one non-XA resource with other XA-capable resources.

For a WebSphere Topic Connection Factory with the Port property set to DIRECT this property does not

apply, and always adopts non-XA coordination.

 Data type Checkbox

Default Selected (enabled for XA coordination)

Range Selected

The connection factory is enabled for

XA-coordination of messages

Cleared

The connection factory is not enabled for XA

coordination of messages

Recommended Do not enable XA coordination when the message queue

or topic received is the only resource in the transaction.

Enable XA coordination when other resources, including

other queues or topics, are involved.

Connection pool:

Specifies an optional set of connection pool settings.

 Connection pool properties are common to all J2C connectors.

Chapter 14. Messaging resources 809

The application server pools connections and sessions with the messaging provider to improve

performance. You need to configure the connection and session pool properties appropriately for your

applications, otherwise you may not get the connection and session behavior that you want.

Change the size of the connection pool if concurrent server-side access to the JMS resource exceeds the

default value. The size of the connection pool is set on a per queue or topic basis.

Session pool:

An optional set of session pool settings.

 This link provides a panel of optional connection pool properties, common to all J2C connectors.

The application server pools connections and sessions with the messaging provider to improve

performance. You need to configure the connection and session pool properties appropriately for your

applications, otherwise you may not get the connection and session behavior that you want.

Session pool settings:

Use this page to configure session pool settings.

 This administrative console page is common to a range of resource types; for example, JMS queue

connection factories. To view this page, the path depends on the type of resource, but generally you select

an instance of the resource provider, then an instance of the resource type, then click Session pools. For

example: click Resources → JMS Providers → V5 Default Messaging → WebSphere queue connection

factories → connection_factory → Session pools.

Connection Timeout:

Specifies the interval, in seconds, after which a connection request times out and a

ConnectionWaitTimeoutException is thrown.

 The wait is necessary when the maximum value of connections (Max Connections) to a particular

connection pool is reached . For example, if Connection Timeout is set to 300 and the maximum number

of connections is reached, the Pool Manager waits for 300 seconds for an available physical connection. If

a physical connection is not available within this time, the Pool Manager throws a

ConnectionWaitTimeoutException. It usually does not make sense to retry the getConnection() method,

because if a longer wait time is required, you should set the Connection Timeout setting to a higher

value. Therefore, if this exception is caught by the application, the administrator should review the

expected usage of the application and tune the connection pool and the database accordingly.

If Connection Timeout is set to 0, the Pool Manager waits as long as necessary until a connection is

allocated (which happens when the number of connections falls below the value of Max Connections).

If Max Connections is set to 0, which enables an infinite number of physical connections, then the

Connection Timeout value is ignored.

 Data type Integer

Units Seconds

Default 180

Range 0 to max int

Max Connections:

Specifies the maximum number of physical connections that you can create in this pool.

810 Administering applications and their environment

These are the physical connections to the backend resource. Once this number is reached, no new

physical connections are created and the requester waits until a physical connection that is currently in

use returns to the pool, or a ConnectionWaitTimeoutException is thrown.

For example, if the Max Connections value is set to 5, and there are five physical connections in use, the

pool manager waits for the amount of time specified in Connection Timeout for a physical connection to

become free.

If Max Connections is set to 0, the Connection Timeout value is ignored.

For better performance, set the value for the connection pool lower than the value for the Max

Connections option in the Web container. Lower settings, such as 10-30 connections, perform better than

higher settings, such as 100.

If clones are used, one data pool exists for each clone. Knowing the number of data pools is important

when configuring the database maximum connections.

You can use the Tivoli Performance Viewer to find the optimal number of connections in a pool. If the

number of concurrent waiters is greater than 0, but the CPU load is not close to 100%, consider increasing

the connection pool size. If the Percent Used value is consistently low under normal workload, consider

decreasing the number of connections in the pool.

 Data type Integer

Default 10

Range 0 to max int

Min Connections:

Specifies the minimum number of physical connections to maintain.

 Until this number is reached, the pool maintenance thread does not discard physical connections.

However, no attempt is made to bring the number of connections up to this number. If you set a value for

Aged Timeout, the minimum is not maintained. All connections with an expired age are discarded.

For example if the Min Connections value is set to 3, and one physical connection is created, the Unused

Timeout thread does not discard that connection. By the same token, the thread does not automatically

create two additional physical connections to reach the Min Connections setting.

 Data type Integer

Default 1

Range 0 to max int

Reap Time:

Specifies the interval, in seconds, between runs of the pool maintenance thread.

 For example, if Reap Time is set to 60, the pool maintenance thread runs every 60 seconds. The Reap

Time interval affects the accuracy of the Unused Timeout and Aged Timeout settings. The smaller the

interval, the greater the accuracy. If the pool maintenance thread is enabled, set the Reap Time value less

than the values of Unused Timeout and Aged Timeout. When the pool maintenance thread runs, it

discards any connections remaining unused for longer than the time value specified in Unused Timeout,

until it reaches the number of connections specified in Min Connections. The pool maintenance thread

also discards any connections that remain active longer than the time value specified in Aged Timeout.

Chapter 14. Messaging resources 811

The Reap Time interval also affects performance. Smaller intervals mean that the pool maintenance thread

runs more often and degrades performance.

To disable the pool maintenance thread set Reap Time to 0, or set both Unused Timeout and Aged

Timeout to 0. The recommended way to disable the pool maintenance thread is to set Reap Time to 0, in

which case Unused Timeout and Aged Timeout are ignored. However, if Unused Timeout and Aged

Timeout are set to 0, the pool maintenance thread runs, but only physical connections which timeout due

to non-zero timeout values are discarded.

 Data type Integer

Units Seconds

Default 180

Range 0 to max int

Unused Timeout:

Specifies the interval in seconds after which an unused or idle connection is discarded.

 Set the Unused Timeout value higher than the Reap Timeout value for optimal performance. Unused

physical connections are only discarded if the current number of connections not in use exceeds the Min

Connections setting. For example, if the unused timeout value is set to 120, and the pool maintenance

thread is enabled (Reap Time is not 0), any physical connection that remains unused for two minutes is

discarded. Note that accuracy of this timeout, as well as performance, is affected by the Reap Time value.

For more information, see Reap Time.

 Data type Integer

Units Seconds

Default 1800

Range 0 to max int

Aged Timeout:

Specifies the interval in seconds before a physical connection is discarded.

 Setting Aged Timeout to 0 supports active physical connections remaining in the pool indefinitely. Set the

Aged Timeout value higher than the Reap Timeout value for optimal performance. For example, if the

Aged Timeout value is set to 1200, and the Reap Time value is not 0, any physical connection that

remains in existence for 1200 seconds (20 minutes) is discarded from the pool. Note that accuracy of this

timeout, as well as performance, are affected by the Reap Time value. For more information, see Reap

Time.

 Data type Integer

Units Seconds

Default 0

Range 0 to max int

Purge Policy:

Specifies how to purge connections when a stale connection or fatal connection error is detected.

 Valid values are EntirePool and FailingConnectionOnly. JCA data sources can have either option.

WebSphere Version 4.0 data sources always have a purge policy of EntirePool.

 Data type String

812 Administering applications and their environment

Default FailingConnectionOnly

Range

EntirePool

All connections in the pool are marked stale. Any

connection not in use is immediately closed. A

connection in use is closed and throws a

StaleConnectionException during the next

operation on that connection. Subsequent

getConnection requests from the application

result in new connections to the database

opening. When using this purge policy, there is a

slight possibility that some connections in the

pool are closed unnecessarily when they are not

stale. However, this is a rare occurrence. In most

cases, a purge policy of EntirePool is the best

choice.

FailingConnectionOnly

Only the connection that caused the

StaleConnectionException is closed. Although

this setting eliminates the possibility that valid

connections are closed unnecessarily, it makes

recovery from an application perspective more

complicated. Because only the currently failing

connection is closed, there is a good possibility

that the next getConnection request from the

application can return a connection from the pool

that is also stale, resulting in more stale

connection exceptions.

Version 5 WebSphere topic connection factory collection

Use this panel to list JMS topic connection factories for publish/subscribe messaging, for use by

WebSphere Application Server version 5 applications. These configuration properties control how

connections are created between the JMS provider and the default messaging system that it uses.

This panel shows a list of JMS topic connection factories with a summary of their configuration properties.

To view this page, use the administrative console to complete the following steps:

1. In the navigation pane, click Resources → JMS Providers → V5 Default Messaging.

2. (Optional) In the content pane, change the Scope setting to the level at which JMS resources are

visible to applications. If you define a Version 5 JMS resource at the Cell scope level, all users in the

cell can look up and use that JMS resource. However, the JMS resource has only the subset of

properties that apply to WebSphere Application Server Version 5. If you want to define a JMS resource

at Cell level for use on non-Version 5 nodes, you should define the JMS resource for the Version 6

default messaging provider.

3. Under Additional Resources, click WebSphere topic connection factories. This displays a list of any

existing JMS topic connection factories.

To define a new JMS topic connection factory, click New.

To view or change the properties of a connection factory, select its name in the list displayed.

To act on one or more of the connection factories listed, click the check box next to the name of the

connection factory, then use the buttons provided.

WebSphere topic connection factory settings:

Chapter 14. Messaging resources 813

Use this panel to browse or change the configuration properties of the selected JMS topic connection

factory for publish/subscribe messaging by WebSphere Application Server version 5 applications.

 A WebSphere topic connection factory is used to create JMS connections to the default messaging

provider for use by WebSphere Application Server version 5 applications.

To view this page, use the administrative console to complete the following steps:

1. In the navigation pane, click Resources → JMS Providers → V5 Default Messaging.

2. (Optional) In the content pane, change the Scope setting to the level at which JMS resources are

visible to applications. If you define a Version 5 JMS resource at the Cell scope level, all users in the

cell can look up and use that JMS resource.

3. Under Additional Resources, click WebSphere topic connection factories. This displays a list of any

existing JMS topic connection factories.

4. Click the name of the JMS topic connection factory that you want to work with.

A JMS topic connection factory for use with the Version 5 default messaging provider has the following

properties.

Scope:

Specifies the level to which this resource definition is visible to applications.

 Resources such as messaging providers, namespace bindings, or shared libraries can be defined at

multiple scopes, with resources defined at more specific scopes overriding duplicates which are defined at

more general scopes.

The scope displayed is for information only, and cannot be changed on this panel. If you want to browse

or change this resource (or other resources) at a different scope, change the scope on the messaging

provider settings panel, then click Apply, before clicking the link for the type of resource.

 Data type String

Name:

The name by which this JMS topic connection factory is known for administrative purposes within IBM

WebSphere Application Server. The name must be unique within the JMS connection factories across the

WebSphere administrative domain.

 Data type String

Default Null

JNDI name:

The JNDI name that is used to bind the topic connection factory into the name space.

 As a convention, use the fully qualified JNDI name; for example, in the form jms/Name, where Name is the

logical name of the resource.

This name is used to link the platform binding information. The binding associates the resources defined

by the deployment descriptor of the module to the actual (physical) resources bound into JNDI by the

platform.

 Data type String

Description:

814 Administering applications and their environment

A description of this topic connection factory for administrative purposes within IBM WebSphere Application

Server.

 Data type String

Default Null

Category:

A category used to classify or group this topic connection factory, for your IBM WebSphere Application

Server administrative records.

 Data type String

Node:

The WebSphere node name of the administrative node where the JMS server runs for this connection

factory. Connections created by this factory connect to that JMS server.

 Data type Enum

Default Null

Range Pull-down list of nodes in the WebSphere administrative

domain.

Port:

Which of the two ports that connections use to connect to the JMS server. The QUEUED port is for

full-function JMS publish/subscribe support, the DIRECT port is for non-persistent, non-transactional,

non-durable subscriptions only.

Note: Message-driven beans cannot use the direct listener port for publish/subscribe support. Therefore,

any topic connection factory configured with Port set to Direct cannot be used with

message-driven beans.

 Data type Enum

Units Not applicable

Default QUEUED

Range QUEUED

The listener port used for full-function

JMS-compliant, publish/subscribe support.

DIRECT

The listener port used for direct TCP/IP

connection (non-transactional, non-persistent,

and non-durable subscriptions only) for

publish/subscribe support.

Component-managed Authentication Alias:

This alias specifies a user ID and password to be used to authenticate connection to the messaging

provider for application-managed authentication.

 This property provides a list of the J2C authentication data entry aliases that have been defined to

WebSphere Application Server. You can select a data entry alias to be used to authenticate the creation of

a new connection to the JMS provider.

Chapter 14. Messaging resources 815

If you have enabled security for WebSphere Application Server, select the alias that specifies the user ID

and password used to authenticate the creation of a new connection to the messaging provider. The use

of this alias depends on the resource authentication (res-auth) setting declared in the connection factory

resource reference of an application component’s deployment descriptors.

Note: User IDs longer than 12 characters cannot be used for authentication with the Version 5 default

messaging provider. For example, the default Windows NT user ID, Administrator, is not valid

because it contains 13 characters. Therefore, an authentication alias for a WebSphere topic

connection factory must specify a user ID no longer than 12 characters.

Container-managed Authentication Alias:

This alias specifies a user ID and password to be used to authenticate connection to the messaging

provider for container-managed authentication.

 This field is deprecated in 6.0. The specification of a login configuration and associated properties on the

component resource reference determines the container-managed authentication strategy when the

res-auth value is Container. If the ’DefaultPrincipalMapping’ login configuration is used, the associated

property is a container-managed authentication alias. This field is used only in the absence of a

loginConfiguration on the component resource reference. To define a new alias, see the related item J2EE

Connector Architecture (J2C) authentication data entries.

This property provides a list of the J2C authentication data entry aliases that have been defined to

WebSphere Application Server. You can select a data entry alias to be used to authenticate the creation of

a new connection to the JMS provider.

If you have enabled security for WebSphere Application Server, select the alias that specifies the user ID

and password used to authenticate the creation of a new connection to the JMS provider. The use of this

alias depends on the resource authentication (res-auth) setting declared in the connection factory resource

reference of an application component’s deployment descriptors.

Note: User IDs longer than 12 characters cannot be used for authentication with the embedded

WebSphere JMS provider. For example, the default Windows NT user ID, Administrator, is not

valid for use with embedded WebSphere messaging, because it contains 13 characters. Therefore,

an authentication alias for a WebSphere JMS provider connection factory must specify a user ID no

longer than 12 characters.

Mapping-Configuration Alias:

The module used to map authentication aliases.

 This field is deprecated in 6.0. The specification of a login configuration and associated properties on the

component resource reference determines the container-managed authentication strategy when the

res-auth value is Container. This field is used only in the absence of a loginConfiguration on the

component resource reference.

This field provides a list of the modules that have been configured on the Security → JAAS Configuration

→ Application Logins Configuration property. For more information about the mapping configurations,

see Java Authentication and Authorization service configuration entry settings.

 Data type Enum

Default Null

816 Administering applications and their environment

Range ClientContainer

The client container maps authentication aliases.

WSLogin

The WSLogin module maps authentication

aliases.

DefaultPrincipalMapping

The JAAS configuration maps an authentication

alias to its userid and password.

Clone Support:

Select this checkbox to enable clone support to allow the same durable subscription across topic clones.

 Data type Enum

Default Cleared

Range Selected

Clone support is enabled.

Cleared

Clone support is disabled.

If you select this property, you must also specify a value for the Client ID property.

Client ID:

The JMS client identifier used for connections to the queue manager.

 Data type String

Range A valid JMS client ID

XA Enabled:

Specifies whether the connection factory is for XA or non-XA coordination of messages and controls if the

application server uses XA QCF/TCF. Enable XA if multiple resources are used in the same transaction.

 If you clear this checkbox property (for non-XA coordination), the JMS session is still enlisted in a

transaction, but uses the resource manager local transaction calls (session.commit and session.rollback)

instead of XA calls. This can lead to an improvement in performance. However, this means that only a

single resource can be enlisted in a transaction in WebSphere Application Server.

Last participant support enables you to enlist one non-XA resource with other XA-capable resources.

For a WebSphere Topic Connection Factory with the Port property set to DIRECT this property does not

apply, and always adopts non-XA coordination.

 Data type Checkbox

Default Selected (enabled for XA coordination)

Range Selected

The connection factory is enabled for

XA-coordination of messages

Cleared

The connection factory is not enabled for XA

coordination of messages

Chapter 14. Messaging resources 817

Recommended Do not enable XA coordination when the message queue

or topic received is the only resource in the transaction.

Enable XA coordination when other resources, including

other queues or topics, are involved.

Connection pool:

Specifies an optional set of connection pool settings.

 Connection pool properties are common to all J2C connectors.

The application server pools connections and sessions with the messaging provider to improve

performance. You need to configure the connection and session pool properties appropriately for your

applications, otherwise you may not get the connection and session behavior that you want.

Change the size of the connection pool if concurrent server-side access to the JMS resource exceeds the

default value. The size of the connection pool is set on a per queue or topic basis.

Session pool:

An optional set of session pool settings.

 This link provides a panel of optional connection pool properties, common to all J2C connectors.

The application server pools connections and sessions with the JMS provider to improve performance. You

need to configure the connection and session pool properties appropriately for your applications, otherwise

you may not get the connection and session behavior that you want.

Version 5 WebSphere queue destination collection

Use this panel to list JMS queue for point-to-point messaging for use by WebSphere Application Server

version 5 applications.

This panel shows a list of the JMS queue destinations with a summary of their configuration properties.

To view this page, use the administrative console to complete the following steps:

1. In the navigation pane, click Resources → JMS Providers → V5 Default Messaging.

2. (Optional) In the content pane, change the Scope setting to the level at which JMS resources are

visible to applications. If you define a Version 5 JMS resource at the Cell scope level, all users in the

cell can look up and use that JMS resource. However, the JMS resource has only the subset of

properties that apply to WebSphere Application Server Version 5. If you want to define a JMS resource

at Cell level for use on non-Version 5 nodes, you should define the JMS resource for the Version 6

default messaging provider.

3. Under Additional Resources, click WebSphere queue destinations. This displays a list of any existing

JMS queue destinations.

To define a new JMS queue destination, click New.

To view or change the properties of a queue destination, select its name in the list displayed.

To act on one or more of the queue destinations listed, click the check box next to the name of the queue,

then use the buttons provided.

Version 5 WebSphere queue destination settings:

818 Administering applications and their environment

Use this panel to view or change the configuration properties of the selected JMS queue destination for

point-to-point messaging by WebSphere Application Server version 5 applications.

 A queue destination is used to configure a JMS queue of the default messaging provider for use by

WebSphere Application Server version 5 applications. Connections to the queue are created by the

associated V5 Default Messaging WebSphere queue connection factory.

To view this page, use the administrative console to complete the following steps:

1. In the navigation pane, click Resources → JMS Providers → V5 Default Messaging.

2. (Optional) In the content pane, change the Scope setting to the level at which JMS resources are

visible to applications. If you define a Version 5 JMS resource at the Cell scope level, all users in the

cell can look up and use that JMS resource. However, the JMS resource has only the subset of

properties that apply to WebSphere Application Server Version 5. If you want to define a JMS resource

at Cell level for use on non-Version 5 nodes, you should define the JMS resource for the Version 6

default messaging provider.

3. Under Additional Resources, click WebSphere queue destinations. This displays a list of any existing

JMS queue destinations.

4. Click the name of the JMS queue destination that you want to work with.

A JMS queue for use with the internal WebSphere JMS provider has the following properties.

Scope:

Specifies the level to which this resource definition is visible to applications.

 Resources such as messaging providers, namespace bindings, or shared libraries can be defined at

multiple scopes, with resources defined at more specific scopes overriding duplicates which are defined at

more general scopes.

The scope displayed is for information only, and cannot be changed on this panel. If you want to browse

or change this resource (or other resources) at a different scope, change the scope on the messaging

provider settings panel, then click Apply, before clicking the link for the type of resource.

 Data type String

Name:

The name by which the queue is known for administrative purposes within IBM WebSphere Application

Server.

 To enable applications to use this queue, you must add the queue name to the Queue Names field on the

panel for the JMS server that hosts the queue.

 Data type String

JNDI name:

The JNDI name that is used to bind the queue into the application server’s name space.

 As a convention, use the fully qualified JNDI name; for example, in the form jms/Name, where Name is the

logical name of the resource.

This name is used to link the platform binding information. The binding associates the resources defined

by the deployment descriptor of the module to the actual (physical) resources bound into JNDI by the

platform.

Chapter 14. Messaging resources 819

Data type String

Description:

A description of the queue, for administrative purposes

 Data type String

Default Null

Category:

A category used to classify or group this queue, for your IBM WebSphere Application Server administrative

records.

 Data type String

Persistence:

Whether all messages sent to the destination are persistent, non-persistent, or have their persistence

defined by the application

 Data type Enum

Default APPLICATION DEFINED

Range APPLICATION DEFINED

Messages on the destination have their

persistence defined by the application that put

them onto the queue.

NON PERSISTENT

Messages on the destination are not persistent.

PERSISTENT

Messages on the destination are persistent.

When a persistent message is put to a queue, all

of the message data is written to the messaging

log (under the embedded_messaging_install\log

directory) to make recovery of the message

possible.

Priority:

Whether the message priority for this destination is defined by the application or the Specified priority

property

 Data type Enum

Default APPLICATION DEFINED

820 Administering applications and their environment

Range APPLICATION DEFINED

The priority of messages on this destination is

defined by the application that put them onto the

destination.

QUEUE DEFINED

[WebSphere MQ destination only] Messages on

the destination have their persistence defined by

the WebSphere MQ queue definition properties.

SPECIFIED

The priority of messages on this destination is

defined by the Specified priority property.If you

select this option, you must define a priority on

the Specified priority property.

Specified priority:

If the Priority property is set to Specified, type here the message priority for this queue, in the range 0

(lowest) through 9 (highest)

 If the Priority property is set to Specified, messages sent to this queue have the priority value specified

by this property.

 Data type Integer

Units Message priority level

Default 0

Range 0 (lowest priority) through 9 (highest priority)

Expiry:

Whether the expiry timeout for this queue is defined by the application or the Specified expiry property, or

messages on the queue never expire (have an unlimited expiry timeout)

 Data type Enum

Default APPLICATION DEFINED

Range APPLICATION DEFINED

The expiry timeout for messages on this queue is

defined by the application that put them onto the

queue.

UNLIMITED

Messages on this queue have no expiry timeout,

so those messages never expire.

SPECIFIED

The expiry timeout for messages on this queue is

defined by the Specified expiry property.If you

select this option, you must define a timeout on

the Specified expiry property.

Specified expiry:

If the Expiry timeout property is set to Specified, type here the number of milliseconds (greater than 0)

after which messages on this queue expire

 Data type Integer

Units Milliseconds

Default 0

Chapter 14. Messaging resources 821

Range Greater than or equal to 0

v 0 indicates that messages never timeout

v Other values are an integer number of milliseconds

Version 5 WebSphere topic destination collection

Use this panel to list JMS topic destinations for publish/subscribe messaging with the default messaging

provider on a Version 5 node in the deployment manager cell.

This panel shows a list of JMS topic destinations with a summary of their configuration properties.

To view this page, use the administrative console to complete the following steps:

1. In the navigation pane, click Resources → JMS Providers → V5 Default Messaging.

2. (Optional) In the content pane, change the Scope setting to the level at which JMS resources are

visible to applications. If you define a Version 5 JMS resource at the Cell scope level, all users in the

cell can look up and use that JMS resource. However, the JMS resource has only the subset of

properties that apply to WebSphere Application Server Version 5. If you want to define a JMS resource

at Cell level for use on non-Version 5 nodes, you should define the JMS resource for the Version 6

default messaging provider.

3. Under Additional Resources, click WebSphere topic destinations. This displays a list of any existing

JMS topic destinations.

To define a new JMS topic connection factory, click New.

To browse or change the properties of a topic destination, select its name in the list displayed.

To act on one or more of the topic destinations listed, click the check box next to the name of the topic,

then use the buttons provided.

Version 5 WebSphere topic destination settings:

Use this panel to browse or change the configuration properties of the selected JMS topic destination for

publish/subscribe messaging by WebSphere application server version 5 applications.

 A WebSphere topic destination is used to configure the properties of a JMS topic for the default

messaging provider on a Version 5 node in the deployment manager cell. Connections to the topic are

created by the associated topic connection factory.

To view this page, use the administrative console to complete the following steps:

1. In the navigation pane, click Resources → JMS Providers → V5 Default Messaging.

2. (Optional) In the content pane, change the Scope setting to the level at which JMS resources are

visible to applications. If you define a Version 5 JMS resource at the Cell scope level, all users in the

cell can look up and use that JMS resource. However, the JMS resource has only the subset of

properties that apply to WebSphere Application Server Version 5. If you want to define a JMS resource

at Cell level for use on non-Version 5 nodes, you should define the JMS resource for the Version 6

default messaging provider.

3. Under Additional Resources, click WebSphere topic destinations. This displays a list of any existing

JMS topic destinations.

4. Click the name of the JMS topic destination that you want to work with.

A JMS topic destination for use with the Version 5 default messaging provider has the following properties.

Scope:

Specifies the level to which this resource definition is visible to applications.

822 Administering applications and their environment

Resources such as messaging providers, namespace bindings, or shared libraries can be defined at

multiple scopes, with resources defined at more specific scopes overriding duplicates which are defined at

more general scopes.

The scope displayed is for information only, and cannot be changed on this panel. If you want to browse

or change this resource (or other resources) at a different scope, change the scope on the messaging

provider settings panel, then click Apply, before clicking the link for the type of resource.

 Data type String

Name:

The name by which the topic is known for administrative purposes within IBM WebSphere Application

Server.

 Data type String

JNDI name:

The JNDI name that is used to bind the topic into the application server’s name space.

 As a convention, use the fully qualified JNDI name; for example, in the form jms/Name, where Name is the

logical name of the resource.

This name is used to link the platform binding information. The binding associates the resources defined

by the deployment descriptor of the module to the actual (physical) resources bound into JNDI by the

platform.

 Data type String

Description:

A description of the topic, for administrative purposes within IBM WebSphere Application Server.

 Data type String

Default Null

Category:

A category used to classify or group this topic, for your IBM WebSphere Application Server administrative

records.

 Data type String

Topic:

The name of the topic as defined to the JMS provider.

 Data type String

Default Null

Range The topic value can be dot notation and include wildcard

characters.

Chapter 14. Messaging resources 823

Persistence:

Whether all messages sent to the destination are persistent, non-persistent, or have their persistence

defined by the application

 Data type Enum

Default APPLICATION DEFINED

Range APPLICATION DEFINED

Messages on the destination have their

persistence defined by the application that put

them onto the queue.

NON-PERSISTENT

Messages on the destination are not persistent.

PERSISTENT

Messages on the destination are persistent.

Priority:

Whether the message priority for this destination is defined by the application or the Specified priority

property

 Data type Enum

Units Not applicable

Default APPLICATION DEFINED

Range APPLICATION DEFINED

The priority of messages on this destination is

defined by the application that put them onto the

destination.

QUEUE DEFINED

[WebSphere MQ destination only] Messages on

the destination have their persistence defined by

the WebSphere MQ queue definition properties.

SPECIFIED

The priority of messages on this destination is

defined by the Specified priority property. If you

select this option, you must define a priority on

the Specified priority property.

Specified priority:

If the Priority property is set to Specified, type here the message priority for this queue, in the range 0

(lowest) through 9 (highest)

 If the Priority property is set to Specified, messages sent to this queue have the priority value specified

by this property.

 Data type Integer

Units Message priority level

Default 0

Range 0 (lowest priority) through 9 (highest priority)

Expiry:

Whether the expiry timeout for this queue is defined by the application or the Specified expiry property, or

messages on the queue never expire (have an unlimited expiry timeout)

824 Administering applications and their environment

Data type Enum

Units Not applicable

Default APPLICATION DEFINED

Range APPLICATION DEFINED

The expiry timeout for messages on this queue is

defined by the application that put them onto the

queue.

UNLIMITED

Messages on this queue have no expiry timeout,

so those messages never expire.

SPECIFIED

The expiry timeout for messages on this queue is

defined by the Specified expiry property. If you

select this option, you must define a timeout on

the Specified expiry property.

Specified expiry:

If the Expiry timeout property is set to Specified, type here the number of milliseconds (greater than 0)

after which messages on this queue expire

 Data type Integer

Units Milliseconds

Default 0

Range Greater than or equal to 0

v 0 indicates that messages never timeout

v Other values are an integer number of milliseconds

Configuring Version 5 default JMS resources

Use the following tasks to configure the JMS connection factories and destinations WebSphere application

server Version 5 applications.

You only need to complete these tasks if you have WebSphere application server Version 5 applications

that need to use JMS resources provided by the default messaging provider. Such JMS resources are

maintained as V5 Default Messaging resources.

v Configuring a connection for Version 5 default messaging

v Configuring a Version 5 default JMS queue connection factory

v Configuring a Version 5 default JMS topic connection factory

v Configuring a Version 5 default JMS queue destination

v Configuring a Version 5 default JMS topic destination

Configuring a Version 5 queue connection factory

Use this task to browse or change the properties of a JMS queue connection factory for point-to-point

messaging with the default messaging provider on a Version 5 node in the deployment manager cell. This

task contains an optional step for you to create a new JMS queue connection factory.

To configure a JMS queue connection factory for use by WebSphere application server Version 5

applications, use the administrative console to complete the following steps:

1. Display the Version 5 default messaging provider. In the navigation pane, expand Resources → JMS →

JMS Providers.

2. Select the Version 5 provider for which you want to configure a queue connection factory.

3. Optional: Change the Scope setting to the level at which the JMS queue connection factory is visible

to applications. If you define a Version 5 JMS resource at the Cell scope level, all users in the cell can

look up and use that JMS resource.

Chapter 14. Messaging resources 825

4. In the content pane, under Additional Properties, click Queue connection factories This displays any

existing JMS queue connection factories for the Version 5 messaging provider in the content pane.

5. To browse or change an existing JMS queue connection factory, click its name in the list. Otherwise, to

create a new connection factory, complete the following steps:

a. Click New in the content pane.

b. Specify the following required properties. You can specify other properties, as described in a later

step.

Name The name by which this JMS queue connection factory is known for administrative

purposes within IBM WebSphere Application Server.

JNDI Name

The JNDI name that is used to bind the JMS queue connection factory into the name

space.

c. Click Apply. This defines the JMS queue connection factory to WebSphere Application Server, and

enables you to browse or change additional properties.

6. Optional: Change properties for the queue connection factory, according to your needs.

7. Click OK.

8. Save any changes to the master configuration.

9. To have the changed configuration take effect, stop then restart the application server.

Configuring a Version 5 JMS topic connection factory

Use this task to browse or change a JMS topic connection factory for publish/subscribe messaging by

WebSphere application server Version 5 applications.

To configure a JMS topic connection factory for use by WebSphere application server Version 5

applications, use the administrative console to complete the following steps:

1. Display the Version 5 default messaging provider. In the navigation pane, expand Resources → JMS →

JMS Providers.

2. Select the Version 5 provider for which you want to configure a topic connection factory.

3. Optional: Change the Scope setting to the level at which the JMS topic connection factory is visible to

applications. If you define a Version 5 JMS resource at the Cell scope level, all users in the cell can

look up and use that JMS resource.

4. In the content pane, under Additional Properties, click Topic connection factories This displays any

existing JMS topic connection factories for the Version 5 messaging provider in the content pane.

5. To browse or change an existing JMS topic connection factory, click its name in the list. Otherwise, to

create a new connection factory, complete the following steps:

a. Click New in the content pane.

b. Specify the following required properties. You can specify other properties, as described in a later

step.

Name The name by which this JMS topic connection factory is known for administrative purposes

within IBM WebSphere Application Server.

JNDI Name

The JNDI name that is used to bind the JMS topic connection factory into the name space.

c. Click Apply. This defines the JMS topic connection factory to WebSphere Application Server, and

enables you to browse or change additional properties.

6. Optional: Change properties for the topic connection factory, according to your needs.

7. Click OK.

8. Save any changes to the master configuration.

9. To have the changed configuration take effect, stop then restart the application server.

826 Administering applications and their environment

Configuring a Version 5 WebSphere queue destination

Use this task to browse or change the properties of a JMS queue destination for point-to-point messaging

by WebSphere Application Server version 5 applications. This task contains an optional step for you to

create a new topic destination.

To configure a JMS queue destination for use by WebSphere application server Version 5 applications,

use the administrative console to complete the following steps:

 1. Display the Version 5 default messaging provider. In the navigation pane, expand Resources → JMS

→ JMS Providers.

 2. Optional: Change the Scope setting to the level at which the JMS destination is visible to

applications. If you define a Version 5 JMS resource at the Cell scope level, all users in the cell can

look up and use that JMS resource.

 3. Select the Version 5 provider for which you want to configure a queue destination.

 4. In the content pane, under Additional Properties, click Queues This displays any existing queue

destinations for the Version 5 default messaging provider in the content pane.

 5. To browse or change an existing JMS queue destination, click its name in the list. Otherwise, to

create a new queue destination, complete the following steps:

a. Click New in the content pane.

b. Specify the following required properties. You can specify other properties, as described in a later

step.

Name The name by which this queue destination is known for administrative purposes within

IBM WebSphere Application Server.

JNDI Name

The JNDI name that is used to bind the queue destination into the name space.

c. Click Apply. This defines the queue destination to WebSphere Application Server, and enables

you to browse or change additional properties.

 6. Optional: Change properties for the queue destination, according to your needs.

 7. Click OK.

 8. Save any changes to the master configuration.

 9. To make a queue destination available to applications, you need to host the queue on a JMS server.

To add a new queue to a JMS server or to change an existing queue on a JMS server, you define the

administrative name of the queue to the JMS server, as described in Managing Version 5 JMS

servers in a deployment manager cell.

10. To have the changed configuration take effect, stop then restart the application server.

Configuring a Version 5 WebSphere topic destination

Use this task to browse or change the properties of a JMS topic destination for publish/subscribe

messaging by WebSphere application server Version 5 applications.. This task contains an optional step

for you to create a new topic destination.

To configure a JMS topic destination for use WebSphere application server version 5 applications, use the

administrative console to complete the following steps:

1. Display the Version 5 default messaging provider. In the navigation pane, expand Resources → JMS →

JMS Providers.

2. Select the Version 5 provider for which you want to configure a topic destination.

3. Optional: Change the Scope setting to the level at which the JMS destination is visible to applications.

If you define a Version 5 JMS resource at the Cell scope level, all users in the cell can look up and

use that JMS resource.

4. In the content pane, under Additional Properties, click Topics This displays any existing JMS topic

destinations for the Version 5 default messaging provider in the content pane.

Chapter 14. Messaging resources 827

5. To browse or change an existing JMS topic destination, click its name in the list. Otherwise, to create a

new topic destination, complete the following steps:

a. Click New in the content pane.

b. Specify the following required properties. You can specify other properties, as described in a later

step.

Name The name by which this topic destination is known for administrative purposes within IBM

WebSphere Application Server.

JNDI Name

The JNDI name that is used to bind the topic destination into the name space.

Topic The name of the topic in the default messaging provider, to which messages are sent.

c. Click Apply. This defines the topic destination to WebSphere Application Server, and enables you

to browse or change additional properties.

6. Optional: Change properties for the topic destination, according to your needs.

7. Click OK.

8. Save any changes to the master configuration.

9. To have the changed configuration take effect, stop then restart the application server.

Configuring authorization security for a Version 5 default messaging

provider

Use this task to configure authorization security for the default messaging provider on a WebSphere

Application Server version 5 node in a deployment manager cell.

To configure authorization security for the version 5 default messaging provider complete the following

steps.

Note: Security for the version 5 default messaging provider is enabled when you enable global security

for WebSphere Application Server on the version 5 node. For more information about enabling

global security, see Enabling security for all application servers.

1. Configure authorization settings to access JMS resources owned by the embedded WebSphere JMS

provider.

Authorization to access JMS resources owned by the embedded messaging subsystem is controlled by

settings in the app_server_root\config\cells\your_cell_name\integral-jms-authorizations.xml file.

The settings grant or deny authenticated users access to messaging resources (queues or topics). As

supplied, the integral-jms-authorisations.xml file grants the following permissions:

v Read and write permissions to all queues.

v Pub, sub, and persist to all topics.

To configure authorization settings, edit the integral-jms-authorisations.xml file according to the

information in this topic and in that file. Please note the file is in Unicode, which requires a binary FTP

to the host from a workstation.

2. Edit the queue-admin-userids element to create a list of userids with administrative access to all

queues. Administrative access is needed to create queues and perform other administrative activities

on queues. For example, consider the following queue-admin-userids section:

<queue-admin-userids>

 <userid>adminid1</userid>

 <userid>adminid2</userid>

</queue-admin-userids>

In this example the userids adminid1 and adminid2 are defined to have administrative access to all

queues.

828 Administering applications and their environment

3. Edit the queue-default-permissions element to define the default queue access permissions. These

permissions are used for queues for which you do not define specific permissions (in queue sections).

If this section is not specified, then access permissions exist only for those queues for which you have

specifically created queue elements.

For example, consider the following queue-default-permissions element:

 <queue-default-permissions>

 <permission>write</permission>

 </queue-default-permissions>

In this example the default access permission for all queues is write. This can be overridden for a

specific queue by creating a queue element that sets its access permission to read.

4. If you want to define specific access permissions for a queue, create a queue element, then define the

following elements:

For example, consider the following queue element:

 <queue>

 <name>q1</name>

 <public>

 </public>

 <authorize>

 <userid>useridr</userid>

 <permission>read</permission>

 </authorize>

 <authorize>

 <userid>useridw</userid>

 <permission>write</permission>

 </authorize>

 <authorize>

 <userid>useridrw</userid>

 <permission>read</permission>

 <permission>write</permission>

 </authorize>

 </queue>

In this example for the queue q1, the userid useridr has read permission, the userid useridw has write

permission, the userid useridrw has both read and write permissions, and all other userids have no

access permissions (<public></public>).

5. Edit topic elements to define the access permissions for publish/subscribe topic destinations.

For topics, you can grant and deny access permissions. Full permission inheritance is supported on

topics. If you do not define specific access permissions for a userid on a specific topic then

permissions are inherited first from the public permissions on that topic then from the parent topic. The

inheritance of access permissions continues until the root topic from which the root permissions are

assumed.

a. If you want to define default access permissions for the root topic, edit a topic element with an

empty name element. If you omit such a topic section, topics have no default topic permissions

other than those defined by specific topic elements. For example, consider the following topic

element for the root topic:

 <topic>

 <name></name>

 <public>

 <permission>+pub</permission>

 </public>

 </topic>

In this example, the default access permission for all topics is set to publish. This can be

overridden by other topic elements for specific topic names.

b. If you want to define access permissions for a specific topic, create a topic element with the name

for the topic then define the access permissions in the public and authorize elements of the topic

element. For example, consider the following topic section:

Chapter 14. Messaging resources 829

<topic>

 <name>a/b/c</name>

 <public>

 <permission>+sub</permission>

 </public>

 <authorize>

 <userid>useridpub</userid>

 <permission>+pub</permission>

 </authorize>

 </topic>

In this example, the subscribe permission is granted to anyone accessing any topic whose name

starts with a/b/c. Also, the userid useridpub is granted publish permission for any topic whose

name starts with a/b/c.

6. Save the integral-jms-authorizations.xml file.

If the dynamic update setting is selected, changes to the integral-jms-authorizations.xml file become active

when the changed file is saved, so there is no need to stop and restarted the JMS server. If the dynamic

update setting is not selected, you need to stop and restart the JMS server to make changes active.

Authorization settings for Version 5 default JMS resources

Use the integral-jms-authorisations.xml file to view or change the authorization settings for Java Message

Service (JMS) resources owned by the default messaging provider on WebSphere Application Server

version 5 nodes.

Authorization to access default JMS resources owned by the default messaging provider on WebSphere

Application Server nodes is controlled by the following settings in the was_install\config\cells\
your_cell_name\integral-jms-authorisations.xml file.

This structure of the settings in integral-jms-authorisations.xml is shown in the following example.

Descriptions of these settings are provided after the example. To configure authorization settings, follow

the instructions provided in Configuring authorization security for the Version 5 JMS providers

<integral-jms-authorizations>

 <dynamic-update>true</dynamic-update>

 <queue-admin-userids>

 <userid>adminid1</userid>

 <userid>adminid2</userid>

 </queue-admin-userids>

 <queue-default-permissions>

 <permission>write</permission>

 </queue-default-permissions>

 <queue>

 <name>q1</name>

 <public>

 </public>

 <authorize>

 <userid>useridr</userid>

 <permission>read</permission>

 </authorize>

 <authorize>

 <userid>useridw</userid>

 <permission>write</permission>

 </authorize>

 </queue>

 <queue>

 <name>q2</name>

 <public>

 <permission>write</permission>

830 Administering applications and their environment

</public>

 <authorize>

 <userid>useridr</userid>

 <permission>read</permission>

 </authorize>

 </queue>

 <topic>

 <name></name>

 <public>

 <permission>+pub</permission>

 </public>

 </topic>

 <topic>

 <name>a/b/c</name>

 <public>

 <permission>+sub</permission>

 </public>

 <authorize>

 <userid>useridpub</userid>

 <permission>+pub</permission>

 </authorize>

 </topic>

</integral-jms-authorizations>

dynamic-update: Controls whether or not the JMS Server checks dynamically for updates to this file.

true (Default) Enables dynamic update support.

false Disables dynamic update checking and improves authorization performance.

queue-admin-userids: This element lists those userids with administrative access to all Version 5 default

queue destinations. Administrative access is needed to create queues and perform other administrative

activities on queues. You define each userid within a separate userid sub element:

<userid>adminid</userid>

Where adminid is a user ID that can be authenticated by IBM WebSphere Application Server.

queue-default-permissions: This element defines the default queue access permissions that are

assumed if no permissions are specified for a specific queue name. These permissions are used for

queues for which you do not define specific permissions (in queue elements). If this element is not

specified, then no access permissions exist unless explicitly authorized for individual queues.

You define the default permission within a separate permission sub element:

<permission>read-write</permission>

Where read-write is one of the following keywords:

read By default, userids have read access to Version 5 default queue destinations.

write By default, userids have write access to Version 5 default queue destinations.

queue: This element contains the following authorization settings for a single queue destination:

name The name of the queue.

public The default public access permissions for the queue. This is used only for those userids that have

no specific authorize element. If you leave this element empty, or do not define it at all, only those

userids with authorize elements can access the queue.

 You define each default permission within a separate permission element.

authorize

The access permissions for a specific userid. Within each authorize element, you define the

following elements:

userid The userid that you want to assign a specific access permission.

permission

An access permission for the associated userid.

Chapter 14. Messaging resources 831

You define each permission within a separate permission element. Each permission

element can contain the keyword read or write to define the access permission.

 For example, consider the following queue element:

 <queue>

 <name>q1</name>

 <public>

 </public>

 <authorize>

 <userid>useridr</userid>

 <permission>read</permission>

 </authorize>

 <authorize>

 <userid>useridw</userid>

 <permission>write</permission>

 </authorize>

 <authorize>

 <userid>useridrw</userid>

 <permission>read</permission>

 <permission>write</permission>

 </authorize>

 </queue>

topic: This element contains the following authorization settings for a single topic destination:

Each topic element has the following sub elements:

name The name of the topic, without wildcards or other substitution characters.

public The default public access permissions for the topic. This is used only for those userids that have

no specific authorize element. If you leave this element empty, or do not define it at all, only those

userids with authorize elements can access the topic.

 You define each default permission within a separate permission element.

authorize

The access permissions for a specific userid. Within each authorize element, you define the

following elements:

userid The userid that you want to assign a specific access permission.

permission

An access permission for the associated userid.

 You define each permission within a separate permission element. Each permission

element can contain one of the following keywords to define the access permission:

+pub Grant publish permission

+sub Grant subscribe permission

+persist

Grant persist permission

-pub Deny publish permission

-sub Deny subscribe permission

-persist

Deny persist permission

JMS components on Version 5 nodes

To provide messaging support on a WebSphere Application Server Version 5 node, there is at most one

JMS server and some number of JMS resources configured for the default messaging JMS provider on

that node.

A JMS server on a Version 5 node serves the JMS resources (connection factories and destinations) for

that node. The JMS server is managed as a separate process to application servers on the same node.

Any application server within the domain can access JMS resources served by any JMS server on any

node in the domain.

832 Administering applications and their environment

A connection factory encapsulates the configuration properties used to create connections with the JMS

provider, to enable applications to access JMS destinations.

The main components of JMS support on a Version 5 node are shown in the figure The main components

of WebSphere JMS support.

Using the JMS resources provided by WebSphere MQ

This topic is the entry-point into a set of topics about enabling WebSphere applications to use the JMS

resources provided by WebSphere MQ.

WebSphere MQ can act as a JMS provider for WebSphere Application Server. WebSphere applications

use the JMS 1.1 or JMS 1.0.2 interfaces to access the JMS resources provided by WebSphere MQ, and

to access JMS resources provided by the default messaging provider (or a generic messaging provider).

You use the WebSphere administrative console to administer the resources provided by WebSphere MQ.

In a mixed-version WebSphere Application Server cell, you can administer WebSphere MQ resources on

nodes of all versions. However, some properties are not available on all versions. In this situation, the

administrative console displays only the properties of that particular node.

On WebSphere Application Server Version 6.1, it is possible to connect to a WebSphere MQ network for

messaging interaction using a WebSphere MQ Link, a WebSphere MQ server, or by using WebSphere MQ

as an external JMS messaging provider.

For more information about using WebSphere MQ as a messaging provider for WebSphere Application

Server, see the following topics:

v “Installing and configuring WebSphere MQ as a JMS provider” on page 834

v “Listing JMS resources for WebSphere MQ” on page 836

v “Configuring JMS resources for the WebSphere MQ messaging provider” on page 906

M1

Message

JMS destinations

M2
Business logic beans (Enterprise JavaBeans)

M3 M4

D1 D2 D3

CF1 CF2

JMS Provider

Connection
factories

Connections

Destinations

Your_application_server

JMS server

Figure 7. The main JMS components on a version 5 node. This figure shows the main JMS components on a version

5 node, from JMS provider through a connection to a destination, then to a WebSphere enterprise application (acting

as a JMS client) that processes the message retrieved from the destination. For more information, see the text that

accompanies this figure.

Chapter 14. Messaging resources 833

Installing and configuring WebSphere MQ as a JMS provider

If you have a WebSphere MQ messaging infrastructure, you can install and configure it as a JMS provider

to WebSphere Application Server.

If you have a messaging infrastructure based on WebSphere MQ, you can connect directly using the

included support for WebSphere MQ as a JMS provider.

(UNIX platforms only): Before you install WebSphere MQ on a UNIX platform, create and mount a

journalized file system called /var/mqm for your messaging working data. Use a partition strategy with a

separate volume for the WebSphere MQ data. This means that other system activity is not affected if a

large amount of messaging work builds up in /var/mqm. You can also create separate file systems for your

log data (var/mqm/log) and error files (var/mqm/errors). You should store log files on a different physical

volume from the messaging queues (var/mqm). This ensures data integrity in the case of a hardware

failure. If you are creating separate file systems, allow a minimum of 30 MB of storage for /var/mqm, 20

MB of storage for /var/mqm/log, and 4 MB of storage for /var/mqm/errors.

The /var file system is used to store all the security logging information for the system, and is used to

store the temporary files for email and printing. Therefore, it is critical that you maintain free space in /var

for these operations. If you do not create a separate file system for messaging data, and /var fills up, all

security logging will be stopped on the system until some free space is available in /var. Also, email and

printing will no longer be possible until some free space is available in /var.

It is not recommended to install Rational Application Developer and WebSphere Application Server on the

same machine when using WebSphere MQ.

For more information about creating file systems for WebSphere MQ, and WebSphere MQ space

requirements for /var file systems, see the section “Preparing for Installation: Creating WebSphere MQ file

systems” in the appropriate WebSphere MQ Quick Beginnings book.

For other installation prerequisites, see the following WebSphere MQ publications:

v WebSphere MQ for Windows, Quick Beginnings, GC34-6073

v WebSphere MQ for AIX, Quick Beginnings, GC34-6076

v WebSphere MQ for Solaris, Quick Beginnings, GC34-6075

v WebSphere MQ for HP-UX, Quick Beginnings, GC34-6077

v WebSphere MQ for Linux for Intel and Linux for zSeries, Quick Beginnings, GC34-6078

You can get these books from the WebSphere MQ messaging platform-specific books Web page at

http://www-306.ibm.com/software/integration/wmq/library/

To install and configure WebSphere MQ for use as a JMS provider to IBM WebSphere Application Server,

complete the following steps:

1. Install a supported version of WebSphere MQ, with the required MQ features, as described in the

installation instructions provided with WebSphere MQ.

To identify the supported version of WebSphere MQ, see the Detailed system requirements page.

For information about installing WebSphere MQ, or migrating to a supported version of WebSphere

MQ from an earlier version, see the appropriate WebSphere MQ Quick Beginnings book, as listed

above.

(RHEL 3.0 and SLES 8) (RHEL 3.0 and SLES 8) Before installing WebSphere MQ 5.3 on an Intel or

zSeries Linux system using the 2.6 kernel, you must first download FixPack 10 or later (plus any

applicable interim fixes) and follow the software prerequisite instructions at http://www-1.ibm.com/
support/docview.wss?rs=171&uid=swg27006464. Otherwise, you might see a segmentation fault error

when attempting to run the mqlicense.sh -accept command to accept the WebSphere MQ license

agreement. Also, export the following variable: LD_ASSUME_KERNEL=2.4.19

834 Administering applications and their environment

 http://www-306.ibm.com/software/integration/wmq/library/
http://www.ibm.com/support/docview.wss?rs=180&uid=swg27006921
http://www-1.ibm.com/support/docview.wss?rs=171&uid=swg27006464
http://www-1.ibm.com/support/docview.wss?rs=171&uid=swg27006464

v Red Hat Enterprise Linux (RHEL) 3.0 on Intel or s390

v SUSE Linux Enterprise Server (SLES) 8 on Intel

To see the WebSphere MQ V5.3 for Linux for Intel fix pack readme see http://www-1.ibm.com/support/
docview.wss?rs=171&uid=swg27006464

To see the WebSphere MQ V5.3 for Linux for zSeries fix pack readme see http://www-1.ibm.com/
support/docview.wss?rs=171&uid=swg27006464

If request metrics is enabled when using WebSphere MQ V5.3, an exception is issued and request

metrics functions fail. If you use WebSphere MQ V5.3 plus CSD08, no exception is issued; however,

request metrics still fails to record the Java Message Service (JMS) type request information. The

solution is to apply the interim fix for WebSphere MQ V5.3 plus CSD08: Put the JAR files in the

/opt/IBM/WebSphere/AppServer/lib/WMQ/java/lib directory and in the external

websphere_mq_install_root/java/lib directories. For more information about this issue, see the Technote

1192026; for example, at http://www-1.ibm.com/support/docview.wss?rs=0&q1;=1192026
&uid=swg21192026.

2. If you want to use WebSphere MQ - Publish/Subscribe support, you need to provide a

Publish/Subscribe broker.

For example, you can do this by using either WebSphere MQ Event Broker or WebSphere MQ

Integrator (formerly MQSeries Integrator). For more information about these products, see the following

Web sites:

v WebSphere MQ Event Broker Web site at http://www-4.ibm.com/software/ts/mqseries/platforms/
#eventb

v WebSphere MQ Integrator Web site at http://www-4.ibm.com/software/ts/mqseries/platforms/
#integrator

3. Follow the WebSphere MQ instructions for verifying your installation setup.

4.

AIX

For AIX, see the WebSphere MQ readme.txt for additional steps.

5. Set the MQ_INSTALL_ROOT environment variable to the directory where WebSphere MQ is installed.

IBM WebSphere Application Server uses the MQ_INSTALL_ROOT to locate the WebSphere MQ

libraries for the WebSphere MQ JMS Provider.

This task has installed WebSphere MQ for use as a JMS provider for WebSphere Application Server.

You can configure JMS resources to be provided by WebSphere MQ, by using the WebSphere

administrative console to define WebSphere MQ resources.

(UNIX platforms only) Restrict access to the messaging errors directories and logging files, by using the

following commands. This is part of the procedure to secure the directories and log files needed for

WebSphere MQ, as described in Securing messaging directories and log files.

1. For the /var/mqm/errors directory:

chmod 3777 /var/mqm/errors

chown mqm:mqm /var/mqm/errors

touch /var/mqm/errors/AMQERR01.LOG

chown mqm:mqm /var/mqm/errors/AMQERR01.LOG

chmod 666 /var/mqm/errors/AMQERR01.LOG

touch /var/mqm/errors/AMQERR02.LOG

chown mqm:mqm /var/mqm/errors/AMQERR02.LOG

chmod 666 /var/mqm/errors/AMQERR02.LOG

touch /var/mqm/errors/AMQERR03.LOG

chown mqm:mqm /var/mqm/errors/AMQERR03.LOG

chmod 666 /var/mqm/errors/AMQERR03.LOG

2. For the /var/mqm/qmgrs/@SYSTEM/errors directory:

chmod 3777 /var/mqm/qmgrs/@SYSTEM/errors

chown mqm:mqm /var/mqm/qmgrs/@SYSTEM/errors

Chapter 14. Messaging resources 835

http://www-1.ibm.com/support/docview.wss?rs=171 &uid=swg27007110
http://www-1.ibm.com/support/docview.wss?rs=171 &uid=swg27007110
http://www-1.ibm.com/support/docview.wss?rs=171 &uid=swg27007112
http://www-1.ibm.com/support/docview.wss?rs=171 &uid=swg27007112
http://www-1.ibm.com/support/docview.wss?rs=0&q1=1192026&uid=swg21192026
http://www-1.ibm.com/support/docview.wss?rs=0&q1=1192026&uid=swg21192026
http://www-4.ibm.com/software/ts/mqseries/platforms/#eventb
http://www-4.ibm.com/software/ts/mqseries/platforms/#eventb
http://www-4.ibm.com/software/ts/mqseries/platforms/#integrator
http://www-4.ibm.com/software/ts/mqseries/platforms/#integrator

touch /var/mqm/qmgrs/@SYSTEM/errors/AMQERR01.LOG

chown mqm:mqm /var/mqm/qmgrs/@SYSTEM/errors/AMQERR01.LOG

chmod 666 /var/mqm/qmgrs/@SYSTEM/errors/AMQERR01.LOG

touch /var/mqm/qmgrs/@SYSTEM/errors/AMQERR02.LOG

chown mqm:mqm /var/mqm/qmgrs/@SYSTEM/errors/AMQERR02.LOG

chmod 666 /var/mqm/qmgrs/@SYSTEM/errors/AMQERR02.LOG

touch /var/mqm/qmgrs/@SYSTEM/errors/AMQERR03.LOG

chown mqm:mqm /var/mqm/qmgrs/@SYSTEM/errors/AMQERR03.LOG

chmod 666 /var/mqm/qmgrs/@SYSTEM/errors/AMQERR03.LOG

For information about how WebSphere Application Server can interact with a WebSphere MQ network,

using either a WebSphere MQ Link or a WebSphere MQ server, see the following topics:

v ../concepts/cjfp0000_.dita

v ../tasks/tjfp0015_.dita

Listing JMS resources for WebSphere MQ

Use the WebSphere administrative console to list JMS resources for the WebSphere MQ provider, for

administrative purposes.

You use the WebSphere administrative console to list JMS resources, if you want to view, modify or delete

any of the following resources:

v Connection factory (unified)

v Queue connection factory

v Topic connection factory

v Queue

v Topic

v Activation specification

When you use the Administrative Console to locate these resources, two different navigation pathways are

available:

v Provider-centric navigation. This lets you view all providers (or just those for a specified scope if

required), then navigate to a specific resource for a specific provider. This is the traditional way of

navigating to a resource when you know which provider owns it. Any navigation that starts with

Resources → JMS → JMS Providers is provider-centric.

v Resource-centric navigation lets you view all resources of a specified type, then navigate to a resource.

This is useful if you want to find a resource, but you do not know which provider owns it (you can list all

resources of a given type across all scopes, for all providers, in a single panel). Any navigation that

follows the pattern Resources → JMS → [resource], where [resource] is one of the resource types listed

above is resource-centric.

To use provider-centric navigation, for example to navigate to a specified connection factory, complete the

following steps:

1. Start the WebSphere administrative console.

2. In the navigation pane, expand Resources → JMS → JMS Providers. This opens the providers

collection which lists all currently configured providers across all scopes (you can modify the scope if

required).

3. From the providers collection, select the required provider. This opens the configuration tab for that

provider. The configuration tab contains a set of links to all the resources owned by that provider.

4. From the configuration tab, click the link for a resource type, for example the connection factories link.

This opens the connection factories collection which lists all the connection factories for that provider.

5. From the connection factories collection, select the required connection factory. You can now view and

work with the connection factory’s properties

836 Administering applications and their environment

To use resource-centric navigation, for example to navigate to a specified connection factory, complete the

following steps:

1. Start the WebSphere administrative console.

2. In the navigation pane, expand Resources → JMS → Connection factories. This opens the connection

factories collection which lists all the connection factories across all providers.

3. From the connection factories collection, select the required connection factory. You can now view and

work with the connection factory’s properties.

You can use either of these navigation pathways to locate resources of any type.

WebSphere MQ connection factory collection

The unified JMS connection factories configured in the WebSphere MQ messaging provider, for both

point-to-point and publish/subscribe messaging.

This panel shows a list of the WebSphere MQ unified JMS connection factories with a summary of their

configuration properties. In a deployment manager cell, these connection factories are not available for

Version 5 nodes.

This type of connection factory is sometimes called a “unified” or “domain-independent” JMS connection

factory, and supports the JMS 1.1 domain-independent interfaces (referred to as the ″common interfaces″

in the JMS specification). This enables applications to use the same, common, interfaces for both

point-to-point and publish/subscribe messaging. A unified JMS connection factory also supports the

domain-specific (queue and topic) interfaces, as used in JMS 1.0.2, so applications can still use those

interfaces.

To view this page, use the administrative console to complete the following steps:

1. In the navigation pane, expand Resources → JMS Providers → WebSphere MQ.

2. In the content pane, ensure that the scope is set to cell scope or to node or server scope for a Version

6 node.

3. In the content pane, under Additional Resources, click WebSphere MQ connection factories. This

displays a list of any existing JMS queue connection factories.

To define a new connection factory, click New.

To view or change the properties of a queue connection factory, click its name in the list displayed.

To act on one or more of the connection factories listed, select the check boxes next to the names of the

objects that you want to act on, then use the buttons provided.

WebSphere MQ connection factory settings:

Use this panel to view or change the configuration properties of the selected JMS connection factory for

use with WebSphere MQ as a JMS provider. These configuration properties control how connections are

created to associated JMS queues and topics.

 This type of connection factory is sometimes called a “unified” or “domain-independent” JMS connection

factory, and supports the JMS 1.1 domain-independent interfaces (referred to as the ″common interfaces″

in the JMS specification). This enables applications to use the same, common, interfaces for both

point-to-point and publish/subscribe messaging. A unified JMS connection factory also supports the

domain-specific (queue and topic) interfaces, as used in JMS 1.0.2, so applications can still use those

interfaces.

To view this page, use the administrative console to complete the following steps:

1. In the navigation pane, expand Resources → JMS Providers → WebSphere MQ.

2. In the content pane, ensure that the scope is set to cell scope, or to node or server scope for a

Version 6 node.

Chapter 14. Messaging resources 837

3. In the content pane, under Additional Resources, click WebSphere MQ connection factories.

4. Click the name of the JMS connection factory that you want to work with.

A unified JMS connection factory for the WebSphere MQ JMS provider has the following properties.

Note:

v The property values that you specify must match the values that you specified when configuring

WebSphere MQ for JMS resources. For more information about configuring WebSphere MQ JMS

resources, see the WebSphere MQ Using Java book. and the WebSphere MQ System

Administration book, SC33-1873, which are available from the WebSphere MQ messaging

platform-specific books Web page at the IBM Publications Center, or from the WebSphere MQ

collection kit, SK2T-0730.

v In WebSphere MQ, names can have a maximum of 48 characters, with the exception of

channels which have a maximum of 20 characters.

v For more information about setting SSL properties for WebSphere MQ, see the section SSL

properties in the WebSphere MQ Using Java book.

Scope:

Specifies the level to which this resource definition is visible to applications.

 Resources such as messaging providers, namespace bindings, or shared libraries can be defined at

multiple scopes, with resources defined at more specific scopes overriding duplicates which are defined at

more general scopes.

The scope displayed is for information only, and cannot be changed on this panel. If you want to browse

or change this resource (or other resources) at a different scope, change the scope on the messaging

provider settings panel, then click Apply, before clicking the link for the type of resource.

 Data type String

Name:

The name by which this JMS connection factory is known for administrative purposes within IBM

WebSphere Application Server. The name must be unique within the JMS connection factories across the

WebSphere administrative domain.

 Data type String

JNDI name:

The JNDI name that is used to bind the connection factory into the name space.

 As a convention, use the fully qualified JNDI name; for example, in the form jms/Name, where Name is the

logical name of the resource.

This name is used to link the platform binding information. The binding associates the resources defined

by the deployment descriptor of the module to the actual (physical) resources bound into JNDI by the

platform.

 Data type String

Description:

838 Administering applications and their environment

http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi
http://publibfp.boulder.ibm.com/epubs/html/csqzaw11/csqzaw1116.htm#HDRJSSLPR
http://publibfp.boulder.ibm.com/epubs/html/csqzaw11/csqzaw1116.htm#HDRJSSLPR

A description of this connection factory for administrative purposes within IBM WebSphere Application

Server.

 Data type String

Default Null

Category:

A category used to classify or group this connection factory, for your IBM WebSphere Application Server

administrative records.

 Data type String

Authentication mechanism preference:

The authentication mechanism to be used for connections to WebSphere MQ created by this connection

factory.

 If WebSphere MQ is not configured to support the authentication mechanism preference, it is ignored.

 Data type Enum

Default BASIC PASSWORD

Range

BASIC PASSWORD

Authentication is performed based on a user ID

and password provided by an authentication

alias. The authentication alias used is obtained

from one of the following properties:

v Component-managed Authentication Alias, for

application-managed authentication.

v Container-managed Authentication Alias, for

container-managed authentication.

KerbV5

Authentication is performed based on SSL

certificates.

Component-managed authentication alias:

This alias specifies a user ID and password to be used to authenticate connection to a JMS provider for

application-managed authentication.

 This property provides a list of the J2C authentication data entry aliases that have been defined to

WebSphere Application Server. You can select a data entry alias to be used to authenticate the creation of

a new connection to the JMS provider.

If you have enabled security for WebSphere Application Server, select the alias that specifies the user ID

and password used to authenticate the creation of a new connection to the JMS provider. The use of this

alias depends on the resource authentication (res-auth) setting declared in the connection factory resource

reference of an application component’s deployment descriptors.

Restriction:

1. User IDs longer than 12 characters cannot be used for authentication with WebSphere

MQ. For example, the default Windows user ID, Administrator, is not valid because it

contains 13 characters. Therefore, an authentication alias for a WebSphere MQ queue

connection factory must specify a user ID no longer than 12 characters.

Chapter 14. Messaging resources 839

2. If you want to use Bindings transport mode on JMS queue connections to WebSphere

MQ, you set the Transport type property to BINDINGS on the WebSphere MQ Queue

Connection Factory. You must also choose one of the following options:

v To use security credentials, ensure that the user specified is the currently logged on

user for the WebSphere Application Server process. If the user specified is not the

current logged on user for the WebSphere Application Server process, then the

WebSphere MQ JMS Bindings authentication throws the error MQJMS2013 invalid

security authentication supplied for MQQueueManager.

v Do not specify security credentials. On the WebSphere MQ Connection Factory,

ensure that both the Component-managed Authentication Alias and the

Container-managed Authentication Alias properties are not set.

Container-managed authentication alias:

This alias specifies a user ID and password to be used to authenticate connection to a JMS provider for

container-managed authentication.

 This property provides a list of the J2C authentication data entry aliases that have been defined to

WebSphere Application Server. You can select a data entry alias to be used to authenticate the creation of

a new connection to the JMS provider.

If you have enabled security for WebSphere Application Server, select the alias that specifies the user ID

and password used to authenticate the creation of a new connection to the JMS provider. The use of this

alias depends on the resource authentication (res-auth) setting declared in the connection factory resource

reference of an application component’s deployment descriptors.

Restriction:

1. User IDs longer than 12 characters cannot be used for authentication with WebSphere

MQ. For example, the default Windows user ID, Administrator, is not valid because it

contains 13 characters. Therefore, an authentication alias for a WebSphere MQ queue

connection factory must specify a user ID no longer than 12 characters.

2. If you want to use Bindings transport mode on JMS queue connections to WebSphere

MQ, you set the Transport type property to BINDINGS on the WebSphere MQ Queue

Connection Factory. You must also choose one of the following options:

v To use security credentials, ensure that the user specified is the currently logged on

user for the WebSphere Application Server process. If the user specified is not the

current logged on user for the WebSphere Application Server process, then the

WebSphere MQ JMS Bindings authentication throws the error MQJMS2013 invalid

security authentication supplied for MQQueueManager.

v Do not specify security credentials. On the WebSphere MQ Connection Factory,

ensure that both the Component-managed Authentication Alias and the

Container-managed Authentication Alias properties are not set.

Mapping-configuration alias:

The module used to map authentication aliases.

 This field provides a list of the modules that have been configured on the Security → JAAS Configuration

→ Application Logins Configuration property. For more information about the mapping configurations,

see Java Authentication and Authorization service configuration entry settings.

 Data type Enum

Default Null

840 Administering applications and their environment

Range ClientContainer

The client container maps authentication aliases.

WSLogin

The WSLogin module maps authentication

aliases.

DefaultPrincipalMapping

The JAAS configuration maps an authentication

alias to its userid and password.

Manage cached handles:

Whether or not cached handles (held in inst vars in a bean) should be tracked by the container.

 Tracking handles can cause a large performance overhead if used at runtime; however, for debugging

purposes it can be useful to enable handle management.

 Data type Check box

Default Cleared

Range

Cleared

Cached handles are not tracked by the container.

Selected

Cached handles are tracked by the container.

You should select this option only for debugging

purposes, because this can cause a large

performance overhead.

Log missing transaction contexts:

Whether or not the container logs when there is a missing transaction context at the time that a connection

is created.

 Data type Check box

Default Selected

Range

Selected

When a connection is created, any missing

transaction contexts are logged in the activity log.

Cleared

Missing transaction contexts are not logged.

Queue manager:

The name of the WebSphere MQ queue manager for this connection factory. Connections created by this

factory connect to that queue manager.

 Data type String

Default Null

Range A valid WebSphere MQ queue manager name, as 1

through 48 ASCII characters

Host:

The name of the host on which the WebSphere MQ queue manager runs, for client connection only.

Chapter 14. Messaging resources 841

Data type String

Default Null

Range A valid TCP/IP hostname

Port:

The TCP/IP port number used for connection to the WebSphere MQ queue manager, for client connection

only.

 This port must be configured on the WebSphere MQ queue manager.

 Data type Integer

Default Null

Range A valid TCP/IP port number, configured on the WebSphere

MQ queue manager.

Channel:

The name of the channel used for connection to the WebSphere MQ queue manager, for client connection

only.

 Data type String

Default Null

Range 1 through 20 ASCII characters

Transport type:

Specifies whether to use the WebSphere MQ client connection or JNI bindings for connection to the

WebSphere MQ queue manager. WebSphere MQ as the JMS provider controls the communication

protocols between JMS clients and JMS servers. Tune the transport type when you are using non-ASF

nonpersistent, non-durable, non-transactional messaging or when you want to satisfy security issues and

the client is local to the queue manager node.

 Data type Enum

Units Not applicable

Default BINDINGS

Range BINDINGS

JNI bindings are used to connect to the queue

manager. BINDINGS is a shared memory

protocol and can only be used when the queue

manager is on the same node as the JMS client

and comes at some security risks that should be

addressed through the use of EJB roles.

CLIENT

WebSphere MQ client connection is used to

connect to the queue manager. CLIENT is a

typical TCP-based protocol.

Recommended BINDINGS is faster by 30% or more, but it lacks security.

When you have security concerns, CLIENT is more

desirable than BINDINGS.

Model queue definition:

The name of the model queue definition that can be used by the queue manager to create temporary

queues if a queue requested does not already exist.

842 Administering applications and their environment

Data type String

Default Null

Range 1 through 48 ASCII characters

Client ID:

The JMS client identifier used for connections to the WebSphere MQ queue manager.

 Data type String

Default Null

CCSID:

The coded character set identifier for use with the WebSphere MQ queue manager.

 This coded character set identifier (CCSID) must be one of the CCSIDs supported by WebSphere MQ.

The term ’null’ means leave blank; if you do this, a null value is passed and the default WebSphere MQ

CCSID value is used.

 Data type String

Units Integer

Default Null

Range 1 through 65535

For more information about supported CCSIDs, and about converting between message data from one

coded character set to another, see the WebSphere MQ System Administration and the WebSphere MQ

Application Programming Reference books. These are available from the WebSphere MQ messaging

multiplatform and platform-specific books Web pages; for example, at the IBM Publications Center,

http://www-306.ibm.com/software/integration/wmq/library/, or from the WebSphere MQ collection kit,

SK2T-0730.

Enable message retention:

Whether or not unwanted messages are left on the queue. If this option is not enabled, unwanted

messages are dealt with according to their disposition options.

 Data type Check box

Default Cleared

Range Selected

Unwanted messages are left on the queue.

Cleared

Unwanted messages are dealt with according to

their disposition options.

XA enabled:

Specifies whether the connection factory is for XA or non-XA coordination of messages and controls if the

application server uses XA QCF/TCF. Enable XA if multiple resources are not used in the same

transaction.

Chapter 14. Messaging resources 843

http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi
http://www-306.ibm.com/software/integration/wmq/library/

If you clear this property, the JMS session is still enlisted in a transaction, but uses the resource manager

local transaction calls (session.commit and session.rollback) instead of XA calls. This can lead to an

improvement in performance. However, this means that only a single resource can be enlisted in a

transaction in WebSphere Application Server.

Last participant support enables you to enlist one non-XA resource with other XA-capable resources.

 Data type Check box

Units Not applicable

Default Selected (XA enabled)

Range Selected

The connection factory is for XA-coordination of

messages

Cleared

The connection factory is for non-XA coordination

of messages

Recommended Do not enable XA when the message queue received is

the only resource in the transaction. Enable XA when

other resources, including other queues or topics, are

involved.

Enable return methods during shutdown:

Whether or not applications return from a method call if the queue manager has entered a controlled

shutdown.

 Data type Checkbox

Default Selected

Range Selected

Applications return from a method call if the

queue manager has entered a controlled

shutdown.

Cleared

Applications do not return from a method call if

the queue manager has entered a controlled

shutdown.

Local server address:

The range of local ports to be used when making a connection to a WebSphere MQ queue manager

 If a JMS application attempts to connect to a WebSphere MQ queue manager in client mode, a firewall

might allow only those connections that originate from specified ports or a range of ports. In this situation,

you can use this property to specify a port, or a range of points, that the application can bind to.

 Data type String

Default Null

844 Administering applications and their environment

Range A string in the format:

[ip-addr][(low-port[,high-port])]

For example:

v 9.20.4.98

The channel binds to address 9.20.4.98 locally

v 9.20.4.98(1000)

The channel binds to address 9.20.4.98 locally and

uses port 1000

v 9.20.4.98(1000,2000)

The channel binds to address 9.20.4.98 locally and

uses a port in the range 1000 to 2000

v (1000)

The channel binds to port 1000 locally

v (1000,2000)

The channel binds to a port in the range 1000 to 2000

locally

You can specify a host name instead of an IP address.

For direct connections, this property applies only when

multicast is used and the value of the property must not

contain a port number. If it does contain a port number,

the connection is rejected. Therefore, the only valid values

of the property are null, an IP address, or a host name.

Polling interval:

The interval, in milliseconds, between scans of all receivers during asynchronous message delivery

 Data type Integer

Units milliseconds

Default 5000

Range 1 through 2147483647

Rescan interval:

The interval in milliseconds between which a topic is scanned to look for messages that have been added

to a topic out of order.

 This interval controls the scanning for messages that have been added to a topic out of order with respect

to a WebSphere MQ browse cursor.

 Data type Integer

Units milliseconds

Default 5000

Range 1 through 2147483647

SSL cipher suite:

The cipher suite to use for SSL connection to WebSphere MQ.

 Set this property to a valid cipher suite provided by your JSSE provider; it must match the CipherSpec

named on the SVRCONN channel named by the Channel property.

Chapter 14. Messaging resources 845

You must set this property if the SSL Peer Name property is to be set.

SSL CRL:

A list of zero or more Certificate Revocation List (CRL) servers used to check for SSL certificate

revocation. (Use of this property requires a WebSphere MQ JVM at Java 2 version 1.4.)

 The value is a space-delimited list of entries of the form:

ldap://hostname:[port]

optionally followed by a single / (forward slash). If port is omitted, the default LDAP port of 389 is

assumed. At connect-time, the SSL certificate presented by the server is checked against the specified

CRL servers. For more information about CRL security, see the section “Working with Certificate

Revocation Lists” in the WebSphere MQ Security book; for example at: http://publibfp.boulder.ibm.com/
epubs/html/csqzas01/csqzas012w.htm#IDX2254.

SSL peer name:

For SSL, a distinguished name skeleton that must match the name provided by the WebSphere MQ queue

manager. The distinguished name is used to check the identifying certificate presented by the server at

connect-time.

 The SSL Peer Name property is ignored if SSL cipher suite property is not specified.

This property is a list of attribute name and value pairs separated by commas or semicolons. For example:

CN=QMGR.*, OU=IBM, OU=WEBSPHERE

The example given checks the identifying certificate presented by the server at connect-time. For the

connection to succeed, the certificate must have a Common Name beginning QMGR., and must have at

least two Organizational Unit names, the first of which is IBM and the second WEBSPHERE. Checking is

not case-sensitive.

For more details about distinguished names and their use with WebSphere MQ, see the WebSphere MQ

Security book; for example, the section “Distinguished Names” at http://publibfp.boulder.ibm.com/epubs/
html/csqzas01/csqzas010p.htm#HDRDCDN.

Temporary queue prefix:

The prefix that is used for names of temporary JMS queues created by applications that use this

connection factory.

 Data type String

Default Null

Enable MQ connection pooling:

Whether or not to use WebSphere MQ connection pooling.

 Data type Checkbox

Default Selected

846 Administering applications and their environment

http://publibfp.boulder.ibm.com/epubs/html/csqzas01/csqzas012w.htm#IDX2254
http://publibfp.boulder.ibm.com/epubs/html/csqzas01/csqzas012w.htm#IDX2254
http://publibfp.boulder.ibm.com/epubs/html/csqzas01/csqzas010p.htm#HDRDCDN
http://publibfp.boulder.ibm.com/epubs/html/csqzas01/csqzas010p.htm#HDRDCDN

Range

Selected

The connection factory uses

WebSphere MQ connection

pooling. When a connection

is no longer required, instead

of destroying it, it can be

pooled, and later reused.

This can provide a

substantial performance

enhancement for repeated

connections to the same

queue manager.

Cleared

The connection factory does

not use WebSphere MQ

connection pooling. When a

connection is no longer

required, it is destroyed. To

use the same queue

manager a new connection is

created.

Broker control queue:

The name of the publish/subscribe broker’s control queue, to which publisher and subscriber applications

send all command messages (except publications and requests to delete publications).

 Data type String

Default Null

Range 1 through 48 ASCII characters

Broker queue manager:

The name of the WebSphere MQ queue manager that provides the publish/subscribe message broker.

 Data type String

Default Null

Range 1 through 48 ASCII characters

Broker publication queue:

The name of the broker’s input queue (stream queue) that receives all publication messages for the

default stream. Applications can also send requests to delete publications on the default stream to this

queue.

 Data type String

Units En_US ASCII characters

Default Null

Range 1 through 48 ASCII characters

Broker subscription queue:

The name of the broker’s queue from which non-durable subscription messages are retrieved. The

subscriber specifies the name of the queue when it registers a subscription.

 Data type String

Default Null

Range 1 through 48 ASCII characters

Broker CC subscription queue:

Chapter 14. Messaging resources 847

The name of the broker’s queue from which non-durable subscription messages are retrieved for a

ConnectionConsumer. This property applies only for use of the Web container.

 Data type String

Default Null

Range 1 through 48 ASCII characters

Broker version:

Whether the message broker is provided by the WebSphere MQ MA0C Supportpac or newer versions of

WebSphere message broker products.

 Data type Enum

Default Advanced

Range Advanced

The message broker is provided by newer

versions of WebSphere message broker

products, such as WebsSphere MQ Integrator

and Event Broker.

Basic The message broker is provided by the

WebSphere MQ MA0C SupportPac (MQSeries -

Publish/Subscribe) or MQSI working in MA0C

compatibility mode.

Publish/subscribe cleanup level:

The level of cleanup provided by the Publish/subscribe cleanup utility

 To avoid the problems associated with non-graceful closure of subscriber objects, WebSphere MQ as a

JMS provider provides a Publish/Subscribe cleanup utility that attempts to detect any earlier JMS

publish/subscribe problems. If a large number of problems are detected, some performance degradation

may be observed while resources are cleaned up. This utility runs transparently on a background thread

and should not affect other WebSphere MQ operations.

 Data type Enum

Default SAFE

848 Administering applications and their environment

Range

SAFE The Cleanup thread attempts to remove

unconsumed subscription messages, or

temporary queues, for failed subscriptions. This

mode of cleanup does not interfere with the

operation of other JMS applications.

ASPROP

The style of cleanup to use is determined by the

system property com.ibm.mq.jms.cleanup, which

is queried at JVM startup. This property can be

set on the java command-line using the -D

option, and should be set to NONE, SAFE or

STRONG. Any other value causes an exception.

If not set, the property defaults to SAFE. This

allows easy JVM-wide change to the Cleanup

level without needing to update every topic

connection factory used by the system.

NONE In this special mode, no cleanup is performed;

and no cleanup thread exists. Additionally, if the

application is using the single-queue approach,

unconsumed messages can be left on the queue.

 This option can be useful if the application is

distant from the queue manager, and especially if

it only publishes rather than subscribes. However,

some application should perform cleanup on the

queue manager to deal with any unconsumed

messages - this could be a JMS application with

CLEANUP(SAFE) or CLEANUP(STRONG), or

the WebSphere MQ manual cleanup utility.

STRONG

The cleanup thread performs as

CLEANUP(SAFE), but also clears the

SYSTEM.JMS.REPORT.QUEUE of any

unrecognized messages.

Publish/subscribe cleanup interval:

The interval, in milliseconds, between background executions of the publish/subscribe cleanup utility.

 Data type Integer

Default 60000

Range 1 through 2147483647

Message selection:

Whether message selection is done at the broker or client.

 Data type Enum

Default BROKER

Range

BROKER

Message selection is done at the broker.

CLIENT

Message selection is done at the client.

Chapter 14. Messaging resources 849

Publish acknowledgement interval:

The interval, in number of messages, between publish requests that require acknowledgement from the

broker.

 Data type Integer

Default 25

Range 1 through 2147483647

Enable sparse subscriptions:

Select this option to support subscriptions that receive infrequent matching messages.

 Data type Checkbox

Default Cleared

Range

Selected

Subscriptions can receive infrequent matching

messages. This value requires that the

subscription queue can be opened for browse.

Cleared

Sparse subscriptions are not supported.

Subscriptions receive frequent matching

messages.

Publish/subscribe status interval:

The interval, in milliseconds, between transactions to refresh publish/subscribe status.

 Data type Integer

Default 60000

Range 1 through 2147483647

Persistent subscriptions store:

Where WebSphere MQ stores persistent data relating to active JMS subscriptions.

 Data type Enum

Default MIGRATE

850 Administering applications and their environment

Range

MIGRATE

This option dynamically selects the queue-based

or broker-based subscription store based on the

levels of queue manager and publish/subscribe

broker installed. If both queue manager and

broker are capable of supporting

SUBSTORE(BROKER), this behaves as

SUBSTORE(BROKER); otherwise it behaves as

SUBSTORE(QUEUE). Additionally,

SUBSTORE(MIGRATE) transfers durable

subscription information from the queue-based

subscription store to the broker-based store.

QUEUE

Subscription information is stored on

SYSTEM.JMS.ADMIN.QUEUE and

SYSTEM.JMS.PS.STATUS.QUEUE on the local

queue manager.

BROKER

Subscription information is stored by the

publish/subscribe broker used by the application.

This option requires recent levels of queue

manager and publish/subscribe broker. This

subscription store requires recent levels of both

queue manager and publish/subscribe broker. It

is designed to provide improved resilience.

Enable multicast transport:

Whether or not this connection factory uses multicast transport.

 With multicast, messages are delivered to all consumers. This is useful in environments where there are a

large number of clients that all want to receive the same messages, because with multicast only one copy

of each message is sent. Multicast reduces the total amount of network traffic. Reliable multicast is

standard multicast with a reliability layer added.

 Data type Enum

Default NOTUSED

Range

NOTUSED

This connection factory does not use multicast

transport.

ENABLED

This connection factory uses multicast transport,

but does not provide a reliable multicast

connection.

ENABLED_IF_AVAILABLE

This connection factory uses multicast transport if

the message broker supports it.

ENABLED_RELIABLE

This connection factory uses reliable multicast

transport

ENABLED_RELIABLE_IF_AVAILABLE

This connection factory uses reliable multicast

transport if the message broker supports it.

Chapter 14. Messaging resources 851

Enable clone support:

Select this check box to enable clone support to allow the same durable subscription across topic clones.

 Data type check box

Default Cleared

Range Selected

Clone support is enabled.

Cleared

Clone support is disabled.

If you select this property, you must also specify a value for the Client ID property.

Direct broker authentication:

Whether the broker uses basic or certificate-based authentication for direct connections.

 This property selects the authentication on a direct connections (if the TRANSPORT property is set to

DIRECT).

 Data type Enum

Default NONE

Range

NONE Direct broker authentication is not used.

PASSWORD

Password-based authentication is used for direct

connections. Authentication is performed based

on a user ID and password provided by an

authentication alias. The authentication alias

used is obtained from one of the following

properties:

v Component-managed Authentication Alias, for

application-managed authentication.

v Container-managed Authentication Alias, for

container-managed authentication.

CERTIFICATE

Certificate-based authentication is used for direct

connections. The SSLPEERNAME and SSLCRL

properties are used to perform the authentication

checks.

 You can use certificate-based authentication

when connecting directly to a WebSphere

Business Integration Event Broker or WebSphere

Business Integration Message Broker broker.

Proxy host name:

Host name of the Web Scale proxy host.

 A direct connection is made to the proxy server, which forwards the connection request to the message

broker.

If the TRANSPORT property is set to DIRECT, the type of connection to the message broker depends on

the value of this property, according to the following rules:

852 Administering applications and their environment

v If this property is set to the empty string, a direct connection is made to the broker identified by the

HOSTNAME and PORT.

v If this property is set to a value other than the empty string, a direct connection is made to the broker

through the proxy server identified by this property and the PROXYPORT property.

 Data type String

Default Null

Proxy port:

Port number of the Web Scale proxy port.

 A direct connection is made to this port on the proxy server identified by the PROXYHOSTNAME property,

which forwards the connection request to the message broker. For more information, see the description of

the PROXYHOSTNAME property.

 Data type Integer

Default 0

Connection pool:

Specifies an optional set of connection pool settings.

 Connection pool properties are common to all J2C connectors.

The application server pools connections and sessions with the JMS provider to improve performance.

This is independent from any WebSphere MQ connection pooling. You need to configure the connection

and session pool properties appropriately for your applications, otherwise you may not get the connection

and session behavior that you want.

Change the size of the connection pool if concurrent server-side access to the JMS resource exceeds the

default value. The size of the connection pool is set on a per queue or topic basis.

Session pools:

An optional set of session pool settings.

 This link provides a panel of optional connection pool properties, common to all J2C connectors.

The application server pools connections and sessions with the JMS provider to improve performance.

This is independent from any WebSphere MQ connection pooling. You need to configure the connection

and session pool properties appropriately for your applications, otherwise you may not get the connection

and session behavior that you want.

Custom properties:

An optional set of name and value pairs for custom properties passed to WebSphere MQ.

WebSphere MQ Provider connection factory settings for application clients:

Use this panel to view or change the configuration properties of the selected connection factory for use

with the MQSeries product Java Messaging Service (JMS) provider. These configuration properties control

how connections are created to the associated JMS queue destination.

Chapter 14. Messaging resources 853

To view this Application Client Resource Configuration Tool (ACRCT) page, click File > Open. After you

browse for an EAR file, click Open. Expand the selected JAR file > JMS Providers > JMS provider

instance. Right click WebSphere MQ Provider Connection Factories, and click New. The following fields

are displayed on the General tab.

A queue connection factory creates JMS connections to queue destinations. The queue connection factory

is created by the MQSeries product JMS provider. A queue connection factory for the JMS provider has

the following properties.

Note:

v The property values that you specify must match the values that you specified when configuring

MQSeries for JMS resources. For more information about configuring MQSeries product JMS

resources, see the MQSeries Using Java book, located in the WebSphere MQ Family library.

v In MQSeries, names can have a maximum of 48 characters, with the exception of channels

which have a maximum of 20 characters.

Name:

The required display name for the resource.

 Data type String

Description:

A description of this connection factory for administrative purposes within IBM WebSphere Application

Server.

 Data type String

Default Null

JNDI Name:

The application client run time uses this field to retrieve configuration information. The name must match

the value of the Name field on the General tab in the Application Client Resource Reference section of the

Assembly Tool.

User:

The user ID used, with the Password property, for authentication if the calling application does not provide

a userid and password explicitly.

 If you specify a value for the User ID property, you must also specify a value for the Password property.

The connection factory User ID and Password properties are used if the calling application does not

provide a userid and password explicitly; for example, if the calling application uses the method

createQueueConnection(). The JMS client flows the userid and password to the JMS server.

 Data type String

Password:

The password used, with the User ID property, for authentication if the calling application does not provide

a userid and password explicitly.

854 Administering applications and their environment

http://www-1.ibm.com/support/docview.wss?uid=swg27007065

If you specify a value for the User ID property, you must also specify a value for the Password property.

 Data type String

Default Null

Re-Enter Password:

Confirms the password.

Queue Manager:

The name of the MQSeries queue manager for this connection factory.

 Connections created by this factory connect to that queue manager.

 Data type String

Host:

The name of the host on which the WebSphere MQ queue manager runs for client connection only.

 Data type String

Default Null

Range A valid TCP/IP host name

Port:

The TCP/IP port number used for connection to the WebSphere MQ queue manager, for client connection

only.

 This port must be configured on the WebSphere MQ queue manager.

 Data type Integer

Default Null

Range A valid TCP/IP port number, configured on the WebSphere

MQ queue manager.

Channel:

The name of the channel used for connection to the WebSphere MQ queue manager, for client connection

only.

 Data type String

Default Null

Range 1 through 20 ASCII characters

Transport type:

Specifies whether the WebSphere MQ client connection or JNI bindings are used for connection to the

WebSphere MQ queue manager. The external JMS provider controls the communication protocols

between JMS clients and JMS servers. Tune the transport type when you are using non-ASF

nonpersistent, nondurable, nontransactional messaging or when you want to satisfy security issues and

the client is local to the queue manager node.

Chapter 14. Messaging resources 855

Data type String

Default BINDINGS

Range BINDINGS

JNI bindings are used to connect to the queue

manager. BINDINGS is a shared memory

protocol and can only be used when the queue

manager is on the same node as the JMS client

and poses security risks that should be

addressed through the use of EJB roles.

CLIENT

WebSphere MQ client connection is used to

connect to the queue manager. CLIENT is a

typical TCP-based protocol.

DIRECT

For WebSphere MQ Event Broker using DIRECT

mode. DIRECT is a lightweight sockets protocol

used in nontransactional, nondurable and

nonpersistent Publish/Subscribe messaging.

DIRECT is only works for clients and

message-driven beans using the non-ASF

protocol.

Recommended DIRECT is the fastest transport type and should be used

where possible. Use BINDINGS when you want to satisfy

additional security tasks and the queue manager is local

to the JMS client.

WebSphere MQ 5.3 before CSD2 with the DIRECT setting

can lose messages when used with message-driven

beans and under load. This also happens with client-side

based applications unless the broker’s

maxClientQueueSize is set to 0. You can set this to 0 with

the command

#wempschangeproperties WAS_nodeName_server1

-e default

-o DynamicSubscriptionEngine

-n maxClientQueueSize

-v 0

-x executionGroupUUID

You can locate executionGroupUUID by starting the broker

and looking in the Event Log/Applications for event 2201.

This value is usually ffffffff-0000-0000-000000000000.

Note: The WebSphere MQ 5.3 JMS cannot be used

within WAS 6.1 because WAS 6.1 has a Java 5 runtime.

Therefore, cross-memory connections cannot be

established with WebSphere MQ 5.3 queue managers.

This can result in a performance degradation if you were

previously using WebSphere MQ 5.3 and BINDINGS for

your connections and move to CLIENT network

connections in migrating to WAS 6.1.

Client ID:

The JMS client identifier used for connections to the MQSeries queue manager.

 Data type String

CCSID:

856 Administering applications and their environment

The coded character set identifier for use with the WebSphere MQ queue manager.

 This coded character set identifier (CCSID) must be one of the CCSIDs supported by WebSphere MQ.

 Data type String

For more information about supported CCSIDs, and about converting between message data from one

coded character set to another, see the WebSphere MQ System Administration and the WebSphere MQ

Application Programming Reference books. These references are available from the WebSphere MQ

messaging multiplatform and platform-specific books Web pages; for example, at http://www-3.ibm.com/
software/ts/mqseries/library/manualsa/manuals/platspecific.html, the IBM Publications Center, or from the

WebSphere MQ collection kit, SK2T-0730.

Message Retention:

Select this check box to specify that unwanted messages are to be left on the queue. Otherwise,

unwanted messages are handled according to their disposition options.

 Data type Enum

Units Not applicable

Default Cleared

Range Selected

Unwanted messages are left on the queue.

Cleared

Unwanted messages are handled according to

their disposition options.

Temporary model:

The name of the model definition used to create temporary connection factories if a connection factory

does not already exist.

 Data type String

Range 1 through 48 ASCII characters

Temporary queue prefix:

The prefix used for dynamic queue naming.

 Data type String

Broker Control Queue:

The name of the broker control queue to which all command messages (except publications and requests

to delete publications) are sent.

 Data type String

Units En_US ASCII characters

Range 1 through 48 ASCII characters

Broker Queue Manager:

The name of the MQSeries queue manager that provides the Publisher and Subscriber message broker.

Chapter 14. Messaging resources 857

http://www-3.ibm.com/software/ts/mqseries/library/manualsa/manuals/crosslatest.html
http://www-3.ibm.com/software/ts/mqseries/library/manualsa/manuals/crosslatest.html
http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi

Data type String

Units En_US ASCII characters

Range 1 through 48 ASCII characters

Broker Pub Queue:

The name of the broker input queue that receives all publication messages for the default stream

 The name of the broker’s input queue (stream queue) that receives all publication messages for the

default stream. Applications can also send requests to delete publications on the default stream to this

queue.

 Data type String

Units En_US ASCII characters

Range 1 through 48 ASCII characters

Broker Sub Queue:

The name of the broker queue from which nondurable subscription messages are retrieved.

 The name of the broker queue from which nondurable subscription messages are retrieved. The

subscriber specifies the name of the queue when it registers a subscription.

 Data type String

Units En_US ASCII characters

Range 1 through 48 ASCII characters

Broker CCSubQ:

The name of the broker queue from which nondurable subscription messages are retrieved for a

ConnectionConsumer request. This property applies only for use of the Web container.

 Data type String

Units En_US ASCII characters

Range 1 through 48 ASCII characters

Broker Version:

Specifies whether the message broker is provided by the MQSeries MA0C SupportPac or newer versions

of WebSphere family message broker products.

 Data type Enum

Default Advanced

Range Advanced

The message broker is provided by newer

versions of WebSphere family message broker

products (MQ Integrator and MQ Publish and

Subscribe)

Basic The message broker is provided by the

MQSeries MA0C SupportPac (MQSeries -

Publish and Subscribe)

Cleanup level:

858 Administering applications and their environment

Specifies the level of cleanup provided by the Publish/Subscribe cleanup utility.

 Data type Enum

Default SAFE

Range ASPROP

NONE

STRONG

Cleanup interval:

Specifies the interval, in milliseconds, between background executions of the publish/subscribe cleanup

utility.

 Data type Integer

Units Milliseconds

Default 6000

Range

Message selection:

Specifies where Broker message selection is performed.

 Data type Enum

Default BROKER

Range

BROKER

Message selection is done at the broker location.

Message CLIENT

Message selection is done at the client location.

Publish acknowledge interval:

The interval, in number of messages, between publish requests that require acknowledgement from the

broker.

 Data type Integer

Default 25

Range

Sparse subscriptions:

Enables sparse subscriptions.

 Data type Check box

Default Deselected

Status refresh interval:

The interval, in milliseconds, between transactions to refresh publish or subscribe status.

 Data type Integer

Chapter 14. Messaging resources 859

Default 6000

Subscription store:

Specifies where WebSphere MQ stores data relating to active JMS subscriptions.

 Data type Enum

Default MIGRATE

Range

MIGRATE

QUEUE

BROKER

Multicast:

Specifies whether this connection factory uses multicast transport.

 Data type Enum

Default AS_CF

Range

AS_CF This connection factory uses multicast transport.

DISABLED

This connection factory does not use multicast

transport.

NOT_RELIABLE

This connection factory always uses multicast

transport.

RELIABLE

This connection factory uses multicast transport

when the topic destination is not relable.

ENABLED

This connection factory uses reliable multicast

transport.

Direct authentication:

Specifies whether to use direct broker authorization.

 Data type Enum

Default NONE

Range

NONE Direct broker authorization is not used.

PASSWORD

Direct broker authorization is authenticated with a

password.

CERTIFICATE

Direct broker authorization is authenticated with a

certificates.

Proxy host name:

Specifies the host name of a proxy to be used for communication with WebSphere MQ.

860 Administering applications and their environment

Data type String

Range

Proxy port:

Specifies the port number of a proxy to be used for communication with WebSphere MQ.

 Data type Integer

Default 0

Range

Fail if quiesce:

Specifies whether applications return from a method call if the queue manager has entered a controlled

failure.

 Data type Check box

Default Selected

Local server address:

Specifies the local server address.

 Data type String

Polling interval:

Specifies the interval, in milliseconds, between scans of all receivers during asynchronous message

delivery

 Data type Integer

Units Milliseconds

Default 5000

Range

Rescan interval:

Specifies the interval in milliseconds between which a topic is scanned to look for messages that have

been added to a topic out of order.

 This interval controls the scanning for messages that have been added to a topic out of order with respect

to a WebSphere MQ browse cursor.

 Data type Integer

Units Milliseconds

Default 5000

Range

SSL cipher suite:

Specifies the cipher suite to use for SSL connection to WebSphere MQ.

Chapter 14. Messaging resources 861

Set this property to a valid cipher suite provided by your JSSE provider. The value must match the

CipherSpec specified on the SVRCONN channel as the Channel property.

You must set this property, if you set the SSL Peer Name property.

SSL certificate store:

Specifies a list of zero or more Certificate Revocation List (CRL) servers used to check for SSL certificate

revocation. If you specify a value for this property, you must use WebSphere MQ JVM at Java 2 version

1.4.

 The value is a space-delimited list of entries of the form:

ldap://hostname:[port]

A single slash (/) follows this value. If port is omitted, the default LDAP port of 389 is assumed. At

connect-time, the SSL certificate presented by the server is checked against the specified CRL servers.

For more information about CRL security, see the section “Working with Certificate Revocation Lists” in the

WebSphere MQ Security book; for example at: http://publibfp.boulder.ibm.com/epubs/html/csqzas01/
csqzas012w.htm#IDX2254.

SSL peer name:

For SSL, a distinguished name skeleton that must match the name provided by the WebSphere MQ queue

manager. The distinguished name is used to check the identifying certificate presented by the server at

connection time.

 If this property is not set, such certificate checking is performed.

The SSL peer name property is ignored if SSL Cipher Suite property is not specified.

This property is a list of attribute name and value pairs separated by commas or semicolons. For example:

CN=QMGR.*, OU=IBM, OU=WEBSPHERE

The example given checks the identifying certificate presented by the server at connect-time. For the

connection to succeed, the certificate must have a Common Name beginning QMGR., and must have at

least two Organizational Unit names, the first of which is IBM and the second WEBSPHERE. Checking is

not case-sensitive.

For more details about distinguished names and their use with WebSphere MQ, see the section

“Distinguished Names” in the WebSphere MQ Security book.

Connection pool:

Specifies an optional set of connection pool settings.

 Connection pool properties are common to all J2C connectors.

The application server pools connections and sessions with the JMS provider to improve performance.

This is independent from any WebSphere MQ connection pooling. You need to configure the connection

and session pool properties appropriately for your applications, otherwise you may not get the connection

and session behavior that you want.

Change the size of the connection pool if concurrent server-side access to the JMS resource exceeds the

default value. The size of the connection pool is set on a per queue or topic basis.

 Data type Check box

862 Administering applications and their environment

http://publibfp.boulder.ibm.com/epubs/html/csqzas01/csqzas012w.htm
http://publibfp.boulder.ibm.com/epubs/html/csqzas01/csqzas012w.htm
http://publibfp.boulder.ibm.com/epubs/html/csqzas01/csqzas010p.htm

Default Selected

WebSphere MQ queue connection factory collection

The queue connection factories configured in the WebSphere MQ messaging provider, for point-to-point

messaging with JMS queues.

This panel shows a list of the WebSphere MQ queue connection factories with a summary of their

configuration properties.

To view this page, use the administrative console to complete the following steps:

1. In the navigation pane, expand Resources → JMS Providers → WebSphere MQ.

2. If appropriate, in the content pane, change the scope of the WebSphere MQ messaging provider. If the

scope is set to node or server scope for a Version 5 node, the administrative console presents the

subset of resources and properties that are applicable to WebSphere Application Server Version 5.

3. In the content pane, under Additional Resources, click WebSphere MQ Queue Connection Factory.

This displays a list of any existing JMS queue connection factories.

To view or change the properties of a queue connection factory, click its name in the list displayed.

To act on one or more of the connection factories listed, select the check boxes next to the names of the

objects that you want to act on, then use the buttons provided.

WebSphere MQ queue connection factory settings:

Use this panel to view or change the configuration properties of the selected queue connection factory for

use with the WebSphere MQ JMS provider. These configuration properties control how connections are

created to the associated JMS queue destination.

 A WebSphere MQ queue connection factory is used to create JMS connections to queues provided by

WebSphere MQ for point-to-point messaging.

To view this page, use the administrative console to complete the following steps:

1. In the navigation pane, expand Resources → JMS Providers → WebSphere MQ.

2. If appropriate, in the content pane, change the scope of the WebSphere MQ messaging provider. If the

scope is set to node or server scope for a Version 5 node, the administrative console presents the

subset of resources and properties that are applicable to WebSphere Application Server Version 5.

3. In the content pane, under Additional Resources, click WebSphere MQ Queue Connection Factories.

This displays a list of any existing JMS queue connection factories.

4. Click the name of the JMS connection factory that you want to work with.

A queue connection factory for the WebSphere MQ JMS provider has the following properties.

Note:

v The property values that you specify must match the values that you specified when configuring

WebSphere MQ for JMS resources. For more information about configuring WebSphere MQ for

JMS resources, see the WebSphere MQ Using Java book. and the WebSphere MQ System

Administration book, SC33-1873, which are available from the WebSphere MQ messaging

platform-specific books Web page at: http://www-306.ibm.com/software/integration/wmq/library/,

the IBM Publications Center, or from the WebSphere MQ collection kit, SK2T-0730.

v In WebSphere MQ, names can have a maximum of 48 characters, with the exception of

channels which have a maximum of 20 characters.

Scope:

Specifies the level to which this resource definition is visible to applications.

Chapter 14. Messaging resources 863

http://www-306.ibm.com/software/integration/wmq/library/
http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi

Resources such as messaging providers, namespace bindings, or shared libraries can be defined at

multiple scopes, with resources defined at more specific scopes overriding duplicates which are defined at

more general scopes.

The scope displayed is for information only, and cannot be changed on this panel. If you want to browse

or change this resource (or other resources) at a different scope, change the scope on the messaging

provider settings panel, then click Apply, before clicking the link for the type of resource.

 Data type String

Name:

The name by which this queue connection factory is known for administrative purposes within IBM

WebSphere Application Server.

 Data type String

JNDI name:

The JNDI name that is used to bind the connection factory into the name space.

 As a convention, use the fully qualified JNDI name; for example, in the form jms/Name, where Name is the

logical name of the resource.

This name is used to link the platform binding information. The binding associates the resources defined

by the deployment descriptor of the module to the actual (physical) resources bound into JNDI by the

platform.

 Data type String

Description:

A description of this connection factory for administrative purposes within IBM WebSphere Application

Server.

 Data type String

Default Null

Category:

A category used to classify or group this connection factory, for your IBM WebSphere Application Server

administrative records.

 Data type String

Component-managed authentication alias:

This alias specifies a user ID and password to be used to authenticate connection to a JMS provider for

application-managed authentication.

 This property provides a list of the J2C authentication data entry aliases that have been defined to

WebSphere Application Server. You can select a data entry alias to be used to authenticate the creation of

a new connection to the JMS provider.

864 Administering applications and their environment

If you have enabled security for WebSphere Application Server, select the alias that specifies the user ID

and password used to authenticate the creation of a new connection to the JMS provider. The use of this

alias depends on the resource authentication (res-auth) setting declared in the connection factory resource

reference of an application component’s deployment descriptors.

Restriction:

1. User IDs longer than 12 characters cannot be used for authentication with WebSphere

MQ. For example, the default Windows user ID, Administrator, is not valid because it

contains 13 characters. Therefore, an authentication alias for a WebSphere MQ queue

connection factory must specify a user ID no longer than 12 characters.

2. If you want to use Bindings transport mode on JMS queue connections to WebSphere

MQ, you set the Transport type property to BINDINGS on the WebSphere MQ Queue

Connection Factory. You must also choose one of the following options:

v To use security credentials, ensure that the user specified is the currently logged on

user for the WebSphere Application Server process. If the user specified is not the

current logged on user for the WebSphere Application Server process, then the

WebSphere MQ JMS Bindings authentication throws the error MQJMS2013 invalid

security authentication supplied for MQQueueManager.

v Do not specify security credentials. On the WebSphere MQ Connection Factory,

ensure that both the Component-managed Authentication Alias and the

Container-managed Authentication Alias properties are not set.

Container-managed authentication alias:

This alias specifies a user ID and password to be used to authenticate connection to a JMS provider for

container-managed authentication.

 This property provides a list of the J2C authentication data entry aliases that have been defined to

WebSphere Application Server. You can select a data entry alias to be used to authenticate the creation of

a new connection to the JMS provider.

If you have enabled security for WebSphere Application Server, select the alias that specifies the user ID

and password used to authenticate the creation of a new connection to the JMS provider. The use of this

alias depends on the resource authentication (res-auth) setting declared in the connection factory resource

reference of an application component’s deployment descriptors.

Restriction:

1. User IDs longer than 12 characters cannot be used for authentication with WebSphere

MQ. For example, the default Windows user ID, Administrator, is not valid because it

contains 13 characters. Therefore, an authentication alias for a WebSphere MQ queue

connection factory must specify a user ID no longer than 12 characters.

2. If you want to use Bindings transport mode on JMS queue connections to WebSphere

MQ, you set the Transport type property to BINDINGS on the WebSphere MQ Queue

Connection Factory. You must also choose one of the following options:

v To use security credentials, ensure that the user specified is the currently logged on

user for the WebSphere Application Server process. If the user specified is not the

current logged on user for the WebSphere Application Server process, then the

WebSphere MQ JMS Bindings authentication throws the error MQJMS2013 invalid

security authentication supplied for MQQueueManager.

v Do not specify security credentials. On the WebSphere MQ Connection Factory,

ensure that both the Component-managed Authentication Alias and the

Container-managed Authentication Alias properties are not set.

Mapping-configuration alias:

Chapter 14. Messaging resources 865

The module used to map authentication aliases.

 This field provides a list of the modules that have been configured on the Security → JAAS Configuration

→ Application Logins Configuration property. For more information about the mapping configurations,

see Java Authentication and Authorization service configuration entry settings.

 Data type Enum

Default Null

Range ClientContainer

The client container maps authentication aliases.

WSLogin

The WSLogin module maps authentication

aliases.

DefaultPrincipalMapping

The JAAS configuration maps an authentication

alias to its userid and password.

Host:

The name of the host on which the WebSphere MQ queue manager runs, for client connection only.

 Data type String

Default Null

Range A valid TCP/IP hostname

Port:

The TCP/IP port number used for connection to the WebSphere MQ queue manager, for client connection

only.

 This port must be configured on the WebSphere MQ queue manager.

 Data type Integer

Default 0

Range A valid TCP/IP port number, configured on the WebSphere

MQ queue manager.

Transport type:

Whether the WebSphere MQ client connection or JNI bindings are used for connection to the WebSphere

MQ queue manager.

 WebSphere MQ, as the messaging provider, controls the communication protocols between JMS clients

and JMS servers. Tune the transport type when you are using non-ASF non-persistent, non-durable,

non-transactional messaging or when you want to satisfy security issues and the client is local to the

queue manager node.

 Data type Enum

Units Not applicable

Default BINDINGS

866 Administering applications and their environment

Range BINDINGS

JNI bindings are used to connect to the queue

manager. BINDINGS is a shared memory

protocol that can be used only when the queue

manager is on the same node as the JMS client

and comes at some security risks that should be

addressed through the use of EJB roles.

CLIENT

WebSphere MQ client connection is used to

connect to the queue manager. CLIENT is a

typical TCP-based protocol.

Recommended Bindings-mode offers best performance but the

SYSTEM.DEF.SVRCONN must be disabled by specifying

an invalid MCAUSER user ID. No other configuration is

required.

Client mode uses SSL-encrypted MQI channels and

certificate-based authentication using SSLPEER, and the

queue manager can be located on a remote server. SSL

configuration (such as certificate management) is required

between WebSphere Application Server and WebSphere

MQ, and J2C authentication aliases are also required.

Unless WebSphere MQ cannot be installed on the same

machine as the application server, bindings mode is the

logical choice. However, client mode is enabled by default

so it is still necessary to disable the

SYSTEM.DEF.SVRCONN channel to prevent

unauthorized client access. If the MCAUSER attribute of

the SYSTEM.DEF.SVRCONN channel specifies an invalid

user ID, authorization is denied for all client mode access.

For additional information, see:

http://www-128.ibm.com/developerworks/ibm/library/i-supply1i/

Channel:

The name of the channel used for connection to the WebSphere MQ queue manager, for client connection

only.

 Data type String

Default Null

Range 1 through 20 ASCII characters

Queue manager:

The name of the WebSphere MQ queue manager for this connection factory. Connections created by this

factory connect to that queue manager.

 Data type String

Default Null

Range A valid WebSphere MQ queue manager name, as 1

through 48 ASCII characters

Model queue definition:

Chapter 14. Messaging resources 867

The name of the model queue definition that can be used by the queue manager to create temporary

queues if a queue requested does not already exist.

 Data type String

Default Null

Range 1 through 48 ASCII characters

Client ID:

The JMS client identifier used for connections to WebSphere MQ.

 Data type String

Range A valid JMS client ID, as ASCII characters

CCSID:

The coded character set identifier for use with the WebSphere MQ queue manager.

 This coded character set identifier (CCSID) must be one of the CCSIDs supported by WebSphere MQ.

The term ’null’ means leave blank; if you do this, a null value is passed and the default WebSphere MQ

CCSID value is used.

 Data type String

Units Integer

Default Null

Range 1 through 65535

For more information about supported CCSIDs, and about converting between message data from one

coded character set to another, see the WebSphere MQ System Administration and the WebSphere MQ

Application Programming Reference books. These are available from the WebSphere MQ messaging

multi-platform and platform-specific books Web pages; for example, at http://www-306.ibm.com/software/
integration/wmq/library/, the IBM Publications Center, or from the WebSphere MQ collection kit,

SK2T-0730.

Enable message retention:

Whether or not unwanted messages are left on the queue. If this option is not enabled, unwanted

messages are dealt with according to their disposition options.

 Data type Enum

Default Selected

Range Selected

Unwanted messages are left on the queue.

Cleared

Unwanted messages are dealt with according to

their disposition options.

XA enabled:

Specifies whether the connection factory is for XA or non-XA coordination of messages and controls if the

application server uses XA. Enable XA if multiple resources are used in the same transaction.

868 Administering applications and their environment

http://www-306.ibm.com/software/integration/wmq/library/
http://www-306.ibm.com/software/integration/wmq/library/
http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi

If you clear this property (non-XA), the JMS session is still enlisted in a transaction, but uses the resource

manager local transaction calls (session.commit and session.rollback) instead of XA calls. This can lead to

an improvement in performance. However, this means that only a single resource can be enlisted in a

transaction in WebSphere Application Server.

Last participant support enables you to enlist one non-XA resource with other XA-capable resources.

 Data type Checkbox

Default Selected

Range Selected

The connection factory is for XA-coordination of

messages

Cleared

The connection factory is for non-XA coordination

of messages

Recommended Do not select to enable XA when the message queue

received is the only resource in the transaction. Enable

XA if transactions involve other resources, including other

queues or topics.

Enable return methods during shutdown:

Whether or not applications return from a method call if the queue manager has entered a controlled

shutdown.

 Data type Checkbox

Default Selected

Range Selected

Applications return from a method call if the

queue manager has entered a controlled

shutdown.

Cleared

Applications do not return from a method call if

the queue manager has entered a controlled

shutdown.

Local server address:

The local server address

 If a JMS application attempts to connect to a WebSphere MQ queue manager in client mode, a firewall

might allow only those connections that originate from specified ports or a range of ports. In this situation,

you can use this property to specify a port, or a range of points, that the application can bind to.

 Data type String

Default Null

Chapter 14. Messaging resources 869

Range A string in the format:

[ip-addr][(low-port[,high-port])]

For example:

v 9.20.4.98

The channel binds to address 9.20.4.98 locally

v 9.20.4.98(1000)

The channel binds to address 9.20.4.98 locally and

uses port 1000

v 9.20.4.98(1000,2000)

The channel binds to address 9.20.4.98 locally and

uses a port in the range 1000 to 2000

v (1000)

The channel binds to port 1000 locally

v (1000,2000)

The channel binds to a port in the range 1000 to 2000

locally

You can specify a host name instead of an IP address.

For direct connections, this property applies only when

multicast is used and the value of the property must not

contain a port number. If it does contain a port number,

the connection is rejected. Therefore, the only valid values

of the property are null, an IP address, or a host name.

Polling interval:

The interval, in milliseconds, between scans of all receivers during asynchronous message delivery

 Data type Integer

Units milliseconds

Default 5000

Range 1 through 2147483647

Rescan interval:

The interval in milliseconds between which a queue is scanned to look for messages that have been

added to a queue out of order.

 This interval controls the scanning for messages that have been added to a queue out of order with

respect to a WebSphere WebSphere MQ browse cursor.

 Data type Integer

Units milliseconds

Default 5000

Range 1 through 2147483647

SSL Cipher Suite:

The cipher suite to use for SSL connection to WebSphere MQ.

 Set this property to a valid cipher suite provided by your JSSE provider; it must match the CipherSpec

named on the SVRCONN channel named by the Channel property.

870 Administering applications and their environment

You must set this property if the SSL Peer Name property is to be set.

SSL CRL:

A list of zero or more Certificate Revocation List (CRL) servers used to check for SSL certificate

revocation. (Use of this property requires a WebSphere MQ JVM at Java 2 version 1.4.)

 The value is a space-delimited list of entries of the form:

ldap://hostname:[port]

optionally followed by a single / (forward slash). If port is omitted, the default LDAP port of 389 is

assumed. At connect-time, the SSL certificate presented by the server is checked against the specified

CRL servers. For more information about CRL security, see the section “Working with Certificate

Revocation Lists” in the WebSphere MQ Security book; for example at: http://publibfp.boulder.ibm.com/
epubs/html/csqzas01/csqzas012w.htm#IDX2254.

SSL Peer Name:

For SSL, a distinguished name skeleton that must match the name provided by the WebSphere MQ queue

manager. The distinguished name is used to check the identifying certificate presented by the server at

connect-time.

 The SSL Peer Name property is ignored if SSL Cipher Suite property is not specified.

This property is a list of attribute name and value pairs separated by commas or semicolons. For example:

CN=QMGR.*, OU=IBM, OU=WEBSPHERE

The example given checks the identifying certificate presented by the server at connect-time. For the

connection to succeed, the certificate must have a Common Name beginning QMGR., and must have at

least two Organizational Unit names, the first of which is IBM and the second WEBSPHERE. Checking is

not case-sensitive.

For more details about distinguished names and their use with WebSphere MQ, see the WebSphere MQ

Security book at http://www-306.ibm.com/software/integration/wmq/library/.

Temporary queue prefix:

The prefix that is used for names of temporary JMS queues created by applications that use this

connection factory.

 Data type String

Default Null

Use connection pooling:

Whether or not to use WebSphere MQ connection pooling.

 Data type Checkbox

Default Selected

Chapter 14. Messaging resources 871

http://publibfp.boulder.ibm.com/epubs/html/csqzas01/csqzas012w.htm#IDX2254
http://publibfp.boulder.ibm.com/epubs/html/csqzas01/csqzas012w.htm#IDX2254
http://www-306.ibm.com/software/integration/wmq/library/

Range

Selected

The connection factory uses

WebSphere MQ connection

pooling. When a connection

is no longer required, instead

of destroying it, it can be

pooled, and later reused.

This can provide a

substantial performance

enhancement for repeated

connections to the same

queue manager.

Cleared

The connection factory does

not use WebSphere MQ

connection pooling. When a

connection is no longer

required, it is destroyed. To

use the same queue

manager a new connection is

created.

Connection pool:

An optional set of connection pool settings.

 Connection pool properties are common to all J2C connectors.

The application server pools connections and sessions with the JMS provider to improve performance.

This is independent from any WebSphere MQ connection pooling. You need to configure the connection

and session pool properties appropriately for your applications, otherwise you may not get the connection

and session behavior that you want.

Change the size of the connection pool if concurrent server-side access to the JMS resource exceeds the

default value. The size of the connection pool is set on a per queue or topic basis.

Session pool:

An optional set of session pool settings.

 This link provides a panel of optional connection pool properties, common to all J2C connectors.

The application server pools connections and sessions with the JMS provider to improve performance.

This is independent from any WebSphere MQ connection pooling. You need to configure the connection

and session pool properties appropriately for your applications, otherwise you may not get the connection

and session behavior that you want.

WebSphere MQ topic connection factory collection

The topic connection factories configured in the WebSphere MQ messaging provider for publish/subscribe

messaging with JMS topics.

This panel shows a list of the WebSphere MQ topic connection factories with a summary of their

configuration properties.

To view this administrative console page, use the administrative console to complete the following steps:

1. In the navigation pane, expand Resources → JMS Providers → WebSphere MQ.

2. If appropriate, in the content pane, change the scope of the WebSphere MQ messaging provider. If the

scope is set to node or server scope for a Version 5 node, the administrative console presents the

subset of resources and properties that are applicable to WebSphere Application Server Version 5.

3. In the content pane, under Additional Resources, click WebSphere MQ Topic Connection Factory.

This displays a list of any existing queue connection factories.

To view or change the properties of a connection factory, click its name in the list displayed.

872 Administering applications and their environment

To act on one or more of the connection factories listed, select the check boxes next to the names of the

objects that you want to act on, then use the buttons provided.

WebSphere MQ topic connection factory settings:

Use this panel to view or change the configuration properties of the selected topic connection factory for

use with the WebSphere MQ as a JMS provider. These configuration properties control how connections

are created to the associated JMS topic destination.

 A WebSphere MQ topic connection factory is used to create JMS connections to topic destinations

provided by WebSphere MQ for publish/subscribe messaging.

To view this page, use the administrative console to complete the following steps:

1. In the navigation pane, expand Resources → JMS Providers → WebSphere MQ.

2. If appropriate, in the content pane, change the scope of the WebSphere MQ messaging provider. If the

scope is set to node or server scope for a Version 5 node, the administrative console presents the

subset of resources and properties that are applicable to WebSphere Application Server Version 5.

3. In the content pane, under Additional Resources, click WebSphere MQ Topic Connection Factories.

This displays a list of any existing JMS topic connection factories.

4. Click the name of the JMS connection factory that you want to work with.

A WebSphere MQ topic connection factory has the following properties.

Note:

v The property values that you specify must match the values that you specified when configuring

WebSphere MQ for JMS resources. For more information about configuring WebSphere MQ for

JMS resources, see the WebSphere MQ Using Java book.

v In WebSphere MQ, names can have a maximum of 48 characters, with the exception of

channels which have a maximum of 20 characters.

v For more information about setting the SSL properties for WebSphere MQ, see the section SSL

properties in the WebSphere MQ Using Java book at http://www-306.ibm.com/software/
integration/wmq/library/

Scope:

Specifies the level to which this resource definition is visible to applications.

 Resources such as messaging providers, namespace bindings, or shared libraries can be defined at

multiple scopes, with resources defined at more specific scopes overriding duplicates which are defined at

more general scopes.

The scope displayed is for information only, and cannot be changed on this panel. If you want to browse

or change this resource (or other resources) at a different scope, change the scope on the messaging

provider settings panel, then click Apply, before clicking the link for the type of resource.

 Data type String

Name:

The name by which this topic connection factory is known for administrative purposes within IBM

WebSphere Application Server.

 Data type String

JNDI name:

Chapter 14. Messaging resources 873

http://publibfp.boulder.ibm.com/epubs/html/csqzaw11/csqzaw1116.htm#HDRJSSLPR
http://publibfp.boulder.ibm.com/epubs/html/csqzaw11/csqzaw1116.htm#HDRJSSLPR
http://www-306.ibm.com/software/integration/wmq/library/
http://www-306.ibm.com/software/integration/wmq/library/

The JNDI name that is used to bind the topic connection factory into the name space.

 As a convention, use the fully qualified JNDI name; for example, in the form jms/Name, where Name is the

logical name of the resource.

This name is used to link the platform binding information. The binding associates the resources defined

by the deployment descriptor of the module to the actual (physical) resources bound into JNDI by the

platform.

 Data type String

Description:

A description of this topic connection factory for administrative purposes within IBM WebSphere Application

Server.

 Data type String

Default Null

Category:

A category used to classify or group this topic connection factory, for your IBM WebSphere Application

Server administrative records.

 Data type String

Component-managed authentication alias:

This alias specifies a user ID and password to be used to authenticate connection to a JMS provider for

application-managed authentication.

 This property provides a list of the J2C authentication data entry aliases that have been defined to

WebSphere Application Server. You can select a data entry alias to be used to authenticate the creation of

a new connection to the JMS provider.

If you have enabled security for WebSphere Application Server, select the alias that specifies the user ID

and password used to authenticate the creation of a new connection to the JMS provider. The use of this

alias depends on the resource authentication (res-auth) setting declared in the connection factory resource

reference of an application component’s deployment descriptors.

Restriction:

1. User IDs longer than 12 characters cannot be used for authentication with WebSphere

MQ. For example, the default Windows user ID, Administrator, is not valid because it

contains 13 characters. Therefore, an authentication alias for a WebSphere MQ queue

connection factory must specify a user ID no longer than 12 characters.

2. If you want to use Bindings transport mode on JMS queue connections to WebSphere

MQ, you set the Transport type property to BINDINGS on the WebSphere MQ Queue

Connection Factory. You must also choose one of the following options:

v To use security credentials, ensure that the user specified is the currently logged on

user for the WebSphere Application Server process. If the user specified is not the

current logged on user for the WebSphere Application Server process, then the

WebSphere MQ JMS Bindings authentication throws the error MQJMS2013 invalid

security authentication supplied for MQQueueManager.

874 Administering applications and their environment

v Do not specify security credentials. On the WebSphere MQ Connection Factory,

ensure that both the Component-managed Authentication Alias and the

Container-managed Authentication Alias properties are not set.

Container-managed authentication alias:

This alias specifies a user ID and password to be used to authenticate connection to a JMS provider for

container-managed authentication.

 This property provides a list of the J2C authentication data entry aliases that have been defined to

WebSphere Application Server. You can select a data entry alias to be used to authenticate the creation of

a new connection to the JMS provider.

If you have enabled security for WebSphere Application Server, select the alias that specifies the user ID

and password used to authenticate the creation of a new connection to the JMS provider. The use of this

alias depends on the resource authentication (res-auth) setting declared in the connection factory resource

reference of an application component’s deployment descriptors.

Restriction:

1. User IDs longer than 12 characters cannot be used for authentication with WebSphere

MQ. For example, the default Windows user ID, Administrator, is not valid because it

contains 13 characters. Therefore, an authentication alias for a WebSphere MQ queue

connection factory must specify a user ID no longer than 12 characters.

2. If you want to use Bindings transport mode on JMS queue connections to WebSphere

MQ, you set the Transport type property to BINDINGS on the WebSphere MQ Queue

Connection Factory. You must also choose one of the following options:

v To use security credentials, ensure that the user specified is the currently logged on

user for the WebSphere Application Server process. If the user specified is not the

current logged on user for the WebSphere Application Server process, then the

WebSphere MQ JMS Bindings authentication throws the error MQJMS2013 invalid

security authentication supplied for MQQueueManager.

v Do not specify security credentials. On the WebSphere MQ Connection Factory,

ensure that both the Component-managed Authentication Alias and the

Container-managed Authentication Alias properties are not set.

Mapping-configuration alias:

The module used to map authentication aliases.

 This field provides a list of the modules that have been configured on the Security → JAAS Configuration

→ Application Logins Configuration property. For more information about the mapping configurations,

see Java Authentication and Authorization service configuration entry settings.

 Data type Enum

Default Null

Range ClientContainer

The client container maps authentication aliases.

WSLogin

The WSLogin module maps authentication

aliases.

DefaultPrincipalMapping

The JAAS configuration maps an authentication

alias to its userid and password.

Host:

Chapter 14. Messaging resources 875

The name of the host on which the WebSphere MQ queue manager runs, for client connection only.

 Data type String

Default Null

Range A valid TCP/IP hostname

Port:

The TCP/IP port number used for connection to the WebSphere MQ queue manager, for client connection

only.

 This port must be configured on the WebSphere MQ queue manager.

 Data type Integer

Default Null

Range A valid TCP/IP port number, configured on the WebSphere

MQ queue manager.

Transport type:

Specifies whether to use the WebSphere MQ client connection or JNI bindings for connection to the

WebSphere MQ queue manager. WebSphere MQ as the JMS provider controls the communication

protocols between JMS clients and JMS servers. Tune the transport type when you are using non-ASF

nonpersistent, non-durable, non-transactional messaging or when you want to satisfy security issues and

the client is local to the queue manager node.

 Data type Enum

Units Not applicable

Default BINDINGS

876 Administering applications and their environment

Range BINDINGS

JNI bindings are used to connect to the queue

manager. BINDINGS is a shared memory

protocol and can only be used when the queue

manager is on the same node as the JMS client

and comes at some security risks that should be

addressed through the use of EJB roles.

CLIENT

WebSphere MQ client connection is used to

connect to the queue manager. CLIENT is a

typical TCP-based protocol.

DIRECT

For a WebSphere MQ message broker using

DIRECT mode. DIRECT is a lightweight sockets

protocol used in non-transactional, non-durable

and non-persistent Publish/Subscribe messaging.

DIRECT works only for clients and

message-driven beans using the non-ASF

protocol.

 The type of connection to the message broker

depends on the value of the PROXYHOSTNAME

property, according to the following rules:

v If the PROXYHOSTNAME property is set to

the empty string, a direct connection is made

to the broker identified by the HOSTNAME and

PORT.

v If the PROXYHOSTNAME property is set to a

value other than the empty string, a direct

connection is made to the broker through the

proxy server identified by this property and the

PROXYPORT property.

Recommended DIRECT is the fastest transport type and should be used

where possible. Use BINDINGS when you want to satisfy

additional security tasks and the queue manager is local

to the JMS client. QUEUED is fallback for all other cases.

Note: WebSphere MQ 5.3 before CSD2 with the DIRECT

setting can lose messages when used with

message-driven beans and under load. This also happens

with client-side based applications unless the broker’s

maxClientQueueSize is set to 0. You can set this to 0 with

the command #wempschangeproperties

WAS_nodeName_server1 -e default -o

DynamicSubscriptionEngine -n maxClientQueueSize -v 0

-x executionGroupUUID, where executionGroupUUID can

be found by starting the broker and looking in the Event

Log/Applications for event 2201. This value is usually

ffffffff-0000-0000-000000000000.

Channel:

The name of the channel used for connection to the WebSphere MQ queue manager, for client connection

only.

 Data type String

Default Null

Range 1 through 20 ASCII characters

Chapter 14. Messaging resources 877

Queue manager:

The name of the WebSphere MQ queue manager for this connection factory. Connections created by this

factory connect to that queue manager.

 Data type String

Default Null

Range A valid WebSphere MQ queue manager name, as 1

through 48 ASCII characters

Broker control queue:

The name of the publish/subscribe broker’s control queue, to which publisher and subscriber applications

send all command messages (except publications and requests to delete publications).

 Data type String

Default Null

Range 1 through 48 ASCII characters

Broker queue manager:

The name of the WebSphere MQ queue manager that provides the publish/subscribe message broker.

 Data type String

Default Null

Range 1 through 48 ASCII characters

Broker publication queue:

The name of the broker’s input queue (stream queue) that receives all publication messages for the

default stream. Applications can also send requests to delete publications on the default stream to this

queue.

 Data type String

Units En_US ASCII characters

Default Null

Range 1 through 48 ASCII characters

Broker subscription queue:

The name of the broker’s queue from which non-durable subscription messages are retrieved. The

subscriber specifies the name of the queue when it registers a subscription.

 Data type String

Default Null

Range 1 through 48 ASCII characters

Broker CC subscription queue:

The name of the broker’s queue from which non-durable subscription messages are retrieved for a

ConnectionConsumer. This property applies only for use of the Web container.

 Data type String

878 Administering applications and their environment

Default Null

Range 1 through 48 ASCII characters

Broker version:

Whether the message broker is provided by the WebSphere MQ MA0C Supportpac or newer versions of

WebSphere message broker products.

 Data type Enum

Default Advanced

Range Advanced

The message broker is provided by newer

versions of WebSphere message broker

products, such as WebSphere Business

Integration Message Broker and Event Broker.

Basic The message broker is provided by the

WebSphere MQ MA0C SupportPac (MQSeries -

Publish/Subscribe) or MQSI working in MA0C

compatibility mode.

Model queue definition:

The name of the model queue definition that the broker can use to create dynamic queues for non-default

streams if the stream queue does not already exist

 The name of the model queue definition that the broker can use to create dynamic queues to receive

publications for streams other than the default stream. This is only used if the stream queue does not

already exist. If this model queue definition does not exist, all stream queues must be defined by the

administrator.

 Data type String

Default Null

Range 1 through 48 ASCII characters

Enable clone support:

Select this check box to enable clone support to allow the same durable subscription across topic clones.

 Data type Check box

Default Cleared

Range Selected

Clone support is enabled.

Cleared

Clone support is disabled.

If you select this property, you must also specify a value for the Client ID property.

Client ID:

The JMS client identifier used for connections to WebSphere MQ.

 Data type String

Range A valid JMS client ID, as ASCII characters

Chapter 14. Messaging resources 879

CCSID:

The coded character set identifier for use with the WebSphere MQ queue manager.

 This coded character set identifier (CCSID) must be one of the CCSIDs supported by WebSphere MQ.

The term ’null’ means leave blank; if you do this, a null value is passed and the default WebSphere MQ

CCSID value is used.

 Data type String

Units Integer

Default Null

Range 1 through 65535

For more information about supported CCSIDs, and about converting between message data from one

coded character set to another, see the WebSphere MQ System Administration and the WebSphere MQ

Application Programming Reference books. These are available from the WebSphere MQ messaging

multiplatform and platform-specific books Web pages; for example, at http://www-306.ibm.com/software/
integration/wmq/library/, the IBM Publications Center, or from the WebSphere MQ collection kit,

SK2T-0730.

XA Enabled:

Specifies whether the connection factory is for XA or non-XA coordination of messages and controls if the

application server uses XA. Enable XA if multiple resources are not used in the same transaction.

 If you clear this property (non-XA), the JMS session is still enlisted in a transaction, but uses the resource

manager local transaction calls (session.commit and session.rollback) instead of XA calls. This can lead to

an improvement in performance. However, this means that only a single resource can be enlisted in a

transaction in WebSphere Application Server.

Last participant support enables you to enlist one non-XA resource with other XA-capable resources.

 Data type Checkbox

Default Selected

Range Selected

The connection factory is for XA-coordination of

messages

Cleared

The connection factory is for non-XA coordination

of messages

Recommended Do not select to enable XA when the message queue

received is the only resource in the transaction. Enable

XA if transactions involve other resources, including other

queues or topics.

Publish/subscribe cleanup level:

The level of cleanup provided by the Publish/subscribe cleanup utility

 To avoid the problems associated with non-graceful closure of subscriber objects, WebSphere MQ as a

JMS provider provides a Publish/Subscribe cleanup utility that attempts to detect any earlier JMS

publish/subscribe problems. If a large number of problems are detected, some performance degradation

may be observed while resources are cleaned up. This utility runs transparently on a background thread

and should not affect other WebSphere MQ operations.

880 Administering applications and their environment

http://www-306.ibm.com/software/integration/wmq/library/
http://www-306.ibm.com/software/integration/wmq/library/
http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi

Data type Enum

Default SAFE

Range

SAFE The Cleanup thread attempts to remove

unconsumed subscription messages, or

temporary queues, for failed subscriptions. This

mode of cleanup does not interfere with the

operation of other JMS applications.

ASPROP

The style of cleanup to use is determined by the

system property com.ibm.mq.jms.cleanup, which

is queried at JVM startup. This property can be

set on the java command-line using the -D

option, and should be set to NONE, SAFE or

STRONG. Any other value causes an exception.

If not set, the property defaults to SAFE. This

allows easy JVM-wide change to the Cleanup

level without needing to update every topic

connection factory used by the system.

NONE In this special mode, no cleanup is performed;

and no cleanup thread exists. Additionally, if the

application is using the single-queue approach,

unconsumed messages can be left on the queue.

 This option can be useful if the application is

distant from the queue manager, and especially if

it only publishes rather than subscribes. However,

some application should perform cleanup on the

queue manager to deal with any unconsumed

messages - this could be a JMS application with

CLEANUP(SAFE) or CLEANUP(STRONG), or

the WebSphere MQ manual cleanup utility.

STRONG

The cleanup thread performs as

CLEANUP(SAFE), but also clears the

SYSTEM.JMS.REPORT.QUEUE of any

unrecognized messages.

Publish/subscribe cleanup interval:

The interval, in milliseconds, between background executions of the publish/subscribe cleanup utility.

 Data type Integer

Default 60000

Range 1 through 2147483647

Message selection:

Whether message selection is done at the broker or client.

 Data type Enum

Default BROKER

Range

BROKER

Message selection is done at the broker.

CLIENT

Message selection is done at the client.

Chapter 14. Messaging resources 881

Publish acknowledgement interval:

The interval, in number of messages, between publish requests that require acknowledgement from the

broker.

 Data type Integer

Default 25

Range 1 through 2147483647

Enable sparse subscriptions:

Select this option to support subscriptions that receive infrequent matching messages.

 Data type Checkbox

Default Cleared

Range

Selected

Subscriptions can receive infrequent matching

messages. This value requires that the

subscription queue can be opened for browse.

Cleared

Sparse subscriptions are not supported.

Subscriptions receive frequent matching

messages.

Publish/subscribe status interval:

The interval, in milliseconds, between transactions to refresh publish/subscribe status.

 Data type Integer

Default 60000

Range 1 through 2147483647

Persistent subscriptions store:

Where WebSphere MQ stores persistent data relating to active JMS subscriptions.

 Data type Enum

Default MIGRATE

882 Administering applications and their environment

Range

MIGRATE

This option dynamically selects the queue-based

or broker-based subscription store based on the

levels of queue manager and publish/subscribe

broker installed. If both queue manager and

broker are capable of supporting

SUBSTORE(BROKER), this behaves as

SUBSTORE(BROKER); otherwise it behaves as

SUBSTORE(QUEUE). Additionally,

SUBSTORE(MIGRATE) transfers durable

subscription information from the queue-based

subscription store to the broker-based store.

QUEUE

Subscription information is stored on

SYSTEM.JMS.ADMIN.QUEUE and

SYSTEM.JMS.PS.STATUS.QUEUE on the local

queue manager.

BROKER

Subscription information is stored by the

publish/subscribe broker used by the application.

This option requires recent levels of queue

manager and publish/subscribe broker. This

subscription store requires recent levels of both

queue manager and publish/subscribe broker. It

is designed to provide improved resilience.

Enable multicast transport:

Whether or not this connection factory uses multicast transport.

 With multicast, messages are delivered to all consumers. This is useful in environments where there are a

large number of clients that all want to receive the same messages, because with multicast only one copy

of each message is sent. Multicast reduces the total amount of network traffic. Reliable multicast is

standard multicast with a reliability layer added.

 Data type Enum

Default NOTUSED

Range

NOTUSED

This connection factory does not use multicast

transport.

ENABLED

This connection factory uses multicast transport,

but does not provide a reliable multicast

connection.

ENABLED_IF_AVAILABLE

This connection factory uses multicast transport if

the message broker supports it.

ENABLED_RELIABLE

This connection factory uses reliable multicast

transport

ENABLED_RELIABLE_IF_AVAILABLE

This connection factory uses reliable multicast

transport if the message broker supports it.

Chapter 14. Messaging resources 883

Direct broker authentication:

Whether the broker uses basic or certificate-based authentication for direct connections.

 This property selects the authentication on a direct connections (if the TRANSPORT property is set to

DIRECT).

 Data type Enum

Default NONE

Range

NONE Direct broker authentication is not used.

PASSWORD

Password-based authentication is used for direct

connections. Authentication is performed based

on a user ID and password provided by an

authentication alias. The authentication alias

used is obtained from one of the following

properties:

v Component-managed Authentication Alias, for

application-managed authentication.

v Container-managed Authentication Alias, for

container-managed authentication.

CERTIFICATE

Certificate-based authentication is used for direct

connections. The SSLPEERNAME and SSLCRL

properties are used to perform the authentication

checks.

 You can use certificate-based authentication

when connecting directly to a WebSphere

Business Integration Event Broker or WebSphere

Business Integration Message Broker broker.

Proxy host name:

Host name of the Web Scale proxy host.

 A direct connection is made to the proxy server, which forwards the connection request to the message

broker.

If the TRANSPORT property is set to DIRECT, the type of connection to the message broker depends on

the value of this property, according to the following rules:

v If this property is set to the empty string, a direct connection is made to the broker identified by the

HOSTNAME and PORT.

v If this property is set to a value other than the empty string, a direct connection is made to the broker

through the proxy server identified by this property and the PROXYPORT property.

 Data type String

Default Null

Proxy port:

Port number of the Web Scale proxy port.

 A direct connection is made to this port on the proxy server identified by the PROXYHOSTNAME property,

which forwards the connection request to the message broker. For more information, see the description of

884 Administering applications and their environment

the PROXYHOSTNAME property.

 Data type Integer

Default 0

Enable return methods during shutdown:

Whether or not applications return from a method call if the queue manager has entered a controlled

shutdown.

 Data type Checkbox

Default Selected

Range Selected

Applications return from a method call if the

queue manager has entered a controlled

shutdown.

Cleared

Applications do not return from a method call if

the queue manager has entered a controlled

shutdown.

Local server address:

The range of local ports to be used when making a connection to a WebSphere MQ queue manager

 If a JMS application attempts to connect to a WebSphere MQ queue manager in client mode, a firewall

might allow only those connections that originate from specified ports or a range of ports. In this situation,

you can use this property to specify a port, or a range of points, that the application can bind to.

 Data type String

Default Null

Chapter 14. Messaging resources 885

Range A string in the format:

[ip-addr][(low-port[,high-port])]

For example:

v 9.20.4.98

The channel binds to address 9.20.4.98 locally

v 9.20.4.98(1000)

The channel binds to address 9.20.4.98 locally and

uses port 1000

v 9.20.4.98(1000,2000)

The channel binds to address 9.20.4.98 locally and

uses a port in the range 1000 to 2000

v (1000)

The channel binds to port 1000 locally

v (1000,2000)

The channel binds to a port in the range 1000 to 2000

locally

You can specify a host name instead of an IP address.

For direct connections, this property applies only when

multicast is used and the value of the property must not

contain a port number. If it does contain a port number,

the connection is rejected. Therefore, the only valid values

of the property are null, an IP address, or a host name.

Polling interval:

The interval, in milliseconds, between scans of all receivers during asynchronous message delivery

 Data type Integer

Units milliseconds

Default 5000

Range 1 through 2147483647

Rescan interval:

The interval in milliseconds between which a topic is scanned to look for messages that have been added

to a topic out of order.

 This interval controls the scanning for messages that have been added to a topic out of order with respect

to a WebSphere MQ browse cursor.

 Data type Integer

Units milliseconds

Default 5000

Range 1 through 2147483647

SSL cipher suite:

The cipher suite to use for SSL connection to WebSphere MQ.

 Set this property to a valid cipher suite provided by your JSSE provider; it must match the CipherSpec

named on the SVRCONN channel named by the Channel property.

886 Administering applications and their environment

You must set this property if the SSL Peer Name property is to be set.

SSL CRL:

A list of zero or more Certificate Revocation List (CRL) servers used to check for SSL certificate

revocation. (Use of this property requires a WebSphere MQ JVM at Java 2 version 1.4.)

 The value is a space-delimited list of entries of the form:

ldap://hostname:[port]

optionally followed by a single / (forward slash). If port is omitted, the default LDAP port of 389 is

assumed. At connect-time, the SSL certificate presented by the server is checked against the specified

CRL servers. For more information about CRL security, see the section “Working with Certificate

Revocation Lists” in the WebSphere MQ Security book; for example at: http://publibfp.boulder.ibm.com/
epubs/html/csqzas01/csqzas012w.htm#IDX2254.

SSL peer name:

For SSL, a distinguished name skeleton that must match the name provided by the WebSphere MQ queue

manager. The distinguished name is used to check the identifying certificate presented by the server at

connect-time.

 The SSL Peer Name property is ignored if SSL Cipher Suite property is not specified.

This property is a list of attribute name and value pairs separated by commas or semicolons. For example:

CN=QMGR.*, OU=IBM, OU=WEBSPHERE

The example given checks the identifying certificate presented by the server at connect-time. For the

connection to succeed, the certificate must have a Common Name beginning QMGR., and must have at

least two Organizational Unit names, the first of which is IBM and the second WEBSPHERE. Checking is

not case-sensitive.

For more details about distinguished names and their use with WebSphere MQ, see the WebSphere MQ

Security book; for example, the section “Distinguished Names” at http://www-306.ibm.com/software/
integration/wmq/library/.

Enable MQ Connection Pooling:

Whether or not to use WebSphere MQ connection pooling.

 Data type Checkbox

Default Selected

Range

Selected

The connection factory uses

WebSphere MQ connection

pooling. When a connection

is no longer required, instead

of destroying it, it can be

pooled, and later reused.

This can provide a

substantial performance

enhancement for repeated

connections to the same

queue manager.

Cleared

The connection factory does

not use WebSphere MQ

connection pooling. When a

connection is no longer

required, it is destroyed. To

use the same queue

manager a new connection is

created.

Connection pool:

Chapter 14. Messaging resources 887

http://publibfp.boulder.ibm.com/epubs/html/csqzas01/csqzas012w.htm#IDX2254
http://publibfp.boulder.ibm.com/epubs/html/csqzas01/csqzas012w.htm#IDX2254
http://www-306.ibm.com/software/integration/wmq/library/
http://www-306.ibm.com/software/integration/wmq/library/

Specifies an optional set of connection pool settings.

 Connection pool properties are common to all J2C connectors.

The application server pools connections and sessions with the JMS provider to improve performance.

This is independent from any WebSphere MQ connection pooling. You need to configure the connection

and session pool properties appropriately for your applications, otherwise you may not get the connection

and session behavior that you want.

Change the size of the connection pool if concurrent server-side access to the JMS resource exceeds the

default value. The size of the connection pool is set on a per queue or topic basis.

Session pools:

An optional set of session pool settings.

 This link provides a panel of optional connection pool properties, common to all J2C connectors.

The application server pools connections and sessions with the JMS provider to improve performance.

This is independent from any WebSphere MQ connection pooling. You need to configure the connection

and session pool properties appropriately for your applications, otherwise you may not get the connection

and session behavior that you want.

WebSphere MQ queue destination collection

The queue destinations configured in the WebSphere MQ messaging provider for point-to-point messaging

with JMS queues.

This panel shows a list of the WebSphere MQ queue destinations with a summary of their configuration

properties.

To view this administrative console page, use the administrative console to complete the following steps:

1. In the navigation pane, expand Resources → JMS Providers → WebSphere MQ.

2. If appropriate, in the content pane, change the scope of the WebSphere MQ messaging provider. If the

scope is set to node or server scope for a Version 5 node, the administrative console presents the

subset of resources and properties that are applicable to WebSphere Application Server Version 5.

3. In the content pane, under Additional Resources, click WebSphere MQ Queue Destinations. This

displays a list of any existing JMS queue destinations.

To create a new queue destination, click New.

To browse or change the properties of a queue destination, select its name in the list displayed.

To act on one or more of the queue destinations listed, click the check box next to the name of the queue,

then use the buttons provided.

WebSphere MQ queue settings:

Use this panel to browse or change the configuration properties of the selected JMS queue destination for

point-to-point messaging with WebSphere MQ as a messaging provider.

 A WebSphere MQ queue destination is used to configure the properties of a JMS queue. Connections to

the queue are created by the associated JMS queue connection factory for WebSphere MQ as a

messaging provider.

To view this page, use the administrative console to complete the following steps:

1. In the navigation pane, expand Resources → Messaging Providers → WebSphere MQ.

888 Administering applications and their environment

2. If appropriate, in the content pane, change the scope of the WebSphere MQ messaging provider. If the

scope is set to node or server scope for a Version 5 node, the administrative console presents the

subset of resources and properties that are applicable to WebSphere Application Server Version 5.

3. In the content pane, under Additional Resources, click WebSphere MQ Queue Destinations. This

displays a list of any existing JMS queue destinations.

4. Click the name of the JMS queue destination that you want to work with.

A queue for use with the WebSphere MQ JMS provider has the following properties.

Note:

v The property values that you specify must match the values that you specified when configuring

WebSphere MQ for JMS resources. For more information about configuring WebSphere MQ for

JMS resources, see the WebSphere MQ Using Java book.

v In WebSphere MQ, names can have a maximum of 48 characters, with the exception of

channels which have a maximum of 20 characters.

v The WebSphere MQ Queue Connection Properties group of fields in this pane contains five

properties fields:

– queue manager host

– queue manager port

– server connection channel name

– user ID

– password.

Set these properties if you want to use the MQ Config additional property feature for managing

the physical WebSphere MQ queue on the external WebSphere MQ queue manager. For

additional information, see the related link to WebSphere MQ queue settings (MQ Config) at the

end of this topic.

Scope:

Specifies the level to which this resource definition is visible to applications.

 Resources such as messaging providers, namespace bindings, or shared libraries can be defined at

multiple scopes, with resources defined at more specific scopes overriding duplicates which are defined at

more general scopes.

The scope displayed is for information only, and cannot be changed on this panel. If you want to browse

or change this resource (or other resources) at a different scope, change the scope on the messaging

provider settings panel, then click Apply, before clicking the link for the type of resource.

 Data type String

Name:

The name by which the queue is known for administrative purposes within IBM WebSphere Application

Server.

 Data type String

JNDI name:

The JNDI name that is used to bind the queue into the name space.

 As a convention, use the fully qualified JNDI name; for example, in the form jms/Name, where Name is the

logical name of the resource.

Chapter 14. Messaging resources 889

This name is used to link the platform binding information. The binding associates the resources defined

by the deployment descriptor of the module to the actual (physical) resources bound into JNDI by the

platform.

 Data type String

Description:

A description of the queue, for administrative purposes

 Data type String

Default Null

Category:

A category used to classify or group this queue, for your IBM WebSphere Application Server administrative

records.

 Data type String

Persistence:

Whether all messages sent to the destination are persistent, non-persistent, or have their persistence

defined by the application

 Data type Enum

Default Application defined

Range Application defined

Messages on the destination have their

persistence defined by the application that put

them onto the queue.

Queue defined

Messages on the destination have their

persistence defined by the WebSphere MQ

queue definition properties.

Persistent

Messages on the destination are persistent.

Non persistent

Messages on the destination are not persistent.

Priority:

Whether the message priority for this destination is defined by the application or the Specified priority

property

 Data type Enum

Default Application defined

890 Administering applications and their environment

Range Application defined

The priority of messages on this destination is

defined by the application that put them onto the

destination.

Queue defined

Messages on the destination have their

persistence defined by the WebSphere MQ

destination definition properties.

Specified

The priority of messages on this destination is

defined by the Specified priority property.If you

select this option, you must define a priority you

must define a priority on the Specified Priority

property.

Specified priority:

If the Priority property is set to Specified, type here the message priority for this destination, in the range

0 (lowest) through 9 (highest)

 Data type Integer

Units Message priority level

Default 0

Range 0 (lowest priority) through 9 (highest priority)

Expiry:

Whether the expiry timeout for this destination is defined by the application or the Specified Expiry

property, or messages on the destination never expire (have an unlimited expiry timeout)

 Data type Enum

Default APPLICATION DEFINED

Range APPLICATION DEFINED

The expiry timeout for messages on this

destination is defined by the application that put

them onto the destination.

SPECIFIED

The expiry timeout for messages on this

destination is defined by the Specified Expiry

property.If you select this option, you must define

a timeout on the Specified Expiry property.

UNLIMITED

Messages on this destination have no expiry

timeout, so those messages never expire.

Specified expiry:

If the Expiry Timeout property is set to Specified, type here the number of milliseconds (greater than 0)

after which messages on this destination expire.

 Data type Integer

Units Milliseconds

Default 0

Range Greater than or equal to 0

v 0 indicates that messages never timeout

v Other values are an integer number of milliseconds

Chapter 14. Messaging resources 891

Base queue name:

The name of the queue to which messages are sent, on the queue manager specified by the Base Queue

Manager Name property.

 Data type String

Default Null

Range 1 through 48 ASCII characters

Base queue manager name:

The name of the WebSphere MQ queue manager to which messages are sent

 This queue manager provides the queue specified by the Base Queue Name property.

 Data type String

Units En_US ASCII characters

Default Null

Range A valid WebSphere MQ Queue Manager name, as 1

through 48 ASCII characters

CCSID:

The coded character set identifier for use with the WebSphere MQ queue manager.

 This coded character set identifier (CCSID) must be one of the CCSIDs supported by WebSphere MQ.

 Data type String

Units Integer

Default Null

Range 1 through 65535

For more information about supported CCSIDs, and about converting between message data from one

coded character set to another, see the WebSphere MQ System Administration and the WebSphere MQ

Application Programming Reference books. These are available from the WebSphere MQ messaging

multiplatform and platform-specific books Web pages; for example, at http://www-3.ibm.com/software/
integration/wmq/library, the IBM Publications Center, or from the WebSphere MQ collection kit, SK2T-0730.

Use native encoding:

Whether or not the destination should use native encoding (appropriate encoding values for the Java

platform).

 Data type Check box

Default Cleared

Range Cleared

Native encoding is not used, so specify the

properties below for integer, decimal, and floating

point encoding.

Selected

Native encoding is used (to provide appropriate

encoding values for the Java platform).

For more information about encoding properties, see the

WebSphere MQ Using Java document.

892 Administering applications and their environment

http://www-306.ibm.com/software/integration/wmq/library/
http://www-306.ibm.com/software/integration/wmq/library/
http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi

Integer encoding:

If native encoding is not enabled, select whether integer encoding is normal or reversed.

 Data type Enum

Default NORMAL

Range NORMAL

Normal integer encoding is used.

REVERSED

Reversed integer encoding is used.

For more information about encoding properties, see the

WebSphere MQ Using Java document.

Decimal encoding:

If native encoding is not enabled, select whether decimal encoding is normal or reversed.

 Data type Enum

Units Not applicable

Default NORMAL

Range NORMAL

Normal decimal encoding is used.

REVERSED

Reversed decimal encoding is used.

For more information about encoding properties, see the

WebSphere MQ Using Java document.

Floating point encoding:

If native encoding is not enabled, select the type of floating point encoding.

 Data type Enum

Default IEEENORMAL

Range IEEENORMAL

IEEE normal floating point encoding is used.

IEEEREVERSED

IEEE reversed floating point encoding is used.

S390 S390 floating point encoding is used.

For more information about encoding properties, see the

WebSphere MQ Using Java document.

Target client:

Whether the receiving application is JMS-compliant or is a traditional WebSphere MQ application

 Data type Enum

Default JMS

Range JMS The target is a JMS-compliant application.

MQ The target is a non-JMS, traditional WebSphere

MQ application.

Queue manager host:

Chapter 14. Messaging resources 893

The name of host for the queue manager on which the queue destination is created.

 Data type String

Default Null

Range A valid TCP/IP hostname

Queue manager port:

The number of the port used by the queue manager on which this queue is defined.

 Data type String

Units A valid TCP/IP port number.

Default Null

Range A valid TCP/IP port number. This port must be configured

on the WebSphere MQ queue manager.

Server connection channel name:

The name of the channel used for connection to the WebSphere MQ queue manager.

 Data type String

Default Null

Range 1 through 20 ASCII characters

User name:

The user ID used, with the Password property, for authentication when connecting to the queue manager

to define the queue destination.

 If you specify a value for the User name property, you must also specify a value for the Password

property.

 Data type String

Default Null

Password:

The password, used with the User name property, for authentication when connecting to the queue

manager to define the queue destination.

 If you specify a value for the User name property, you must also specify a value for the Password

property.

 Data type String

Default Null

WebSphere MQ queue settings (MQ Config):

Use this panel to browse or change the configuration properties defined to WebSphere MQ for the

selected queue destination.

 To view this page, use the administrative console to complete the following steps:

1. In the navigation pane, expand Resources → JMS Providers → WebSphere MQ.

894 Administering applications and their environment

2. If appropriate, in the content pane, change the scope of the WebSphere MQ messaging provider. If the

scope is set to node or server scope for a Version 5 node, the administrative console presents the

subset of resources and properties that are applicable to WebSphere Application Server Version 5.

3. In the content pane, under Additional Resources, click WebSphere MQ Queue Destinations. This

displays a list of any existing JMS queue destinations.

4. Click the name of the JMS queue destination that you want to work with.

5. Under Additional Resources, click MQ Config.

A WebSphere MQ queue destination is used to configure the properties of a JMS queue. A queue for use

with the WebSphere MQ JMS provider has the following extra properties defined to WebSphere MQ.
Notes

Note:

v To be able to browse or change these MQ Config properties, the WebSphere MQ Queue

Manager on which the queue resides must be configured for remote administration and be

running. You must also have installed the WebSphere MQ client. If you have not done this, the

administrative console displays messages like the following:

The WMQQueueDefiner MBean has encountered an error.

WMSG0331E: The MQ Client is required for this functionality, but it is not installed.

v These MQ Config properties can be used only to view or change the properties of local queues.

You cannot use MQ Config to administer alias or remote queues.

v Some properties displayed are read-only and cannot be changed.

v The property values that you specify must match the values that you specified when configuring

WebSphere MQ JMS resources. For more information about configuring WebSphere MQ JMS

resources, see the WebSphere MQ: Using Java book; for example from the WebSphere MQ

multiplatform library Web page at http://www.ibm.com/software/ts/mqseries/library/manualsa/
manuals/crosslatest.html.

v In WebSphere MQ, names can have a maximum of 48 characters, with the exception of

channels which have a maximum of 20 characters.

Base Queue Name:

The name of the local queue to which messages are sent, on the queue manager specified by the Base

Queue Manager Name property.

 Data type String

Base Queue Manager Name:

The name of the WebSphere MQ queue manager to which messages are sent.

 This queue manager provides the queue specified by the Base Queue Name property.

 Data type String

Queue Manager Host:

The name of host for the queue manager on which the queue destination is created.

 Data type String

Queue Manager Port:

The number of the port used by the queue manager on which this queue is defined.

Chapter 14. Messaging resources 895

http://www.ibm.com/software/ts/mqseries/library/manualsa/manuals/crosslatest.html
http://www.ibm.com/software/ts/mqseries/library/manualsa/manuals/crosslatest.html

Data type Integer

Range A valid TCP/IP port number. This port must be configured

on the WebSphere MQ queue manager.

Server Connection Channel Name:

The name of the channel used for connection to the WebSphere MQ queue manager.

 Data type String

Range 1 through 20 ASCII characters

User ID:

The user ID used, with the Password property, for authentication when connecting to the queue manager

to define the queue destination.

 If you specify a value for the User ID property, you must also specify a value for the Password property.

 Data type String

Password:

The password, used with the User ID property, for authentication when connecting to the queue manager

to define the queue destination.

 If you specify a value for the User ID property, you must also specify a value for the Password property.

 Data type String

Description:

The WebSphere MQ queue description, for administrative purposes within WebSphere MQ.

 Data type String

Default Null

Range 1 through 64 ASCII characters.

Inhibit Put:

Whether or not put operations are allowed for this queue.

 Data type Enum

Default Put Inhibited

Range Put Allowed

Put operations are allowed for this queue.

Put Inhibited

Put operations are not allowed for this queue.

Persistence:

Whether messages on the queue are persistent or non-persistent.

 Data type Enum

896 Administering applications and their environment

Default Persistent

Range Persistent

Messages on the queue are persistent.

Non persistent

Messages on the queue are not persistent.

Cluster Name:

The name of the cluster to which the WebSphere MQ queue manager belongs.

 If you specify a value for Cluster Name, you should not specify a value for Cluster Name List. Cluster

names must conform to the rules described in the WebSphere MQ MQSC Command Reference book.

 Data type String

Default Null

Range A valid WebSphere MQ name for a queue manager

cluster, as 1 through 48 ASCII characters

Cluster Name List:

The name of the cluster namelist to which the WebSphere MQ queue manager belongs.

 If you specify a value for Cluster Name, you should not specify a value for Cluster Name List. Cluster

names must conform to the rules described in the WebSphere MQ MQSC Command Reference book.

 Data type String

Default Null

Range A valid WebSphere MQ name for a list of queue manager

clusters, as 1 through 48 ASCII characters

Default Binding:

The default binding to be used when the queue is defined as a cluster queue.

 Data type Enum

Default On Open

Range On Open

The queue handle is bound to a specific instance

of the cluster queue when the queue is opened.

Not Fixed

The queue handle is not bound to any particular

instance of the cluster queue. This allows the

queue manager to select a specific queue

instance when the message is put, and to

change that selection subsequently should the

need arise.

Inhibit Get:

Whether or not get operations are allowed for this queue.

 Data type Enum

Default Get Inhibited

Chapter 14. Messaging resources 897

Range Get Inhibited

Get operations are not allowed for this queue.

Get Allowed

Get operations are allowed for this queue.

Maximum Queue Depth:

The maximum number of messages allowed on the queue.

 Data type Integer

Units Number of messages

Default 0

Range A value greater than or equal to zero, and less than or

equal to 640 000.

For more information about the maximum value allowed,

see the WebSphere MQ MQSC Command Reference.

If this value is reduced, any messages that are already on

the queue are not affected, even if the number of

messages exceeds the new maximum.

Maximum Message Length:

The maximum length, in bytes, of messages on this queue.

 Data type Integer

Units Number of bytes

Default 0

Range A value greater than or equal to zero, and less than or

equal to the maximum message length for the queue

manager and WebSphere MQ platform. For more

information about the maximum value allowed, see the

WebSphere MQ MQSC Command Reference.

If this value is reduced, any message that is already on

the queue are not affected, even if the message length

exceeds the new maximum.

Shareability:

Whether multiple applications can get messages from this queue.

 Data type Enum

Default Shareable

Range Shareable

More than one application instance can get

messages from the queue.

Not Shareable

Only one application instance can get messages

from the queue.

Input Open Option:

The default share option for applications opening this queue for input

898 Administering applications and their environment

Data type Enum

Default Exclusive

Range Exclusive

The open request is for exclusive input from the

queue.

Shared

The open request is for shared input from the

queue.

Message Delivery Sequence:

The order in which messages are delivered from the queue in response to get requests.

 Data type Enum

Default FIFO

Range FIFO Messages are delivered in first in first out (FIFO)

order. Priority is ignored for messages on this

queue.

Priority

Messages are delivered in first-in-first-out (FIFO)

order within priority. This is the default supplied

with WebSphere MQ, but your installation might

have changed it.

Backout Threshold:

The maximum number of times that a message can be backed out. If this threshold is reached, the

message is requeued on the backout queue specified by the Backout Requeue Name property.

 The WebSphere MQ queue manager keeps a record of the number of times that each message has been

backed out. When this number reaches a configurable threshold, the connection consumer requeues the

message on a named backout queue. If this requeue fails for any reason, the message is removed from

the queue and either requeued to the dead-letter queue, or discarded.

 Data type Integer

Default 0

Range 0 Never requeue messages

1 or more

The number of times that a message has been

backed, at which the message is requeued on a

named backout queue.

Backout Requeue Name:

The name of the backout queue to which messages are requeued if they have been backed out more than

the backout threshold.

 The WebSphere MQ queue manager keeps a record of the number of times that each message has been

backed out. When this number reaches a configurable threshold, the connection consumer requeues the

message on a named backout queue. If this requeue fails for any reason, the message is removed from

the queue and either requeued to the dead-letter queue, or discarded.

 Data type String

Default Null

Range 1 through 48 characters.

Chapter 14. Messaging resources 899

Harden Get Backout:

Whether hardening should be used to ensure that the count of the number of times that a message has

been backed out is accurate.

 Data type Enum

Default Hardened

Range Hardened

The count is hardened.

Not Hardened

The count is not hardened. This is the default

supplied with WebSphere MQ, but your

installation might have changed it.

Default Priority:

The default message priority for this destination, used if no priority is provided with a message.

 Data type Integer

Default 0

Range 0 (lowest priority) through 9 (highest priority)

WebSphere MQ topic destination collection

The JMS topic destinations configured in the WebSphere MQ messaging provider for point-to-point

messaging with JMS topics. Use this panel to create or delete topic destinations, or to select a topic

destination to view or change its configuration properties.

This panel shows a list of JMS topic destinations with a summary of their configuration properties.

To view this administrative console page, use the administrative console to complete the following steps:

1. In the navigation pane, expand Resources → JMS Providers → WebSphere MQ.

2. If appropriate, in the content pane, change the scope of the WebSphere MQ messaging provider. If the

scope is set to node or server scope for a Version 5 node, the administrative console presents the

subset of resources and properties that are applicable to WebSphere Application Server Version 5.

3. In the content pane, under Additional Resources, click WebSphere MQ Topic Destinations. This

displays a list of any existing JMS topic destinations.

To create a new topic destination, click New.

To view or change the properties of a topic destination, select its name in the list displayed.

To act on one or more of the topic destinations listed, click the check box next to the name of the topic,

then use the buttons provided.

WebSphere MQ topic settings:

Use this panel to browse or change the configuration properties of the selected JMS topic destination for

publish/subscribe messaging with WebSphere MQ as a messaging provider.

 A WebSphere MQ topic destination is used to configure the properties of a JMS topic for WebSphere MQ

as a messaging provider. Connections to the topic are created by the associated topic connection factory.

To view this page, use the administrative console to complete the following steps:

1. In the navigation pane, expand Resources → JMS Providers → WebSphere MQ.

900 Administering applications and their environment

2. If appropriate, in the content pane, change the scope of the WebSphere MQ messaging provider. If the

scope is set to node or server scope for a Version 5 node, the administrative console presents the

subset of resources and properties that are applicable to WebSphere Application Server Version 5.

3. In the content pane, under Additional Resources, click WebSphere MQ Topic Destinations. This

displays a list of any existing JMS topic destinations.

4. Click the name of the JMS topic destination that you want to work with.

A WebSphere MQ topic has the following properties.

Note:

v The property values that you specify must match the values that you specified when configuring

WebSphere MQ for JMS resources. For more information about configuring WebSphere MQ for

JMS resources, see the WebSphere MQ Using Java book.

v In WebSphere MQ, names can have a maximum of 48 characters, with the exception of

channels which have a maximum of 20 characters.

Scope:

Specifies the level to which this resource definition is visible to applications.

 Resources such as messaging providers, namespace bindings, or shared libraries can be defined at

multiple scopes, with resources defined at more specific scopes overriding duplicates which are defined at

more general scopes.

The scope displayed is for information only, and cannot be changed on this panel. If you want to browse

or change this resource (or other resources) at a different scope, change the scope on the messaging

provider settings panel, then click Apply, before clicking the link for the type of resource.

 Data type String

Name:

The name by which the topic is known for administrative purposes within IBM WebSphere Application

Server.

 Data type String

JNDI name:

The JNDI name that is used to bind the topic into the name space.

 As a convention, use the fully qualified JNDI name; for example, in the form jms/Name, where Name is the

logical name of the resource.

This name is used to link the platform binding information. The binding associates the resources defined

by the deployment descriptor of the module to the actual (physical) resources bound into JNDI by the

platform.

 Data type String

Description:

A description of the topic, for administrative purposes within IBM WebSphere Application Server.

Chapter 14. Messaging resources 901

Data type String

Default Null

Category:

A category used to classify or group this topic, for your IBM WebSphere Application Server administrative

records.

 Data type String

Persistence:

Whether all messages sent to the destination are persistent, non-persistent, or have their persistence

defined by the application

 Data type Enum

Default APPLICATION DEFINED

Range APPLICATION DEFINED

Messages on the destination have their

persistence defined by the application that put

them onto the destination.

QUEUE DEFINED

Messages on the destination have their

persistence defined by the WebSphere MQ

destination definition properties.

PERSISTENT

Messages on the destination are persistent.

NON PERSISTENT

Messages on the destination are not persistent.

Priority:

Whether the message priority for this destination is defined by the application or the Specified Priority

property

 Data type Enum

Default APPLICATION DEFINED

Range APPLICATION DEFINED

The priority of messages on this destination is

defined by the application that put them onto the

destination.

QUEUE DEFINED

Messages on the destination have their

persistence defined by the WebSphere MQ

queue definition properties.

SPECIFIED

The priority of messages on this destination is

defined by the Specified Priority property. If you

select this option, you must define a priority on

the Specified Priority property.

Specified priority:

If the Priority property is set to Specified, type here the message priority for this destination, in the range

0 (lowest) through 9 (highest)

902 Administering applications and their environment

Data type Integer

Units Message priority level

Default 0

Range 0 (lowest priority) through 9 (highest priority)

Expiry:

Whether the expiry timeout for this destination is defined by the application or the Specified Expiry

property, or messages on the queue never expire (have an unlimited expiry timeout)

 Data type Enum

Default APPLICATION DEFINED

Range APPLICATION DEFINED

The expiry timeout for messages on this

destination is defined by the application that put

them onto the destination.

SPECIFIED

The expiry timeout for messages on this

destination is defined by the Specified Expiry

property. If you select this option, you must

define a timeout on the Specified Expiry

property.

UNLIMITED

Messages on this destination have no expiry

timeout, so those messages never expire.

Specified expiry:

If the Expiry Timeout property is set to Specified, type here the number of milliseconds (greater than 0)

after which messages on this destination expire.

 Data type Integer

Units Milliseconds

Default 0

Range Greater than or equal to 0

v 0 indicates that messages never timeout

v Other values are an integer number of milliseconds

Base topic name:

The name of the WebSphere MQ topic to which messages are sent.

 Data type String

Range Depends on the broker used. For details, see the

documentation for your broker; for example the

WebSphere MQ Event Broker library at

http://www-3.ibm.com/software/ts/mqseries/library/
manualsa/manuals/wsmqebv21.html.

CCSID:

The coded character set identifier for use with WebSphere MQ.

Chapter 14. Messaging resources 903

http://www-3.ibm.com/software/ts/mqseries/library/manualsa/manuals/wsmqebv21.html
http://www-3.ibm.com/software/ts/mqseries/library/manualsa/manuals/wsmqebv21.html

This coded character set identifier (CCSID) must be one of the CCSIDs supported by WebSphere MQ.

 Data type String

Units Integer

Default Null

Range 1 through 65535

For more information about supported CCSIDs, and about converting between message data from one

coded character set to another, see the WebSphere MQ System Administration and the WebSphere MQ

Application Programming Reference books. These are available from the WebSphere MQ messaging

multiplatform and platform-specific books Web pages; for example, at http://www-3.ibm.com/software/ts/
mqseries/library/manualsa/manuals/platspecific.html, the IBM Publications Center, or from the WebSphere

MQ collection kit, SK2T-0730.

Use native encoding:

Whether or not the destination should use native encoding (appropriate encoding values for the Java

platform).

 Data type Check box

Units Not applicable

Default Cleared

Range Cleared

Native encoding is not used, so specify the

properties below for integer, decimal, and floating

point encoding.

Selected

Native encoding is used (to provide appropriate

encoding values for the Java platform).

For more information about encoding properties, see the

WebSphere MQ Using Java document.

Integer encoding:

If native encoding is not enabled, select whether integer encoding is normal or reversed.

 Data type Enum

Default NORMAL

Range NORMAL

Normal integer encoding is used.

REVERSED

Reversed integer encoding is used.

For more information about encoding properties, see the

WebSphere MQ Using Java document.

Decimal encoding:

If native encoding is not enabled, select whether decimal encoding is normal or reversed.

 Data type Enum

Default NORMAL

904 Administering applications and their environment

http://www-3.ibm.com/software/ts/mqseries/library/manualsa/manuals/crosslatest.html.html
http://www-3.ibm.com/software/ts/mqseries/library/manualsa/manuals/crosslatest.html.html
http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi

Range NORMAL

Normal decimal encoding is used.

REVERSED

Reversed decimal encoding is used.

For more information about encoding properties, see the

WebSphere MQ Using Java document.

Floating point encoding:

If native encoding is not enabled, select the type of floating point encoding.

 Data type Enum

Default IEEENORMAL

Range IEEENORMAL

IEEE normal floating point encoding is used.

IEEEREVERSED

IEEE reversed floating point encoding is used.

S390 S390 floating point encoding is used.

For more information about encoding properties, see the

WebSphere MQ Using Java document.

Target client:

Whether the receiving application is JMS-compliant or is a traditional WebSphere MQ application

 Data type Enum

Default JMS

Range JMS The target is a JMS-compliant application.

MQ The target is a non-JMS, traditional WebSphere

MQ application.

Broker durable subscription queue:

The name of the broker’s queue from which durable subscription messages are retrieved

 The subscriber specifies the name of the queue when it registers a subscription.

 Data type String

Default Null

Range 1 through 48 ASCII characters

Broker CC durable subscription queue:

The name of the broker’s queue from which durable subscription messages are retrieved for a

ConnectionConsumer. This property applies only for use of the Web container.

 Data type String

Default Null

Range 1 through 48 ASCII characters

Enable multicast:

Whether or not this topic destination uses multicast transport.

Chapter 14. Messaging resources 905

With multicast, messages are delivered to all consumers. This is useful in environments where there are a

large number of clients that all want to receive the same messages, because with multicast only one copy

of each message is sent. Multicast reduces the total amount of network traffic. Reliable multicast is

standard multicast with a reliability layer added.

 Data type Enum

Default NOTUSED

Range

NOTUSED

This destination does not use multicast transport.

ENABLED

This destination uses multicast transport, but

does not provide a reliable multicast connection.

ENABLED_IF_AVAILABLE

This destination uses multicast transport if the

message broker supports it.

ENABLED_RELIABLE

This destination uses reliable multicast transport

ENABLED_RELIABLE_IF_AVAILABLE

This destination uses reliable multicast transport

if the message broker supports it.

Configuring JMS resources for the WebSphere MQ messaging

provider

Use the following tasks to configure the connection factories and destinations for the WebSphere MQ JMS

provider.

You only need to complete these tasks if WebSphere Application Server supports enterprise applications

that use JMS resources provided by WebSphere MQ. To enable use of resources provider by WebSphere

MQ, you must have installed and configured WebSphere MQ JMS support.

You can use the WebSphere administrative console to configure JMS connections factories, JMS queues,

and JMS topics for WebSphere MQ as the messaging provider.

Using the administrative console, if you set the scope of the WebSphere MQ messaging provider to cell

scope or to node scope for a WebSphere Application Server version 6 node, you can configure JMS 1.1

resources and properties. This includes unified JMS connection factories for use by both point-to-point and

publish/subscribe JMS 1.1 applications. With JMS 1.1, this approach is preferred to the domain-specific

queue connection factory and topic connection factory. If you set the scope to a WebSphere Application

Server Version 5 node, you can only configure domain-specific JMS resources, and the subset of

properties that apply to WebSphere Application Server Version 5.

For more information about configuring JMS resources for the WebSphere MQ messaging provider, see

the following topics. These topics include optional steps for you to create a new JMS resource.

Configuring resources for WebSphere Application Server version 6:

v Configuring a unified JMS connection factory

v Configuring a JMS queue connection factory

v Configuring a JMS topic connection factory

v Configuring a JMS queue

v Configuring a JMS topic

v Enabling WebSphere MQ JMS connection pooling

906 Administering applications and their environment

Configuring a unified JMS connection factory, for WebSphere MQ

Use this task to browse or configure a unified JMS connection factory for use with WebSphere MQ as a

messaging provider. This task contains an optional step for you to create a new unified JMS connection

factory.

This topic describes how to configure a unified JMS connection factory for WebSphere MQ as a

messaging provider on an Application Server version 6 node. With JMS 1.1, this approach is preferred to

the domain-specific JMS queue connection factory and JMS topic connection factory.

If you want to configure a JMS queue connection factory or topic factory, see the related tasks.

To browse or configure a unified JMS connection factory for use with WebSphere MQ as a messaging

provider, use the administrative console to complete the following steps:

1. Display the WebSphere MQ messaging provider. In the navigation pane, expand Resources → JMS

Providers → WebSphere MQ.

2. Optional: Change the Scope setting to the level at which the connection factory is visible to

applications.

3. In the contents pane, under Additional Properties, click WebSphere MQ Connection Factories This

displays a table listing any existing unified JMS connection factories, with a summary of their

properties.

4. To browse or change the properties of an existing unified JMS connection factory, click its name in the

list. Otherwise, to create a new connection factory, complete the following steps:

a. Click New in the content pane.

b. Specify the following required properties. You can specify other properties, as described in a later

step.

Name The name by which this connection factory is known for administrative purposes within IBM

WebSphere Application Server.

JNDI name

The JNDI name that is used to bind the connection factory into the name space.

CCSID

The coded character set identifier for use with the WebSphere MQ queue manager; for

example: 850.

c. Click Apply. This defines the JMS connection factory to WebSphere Application Server, and

enables you to browse or change additional properties.

5. Optional: Change properties for the unified JMS connection factory, according to your needs.

6. Optional: Change connection pool properties and session pool properties, according to your needs.

7. Click OK.

8. Save any changes to the master configuration.

9. To have the changed configuration take effect, stop then restart the application server.

Configuring a JMS queue connection factory for WebSphere MQ

Use this task to browse or change a JMS queue connection factory for use with WebSphere MQ as a

messaging provider. This task contains an optional step for you to create a new JMS queue connection

factory.

With JMS 1.1, the preferred approach is to use unified JMS connection factories instead of the

domain-specific JMS queue connection factory and JMS topic connection factory. If you want to configure

a unified JMS connection factory, see “Configuring a unified JMS connection factory, for WebSphere MQ.”

To browse or configure a JMS queue connection factory for use with WebSphere MQ as a messaging

provider, use the administrative console to complete the following steps:

Chapter 14. Messaging resources 907

1. Display the WebSphere MQ messaging provider. In the navigation pane, expand Resources → JMS →

JMS Providers.

 2. Select the WebSphere MQ provider for which you want to configure a queue connection factory.

 3. Optional: Change the Scope setting to the level at which the connection factory is visible to

applications.

 4. In the contents pane, under Additional Properties, click Queue connection factories This displays a

table listing any existing JMS queue connection factories, with a summary of their properties.

 5. To browse or change an existing JMS queue connection factory, click its name in the list. Otherwise,

to create a new connection factory, complete the following steps:

a. Click New in the content pane.

b. Specify the following required properties. You can specify other properties, as described in a later

step.

Name The name by which this connection factory is known for administrative purposes within

IBM WebSphere Application Server.

JNDI name

The JNDI name that is used to bind the connection factory into the name space.

CCSID

The coded character set identifier for use with the WebSphere MQ queue manager; for

example: 850.

c. Click Apply. This defines the connection factory to WebSphere Application Server, and enables

you to browse or change additional properties.

 6. Optional: Change properties for the queue connection factory, according to your needs.

 7. Optional: Change connection pool properties and session pool properties, according to your needs.

 8. Click OK.

 9. Save any changes to the master configuration.

10. To have the changed configuration take effect, stop then restart the application server.

Configuring a JMS topic connection factory for WebSphere MQ

Use this task to browse or configure a JMS topic connection factory for publish/subscribe messaging with

WebSphere MQ as a messaging provider. This task contains an optional step for you to create a new JMS

topic connection factory.

With JMS 1.1, the preferred approach is to use unified JMS connection factories instead of the

domain-specific JMS queue connection factory and JMS topic connection factory. If you want to configure

a unified JMS connection factory, see “Configuring a unified JMS connection factory, for WebSphere MQ”

on page 907.

To configure a topic connection factory for use with the WebSphere MQ as a messaging provider, use the

administrative console to complete the following steps:

 1. Display the WebSphere MQ messaging provider. In the navigation pane, expand Resources → JMS →

JMS Providers.

 2. Select the WebSphere MQ provider for which you want to configure a topic connection factory.

 3. Optional: Change the Scope setting to the level at which the connection factory is visible to

applications.

 4. In the contents pane, under Additional Properties, click Topic connection factories This displays a

table listing any existing JMS topic connection factories, with a summary of their properties.

 5. To browse or change an existing JMS topic connection factory, click its name in the list. Otherwise, to

create a new connection factory, complete the following steps:

a. Click New in the content pane.

908 Administering applications and their environment

b. Specify the following required properties. You can specify other properties, as described in a later

step.

Name The name by which this destination is known for administrative purposes within IBM

WebSphere Application Server.

JNDI Name

The JNDI name that is used to bind the destination into the name space.

CCSID

The coded character set identifier for use with the WebSphere MQ queue manager; for

example: 850.

c. Click Apply. This defines the destination to WebSphere Application Server, and enables you to

browse or change additional properties.

 6. Optional: Change properties for the topic connection factory, according to your needs.

 7. Optional: Change connection pool properties and session pool properties, according to your needs.

 8. Click OK.

 9. Save any changes to the master configuration.

10. To have the changed configuration take effect, stop then restart the application server.

Configuring a JMS queue destination for WebSphere MQ

Use this task to browse or change a JMS queue destination for point-to-point messaging with WebSphere

MQ as a messaging provider. This task contains an optional step for you to create a new JMS queue

destination.

To browse or configure a JMS queue destination for use with WebSphere MQ as a messaging provider,

use the administrative console to complete the following steps:

 1. Display the WebSphere MQ messaging provider. In the navigation pane, expand Resources → JMS →

JMS Providers.

 2. Select the WebSphere MQ provider for which you want to configure a queue destination.

 3. Optional: Change the Scope setting to the level at which the JMS destination is visible to

applications.

 4. In the contents pane, under Additional Properties, click Queues This displays a table listing any

existing JMS queue destinations, with a summary of their properties.

 5. To browse or change the properties of an existing JMS queue destination, click its name in the list.

Otherwise, to create a new queue, complete the following steps:

a. Click New in the content pane.

b. Specify the following required properties. You can specify other properties, as described in a later

step.

Name The name by which this queue destination is known for administrative purposes within

IBM WebSphere Application Server.

JNDI name

The JNDI name that is used to bind the queue destination into the name space.

Base Queue Name

The name of the queue to which messages are sent, on the queue manager specified by

the Base Queue Manager Name property.

CCSID

The coded character set identifier for use with the WebSphere MQ queue manager; for

example: 850.

c. Click Apply. This defines the queue destination to WebSphere Application Server, and enables

you to browse or change additional properties.

 6. Optional: Change properties for the queue destination, according to your needs.

Chapter 14. Messaging resources 909

7. Optional: If you want WebSphere Application Server to try to use the WebSphere MQ queue

manager’s remote administration utilities to create the queue, configure the WebSphere MQ Queue

Connection properties.

If you have already created your underlying queue in WebSphere MQ using its administration tools

(such as runmqsc or MQ Explorer), you do not need to configure any of the WebSphere MQ Queue

Connection properties. You only need to configure these properties if you want WebSphere

Application Server to try to use the WebSphere MQ queue manager’s remote administration utilities

to create the queue.

To be able to browse or change these MQ Config properties, you must have installed the WebSphere

MQ client. If you have not done this, the administrative console displays messages like the following:

The WMQQueueDefiner MBean has encountered an error.

WMSG0331E: The MQ Client is required for this functionality, but it is not installed.

Note: For any changes to these properties to take effect on the queue manager, the WebSphere MQ

Queue Manager on which the queue resides (or will reside) must be configured for remote

administration and be running.

For more details about these properties, see WebSphere MQ config properties for the queue

destination.

 8. Click OK.

 9. Save any changes to the master configuration.

10. To have the changed configuration take effect, stop then restart the application server.

Configuring a JMS topic destination for WebSphere MQ

Use this task to browse or change a JMS topic destination for publish/subscribe messaging with

WebSphere MQ as a messaging provider. This task contains an optional step for you to create a new JMS

topic destination.

To configure a JMS topic destination for use with WebSphere MQ as a messaging provider, use the

administrative console to complete the following steps:

1. Display the WebSphere MQ messaging provider. In the navigation pane, expand Resources → JMS →

JMS Providers.

2. Select the WebSphere MQ provider for which you want to configure a topic destination.

3. Optional: Change the Scope setting to the level at which the JMS destination is visible to applications.

4. In the contents pane, under Additional Properties, click Topics This displays a table listing any existing

JMS topic destinations, with a summary of their properties.

5. To browse or change an existing JMS topic destination, click its name in the list. Otherwise, to create a

new topic destination, complete the following steps:

a. Click New in the content pane.

b. Specify the following required properties. You can specify other properties, as described in a later

step.

Name The name by which this connection factory is known for administrative purposes within IBM

WebSphere Application Server.

JNDI Name

The JNDI name that is used to bind the connection factory into the name space.

Base Topic Name

The name of the WebSphere MQ topic to which messages are sent.

CCSID

The coded character set identifier for use with the WebSphere MQ queue manager; for

example: 850.

c. Click Apply. This defines the topic destination to WebSphere Application Server, and enables you

to browse or change additional properties.

910 Administering applications and their environment

6. Optional: Change properties for the topic destination, according to your needs.

7. Click OK.

8. Save any changes to the master configuration.

9. To have the changed configuration take effect, stop then restart the application server.

Configuring WebSphere MQ connection pooling

Use this task to browse or change properties of WebSphere MQ connection pooling for JMS connections

from an application server to WebSphere MQ as a JMS provider.

To enable WebSphere MQ connection pooling for an application server, use the administrative console to

complete the following steps:

1. Display the Message Listener Service properties for the application server

a. In the navigation pane, click Servers → Application Servers

b. In the content pane, click the name of the application server.

c. Under Additional Properties, click Message Listener Service properties.

2. Select Custom Properties, to enable WebSphere MQ connection pooling, add the following custom

properties:

mqjms.pooling.threshold

The maximum number of unused connections in the pool.

mqjms.pooling.timeout

The timeout in milliseconds for unused connections in the pool.

3. Click OK.

4. Save any changes to the master configuration.

5. To have the changed configuration take effect, stop then restart the application server.

For additional information, see the books in the WebSphere MQ library

http://www-306.ibm.com/software/integration/wmq/library/

WebSphere MQ JMS connection pooling:

To improve the overall performance of JMS within the system, the message listener service enables the

connection pooling facility provided by the WebSphere MQ JMS implementation.

 This support for connection pooling does not affect the performance of a message listener, because it

retains its connections while listening on a destination, but does affect the overall JMS system

performance. When a connection is no longer required, WebSphere MQ can pool the connection then

reuse it later instead of destroying it.

Note: This support is only available for use with WebSphere MQ as a JMS provider.

To enable WebSphere MQ connection pooling and configure the characteristics of the WebSphere MQ

connection pool, see Enabling WebSphere MQ JMS connection pooling.

Configuring custom properties for the WebSphere MQ messaging provider

You can use WebSphere MQ as a messaging provider for WebSphere Application Server. Many of the

properties for a WebSphere MQ messaging provider can be selected from panels in the WebSphere

Application Server administration console, but there are further properties that you can configure as

custom properties. Use this task to create custom properties for destinations and connection factories

when using WebSphere MQ as a messaging provider.

To create a new custom property for a destination or for a connection factory when using WebSphere MQ

as a messaging provider, use the administrative console to complete the following steps:

1. Display the WebSphere MQ messaging provider. In the navigation pane, expand Resources → JMS.

Chapter 14. Messaging resources 911

2. Select the type of JMS resource for which you want create custom properties.

3. Optional: Change the Scope setting to the level at which the resource definition is visible to

applications.

4. In the contents pane, select the specific JMS resource name. This displays information about the

resource.

5. To create custom properties, under Additional Properties, select Custom properties .

a. Click New in the content pane.

b. Specify the following properties.

Name The name of the custom property. This property is required.

Value The value for the custom property.

Type The type of the custom property. Select the custom property type from the list.

c. Click Apply. This defines the custom property to WebSphere Application Server, and enables you

to browse or change additional properties.

6. Click OK.

7. Save any changes to the master configuration.

8. To have the changed configuration take effect, stop then restart the application server.

WebSphere MQ custom properties:

WebSphere Application Server supports the use of custom properties to define WebSphere MQ properties.

This is useful because it enables WebSphere Application Server to work with later versions of WebSphere

MQ which might have properties that are not exposed in the WebSphere Application Server administrative

console.

 For instructions on how to create a new custom property, see “Configuring custom properties for the

WebSphere MQ messaging provider” on page 911.

In WebSphere Application Server, Version 6.1, the custom properties that you define are validated by the

WebSphere MQ client jar files contained in WebSphere Application Server. In previous versions, this was

done within WebSphere Application Server itself, and then by the WebSphere MQ client jar files. If you

have defined a property that is not valid for WebSphere MQ, the WebSphere MQ client jar files create an

exception, which is caught by WebSphere Application Server, and logged in the Systemout.log and

SystemErr.log. Examples of error messages are given at the end of this topic.

When a later version of WebSphere MQ is available that is supported by the WebSphere Application

Server installation, new MQ properties might be created that are not known to WebSphere Application

Server. You can configure these as custom properties through WebSphere Application Server so that they

are recognized by the WebSphere MQ client jars. You can also configure WebSphere Application Server to

point to the WebSphere MQ client jars in the external JMS provider, as described in “Installing and

configuring WebSphere MQ as a JMS provider” on page 834.

For information on valid values for WebSphere MQ properties, refer to WebSphere MQ Using Java or

WebSphere MQ System Administration, which are available from the IBM Publications Center.

The following scenarios illustrate how different cell configurations might be affected.

Mixed node scenario

In this scenario, a cell consists of a WebSphere Application Server, Version 6.1 deployment manager and

four nodes. Two of the nodes are WebSphere Application Server, Version 6.1 and two are WebSphere

Application Server, Version 6.0. If a WebSphere MQ connection factory is defined at cell level and has

custom properties defined which exploit the new fields available in WebSphere MQ, Version 6, then the

912 Administering applications and their environment

http://www.ibm.com/software/integration/mqfamily/library/manualsa/

connection factory is only bound into the WebSphere Application Server cells that are at Version 6.1 level.

The WebSphere Application Server, Version 6.0 nodes do not know about the new WebSphere MQ

properties and do not bind into the JNDI. The enhancements made to WebSphere Application Server,

Version 6.1 allow validation of the properties to be deferred to the WebSphere MQ client jars.

Future version of WebSphere MQ scenario

In this scenario a cell consists of WebSphere Application Server, Version 6.1 deployment manager and

nodes. The WebSphere MQ messaging provider is running at a level later than Version 6. WebSphere

Application Server is using the default WebSphere MQ client jars shipped with WebSphere Application

WebSphere
Application Server

cell6.0

WebSphere
Application Server

cell6.0

WebSphere
Application Server

cell6.1

WebSphere
Application Server

cell6.1

WebSphere
Application
Server 6.1

deployment
manager

WebSphere MQ
connection factory
defined at cell level
using WebSphere
MQ 6 (or higher)

custom properties

WebSphere MQ 6
(or higher)

JMS provider

JNDI Lookup fails as
connection factory is
not bound into JNDI

Application code
performing a JNDI

lookup of the
WebSphere MQ

connection factory

Application code
performing a JNDI

lookup of the
WebSphere MQ

connection factory

JNDI Lookup works as
connection factory is

bound into JNDI

Will not bind
WebSphere MQ

connection factory
into JNDI

Will not bind
WebSphere MQ

connection factory
into JNDI

Will bind
into JNDI

Will bind
into JNDI

WebSphere MQ 6
client jars

WebSphere MQ 6
client jars

WebSphere MQ 6
client jars

WebSphere MQ 6
client jars

Figure 8. Mixed node scenario

Chapter 14. Messaging resources 913

Server, which are Version 6. In this scenario the WebSphere MQ client jars are not aware of the new

WebSphere MQ properties so the validation fails and the connection factory does not bind into the JNDI.

Correctly configured scenario

In this scenario, which is similar to the previous one, a cell consists of WebSphere Application Server,

Version 6.1 deployment manager and nodes. The WebSphere MQ messaging provider is running at a

level later than Version 6. To successfully use the new WebSphere MQ properties it is necessary to

WebSphere
Application Server

cell6.1

WebSphere
Application Server

cell6.1

WebSphere
Application Server

cell6.1

WebSphere
Application Server

cell6.1

WebSphere
Application
Server 6.1

deployment
manager

WebSphere MQ
connection factory
defined at cell level

using custom properties
for a future version of

WebSphere MQ

WebSphere MQ
(future version)
JMS provider

JNDI Lookup fails as
connection factory is
not bound into JNDI

Application code
performing a JNDI

lookup of the
WebSphere MQ

connection factory

Application code
performing a JNDI

lookup of the
WebSphere MQ

connection factory

JNDI Lookup fails as
connection factory is
not bound into JNDI

Will not bind
WebSphere MQ

connection factory
into JNDI

Will not bind
WebSphere MQ

connection factory
into JNDI

Will not bind
WebSphere MQ

connection factory
into JNDI

Will not bind
WebSphere MQ

connection factory
into JNDI

WebSphere MQ 6
client jars

WebSphere MQ 6
client jars

WebSphere MQ 6
client jars

WebSphere MQ 6
client jars

Figure 9. Future version of WebSphere MQ scenario

914 Administering applications and their environment

configure the WebSphere Application Server to point to the WebSphere MQ client jars associated with the

future version of WebSphere MQ.

Error message example

The following example shows the type of text that the exception created by the client jars contains:

[09/02/06 15:40:06:377 GMT] 0000000a ContainerImpl E WSVR0501E: Error creating

component null [class com.ibm.ws.runtime.component.ApplicationServerImpl]

com.ibm.ws.exception.RuntimeWarning: com.ibm.ws.runtime.component.binder.

ResourceBindingException: invalid configuration passed to resource binding logic.

REASON: Failed to create connection factory: Error raised constructing AdminObject,

error code: XAQCF PropertyName : XAQCF PropertyName

WebSphere
Application Server

cell6.1

WebSphere
Application Server

cell6.1

WebSphere
Application Server

cell6.1

WebSphere
Application Server

cell6.1

WebSphere
Application
Server 6.1

deployment
manager

WebSphere MQ
(future version)
JMS provider

JNDI Lookup works as
connection factory is

bound into JNDI

Application code
performing a JNDI

lookup of the
WebSphere MQ

connection factory

Application code
performing a JNDI

lookup of the
WebSphere MQ

connection factory

JNDI Lookup works as
connection factory is

bound into JNDI

Will bind
into JNDI

Will bind
into JNDI

Will bind
into JNDI

Will bind
into JNDI

WebSphere MQ
(future version)

client jars

WebSphere MQ
connection factory
defined at cell level

using custom properties
for a future version of

WebSphere MQ

Figure 10. Correctly configured scenario

Chapter 14. Messaging resources 915

where PropertyName is the name of the invalid property.

 Related tasks

 “Configuring custom properties for the WebSphere MQ messaging provider” on page 911
You can use WebSphere MQ as a messaging provider for WebSphere Application Server. Many of the

properties for a WebSphere MQ messaging provider can be selected from panels in the WebSphere

Application Server administration console, but there are further properties that you can configure as

custom properties. Use this task to create custom properties for destinations and connection factories

when using WebSphere MQ as a messaging provider.

Securing WebSphere MQ messaging directories and log files

Use this task to restrict access to the /var/mqm directories and log files needed for WebSphere MQ as a

JMS provider.

Note: The /var file system is used to store all the security logging information for the system, and is used

to store the temporary files for email and printing. Therefore, it is critical that you maintain free

space in /var for these operations and prevent unauthorized access to the file system. If you do not

create a separate file system for messaging data, and /var fills up, all security logging will be

stopped on the system until some free space is available in /var. Also, email and printing will no

longer be possible until some free space is available in /var.

This procedure involves steps that you complete at different stages of installing and using IBM WebSphere

Application Server, as described below. The steps are also described at appropriate points in other tasks,

but are collected here for completeness.

1. Before installing WebSphere MQ, create and mount a file system called /var/mqm. This means that

other system activity is not affected if a large amount of messaging work builds up in /var/mqm.

2. Install WebSphere MQ as a messaging provider.

As part of this stage, the installation program creates the /var/mqm/errors directory used to hold

messaging logging files as well as the directories used to hold the messaging data. During the

installation process these directories are secured with a default set of security attributes to prevent

unauthoised access. If you change these permissions you should ensure that the permissions specified

give WebSphere MQ messaging the required access.

Using JMS resources of a generic provider

This topic is the entry-point into a set of topics about enabling WebSphere applications to use JMS

resources provided by a generic messaging provider (other than a WebSphere default messaging provider

or WebSphere MQ).

You can install a messaging provider other than the default messaging provider or WebSphere MQ.

WebSphere applications can use the JMS 1.1 interfaces or JMS 1.0.2 interfaces to access JMS resources

provided by the generic messaging provider, in addition to JMS resources provided by the default

messaging provider or WebSphere MQ (if installed).

You can use the WebSphere administrative console to administer the JMS connection factories and

destinations provided by generic messaging providers.

In a mixed-version WebSphere Application Server deployment manager cell, you can administer generic

messaging resources on both Version 6 and Version 5 nodes. For Version 5 nodes, the administrative

console presents the subset of resources and properties that are applicable to WebSphere Application

Server Version 5.

For more information about using a generic messaging provider to WebSphere Application Server, see the

following topics:

v “Defining a generic messaging provider” on page 917

916 Administering applications and their environment

v “Listing generic JMS messaging resources”

v “Configuring JMS resources for a generic messaging provider” on page 923

Defining a generic messaging provider

Use this task to define a new messaging provider to WebSphere Application Server, for use instead of the

default messaging provider or a WebSphere MQ as a messaging provider.

Before starting this task, you should have installed and configured the messaging provider and its

resources by using the tools and information provided with the messaging provider.

To define a new generic messaging provider to WebSphere Application Server, use the administrative

console to complete the following steps:

1. In the navigation pane, click JMS Providers → Generic. This displays the existing generic messaging

providers in the content pane.

2. To define a new generic messaging provider, click New in the content pane. Otherwise, to change the

definition of an existing messaging provider, click the name of the provider. This displays the properties

used to define the messaging provider in the content pane.

3. Specify the following required properties. You can specify other properties, as described in a later step.

Name The name by which this messaging provider is known for administrative purposes within IBM

WebSphere Application Server.

External initial context factory

The Java classname of the initial context factory for the JMS provider.

External provider URL

The JMS provider URL for external JNDI lookups.

4. Optional: Click Apply. This enables you to specify additional properties.

5. Optional: Specify other properties for the messaging provider.

Under Additional Properties, you can use the Custom Properties link to specify custom properties for

your initial context factory, in the form of standard javax.naming properties.

6. Click OK.

7. Save the changes to the master configuration.

8. To have the changed configuration take effect, stop then restart the application server.

You can now configure JMS resources for the generic messaging provider, as described in “Configuring

JMS resources for a generic messaging provider” on page 923.

Listing generic JMS messaging resources

Use this task with the WebSphere administrative console to display administrative lists of JMS resources

provided by a messaging provider other than the default messaging provider or WebSphere MQ.

You can use the WebSphere administrative console to display lists of the following types of JMS resources

provided by a generic messaging provider. You can use the panels displayed to select JMS resources to

administer, or to create or delete JMS resources (where appropriate).

To display administrative lists of JMS resources for a generic messaging provider, complete the following

general steps:

1. Start the WebSphere administrative console.

2. In the navigation pane, click Resources → JMS Providers → Generic

3. If appropriate, in the content pane, change the scope of the generic messaging provider. If the scope is

set to node or server scope for a Version 5 node, the administrative console presents the subset of

resources and properties that are applicable to WebSphere Application Server Version 5.

Chapter 14. Messaging resources 917

4. In the content pane, under Additional Resources, click the link for the type of JMS resource. This

displays a list of any existing resources of the selected type. For more information about the settings

panels displayed for resources, see the related reference topics.

JMS provider collection

Use this panel to list JMS providers, or to select a JMS provider to view or change its configuration

properties.

To view this administrative console page, click Resources → JMS providers → Generic

To view or change the properties of a JMS provider or its resources, select its name in the list displayed.

To define a new generic JMS provider, click New.

To act on one or more of the JMS providers listed, click the check boxes next to the names of the objects

that you want to act on, then use the buttons provided.

Name The name by which this JMS provider is known for administrative purposes.

Description

A description of this JMS provider for administrative purposes.

 For related information about JMS messaging providers and asynchronous messaging, see

v ../ae/cmj_jmsp.dita#cmj_jmsp.dita

v “Asynchronous messaging in WebSphere Application Server using JMS” on page 289

Generic JMS connection factory collection

The JMS connection factories configured in the associated generic messaging provider for both

point-to-point and publish/subscribe messaging. Use this panel to create or delete JMS connection

factories, or to select a connection factory to browse or change its configuration properties.

This panel shows a list of the generic JMS connection factories with a summary of their configuration

properties.

To view this administrative console page, use the administrative console to complete the following steps:

1. In the navigation pane, expand Resources → JMS Providers → Generic.

2. In the content pane, click the name of the generic messaging provider that you want to support the

JMS connection factory.

3. Under Additional Properties, click JMS connection factories.

To define a new JMS connection factory, click New.

To view or change the properties of a JMS connection factory, select its name in the list displayed.

To act on one or more of the JMS connection factories listed, click the check boxes next to the names of

the objects that you want to act on, then use the buttons provided.

Generic JMS connection factory settings:

Use this panel to browse or change the configuration properties of the selected JMS connection factory for

use with the associated generic JMS provider. These configuration properties control how connections are

created to the JMS destinations on the provider.

 A JMS connection factory is used to create connections to JMS destinations. The JMS connection factory

is created by the associated JMS provider.

To view this page, use the administrative console to complete the following steps:

1. In the navigation pane, expand Resources → JMS Providers → Generic.

918 Administering applications and their environment

2. In the content pane, click the name of the messaging provider that you want to support the JMS

connection factory.

3. If appropriate, in the content pane, change the scope of the generic messaging provider.

4. Under Additional Properties, click JMS connection factories.

5. Click the name of the JMS connection factory that you want to work with.

A JMS connection factory for a generic JMS provider (other than the default messaging provider or

WebSphere MQ as a JMS provider) has the following properties:

Scope:

Specifies the level to which this resource definition is visible to applications.

 Resources such as messaging providers, namespace bindings, or shared libraries can be defined at

multiple scopes, with resources defined at more specific scopes overriding duplicates which are defined at

more general scopes.

The scope displayed is for information only, and cannot be changed on this panel. If you want to browse

or change this resource (or other resources) at a different scope, change the scope on the messaging

provider settings panel, then click Apply, before clicking the link for the type of resource.

 Data type String

Name:

The name by which this JMS connection factory is known for administrative purposes within IBM

WebSphere Application Server. The name must be unique within the associated messaging provider.

 Data type String

Type:

Whether this connection factory is for creating JMS queue destinations or JMS topic destinations.

 Select one of the following options:

QUEUE

A JMS queue connection factory for point-to-point messaging.

TOPIC

A JMS topic connection factory for publish/subscribe messaging.

JNDI name:

The JNDI name that is used to bind the connection factory into the WebSphere Application Server name

space.

 As a convention, use the fully qualified JNDI name; for example, in the form jms/Name, where Name is the

logical name of the resource.

This name is used to link the platform binding information. The binding associates the resources defined

by the deployment descriptor of the module to the actual (physical) resources bound into JNDI by the

platform.

 Data type String

Description:

Chapter 14. Messaging resources 919

A description of this connection factory for administrative purposes within IBM WebSphere Application

Server.

 Data type String

Default Null

Category:

A category used to classify or group this connection factory, for your IBM WebSphere Application Server

administrative records.

 Data type String

External JNDI name:

The JNDI name that is used to bind the connection factory into the name space of the generic messaging

provider.

 As a convention, use the fully qualified JNDI name; for example, in the form jms/Name, where Name is the

logical name of the resource.

This name is used to link the platform binding information. The binding associates the resources defined

by the deployment descriptor of the module to the actual (physical) resources bound into JNDI by the

platform.

 Data type String

Component-managed Authentication Alias:

This alias specifies a user ID and password to be used to authenticate connection to a JMS provider for

application-managed authentication.

 This property provides a list of the J2C authentication data entry aliases that have been defined to

WebSphere Application Server. You can select a data entry alias to be used to authenticate the creation of

a new connection to the JMS provider.

If you have enabled for WebSphere Application Server, select the alias that specifies the user ID and

password used to authenticate the creation of a new connection to the JMS provider. The use of this alias

depends on the resource authentication (res-auth) setting declared in the connection factory resource

reference of an application component’s deployment descriptors.

Container-managed Authentication Alias:

This alias specifies a user ID and password to be used to authenticate connection to a JMS provider for

container-managed authentication.

 This property provides a list of the J2C authentication data entry aliases that have been defined to

WebSphere Application Server. You can select a data entry alias to be used to authenticate the creation of

a new connection to the JMS provider.

If you have enabled for WebSphere Application Server, select the alias that specifies the user ID and

password used to authenticate the creation of a new connection to the JMS provider. The use of this alias

depends on the resource authentication (res-auth) setting declared in the connection factory resource

reference of an application component’s deployment descriptors.

920 Administering applications and their environment

Mapping-Configuration Alias:

The module used to map authentication aliases.

 This field provides a list of the modules that have been configured on the Global Security → JAAS

Configuration → Application Logins Configuration property. For more information about the mapping

configurations, see Java Authentication and Authorization service configuration entry settings.

 Data type Enum

Default Null

Range ClientContainer

The client container maps authentication aliases.

WSLogin

The WSLogin module maps authentication

aliases.

DefaultPrincipalMapping

The JAAS configuration maps an authentication

alias to its userid and password.

Connection pool:

Specifies an optional set of connection pool settings.

 Connection pool properties are common to all J2C connectors.

The application server pools connections and sessions with the messaging provider to improve

performance. You need to configure the connection and session pool properties appropriately for your

applications, otherwise you may not get the connection and session behavior that you want.

Change the size of the connection pool if concurrent server-side access to the JMS resource exceeds the

default value. The size of the connection pool is set on a per queue or topic basis.

Session pool:

An optional set of session pool settings.

 This link provides a panel of optional connection pool properties, common to all J2C connectors.

The application server pools connections and sessions with the messaging provider to improve

performance. You need to configure the connection and session pool properties appropriately for your

applications, otherwise you may not get the connection and session behavior that you want.

Custom properties:

An optional set of name and value pairs for custom properties passed to the messaging provider.

Generic JMS destination collection

The JMS destinations configured in the associated messaging provider for point-to-point and

publish/subscribe messaging. Use this panel to create or delete JMS destinations, or to select a JMS

destination to browse or change its configuration properties.

To view this page, use the administrative console to complete the following steps:

1. In the navigation pane, click Resources → JMS Providers → Generic.

2. In the content pane, click the name of the messaging provider that you want to support the JMS

destination.

3. Under Additional Properties, click JMS destinations.

Chapter 14. Messaging resources 921

To define a new JMS destination, click New.

To view or change the properties of a JMS destination, select its name in the list displayed.

To act on one or more of the JMS destinations listed, click the check boxes next to the names of the

objects that you want to act on, then use the buttons provided.

Generic JMS destination settings:

Use this panel to browse or change the configuration properties of the selected JMS destination for use

with the associated JMS provider.

 A JMS destination is used to configure the properties of a JMS destination for the associated generic

messaging provider (not the default messaging provider or WebSphere MQ). Connections to the JMS

destination are created by the associated JMS connection factory.

To view this page, use the administrative console to complete the following steps:

1. In the navigation pane, click Resources → JMS Providers → Generic.

2. In the content pane, click the name of the messaging provider that you want to support the JMS

destination.

3. Under Additional Properties, click JMS destinations.

4. Click the name of the JMS destination that you want to work with.

A JMS destination for use with a generic messaging provider has the following properties.

Scope:

Specifies the level to which this resource definition is visible to applications.

 Resources such as messaging providers, namespace bindings, or shared libraries can be defined at

multiple scopes, with resources defined at more specific scopes overriding duplicates which are defined at

more general scopes.

The scope displayed is for information only, and cannot be changed on this panel. If you want to browse

or change this resource (or other resources) at a different scope, change the scope on the messaging

provider settings panel, then click Apply, before clicking the link for the type of resource.

 Data type String

Name:

The name by which the queue is known for administrative purposes within IBM WebSphere Application

Server.

 Data type String

Type:

Whether this JMS destination is a queue (for point-to-point) or topic (for publish/subscribe).

 Select one of the following options:

Queue

A JMS queue destination for point-to-point messaging.

Topic A JMS topic destination for publish/subscribe messaging.

922 Administering applications and their environment

JNDI name:

The JNDI name that is used to bind the queue into the application server’s name space.

 As a convention, use the fully qualified JNDI name; for example, in the form jms/Name, where Name is the

logical name of the resource.

This name is used to link the platform binding information. The binding associates the resources defined

by the deployment descriptor of the module to the actual (physical) resources bound into JNDI by the

platform.

 Data type String

Description:

A description of the queue, for administrative purposes

 Data type String

Category:

A category used to classify or group this queue, for your IBM WebSphere Application Server administrative

records.

 Data type String

External JNDI name:

The JNDI name that is used to bind the queue into the application server’s name space.

 As a convention, use the fully qualified JNDI name; for example, in the form jms/Name, where Name is the

logical name of the resource.

This name is used to link the platform binding information. The binding associates the resources defined

by the deployment descriptor of the module to the actual (physical) resources bound into JNDI by the

platform.

 Data type String

Configuring JMS resources for a generic messaging provider

Use the following tasks to configure the JMS connection factories and destinations for a generic

messaging provider (not the default messaging provider or WebSphere MQ).

You only need to complete these tasks if your WebSphere Application Server environment uses a

messaging provider other than the default messaging provider or WebSphere MQ to support enterprise

applications that use JMS. To enable use of such a generic messaging provider, you must have installed

and configured the messaging provider, as described in Defining a new JMS provider to WebSphere

Application Server.

To configure JMS resources for a generic messaging provider, complete the following tasks:

v Configuring a JMS connection factory

v Configuring a JMS destination

Chapter 14. Messaging resources 923

Configuring a JMS connection factory for the generic JMS provider

Use this task to browse or change the properties of a JMS connection factory for use with a generic JMS

provider (other than the default, V5 default or WebSphere MQ messaging providers).

To configure a JMS connection factory for use with a generic JMS provider, use the administrative console

to complete the following steps:

1. Display the generic messaging provider. In the navigation pane, expand Resources → JMS → JMS

Providers .

2. Select the default provider for which you want to configure a connection factory.

3. Optional: Change the Scope setting to the level at which the connection factory is visible to

applications.

4. In the content pane, under Additional Properties, click Connection factories This displays a table

listing any existing JMS connection factories, with a summary of their properties.

5. To browse or change an existing JMS connection factory, click its name in the list. Otherwise, to create

a new connection factory, complete the following steps:

a. Click New in the content pane.

b. Specify the following required properties. You can specify other properties, as described in a later

step.

Name The name by which this JMS connection factory is known for administrative purposes

within IBM WebSphere Application Server.

Type Select whether the connection factory is for JMS queues (QUEUE) or JMS topics (TOPIC).

JNDI Name

The JNDI name that is used to bind the JMS connection factory into the WebSphere

Application Server name space.

External JNDI Name

The JNDI name that is used to bind the JMS connection factory into the name space of the

messaging provider.

c. Click Apply. This defines the JMS connection factory to WebSphere Application Server, and

enables you to browse or change additional properties.

6. Optional: Change properties for the JMS connection factory, according to your needs.

7. Click OK.

8. Save any changes to the master configuration.

9. To have the changed configuration take effect, stop then restart the application server.

Configuring a JMS destination, a generic JMS provider

Use this task to browse or change the properties of a JMS destination for use with a generic JMS provider

(other than the default messaging provider or WebSphere MQ).

To configure a JMS destination for use with a generic JMS provider, use the administrative console to

complete the following steps:

1. Display the generic messaging provider. In the navigation pane, expand Resources → JMS Providers

→ Generic.

2. Optional: Change the Scope setting to the level at which the connection factory is visible to

applications.

3. In the content pane, under Additional Properties, click JMS destinations This displays a table listing

any existing JMS destinations, with a summary of their properties.

4. To browse or change an existing JMS destination, click its name in the list. Otherwise, to create a new

destination, complete the following steps:

a. Click New in the content pane.

924 Administering applications and their environment

b. Specify the following required properties. You can specify other properties, as described in a later

step.

Name The name by which this JMS destination is known for administrative purposes within IBM

WebSphere Application Server.

Type Select whether the destination is for JMS queues (QUEUE) or JMS topics (TOPIC).

JNDI Name

The JNDI name that is used to bind the JMS destination into the WebSphere Application

Server name space.

External JNDI Name

The JNDI name that is used to bind the JMS destination into the name space of the

messaging provider.

c. Click Apply. This defines the JMS destination to WebSphere Application Server, and enables you

to browse or change additional properties.

5. Optional: Change properties for the JMS destination, according to your needs.

6. Click OK.

7. Save any changes to the master configuration.

8. To have the changed configuration take effect, stop then restart the application server.

Administering support for message-driven beans

Use these tasks to manage resources used to support message-driven beans. These tasks are in addition

to the tasks for administering resource adapters, JMS providers and the resources they provide.

You can use the WebSphere administrative console to configure the following resources for

message-driven beans:

v J2C activation specifications for JCA 1.5-compliant message-driven beans. Activation specifications

must be provided when the application’s resources are configured using the default messaging provider

or any generic J2C Resource Adapter that supports inbound messaging.

v The message listener service, listener ports, and listeners for EJB 2.0 message-driven beans deployed

against listener ports. Listener ports must be provided when using the JMS providers: V5 Default

Messaging, WebSphere MQ, or Generic.

You can update the configuration data at any time, but some updates only take effect when the

appropriate server is next started.

For information about administering support for message-driven beans, see the following topics:

v Configuring JMS activation specifications, default messaging provider

v “Configuring a J2C activation specification”

v “Configuring a J2C administered object” on page 929

v Configuring message listener resources for EJB 2.0 message-driven beans

For other information about administering JMS providers and the messaging resources they provide, see

the list of related topics.

Configuring a J2C activation specification

Use this task to configure a J2C activation specification used to deploy message-driven beans with an

external resource adapter.

Use this task if you want to use a message-driven bean as a listener on a Java Connector Architecture

(JCA) 1.5 resource adapter other than the default messaging JMS provider.

Chapter 14. Messaging resources 925

You can create or modify a J2C activation specification under an installed resource adapter at the cell,

node, or server scope. You can select the message listener type from those provided by the given

resource adapter.

Configuring a J2C activation specification offers two distinct advantages:

v The activation specification configuration information can be shared among multiple message-driven

beans across multiple applications.

v Updates to the configuration properties can be made without the need to redeploy the application.

To configure a J2C activation specification for an external resource adapter, use the administrative console

to complete the following steps. This task contains an optional step for you to create a new activation

specification.

1. Display the external resource adapter. In the navigation pane, click Resources → Resource Adapters

→ adapter_name. This displays in the content pane a table of properties for the external resource

adapter, including links to the types of J2C resources that it provides.

2. Optional: Change the Scope setting to the scope level at which the activation specification is to be

visible to applications, according to your needs.

3. In the content pane, under the Activation specifications heading, click J2C Activation Specifications.

This lists any existing J2C activation specifications for the external resource adapter in the content

pane.

4. Display the properties of the J2C activation specification. If you want to display an existing J2C

activation specification, click one of the names listed.

Alternatively, if you want to create a new J2C activation specification, click New, then specify the

following required properties:

Name Type the name by which the activation specification is known for administrative purposes. The

JNDI name is automatically generated based on the value for the Name property.

Message listener type

Select the message listener type that this activation specification instance should support. This

list is based on the deployment descriptor of the external resource adapter.

Depending on the external resource adapter, there can be additional required properties that need to

be supplied. To provide values for these properties, click Custom properties. When creating a new

activation specification, you may need to click Apply before this custom property selection is available.

5. Specify properties for the activation specification, according to your needs .

6. Click OK.

7. Save your changes to the master configuration.

J2C Activation Specifications collection

This page contains a list of J2C activation specifications for a resource adapter configuration and is used

to create new J2C activation specifications, to select J2C activation specifications for configuration

changes, or to delete J2C activation specifications.

Activation specification definitions and classes are provided by a resource adapter when it is installed.

Using this information, the administrator can create and configure J2C activation specifications with JNDI

names that are then available for applications to use. The resource adapter uses a J2C activation

specification to configure a specific endpoint instance. Each application configuring one or more endpoints

must specify the resource adapter that sends messages to the endpoint. The application must use the

activation specification to provide the configuration properties related to the processing of the inbound

messages.

You can access this administrative console page in one of two ways:

v Resources > Resource adapters > Resource adapters > resource_adapter > J2C Activation

Specifications.

926 Administering applications and their environment

v Resources > Resource adapters > J2C Activation Specifications.

Name:

Specifies the display name of the J2C activation specification instance.

 A string with no spaces meant to be a meaningful text identifier for the J2C activation specification.

 Data type String

JNDI name:

Specifies the Java Naming and Directory Interface (JNDI) name for the J2C activation specification

instance.

 Data type String

Scope:

Specifies the scope of the resource adapter that supports this activation specification. Only applications

that are installed within this scope can use this activation specification.

Provider:

Specifies the resource adapter that encapsulates the appropriate classes for this activation specification.

Description:

A free-form text string to describe the J2C activation specification instance.

 Data type String

Message Listener Type:

The Message Listener Type that is used by this activation specification.

 The list of available classes is provided by the resource adapter.

 Data type String

J2C Activation Specifications settings:

Use this page to specify the settings for a J2C activation specification.

 The resource adapter uses a J2C activation specification to configure a specific endpoint instance. Each

application configuring one or more endpoints must specify the resource adapter that sends messages to

the endpoint. The application must use the activation specification to provide the configuration properties

related to the processing of the inbound messages.

You can access this administrative console page in one of two ways:

v Resources > Resource adapters > Resource adapters > resource_adapter > J2C Activation

Specifications > activation_specification.

v Resources > Resource adapters > J2C Activation Specifications > activation_specification.

Chapter 14. Messaging resources 927

Name:

Specifies the display name of the J2C activation specification instance.

 A string with no spaces meant to be a meaningful text identifier for the J2C activation specification. Name

is required

 Data type String

JNDI name:

Specifies the Java Naming and Directory Interface (JNDI) name for the J2C activation specification

instance.

 The JNDI name is required. If you do not specify one, it is created from the Name field. If not specified,

the JNDI name defaults to eis/[name]

 Data type String

Scope:

Specifies the scope of the resource adapter that supports this activation specification. Only applications

that are installed within this scope can use this activation specification.

Provider:

Specifies the resource adapter that encapsulates the appropriate classes for this activation specification.

Description:

A free-form text string to describe the J2C activation specification instance.

 Data type String

Authentication alias:

This optional field is used to bind the J2C activation specification to an authentication alias (configured

through the security JAAS screens).

 This alias is used to access a user name and password that are set on the configured J2C activation

specification. This field is only meaningful if the J2C activation specification you are configuring has a

UserName and Password field.

 Data type Text

Message Listener Type:

The Message Listener Type used by this activation specification.

 For new objects, the list of available classes is provided by the resource adapter in a drop-down list. After

you create the activation specification, the field is a read only text field.

 Data type Drop-down list or text

928 Administering applications and their environment

Destination JNDIName:

The destination JNDIName field only appears when a message of type javax.jms.Destination with name

Destination is received.

Configuring a J2C administered object

Use this task to configure a J2C administered object used to configure objects with an external resource

adapter.

To configure a J2C administered object for an external resource adapter, use the administrative console to

complete the following steps. This task contains an optional step for you to create a new administered

object.

1. Display the external resource adapter. In the navigation pane, click Resources → Resource Adapters

→ adapter_name. This displays in the content pane a table of properties for the external resource

adapter, including links to the types of J2C resources that it provides.

2. Optional: Change the Scope setting to the scope level at which the activation specification is to be

visible to applications, according to your needs.

3. In the content pane, under the Additional Properties heading, click J2C Administered Objects. This

lists any existing J2C administered objects for the external resource adapter in the content pane.

4. Display the properties of the J2C administered object. If you want to display an existing J2C

administered object, click one of the names listed.

Alternatively, if you want to create a new J2C administered object, click New, then specify the following

required properties:

Name Type the name by which the J2C administered object is known for administrative purposes.

The JNDI name is automatically generated based on the value for the Name property.

Administered object class

Select the administered object class that this instance should support. This list is based on the

deployment descriptor of the external resource adapter.

Depending on the external resource adapter, there can be additional required properties that need to

be supplied. To provide values for these properties, click Custom properties. When creating a new

administered object, you may need to click Apply before this custom property selection is available.

5. Specify properties for the administered object, according to your needs .

6. Click OK.

7. Save your changes to the master configuration.

J2C Administered Objects collection

Use this page to specify administered object settings for a Resource Adapter.

Administered object definitions and classes are provided by a resource adapter when you install it. Using

this information, the administrator can create and configure J2C administered objects with JNDI names

that are then available for applications to use. Some messaging styles may need applications to use

special administered objects for sending and synchronously receiving messages (through connection

objects using messaging style specific APIs). It is also possible that administered objects may be used to

perform transformations on an asynchronously received message in a message provider-specific way.

Administered objects can be accessed by a component by using either a resource environment reference

or a message destination reference (preferred).

You can access this administrative console page in one of two ways:

v Resources > Resource adapters > Resource adapters > resource_adapter > J2C Administered

Objects.

v Resources > Resource adapters > J2C Administered Objects

Chapter 14. Messaging resources 929

Name:

Specifies display name assigned to this administered object.

 Data type String

JNDI Name:

Specifies the JNDI name of the administered object.

 Data type String

Scope:

Specifies the scope of the resource adapter that supports this administered object. Only applications that

are installed within this scope can use this object.

Provider:

Specifies the resource adapter that encapsulates the appropriate classes for this administrative object.

Description:

Specifies a description for the administered object.

 Data type String

Administered Object class:

Specifies the Administered Object class that is associated with this J2C Administered object. This class

must be one that is provided by the resource adapter.

 Data type String

J2C Administered Object settings:

Use this page to specify the settings for an administered object.

 Administered object definitions and classes are provided by a resource adapter when you install it. Using

this information, the administrator can create and configure J2C administered objects with JNDI names

that are then available for applications to use. Some messaging styles may need applications to use

special administered objects for sending and synchronously receiving messages (through connection

objects using messaging style specific APIs). It is also possible that administered objects may be used to

perform transformations on an asynchronously received message in a message provider-specific way.

Administered objects can be accessed by a component by using either a resource environment reference

or a message destination reference (preferred).

You can access this administrative console page in one of two ways:

v Resources > Resource adapters > Resource adapters > resource_adapter > J2C Administered

Objects > J2C_administered_object.

v Resources > Resource adapters > J2C Administered Objects > J2C_administered_object.

Name:

930 Administering applications and their environment

Specifies the name of the J2C administered object instance.

 A string with no spaces meant to be a meaningful text identifier for the administered object. This name is

required.

 Data type String

JNDI name:

Specifies the Java Naming and Directory Interface (JNDI) name that this administered object is bound

under.

 The JNDI name is required. If you do not specify one, it is created from the Name field. If not specified,

the JNDI name defaults to eis/[name]

 Data type String

Scope:

Specifies the scope of the resource adapter that supports this administered object. Only applications that

are installed within this scope can use this object.

 Data type String

Provider:

Specifies the resource adapter that encapsulates the appropriate classes for this administrative object.

 Data type String

Description:

Specifies a text description of the J2C administered object instance.

 Data type String

Administered Object Class:

For new objects, the list of available classes is provided by the resource adapter in a drop-down list. You

can only select classes from this list.

 After you create the administered object, you cannot modify the Administered Object Class; it is read only.

 Data type Drop-down list or Text

Configuring message listener resources for message-driven beans

Use the following tasks to configure resources needed by the message listener service to support

message-driven beans for use with a JMS provider that does not have a JCA 1.5 resource adapter.

For JMS messaging, message-driven beans can use a JMS provider that has a JCA 1.5 resource adapter,

such as the default messaging provider that is part of WebSphere Application Server version 6. With a

JCA 1.5 resource adapter, you deploy EJB 2.1 message-driven beans as JCA resources to use a J2C

Chapter 14. Messaging resources 931

activation specification. If the JMS provider does not have a JCA 1.5 resource adapter, such as the V5

Default Messaging and WebSphere MQ, you must configure JMS message-driven beans against a listener

port (as in WebSphere Application Server version 5).

If you want to deploy an enterprise application to use JMS message-driven beans with a JMS provider that

does not have a JCA 1.5 resource adapter, refer to the following subtopics:

Configuring the message listener service

Use this task to configure the properties of the message listener service for an application server, to

support message-driven beans deployed against listener ports.

If the JMS provider does not have a JCA 1.5 resource adapter, such as the V5 Default Messaging and

WebSphere MQ, you must configure JMS message-driven beans against a listener port (as in WebSphere

Application Server version 5).

If you want to deploy an enterprise application to use message-driven beans with listener ports, you can

use this task to browse or change the configuration of the message listener service for an application

server.

To configure the message listener service for an application server, use the administrative console to

complete the following steps:

1. Display the listener service settings page:

a. In the navigation pane, select Servers → Application Servers.

b. In the content pane, click the name of the application server.

c. Under Communications, click Messaging → Message Listener Service.

2. Optional: Browse or change the value of properties for the message-driven bean thread pool.

a. Click Thread Pool

b. Change the following properties, to suit your needs:

Minimum size

The minimum number of threads to allow in the pool.

Maximum size

The maximum number of threads to allow in the pool.

Thread inactivity timeout

The number of milliseconds of inactivity that should elapse before a thread is reclaimed. A

value of 0 indicates not to wait and a negative value (less than 0) means to wait forever.

Note: The administrative console does not allow you to set the inactivity timeout to a

negative number. To do this you must modify the value directly in the config.xml file.

Allow thread allocation beyond maximum thread size

Select this check box to enable the number of threads to increase beyond the maximum

size configured for the thread pool.

c. Click OK.

3. Optional: Specify any of the following optional properties that you need, as Custom properties of the

message listener service:

NON.ASF.RECEIVE.TIMEOUT, MQJMS.POOLING.TIMEOUT, MQJMS.POOLING.THRESHOLD,

MAX.RECOVERY.RETRIES, and RECOVERY.RETRY.INTERVAL.

For more information about these custom properties, see Custom Properties.

To browse or change the properties, complete the following steps:

a. Click Custom properties

b. For each custom property, specify a value to suit your needs.

932 Administering applications and their environment

If you have not specified a property before:

1) Click New.

2) Type the name of the property.

3) Type the value of the property.

4) Click OK.

4. Save your changes to the master configuration.

5. To have the changed configuration take effect, stop then restart the Application Server.

Message listener service:

The message listener service is an extension to the JMS functions of the JMS provider. It provides a

listener manager that controls and monitors one or more JMS listeners, which each monitor a JMS

destination on behalf of a deployed message-driven bean.

 This panel displays links to the Additional Properties pages for Listener Ports, Thread Pool, and Custom

Properties for the message listener service.

To view this administrative console page, click Servers → Application Servers → application_server →

[Communications] Messaging → Message Listener Service

Custom Properties:

An optional set of name and value pairs for custom properties of the message listener service.

 You can use the Custom properties page to define the following properties for use by the message listener

service.

v NON.ASF.RECEIVE.TIMEOUT

v MQJMS.POOLING.TIMEOUT

v MQJMS.POOLING.THRESHOLD

v MAX.RECOVERY.RETRIES

v RECOVERY.RETRY.INTERVAL

Message listener port collection:

The message listener ports configured in the administrative domain

 This panel displays a list of the message listener ports configured in the administrative domain. Each

listener port is used with a message-driven bean to automatically receive messages from an associated

JMS destination. You can use this panel to add new listener ports or to change the properties of existing

listener ports.

To view this administrative console panel, click Servers → Application Servers → application_server →

[Messaging] Message Listener Service → Listener Ports

For more information about asynchronous messaging, see “Asynchronous messaging in WebSphere

Application Server using JMS” on page 289.

Listener port settings:

A listener port is used to simplify administration of the association between a connection factory,

destination, and deployed message-driven bean.

 Use this panel to view or change the configuration properties of the selected listener port.

Chapter 14. Messaging resources 933

To view this administrative console page, click Servers → Application Servers → application_server →

[Communications] Messaging → Message Listener Service → Listener Ports → listener_port

Name:

The name by which the listener port is known for administrative purposes.

 Data type String

Default Null

Initial state:

The state that you want the listener port to have when the application server is next restarted

 Data type Enum

Units Not applicable

Default Started

Range Started

When the application server is next started, the

listener port is started automatically.

Stopped

When the application server is next started, the

listener port is not started automatically. If

message-driven beans are to use this listener

port on the application server, the system

administrator must start the port manually or

select the Started value of this property then

restart the application server.

Description:

A description of the listener port, for administrative purposes within IBM WebSphere Application Server.

 Data type String

Default Null

Connection factory JNDI name:

The JNDI name for the JMS connection factory to be used by the listener port; for example,

jms/connFactory1.

 Data type String

Default Null

Destination JNDI name:

The JNDI name for the destination to be used by the listener port; for example, jms/destn1.

 You cannot use a temporary destination for late responses.

 Data type String

Default Null

Maximum sessions:

934 Administering applications and their environment

Specifies the maximum number of concurrent sessions that a listener can have with the JMS server to

process messages.

 Each session corresponds to a separate listener thread and therefore controls the number of concurrently

processed messages. Adjust this parameter when the server does not fully use the available capacity of

the machine and if you do not need to process messages in a specific message order.

 Data type Integer

Units Sessions

Default 1

Range 1 through 2147483647

Recommended v If you want to process messages in a strict message

order, set the value to 1, so only one thread is ever

processing messages.

v If you want to process multiple messages

simultaneously (known as “message concurrency”), set

this property to a value greater than 1. Keep this value

as low as possible to prevent overloading client

applications. A good starting point for a 100% JMS

workload with short transaction times is 2 to 4 sessions

per processor. If longer running transactions exist, you

may need more sessions, which should be determined

by experimentation.

Maximum retries:

The maximum number of times that the listener tries to deliver a message before the listener is stopped, in

the range 0 through 2147483647.

 The maximum number of times that the listener tries to deliver a message to a message-driven bean

instance before the listener is stopped.

 Data type Integer

Units Retry attempts

Default 0 (no retries)

Range 0 (no retries) through 2147483647

Maximum messages:

The maximum number of messages that the listener can process in one transaction.

 If the queue is empty, the listener processes each message when it arrives. Each message is processed

within a separate transaction.

For the WebSphere V5 default messaging provider or WebSphere MQ as the JMS provider, if messages

start accumulating on the queue then the listener can start processing messages in batches. For generic

JMS providers, this property value is passed to the JMS provider but the effect depends on the JMS

provider.

 Data type Integer

Units Number of messages

Default 1

Range 1 through 2147483647

Chapter 14. Messaging resources 935

Recommended For the WebSphere default messaging providers or

WebSphere MQ as the JMS provider, if you want to

process multiple messages in a single transaction, then

set this value to more than 1. If messages start

accumulating on the queue, then a value greater than 1

enables multiple messages to be batch-processed into a

single transaction, and eliminates much of the overhead of

transactions on JMS messages.

CAUTION:

v If one message in the batch fails processing with an

exception, the entire batch of messages is put back on

the queue for processing.

v Any resource lock held by any of the interactions for the

individual messages are held for the duration of the

entire batch.

v Depending on the amount of processing that messages

need, and if XA transactions are being used, setting a

value greater than 1 can cause the transaction to time

out. If an XA transaction does time out routinely

because processing multiple messages exceeds the

transaction timeout, reduce this property to 1 (to limit

processing to one message per transaction) or increase

your transaction timeout.

Message listener service custom properties:

Use this panel to view or change an optional set of name and value pairs for custom properties of the

message listener service.

 To view this administrative console page, click Servers → Application Servers → application_server →

[Communications] Messaging → Message Listener Service → Custom Properties

You can use the Custom properties page to define the following properties for use by the message listener

service.

v NON.ASF.RECEIVE.TIMEOUT

v MQJMS.POOLING.TIMEOUT

v MQJMS.POOLING.THRESHOLD

v MAX.RECOVERY.RETRIES

v RECOVERY.RETRY.INTERVAL

NON.ASF.RECEIVE.TIMEOUT:

The timeout in milliseconds for synchronous message receives performed by message-driven bean listener

sessions in the non-ASF mode of operation.

 You should set this property to a non-zero value only if you want to enable the non-ASF mode of operation

for all message-driven bean listeners on the application server.

The message listener service has two modes of operation, Application Server Facilities (ASF) and

non-Application Server Facilities (non-ASF).

v The ASF mode is meant to provide concurrency and transactional support for applications. For

publish/subscribe message-drive beans, the ASF mode provides better throughput and concurrency,

because in the non-ASF mode the listener is single-threaded.

936 Administering applications and their environment

v The non-ASF mode is mainly for use with generic JMS providers that do not support JMS ASF, which is

an optional extension to the JMS specification. The non-ASF mode is also transactional but, because

the path length is shorter than the ASF mode, usually provides improved performance.

Use non-ASF if:

– Your generic JMS provider does not provide JMS ASF support

– You are using message-driven beans with WebSphere topic connections with the DIRECT port,

because the embedded publish/subscribe broker using that port does not support XA transactions or

JMS ASF.

– Message order is a strict requirement

 Data type Integer

Units Milliseconds

Default ASF mode (custom property not created)

Range 0 or greater milliseconds

0 non-ASF mode is disabled

1 or more

The timeout in milliseconds for non-ASF

message-driven bean listener synchronous

session receives

Recommended If a transaction timeout occurs, the message must recycle

causing extra work. If you want to use the non-ASF mode,

set this property to lower than the transaction timeout, but

leave spare at least the maximum duration of your

message-driven bean’s onMessage() method. For

example, if your message-driven bean’s onMessage()

method typically takes a maximum of 10 seconds, and the

transaction timeout is set to 120 seconds, you might set

the NON.ASF.RECEIVE.TIMEOUT property to no more

than 110000 (110000 milliseconds, that is 110 seconds).

MQJMS.POOLING.TIMEOUT:

The number of milliseconds after which a connection in the pool is destroyed if it has not been used.

 An MQSimpleConnectionManager allocates connections on a most-recently-used basis, and destroys

connections on a least-recently-used basis. By default, a connection is destroyed if it has not been used

for five minutes.

 Data type Integer

Units Milliseconds

Default 5 minutes

Range

MQJMS.POOLING.THRESHOLD:

The maximum number of unused connections in the pool.

 An MQSimpleConnectionManager allocates connections on a most-recently-used basis, and destroys

connections on a least-recently-used basis. By default, a connection is destroyed if there are more than

ten unused connections in the pool.

 Data type Integer

Units Number of connections

Default 10

Range

Chapter 14. Messaging resources 937

MAX.RECOVERY.RETRIES:

The maximum number of times that a listener port managed by this service tries to recover from a failure

before giving up and stopping. When stopped the associated listener port is changed to the stop state.

The interval between retry attempts is defined by the RECOVERY.RETRY.INTERVAL custom property.

 A failure can be one of two things:

v An unexpected error has occurred when a listener port tries to get a message from the JMS provider.

v The connection between the application server and the JMS provider has been lost, usually due to a

network error.

 Data type Integer

Units Retry attempts

Default 5

Range 0 (no retries) through 2147483647

RECOVERY.RETRY.INTERVAL:

The time in seconds between retry attempts by a listener port to recover from a failure. The maximum

number of retry attempts is defined by the MAX.RECOVERY.RETRIES custom property.

 A failure can be one of two things:

v An unexpected error has occurred when a listener port tries to get a message from the JMS provider.

v The connection between the application server and the JMS provider has been lost, usually due to a

network error.

 Data type Integer

Units Seconds

Default 60

Range 1 through 2147483647

Creating a new listener port

Use this task to create a new listener port for the message listener service, so that message-driven beans

can be associated with the port to retrieve messages.

Although you can continue to deploy an EJB 2.0 message-driven bean against a listener port (as in

WebSphere Application Server version 5), you are recommended to deploy such beans as JCA

1.5-compliant resources and to upgrade them to be EJB 2.1 message-driven beans.

If you want to deploy an enterprise application to use EJB 2.0 message-driven beans with listener ports,

use this task to create a new listener port for a message-driven bean to retrieve messages from.

To create a new listener port, use the administrative console to complete the following steps:

1. Display the collection list of listener ports:

a. In the navigation pane, select Servers → Application Servers.

b. In the content pane, click the name of the application server.

c. Under Communications, click Messaging → Message Listener Service.

d. Click Listener Ports.

2. Click New.

3. Specify the following required properties:

938 Administering applications and their environment

Name The name by which the listener port is known for administrative purposes.

Connection factory JNDI name

The JNDI name for the JMS connection factory to be used by the listener port; for example,

jms/connFactory1

Destination JNDI name

The JNDI name for the destination to be used by the listener port; for example, jms/destn1.

4. Optional: Change other properties for the listener port, according to your needs.

5. Click OK.

6. Save your changes to the master configuration.

7. To have the changed configuration take effect, stop then restart the application server.

If enabled, the listener port is started automatically when a message-driven bean associated with that port

is installed.

Configuring a listener port

Use this task to browse or change the properties of an existing listener port, used by message-driven

beans associated with the port to retrieve messages.

Although you can continue to deploy an EJB 2.0 message-driven bean against a listener port (as in

WebSphere Application Server version 5), you are recommended to deploy such beans as JCA

1.5-compliant resources and to upgrade them to be EJB 2.1 message-driven beans.

If you have deployed an enterprise application to use EJB 2.0 message-driven beans with listener ports,

use this task to browse or change the configuration of a listener port that a message-driven bean retrieves

messages from.

To configure the properties of a listener port, use the administrative console to complete the following

steps:

1. Display the collection list of listener ports:

a. In the navigation pane, select Servers → Application Servers.

b. In the content pane, click the name of the application server.

c. Under Communications, click Messaging → Message Listener Service.

d. Click Listener Ports.

2. Click the name of the listener port that you want to work with. This displays the properties of the

listener port in the content pane.

3. Optional: Change properties for the listener port, according to your needs.

4. Click OK.

5. Save any changes to the master configuration.

6. To have a changed configuration take effect, stop then restart the application server.

Deleting a listener port

Use this task to delete a listener port from the message listener service, to prevent message-driven beans

associated with the port from retrieving messages.

To delete a listener port, use the administrative console to complete the following steps:

1. In the navigation pane, select Servers-> Application Servers This displays a table of the application

servers in the administrative domain.

2. In the content pane, click the name of the application server. This displays the properties of the

application server in the content pane.

3. Under Communications, click Messaging → Message Listener Service This displays the Message

Listener Service properties in the content pane.

Chapter 14. Messaging resources 939

4. In the content pane, click Listener Ports. This displays a list of the listener ports.

5. In the content pane, select the check box for the listener port that you want to delete.

6. Click Delete. This action stops the port (needed to allow the port to be deleted) then deletes the port.

7. To save your configuration, click Save on the task bar of the Administrative console window.

8. To have the changed configuration take effect, stop then restart the application server.

Administering listener ports

Use the following tasks to administer listener ports, which each define the association between a

connection factory, a destination, and a message-driven bean.

You can use the WebSphere administrative console to administer listener ports, as described in the

following tasks.

v Adding a new listener port

Use this task to create a new listener port, to specify a new association between a connection factory, a

destination, and a message-driven bean. This enables deployed message-driven beans associated with

the port to retrieve messages from the destination.

v Configuring a listener port

Use this task to browse or change the configuration properties of a listener port.

v Starting a listener port

Use this task to start a listener port manually.

v Stopping a listener port

Use this task to stop a listener port manually.

Note: If configured as enabled, a listener port is started automatically when a message-driven bean

associated with that port is installed. You do not normally need to start or stop a listener port

manually.

Starting a listener port:

Use this task to start a listener port on an application server, to enable the listeners for message-driven

beans associated with the port to retrieve messages.

 A listener is active, that is able to receive messages from a destination, if the deployed message-driven

bean, listener port, and message listener service are all started. Although you can start these components

in any order, they must all be in a started state before the listener can retrieve messages.

If configured as enabled, a listener port is started automatically when a message-driven bean associated

with that port is installed. However, you can start a listener port manually, as described in this topic.

When a listener port is started, the listener manager tries to start the listeners for each message-driven

bean associated with the port. If a message-driven bean is stopped, the port is started but the listener is

not started, and remains stopped. If you start a message-driven bean, the related listener is started.

To start a listener port on an application server, use the administrative console to complete the following

steps:

1. If you want the listener for a deployed message-driven bean to be able to receive messages at the

port, check that the message-driven bean has been started.

2. Display the collection list of listener ports:

a. In the navigation pane, select Servers → Application Servers.

b. In the content pane, click the name of the application server.

c. Under Communications, click Messaging → Message Listener Service.

d. Click Listener Ports.

940 Administering applications and their environment

3. Select the check box for the listener port that you want to start.

4. Click Start.

5. Save your changes to the master configuration.

Stopping a listener port:

Use this task to stop a listener port on an application server, to prevent the listeners for message-driven

beans associated with the port from retrieving messages.

 When you stop a listener port as described in this topic, the listener manager stops the listeners for all

message-driven beans associated with the port.

To stop a listener port on an application server, use the administrative console to complete the following

steps:

1. Display the collection list of listener ports:

a. In the navigation pane, select Servers → Application Servers.

b. In the content pane, click the name of the application server.

c. Under Communications, click Messaging → Message Listener Service.

d. Click Listener Ports.

2. Select the check box for the listener port that you want to stop.

3. Click Stop.

4. Save your changes to the master configuration.

5. To have the changed configuration take effect, stop then restart the application server.

Message-driven beans - listener port components

The WebSphere Application Server support for message-driven beans deployed against listener ports is

based on JMS message listeners and the message listener service, and builds on the base support for

JMS.

The main components of WebSphere Application Server support for message-driven beans are shown in

the following figure and described after the figure:

Chapter 14. Messaging resources 941

The message listener service is an extension to the JMS functions of the JMS provider and provides a

listener manager, which controls and monitors one or more JMS listeners.

Each listener monitors either a JMS queue destination (for point-to-point messaging) or a JMS topic

destination (for publish/subscribe messaging).

A connection factory is used to create connections with the JMS provider for a specific JMS queue or topic

destination. Each connection factory encapsulates the configuration parameters needed to create a

connection to a JMS destination.

A listener port defines the association between a connection factory, a destination, and a deployed

message-driven bean. Listener ports are used to simplify the administration of the associations between

these resources.

When a deployed message-driven bean is installed, it is associated with a listener port and the listener for

a destination. When a message arrives on the destination, the listener passes the message to a new

instance of a message-driven bean for processing.

When an application server is started, it initializes the listener manager based on the configuration data.

The listener manager creates a dynamic session thread pool for use by listeners, creates and starts

MDB1

Message

Listeners

JMS destinations

MDB2Message-driven beans MDB3 MDB4

LP3

LP2

LP1

D1 D2 D3

Listener
manager

JMS server

CF1

CF2

JMS Provider

Connection
factories

Listener
ports

Connections

Destinations

WebSphere Application Server

Listener service

Figure 11. The main components for message-driven beans. This figure shows the main components of WebSphere

support for message-driven beans, from JMS provider through a connection to a destination, listener port, then

deployed message-driven bean that processes the message retrieved from the destination. Each listener port defines

the association between a connection factory, destination, and a deployed message-driven bean. The other main

components are the message listener service, which comprises a listener for each listener port, all controlled by the

same listener manager. For more information, see the text that accompanies this figure.

942 Administering applications and their environment

listeners, and during server termination controls the cleanup of listener message service resources. Each

listener completes several steps for the JMS destination that it is to monitor, including:

v Creating a JMS server session pool, and allocating JMS server sessions and session threads for

incoming messages.

v Interfacing with JMS ASF to create JMS connection consumers to listen for incoming messages.

v If specified, starting a transaction and requesting that it is committed (or rolled back) when the EJB

method has completed.

v Processing incoming messages by invoking the onMessage() method of the specified enterprise bean.

Important file for message-driven beans

The server_name-durableSubscriptions.ser file in the WAS_HOME/temp directory is important for the

operation of the WebSphere Application Server messaging service, so should not be deleted.

If you do need to delete the WAS_HOME/temp directory or other files in it, ensure that you preserve the

following file:

server_name-durableSubscriptions.ser

You should not delete this file, because the messaging service uses it to keep track of durable

subscriptions for message-driven beans. If you uninstall an application that contains a

message-driven bean, this file is used to unsubscribe the durable subscription.

Chapter 14. Messaging resources 943

944 Administering applications and their environment

Chapter 15. Mail, URLs, and other J2EE resources

Using mail

Using the JavaMail API, a code segment can be embedded in any Java 2 Enterprise Edition (J2EE)

application component, such as an EJB or a servlet, allowing the application to send a message and save

a copy of the mail to the Sent folder.

The following is a code sample that you would embed in a J2EE application:

javax.naming.InitialContext ctx = new javax.naming.InitialContext();

 javax.mail.Session mail_session = (javax.mail.Session) ctx.lookup("java:comp/env/mail/MailSession3");

 MimeMessage msg = new MimeMessage(mail_session);

 msg.setRecipients(Message.RecipientType.TO, InternetAddress.parse("bob@coldmail.net"));

 msg.setFrom(new InternetAddress("alice@mail.eedge.com"));

 msg.setSubject("Important message from eEdge.com");

 msg.setText(msg_text);

 Transport.send(msg);

 Store store = mail_session.getStore();

 store.connect();

 Folder f = store.getFolder("Sent");

 if (!f.exists()) f.create(Folder.HOLDS_MESSAGES);

 f.appendMessages(new Message[] {msg});

J2EE applications can use JavaMail APIs by looking up references to logically named mail connection

factories through the java:comp/env/mail subcontext that is declared in the application deployment

descriptor and mapped to installation specific mail session resources. As in the case of other J2EE

resources, this can be done in order to eliminate the need for the application to hard code references to

external resources.

1. Locate a resource through Java Naming and Directory Interface (JNDI). The J2EE specification

considers a mail session instance as a resource, or a factory from which mail transport and store

connections can be obtained. Do not hard code mail sessions (namely, fill up a Properties object, then

use it to create a javax.mail.Session object). Instead, you must follow the J2EE programming model of

configuring resources through the system facilities and then locating them through JNDI lookups.

In the previous sample code, the line javax.mail.Session mail_session = (javax.mail.Session)

ctx.lookup(″java:comp/env/mail/MailSession3″); is an example of not hard coding a mail session

and using a resource name located through JNDI. You can consider the lookup name,

mail/MailSession3, as a soft link to the real resource.

2. Define resource references while assembling your application. You must define a resource reference

for the mail resource in the deployment descriptor of the component, because a mail session is

referenced in the JNDI lookup. Typically, you can use an assembly tool shipped with WebSphere

Application Server.

When you create this reference, be sure that the name of the reference matches the name used in the

code. For example, the previous code uses java:comp/env/mail/MailSession3 in its lookup. Therefore

© Copyright IBM Corp. 2006 945

the name of this reference must be mail/Session3, and the type of the resource must be

javax.mail.Session. After configuration, the deployment descriptor contains the following entry for the

mail resource reference:

<resource-reference>

<description>description</description>

<res-ref-name>mail/MailSession3</res-ref-name>

<res-type>javax.mail.Session</res-type>

<res-auth>Container</res-auth>

3. Configure mail providers and sessions. The sample code references a mail resource, the deployment

descriptor declares the reference, but the resource itself does not exist yet. Now you need to configure

the mail resource that is referenced by your application component. Notice that the mail session you

configure must have both its transport and mail access portions defined; the former required because

the code is sending a message, the latter because it also saves a copy to the local mail store. When

you configure the mail session, you need to specify a JNDI name. This is an important name for

installing your application and linking up the resource references in your application with the real

resources that you configure.

4. Install your application. You can install your application using either the administrative console or the

scripting tool. During installation, WebSphere Application Server inspects all resource references and

requires you to supply a JNDI name for each of them. This is not an arbitrary JNDI name, but the JNDI

name given to a particular, configured resource that is the target of the reference.

5. Manage existing mail providers and sessions. You can update and remove mail providers and

sessions.

To update mail providers and sessions:

a. Open the administrative console.

b. Click Resources > Mail in the console navigation tree.

c. Select the appropriate Java Mail resource to modify by clicking either Mail Providers or Mail

Sessions.

d. Select the specific resource to modify. To remove a mail provider or mail session, select the check

box next to the appropriate resource and click Delete.

e. Click Apply or OK.

f. Save the configuration.

6. Enable debugger for a mail session.

If your application has a client, you can update mail providers and mail sessions using the Application

Client Resource Configuration Tool (ACRCT).

JavaMail API

The JavaMail APIs provide a platform and protocol-independent framework for building Java-based mail

client applications.

WebSphere Application Server supports the JavaMail API, Version 1.3, and the JavaBeans Activation

Framework (JAF) Version 1.0. In WebSphere Application Server, the JavaMail API is supported in all Web

application components, namely:

v Servlets

v JavaServer Pages (JSP) files

v Enterprise beans

v Application clients

The JavaMail APIs are generic for sending and reading mail. They require service providers, known in

WebSphere Application Server as protocol providers, to interact with mail servers that run on pertaining

protocols.

946 Administering applications and their environment

For example, Simple Mail Transfer Protocol (SMTP) is a popular transport protocol for sending mail.

JavaMail applications can connect to an SMTP server and send mail through it by using this SMTP

protocol provider.

In addition to service providers, the JavaMail API requires the Java Application Framework (JAF) to handle

mail content that is not plain text, including Multipurpose Internet Mail Extensions (MIME), URL pages, and

file attachments.

The JavaMail APIs, the JAF, the service providers, and the protocols are shipped as part of WebSphere

Application Server. The API and related specifications are repackaged from Sun-licensed materials into the

following file groupings:

v j2ee.jar - Contains the JavaMail API and the JAF

v mail-impl.jar - Contains the implementation of the JavaMail API

v activation-impl.jar - Contains the implementation of the JAF

Mail providers and mail sessions

A JavaMail service provider is a driver that supports JavaMail interaction with mail servers using a

particular mail protocol. WebSphere Application Server includes service providers, also known as protocol

providers, for mail protocols including Simple Mail Transfer Protocol (SMTP), Internet Message Access

Protocol (IMAP), and Post Office Protocol 3 (POP3).

A mail provider encapsulates a collection of protocol providers. For example, WebSphere Application

Server has a built-in mail provider that encompasses the three protocol providers: SMTP, IMAP and POP3.

These protocol providers are installed as the default and suffice for most applications.

If you have a particular application that requires custom protocol providers, you must first follow the steps

outlined in the ″JavaMail API Design Specification, V1.2, Chapter 5 - The Mail Session″ to install your own

protocol providers. This document outlines the process for the JavaMail 1.3 API as well as JavaMail 1.2.

See the article, Mail: Resources for learning, for a link to the specification.

Mail sessions are represented by the javax.mail.Session class. A mail Session object authenticates

users, and controls users’ access to messaging systems.

To create platform-independent applications, use a resource factory reference to create a JavaMail

session. A resource factory is an object that provides access to resources in the deployed environment of

a program using the naming conventions defined by the Java Naming and Directory Interface (JNDI).

Ensure that every mail session is defined under a parent mail provider. Select a mail provider first and

then create your new mail session.

JavaMail security permissions best practices

In many of its activities, the JavaMail API needs to access certain configuration files. The JavaMail and

JavaBeans Activation Framework binary packages themselves already contain the necessary configuration

files. However, the JavaMail API allows the user to define user-specific and installation-specific

configuration files to meet special requirements.

The two locations where such configuration files can exist are <user.home> and <java.home>/lib. For

example, if the JavaMail API needs to access a file named mailcap when sending a message, it first tries

to access <user.home>/.mailcap. If that attempt fails, either due to lack of security permission or a

nonexistent file, the API continues to try<java.home> /lib/mailcap. If that attempts also fails, it tries

META-INF/mailcap in the class path, which actually leads to the configuration files contained in the

mail-impl.jar and activation-impl.jar files. WebSphere Application Server uses the general-purpose

JavaMail configuration files contained in the mail-impl.jar and activation-impl.jar files and does not

put any mail configuration files in <user.home>and <java.home>/lib. File read permission for both the

Chapter 15. Mail, URLs, and other J2EE resources 947

mail-impl.jar and activation-impl.jar files is granted to all applications to ensure proper functioning of

the JavaMail API, as shown in the following segment of the app.policy file:

grant codeBase "file:${application}" {

 // The following are required by Java mail

 permission java.io.FilePermission "${was.install.root}${/}lib${/}mail-impl.jar", "read";

 permission java.io.FilePermission "${was.install.root}${/}lib${/}activation-impl.jar", "read";

};

JavaMail code attempts to access configuration files at <user.home>and <java.home>/lib causing

AccessControlExceptions to be thrown, since there is no file read permission granted for those two

locations by default. This activity does not affect the proper functioning of the JavaMail API, but you might

see a large amount of JavaMail-related security exceptions reported in the system log, which might swamp

harmful errors that you are looking for. If this situation is a problem, consider adding two more permission

lines to the permission block above. This should eliminate most, if not all, JavaMail-related harmless

security exceptions from the log file. The application permission block in the app.policy file now looks like:

grant codeBase "file:${application}" {

 // The following are required by Java mail

 permission java.io.FilePermission "${was.install.root}${/}lib${/}mail-impl.jar", "read";

 permission java.io.FilePermission "${was.install.root}${/}lib${/}activation-impl.jar", "read";

java.io.FilePermission "${java.home}${/}lib${/}.mailcap", "read";

 permission java.io.FilePermission "${user.home}${/}lib${/}.mailcap", "read";

};

Mail: Resources for learning

Use the following links to find relevant supplemental information about the JavaMail API. The information

resides on IBM and non-IBM Internet sites, whose sponsors control the technical accuracy of the

information.

These links are provided for convenience. Often, the information is not specific to the IBM WebSphere

Application Server product, but is useful all or in part for understanding the product. When possible, links

are provided to technical papers and Redbooks that supplement the broad coverage of the release

documentation with in-depth examinations of particular product areas.

Programming model and decisions

v JavaMail documentation

Programming specifications

v JavaMail 1.3 API documentation (Sun Java specifications)

JavaMail support for IPv6

WebSphere Application Server and its JavaMail component support Internet Protocol Version 6.0 (IPv6),

meaning that:

v Both can run on a pure IPv4 network, a pure IPv6 network, or a mixed IPv4 and IPv6 network.

v On either the pure IPv6 network or the mixed network, the JavaMail component works with mail servers

(such as the SMTP mail transfer agent, and the IMAP and POP3 mail stores) that are also IPv6

compatible. Additionally, a JavaMail component that is run on the mixed IPv4 and IPv6 network can

communicate with mail servers using IPv4.

Use of brackets with IPv6 addresses

When you configure a mail session, you can specify the mail server hosts (also known as mail transport

and mail store hosts) with domain-qualified host names or numerical IP addresses. Using host names is

generally the preferred method. If you use IP addresses, however, consider enclosing IPv6 addresses in

square brackets to prevent parsing inaccuracies. See the following example:

[fe80::202:57ff:fec4:2334]

948 Administering applications and their environment

http://java.sun.com/products/javamail/index.html
http://java.sun.com/products/javamail/javadocs/index.html

The JavaMail API requires a combination of many host names or IP addresses with a port number, using

the host:port number syntax . This extra colon can cause the port number to be read as part of an IPv6

address. Using brackets prevents your JavaMail implementation from processing the extra characters

erroneously.

Using URL resources within an application

Java 2 Enterprise Edition (J2EE) applications can use Uniform Resource Locators (URLs) by looking up

references to logically named URL connection factories through the java:comp/env/url subcontext, which

is declared in the application deployment descriptor and mapped to installation specific URL resources.

As in the case of other J2EE resources, this can be done in order to eliminate the need for the application

to hard code references to external resources. The process is the same used with other J2EE resources,

such as JDBC objects and JavaMail sessions.

1. Develop an application that relies on naming features.

2. Define resource references while assembling your application. A URL resource that uses a built-in

protocol, such as HTTP, FTP, or file, can use the default URL provider. URL resources that use other

protocols need to use a custom URL provider.

3. Configure your URL resources within an application.

a. Open the administrative console.

b. Click Resources>URL in the console navigation tree.

c. Click either URL Providers or URLs to modify the appropriate resource.

4. Optional: Configure URL providers and URLs within an application client using the Application Client

Resource Configuration Tool (ACRCT).

5. Manage URL providers and URL resources used by the deployed application. To update or remove

existing URL configurations:

a. Open the administrative console.

b. Click Resources > URL in the console navigation tree.

c. Click either URL Providers or URLs to modify the appropriate resource.

d. Select the URL to modify.

e. Modify the URL properties.

f. Click Apply or OK.

To remove URL providers and URLs, after step 2, click URL_provider > URLs. Select the URL you

want to remove and click Delete. Then, click Apply or OK.

URLs

A Uniform Resource Locator (URL) is an identifier that points to an electronically accessible resource, such

as a directory file on a machine in a network, or a document stored in a database.

URLs appear in the format scheme:scheme_information.

You can represent a scheme as HTTP, FTP, file, or another term that identifies the type of resource and

the mechanism by which you can access the resource.

In a World Wide Web browser location or address box, a URL for a file available using HyperText Transfer

Protocol (HTTP) starts with http:. An example is http://www.ibm.com. Files available using File Transfer

Protocol (FTP) start with ftp:. Files available locally start with file:.

Chapter 15. Mail, URLs, and other J2EE resources 949

The scheme_information commonly identifies the Internet machine making a resource available, the path

to that resource, and the resource name. The scheme_information for HTTP, FTP and file generally starts

with two slashes (//), then provides the Internet address separated from the resource path name with one

slash (/). For example,

http://www-4.ibm.com/software/webservers/appserv/library.html.

For HTTP and FTP, the path name ends in a slash when the URL points to a directory. In such cases, the

server generally returns the default index for the directory.

URL provider collection

Use this page to view existing URL providers, which supply the implementation classes that are necessary

for WebSphere Application Server to access a URL through a specific protocol. The default URL provider

provides connectivity through protocols that are supported by the IBM Developer Kit for the Java™

Platform, compatible with the Java 2 Standard Edition Platform 1.3.1. These protocols include HyperText

Transfer Protocol (HTTP) and File Transfer Protocol (FTP), which work for must URLs.

To view this administrative console page, click Resources > URL > URL Providers.

Name

Specifies the administrative name for the URL provider.

Scope

Specifies the scope of this URL provider, which can support multiple URL configurations. All of the URL

configurations that are supported by this provider inherit this scope.

Description

Describes the URL provider for your administrative records.

URL provider settings

Use this page to configure URL providers, which support WebSphere Application Server connections to a

URL over a specific protocol.

To view this administrative console page, click Resources > URL > URL Providers > URL_provider.

Scope

Specifies the scope of this URL provider, which can support multiple URL configurations. All of the URL

configurations that are supported by this provider inherit this scope.

Name

Specifies the administrative name for the URL provider.

Description

Describes the URL provider, for your administrative records.

Class path

Specifies paths or JAR file names which together form the location for the resource provider classes.

Stream handler class name

Specifies fully qualified name of a user-defined Java class that extends the java.net.URLStreamHandler

class for a particular URL protocol, such as FTP.

Protocol

Specifies the protocol supported by this stream handler. For example, NNTP, SMTP, FTP.

950 Administering applications and their environment

URL collection

Use this page to view existing Uniform Resource Locator (URL) configurations, which are sets of

properties that define WebSphere Application Server connections to URLs. URLs are location names that

represent electronically accessible resources, such as a directory file on a machine in a network or a

document stored in a database.

You can access this administrative console page in one of two ways:

v Resources > URL Providers > URL_provider > URLs

v Resources > URL > URLs

Name

Specifies the display name for the resource.

JNDI Name

Specifies the JNDI name.

Scope

Specifies the scope of the URL provider that supports this URL configuration. Only applications that are

installed within this scope can use this URL configuration to access URL resources.

Provider

Specifies the URL provider that supplies the implementation classes for using a specific protocol to access

this URL.

Description

Specifies the description of the resource.

Category

Specifies the category string, which you can use to classify or group the resource.

URL configuration settings

Use this page to define connections to Uniform Resource Locators (URLs), which are location names that

represent electronically accessible resources. A collection of URL connection properties is often called a

URL configuration in the WebSphere Application Server environment. The targeted resources are remote

to your Application Server installation.

You can access this administrative console page in one of two ways:

v Resources > URL > URLs > URL

v Resources > URL > URL Providers > URL_provider > URLs > URL

Scope

Specifies the scope of the URL provider that supports this URL configuration. Only applications that are

installed within this scope can use this URL configuration to access URL resources.

Provider

Specifies the URL provider that WebSphere Application Server uses for this URL configuration.

To create a new URL configuration: If you previously defined one or more URL providers at the relevant

scope, you see a list from which you can select an existing URL

provider for your new URL configuration.

Create New Provider

Provides the option of configuring a new URL provider for the new URL configuration.

Chapter 15. Mail, URLs, and other J2EE resources 951

Create New Provider is displayed only when you create a new URL from the Resources > URL > URLs

path. In this flow, you can create a new URL provider if needed. The URL provider can not be changed

during an edit.

Clicking Create New Provider triggers the console to display the URL provider configuration page, where

you create a new provider. After you click OK to save your settings, you see the URL collection page.

Click New to define a new URL configuration for use with the new provider; the console now displays a

configuration page that lists the new provider as the URL configuration Provider.

Name

Specifies the display name for the resource.

JNDI Name

Specifies the JNDI name.

Description

Specifies the description of the resource.

Category

Specifies the category string, which you can use to classify or group the resource.

Specification

Specifies the string from which to form a URL.

URLs: Resources for learning

Use the following links to find relevant supplemental information about URLs. The information resides on

IBM and non-IBM Internet sites, whose sponsors control the technical accuracy of the information.

These links are provided for convenience. Often, the information is not specific to the IBM WebSphere

Application Server product, but is useful all or in part for understanding the product. When possible, links

are provided to technical papers and Redbooks that supplement the broad coverage of the release

documentation with in-depth examinations of particular product areas.

Programming specifications

v W3C Architecture - Naming and Addressing: URIs, URLs

v URL API documentation

Resource environment entries

This topic provides instructions on configuring new resource environment entries, which define

environment resources that are the binding targets for resource-environment-references in an application’s

deployment descriptor.

1. Configure a resource environment provider, which is a library that provides the implementation for an

environment resource factory. In the administration console, begin by clicking Resources > Resource

Environment > Resource Environment Providers > New. (See the New Resource Environment

Provider topic for more information.)

2. After saving your resource environment provider, go to the Additional Properties heading and click

Resource environment entries. Click New to define a new resource environment entry. Refer to the

“Resource environment entry settings” on page 955 topic for descriptions of the required fields.

3. You also might need to create a referenceable, which specifies the factory class name that converts

information in the name space into a class instance for your resource. To view the appropriate

administrative console page for referenceables, click Resources > Resource Environment >

Resource Environment Providers > your_resource_environment_provider > Referenceables. Click

New to begin the configuration process. See the “Referenceables settings” on page 956 topic for

descriptions of the required fields.

952 Administering applications and their environment

http://www.w3.org/addressing/
http://java.sun.com/j2se/1.4.2/docs/api/java/net/URL.html

Resource environment providers and resource environment entries

A resource environment reference maps a logical name used by the client application to the physical name

of an object.

Not all objects bound into the server JNDI namespace are intended for use by an application client. For

example, the WebSphere Application Server client run time does not support the use of Java 2 Connector

(J2C) objects on the client. The object needs to be remotable, and the client-side implementations must be

made available on the application client run-time classpath.

Resource environment references are different than resource references. Resource environment

references allow your application client to use a logical name to look up a resource bound into the server

JNDI namespace. A resource reference allows your application to use a logical name to look up a local

J2EE resource. The J2EE specification does not specify a particular implementation of a resource.

Resource environment provider collection

Use this page to view resource environment providers, which encapsulate the referenceables that convert

resource environment entry data into resource objects.

To view this administrative console page, click Resources > Resource Environment > Resource

Environment Providers.

Name

Specifies a text identifier for the resource environment provider.

 Data type String

Scope

Specifies the scope of this resource environment provider, which automatically becomes the scope of the

resource environment entries that you define with this provider.

Description

Specifies a text string describing the resource environment provider.

 Data type String

Resource environment provider settings

Use this page to create settings for a resource environment provider.

To view this administrative console page, click Resources > Resource environment > Resource

environment providers > resource environment provider.

Scope:

Specifies the scope of this resource environment provider, which automatically becomes the scope of the

resource environment entries that you define with this provider.

Name:

Specifies the name of the resource provider.

 Data type String

Description:

Chapter 15. Mail, URLs, and other J2EE resources 953

Specifies a text description for the resource provider.

 Data type String

New Resource environment provider

Use this page to define the configuration for a library that provides the implementation for a environment

resource factory.

To view this administrative console page, click Resources > Resource Environment > Resource

Environment Providers > New.

Scope:

Specifies the scope of this resource environment provider, which automatically becomes the scope of the

resource environment entries that you define with this provider.

Name:

Specifies a text identifier for the resource environment provider.

 Data type String

Description:

Specifies a text string describing the resource environment provider.

 Data type String

Resource environment entries collection

Use this page to view configured resource environment entries. Within an application server name space,

the data contained in a resource environment entry is converted into an object that represents a physical

resource. This resource is frequently called an environment resource.

An environment resource can be of any arbitrary type. See the latest EJB specification for more

information about resource environment references and environment resources.

You can access this administrative console page in one of two ways:

v Resources > Resource Environment > Resource environment entries

v Resources >Resource Environment > Resource Environment Providers >

resource_environment_provider > Resource Environment Entries

Name

Specifies a text identifier that helps distinguish this resource environment entry from others.

For example, you can use My Resource for the name.

 Data type String

JNDI Name

Specifies the string to be used when looking up this environment resource using JNDI.

954 Administering applications and their environment

This is the string to which you bind resource environment reference deployment descriptors.

 Data type String

Scope

Specifies the resource environment entry scope, which is inherited from the resource environment

provider.

Provider

Specifies the resource environment provider for this entry. The provider encapsulates the classes that,

when implemented, convert resource environment entry data into resource objects.

Description

Specifies text for information to help further identify and distinguish this resource

 Data type String

Category

Specifies a category you can use to group environment resources according to some common feature.

It is strictly an organizational property and has no effect on the function of the environment resource.

 Data type String

Resource environment entry settings

Use this page to configure resource environment entries. Within an application server name space, the

data contained in a resource environment entry is converted into an object that represents a physical

resource. Rather than represent a connection factory, which provides connections to a resource, this

object directly represents a resource. This design can make the resource available to application modules

that do not run entirely on the application server. Examples include some application clients and Web

modules.

You can access this administrative console page in one of two ways:

v Resources > Resource Environment > Resource environment entries >

resource_environment_entry

v Resources >Resource Environment > Resource Environment Providers >

resource_environment_provider > Resource Environment Entries > resource_environment_entry

Scope:

Specifies the scope of the resource environment provider, which is a library that supplies the

implementation class for a resource environment factory. Within a JNDI name space, WebSphere

Application Server uses the factory to transform your resource environment entry into an object that

directly represents a physical resource.

Provider:

Specifies the resource environment provider.

 Provider shows all of the existing resource environment providers that are defined at the relevant scope.

Select one from the list if you want to use an existing resource environment provider as Provider.

Name:

Chapter 15. Mail, URLs, and other J2EE resources 955

Specifies a display name for the resource.

 Data type String

JNDI name:

Specifies the JNDI name for the resource, including any naming subcontexts.

 This name is used as the linkage between the platform’s binding information for resources defined by a

module’s deployment descriptor and actual resources bound into JNDI by the platform.

 Data type String

Description:

Specifies a text description for the resource.

 Data type String

Category:

Specifies a category string that you can use to classify or group the resource.

 Data type String

Referenceables:

Specifies the referenceable, which encapsulates the class name of the factory that converts resource

environment entry data into a class instance for a physical resource.

 Data type Drop-down menu

Referenceables collection

Use this page to view configured referenceables, which encapsulate the class name of the factory that

converts information in the name space into a class instance for a physical resource.

To view this administrative console page, click Resources > Resource environment > Resource

Environment Providers > resource_environment_provider > Referenceables.

Factory Class name

Specifies a javax.naming.spi.ObjectFactory implementation name

 Data type String

Class name

Specifies the package name of the referenceable, for example: javax.naming.Referenceable

 Data type String

Referenceables settings

Use this page to set the class name of the factory that converts information in the name space into a class

instance of a physical resource.

956 Administering applications and their environment

To view this administrative console page, click Resources > Resource Environment > Resource

Environment Providers > resource_environment_provider > Referenceables > referenceable.

Factory class name:

Specifies a javax.naming.ObjectFactory implementation class name

 Data type String

Class name:

Specifies the Java type to which a Referenceable provides access, for binding validation and to create the

reference.

 Data type String

Resource environment references

Use this page to designate how the resource environment references of application modules map to

remote resources, which are represented in the product as resource environment entries.

To view this administrative console page, click Applications > Enterprise Applications >

application_name > Resource environment references.

Guidelines for using this administrative console page:

Each row of the table depicts a resource environment reference within a specific module of your

application. If you bound any references to resource environment entries during application assembly, you

see the JNDI names of those resource environment entries in the applicable rows.

To set the mapping relationships between your resource environment references and resource

environment entries:

1. Select a row. Be aware that if you check multiple rows on this page, the resource mapping target that

you select in step 2 applies to all of those references.

2. Click Browse to select a resource environment entry from the new page that is displayed, the

Available Resources page. The Available Resources page shows all resource environment entries that

are available mapping targets for your application references.

3. Click Apply. The console displays the Resource environment references page again. In the rows that

you previously selected, you now see the JNDI name of the new resource mapping target.

4. Repeat the previous steps as necessary.

5. Click OK. You now return to the general configuration page for your enterprise application.

Table column heading descriptions:

Select

Select the check boxes of the rows that you want to edit.

Module

The name of a module in the application.

EJB

The name of an enterprise bean that is accessed by the module.

URI

Specifies location of the module relative to the root of the application EAR file.

Chapter 15. Mail, URLs, and other J2EE resources 957

Reference binding

The name of a resource environment reference that is declared in the deployment descriptor of the

application module. The reference corresponds to a resource that is bound as a resource environment

entry into the JNDI name space of the application server.

JNDI name

The Java Naming and Directory Interface (JNDI) name of the resource environment entry that is the

mapping target of the resource environment reference.

 Data type String

Configuring mail providers and sessions

WebSphere Application Server includes a default mail provider called the built-in provider. If you use the

default mail provider you only have to configure the mail session, which is the last step in this task. To use

the customized mail provider you must first create the mail provider and session:

1. Open the administrative console.

2. Click Resources > Mail.

3. Click Mail Providers.

4. Create the mail provider.

a. Select the scope for the new mail provider.

b. Click New.

c. Type the name of the mail provider in the name field.

d. Click Apply or OK.

5. Define the protocol provider for the mail provider.

a. Click mail_provider.

b. Click Protocol Providers.

c. Click New.

d. Type the protocol name in the Protocol field.

e. Type the class name in the Class name field.

f. Click Apply or OK.

Ensure that every mail session is defined under a parent mail provider. Select a mail provider first and

then create your new mail session.

6. Create the mail session.

a. Click mail_provider.

b. Click Mail Sessions.

c. Click New.

d. Type the mail session name in the Name field.

e. Type the JNDI name in the JNDI Name field.

f. Click Apply or OK.

7. Configure the mail session.

a. Click mail_provider.

b. Click Mail Sessions.

c. Click mail_session.

d. Make changes to appropriate fields.

e. Click Apply or OK.

958 Administering applications and their environment

If your application has a client you can configure JavaMail providers and sessions using the Application

Client Resource Configuration Tool (ACRCT).

Mail provider collection

Use this page to view available JavaMail service providers, also known as mail providers. The mail

provider encapsulates a collection of protocol providers, which implement the protocols for communication

between your mail application and mail servers.

To view this administrative console page, click Resources > Mail > Mail Providers.

The built-in mail provider made available by WebSphere Application Server encompasses three protocol

providers: Simple Mail Transfer Protocol (SMTP), Internet Message Access Protocol (IMAP) and Post

Office Protocol (POP3). Select the built-in provider if these protocols provide the right support for your mail

system. If you have installed or plan to install different protocol providers, you must assign them a mail

provider; select the scope at which you want the new mail provider to implement the protocols, then select

New.

Name

Specifies the name of the JavaMail resource provider.

Scope

Specifies the scope in which the mail provider supports installed mail applications.

Description

Specifies the resource provider description.

Mail provider settings

Use this page to edit mail provider properties or configure a new mail provider (also called a JavaMail

service provider). The mail provider encapsulates a collection of protocol providers, which implement the

protocols for communication between your mail application and mail servers.

To view this administrative console page, click Resources > Mail > Mail Providers > mail_provider.

Scope

Specifies the scope in which the mail provider supports installed mail applications.

Name

Specifies the name of the JavaMail resource provider.

Description

Specifies the resource provider description.

Protocol providers collection

Use this page to select or add a protocol provider that supports interaction between your JavaMail

application and mail servers. For example, your application might require the Simple Mail Transfer Protocol

(SMTP), which is a popular transport protocol for sending mail. Selecting that protocol provider allows your

JavaMail application to connect to an SMTP server, and send mail through the server.

To view this administrative console page, click Resources > Mail Providers > mail_provider > Protocol

Providers.

Protocol

Specifies the configuration of the protocol provider for a given protocol.

Chapter 15. Mail, URLs, and other J2EE resources 959

Class name

Specifies the implementation class for the specific protocol provider (also known as JavaMail service

provider).

Class path

Specifies the path to the implementation class for the specific protocol provider (also known as JavaMail

service provider).

Type

Specifies the type of protocol provider. Valid options are STORE or TRANSPORT.

Protocol providers settings

Use this page to set properties of a protocol provider, which provides the implementation class for a

specific protocol to support communication between your JavaMail application and mail servers.

Built-in providers: WebSphere Application Server contains protocol providers for SMTP, IMAP and

POP3. If you require custom providers for different protocols, install them in your

application serving environment before configuring the providers. See the JavaMail

API design specification for guidelines. After configuring your protocol providers, return

to the mail provider page to find the link for configuring mail sessions.

To view this administrative console page, click Resources > Mail > Mail Providers > mail_provider >

Protocol Providers > protocol_provider.

Scope

Specifies the scope at which this protocol provider was created. Only applications that are installed within

this scope can use a protocol that is configured according to the settings of this protocol provider.

Protocol

Specifies the configuration of the protocol provider for a given protocol.

Class name

Specifies the implementation class of this protocol provider.

Class path

Specifies the path to the implementation class of this protocol provider.

Type

Specifies the type of protocol provider. Valid options are STORE or TRANSPORT.

Mail session collection

Use this page to view mail sessions that are defined under the parent mail provider.

You can access this administrative console page in one of two ways:

v Resources > Mail > Mail Sessions

v Resources > Mail > Mail Providers > mail_provider > Mail Sessions

Name

Specifies the administrative name of the JavaMail session object.

Scope

Specifies the scope at which the mail session was created. Only JavaMail applications that are installed in

this scope can use this mail session.

960 Administering applications and their environment

Provider

Specifies the mail provider that WebSphere Application Server uses for this mail session.

JNDI Name

Specifies the Java Naming and Directory Interface (JNDI) name for the resource, including any naming

subcontexts.

This name provides the link between the platform binding information for resources defined in the client

application deployment descriptor and the actual resources bound into JNDI by the platform.

Description

Specifies an optional description for your administrative records.

Category

Specifies an optional collection for classifying or grouping sessions.

Mail session settings

Use this page to configure mail sessions.

You can access this administrative console page in one of two ways:

v Resources > Mail > Mail Sessions > mail_session

v Resources > Mail > Mail Providers > mail_provider > Mail Sessions > mail_session

Scope

Specifies the scope of the mail provider that implements the JavaMail API for this mail session. Only

applications that are installed within this scope can use this mail session.

Provider

Specifies the mail provider that WebSphere Application Server uses for this mail session.

When creating a mail session: If you previously defined one or more mail providers at the relevant

scope, you see a list from which you can select an existing mail provider

for your new mail session.

Create New Provider

Provides the option of configuring a new mail provider for the new mail session.

Create New Provider is displayed only when you click Resources > Mail > Mail session > New to

create a new mail session.

Clicking Create New Provider triggers the console to display the mail provider configuration page, where

you create a new provider. After you click OK to save your settings, you see the mail session collection

page. Click New to define a new mail session for use with the new provider; the console now displays a

configuration page that lists the new mail provider as the mail session Provider.

Remember: After you create a mail session, you cannot change the provider of that mail session.

Name

Specifies the administrative name of the JavaMail session object.

JNDI name

Specifies the Java Naming and Directory Interface (JNDI) name for the resource, including any naming

subcontexts.

Chapter 15. Mail, URLs, and other J2EE resources 961

This name provides the link between the platform binding information for resources that are defined in the

client application deployment descriptor and the actual resources bound into JNDI by the platform.

Description

Specifies an optional description for your administrative records.

Category

Specifies an optional collection for classifying or grouping sessions.

Mail transport host

Specifies the server that is accessed when sending mail.

Mail transport protocol

Specifies the transport protocol that is used when sending mail.

Mail transport user ID

Specifies the user ID when the mail transport host requires authentication.

This setting is not generally used for most mail servers. Leave this field blank unless you use a mail server

that requires a user ID and password.

Mail transport password

Specifies the password when the mail transport host requires authentication.

This setting is not generally used for most mail servers. Leave this field blank unless you use a mail server

that requires a user ID and password.

Enable strict Internet address parsing

Specifies whether the recipient addresses must be parsed in strict compliance with RFC 822, which is a

specifications document issued by the Internet Architecture Board.

This setting is not generally used for most mail applications. RFC 822 syntax for parsing addresses

effectively enforces a strict definition of a valid e-mail address. If you select this setting, your JavaMail

component adheres to RFC 822 syntax and rejects recipient addresses that do not parse into valid e-mail

addresses (as defined by the specification). If you do not select this setting, your JavaMail component

does not adhere to RFC 822 syntax and accepts recipient addresses that do not comply with the

specification. By default, this setting is not selected. You can view the RFC 822 specification at the

following Web address for the World Wide Web Consortium (W3C): http://www.w3.org/Protocols/rfc822/.

Mail from

Specifies the mail originator.

This value represents the Internet e-mail address that, by default, displays in the received message, as

either the From or the Reply-To address. The recipient’s reply comes to this address.

Mail store host

Specifies the server that is accessed when receiving the mail.

This setting, combined with the mail store user ID and password, represents a valid mail account. For

example, if the mail account is john_william@my.company.com, then the mail store host is

my.company.com.

Mail store protocol

Specifies the protocol that is used when receiving mail; it can be Internet Message Access Protocol

(IMAP), Post Office Protocol 3 (POP3), or any store protocol for which an administrator has installed a

provider.

962 Administering applications and their environment

Mail store user ID

Specifies the user ID for the given mail account.

For example, if the mail account is john_william@my.company.com then the user is john_william.

Mail store password

Specifies the password for the given mail account .

For example, if the mail account is john_william@my.company.com then enter the password for ID

john_william.

Enable debug mode

Toggles debug mode on and off for this mail session.

JavaMail system properties

Use this information to set custom Java virtual machine (JVM) system properties that provide additional

character encoding options for your JavaMail implementation.

To view the appropriate administrative console page for setting these properties, click Servers >

Application Servers > server_name > Process Definition > Java Virtual Machine > Custom

Properties > New.

To specify a custom property:

1. On the settings page, enter the property you want to configure in the Name field and the value you

want to set it to in the Value field.

2. In the Description field, enter identifying information about the name-value pair.

3. Click Apply or OK.

4. Click Save on the console taskbar to save your configuration changes.

The following list contains the JVM system properties that you can use to customize your JavaMail

application:

mail.mime.charset

Changes the default character set for the text of JavaMail messages. Generally the character set for

sending messages is the same character set that is used by the system file schema. You can use this

property to specify a different character set for JavaMail messages.

 Data type String

For more information, see the latest JavaMail specification.

mail.mime.decodetext.strict

Specifies whether or not your JavaMail application attempts to decode mail message text that does not

adhere to the encoding standards set by the Internet Architecture Board in the specification document RFC

2047. (In particular, Japanese mailers might not adhere to the specification, resulting in the disruption of

words by encoded text.) Set this property to false if you want your JavaMail component to decode

message text that does not comply with RFC 2047.

 Data type Boolean

Default true

For more information, see the latest JavaMail specification.

Chapter 15. Mail, URLs, and other J2EE resources 963

http://java.sun.com/products/javamail/
http://java.sun.com/products/javamail/

mail.mime.encodeeol.strict

Specifies whether or not your JavaMail application interprets the character pairs CR and LF as line

terminators when they are displayed in the part of a mail message that is not of MIME text type. Set this

property to true if you want the JavaMail component to interpret the character pairs as line terminators,

and to encode the entire portion of the message in which the characters appear.

 Data type Boolean

Default false

For more information, see the latest JavaMail specification.

Configuring mail, URLs, and resource environment entries with

scripting

Use scripting to configure mail, URLs, and resource environment entries.

This topic contains the following tasks:

v “Configuring new mail providers using scripting”

v “Configuring new mail sessions using scripting” on page 965

v “Configuring new protocols using scripting” on page 966

v “Configuring new custom properties using scripting” on page 967

v “Configuring new resource environment providers using scripting” on page 968

v “Configuring custom properties for resource environment providers using scripting” on page 969

v “Configuring new referenceables using scripting” on page 970

v “Configuring new resource environment entries using scripting” on page 971

v “Configuring custom properties for resource environment entries using scripting” on page 972

v “Configuring new URL providers using scripting” on page 973

v “Configuring custom properties for URL providers using scripting” on page 974

v “Configuring new URLs using scripting” on page 975

v “Configuring custom properties for URLs using scripting” on page 976

Configuring new mail providers using scripting

You can use scripting and the wsadmin tool to configure new mail providers.

Before starting this task, the wsadmin tool must be running. See the Starting the wsadmin scripting client

article for more information.

Perform the following steps to configure a new mail provider:

1. Identify the parent ID:

v Using Jacl:

set node [$AdminConfig getid /Cell:mycell/Node:mynode/]

v Using Jython:

node = AdminConfig.getid(’/Cell:mycell/Node:mynode/’)

print node

Example output:

mynode(cells/mycell/nodes/mynode|node.xml#Node_1)

2. Get required attributes:

v Using Jacl:

$AdminConfig required MailProvider

964 Administering applications and their environment

http://java.sun.com/products/javamail/

v Using Jython:

print AdminConfig.required(’MailProvider’)

Example output:

Attribute Type

name String

3. Set up required attributes:

v Using Jacl:

set name [list name MP1]

set mpAttrs [list $name]

v Using Jython:

name = [’name’, ’MP1’]

mpAttrs = [name]

4. Create the mail provider:

v Using Jacl:

set newmp [$AdminConfig create MailProvider $node $mpAttrs]

v Using Jython:

newmp = AdminConfig.create(’MailProvider’, node, mpAttrs)

print newmp

Example output:

MP1(cells/mycell/nodes/mynode|resources.xml#MailProvider_1)

5. Save the configuration changes. See the Saving configuration changes with the wsadmin tool article

for more information.

6. In a network deployment environment only, synchronize the node. See the Synchronizing nodes with

the wsadmin tool article for more information.

Configuring new mail sessions using scripting

You can use scripting and the wsadmin tool to configure new mail sessions.

Before starting this task, the wsadmin tool must be running. See the Starting the wsadmin scripting client

article for more information.

Perform the following steps to configure a new mail session:

1. Identify the parent ID:

v Using Jacl:

set newmp [$AdminConfig getid /Cell:mycell/Node:mynode/MailProvider:MP1/]

v Using Jython:

newmp = AdminConfig.create(’MailProvider’, node, mpAttrs)

print newmp

Example output:

MP1(cells/mycell/nodes/mynode|resources.xml#MailProvider_1)

2. Get required attributes:

v Using Jacl:

$AdminConfig required MailSession

v Using Jython:

print AdminConfig.required(’MailSession’)

Example output:

Attribute Type

name String

jndiName String

3. Set up required attributes:

Chapter 15. Mail, URLs, and other J2EE resources 965

v Using Jacl:

set name [list name MS1]

set jndi [list jndiName mail/MS1]

set msAttrs [list $name $jndi]

Example output:

{name MS1} {jndiName mail/MS1}

v Using Jython:

name = [’name’, ’MS1’]

jndi = [’jndiName’, ’mail/MS1’]

msAttrs = [name, jndi]

print msAttrs

Example output:

[[name, MS1], [jndiName, mail/MS1]]

4. Create the mail session:

v Using Jacl:

$AdminConfig create MailSession $newmp $msAttrs

v Using Jython:

print AdminConfig.create(’MailSession’, newmp, msAttrs)

Example output:

MS1(cells/mycell/nodes/mynode|resources.xml#MailSession_1)

5. Save the configuration changes. See the Saving configuration changes with the wsadmin tool article

for more information.

6. In a network deployment environment only, synchronize the node. See the Synchronizing nodes with

the wsadmin tool article for more information.

Configuring new protocols using scripting

You can configure new protocols with scripting and the wsadmin tool.

Before starting this task, the wsadmin tool must be running. See the Starting the wsadmin scripting client

article for more information.

Perform the following steps to configure a new protocol:

1. Identify the parent ID:

v Using Jacl:

set newmp [$AdminConfig getid /Cell:mycell/Node:mynode/MailProvider:MP1/]

v Using Jython:

newmp = AdminConfig.create(’MailProvider’, node, mpAttrs)

print newmp

Example output:

MP1(cells/mycell/nodes/mynode|resources.xml#MailProvider_1)

2. Get required attributes:

v Using Jacl:

$AdminConfig required ProtocolProvider

v Using Jython:

print AdminConfig.required(’ProtocolProvider’)

Example output:

Attribute Type

protocol String

classname String

3. Set up required attributes:

966 Administering applications and their environment

v Using Jacl:

set protocol [list protocol "Put the protocol here"]

set classname [list classname "Put the class name here"]

set ppAttrs [list $protocol $classname]

Example output:

{protocol protocol1} {classname classname1}

v Using Jython:

protocol = [’protocol’, "Put the protocol here"]

classname = [’classname’, "Put the class name here"]

ppAttrs = [protocol, classname]

print ppAttrs

Example output:

[[protocol, protocol1], [classname, classname1]]

4. Create the protocol provider:

v Using Jacl:

$AdminConfig create ProtocolProvider $newmp $ppAttrs

v Using Jython:

print AdminConfig.create(’ProtocolProvider’, newmp, ppAttrs)

Example output:

(cells/mycell/nodes/mynode|resources.xml#ProtocolProvider_4)

5. Save the configuration changes. See the Saving configuration changes with the wsadmin tool article

for more information.

6. In a network deployment environment only, synchronize the node. See the Synchronizing nodes with

the wsadmin tool article for more information.

Configuring new custom properties using scripting

You can use scripting and the wsadmin tool to configure new custom properties.

Before starting this task, the wsadmin tool must be running. See the Starting the wsadmin scripting client

article for more information.

Perform the following steps to configure a new custom property:

1. Identify the parent ID:

v Using Jacl:

set newmp [$AdminConfig getid /Cell:mycell/Node:mynode/MailProvider:MP1/]

v Using Jython:

newmp = AdminConfig.create(’MailProvider’, node, mpAttrs)

print newmp

Example output:

MP1(cells/mycell/nodes/mynode|resources.xml#MailProvider_1)

2. Get the J2EE resource property set:

v Using Jacl:

set propSet [$AdminConfig showAttribute $newmp propertySet]

v Using Jython:

propSet = AdminConfig.showAttribute(newmp, ’propertySet’)

print propSet

Example output:

(cells/mycell/nodes/mynode|resources.xml#PropertySet_2)

3. Get required attributes:

v Using Jacl:

Chapter 15. Mail, URLs, and other J2EE resources 967

$AdminConfig required J2EEResourceProperty

v Using Jython:

print AdminConfig.required(’J2EEResourceProperty’)

Example output:

Attribute Type

name String

4. Set up the required attributes:

v Using Jacl:

set name [list name CP1]

set cpAttrs [list $name]

Example output:

{name CP1}

v Using Jython:

name = [’name’, ’CP1’]

cpAttrs = [name]

print cpAttrs

Example output:

[[name, CP1]]

5. Create a J2EE resource property:

v Using Jacl:

$AdminConfig create J2EEResourceProperty $propSet $cpAttrs

v Using Jython:

print AdminConfig.create(’J2EEResourceProperty’, propSet, cpAttrs)

Example output:

CP1(cells/mycell/nodes/mynode|resources.xml#J2EEResourceProperty_2)

6. Save the configuration changes. See the Saving configuration changes with the wsadmin tool article

for more information.

7. In a network deployment environment only, synchronize the node. See the Synchronizing nodes with

the wsadmin tool article for more information.

Configuring new resource environment providers using scripting

You can use the wsadmin tool and scripting to configure new resources environment providers.

Before starting this task, the wsadmin tool must be running. See the Starting the wsadmin scripting client

article for more information.

Perform the following steps to configure a new resource environment provider:

1. Identify the parent ID and assign it to the node variable.

v Using Jacl:

set node [$AdminConfig getid /Cell:mycell/Node:mynode/]

v Using Jython:

node = AdminConfig.getid(’/Cell:mycell/Node:mynode/’)

print node

Example output:

mynode(cells/mycell/nodes/mynode|node.xml#Node_1)

2. Identify the required attributes:

v Using Jacl:

$AdminConfig required ResourceEnvironmentProvider

v Using Jython:

968 Administering applications and their environment

print AdminConfig.required(’ResourceEnvironmentProvider’)

Example output:

Attribute Type

name String

3. Set up the required attributes and assign it to the repAttrs variable:

v Using Jacl:

set n1 [list name REP1]

set repAttrs [list $name]

v Using Jython:

n1 = [’name’, ’REP1’]

repAttrs = [n1]

4. Create a new resource environment provider:

v Using Jacl:

set newrep [$AdminConfig create ResourceEnvironmentProvider $node $repAttrs]

v Using Jython:

newrep = AdminConfig.create(’ResourceEnvironmentProvider’, node, repAttrs)

print newrep

Example output:

REP1(cells/mycell/nodes/mynode|resources.xml#ResourceEnvironmentProvider_1)

5. Save the configuration changes. See the Saving configuration changes with the wsadmin tool article

for more information.

6. In a network deployment environment only, synchronize the node. See the Synchronizing nodes with

the wsadmin tool article for more information.

Configuring custom properties for resource environment providers

using scripting

You can use scripting to configure custom properties for a resource environment provider.

Before starting this task, the wsadmin tool must be running. See the Starting the wsadmin scripting client

article for more information.

Perform the following steps to configure a new custom property for a resource environment provider:

1. Identify the parent ID and assign it to the newrep variable.

v Using Jacl:

set newrep [$AdminConfig getid /Cell:mycell/Node:mynode/ResourceEnvironmentProvider:REP1/]

v Using Jython:

newrep = AdminConfig.getid(’/Cell:mycell/Node:mynode/ResourceEnvironmentProvider:REP1/’)

print newrep

Example output:

REP1(cells/mycell/nodes/mynode|resources.xml#ResourceEnvironmentProvider_1)

2. Identify the required attributes:

v Using Jacl:

$AdminConfig required J2EEResourceProperty

v Using Jython:

print AdminConfig.required(’J2EEResourceProperty’)

Example output:

Attribute Type

name String

3. Set up the required attributes and assign it to the repAttrs variable:

Chapter 15. Mail, URLs, and other J2EE resources 969

v Using Jacl:

set name [list name RP]

set rpAttrs [list $name]

v Using Jython:

name = [’name’, ’RP’]

rpAttrs = [name]

4. Get the J2EE resource property set:

v Using Jacl:

set propSet [$AdminConfig showAttribute $newrep propertySet]

v Using Jython:

propSet = AdminConfig.showAttribute(newrep, ’propertySet’)

print propSet

Example output:

(cells/mycell/nodes/mynode|resources.xml#PropertySet_1)

5. Create a J2EE resource property:

v Using Jacl:

$AdminConfig create J2EEResourceProperty $propSet $rpAttrs

v Using Jython:

print AdminConfig.create(’J2EEResourceProperty’, propSet, rpAttrs)

Example output:

RP(cells/mycell/nodes/mynode|resources.xml#J2EEResourceProperty_1)

6. Save the configuration changes. See the Saving configuration changes with the wsadmin tool article

for more information.

7. In a network deployment environment only, synchronize the node. See the Synchronizing nodes with

the wsadmin tool article for more information.

Configuring new referenceables using scripting

You can use scripting and the wsadmin tool to configure new referenceables.

Before starting this task, the wsadmin tool must be running. See the Starting the wsadmin scripting client

article for more information.

Perform the following steps to configure a new referenceable:

1. Identify the parent ID and assign it to the newrep variable.

v Using Jacl:

set newrep [$AdminConfig getid /Cell:mycell/Node:mynode/

ResourceEnvironmentProvider:REP1/]

v Using Jython:

newrep = AdminConfig.getid(’/Cell:mycell/Node:mynode/

ResourceEnvironmentProvider:REP1/’)

print newrep

Example output:

REP1(cells/mycell/nodes/mynode|resources.xml#ResourceEnvironmentProvider_1)

2. Identify the required attributes:

v Using Jacl:

$AdminConfig required Referenceable

v Using Jython:

print AdminConfig.required(’Referenceable’)

Example output:

970 Administering applications and their environment

Attribute Type

factoryClassname String

classname String

3. Set up the required attributes:

v Using Jacl:

set fcn [list factoryClassname REP1]

set cn [list classname NM1]

set refAttrs [list $fcn $cn]

v Using Jython:

fcn = [’factoryClassname’, ’REP1’]

cn = [’classname’, ’NM1’]

refAttrs = [fcn, cn]

print refAttrs

Example output:

{factoryClassname {REP1}} {classname {NM1}}

4. Create a new referenceable:

v Using Jacl:

set newref [$AdminConfig create Referenceable $newrep $refAttrs]

v Using Jython:

newref = AdminConfig.create(’Referenceable’, newrep, refAttrs)

print newref

Example output:

(cells/mycell/nodes/mynode|resources.xml#Referenceable_1)

5. Save the configuration changes. See the Saving configuration changes with the wsadmin tool article

for more information.

6. In a network deployment environment only, synchronize the node. See the Synchronizing nodes with

the wsadmin tool article for more information.

Configuring new resource environment entries using scripting

You can use scripting and the wsadmin tool to configure a new resource environment entry.

Before starting this task, the wsadmin tool must be running. See the Starting the wsadmin scripting client

article for more information.

Perform the following steps to configure a new resource environment entry:

1. Identify the parent ID and assign it to the newrep variable.

v Using Jacl:

set newrep [$AdminConfig getid /Cell:mycell/Node:mynode/ResourceEnvironmentProvider:REP1/]

v Using Jython:

newrep = AdminConfig.getid(’/Cell:mycell/Node:mynode/ResourceEnvironmentProvider:REP1/’)

print newrep

Example output:

REP1(cells/mycell/nodes/mynode|resources.xml#ResourceEnvironmentProvider_1)

2. Identify the required attributes:

v Using Jacl:

$AdminConfig required ResourceEnvEntry

v Using Jython:

print AdminConfig.required(’ResourceEnvEntry’)

Example output:

Chapter 15. Mail, URLs, and other J2EE resources 971

Attribute Type

name String

jndiName String

referenceable Referenceable@

3. Set up the required attributes:

v Using Jacl:

set name [list name REE1]

set jndiName [list jndiName myjndi]

set newref [$AdminConfig getid /Cell:mycell/Node:mynode/Referenceable:/]

set ref [list referenceable $newref]

set reeAttrs [list $name $jndiName $ref]

v Using Jython:

name = [’name’, ’REE1’]

jndiName = [’jndiName’, ’myjndi’]

newref = AdminConfig.getid(’/Cell:mycell/Node:mynode/Referenceable:/’)

ref = [’referenceable’, newref]

reeAttrs = [name, jndiName, ref]

4. Create the resource environment entry:

v Using Jacl:

$AdminConfig create ResourceEnvEntry $newrep $reeAttrs

v Using Jython:

print AdminConfig.create(’ResourceEnvEntry’, newrep, reeAttrs)

Example output:

REE1(cells/mycell/nodes/mynode|resources.xml#ResourceEnvEntry_1)

5. Save the configuration changes. See the Saving configuration changes with the wsadmin tool article

for more information.

6. In a network deployment environment only, synchronize the node. See the Synchronizing nodes with

the wsadmin tool article for more information.

Configuring custom properties for resource environment entries using

scripting

You can use scripting to configure a new custom property for a resource environment entry.

Before starting this task, the wsadmin tool must be running. See the Starting the wsadmin scripting client

article for more information.

Perform the following steps to configure a new custom property for a resource environment entry:

1. Identify the parent ID and assign it to the newree variable.

v Using Jacl:

set newree [$AdminConfig getid /Cell:mycell/Node:mynode/ResourceEnvEntry:REE1/]

v Using Jython:

newree = AdminConfig.getid(’/Cell:mycell/Node:mynode/ResourceEnvEntry:REE1/’)

print newree

Example output:

REE1(cells/mycell/nodes/mynode|resources.xml#ResourceEnvEntry_1)

2. Create the J2EE custom property set:

v Using Jacl:

set propSet [$AdminConfig showAttribute $newree propertySet]

v Using Jython:

propSet = AdminConfig.showAttribute(newree, ’propertySet’)

print propSet

972 Administering applications and their environment

Example output:

(cells/mycell/nodes/mynode|resources.xml#J2EEResourcePropertySet_5)

3. Identify the required attributes:

v Using Jacl:

$AdminConfig required J2EEResourceProperty

v Using Jython:

print AdminConfig.required(’J2EEResourceProperty’)

Example output:

Attribute Type

name String

4. Set up the required attributes:

v Using Jacl:

set name [list name RP1]

set rpAttrs [list $name]

v Using Jython:

name = [’name’, ’RP1’]

rpAttrs = [name]

5. Create the J2EE custom property:

v Using Jacl:

$AdminConfig create J2EEResourceProperty $propSet $rpAttrs

v Using Jython:

print AdminConfig.create(’J2EEResourceProperty’, propSet, rpAttrs)

Example output:

RPI(cells/mycell/nodes/mynode|resources.xml#J2EEResourceProperty_1)

6. Save the configuration changes. See the Saving configuration changes with the wsadmin tool article

for more information.

7. In a network deployment environment only, synchronize the node. See the Synchronizing nodes with

the wsadmin tool article for more information.

Configuring new URL providers using scripting

You can use scripting and the wsadmin tool to configure new URL providers.

Before starting this task, the wsadmin tool must be running. See the Starting the wsadmin scripting client

article for more information.

Perform the following steps to configure a new URL provider:

1. Identify the parent ID and assign it to the node variable.

v Using Jacl:

set node [$AdminConfig getid /Cell:mycell/Node:mynode/]

v Using Jython:

node = AdminConfig.getid(’/Cell:mycell/Node:mynode/’)

print node

Example output:

mynode(cells/mycell/nodes/mynode|node.xml#Node_1)

2. Identify the required attributes:

v Using Jacl:

$AdminConfig required URLProvider

v Using Jython:

print AdminConfig.required(’URLProvider’)

Chapter 15. Mail, URLs, and other J2EE resources 973

Example output:

Attribute Type

streamHandlerClassName String

protocol String

name String

3. Set up the required attributes:

v Using Jacl:

set name [list name URLP1]

set shcn [list streamHandlerClassName "Put the stream handler classname here"]

set protocol [list protocol "Put the protocol here"]

set urlpAttrs [list $name $shcn $protocol]

Example output:

{name URLP1} {streamHandlerClassName {Put the stream handler classname here}}

{protocol {Put the protocol here}}

v Using Jython:

name = [’name’, ’URLP1’]

shcn = [’streamHandlerClassName’, "Put the stream handler classname here"]

protocol = [’protocol’, "Put the protocol here"]

urlpAttrs = [name, shcn, protocol]

print urlpAttrs

Example output:

[[name, URLP1], [streamHandlerClassName, "Put the stream handler classname here"],

[protocol, "Put the protocol here"]]

4. Create a URL provider:

v Using Jacl:

$AdminConfig create URLProvider $node $urlpAttrs

v Using Jython:

print AdminConfig.create(’URLProvider’, node, urlpAttrs)

Example output:

URLP1(cells/mycell/nodes/mynode|resources.xml#URLProvider_1)

5. Save the configuration changes. See the Saving configuration changes with the wsadmin tool article

for more information.

6. In a network deployment environment only, synchronize the node. See the Synchronizing nodes with

the wsadmin tool article for more information.

Configuring custom properties for URL providers using scripting

You can use scripting to configure custom properties for URL providers.

Before starting this task, the wsadmin tool must be running. See the Starting the wsadmin scripting client

article for more information.

Perform the following steps to configure custom properties for URL providers:

1. Identify the parent ID and assign it to the newurlp variable.

v Using Jacl:

set newurlp [$AdminConfig getid /Cell:mycell/Node:mynode/URLProvider:URLP1/]

v Using Jython:

newurlp = AdminConfig.getid(’/Cell:mycell/Node:mynode/URLProvider:URLP1/’)

print newurlp

Example output:

URLP1(cells/mycell/nodes/mynode|resources.xml#URLProvider_1)

2. Get the J2EE resource property set:

v Using Jacl:

974 Administering applications and their environment

set propSet [$AdminConfig showAttribute $newurlp propertySet]

v Using Jython:

propSet = AdminConfig.showAttribute(newurlp, ’propertySet’)

print propSet

Example output:

(cells/mycell/nodes/mynode|resources.xml#PropertySet_7)

3. Identify the required attributes:

v Using Jacl:

$AdminConfig required J2EEResourceProperty

v Using Jython:

print AdminConfig.required(’J2EEResourceProperty’)

Example output:

Attribute Type

name String

4. Set up the required attributes:

v Using Jacl:

set name [list name RP2]

set rpAttrs [list $name]

v Using Jython:

name = [’name’, ’RP2’]

rpAttrs = [name]

5. Create a J2EE resource property:

v Using Jacl:

$AdminConfig create J2EEResourceProperty $propSet $rpAttrs

v Using Jython:

print AdminConfig.create(’J2EEResourceProperty’, propSet, rpAttrs)

Example output:

RP2(cells/mycell/nodes/mynode|resources.xml#J2EEResourceProperty_1)

6. Save the configuration changes. See the Saving configuration changes with the wsadmin tool article

for more information.

7. In a network deployment environment only, synchronize the node. See the Synchronizing nodes with

the wsadmin tool article for more information.

Configuring new URLs using scripting

You can use scripting and the wsadmin tool to configure new URLs.

Before starting this task, the wsadmin tool must be running. See the Starting the wsadmin scripting client

article for more information.

Perform the following example to configure a new URL:

1. Identify the parent ID and assign it to the newurlp variable.

v Using Jacl:

set newurlp [$AdminConfig getid /Cell:mycell/Node:mynode/URLProvider:URLP1/]

v Using Jython:

newurlp = AdminConfig.getid(’/Cell:mycell/Node:mynode/URLProvider:URLP1/’)

print newurlp

Example output:

URLP1(cells/mycell/nodes/mynode|resources.xml#URLProvider_1)

2. Identify the required attributes:

Chapter 15. Mail, URLs, and other J2EE resources 975

v Using Jacl:

$AdminConfig required URL

v Using Jython:

print AdminConfig.required(’URL’)

Example output:

Attribute Type

name String

spec String

3. Set up the required attributes:

v Using Jacl:

set name [list name URL1]

set spec [list spec "Put the spec here"]

set urlAttrs [list $name $spec]

Example output:

{name URL1} {spec {Put the spec here}}

v Using Jython:

name = [’name’, ’URL1’]

spec = [’spec’, "Put the spec here"]

urlAttrs = [name, spec]

Example output:

[[name, URL1], [spec, "Put the spec here"]]

4. Create a URL:

v Using Jacl:

$AdminConfig create URL $newurlp $urlAttrs

v Using Jython:

print AdminConfig.create(’URL’, newurlp, urlAttrs)

Example output:

URL1(cells/mycell/nodes/mynode|resources.xml#URL_1)

5. Save the configuration changes. See the Saving configuration changes with the wsadmin tool article

for more information.

6. In a network deployment environment only, synchronize the node. See the Synchronizing nodes with

the wsadmin tool article for more information.

Configuring custom properties for URLs using scripting

Use the wsadmin tool and scripting to set custom properties for URLs.

Before starting this task, the wsadmin tool must be running. See the Starting the wsadmin scripting client

article for more information.

Perform the following steps to configure a new custom property for a URL:

1. Identify the parent ID and assign it to the newurl variable.

v Using Jacl:

set newurl [$AdminConfig getid /Cell:mycell/Node:mynode/URLProvider:URLP1/URL:URL1/]

v Using Jython:

newurl = AdminConfig.getid(’/Cell:mycell/Node:mynode/URLProvider:URLP1/URL:URL1/’)

print newurl

Example output:

URL1(cells/mycell/nodes/mynode|resources.xml#URL_1)

2. Create a J2EE resource property set:

v Using Jacl:

976 Administering applications and their environment

set propSet [$AdminConfig showAttribute $newurl propertySet]

v Using Jython:

propSet = AdminConfig.showAttribute(newurl, ’propertySet’)

print propSet

Example output:

(cells/mycell/nodes/mynode|resources.xml#J2EEResourcePropertySet_7)

3. Identify the required attributes:

v Using Jacl:

$AdminConfig required J2EEResourceProperty

v Using Jython:

print AdminConfig.required(’J2EEResourceProperty’)

Example output:

Attribute Type

name String

4. Set up the required attributes:

v Using Jacl:

set name [list name RP3]

set rpAttrs [list $name]

v Using Jython:

name = [’name’, ’RP3’]

rpAttrs = [name]

5. Create a J2EE resource property:

v Using Jacl:

$AdminConfig create J2EEResourceProperty $propSet $rpAttrs

v Using Jython:

print AdminConfig.create(’J2EEResourceProperty’, propSet, rpAttrs)

Example output:

RP3(cells/mycell/nodes/mynode|resources.xml#J2EEResourceProperty_7)

6. Save the configuration changes. See the Saving configuration changes with the wsadmin tool article

for more information.

7. In a network deployment environment only, synchronize the node. See the Synchronizing nodes with

the wsadmin tool article for more information.

Commands for the provider group of the AdminTask object

Use the commands in the provider group to create or delete a provider. For more information about the

AdminTask object, see the Commands for the AdminTask object article.

The following commands are available for the provider group of the AdminTask object:

Chapter 15. Mail, URLs, and other J2EE resources 977

Table 8.

Command name: Description: Target

object:

Parameters and return

values:

Examples:

createProvider The createProvider

command creates a

provider in the model

given the

ProviderInfo.

None v Parameters: None

v Returns: true if the

provider was

created, false if not.

Interactive mode example

usage:

v Using Jacl:

$AdminTask createProvider

{-interactive}

v Using Jython string:

AdminTask.createProvider

(’[-interactive]’)

v Using Jython list:

AdminTask.createProvider

([’-interactive’])

deleteProvider The deleteProvider

command deletes a

provider from the

model given the

providerName.

None v Parameters: None

v Returns: true if the

provider was deleted,

false if not.

Interactive mode example

usage:

v Using Jacl:

$AdminTask deleteProvider

{-interactive}

v Using Jython string:

AdminTask.deleteProvider

(’[-interactive]’)

v Using Jython list:

AdminTask.deleteProvider

([’-interactive’])

getProviderInfo The getProviderInfo

command returns a

ProviderInfo object

defined in the model

given the

providerName.

None v Parameters: None

v Returns: A

ProviderInfo object

defined in the model

given the

providerName.

Interactive mode example

usage:

v Using Jacl:

$AdminTask getProviderInfo

{-interactive}

v Using Jython string:

AdminTask.getProviderInfo

(’[-interactive]’)

v Using Jython list:

AdminTask.getProviderInfo

([’-interactive’])

978 Administering applications and their environment

Table 8. (continued)

Command name: Description: Target

object:

Parameters and return

values:

Examples:

getProviderInstance The

getProviderInstance

command returns a

java.security.Provider

for the providerName

specified.

None v Parameters: None

v Returns: A

java.security.Provider

for the providerName

specified.

Interactive mode example

usage:

v Using Jacl:

$AdminTask getProviderInsta

nce {-interactive}

v Using Jython string:

AdminTask.getProviderIns

tance (’[-interactive]’)

v Using Jython list:

AdminTask.getProviderInst

ance ([’-interactive’])

getProviders The getProviders

command returns a

List of ProviderInfo

objects from the

model.

None v Parameters: None

v Returns: A list of

ProviderInfo objects

from the model.

Interactive mode example

usage:

v Using Jacl:

$AdminTask getProviders

{-interactive}

v Using Jython string:

AdminTask.getProviders

(’[-interactive]’)

v Using Jython list:

AdminTask.getProviders

([’-interactive’])

Chapter 15. Mail, URLs, and other J2EE resources 979

980 Administering applications and their environment

Chapter 16. Security

Task overview: Securing resources

WebSphere Application Server supports the Java 2 Platform, Enterprise Edition (J2EE) model for creating,

assembling, securing, and deploying applications. Applications are often created, assembled, and deployed

in different phases and by different teams.

You can secure resources in a J2EE environment by following the required high-level steps. Consult the

J2EE specifications for complete details.

v Set up and enable security. You must address several issues prior to authenticating users, authorizing

access to resources, securing applications, and securing communications. These security issues include

migration, interoperability, and installation. After installing WebSphere Application Server, you must

determine the proper level of security that is needed for your environment. For more information, see

“Setting up and enabling security.”

v Authenticate users. The process of authenticating users involves a user registry and an authentication

mechanism. Optionally, you can define trust between WebSphere Application Server and a proxy server,

configure single sign-on capability, and specify how to propagate security attributes between application

servers. For more information, see “Authenticating users” on page 1035.

v Authorize access to resources. WebSphere Application Server provides many different methods for

authorizing accessing resources. For example, you can assign roles to users and configure a built-in or

external authorization provider. For more information, see “Authorizing access to resources” on page

1287.

v Secure communications. WebSphere Application Server provides several methods to secure

communication between a server and a client. For more information, see “Securing communications” on

page 1349.

v Develop extensions to the WebSphere security infrastructure. WebSphere Application Server provides

various plug points so that you can extend the security infrastructure. For more information, see

Developing extensions to the WebSphere security infrastructure.

v Secure various types of WebSphere applications. See Securing WebSphere applications for tasks

involving developing, deploying, and administering secure applications, including Web applications, Web

services, and many other types. This section highlights the security concerns and tasks that are specific

to each type of application.

v Tune, harden, and maintain security configurations. After you have installed WebSphere Application

Server, there are several considerations for tuning, strengthening, and maintaining your security

configuration. For more information, see Tuning, hardening, and maintaining.

v Troubleshoot security configurations. For more information, see Troubleshooting security configurations.

Your applications and production environment are secured.

See Security: Resources for learning for more information on the WebSphere Application Server security

architecture.

Setting up and enabling security

You must address several issues prior to authenticating users, authorizing access to resources, securing

applications, and securing communications. These security issues include migration, interoperability, and

installation.

After installing WebSphere Application Server, you can determine the proper level of security that is

needed for your environment. By default, administrative security is enabled and provides the authentication

of users, the use of Secure Sockets Layer (SSL), and the choice of user account repository.

© Copyright IBM Corp. 2006 981

The following information is covered in this section:

v Determine if any migration and interoperability issues might affect your installation. For more

information, see “Migrating, coexisting, and interoperating – Security considerations.”

v Prepare your environment before and after installing WebSphere Application Server. For more

information, see “Preparing for security at installation time” on page 997.

v Enable security for all your application servers or for specific application servers in your realm.

For more information, see “Enabling security” on page 999.

After installing WebSphere Application Server and securing your environment, you must authenticate

users. For more information, see “Authenticating users” on page 1035.

Migrating, coexisting, and interoperating – Security considerations

Use this topic to migrate the security configuration of previous WebSphere Application Server releases and

its applications to the new installation of WebSphere Application Server.

This information addresses the need to migrate your security configurations from a previous release of

IBM WebSphere Application Server to WebSphere Application Server Version 6.1 or later. Complete the

following steps to migrate your security configurations:

v If security is enabled in the previous release, obtain the administrative server ID and password of the

previous release. This information is needed in order to run certain migration jobs.

v You can optionally disable security in the previous release before migrating the installation. No logon is

required during the installation.

Use the First steps wizard to access and run the Migration wizard.

1. Start the First steps wizard by launching the firststeps.bat or the firststeps.sh file. The first steps

file is located in the following directory:

v

Linux

./app_server_root/profiles/profile_name/firststeps/firststeps.sh

v

Windows

app_server_root\profiles\profile_name\firststeps\firststeps.bat

2. On the First steps wizard panel, click Migration wizard.

3. Follow the instructions provided in the First steps wizard to complete the migration.

For more information on the Migration wizard, see Using the migration wizard to migrate product

configurations.

The security configuration of previous WebSphere Application Server releases and its applications are

migrated to the new installation of WebSphere Application Server Version 6.1.

If a custom user registry is used in the previous version, the migration process does not migrate the class

files that are used by the standalone custom registry in the previous app_server_root/classes directory.

Therefore, after migration, copy your custom user registry implementation classes to the

app_server_root/classes directory.

If you upgrade from WebSphere Application Server, Version 5.x to WebSphere Application Server, Version

6.1, the data that is associated with Version 5.x trust associations is not automatically migrated to Version

6.1. To migrate trust associations, see “Migrating trust association interceptors” on page 988.

Interoperating with previous product versions

IBM WebSphere Application Server inter-operates with the previous product versions. Use this topic to

configure this behavior.

1. Configure WebSphere Application Server Version 6.1 with the same distributed user registry (that is,

LDAP or Custom) that is configured with the previous version. Make sure that the same LDAP user

registry is shared by all of the product versions.

982 Administering applications and their environment

a. In the administrative console, select Security > Secure administration, applications, and

infrastructure.

b. Choose an available Realm definition and click Configure.

c. Enter a Primary administrative user name. This is the identity you use to login to the

administrative console or to wsadmin. When inter-operating with a previous release, you must use

the same server ID. In WebSphere Application Server Version 6.1, there are two choices for server

ID. For previous releases, specify a server ID and password. However, if you choose to use the

internal server ID, you must be able to override the generated value and to specify the server ID

from a previous release.

d. Click either Automatically generated server identity or Server identity that is stored in the

user repository .

e. If you select Automatically generated server identity, click Authentication mechanisms and

expiration to change the identity to the one used by the previous release you are inter-operating

with. Scroll down to the Cross-cell single sign-on section and enter the identity in Internal server

ID.

f. If you select Server identity that is stored in the user repository, enter the Server user id and

the associated Password.

g. Fill out the rest of the user registry settings and then click OK.

2. Configure the LTPA authentication mechanism. Automatic generation of the LTPA keys should be

disabled. If not, keys used by a previous release are lost. Export the current LTPA keys from

WebSphere Application Server Version 6.1 and import them into the previous release.

a. In the administrative console select Security > Secure administration, applications, and

infrastructure.

b. Click Authentication mechanisms and expiration.

c. Click the Key set groups link, then click the key set group that displays in the Key set groups

panel.

d. Clear the Automatically generate keys check box.

e. Click OK, then click Authentication mechanisms and expiration in the path at the top of the Key

set groups panel.

f. Scroll down to the Cross-cell single sign-on section, and enter a password to use for encrypting the

LTPA keys when adding them to the file.

g. Enter the password again to confirm the password.

h. Enter the Fully qualified key file name that contains the exported keys.

i. Click Export keys.

j. Follow the instructions provided in the previous release to import the exported LTPA keys into that

configuration.

3. If you are using the default SSL configuration, extract all of the signer certificates from the WebSphere

Application Server Version 6.1 common trust store. Otherwise, extract signers where necessary to

import them into the previous release.

a. In the administrative console, click Security > SSL certificate and key management.

b. Click Key stores and certificates.

c. Click NodeDefaultTrustStore.

d. Click Signer certificates.

e. Select one signer and click Extract.

f. Enter a unique path and filename for the signer (for example, c:\temp\signer1.arm).

g. Click OK. Repeat for all of the signers in the trust store.

h. Check other trust stores for other signers that might need to be shared with the other server.

Repeat steps e through h to extract the other signers.

Chapter 16. Security 983

4. Add the exported signers to DummyServerTrustFile.jks and DummyClientTrustFile.jks in the /etc

directory of the back-level product version. If the previous release is not using the dummy certificate,

the signer certificate(s) from the previous release must be extracted and added into the WebSphere

Application Server Version 6.1 release to enable SSL connectivity in both directions.

a. Open the key management utility, iKeyman, for that product version.

b. Start ikeyman.bat or ikeyman.sh from the ${USER_INSTALL_ROOT}/bin directory.

c. Select Key Database File > Open.

d. Open ${USER_INSTALL_ROOT}/etc/DummyServerTrustFile.jks.

e. Enter WebAS for the password.

f. Select Add and enter one of the files extracted in step 2. Continue until you have added all of the

signers.

g. Repeat steps c through f for the DummyClientTrustFile.jks file.

5. Verify that the application uses the correct Java Naming and Directory Interface (JNDI) name and

naming bootstrap port for performing a naming lookup.

6. Stop and restart all of the servers.

Interoperating with a C++ common object request broker architecture client

WebSphere Application Server supports security in the CORBA C++ client to access-protected enterprise

beans. If configured, C++ CORBA clients can access protected enterprise bean methods using a client

certificate to achieve mutual authentication on WebSphere Application Server applications.

You can achieve interoperability of Security Authentication Service between the C++ Common Object

Request Broker Architecture (CORBA) client and WebSphere Application Server using Common Secure

Interoperability Version 2 (CSIv2) authentication protocol over Remote Method Invocation over the Internet

Inter-ORB Protocol (RMI-IIOP). The CSIv2 security service protocol has authentication, attribute and

transport layers. Among the three layers, transport authentication is conceptually simple, however,

cryptographically based transport authentication is the strongest. WebSphere Application Server has

implemented the transport authentication layer, so that C++ secure CORBA clients can use it effectively in

making CORBA clients and protected enterprise bean resources work together.

Security authentication from non-Java based C++ client to enterprise beans. WebSphere Application

Server supports security in the CORBA C++ client to access-protected enterprise beans. If configured,

C++ CORBA clients can access protected enterprise bean methods using a client certificate to achieve

mutual authentication on WebSphere Application Server applications.

To support the C++ CORBA client in accessing protected enterprise beans:

v Create an environment file for the client, such as current.env. Set the variables presented in the

following list in the file:

 C++ security setting Description

client_protocol_password Specifies the password for the user ID.

client_protocol_user Specifies the user ID to authenticate at the target server.

security_sslKeyring Specifies the name of the RACF keyring for the client to

use. The keyring must be defined under the user ID that

is issuing the command to run the client.

v Point to the environment file using the fully qualified path name through the WAS_CONFIG_FILE

environment variable. For example, in the test.sh test shell script, export:

/WebSphere/V6R0M0/DeploymentManager/profiles/default/config/cells

 /PLEX1Network/nodes/PLEX1Manager/servers/dmgr

Some of the environment file terms are explained below:

984 Administering applications and their environment

default

profile name

PLEX1Network

cell name

PLEX1Manager

node name

dmgr server name

To support the C++ CORBA client in accessing protected enterprise beans:

1. Obtain a valid certificate to represent the client and export its public key to the target enterprise bean

server.

A valid certificate is needed to represent the C++ client. Request a certificate from the certificate

authority (CA) or create a self-signed certificate for testing purposes.

Use the Key Management Utility from the Global Security Kit (GSKit) to extract the public key from the

personal certificate and save it in the .arm format.

2. Prepare a truststore file for WebSphere Application Server.

Add the extracted client public key in the .arm file from the client to the server key truststore file. The

server can now authenticate the client.

Note: This is done by invoking the Key Management Utility through ikeyman.bat or ikeyman.sh from

WebSphere Application Server installation.

3. Configure WebSphere Application Server to support Secure Sockets Layer (SSL) as the authentication

mechanism.

a. Start the administrative console.

b. Locate the application server that has the target enterprise bean deployed and configure it to use

SSL client certificate authentication.

If it is a base installation, complete the following steps:

1) Click Security > Secure administration, applications, and infrastructure. Under RMI/IIOP

security, click CSIv2 inbound authentication. Select Supported for the Basic authentication

and Client certificate authentication options. Leave the rest of the options as defaults.

2) Click Security > Secure administration, applications, and infrastructure. Under RMI/IIOP

security, click CSIv2 inbound transport and verify that the SSL-supported option is selected.

If it is a Network Deployment setting, complete the following steps:

1) Click Servers > Application Servers > server_name_where_the_EJB_resides.

2) Under Security, click Server security.

3) Select the RMI/IIOP security for this server overrides cell settings option.

4) Under Additional properties, click CSIv2 inbound authentication.

5) Select Supported for the Basic authentication and Client certificate authentication options.

Leave the rest of the options as defaults.

6) Click Servers > Application Servers > server_name_where_the_EJB_resides.

7) Under Security, click Server security.

8) Under Additional properties, click CSIv2 inbound transport.

9) Verify that the SSL-Supported option is selected.

c. Restart the application server.

The WebSphere Application Server is ready to take a C++ CORBA security client and a mutually

authenticated server and client by using SSL in the transport layer.

4. Configure the C++ CORBA client to use a certificate in performing the mutual authentication.

Chapter 16. Security 985

Client users are accustomed to using property files in their applications because they are helpful in

specifying configuration settings. The following list presents important C++ security settings:

 C++ security setting Description

com.ibm.CORBA.bootstrapHostName=ricebella.austin.ibm.com Specifies the target host name.

com.ibm.CORBA.securityEnabled=yes Enables security.

com.ibm.CSI.performTLClientAuthenticationSupported=yes Ensures client is supporting mutual authentication by

certificate

com.ibm.ssl.keyFile=C:/ricebella/etc/DummyKeyRingFile.KDB Specifies which key database file to use.

com.ibm.ssl.keyPassword=WebAS Specifies the password for opening the key database file.

WebSphere Application Server supports a utility called

PasswordEncode4cpp to encode the plain password.

com.ibm.CORBA.translationEnabled=1 Enables the valueType conversion.

To use the property files in running a C++ client, an environment variable WASPROPS, is used to

indicate where a property file or a list of property files exists.

For the complete set of C++ client properties, see the sample property file scclient.props, which is

shipped with the product located in the app_server_root/profiles/profile_name/etc directory.

Migrating custom user registries

If you built your own custom user registry, consider the migration items listed below. If you have a custom

user registry that was provided by a Security Solution Provider, you must contact that provider to ensure

that you have the correct version of their custom user registry to support WebSphere Application Server.

In WebSphere Application Server, in addition to the UserRegistry interface, the custom user registry

requires the Result object to handle user and group information. This file is already provided in the

package and you are expected to use it for the getUsers, getGroups, and the getUsersForGroup methods.

You cannot use other WebSphere Application Server components, for example, data sources, to initialize

the custom registry because other components, like the containers, are initialized after security and are not

available during the registry initialization. A custom registry implementation is a pure custom

implementation, independent of other WebSphere Application Server components.

The getCallerPrincipal enterprise bean method and the getUserPrincipal and getRemoteUser servlet

methods return the security name instead of the display name. For more information, see the API

documentation.

If the migration tool is used to migrate the WebSphere Application Server Version 5 configuration to

WebSphere Application Server Version 6.0.x and later, this migration does not change your existing code.

Because the WebSphere Application Server Version 5 custom registry works in WebSphere Application

Server Version 6.0.x and later without any changes to the implementation, except when using data

sources, you can use the Version 5-based custom registry after the migration without modifying the code.

In WebSphere Application Server Version 6.0.x and later, a case-insensitive authorization can occur when

using an enabled custom user registry.

Setting this flag does not have any effect on the user names or passwords. Only the unique IDs that are

returned from the registry are changed to lower-case before comparing them with the information in the

authorization table, which is also converted to lowercase during runtime.

Before proceeding, look at the UserRegistry interface. See Developing standalone custom registries for a

description of each of these methods in detail.

986 Administering applications and their environment

The following steps go through all the changes that are required to move your WebSphere Application

Server Version 4.x custom user registry that implemented the old

com.ibm.websphere.security.CustomRegistry interface to the com.ibm.websphere.security.UserRegistry

interface.

Note: The sample implementation file is used as an example when describing the following steps.

 1. Change your implementation to UserRegistry instead of CustomRegistry. Change:

public class FileRegistrySample implements CustomRegistry

to:

public class FileRegistrySample implements UserRegistry

 2. Create the java.rmi.RemoteException exception in the constructors:

public FileRegistrySample() throws java.rmi.RemoteException

 3. Change the mapCertificate method to take a certificate chain instead of a single certificate. Change

public String mapCertificate(X509Certificate cert)

to:

public String mapCertificate(X509Certificate[]cert)

Having a certificate chain gives you the flexibility to act on the chain instead of one certificate. If you

are interested only in the first certificate, take the first certificate in the chain before processing. In

WebSphere Application Server Version 6.0.x and later, the mapCertificate method is called to map the

user in a certificate to a valid user in the registry when certificates are used for authentication by the

Web or the Java clients.

 4. Remove the getUsers method.

 5. Change the signature of the getUsers(String) method to return a Result object and accept an

additional parameter (int). Change:

public List getUsers(String pattern)

to:

public Result getUsers(String pattern, int limit)

In your implementation, construct the Result object from the list of the users that is obtained from the

user registry (whose number is limited to the value of the limit parameter) and call the setHasMore

method on the Result object if the total number of users in the registry exceeds the limit value.

 6. Change the signature of the getUsersForGroup(String) method to return a Result object and accept

an additional parameter (int) and throw a new exception called NotImplementedException exception.

Change the following code:

public List getUsersForGroup(String groupName)

 throws CustomRegistryException,

 EntryNotFoundException {

to:

public Result getUsersForGroup(String groupSecurityName, int limit)

 throws NotImplementedException,

 EntryNotFoundException,

 CustomRegistryException {

In WebSphere Application Server Version 6.0.x and later, this method is not called directly by the

WebSphere Application Server security component. However, other components of WebSphere

Application Server, like the WebSphere Business Integration Server Foundation process

choreographer, use this method when staff assignments are modeled using groups. Because this

implementation is supported in WebSphere Application Server Version 6.0.x and later, it is

recommended that you change the implementation similar to the getUsers method as explained in

step 5.

Chapter 16. Security 987

7. Remove the getUniqueUserIds(String) method.

 8. Remove the getGroups method.

 9. Change the signature of the getGroups(String) method to return a Result object and accept an

additional parameter (int). Change the following code:

public List getGroups(String pattern)

to:

public Result getGroups(String pattern, int limit)

In your implementation, construct the Result object from the list of the groups that is obtained from

the user registry whose number is limited to the value of the limit parameter. Call the setHasMore

method on the Result object if the total number of groups in the registry exceeds the limit value.

10. Add the createCredential method. This method is not called at this time, so return as null.

public com.ibm.websphere.security.cred.WSCredential

 createCredential(String userSecurityName)

 throws CustomRegistryException,

 NotImplementedException,

 EntryNotFoundException {

 return null;

 }

The first and second lines of the previous code example are split onto two lines for illustrative

purposes only.

11. To build the WebSphere Application Server Version 6.0.x and later implementation, make sure you

have the sas.jar and the wssec.jar files in your class path.

To set the files in your class path, use the following code as a sample and substitute your

environment values for the variables that are used in the example:

%install_root%/java/bin/javac -classpath %WAS_HOME%/lib/wssec.jar;

%WAS_HOME%/lib/sas.jar FileRegistrySample.java

Type the previous lines as one continuous line.

To build the WebSphere Application Server Version 5 custom registry (CustomRegistry) in WebSphere

Application Server Version 6.0.x and later, only the sas.jar file is required.

12. Copy the implementation classes to the product class path.

The %install_root%/lib/ext directory is the preferred location.

13. Use the administrative console to set up the custom registry.

Follow the instructions in “Configuring standalone custom registries” on page 1060 to set up the

custom registry, including the Ignore case for authorization option. Make sure that you add the

WAS_UseDisplayName properties if required.

WebSphere Application Server Version 4.x based custom user registry that implemented the old

com.ibm.websphere.security.CustomRegistry interface is migrated to the

com.ibm.websphere.security.UserRegistry interface.

If you are enabling security, see “Enabling security” on page 999 to complete the remaining steps. When

completed, save the configuration and restart all the servers. Try accessing some Java 2 Platform,

Enterprise Edition (J2EE) resources to verify that the custom registry migration is successful.

Migrating trust association interceptors

Use this topic to manually migrate trust associations.

Note: Data sources are not supported for use within a Trust Association Interceptor (TAI). Data sources

are intended for use within J2EE applications and designed to operate within the EJB and Web

containers. Trust Association Interceptors do not run within a container, and while data sources may

function in the TAI environment, they are untested and not guaranteed to function properly.

988 Administering applications and their environment

The following topics are addressed in this document:

v Changes to the product-provided trust association interceptors

v Migrating product-provided trust association interceptors

v Changes to the custom trust association interceptors

v Migrating custom trust association interceptors

Changes to the product-provided trust association interceptors

For the product-provided implementation for the WebSEAL server, a new optional

com.ibm.websphere.security.webseal.ignoreProxy property is added. If this property is set to true or yes,

the implementation does not check for the proxy host names and the proxy ports to match any of the host

names and ports that are listed in the com.ibm.websphere.security.webseal.hostnames and the

com.ibm.websphere.security.webseal.ports property respectively. For example, if the VIA header contains

the following information:

HTTP/1.1 Fred (Proxy), 1.1 Sam (Apache/1.1),

HTTP/1.1 webseal1:7002, 1.1 webseal2:7001

and the com.ibm.websphere.security.webseal.ignoreProxy property is set to true or yes, the host name

Fred, is not used when matching the host names. By default, this property is not set, which implies that

any proxy host names and ports that are expected in the VIA header are listed in the host names and the

ports properties to satisfy the isTargetInterceptor method.

The previous VIA header information was split onto two lines for illustrative purposes only.

For more information about the com.ibm.websphere.security.webseal.ignoreProxy property, see the article

in the information center on configuring single signon using trust association interceptor ++.

Migrating product-provided trust association interceptors

The properties that are located in the webseal.properties and trustedserver.properties files are not

migrated from previous versions of WebSphere Application Server. You must migrate the appropriate

properties to WebSphere Application Server Version 6.0.x using the trust association panels in the

administrative console. For more information, see Configuring trust association interceptors.

Changes to the custom trust association interceptors

If the custom interceptor extends the

com.ibm.websphere.security.WebSphereBaseTrustAssociationInterceptor property, implement the following

new method to initialize the interceptor:

public int init (java.util.Properties props);

WebSphere Application Server checks the return status before using the trust association implementation.

Zero (0) is the default value for indicating that the interceptor is successfully initialized.

However, if a previous implementation of the trust association interceptor returns a different error status,

you can either change your implementation to match the expectations or make one of the following

changes:

Method 1:

Add the com.ibm.websphere.security.trustassociation.initStatus property in the trust association

interceptor custom properties. Set the property to the value that indicates the interceptor is

successfully initialized. All of the other possible values imply failure. In case of failure, the

corresponding trust association interceptor is not used.

Method 2:

Add the com.ibm.websphere.security.trustassociation.ignoreInitStatus property in the trust

association interceptor custom properties. Set the value of this property to true, which tells

Chapter 16. Security 989

WebSphere Application Server to ignore the status of this method. If you add this property to the

custom properties, WebSphere Application Server does not check the return status, which is

similar to previous versions of WebSphere Application Server.

The public int init (java.util.Properties props method replaces the public int init (String propsFile) method.

The init(Properties) method accepts a java.util.Properties object, which contains the set of properties that

is required to initialize the interceptor. All of the properties set for an interceptor are sent to this method.

The interceptor can then use these properties to initialize itself. For example, in the product-provided

implementation for the WebSEAL server, this method reads the hosts and ports so that a request coming

in can be verified to come from trusted hosts and ports. A return value of Zero (0) implies that the

interceptor initialization is successful. Any other value implies that the initialization is not successful and

the interceptor is not used.

The init(String) method still works if you want to use it instead of implementing the init(Properties) method.

The only requirement is that you enter the file name containing the custom trust association properties

using the Custom Properties link of the interceptor in the administrative console or by using scripts. You

can enter the property using either of the following methods. The first method is used for backward

compatibility with previous versions of WebSphere Application Server.

Method 1:

The same property names used in the previous release are used to obtain the file name. The file

name is obtained by concatenating .config to the

com.ibm.websphere.security.trustassociation.types property value. If the myTAI.properties file is

located in the app_server_root/properties directory, set the following properties:

v com.ibm.websphere.security.trustassociation.types = myTAItype

v com.ibm.websphere.security.trustassociation.myTAItype.config = app_server_root/
properties/myTAI.properties

Method 2:

You can set the com.ibm.websphere.security.trustassociation.initPropsFile property in the trust

association custom properties to the location of the file. For example, set the following property:

com.ibm.websphere.security.trustassociation.initPropsFile=

app_server_root/properties/myTAI.properties

The previous line of code is split into two lines for illustrative purposes only. Type as one

continuous line.

However, it is highly recommended that your implementation be changed to implement the init(Properties)

method instead of relying on the init (String propsfile) method.

Migrating custom trust association interceptors

The trust associations from previous versions of WebSphere Application Server are not automatically

migrated to WebSphere Application Server Version 6.0.x and later. You can manually migrate these trust

associations using the following steps:

1. Recompile the implementation file, if necessary.

For more information, refer to the ″Changes to the custom trust association interceptors″ section

previously discussed in this document.

To recompile the implementation file, type the following code:

%WAS_HOME%/java/bin/javac -classpath %WAS_HOME%/lib/wssec.jar;

%WAS_HOME%/lib/j2ee.jar your_implementation_file.java

The previous line of code is broken into two lines for illustrative purposes only. Type the code as one

continuous line.

2. Copy the custom trust association interceptor class files to a location in your product class path. Copy

these class files into the %WAS_HOME%/lib/ext directory.

990 Administering applications and their environment

3. Start WebSphere Application Server.

4. Enable security to use the trust association interceptor. The properties that are located in your custom

trust association properties file and in the trustedserver.properties file are not migrated from

previous versions of WebSphere Application Server. You must migrate the appropriate properties to

WebSphere Application Server Version 6.0.x and later using the trust association panels in the

administrative console.

For more information, see Configuring trust association interceptors.

Migrating Common Object Request Broker Architecture programmatic login to

Java Authentication and Authorization Service (CORBA and JAAS)

Use this topic as an example of how to perform programmatic login using the CORBA-based

programmatic login APIs.

This document outlines the deprecated Common Object Request Broker Architecture (CORBA)

programmatic login APIs and the alternatives that are provided by JAAS. WebSphere Application Server

fully supports the Java Authentication and Authorization Service (JAAS) as programmatic login application

programming interfaces (API). Refer to the Securing applications and their environment PDF for more

details on JAAS support.

The following list includes the deprecated CORBA programmatic login APIs.

v ${user.install.root}/installedApps/sampleApp.ear/default_app.war/WEB-INF/classes/
LoginHelper.java.

v ${user.install.root}/installedApps/sampleApp.ear/default_app.war/WEB-INF/classes/
ServerSideAuthenticator.java.

v org.omg.SecurityLevel2.Credentials. This API is included with the product, but it is not recommended

that you use the API.

The APIs that are provided in WebSphere Application Server are a combination of standard JAAS APIs

and a product implementation of standard JAAS interfaces.

The following information is only a summary; refer to the JAAS documentation for your platform located at:

http://www.ibm.com/developerworks/java/jdk/security/ .

v Programmatic login APIs:

– javax.security.auth.login.LoginContext

– javax.security.auth.callback.CallbackHandler interface: The WebSphere Application Server product

provides the following implementation of the javax.security.auth.callback.CallbackHandler interface:

com.ibm.websphere.security.auth.callback.WSCallbackHandlerImpl

Provides a non-prompt CallbackHandler handler when the application pushes basic

authentication data (user ID, password, and security realm) or token data to product login

modules. This API is recommended for server-side login.

com.ibm.websphere.security.auth.callback.WSGUICallbackHandlerImpl

Provides a login prompt CallbackHandler handler to gather basic authentication data (user

ID, password, and security realm). This API is recommended for client-side login.

 If this API is used on the server side, the server is blocked for input.
– javax.security.auth.callback.Callback interface:

javax.security.auth.callback.NameCallback

Provided by JAAS to pass the user name to the LoginModules interface.

javax.security.auth.callback.PasswordCallback

Provided by JAAS to pass the password to the LoginModules interface.

com.ibm.websphere.security.auth.callback.WSCredTokenCallbackImpl

Provided by the product to perform a token-based login. With this API, an application can

pass a token-byte array to the LoginModules interface.
– javax.security.auth.spi.LoginModule interface

WebSphere Application Server provides a LoginModules implementation for client and server-side

login. Refer to the Securing applications and their environment PDF for details.

Chapter 16. Security 991

http://www.ibm.com/developerworks/java/jdk/security/

v javax.security.Subject:

com.ibm.websphere.security.auth.WSSubject

An extension provided by the product to invoke remote J2EE resources using the credentials in

the javax.security.Subject

com.ibm.websphere.security.cred.WSCredential

After a successful JAAS login with the WebSphere Application Server LoginModules interfaces,

a com.ibm.websphere.security.cred.WSCredential credential is created and stored in the

Subject.

com.ibm.websphere.security.auth.WSPrincipal

An authenticated principal that is created and stored in a Subject that is authenticated by the

WebSphere Application Server LoginModules interface.

1. Use the following as an example of how to perform programmatic login using the CORBA-based

programmatic login APIs: The CORBA-based programmatic login APIs are replaced by JAAS login.

Note: The LoginHelper application programming interface (API) that is used in the following example

is deprecated in WebSphere Application Server Version 6.1 and will be removed in a future

release. It is recommended that you use the JAAS programmatic login APIs that are shown in

the next step.
public class TestClient {

...

private void performLogin() {

// Get the ID and password of the user.

String userid = customGetUserid();

String password = customGetPassword();

// Create a new security context to hold authentication data.

LoginHelper loginHelper = new LoginHelper();

try {

// Provide the ID and password of the user for authentication.

org.omg.SecurityLevel2.Credentials credentials =

loginHelper.login(userid, password);

// Use the new credentials for all future invocations.

loginHelper.setInvocationCredentials(credentials);

// Retrieve the name of the user from the credentials

// so we can tell the user that login succeeded.

String username = loginHelper.getUserName(credentials);

System.out.println("Security context set for user: "+username);

} catch (org.omg.SecurityLevel2.LoginFailed e) {

// Handle the LoginFailed exception.

}

}

...

}

2. Use the following example to migrate the CORBA-based programmatic login APIs to the JAAS

programmatic login APIs.

The following example assumes that the application code is granted for the required Java 2 security

permissions. For more information, see the Securing applications and their environment PDF and the

JAAS documentation located at http://www.ibm.com/developerworks/java/jdk/security/.

public class TestClient {

...

private void performLogin() {

// Create a new JAAS LoginContext.

javax.security.auth.login.LoginContext lc = null;

try {

// Use GUI prompt to gather the BasicAuth data.

lc = new javax.security.auth.login.LoginContext("WSLogin",

new com.ibm.websphere.security.auth.callback.WSGUICallbackHandlerImpl());

// create a LoginContext and specify a CallbackHandler implementation

// CallbackHandler implementation determine how authentication data is collected

// in this case, the authentication date is collected by login prompt

// and pass to the authentication mechanism implemented by the LoginModule.

992 Administering applications and their environment

http://www.ibm.com/developerworks/java/jdk/security/

} catch (javax.security.auth.login.LoginException e) {

System.err.println("ERROR: failed to instantiate a LoginContext and the exception: "

+ e.getMessage());

e.printStackTrace();

// may be javax.security.auth.AuthPermission "createLoginContext" is not granted

// to the application, or the JAAS Login Configuration is not defined.

}

if (lc != null)

try {

lc.login(); // perform login

javax.security.auth.Subject s = lc.getSubject();

// get the authenticated subject

// Invoke a J2EE resources using the authenticated subject

com.ibm.websphere.security.auth.WSSubject.doAs(s,

new java.security.PrivilegedAction() {

public Object run() {

try {

bankAccount.deposit(100.00); // where bankAccount is an protected EJB

} catch (Exception e) {

System.out.println("ERROR: error while accessing EJB resource, exception: "

+ e.getMessage());

e.printStackTrace();

}

return null;

}

}

);

// Retrieve the name of the principal from the Subject

// so we can tell the user that login succeeded,

// should only be one WSPrincipal.

java.util.Set ps =

s.getPrincipals(com.ibm.websphere.security.auth.WSPrincipal.class);

java.util.Iterator it = ps.iterator();

while (it.hasNext()) {

com.ibm.websphere.security.auth.WSPrincipal p =

(com.ibm.websphere.security.auth.WSPrincipal) it.next();

System.out.println("Principal: " + p.getName());

}

} catch (javax.security.auth.login.LoginException e) {

System.err.println("ERROR: login failed with exception: " + e.getMessage());

e.printStackTrace();

// login failed, might want to provide relogin logic

}

}

...

}

Migrating from the CustomLoginServlet class to servlet filters

Use this topic to allow migration in an application that uses form-based login and servlet filters without the

use of the CustomLoginServlet class.

The CustomLoginServlet class is deprecated in WebSphere Application Server Version 5. Those

applications using the CustomLoginServlet class to perform authentication now need to use form-based

login. Using the form-based login mechanism, you can control the look and feel of the login screen. In

form-based login, a login page is specified and displays when retrieving the user ID and password

information. You also can specify an error page that displays when authentication fails.

If login and error pages are not enough to implement the CustomLoginServlet class, use servlet filters.

Servlet filters can dynamically intercept requests and responses to transform or use the information that is

contained in the requests or responses. One or more servlet filters attach to a servlet or a group of

servlets. Servlet filters also can attach to JavaServer Pages (JSP) files and HTML pages. All the attached

servlet filters are called before invoking the servlet.

Chapter 16. Security 993

Both form-based login and servlet filters are supported by any Servlet 2.3 specification-compliant Web

container. A form login servlet performs the authentication and servlet filters can perform additional

authentication, auditing, or logging tasks.

To perform pre-login and post-login actions using servlet filters, configure these servlet filters for either

form login page or for /j_security_check URL. The j_security_check is posted by the form login page with

the j_username parameter that contains the user name and the j_password parameter that contains the

password. A servlet filter can use user name and password information to perform more authentication or

meet other special needs.

1. Develop a form login page and error page for the application.

Refer to the Securing applications and their environment PDF for details.

2. Configure the form login page and the error page for the application as described in .

Refer to the Securing applications and their environment PDF for details.

3. Develop servlet filters if additional processing is required before and after form login authentication.

Refer to the Securing applications and their environment PDF for details.

4. Configure the servlet filters that are developed in the previous step for either the form login page URL

or for the /j_security_check URL. Use an assembly tool or development tools like Rational Application

Developer to configure filters. After configuring the servlet filters, the web-xml file contains two stanzas.

The first stanza contains the servlet filter configuration, the servlet filter, and its implementation class.

The second stanza contains the filter mapping section and a mapping of the servlet filter to the URL.

For more information, see the Securing applications and their environment PDF.

This migration results in an application that uses form-based login and servlet filters without the use of the

CustomLoginServlet class.

The new application uses form-based login and servlet filters to replace the CustomLoginServlet class.

Servlet filters also are used to perform additional authentication, auditing, and logging.

Migrating Java 2 security policy

Use this topic for guidance pertaining to migrating Java 2 security policy.

Previous WebSphere Application Server releases

WebSphere Application Server uses the Java 2 security manager in the server runtime to prevent

enterprise applications from calling the System.exit and the System.setSecurityManager methods. These

two Java application programming interfaces (API) have undesirable consequences if called by enterprise

applications. The System.exit API, for example, causes the Java virtual machine (application server

process) to exit prematurely, which is not a beneficial operation for an application server.

To support Java 2 security properly, all the server runtime must be marked as privileged (with

doPrivileged API calls inserted in the correct places), and identify the default permission sets or policy.

Application code is not privileged and subject to the permissions that are defined in the policy files. The

doPrivileged instrumentation is important and necessary to support Java 2 security. Without it, the

application code must be granted the permissions that are required by the server runtime. This situation is

due to the design and algorithm that is used by Java 2 security to enforce permission checks. Refer to the

Java 2 security check permission algorithm.

The following two permissions are enforced by the Java 2 security manager (hard coded) for WebSphere

Application Server:

v java.lang.RuntimePermission(exitVM)

v java.lang.RuntimePermission(setSecurityManager)

994 Administering applications and their environment

Application code is denied access to these permissions regardless of what is in the Java 2 security policy.

However, the server runtime is granted these permissions. All the other permission checks are not

enforced.

Only two permissions are supported:

v java.net.SocketPermission

v java.net.NetPermission

However, not all the product server runtime is properly marked as privileged. You must grant the

application code all the other permissions besides the two listed previously or the enterprise application

can potentially fail to run. This Java 2 security policy for enterprise applications is liberal.

What changed

Java 2 Security is fully supported in WebSphere Application Server, which means that all permissions are

enforced. The default Java 2 security policy for an enterprise application is the recommended permission

set defined by the Java 2 Platform, Enterprise Edition (J2EE) Version 1.4 specification. Refer to the

profile_root/config/cells/cell_name/nodes/node_name/app.policy file for the default Java 2 security

policy that is granted to enterprise applications. This policy is a much more stringent compared to previous

releases.

All policy is declarative. The product security manager honors all policy that is declared in the policy files.

There is an exception to this rule: enterprise applications are denied access to permissions that are

declared in the profile_root/config/cells/cell_name/filter.policy file.

Note: The default Java 2 security policy for enterprise applications is much more stringent and all the

permissions are enforced in WebSphere Application Server Version 6.0.x and later. The security

policy might fail because the application code does not have the necessary permissions granted

where system resources, such as file I/O, can be programmatically accessed and are now subject

to the permission checking.

In application code, do not use the setSecurityManager permission to set a security manager. When an

application uses the setSecurityManager permission, there is a conflict with the internal security manager

within WebSphere Application Server. If you must set a security manager in an application for RMI

purposes, you also must enable the Use Java 2 security to restrict application access to local

resources option on the Secure administration, applications, and infrastructure page within the

WebSphere Application Server administrative console. WebSphere Application Server then registers a

security manager. The application code can verify that this security manager is registered by using

System.getSecurityManager() application programming interface (API).

Migrating system properties

The following system properties are used in previous releases in relation to Java 2 security:

v java.security.policy. The absolute path of the policy file (action required). This system property

contains both system permissions (permissions granted to the Java virtual machine (JVM) and the

product server runtime) and enterprise application permissions. Migrate the Java 2 security policy of the

enterprise application to WebSphere Application Server Version 6.0.x. For Java 2 security policy

migration, see the steps for migrating Java 2 security policy.

v enableJava2Security. Used to enable Java 2 security enforcement (no action required). This system

property is deprecated; a flag in the WebSphere configuration application programming interface (API) is

used to control whether to enabled Java 2 security. Enable this option through the administrative

console.

v was.home. Expanded to the installation directory of WebSphere Application Server (action might be

required). This system property is deprecated; superseded by the ${user.install.root} and

${was.install.root} properties. If the directory contains instance-specific data then ${user.install.root} is

Chapter 16. Security 995

used; otherwise ${was.install.root} is used. Use these properties interchangeably for the WebSphere

Application Server or the Network Deployment environments. See the steps for migrating Java 2

security policy.

Migrating the Java 2 Security Policy

No easy way exists to migrate the Java policy file to WebSphere Application Server Version 6.0.x and later

automatically because of a mixture of system permissions and application permissions in the same policy

file. Manually copy the Java 2 security policy for enterprise applications to a was.policy or app.policy file.

However, migrating the Java 2 security policy to a was.policy file is preferable because symbols or

relative code base is used instead of an absolute code base. This process has many advantages. Grant

the permissions that are defined in the was.policy to the specific enterprise application only, while

permissions in the app.policy file apply to all the enterprise applications that run on the node where the

app.policy file belongs.

Refer to the Securing applications and their environment PDF for more details on policy management.

The following example illustrates the migration of a Java 2 security policy from a previous release. The

contents include the Java 2 security policy file for the app1.ear enterprise application and the system

permissions, which are permissions that are granted to the Java virtual machine (JVM) and the product

server runtime.

The default location for the Java 2 security policy file is profile_root/properties/java.policy. Default

permissions are omitted for clarity:

// For product Samples

 grant codeBase "file:${app_server_root}/installedApps/app1.ear/-" {

 permission java.security.SecurityPermission "printIdentity";

 permission java.io.FilePermission "${app_server_root}${/}temp${/}somefile.txt",

 "read";

 };

For clarity of illustration, all the permissions are migrated as the application level permissions in this

example. However, you can grant permissions at a more granular level at the component level (Web,

enterprise beans, connector or utility Java archive (JAR) component level) or you can grant permissions to

a particular component.

1. Ensure that Java 2 security is disabled on the application server.

2. Create a new was.policy file, if the file is not present, or update the was.policy file for migrated

applications in the configuration repository with the following contents:

grant codeBase "file:${application}" {

 permission java.security.SecurityPermission "printIdentity";

 permission java.io.FilePermission "

 ${user.install.root}${/}temp${/}somefile.txt", "read";

 };

The third and fourth lines in the previous code sample are presented on two lines for illustrative

purposes only.

The was.policy file is located in the profile_root/config/cells/cell_name/applications/app.ear/
deployments/app/META-INF/ directory.

3. Use an assembly tool to attach the was.policy file to the enterprise archive (EAR) file.

You also can use an assembly tool to validate the contents of the was.policy file. For more

information, see the Securing applications and their environment PDF.

4. Validate that the enterprise application does not require additional permissions to the migrated Java 2

security permissions and the default permissions set declared in the ${user.install.root}/config/
cells/cell_name/nodes/node_name/app.policy file. This validation requires code review, code

inspection, application documentation review, and sandbox testing of migrated enterprise applications

with Java 2 security enabled in a preproduction environment. Refer to developer kit APIs protected by

996 Administering applications and their environment

Java 2 security for information about which APIs are protected by Java 2 security. If you use third-party

libraries, consult the vendor documentation for APIs that are protected by Java 2 security. Verify that

the application is granted all the required permissions, or it might fail to run when Java 2 security is

enabled.

5. Perform preproduction testing of the migrated enterprise application with Java 2 security enabled.

Enable trace for the WebSphere Application Server Java 2 security manager in a preproduction testing

environment with the following trace string: com.ibm.ws.security.core.SecurityManager=all=enabled.

This trace function can be helpful in debugging the AccessControlException exception that is created

when an application is not granted the required permission or some system code is not properly

marked as privileged. The trace dumps the stack trace and permissions that are granted to the classes

on the call stack when the exception is created.

For more information, see the Securing applications and their environment PDF.

Note: Because the Java 2 security policy is much more stringent compared with previous releases,

the administrator or deployer must review their enterprise applications to see if extra

permissions are required before enabling Java 2 security. If the enterprise applications are not

granted the required permissions, they fail to run.

Preparing for security at installation time

Complete the following tasks to implement security before, during, and after installing WebSphere

Application Server.

1. Secure your environment before installation. This step describes how to perform WebSphere

Application Server installation with proper authority on different platforms. For more information refer to

“Securing your environment before installation.”

2. Prepare the operating system for installation of WebSphere Application Server. This step describes

how to prepare the different operating systems for installation of WebSphere Application Server. For

more information, see Preparing the operating system for product installation.

3. Migrate security configurations from previous releases during installation, when you are prompted to do

so. This step describes how to migrate security configurations from a previous release of WebSphere

Application Server to WebSphere Application Server Version 6.1.

For more information, see Migrating product configurations.

4. Optional: You can create a profile during install time. If you elect to do so, administrative security is

enabled for that profile ″out of the box″ by default. A panel is displayed during profile creation time and

enabling administrative security is selected by default. If you elect to keep this as the default, you

must supply an administrative user ID and password. This user ID is created in a federated repository,

which is the default user registry when enabling administrative security at profile creation time.

5. Secure your environment after installation. This step provides information on how to protect password

information after you install WebSphere Application Server. For more information, see “Securing your

environment after installation” on page 998.

Securing your environment before installation

The following instructions explain how to perform a product installation with proper authority on UNIX

platforms, Linux platforms, Solaris operating environments, and Windows platforms. These instructions

apply when you plan to use the local operating system as your user registry.

UNIX platforms:

1. Log on as root and verify that the umask value is 022.

2. To verify that the umask value is 022, run the umask command.

3. To set up the umask value as 022, run the umask 022 command.

4. On Linux platforms or Solaris operating environments, make sure that the /etc directory contains a

shadow password file. The shadow password file is named shadow and is in the /etc directory. If the

shadow password file does not exist, an error occurs after enabling administrative security and

configuring the user registry as local operating system.

Chapter 16. Security 997

5. To create the shadow file, run the pwconv command (without any parameters). This command creates

an /etc/shadow file from the /etc/passwd file. After creating the shadow file, you can configure local

operating system security.

Windows platforms:

On Windows platforms, the logon user must be a member of the administrator group with the rights of Log

on as a service.

To add the rights to a user on a Windows platform:

1. Click Start > Programs > Administrative Tools > Local Security Policy (for domain configuration,

select Domain Security Policies, instead).

2. From the Local Security Settings Panel, click Local Policies > User Rights Assignment and add the

following rights to the user ID:

v Log on as a service

Securing your environment after installation

WebSphere Application Server depends on several configuration files that are created during installation.

These files contain password information and need protection. Although the files are protected to a limited

degree during installation, this basic level of protection is probably not sufficient for your site. Verify that

these files are protected in compliance with the policies of your site.

Note: A Kerberos keytab configuration file contains a list of keys that are analogous to user passwords. It

is important for hosts to protect their Kerberos keytab files by storing them on the local disk, which

makes them readable only by authorized users.

The files in the app_server_root/profiles/profile_name/config and app_server_root/profiles/
profile_name/properties , except for those in the following list, need protection. For example, give

permission to the user who logs onto the system for WebSphere Application Server primary administrative

tasks. Other users or groups, such as WebSphere Application Server console users and console groups

need permissions as well.

The files in the app_server_root/profiles/profile_name/properties directory that should not be protected

are:

v TraceSettings.properties

v client.policy

v client_types.xml

v implfactory.properties

v sas.client.props

v sas.stdclient.properties

v sas.tools.properties

v soap.client.props

v wsadmin.properties

v wsjaas_client.conf

v sas.server.props

v server.policy

v ssl.client.props

v was.policy

v

Windows

Secure files on a Windows system:

1. Open the browser for a view of the files and directories on the machine.

2. Locate and right-click the file or the directory that you want to protect.

3. Click Properties.

4. Click the Security tab.

998 Administering applications and their environment

5. Remove the Everyone entry and any other user or group that you do not want to have access to the

file.

6. Add the users who can access the files with the proper permission.

v Secure files on UNIX systems. This procedure applies only to the ordinary UNIX file system. If your site

uses access-control lists, secure the files by using that mechanism. Any site-specific requirements can

affect the owner, group, and corresponding privileges; for example, on the AIX platform.

1. Go to the install_root directory and change the ownership of the directory configuration and

properties to the user who logs onto the system for WebSphere Application Server primary

administrative tasks. Run the following command: chown -R logon_name directory_name

Where:

– login_name is a specified user or group

– directory_name is the name of the directory that contains the files

It is recommended that you assign ownership of the files that contain password information to the

user who runs the application server. If more than one user runs the application server, provide

permission to the group in which the users are assigned in the user registry.

2. Set up the permission by running the following command: chmod -R 770 directory_name.

3. Go to the app_server_root/profiles/profile_name/properties directory and set the file

permissions. Set the access permissions for the following files as it pertains to your security

guidelines:

– TraceSettings.properties

– client.policy

– client_types.xml

– implfactory.properties

– sas.client.props

– sas.stdclient.properties

– sas.tools.properties

– soap.client.props

– wsadmin.properties

– wsjaas_client.conf

For example, you might issue the following command: chmod 770 file_name where file_name is the

name of the file listed previously in the install_root/profiles/profile_name/properties directory.

These files contain sensitive information such as passwords.

4. Create a group for WebSphere Application Server and put the users who perform full or partial

WebSphere Application Server administrative tasks in that group.

5. If you want to use WebSphere MQ as a Java Messaging Service (JMS) provider, restrict access to

the /var/mqm directories and log files used. Give write access to the user ID mqm or members of the

mqm user group only.

After securing your environment, only the users with permission can access the files. Failure to adequately

secure these files can lead to a breach of security in your WebSphere Application Server applications.

If failures occur that are caused by file accessing permissions, check the permission settings.

Enabling security

It is helpful to understand security from an infrastructure perspective so that you know the advantages of

different authentication mechanisms, user registries, authentication protocols, and so on. Picking the right

security components to meet your needs is a part of configuring security. The following sections help you

make these decisions.

Read the following article before continuing with the security configuration:

v “Administrative security” on page 1002

v Security

Chapter 16. Security 999

After you understand the security components, you can proceed to configure security in WebSphere

Application Server.

Note: For WebSphere Application Server Version 6.1, administrative security is enabled by default

whenever a new profile is created, either during the initial install when you create a new profile or

during post-install when you use the profile creation tooling. You can decide not to enable

administrative security during profile creation time by instead enabling security post-profile creation

using the administrative console.

 1. Start the WebSphere Application Server administrative console.

If security is currently disabled, you are prompted for a user ID. Log in with any user ID. However, if

security is currently enabled, you are prompted for both a user ID and a password. Log in with a

predefined administrative user ID and password.

 2. Click Security > Secure administration, applications, and infrastructure. Use the Security

Configuration Wizard, which is now available in WebSphere Application Server, Version 6.1, or

configure security manually. The configuration order is not important. For more information on manual

configuration, see tsec_authusers.dita.

 3. Configure the user account repository. For more information, see “Selecting a registry or repository”

on page 1036. On the Secure administration, applications, and infrastructure panel, you can configure

user account repositories such as federated repositories, local operating system, standalone

Lightweight Directory Access Protocol (LDAP) registry, and standalone custom registry.

Note: You can choose to specify either a server ID and password for interoperability or enable a

WebSphere Application Server 6.1 installation to automatically generate an internal server ID.

For more information about automatically generating server IDs, see “Local operating system

settings” on page 1040.

One of the details common to all user registries or repositories is the Primary administrative user

name. This ID is a member of the chosen repository, but also has special privileges in WebSphere

Application Server. The privileges for this ID and the privileges that are associated with the

administrative role ID are the same. The Primary administrative user name can access all of the

protected administrative methods.

Windows

The ID must not be the same name as the machine name of your system because the

repository sometimes returns machine-specific information when querying a user of the same name.

In standalone LDAP registries, verify that the Primary administrative user name is a member of the

repository and not just the LDAP administrative role ID. The entry must be searchable.

The Primary administrative user name does not run WebSphere Application Server processes.

Rather, the process ID runs the WebSphere Application Server processes.

The process ID is determined by the way the process starts. For example, if you use a command line

to start processes, the user ID that is logged into the system is the process ID. If running as a

service, the user ID that is logged into the system is the user ID running the service. If you choose

the local operating system registry, the process ID requires special privileges to call the operating

system APIs. The process ID must have the following platform-specific privileges:

v

Windows

Act as Part of Operating System privileges

v Root privileges

 4. Select the Set as current option after you configure the user account repository. When you click

Apply and the Enable administrative security option is set, a verification occurs to see if an

administrative user ID has been configured and is present in the active user registry. The

administrative user ID can be specified at the active user registry panel or from the console users

link. If you do not configure an administrative ID for the active user registry, the validation fails.

 5. Optional: You can configure and change your External Authorization provider to either WebSphere

Authorization, SAF Authorization, or an external JACC provider. For more information, see and

1000 Administering applications and their environment

tsec_authusers.dita

“Enabling an external JACC provider” on page 1323. To change the Authorization provider, click

Security > Secure Administration, applications, and infrastructure > External Authorization

providers.

 6. Configure the authentication mechanism.

Configure Lightweight Third-Party Authentication (LTPA), which is the default authentication

mechanism, on the Authentication mechanisms and expiration panel. LTPA credentials can be

forwarded to other machines. For security reasons, credential expire; however, you can configure the

expiration dates on the console. LTPA credentials enable browsers to visit different product servers,

which means you do not have to authenticate multiple times. For more information, see “Configuring

the Lightweight Third Party Authentication mechanism” on page 1190

Note: You can configure Simple WebSphere Authentication Mechanism (SWAM) as your

authentication mechanism. However, SWAM is deprecated in WebSphere Application Server

Version 6.1 and will be removed in a future release. SWAM credentials are not forwardable to

other machines and for that reason do not expire. To use SWAM, select the Use SWAM-no

authenticated communication between servers option.

 7. Optional: Import and export the LTPA keys for cross-cell single Sign-on (SSO) between cells. For

more information, see the following articles:

v “Exporting Lightweight Third Party Authentication keys” on page 1194.

v “Importing Lightweight Third Party Authentication keys” on page 1195

 8. Configure the authentication protocol for special security requirements from Java clients, if needed.

You can configure Common Secure Interoperability Version 2 (CSIv2) through links on the Secure

administration, applications, and infrastructure panel. The Security Authentication Service (SAS)

protocol is provided for backwards compatibility with previous product releases, but is deprecated.

Links to the SAS protocol panels display on the Secure administration, applications, and infrastructure

panel if your environment contains servers that use previous versions of WebSphere Application

Server and support the SAS protocol. For details on configuring CSIv2 or SAS, see the article,

“Configuring RMI over IIOP” on page 1256.

Important: SAS is supported only between Version 6.0.x and previous version servers that have

been federated in a Version 6.1 cell.

 Attention:

V6.0.x

IBM no longer ships or supports the Secure Authentication Service (SAS)

IIOP security protocol. It is recommended that you use the Common Secure Interoperability version 2

(CSIv2) protocol.

 9. Modify or a create a default Secure Sockets Layer (SSL) configuration. This action protects the

integrity of the messages sent across the Internet. The product provides a single location where you

can specify SSL configurations that the various WebSphere Application Server features that use SSL

can utilize, including the LDAP registry, Web container and the authentication protocol (CSIv2 and

SAS). For more information, see “Creating a Secure Sockets Layer configuration” on page 1385. After

you modify a configuration or create a new configuration, specify it on the SSL configurations panel.

To get to the SSL configurations panel, complete the following steps:

a. Click Security > SSL certificate and key management.

b. Under Configuration settings, click Manage endpoint security configurations >

configuration_name.

c. Under Related items, click SSL configurations.

You can either edit the DefaultSSLConfig file or create a new SSL configuration with a new alias

name. If you create a new alias name for your new keystore and truststore files, change every

location that references the DefaultSSLConfig SSL configuration alias. The following list specifies the

locations of where the SSL configuration repertoire aliases are used in the WebSphere Application

Server configuration.

Chapter 16. Security 1001

For any transports that use the new network input/output channel chains, including HTTP and Java

Message Service (JMS), you can modify the SSL configuration repertoire aliases in the following

locations for each server:

v Click Server > Application server > server_name. Under Communications, click Ports. Locate a

transport chain where SSL is enabled and click View associated transports. Click

transport_channel_name. Under Transport Channels, click SSL Inbound Channel (SSL_2).

For the Object Request Broker (ORB) SSL transports, you can modify the SSL configuration

repertoire aliases in the following locations. These configurations are for the server-level for

WebSphere Application Server and WebSphere Application Server Express and the cell level for

WebSphere Application Server Network Deployment.

v Click Security > Secure administration, applications, and infrastructure. Under RMI/IIOP

security, click CSIv2 inbound transport.

v Click Security > Secure administration, applications, and infrastructure. Under RMI/IIOP

security, click CSIv2 outbound transport.

v

V6.0.x

Click Security > Secure administration, applications, and infrastructure. Under

RMI/IIOP security, click SAS inbound transport

v

V6.0.x

Click Security > Secure administration, applications, and infrastructure. Under

RMI/IIOP security, click SAS outbound transport

For the SOAP Java Management Extensions (JMX) administrative transports, you can modify the

SSL configurations repertoire aliases by clicking Servers > Application servers > server_name.

Under Server infrastructure, click Administration > Administration services. Under Additional

properties, click JMX connectors > SOAPConnector. Under Additional properties, click Custom

properties. If you want to point the sslConfig property to a new alias, click New and type sslConfig in

the name field, and its value in the Value field.

For the Lightweight Directory Access Protocol (LDAP) SSL transport, you can modify the SSL

configuration repertoire aliases by clicking Security > Secure administration, applications, and

infrastructure. Under User account repository, click the Available realm definitions drop-down list,

and select Standalone LDAP registry.

10. Click Security > Secure administration, applications, and infrastructure to configure the rest of

the security settings and enable security. For information about these settings, see “Secure

administration, applications, and infrastructure settings” on page 1025.

11. Validate the completed security configuration by clicking OK or Apply. If problems occur, they display

at the top of the console page in red type.

12. If there are no validation problems, click Save to save the settings to a file that the server uses when

it restarts. Saving writes the settings to the configuration repository.

Important: If you do not click Apply or OK in the Secure administration, applications, and

infrastructure panel before you click Save, your changes are not written to the repository.

The server must be restarted for any changes to take effect when you start the

administrative console.

13. Start the WebSphere Application Server administrative console.

If security is currently disabled, log in with any user ID. If security is currently enabled, log in with a

predefined administrative ID and password. This ID is typically the server user ID that is specified

when you configured the user registry.

Administrative security

Administrative security determines whether security is used at all, the type of registry against which

authentication takes place, and other values, many of which act as defaults. Proper planning is required

because incorrectly enabling administrative security can lock you out of the administrative console or

cause the server to end abnormally.

1002 Administering applications and their environment

Administrative security can be thought of as a ″big switch″ that activates a wide variety of security settings

for WebSphere Application Server. Values for these settings can be specified, but they will not take effect

until administrative security is activated. The settings include the authentication of users, the use of Secure

Sockets Layer (SSL), and the choice of user account repository. In particular, application security, including

authentication and role-based authorization, is not enforced unless administrative security is active.

Administrative security is enabled by default.

Administrative security represents the security configuration that is effective for the entire security domain.

A security domain consists of all of the servers that are configured with the same user registry realm

name. In some cases, the realm can be the machine name of a local operating system registry. In this

case, all of the application servers must reside on the same physical machine. In other cases, the realm

can be the machine name of a standalone Lightweight Directory Access Protocol (LDAP) registry.

The basic requirement for a security domain is that the access ID that is returned by the registry or

repository from one server within the security domain is the same access ID as that returned from the

registry or repository on any other server within the same security domain. The access ID is the unique

identification of a user and is used during authorization to determine if access is permitted to the resource.

The administrative security configuration applies to every server within the security domain.

Why turn on administrative security?

Turning on administrative security activates the settings that protect your server from unauthorized users.

Administrative security is enabled by default during the profile creation time. There might be some

environments where no security is needed such as a development system. On these systems you can

elect to disable administrative security. However, in most environments you should keep unauthorized

users from accessing the administrative console and your business applications. Administrative security

must be enabled to restrict access.

What does administrative security protect?

The configuration of administrative security for a security domain involves configuring the following

technologies:

v Authentication of HTTP clients

v Authentication of IIOP clients

v Administrative console security

v Naming security

v Use of SSL transports

v Role-based authorization checks of servlets, enterprise beans, and mbeans

v Propagation of identities (RunAs)

v The common user registry

v The authentication mechanism

v Other security information that defines the behavior of a security domain includes:

– The authentication protocol (Remote Method Invocation over the Internet Inter-ORB Protocol

(RMI/IIOP) security)

– Other miscellaneous attributes

Fine-grained administrative security:

In releases prior to WebSphere Application Server version 6.1, users granted administrative roles could

administer all of the resource instances under the cell. WebSphere Application Server is now more

fine-grained, meaning that access can be granted to each user per resource instance.

Chapter 16. Security 1003

For example, users can be granted configurator access to a specific instance of a resource only (an

application, an application server or a node). Users cannot access any other resources outside of the

resources assigned to them. The administrative roles are now per resource instance rather than to the

entire cell. However, there is a cell-wide authorization group for backward compatibility. Users assigned to

administrative roles in the cell-wide authorization group can still access all of the resources within the cell.

To achieve this instance-based security or fine-grained security, resources that require the same privileges

are placed in a group called the administrative authorization group or authorization group. Users can be

granted access to the authorization group by assigning to them the required administrative role.

Fine-grained administrative security can also be used in single-server environments. Various applications

in the single server can be grouped and placed in different authorization groups. Therefore, there are

different authorization constraints for different applications. Note that the server itself cannot be part of any

authorization group.

The AdminSecurityManager role is available for wsadmin users. When using wsadmin, users granted this

role can map users to administrative roles. Also, when fine grained admin security is used, users granted

this role can manage authorization groups. See “Administrative roles and naming service authorization” on

page 1288 for detailed explanations of all administrative roles.

There are several administrative security commands that can be used to create authorization groups, map

resources to authorization groups, and to assign users to administrative roles within the authorization

groups. Following are some examples:

v Create a new authorization group:

$AdminTask createAuthorizationGroup {-authorizationGroupName authGroup1}

v Deleting an authorization group:

$AdminTask deleteAuthorizationGroup {-authorizationGroupName groupName}

v Add resources to an authorization group:

$AdminTask addResourceToAuthorizationGroup

{-authorizationGroupName groupName -resourceName Application=app1}

v Remove resources from an authorization group:

$AdminTask removeResourceFromAuthorizationGroup

{-authorizationGroupName groupName -resourceName Application=app1}

v Add user IDs to roles in an authorization group:

$AdminTask mapUsersToAdminRole {-authorizationGroupName groupName

-roleName administrator -userids user1}

v Add group IDs to roles in an authorization group:

$AdminTask mapGroupsToAdminRole {-authorizationGroupName groupName

-roleName administrator -groupids group1}

v Remove user IDs from roles in an authorization group:

AdminTask removeUsersFromAdminRole {-authorizationGroupName

groupName -roleName administrator -userids user1}

v Remove group IDs from roles in an authorization group:

$AdminTask removeGroupsFromAdminRole {-authorizationGroupName

groupName -roleName administrator -groupids group1}

Resources that can be added to an authorization group

You can add only resource instances of the following types to an authorization group:

v Cell

v Node

v ServerCluster

v Server

1004 Administering applications and their environment

v Application

v NodeGroup

If a resource instance is not one of the types listed above, its parent resource will be used.

A resource instance can only belong to one authorization group. However, there is a containment

relationship among resource instances. If a parent resource belongs to a different authorization group than

that of its child resource instance, the child resource instance implicitly will belong to multiple authorization

groups. You cannot add the same resource instance to more than one authorization group.

The following diagram shows the containment relationship among resource instances:

Cell

NodeGroup

Node ServerCluster Application AuthorizationGroup

Server

Contains

Contains Contains Contains

Contains

Contains Contains

The privileges required for actions on resource instances depend on two factors:

v The authorization group of the administrative resource instance. If a user is granted access to an

authorization group, all of the resource instances in that group will be included.

v The containment relationship of the resource instance. If a user is granted access to a parent resource

instance, all of the children resource instances will be included.

The privileges required to access various administrative resource instances are shown in the following

table:

 Resource Action Required roles

Server Start, stop, runtime operations Server-operator, node-operator,

cell-operator

Server New, delete Node-configurator, cell-configurator

Server Edit configuration Server-configurator, node-configurator,

cell-configurator

Server View configuration, runtime status Server-monitor, node-monitor, cell-monitor

Node Restart, stop, sync Node-operator, Cell-operator

Node Add, delete Cell-configurator

Node Edit configuration Node-configurator, cell-configurator

Node View configuration, runtime status Node-monitor, cell-monitor

Cluster Start, stop, runtime operations Cluster-operator, cell-operator

Cluster New, delete Cell-configurator

Cluster Edit configuration Cluster-configurator, cell-configurator

Cluster View configuration, runtime status Cluster-monitor, cell-monitor

Cluster member Start, stop, runtime operations Server-operator, cluster-operator,

node-operator, cell-operator

Chapter 16. Security 1005

Resource Action Required roles

Cluster member New, delete Node-configurator, cell-configurator

Cluster member Edit configuration Server-configurator, cluster-configurator,

node-configurator, cell-configurator

Cluster member View configuration, runtime status Server-monitor, cluster-monitor,

node-monitor, cell-monitor

Application Start, stop, runtime operations Application-deployer, cell-operator

Application Install, uninstall Cell-configurator application-deployer

Application Edit configuration Application-deployer, cell-configurator

Application View configuration, runtime status Application-monitor, cell-monitor

Node, cluster Add, delete Cell-configurator

The server-operator role is the operator role of the authorization group to which the server instance is part

of. Similarly, the node-operator role is in the operator role of the authorization group to which the node

instance is part of.

Fine-grained administrative security is only available for wsadmin users. It is not available for

administrative console users. To log in to the administrative console, a user should be granted a monitor

role at the cell level at minimum. However, to login using wsadmin, a user should be granted a monitor

role for any authorization group.

If you log in to the administrative console as a cell-level administrator, operator, monitor or configurator,

you can perform all operations. However, if you want to use additional administrator roles (such as

deployer or AdminSecurityManager), or give users access only to specific authorization groups or

permissions to non-cell authorizations groups, you must use wsadmin.

Fine-grained administrative security in heterogeneous and single-server environments:

Fine-grained administrative security can be used in heterogeneous or single-server environments with

some restrictions.

 Fine-grained administrative security in a heterogeneous environment

Fine-grained administrative security in a heterogeneous environment has the following restrictions:

v Only nodes that are running WebSphere Application Server Version 6.1 can be part of an administrative

authorization group.

v Only servers that are running in a WebSphere Application Server Version 6.1 node can be part of an

administrative authorization group.

v Only applications that are targeted on servers running on WebSphere Application Server Version 6.1

can be part of an administrative authorization group.

v If a cluster spans nodes of multiple releases, it cannot be part of an administrative authorization group.

v If a cluster spans nodes of multiple releases, none of its members can be part of an administrative

authorization group.

v If an application is targeted on a cluster that spans multiple releases, that application cannot be part of

an administrative authorization group.

Fine-grained administrative security in a single-server environment

You can also use fine-grained administrative security in a single-server environment. Various applications

in the single server can be grouped and placed in different authorization groups. Therefore, different

authorization constraints might exist for different applications.

1006 Administering applications and their environment

Life cycle of fine-grained administrative resource

An administrative resource that was once part of an authorization group continues to be part of that

authorization group until one of the following events occurs:

v The administrative resource is removed from the authorization group. In this instance, the administrative

resource belongs to the cell-level authorization group.

v The administrative resource is removed from the configuration. In this instance, the administrative

resource does not exist in the configuration, but still exists in the authorization group. Remove this

administrative resource from the authorization group.

After the administrative resource is removed from the authorization group, the administrative authorizer

runtime must be notified by using the AuthorizationManager refreshAll MBean method.

The refreshAll command must be invoked after AdminConfig.save() and sync nodes. For example:

JACL:

// get AuthorizationGroup Mbean

wsadmin> set agBean [$AdminControl queryNames

Type=AuthorizationGroupManager,process=dmgr,*]

JYTHON:

// get AuthorizationGroup Mbean

wsadmin> set agBean [$AdminControl queryNames

Type=AuthorizationGroupManager,process=dmgr,*]

Fine-grained administrative security scenarios:

The following scenarios describe the use of fine-grained administrative security, particularly the new

deployment role.

 Deployment role scenario 1

In the following scenario, there are four applications configured on server S1, as shown in the following

table. Each application must be isolated so that the administrator of one application cannot modify another

application. Assume that only user1 can manage application A1, user2 can manage applications A2 and

A3, and only user3 can manage application A4.

Note: It is not recommended to have an application in one group and its target server in another group.

However, that is not always possible. It is common to have many applications on one server. It is

still sometimes necessary to isolate the administration of applications running on the same server.

One example is an Application Service Provider (ASP), where a single application server can have

multiple vendor applications. In this instance the server administrator is responsible for installing all

of the vendor applications. Once applications are installed, each vendor can manage their own

application without interfering with other vendor’s applications.

 Application Server Node

A1 S1 N1

A2 S1 N1

A3 S1 N1

A4 S1 N1

We can configure authorization groups as shown in the diagram below:

Chapter 16. Security 1007

G3
G1

A1

A4

G2
A3

A2

N1

s1 Cell

Deployer=user1

Deployer=user2

Deployer=user3

Administrator=root

Authorization Table

In the diagram, application A1 is in authorization group G1, applications A2 and A3 are in authorization

group G2, and application A4 is in authorization group G3.

A deployer role is assigned from authorization group G1 to user1, from authorization group G2 to user2,

and from authorization group G3 to user3.

Consequently, user1 can perform all of the operations on application A1, user2 on applications A2 and A3,

and user3 on application A4. Since all applications share the same server, we cannot put the same server

on all authorization groups. Only a cell-level administrator can install an application. After the installation of

an application is complete, the deployer of each application can modify their own. To start and stop the

server, cell-level administrative authority is required. This type of scenario is useful in an ASP environment.

Deployment role scenario 2

In the following scenario, a group of applications require the same administrative roles to one server. In

this example, applications A1 and A2 are related applications, and can be administrated by one set of

administrators. They are running on the same server (S1). Applications A3 and A4 require a different set of

administrators, and are running on servers S2 and S3 respectively.

 Application Server Node

A1 S1 N1

A2 S1 N1

A3 S2 N2

A4 S3 N3

1008 Administering applications and their environment

G3
G1

A1

A4

G2
A3

N1

s1

Cell

Deployer=user1

Deployer=user2

Deployer=user3

Administrator=root

Authorization Table

A2

s2

s3

N2

N3

Scenarios that can be applied directly in customer environments

Each developer must be able to modify the configuration for their server, and they must be able to install

their application onto that server. They also must be able to start and stop the server as well as the

application on the server.

Developers also must be able to configure the server so that they can debug any problems they run into.

They must have the ability to update or modify the application being developed. The administrative

authorization group for this developer includes at least one server and any applications that the developer

installs on that server.

G3
G1

A1

A3

G2
A2

N1

s1

Cell

Deployer=group1
Administrator=group1

Deployer=group2
Administrator=group2

Deployer=group3
Administrator=group3

Administrator=root

Authorization Table

s2

s3

N2

N3

In the following example, developers of authorization group G1 have a new application (A11). They can

install and target that new application only on servers within authorization group G1. Also, they can place

that new application in their authorization group (G1).

Chapter 16. Security 1009

G3
G1

A1

A3

G2
A2

N1

s1

Cell

Deployer=group1
Administrator=group1

Deployer=group2
Administrator=group2

Deployer=group3
Administrator=group3

Administrator=root

Authorization Table

s2

s3

N2

N3

A11

ASP environment scenario

In this scenario, the customer is an ASP. They have their own customers to whom they provide application

serving function. They want to enable their customers to administer and monitor their applications, but not

to see or administer applications for different customers. In this example, however, the ASP has internal

staff administrators whose job it is to maintain the servers.

This internal ASP staff administrator might need to move an application from one server to another to

ensure that an application remains available. The internal ASP staff administrator should be able to stop

and start the servers and to change their configuration.

In contrast, the ASP customer administrator should not be able to stop or start servers. However, the ASP

customer administrator should be able to update their applications running on those servers. The

administrative authorization group for the internal ASP administrator can be the whole cell or can include a

subset of servers, nodes, clusters and applications. The administrative authorization group for the

customer administrator only includes those applications that the customer has paid to have served by this

ASP.

The following diagram contains a scenario where two different customers have two different type of

applications, and can manage their own applications. However, the servers and nodes on which the

applications are running are isolated from their customers. The servers and nodes can only be maintained

by the internal administrators. In addition, the customers cannot target their applications on a different

server. This can only be performed by the internal administrator or internal deployers.

1010 Administering applications and their environment

G

G1
A1

G2
A2

Cell

Administrator=internalAdministrator

Administrator=customer2
Deployer=internalDeployer, customer2

Administrator=root

Authorization Table

s1

N2N1

s2

targetted ontargetted on

Administrator=customer1
Deployer=internalDeployer, customer1

Regional organization scenario

In this scenario, the customer is a large global company. The company’s nodes and servers are organized

so as to provide application serving for different regions (or alternatively, different lines of business). They

want representatives from the different regional areas to be able to monitor and administer the nodes and

servers associated with that region. However, they do not want the regional administer to be able to effect

any node and server associated with a different region.

The administrative authorization group for each regional representative includes the nodes, servers,

clusters and applications associated with that region.

For example, consider a company that provides multiple services, such as a financial institution that

provides services like credit card accounts, brokerage accounts, banking accounts, or travel accounts.

Each of these services can be separate applications, and the administrator for each of these applications

must also be different. The following figure shows one way to configure such a system:

Chapter 16. Security 1011

Server1

trade app

Server2

card app

Server3

travel app
node1

Server1

trade app

Server2

card app

Server3

travel app
node2

Server1

trade app

Server2

card app

Server3

travel app
node3

The following figure shows how the resources in such a system can be grouped to isolate administrators

from each other:

Cell

Deployer=tradeDeployer
Administrator=tradeAdministrator

Administrator=root

Authorization Table

N1

s2N2
N3

trade
application

G1

card
application

G2

travel
application

G3

s1

s3

Deployer= Deployer
Administrator= Administrator

card
card

Deployer= Deployer
Administrator= Administrator

travel
travel

Note that the nodes are not part of any authorization group. Therefore, a trade application administrator

cannot stop a server on any of the nodes, and is prevented from stopping a travel application.

The same system can be configured in another way as shown below:

1012 Administering applications and their environment

Server1

travel app
card app
trade app

node1
Server2

travel app
card app
trade app

Server3

travel app
card app
trade app

Server1

travel app
card app
trade app

node2
Server2

travel app
card app
trade app

Server3

travel app
card app
trade app

Server1

travel app
card app
trade app

node3
Server2

travel app
card app
trade app

Server3

travel app
card app
trade app

The following figure shows how the resources in such a system can be grouped to isolate administrators

from each other:

Cell

Deployer=tradeDeployer
Administrator=tradeAdministrator

Administrator=root

Authorization Table

N1

s2N2
N3

trade
application

G1

card
application

G2

travel
application

G3

s1

s3

Deployer= Deployer
Administrator= Administrator

card
card

Deployer= Deployer
Administrator= Administrator

travel
travel

Application security

Application security enables security for the applications in your environment. This type of security

provides application isolation and requirements for authenticating application users

In previous releases of WebSphere Application Server, when a user enabled global security, both

administrative and application security were enabled. In WebSphere Application Server Version 6.1, the

previous notion of global security is split into administrative security and application security, each of which

you can enable separately.

Chapter 16. Security 1013

As a result of this split, WebSphere Application Server clients must know whether application security is

disabled at the target server. Administrative security is enabled, by default. Application security is disabled,

by default. To enable application security, you must enable administrative security. Application security is in

effect only when administrative security is enabled.

An Application Server Enablement Tag, which is specific to WebSphere Application Server, is imported into

the Interoperable Object Reference (IOR) to indicate if application security is disabled for the server where

the object lives. This tag is server-specific and enables clients to know when application security is

disabled at the target server of its request.

For Web resources, when application security is enabled, authentication is prompted for lookups on the

application server.

For enterprise bean resources, when application security is disabled, the client Common Secure

Interoperability version 2 (CSIv2) code ignores the CSIv2 security tags for objects that are unknown

system objects. When pure clients see that application security is disabled, these clients prompt for

naming lookups, but do not prompt for enterprise bean operations.

Java 2 security

Java 2 security provides a policy-based, fine-grain access control mechanism that increases overall

system integrity by checking for permissions before allowing access to certain protected system resources.

Java 2 security guards access to system resources such as file I/O, sockets, and properties. Java 2

Platform, Enterprise Edition (J2EE) security guards access to Web resources such as servlets, JavaServer

Pages (JSP) files and Enterprise JavaBeans (EJB) methods.

WebSphere Application Server security includes the following technologies:

v Java 2 Security Manager

v Java Authentication and Authorization Service (JAAS)

v Java 2 Connector authentication data entries

v

V6.0.x

Common Secure Interoperability Version 2 (CSIv2) or Security Authentication Service (SAS)

Important: SAS is supported only between Version 6.0.x and previous version servers that have been

federated in a Version 6.1 cell.

v J2EE role-based authorization

v Secure Sockets Layer (SSL) configuration

Because Java 2 security is relatively new, many existing or even new applications might not be prepared

for the very fine-grain access control programming model that Java 2 security is capable of enforcing.

Administrators need to understand the possible consequences of enabling Java 2 security if applications

are not prepared for Java 2 security. Java 2 security places some new requirements on application

developers and administrators.

Java 2 security for deployers and administrators

Although Java 2 security is supported, it is disabled by default. You can configure Java 2 security and

administrative security independently of one another. Disabling administrative security does not disable

Java 2 security automatically. You need to explicitly disable it.

If your applications, or third-party libraries are not ready, having Java 2 security enabled causes problems.

You can identify these problems as Java 2 security AccessControlExceptions in the system log or trace

files. If you are unsure about the Java 2 security readiness of your applications, disable Java 2 security

initially to get your application installed and verify that it is working properly.

1014 Administering applications and their environment

Implications exist if Java 2 security is enabled; deployers or administrators are required to make sure that

all the applications are granted the required permissions; otherwise, applications might fail to run. By

default, applications are granted the permissions that are recommended in the J2EE 1.4 Specification. For

the details of default permissions granted to applications in the product, refer to the following policy files:

v app_server_root/java/jre/lib/security/java.policy

v app_server_root/properties/server.policy

v profile_root/config/cells/cell_name/nodes/node_name/app.policy

The policy embodied by these policy files cannot be made more restrictive because the product might not

have the necessary Java 2 security doPrivileged APIs in place. The restrictive policy is the default policy.

You can grant additional permissions, but you cannot make the default more restrictive because

AccessControlExceptions exceptions are generated from within WebSphere Application Server. The

product does not support a more restrictive policy than the default that is defined in the policy files

previously mentioned.

Several policy files are used to define the security policy for the Java process. These policy files are static

(code base is defined in the policy file) and in the default policy format provided by the IBM Developer Kit,

Java Technology Edition. For enterprise application resources and utility libraries, WebSphere Application

Server provides dynamic policy support. The code base is dynamically calculated based on deployment

information and permissions are granted based on template policy files during runtime. Refer to the “Java

2 security policy files” on page 1018 for more information.

Syntax errors in the policy files cause the application server process to fail, so edit these policy files

carefully.

If an application is not prepared for Java 2 security, if the application provider does not provide a

was.policy file as part of the application, or if the application provider does not communicate the expected

permissions the application is likely to cause Java 2 security access control exceptions at runtime. It might

not be obvious that an application is not prepared for Java 2 security. Several run-time debugging aids

help troubleshoot applications that might have access control exceptions. See the Java 2 security

debugging aids for more details. See “Handling applications that are not Java 2 security ready” on page

1017 for information and strategies for dealing with such applications.

It is important to note when Java Security is enabled in the administrative security settings, the installed

security manager does not currently check modifyThread and modifyThreadGroup permissions for

non-system threads. Allowing Web and Enterprise JavaBeans (EJB) application code to create or modify a

thread can have a negative impact on other components of the container and can affect the capability of

the container to manage enterprise bean life cycles and transactions.

Java 2 security for application developers

Application developers must understand the permissions that are granted in the default WebSphere policy

and the permission requirements of the SDK APIs that their application calls to know whether additional

permissions are required. The Permissions in the Java 2 SDK reference in the resources section describes

which APIs require which permission.

Application providers can assume that applications have the permissions granted in the default policy

previously mentioned. Applications that access resources not covered by the default WebSphere policy are

required to grant the additional Java 2 security permissions to the application.

While it is possible to grant the application additional permissions in one of the other dynamic WebSphere

policy files or in one of the more traditional java.policy static policy files, the was.policy file, which is

embedded in the EAR file ensures the additional permissions are scoped to the exact application that

requires them. Scoping the permission beyond the application code that requires it can permit code that

normally does not have permission to access particular resources.

Chapter 16. Security 1015

If an application component is being developed, like a library that might actually be included in more than

one .ear file, then the library developer needs to document the required Java 2 permissions that are

required by the application assembler. There is no was.policy file for library-type components. The

developer must communicate the required permissions through application programming interface (API)

documentation or some other external documentation.

If the component library is shared by multiple enterprise applications, the permissions can be granted to all

enterprise applications on the node in the app.policy file.

If the permission is only used internally by the component library and the application is never granted

access to resources that are protected by the permission, it might be necessary to mark the code as

privileged. Refer to the, AccessControlException, topic for more details. However, improperly inserting a

doPrivileged call might open up security holes. Understand the implication of doPrivileged call to make a

correct judgement.

The section on Dynamic policy files in “Java 2 security policy files” on page 1018 describes how the

permissions in the was.policy files are granted at runtime.

Developing an application to use with Java 2 security might be a new skill and impose a security

awareness not previously required of application developers. Describing the Java 2 security model and the

implications on application development is beyond the scope of this section. The following URL can help

you get started: http://java.sun.com/j2se/1.5.0/docs/guide/security/index.html.

Debugging Aids

The WebSphere Application Server SYSOUT file and the com.ibm.websphere.java2secman.norethrow

property are the two primary aids for debugging.

The WebSphere System Log or Trace Files

The AccessControl exception that is logged in the system log or trace files contains the permission

violation that causes the exception, the exception call stack, and the permissions granted to each stack

frame. This information is usually enough to determine the missing permission and the code requiring the

permission.

The com.ibm.websphere.java2secman.norethrow property

When Java 2 security is enabled in WebSphere Application Server, the security manager component

creates a java.security.AccessControl exception when a permission violation occurs. This exception, if not

handled, often causes a run-time failure. This exception is also logged in the SYSOUT file.

However, when the Java virtual machine com.ibm.websphere.java2secman.norethrow property is set and

has a value of true, the security manager does not create the AccessControl exception. This information is

logged.

To set the com.ibm.websphere.java2secman.norethrow property for the server, go to the WebSphere

Application Server administrative console and click Servers > Application Servers > server_name. Under

Server infrastructure, click Java and Process Management > Process definition. Under Additional

properties, click Java Virtual Machine > Custom Properties > New. In the Name field, type

com.ibm.websphere.java2secman.norethrow. In the Value field, type true.

This property is intended for a sandbox or debug environment because it instructs the security manager

not to create the AccessControl exception. Java 2 security is not enforced. Do not use this property in a

production environment where a relaxed Java 2 security environment weakens the integrity that Java 2

security is intended to produce.

1016 Administering applications and their environment

http://java.sun.com/j2se/1.5.0/docs/guide/security/index.html

This property is valuable in a sandbox or test environment where the application can be thoroughly tested

and where the system log or trace files can be inspected for AccessControl exceptions. Because this

property does not create the AccessControl exception, it does not propagate the call stack and does not

cause a failure. Without this property, you have to find and fix AccessControl exceptions one at a time.

Handling applications that are not Java 2 security ready

If the increased system integrity that Java 2 security provides is important, then contact the application

provider to have the application support Java 2 security or at least communicate the required additional

permissions beyond the default WebSphere Application Server policy that must be granted.

The easiest way to deal with such applications is to disable Java 2 security in WebSphere Application

Server. The downside is that this solution applies to the entire system and the integrity of the system is not

as strong as it might be. Disabling Java 2 security might not be acceptable depending on the organization

security policies or risk tolerances.

Another approach is to leave Java 2 security enabled, but to grant either just enough additional

permissions or grant all permissions to just the problematic application. Granting permissions however,

might not be a trivial thing to do. If the application provider has not communicated the required

permissions in some way, no easy way exists to determine what the required permissions are and granting

all permissions might be the only choice. You minimize this risk by locating this application on a different

node, which might help isolate it from certain resources. Grant the java.security.AllPermission permission

in the was.policy file that is embedded in the application .ear file, for example:

grant codeBase "file:${application}" {

 permission java.security.AllPermission;

 };

The server.policy file

The server.policy file is located in the app_server_root/properties/ directory.

This policy defines the policy for the WebSphere Application Server classes. At present, all the server

processes on the same installation share the same server.policy file. However, you can configure this file

so that each server process can have a separate server.policy file. Define the policy file as the value of

the java.security.policy Java system properties . For details of how to define Java system properties, refer

to the Process definition section of the Manage application servers file.

The server.policy file is not a configuration file managed by the repository and the file replication service.

Changes to this file are local and do not get replicated to other machines. Use the server.policy file to

define Java 2 security policy for server resources. Use the app.policy file (per node) or the was.policy file

(per enterprise application) to define Java 2 security policy for enterprise application resources.

The java.policy file

The file represents the default permissions that are granted to all classes. The policy of this file applies to

all the processes launched by the Java Virtual Machine in the WebSphere Application Server.

The java.policy file is located in the app_server_root/java/jre/lib/security directory.

Troubleshooting

Symptom:

Error message CWSCJ0314E: Current Java 2 security policy reported a potential violation of Java 2 security

permission. Refer to Problem Determination Guide for further information.{0}Permission\:{1}Code\
:{2}{3}Stack Trace\:{4}Code Base Location\:{5} Current Java 2 security policy reported a potential violation

Chapter 16. Security 1017

of Java 2 Security Permission. Refer to Problem Determination Guide for further information.{0}Permission\
:{1}Code\:{2}{3}Stack Trace\:{4}Code Base Location\:{5}

Problem:

The Java security manager checkPermission method reported a security exception on the subject

permission with debugging information. The reported information can be different with respect to the

system configuration. This report is enabled by either configuring a Reliability Availability Service Ability

(RAS) trace into debug mode or specifying a Java property.

See Enabling trace for information on how to configure RAS trace in debug mode.

Specify the following property in the JVM Settings panel from the administrative console:

java.security.debug. Valid values include:

access

Print all debug information including: required permission, code, stack, and code base location.

stack Print debug information including: required permission, code, and stack.

failure Print debug information including: required permission and code.

Recommended response:

The reported exception might be critical to the secure system. Turn on security trace to determine the

potential code that might have violated the security policy. After the violating code is determined, verify if

the attempted operation is permitted with respect to Java 2 security, by examining all applicable Java 2

security policy files and the application code.

If the application is running with Java Mail, this message might be benign. You can update the was.policy

file to grant the following permissions to the application:

permission java.io.FilePermission ″${user.home}${/}.mailcap″, ″read″;

permission java.io.FilePermission ″${user.home}${/}.mime.types″, ″read″;

permission java.io.FilePermission ″${java.home}${/}lib${/}mailcap″, ″read″;

permission java.io.FilePermission ″${java.home}${/}lib${/}mime.types″, ″read″;

Messages

 Message: CWSCJ0313E: Java 2 security manager debug message

flags are initialized\: TrDebug: {0}, Access: {1}, Stack: {2},

Failure: {3}

Problem: Configured values of the valid debug message flags for

security manager.

 Message: CWSCJ0307E: Unexpected exception is caught when trying

to determine the code base location. Exception: {0}

Problem: An unexpected exception is caught when the code base

location is determined.

Java 2 security policy files:

The Java 2 Platform, Enterprise Edition (J2EE) Version 1.3 and later specifications have a well-defined

programming model of responsibilities between the container providers and the application code. Using

Java 2 security manager to help enforce this programming model is recommended. Certain operations are

1018 Administering applications and their environment

not supported in the application code because such operations interfere with the behavior and operation of

the containers. The Java 2 security manager is used in the product to enforce responsibilities of the

container and the application code.

 This product provides support for policy file management. A number of policy files in the product are either

static or dynamic. Dynamic policy is a template of permissions for a particular type of resource. No relative

code base is defined in the dynamic policy template. The code base is dynamically calculated from the

deployment and run-time data.

Static policy files

 Policy file Location

java.policy app_server_root/java/jre/lib/security/java.policy. Default permissions are granted to all

classes. The policy of this file applies to all the processes launched by WebSphere Application

Server.

server.policy profile_root/properties/server.policy. Default permissions are granted to all the product

servers.

client.policy profile_root/properties/client.policy. Default permissions are granted for all of the product

client containers and applets on a node.

The static policy files are not managed by configuration and file replication services. Changes made in

these files are local and are not replicated to other nodes in the Network Deployment cell.

Dynamic policy files

 Policy file Location

spi.policy profile_root/config/cells/cell_name

/nodes/node_name/spi.policy

This template is for the Service Provider Interface (SPI) or the third-party resources that are

embedded in the product. Examples of SPI are the Java Message Service (JMS) in MQ

Series and Java database connectivity (JDBC) drivers. The code base for the embedded

resources are dynamically determined from the configuration (resources.xml file) and run-time

data, and permissions that are defined in the spi.policy files are automatically applied to

these resources and JAR files that are specified in the class path of a resource adapter. The

default permission of the spi.policy file is java.security.AllPermissions.

library.policy profile_root/config/cells/cell_name/nodes

/node_name/library.policy

This template is for the library (Java library classes). You can define a shared library to use in

multiple product applications. The default permission of the library.policy file is empty.

app.policy profile_root/config/cells/cell_name

/nodes/node_name/app.policy

The app.policy file defines the default permissions that are granted to all of the enterprise

applications running on node_name in cell_name.

was.policy profile_root/config/cells/cell_name

/applications/ear_file_name/deployments/

application_name/META-INF/was.policy

This template is for application-specific permissions. The was.policy file is embedded in the

enterprise archive (EAR) file.

ra.xml rar_file_name/META-INF/was.policy.RAR.

This file can have a permission specification that is defined in the ra.xml file. The ra.xml file

is embedded in the RAR file.

Chapter 16. Security 1019

Grant entries that are specified in the app.policy and was.policy files must have a code base defined. If

grant entries are specified without a code base, the policy files are not loaded properly and the application

can fail. If the intent is to grant the permissions to all applications, use file:${application} as a code base in

the grant entry.

Syntax of the policy file

A policy file contains several policy entries. The following example depicts each policy entry format:

grant [codebase <Codebase>] {

permission <Permission>;

 permission <Permission>;

permission <Permission>;

};

<CodeBase>: A URL.

 For example, "file:${java.home}/lib/tools.jar"

 When [codebase <Codebase>] is not specified, listed

 permissions are applied to everything.

 If URL ends with a JAR file name, only the classes in the

 JAR file belong to the codebase.

 If URL ends with "/", only the class files in the specified

 directory belong to the codebase.

 If URL ends with "*", all JAR and class files in the specified

 directory belong to the codebase.

 If URL ends with "-", all JAR and class files in the specified

 directory and its subdirectories belong to the codebase.

<Permissions>: Consists from

 Permission Type : class name of the permission

 Target Name : name specifying the target

 Actions : actions allowed on target

 For example,

 java.io.FilePermission "/tmp/xxx", "read,write"

Refer to developer kit specifications for the details of each permission.

Syntax of dynamic policy

You can define permissions for specific types of resources in dynamic policy files for an enterprise

application. This action is achieved by using product-reserved symbols. The reserved symbol scope

depends on where it is defined. If you define the permissions in the app.policy file, the symbol applies to

all the resources on all of the enterprise applications that run on node_name. If you define the permissions

in the META-INF/was.policy file, the symbol applies only to the specific enterprise application. Valid

symbols for the code base are listed in the following table:

 Symbol Meaning

file:${application} Permissions apply to all the resources within the

application

file:${jars} Permissions apply to all the utility Java archive (JAR) files

within the application

file:${ejbComponent} Permissions apply to the Enterprise JavaBeans (EJB)

resources within the application

file:${webComponent} Permissions apply to the Web resources within the

application

file:${connectorComponent} Permissions apply to the connector resources within the

application

1020 Administering applications and their environment

You can specify the module name for a granular setting, except for these entries that are specified by the

code base symbols. For example:

grant codeBase "file:DefaultWebApplication.war" {

 permission java.security.SecurityPermission "printIdentity";

 };

grant codeBase "file:IncCMP11.jar" {

permission java.io.FilePermission

"${user.install.root}${/}bin${/}DefaultDB${/}-",

"read,write,delete";

};

The sixth and seventh lines in the previous code sample are one continuous line. You can use a relative

code base only in the META-INF/was.policy file. Several product-reserved symbols are defined to

associate the permission lists to a specific type of resources.

 Symbol Meaning

file:${application} Permissions apply to all the resources within the

application

file:${jars} Permissions apply to all the utility JAR files within the

application

file:${ejbComponent} Permissions apply to the enterprise beans resources

within the application

file:${webComponent} Permissions apply to the Web resources within the

application

file:${connectorComponent} Permissions apply to the connector resources both within

the application and in the standalone connector

resources.

Five embedded symbols are provided to specify the path and the name for the java.io.FilePermission

permission. These symbols enable flexible permission specification. The absolute file path is fixed after the

installation of the application.

 Symbol Meaning

${app.installed.path} Path where the application is installed

${was.module.path} Path where the module is installed

${current.cell.name} Current cell name

${current.node.name} Current node name

${current.server.name} Current server name

Attention: Do not use the ${was.module.path} in the ${application} entry.

Carefully determine where to add a new permission. An incorrectly specified permission causes an

AccessControlException exception. Because dynamic policy resolves the code base at runtime,

determining which policy file has a problem is difficult. Add a permission only to the necessary resources.

For example, use ${ejbcomponent}, and etc instead of ${application}, and update the was.policy file

instead of the app.policy file, if possible.

Static policy filtering

Limited static policy filtering support exists. If the app.policy file and the was.policy file have permissions

that are defined in the filter.policy file with thefilterMask keyword, the runtime removes the permissions

from the applications and an audit message is logged. However, if the permissions that are defined in the

app.policy and the was.policy files are compound permissions, for example, java.security.AllPermission,

Chapter 16. Security 1021

the permission is not removed, but a warning message is written to the log file. The policy filtering only

supports Developer Kit permissions; the permissions package name begins with java or javax.

Run-time policy filtering support is provided to force stricter filtering. If the app.policy file and the

was.policy file have permissions that are defined in the filter.policy file with the runtimeFilterMask

keyword, the runtime removes the permissions from the applications no matter what permissions are

granted to the application. For example, even if a was.policy file has the java.security.AllPermission

permission granted to one of its modules, specified permissions such as the runtimeFilterMask permission

are removed from the granted permission during runtime.

If the Warn if applications are granted custom permissions option on the Secure administration,

applications, and infrastructure panel is enabled and if the app.policy file and the was.policy file contain

custom permissions (non-Developer Kit permissions, where the permissions package name begins with

java or javax), a warning message logs. The permission is not removed. If the AllPermission permission is

listed in the app.policy file and the was.policy file, a warning message logs.

Policy file editing

Using the policy tool that is provided by the Developer Kit (app_server_root/java/jre/bin/policytool), to

edit the previous policy files is recommended. For Network Deployment, extract the policy files from the

repository before editing. After the policy file is extracted, use the policy tool to edit the file. Check the

modified policy files into the repository and synchronize them with other nodes.

If syntax errors exist in the policy files, the enterprise application or the server process might fail to start.

Be cautious when editing these policy files. For example, if a policy has a trailing space in the policy

permission target name, the policy fails to parse the permission properly in the IBM Developer Kit, Java

Technology Edition Version 5. In the following example, note the space before the last quote: * \″*\″ ″

grant {

 permission javax.security.auth.PrivateCredentialPermission

 "javax.resource.spi.security.PasswordCredential * \"*\" ","read";

};

If the permission is in a policy file that is loaded by the IBM Developer Kit, Java Technology Edition policy

tool Version 5, the following message might display:

Errors have occurred while opening the policy configuration.

View the warning log for more information.

or the following message might display in a warning log:

Warning: Invalid argument(s) for constructor:

javax.security.auth.PrivateCredentialPermission.

To fix this problem, edit the permission and remove the trailing space. When the trailing space is removed,

the permission loads properly. The following code sample shows the corrected permission:

grant {

 permission javax.security.auth.PrivateCredentialPermission

 "javax.resource.spi.security.PasswordCredential * \"*\","read";

}

Troubleshooting

To debug the dynamic policy, choose one of three ways to generate the detail report of the

AccessControlException exception.

v Trace (Configured by RAS trace). Enables traces with the trace specification:

 Attention: The following command is one continuous line

com.ibm.ws.security.policy.*=all=enabled:

com.ibm.ws.security.core.SecurityManager=all=enabled

1022 Administering applications and their environment

v Trace (Configured by property). Specifies a Java java.security.debug property. Valid values for the

java.security.debug property are as follows:

– Access. Print all debug information including required permission, code, stack, and code base

location.

– Stack. Print debug information including, required permission, code, and stack.

– Failure. Print debug information including required permission and code.
v ffdc. Enable ffdc, modify the ffdcRun.properties file by changing Level=4 and LAE=true. Look for an

Access Violation keyword in the log file.

Access control exception:

The Java 2 security behavior is specified by its security policy. The security policy is an access-control

matrix that specifies which system resources certain code bases can access and who must sign them. The

Java 2 security policy is declarative and it is enforced by the

java.security.AccessController.checkPermission method.

 The following example depicts the algorithm for the java.security.AccessController.checkPermission

method. For the complete algorithm, refer to the Java 2 security check permission algorithm in Resources

for learning.

i = m;

while (i > 0) {

 if (caller i’s domain does not have the permission)

 throw AccessControlException;

 else if (caller i is marked as privileged)

 return;

 i = i - 1;

};

The algorithm requires that all the classes or callers on the call stack have the permissions when a

java.security.AccessController.checkPermission method is performed or the request is denied and a

java.security.AccessControlException exception is created. However, if the caller is marked as privileged

and the class (caller) is granted these permissions, the algorithm returns and does not traverse the entire

call stack. Subsequent classes (callers) do not need the required permission granted.

A java.security.AccessControlException exception is created when certain classes on the call stack are

missing the required permissions during a java.security.AccessController.checkPermission method. Two

possible resolutions to the java.security.AccessControlException exception are as follows:

v If the application is calling a Java 2 security-protected application programming interface (API), grant the

required permission to the application Java 2 security policy. If the application is not calling a Java 2

security-protected API directly, the required permission results from the side-effect of the third-party APIs

accessing Java 2 security-protected resources.

v If the application is granted the required permission, it gains more access than it needs. In this case, it

is likely that the third party code that accesses the Java 2 security-protected resource is not properly

marked as privileged.

Example call stack

This example of a call stack indicates where application code is using a third-party API utility library to

update the password. The following example is presented to illustrate the point. The decision of where to

mark the code as privileged is application-specific and is unique in every situation. This decision requires

great depth of domain knowledge and security expertise to make the correct judgement. A number of well

written publications and books are available on this topic. Referencing these materials for more detailed

information is recommended.

Chapter 16. Security 1023

You can use the PasswordUtil utility to change the password of a user. The utility types in the old

password and the new password twice to ensure that the correct password is entered. If the old password

matches the one stored in the password file, the new password is stored and the password file updates.

Assume that none of the stack frame is marked as privileged. According to the

java.security.AccessController.checkPermission algorithm, the application fails unless all the classes on the

call stack are granted write permission to the password file. The client application does not have

permission to write to the password file directly and to update the password file at will.

However, if the PasswordUtil.updatePasswordFile method marks the code that accesses the password file

as privileged, then the check permission algorithm does not check for the required permission from

classes that call thePasswordUtil.updatePasswordFile method for the required permission as long as the

PasswordUtil class is granted the permission. The client application can successfully update a password

without granting the permission to write to the password file.

The ability to mark code privileged is very flexible and powerful. If this ability is used incorrectly, the overall

security of the system can be compromised and security holes can be exposed. Use the ability to mark

code privileged carefully.

Resolution to the java.security.AccessControlException exception

As described previously, you have two approaches to resolve a java.security.AccessControlException

exception. Judge these exceptions individually to decide which of the following resolutions is best:

1. Grant the missing permission to the application.

2. Mark some code as privileged, after considering the issues and risks.

Enabling security for the realm

Use this topic to enable IBM WebSphere Application Server security. You must enable administrative

security for all other security settings to function.

WebSphere Application Server uses cryptography to protect sensitive data and to ensure confidentiality

and integrity of communications between WebSphere Application Server and other components in the

network. Cryptography is also used by Web services security when certain security constraints are

configured for the Web Services application.

WebSphere Application Server uses Java Secure Sockets Extension (JSSE) and Java Cryptography

Extension (JCE) libraries in the Software Development Kit (SDK) to perform this cryptography. The SDK

provides strong but limited jurisdiction policy files. Unrestricted policy files provide the ability to perform full

strength cryptography and to improve performance.

AccessController.checkPermission()

SecurityManager..checkPermission()

SecurityManager..checkWrite()

java.io.FileOutputStream()

PasswordUtil.updatePasswordFile()

Client Code ...

PasswordUtil.getPassword()

System domain

Application domain

Utility library domain

1024 Administering applications and their environment

WebSphere Application Server provides a SDK 5 that contains strong, but limited jurisdiction policy files.

You can download the unrestricted policy files from the following Web site: IBM developer kit: Security

information. Complete the following steps to download and install the new policy files:

1. Click J2SE 5.0

2. Scroll down the page then click IBM SDK Policy files.

The Unrestricted JCE Policy files for SDK 5 Web site displays.

3. Click Sign in and provide your IBM.com ID and password.

4. Select Unrestricted JCE Policy files for SDK 5 and click Continue.

5. View the license and click I Agree to continue.

6. Click Download Now.

7. Extract the unlimited jurisdiction policy files that are packaged in the ZIP file. The ZIP file contains a

US_export_policy.jar file and a local_policy.jar file.

8. In your WebSphere Application Server installation, go to the $JAVA_HOME/jre/lib/security directory

and back up your US_export_policy.jar and local_policy.jar files.

9. Replace your US_export_policy.jar and local_policy.jar files with the two files that you

downloaded from the IBM.com Web site.

1. Enable security in the WebSphere Application Server. Make sure that all node agents within the cell

are active beforehand.

For more information, see “Enabling security” on page 999. It is important to click Security > Secure

administration, applications, and infrastructure. Select an available realm definition from the list,

and then click Set as current so that security is enabled upon a server restart.

Note: In previous releases of WebSphere Application Server, the Set as current option is known as

the Enable global security option.

2. Before restarting the server, log off the administrative console. You can log off by clicking Logout at

the top menu bar.

3. Stop the server by going to the command line in the WebSphere Application Server /bin directory and

issue a stopServer server_name command.

4. Restart the server in secure mode by issuing the command startServer server_name. Once the server

is secure, you cannot stop the server again without specifying an administrative user name and

password. To stop the server once security is enabled, issue the command, stopServer server_name

-username user_id -password password. Alternatively, you can edit the soap.client.props file in the

profile_root/properties directory, and edit the com.ibm.SOAP.loginUserid or

com.ibm.SOAP.loginPassword properties to contain these administrative IDs.

If you have any problems restarting the server, review the output logs in the profile_root/logs/
server_name directory. Check the Troubleshooting security configurations article for any common

problems.

Secure administration, applications, and infrastructure settings:

Use this page to configure administrative, application, and infrastructure security on a global level.

 To view this administrative console page, click Security > Secure administration, applications, and

infrastructure.

Security has some performance impacts on your applications. The performance impacts can vary

depending upon the application workload characteristics. You must first determine that the needed level of

security is enabled for your applications, and then measure the impact of security on the performance of

your applications.

When security is configured, validate any changes to the user registry or authentication mechanism

panels. Click Apply to validate the user registry settings. An attempt is made to authenticate the server ID

Chapter 16. Security 1025

http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.ibm.com/developerworks/java/jdk/security/index.html

or to validate the admin ID (if internalServerID is used) to the configured user registry. Validating the user

registry settings after enabling administrative security can avoid problems when you restart the server for

the first time.

Security configuration wizard:

Launches a wizard that enables you to configure the basic administrative and application security settings.

This process restricts administrative tasks and applications to authorized users.

 Using this wizard, you can configure application security, resource or Java 2 Connector (J2C) security, and

a user registry. You can configure an existing registry and enable administrative, application, and resource

security.

When you apply changes made by using the security configuration wizard, administrative security is turned

on by default.

Security configuration report:

Launches a security configuration report that displays the core security settings of the application server.

The report also displays the administrative users and groups and the CORBA naming roles.

 A current limitation to the report is that it does not display application level security information. The report

also does not display information on Java Message Service (JMS) security, bus security, or Web Services

security.

Enable administrative security:

Specifies whether to enable administrative security for this application server domain. Administrative

security requires users to authenticate before obtaining administrative control of the application server.

 For more information, see “Administrative roles” on page 1295.

When enabling security, set the authentication mechanism configuration and specify a valid user ID and

password (or a valid admin ID when internalServerID feature is used) in the selected registry configuration.

Note: There is a difference between the user ID (which is normally called the admin ID), which identifies

administrators who manage the environment, and a server ID, which is used for server-to-server

communication. You do not need to enter a server ID and password when you are using the

internal server ID feature. However, optionally, you can specify a server ID and password. To

specify the server ID and password, complete the following steps:

1. Click Security > Secure administration, applications, and infrastructure.

2. Under User accounts repository, select the repository and click Configure.

3. Specify the server ID and password in the Server user identity section.

 Default: Enabled

Enable application security:

Enables application-level security unless the option is overwritten at the server level.

 Default: Disabled

Use Java 2 security to restrict application access to local resources:

1026 Administering applications and their environment

Specifies whether to enable or disable Java 2 security permission checking. By default, access to local

resources is not restricted. You can choose to disable Java 2 security, even when application security is

enabled.

 When the Use Java 2 security to restrict application access to local resources option is enabled and

if an application requires more Java 2 security permissions than are granted in the default policy, the

application might fail to run properly until the required permissions are granted in either the app.policy file

or the was.policy file of the application. AccessControl exceptions are generated by applications that do

not have all the required permissions. See “Java 2 security” on page 1014 for more information about Java

2 security.

 Default: Disabled

Disabling security if you have server startup problems:

 If your server does not restart after you enable administrative security, you can disable security. Go to your

app_server_root/bin directory and run the wsadmin -conntype NONE command. At the wsadmin> prompt,

enter securityoff and then type exit to return to a command prompt. Restart the server with administrative

security disabled to check any incorrect settings through the administrative console.

Warn if applications are granted custom permissions:

Specifies that during application deployment and application start, the security runtime issues a warning if

applications are granted any custom permissions. Custom permissions are permissions that are defined by

the user applications, not Java API permissions. Java API permissions are permissions in the java.* and

javax.* packages.

 The application server provides support for policy file management. A number of policy files are available

in this product, some of them are static and some of them are dynamic. Dynamic policy is a template of

permissions for a particular type of resource. No code base is defined and no relative code base is used in

the dynamic policy template. The real code base is dynamically created from the configuration and

run-time data. The filter.policy file contains a list of permissions that you do not want an application to have

according to the J2EE 1.4 specification. For more information on permissions, see “Java 2 security policy

files” on page 1018.

Important: You cannot enable this option without enabling the Use Java 2 security to restrict

application access to local resources option.

 Default: Disabled

Restrict access to resource authentication data:

Enable this option to restrict application access to sensitive Java Connector Architecture (JCA) mapping

authentication data.

 Consider enabling this option when both of the following conditions are true:

v Java 2 security is enforced.

v The application code is granted the accessRuntimeClasses WebSphereRuntimePermission permission

in the was.policy file found within the application enterprise archive (EAR) file. For example, the

application code is granted the permission when the following line is found in your was.policy file:

permission com.ibm.websphere.security.WebSphereRuntimePermission "accessRuntimeClasses";

The Restrict access to resource authentication data option adds fine-grained Java 2 security

permission checking to the default principal mapping of the WSPrincipalMappingLoginModule

Chapter 16. Security 1027

implementation. You must grant explicit permission to Java 2 Platform, Enterprise Edition (J2EE)

applications that use the WSPrincipalMappingLoginModule implementation directly in the Java

Authentication and Authorization Service (JAAS) login when Use Java 2 security to restrict application

access to local resources and the Restrict access to resource authentication data options are

enabled.

 Default: Disabled

Current realm definition:

Specifies the current setting for the active user repository.

 This field is read-only.

Available realm definitions:

Specifies the available user account repositories.

Set as current:

Enables the user repository after it is configured.

 LDAP or a custom user registry is required when running as a UNIX non-root user or running in a

multi-node environment.

You can configure settings for one of the following user repositories:

Federated repositories

Specify this setting to manage profiles in multiple repositories under a single realm. The realm can

consist of identities in:

v The file-based repository that is built into the system

v One or more external repositories

v Both the built-in, file-based repository and in one or more external repositories

Note: Only a user with administrator privileges can view the federated repositories configuration.

Local operating system

 You cannot use localOS in multi-node or when running as non-root on a UNIX platform.

Standalone LDAP registry

 Specify this setting to use standalone LDAP registry settings when users and groups reside in an

external LDAP directory. When security is enabled and any of these properties change, go to the

Security > Secure administration, applications, and infrastructure panel and click Apply or

OK to validate the changes.

Note: Since multiple LDAP servers are supported, this setting does not imply one LDAP registry.

Standalone custom registry

Specify this setting to implement your own standalone custom registry that implements the

com.ibm.websphere.security.UserRegistry interface. When security is enabled and any of these

properties change, go to the Secure administration, applications, and infrastructure panel and click

Apply or OK to validate the changes.

 Default: Disabled

1028 Administering applications and their environment

Use domain-qualified user names:

Specifies that user names that are returned by methods are qualified with the security domain in which

they reside.

 Default: Disabled

Active protocol:

Specifies the active authentication protocol for Remote Method Invocation over the Internet Inter-ORB

Protocol (RMI IIOP) requests, when security is enabled.

 An Object Management Group (OMG) protocol called Common Secure Interoperability Version 2 (CSIv2)

supports increased vendor interoperability and additional features. If all of the servers in your security

domain are Version 5.x and later servers, specify CSI as your protocol.

V6.0.x

If some servers are Version 3.x or Version 4.x servers, specify CSI and SAS.

Important: SAS is supported only between Version 6.0.x and previous version servers that have been

federated in a Version 6.1 cell.

Note:

V6.0.x

This field displays only when a Version 6.0.x and earlier server is detected in your

environment.

 Default: BOTH

Range: CSI and SAS, CSI

Specify extent of protection wizard settings:

Use this security wizard page to determine whether to enable application security and restrict access to

local resources. When you use the wizard, admin security is enabled by default.

 To view this security wizard page, click Security > Secure administration, applications, and

infrastructure > Security configuration wizard.

Enable application security:

Enables application-level security unless the option is overwritten at the server level.

 Default: Disabled

Use Java 2 security to restrict application access to local resources:

Specifies whether to enable or disable Java 2 security permission checking. By default, access to local

resources is not restricted. You can choose to disable Java 2 security, even when application security is

enabled.

 When the Use Java 2 security to restrict application access to local resources option is enabled and

if an application requires more Java 2 security permissions than are granted in the default policy, the

application might fail to run properly until the required permissions are granted in either the app.policy file

or the was.policy file of the application. AccessControl exceptions are generated by applications that do

not have all the required permissions. See “Java 2 security” on page 1014 for more information about Java

2 security.

Chapter 16. Security 1029

Default: Disabled

Custom properties: Security:

Use this page to understand the predefined custom properties that are related to security.

 To view this administrative console page, click Security > Secure administration, applications, and

infrastructure > Custom properties. You can click New to add a new custom property and its associated

value.

com.ibm.CSI.rmiInboundLoginConfig:

This property specifies the Java Authentication and Authorization Service (JAAS) login configuration that is

used for Remote Method Invocation (RMI) requests that are received inbound.

 By knowing the login configuration, you can plug in a custom login module that can handle specific cases

for RMI logins.

 Default system.RMI_INBOUND

com.ibm.CSI.rmiOutboundLoginConfig:

This property specifies the JAAS login configuration that is used for RMI requests that are sent outbound.

 Primarily, this property prepares the propagated attributes in the Subject to be sent to the target server.

However, you can plug in a custom login module to perform outbound mapping.

 Default system.RMI_OUTBOUND

com.ibm.CSI.supportedTargetRealms:

This property enables credentials that are authenticated in the current realm to be sent to any realm that is

specified in the Trusted target realms field. The Trusted target realms field is available on the CSIv2

outbound authentication panel. This property enables those realms to perform inbound mapping of the

data from the current realm.

 It is not recommended that you send authentication information to an unknown realm. Thus, this provides

a way to specify that the alternate realms are trusted. To access the CSIv2 outbound authentication panel,

complete the following steps:

1. Click Security > Secure administration, applications, and infrastructure.

2. Under RMI/IIOP security, click CSIv2 outbound authentication.

com.ibm.audit.auditPolicy:

This property is used by the auditing service that was introduced as a technical preview in Version 6. The

auditing functionality is not available. Do not modify this property.

 Default REQUIRED

com.ibm.audit.auditQueueSize:

This property is used by the auditing service that was introduced as a technical preview in Version 6. The

auditing functionality is not available. Do not modify this property.

1030 Administering applications and their environment

Default 5000

com.ibm.audit.auditServiceEnabled:

This property is used by the auditing service that was introduced as a technical preview in Version 6. The

auditing functionality is not available. Do not modify this property.

 Default false

com.ibm.audit.auditSpecification:

This property is used by the auditing service that was introduced as a technical preview in Version 6. The

auditing functionality is not available. Do not modify this property.

 Default J2EE=AUTHN=failure=enabled:J2EE=AUTHZ=failure=enabled

com.ibm.security.useFIPS:

Specifies that Federal Information Processing Standard (FIPS) algorithms are used. The application server

uses the IBMJCEFIPS cryptographic provider instead of the IBMJCE cryptographic provider.

 Default false

com.ibm.websphere.security.audit.auditEventFactory:

This property is used by the auditing service that was introduced as a technical preview in Version 6. The

auditing functionality is not available. Do not modify this property.

 Default J2EE=com.ibm.ws.security.audit.defaultAuditEventFactoryImpl

com.ibm.ws.security.defaultLoginConfig:

This property is the JAAS login configuration that is used for logins that do not fall under the

WEB_INBOUND, RMI_OUTBOUND, or RMI_INBOUND login configuration categories.

 Internal authentication and protocols that do not have specific JAAS plug points call the system login

configuration that is referenced by com.ibm.ws.security.defaultLoginConfig configuration.

 Default system.DEFAULT

com.ibm.ws.security.ssoInteropModeEnabled:

This property determines whether to send LtpaToken2 and LtpaToken cookies in the response to a Web

request (interoperable).

 When this property value is false, the application server just sends the new LtpaToken2 cookie which is

stronger, but not interoperable with some other products and Application Server releases prior to Version

5.1.1. In most cases, the old LtpaToken cookie is not needed and you can set this property to false.

 Default true

com.ibm.ws.security.webChallengeIfCustomSubjectNotFound:

Chapter 16. Security 1031

This property determines the behavior of a single sign-on LtpaToken2 login.

 When this property value is set to true, the token contains a custom cache key, and the custom Subject

cannot be found, the token is used to log in directly as the custom information needs to be gathered again.

A challenge occurs so that the user to login again. When this property value is set to false and the custom

Subject is not found, the LtpaToken2 is used to login and gather all of the registry attributes. However, the

token might not obtain any of the special attributes that downstream applications might expect.

 Default true

com.ibm.ws.security.webInboundLoginConfig:

This property is the JAAS login configuration that is used for Web requests that are received inbound.

 By knowing the login configuration, you can plug in a custom login module that can handle specific cases

for Web logins.

 Default system.WEB_INBOUND

com.ibm.ws.security.webInboundPropagationEnabled:

This property determines whether a received LtpaToken2 cookie should search for the propagated

attributes locally before searching the original login server that is specified in the token. After the

propagated attributes are received, the Subject is regenerated and the custom attributes are preserved.

 You can configure the distributed replication service (DRS) to send the propagated attributes to front-end

servers such that a local dynacache lookup can find the propagated attributes. Otherwise, an MBean

request is sent to the original login server to retrieve these attributes.

 Default true

com.ibm.wsspi.security.audit.auditServiceProvider:

This property is used by the auditing service that was introduced as a technical preview in Version 6. The

auditing functionality is not available. Do not modify this property.

 Default DEFAULT =

com.ibm.ws.security.audit.defaultAuditServiceProviderImpl

com.ibm.wsspi.security.ltpa.tokenFactory:

This property specifies the Lightweight Third Party Authentication (LTPA) token factories that can be used

to validate the LTPA tokens.

 Validation occurs in the order in which the token factories are specified because LTPA tokens do not have

object identifiers (OIDs) that specify the token type. The Application Server validates the tokens using each

token factory until validation is successful. The order that is specified for this property is the most likely

order of the received tokens. Specify multiple token factories by separating them with a pipe (|) without

spaces before or following the pipe.

 Default com.ibm.ws.security.ltpa.LTPATokenFactory |

com.ibm.ws.security.ltpa.LTPAToken2Factory |

com.ibm.ws.security.ltpa.AuthzPropTokenFactory

1032 Administering applications and their environment

com.ibm.wsspi.security.token.authenticationTokenFactory:

This property specifies the implementation that is used for an authentication token in the attribute

propagation framework. The property provides an old LTPA token implementation for use as the

authentication token.

 Default com.ibm.ws.security.ltpa.LTPATokenFactory

com.ibm.wsspi.security.token.authorizationTokenFactory:

This property specifies the implementation that is used for an authorization token. This token factory

encodes the authorization information.

 Default com.ibm.ws.security.ltpa.AuthzPropTokenFactory

com.ibm.wsspi.security.token.propagationTokenFactory:

This property specifies the implementation that is used for a propagation token. This token factory encodes

the propagation token information.

 The propagation token is on the thread of execution and is not associated with any specific user Subjects.

The token follows the invocation downstream wherever the process leads.

 Default com.ibm.ws.security.ltpa.AuthzPropTokenFactory

com.ibm.wsspi.security.token.singleSignonTokenFactory:

This property specifies the implementation that is used for a Single Sign-on (SSO) token. This

implementation is the cookie that is set when propagation is enabled regardless of the state of the

com.ibm.ws.security.ssoInteropModeEnabled property.

 By default, this implementation is the LtpaToken2 cookie.

 Default com.ibm.ws.security.ltpa.LTPAToken2Factory

security.enablePluggableAuthentication:

This property is no longer used. Instead, use WEB_INBOUND login configuration.

 Complete the following steps to modify the WEB_INBOUND login configuration:

1. Click Security > Secure administration, applications, and infrastructure.

2. Under Java Authentication and Authorization Service, click System logins.

 Default true

Security custom property collection:

Use this page to view and manage arbitrary name-value pairs of data, where the name is a property key

and the value is a string value that can be used to set internal system configuration properties.

 The administrative console contains several Custom Properties pages that work similarly. To view one of

these administrative pages, click a Custom Properties link.

Chapter 16. Security 1033

Name:

Specifies the name (or key) for the property.

 Each property name must be unique. If the same name is used for multiple properties, the value specified

for the first property that has that name is used.

Do not start your property names with was. because this prefix is reserved for properties that are

predefined in the application server.

Value:

Specifies the value paired with the specified name.

Description:

Provides information about the name-value pair.

Security custom property settings:

Use this page to configure arbitrary name-value pairs of data, where the name is a property key and the

value is a string value that can be used to set internal system configuration properties. Defining a new

property enables you to configure a setting beyond that which is available in the administrative console.

 The administrative console contains several Custom property settings pages that work similarly. To view

one of these administrative pages, click Custom Properties > New.

Name:

Specifies the name (or key) for the property.

 Each property name must be unique. If the same name is used for multiple properties, the value specified

for the first property that has that name is used.

Do not start your property names with was. because this prefix is reserved for properties that are

predefined in WebSphere Application Server.

 Data type String

Value:

Specifies the value paired with the specified name.

 Data type String

Description:

Provides information about the name and value pair.

 Data type String

Testing security after enabling it

Basic tests are available that show whether the fundamental security components are working properly.

Use this task to validate your security configuration.

1034 Administering applications and their environment

After configuring administrative security and restarting all of your servers in a secure mode, validate that

security is properly enabled.

There are a few techniques that you can use to test the various security login types. For example, you can

test the Web-based BasicAuth login, Web-based form login, and the Java client BasicAuth login.

Basic tests are available that show whether the fundamental security components are working properly.

Complete the following steps to validate your security configuration:

1. After enabling security, verify that your system comes up in secure mode.

2. Test the Web-based BasicAuth with Snoop, by accessing the following URL: http://
hostname.domain:9080/snoop. A login panel is displayed. If a login panel does not display, then a

problem exists. If the panel appears, type in any valid user ID and password in your configured user

registry.

3. Test the Web-based form login by starting the administrative console: http://
hostname.domain:port_number/ibm/console. A form-based login page is displayed. If a login page does

not appear, try accessing the administrative console by typing https://myhost.domain:9043/ibm/
console.

Type in the administrative user ID and password that are used for configuring your user registry when

configuring security.

4. Test Test Java Client BasicAuth with dumpNameSpace.

Use the app_server_root/bin/dumpNameSpace.bat file. A login panel appears. If a login panel does not

appear, there is a problem. Type in any valid user ID and password in your configured user registry.

5. Test all of your applications in secure mode.

6. If all the tests pass, proceed with more rigorous testing of your secured applications. If you have any

problems, review the output logs in the WebSphere Application Server /logs/nodeagent or WebSphere

Application Server /logs/server_name directories, respectively. For more information on common

problems, see Troubleshooting security configurations.

The results of these tests, if successful, indicate that security is fully enabled and working properly.

Authenticating users

The process of authenticating users involves a user registry and an authentication mechanism. Optionally,

you can define trust between WebSphere Application Server and a proxy server, configure single sign-on

capability, and specify how to propagate security attributes between application servers.

The following security topics are covered in this section:

User registries

For information on local operating system, Lightweight Directory Access Protocol (LDAP), custom

user registries, and user repositories such as virtual member manager, see “User registries and

repositories” on page 1037.

Authentication protocol for EJB security

For more information on the authentication protocols that are used for Enterprise JavaBeans (EJB)

security, see “Authentication protocol for EJB security” on page 1182.

Trust associations

For more information on trust associations, see “Trust associations” on page 1148.

Single sign-on

For more information on single sign-on, see “Single sign-on” on page 1152.

Security attribute propagation

For more information on propagation tokens, authorization tokens, single sign-on tokens, and

authentication tokens, see “Security attribute propagation” on page 1160.

Chapter 16. Security 1035

The following information is covered in this section:

v Configure a user registry. For more information, see “Selecting a registry or repository.”

v Configure WebSEAL or a custom trust association interceptor. For more information see, “Integrating

third-party HTTP reverse proxy servers” on page 1197.

v Configure single sign-on. For more information, see “Implementing single sign-on to minimize Web user

authentications” on page 1199.

v Propagate security attributes. For more information, see “Propagating security attributes among

application servers” on page 1238.

v Configure the authentication cache. For more information, see “Configuring the authentication cache” on

page 1240.

After completing the configuring the authentication process, you must authorize access to resources. For

more information, see “Authorizing access to resources” on page 1287.

Selecting a registry or repository

Information about users and groups reside in a user registry. In WebSphere Application Server, a user

registry authenticates a user and retrieves information about users and groups to perform security-related

functions, including authentication and authorization.

Note: During profile creation, either during installation or post-installation, administrative security is

enabled by default. You might decide not to enable security, but if the default is accepted, the

file-based federated user repository is configured as the active user registry. You can use a different

user registry before the profile is created.

Before configuring the user registry or repository, decide which user registry or repository to use. Though

different types of registries and repositories are supported, all of the processes in WebSphere Application

Server can use only one active registry.

Configuring the correct registry or repository is a prerequisite to assigning users and groups to roles for

applications. When a user registry or repository is not configured, the local operating system registry is

used by default. If your choice of user registry is not the local operating system registry, you need to first

configure the registry or repository, which is normally done as part of enabling security, restart the servers,

and then assign users and groups to roles for all your applications.

In addition to local operating system and LDAP registries, WebSphere Application Server also provides a

plug-in to support any registry by using the custom registry feature. The custom registry feature enables

you to configure any user registry that is not made available through the security configuration panels of

the WebSphere Application Server.

The UserRegistry interface is used to implement both the custom registry and the federated repository

options for the user account repository. The interface is very helpful in situations where the current user

and group information exists in some other formats, for example, a database, and cannot move to local

operating system or LDAP registries. In such a case, you can implement the UserRegistry interface so that

WebSphere Application Server can use the existing registry for all the security-related operations. The

process of implementing a custom registry is a software implementation effort and it is expected that the

implementation does not depend on other WebSphere Application Server resources, for example, data

sources, for its operation.

WebSphere Application Server supports the following types of user registries:

v Federated repository

v Local operating system

v Standalone Lightweight Directory Access Protocol (LDAP) registry

v Standalone custom registry

1036 Administering applications and their environment

After the applications are assigned users and groups and you need to change the user registries, delete

all the users and groups, including any RunAs role, from the applications, and reassign them after

changing the registry through the administrative console or by using wsadmin scripting. The following

wsadmin command, which uses Jacl, removes all of the users and groups from any application:

$AdminApp deleteUserAndGroupEntries yourAppName

where yourAppName is the name of the application. Backing up the old application is advised before

performing this operation. However, if both of the following conditions are true, you might be able to switch

the registries without having to delete the users and groups information:

v All of the user and group names, including the password for the RunAs role users, in all of the

applications match in both user registries.

v The application bindings file does not contain the access IDs which are unique for each user registry

even for the same user or group name.

By default, an application does not contain access IDs in the bindings file. These IDs are generated when

the applications start. However, if you migrated an existing application from an earlier release, or if you

used the wsadmin script to add access IDs for the applications to improve performance, you have to

remove the existing user and group information and add the information after configuring the new user

registry.

For more information on updating access IDs, see updateAccess IDs in the AdminApp object for scripted

administration article.

Complete one of the following steps to configure your user registry:

v “Configuring local operating system registries” on page 1038

v “Configuring Lightweight Directory Access Protocol user registries” on page 1041

v “Configuring standalone custom registries” on page 1060.

v “Managing the realm in a federated repository configuration” on page 1082

1. If you are enabling security, make sure that you complete the remaining steps. Verify that the User

account repository on the Secure administration, applications, and infrastructure panel is set to the

appropriate registry or repository. As the final step, validate the user ID and the password by clicking

Apply on the Secure administration, applications, and infrastructure panel. Save, stop and start all

WebSphere Application Servers.

2. For any changes in user registry panels to be effective, you must validate the changes by clicking

Apply on the Secure administration, applications, and infrastructure panel. After validation, save the

configuration and stop and start all WebSphere Application Servers, including the cells, nodes and all

of the application servers. To avoid inconsistencies between the WebSphere Application Server

processes, make sure that any changes to the registry or repository are done when all of the

processes are running. If any of the processes are down, force synchronization to make sure that the

process can start later.

If the server or servers start without any problems, the setup is correct.

User registries and repositories

Information about users and groups reside within a registry or repository.

WebSphere Application Server provides implementations that support multiple types of registries and

repositories including the local operating system registry, a standalone Lightweight Directory Access

Protocol (LDAP) registry, a standalone custom registry, and federated repositories.

With WebSphere Application Server, a user registry or a repository, such as virtual member manager,

authenticates a user and retrieves information about users and groups to perform security-related functions

including authentication and authorization.

With WebSphere Application Server, a user registry or repository is used for:

Chapter 16. Security 1037

v Authenticating a user using basic authentication, identity assertion, or client certificates

v Retrieving information about users and groups to perform security-related administrative functions, such

as mapping users and groups to security roles

Although WebSphere Application Server supports different types of user registries, only one user registry

can be active. This active registry is shared by all of the product server processes.

After configuring the registry or repository, you must specify it as the active repository. Through the

administration console, you can select an available realm definition for the registry or repository from the

User account repository section of the Secure administration, applications, and administration panel. After

selecting the registry or repository, first click Set as current, and then click Apply.

Note: WebSphere Application Server has implemented a user registry proxy by using the UserRegistry

interface. However, the return values are little different from the interface. For example,

getUniqueUserId returns the uniqueID with the realm name wrapped. You cannot use the return

value to pass to getUserSecurityName, as shown in the following example:

// Retrieves the default InitialContext for this server.

javax.naming.InitialContext ctx = new javax.naming.InitialContext();

// Retrieves the local UserRegistry object.

com.ibm.websphere.security.UserRegistry reg =

 (com.ibm.websphere.security.UserRegistry) ctx.lookup("UserRegistry");

// Retrieves the registry uniqueID based on the userName that is specified

 // in the NameCallback.

String uniqueid = reg.getUniqueUserId(userName);

// Strip the realm name and get real uniqueID

String uid = WSSecurityPropagationHelper.getUserFromUniqueID (uniqueID);

// Retrieves the security name from the user registry based on the uniqueID.

String securityName = reg.getUserSecurityName(uid);

Configuring local operating system registries

Use these steps to configure local operating system registries.

For security purposes, the WebSphere Application Server provides and supports the implementation for

Windows operating system registries, AIX, Solaris and multiple versions of Linux operating systems. The

respective operating system application programming interface (API) are called by the product processes

(servers) for authenticating a user and other security-related tasks (for example, getting user or group

information). Access to these APIs are restricted to users who have special privileges. These privileges

depend on the operating system and are described below.

In WebSphere Application Server Version 6.1, you can use an internally-generated server ID because the

Security WebSphere Common Configuration Model (WCCM) model contains a new tag, internalServerId.

You do not need to specify a server user ID and a password during security configuration except in a

mixed-cell environment. See “Administrative roles and naming service authorization” on page 1288 for

more detailed information about the new internal server ID.

Windows

Consider the following issues:

v The server ID needs to be different from the Windows machine name where the product is installed. For

example, if the Windows machine name is vicky and the security server ID is vickyy, the Windows

system fails when getting the information (group information, for example) for user vicky.

v WebSphere Application Server dynamically determines whether the machine is a member of a Windows

system domain.

v WebSphere Application Server does not support Windows trusted domains.

v If a machine is a member of a Windows domain, both the domain user registry and the local user

registry of the machine participate in authentication and security role mapping.

1038 Administering applications and their environment

v The domain user registry takes precedence over the local user registry of the machine and can have

undesirable implications if users with the same password exist in both user registries.

v The user that the product processes run under requires the Administrative and Act as part of the

operating system privileges to call the Windows operating system APIs that authenticate or collect user

and group information. The process needs special authority, which is given by these privileges. The user

in this example might not be the same as the security server ID (the requirement for which is a valid

user in the registry). This user logs into the machine (if using the command line to start the product

process) or the Log On User setting in the services panel if the product processes have started using

the services. If the machine is also part of a domain, this user is a part of the Domain Admin group in

the domain to call the operating system APIs in the domain in addition to having the Act as part of

operating system privilege in the local machine.

Consider the following points:

v

AIX

Solaris

The user that the product processes run under requires the root privilege. This

privilege is needed to call the operating system APIs to authenticate or to collect user and group

information. The process needs special authority, which is given by the root privilege. This user might

not be the same as the security server ID (the requirement is that it should be a valid user in the

registry). This user logs into the machine and is running the product processes.

v The user that enables administrative security must have the root privilege if you use the local operating

system registry. Otherwise, a failed validation error is displayed.

v

Linux

You might need to have the password shadow file in your system.

Important: The local operating system in not a valid user account repository when you have a mixed cell

environment that includes both z/OS platform and non-z/OS platform nodes.

The following steps are needed to perform this task initially when setting up security for the first time.

1. Click Security > Secure administration, applications, and infrastructure.

2. Under User account repository, select Local operating system and click Configure.

3. Enter a valid user name in the Primary administrative user name field. This value is the name of a

user with administrative privileges that is defined in the registry. This user name is used to access the

administrative console or used by wsadmin.

4. Click Apply.

5. Select either the Automatically generated server identity or Server identity that is stored in the

repository option. If you select the Server identity that is stored in the repository option, enter the

following information:

Server user ID or administrative user on a Version 6.0.x node

Specify the short name of the account that is chosen in the second step.

Server user password

Specify the password of the account that is chosen in the second step.

6. Click OK.

The administrative console does not validate the user ID and password when you click OK. Validation

is only done when you click OK or Apply in the Secure administration, applications, and infrastructure

panel. First, make sure that you select Local operating system as the available realm definition in the

User account repository section, and click Set as current. If security was already enabled and you had

changed either the user or the password information in this panel, make sure to go to the Secure

administration, applications, and infrastructure panel and click OK or Apply to validate your changes. If

your changes are not validated, the server might not start.

Important: Until you authorize other users to perform administrative functions, you can only access

the administrative console with the server user ID and password that you specified. For

more information, see “Authorizing access to administrative roles” on page 1341.

Chapter 16. Security 1039

For any changes in this panel to be effective, you need to save, stop, and start all the product servers,

including deployment managers, nodes and application servers. If the server comes up without any

problems, the setup is correct.

After completed these steps, you have configured WebSphere Application Server to use the local

operating system registry to identify authorized users.

Complete any remaining steps for enabling security. For more information, see “Enabling security” on page

999.

Configuring user ID for proper privileges:

Use this page to configure a user ID for proper privileges or to log on as a service on the Windows

platform.

Windows

1. Click Start > Settings > Control Panel > Administrative Tools > Local Security Policy > Local

Policies > User Rights Assignments > Act as part of the operating system (or Log on as a

service). For a Windows domain controller, replace Local Security Policy with Domain Security

Policy in the first step.

Note: If the machine is a standalone machine and not a member of a domain, you must add a

machineName\userID, where the userID is the owner of the process, such as WebSphere

Application Server. If you run WebSphere Application Server as a service, you can log on with

localsystem as the service.

2. If the machine is a member of a domain, add domainName\userID, where the userID is the owner of

process (such as WebSphere Application Server). Start WebSphere Application Server as a service

with login ID domainName\userID. If WebSphere Application Server is already in service, go to the

service and right-click IBM WebSphere Application Server > properties >Logon to change the

logon ID and password to restart WebSphere Application Server.

3. Add the user name by clicking Add.

4. Restart the machine.

Note: In all of the previous configurations, the server can be run as a service using LocalSystem for the

Log On As entry. The LocalSystem entry has the required privileges and there is no need to give

special privileges to any user. However, because the LocalSystem entry has special privileges,

make sure that it is appropriate to use in your environment.

Local operating system settings:

Use this page to configure local operating system registry settings.

 To view this administrative console page, complete the following steps:

1. Click Security > Secure administration, applications, and infrastructure.

2. Under User account repository, click the Available realm definitions drop-down list, selectLocal

operating system.

3. Click Configure.

WebSphere Application Server Version 6.1 distinguishes between the user identities for administrators who

manage the environment and server identities for authenticating server to server communications. In most

cases, server identities are automatically generated and are not stored in a repository. However, if you are

adding a Version 5.0.x or 6.0.x node to a Version 6.1 cell, you must ensure that the Version 5.x or Version

6.0.x server identity and password are defined in the repository for this cell. Enter the server user identity

and password on this panel.

1040 Administering applications and their environment

Primary administrative user name:

Specifies the name of a user with administrative privileges that is defined in your local operating system.

 The user name is used to log on to the administrative console when administrative security is enabled.

Automatically generated server identity:

Enables the application server to generate the server identity that is used for internal process

communication.

 You can change this server identity on the Authentication mechanisms and expiration panel. To access the

Authentication mechanisms and expiration panel, click Security > Secure administration, applications,

and infrastructure > Authentication mechanisms and expiration. Change the value of the Internal

server ID field.

 Default: Disabled

Server identity that is stored in the repository:

Specifies a user identity in the repository that is used for internal process communication.

 Default: Enabled

Server user ID or administrative user on a Version 6.0.x node:

Specifies the user ID that is used to run the application server for security purposes.

Password:

Specifies the password that corresponds to the server ID.

Local operating system wizard settings:

Use this security wizard page to configure local operating system registry settings.

 To view this security wizard page, complete the following steps:

1. Click Security > Secure administration, applications, and infrastructure > Security configuration

wizard.

2. Select your protection settings and click Next.

3. Select the Local operating system option and click Next.

Primary administrative user name:

Specifies the name of a user with administrative privileges that is defined in your local operating system.

 The user name is used to log on to the administrative console when administrative security is enabled.

Configuring Lightweight Directory Access Protocol user registries

To access a user registry using the Lightweight Directory Access Protocol (LDAP), you must know a valid

user name (ID) and password, the server host and port of the registry server, the base distinguished name

(DN) and, if necessary, the bind DN and the bind password. You can choose any valid user in the user

registry that is searchable. You can use any user ID that has the administrative role to log in.

Chapter 16. Security 1041

In some LDAP servers, administrative users cannot be searched and thus cannot be used, for example,

when cn=root in Tivoli Access Manager. The user is referred to as a WebSphere Application Server

security server ID, server ID, or server user ID in the documentation. A server ID user has special

privileges when calling some protected internal methods.

Normally, the primary administrative user name is used to log into the administrative console if security is

enabled. By default, security is enabled after installation.

When security is enabled in the product, the primary administrative user name and password are

authenticated with the registry during the product startup. If authentication fails, the server does not start. It

is important to choose an ID and password that do not expire or change often. If the product server user

ID or password need to change in the registry, make sure that the changes are performed when all the

product servers are up and running. When changes are to be made in the registry, review the article on

“Standalone Lightweight Directory Access Protocol registries” on page 1136 (LDAP) before beginning this

task.

 1. In the administrative console, click Security > Secure administration, applications, and

infrastructure.

 2. Under User account repository, click the Available realm definitions drop-down list, select

Standalone LDAP registry, and click Configure.

 3. Enter a valid user name in the Primary administrative user name field. You can either enter the

complete distinguished name (DN) of the user or the short name of the user, as defined by the user

filter in the Advanced LDAP settings panel. For example, enter the user ID for Netscape browsers.

This ID is the security server ID, which is only used for WebSphere Application Server security and is

not associated with the system process that runs the server. The server calls the local operating

system registry to authenticate and obtain privilege information about users by calling the native

application programming interfaces (API) in that particular registry.

 4. Optional: If you want to use the server ID that is stored in the repository, complete the following:

a. Select Automatically generated server identity to enable the application server to generate the

server identity that is used for internal process communication. You can change this server

identity on the Authentication mechanisms and expiration panel. To access the Authentication

mechanisms and expiration panel, click Security > Secure administration, applications, and

infrastructure > Authentication mechanisms and expiration. Change the value of the Internal

server ID field.

b. Alternatively, specify a user identity in the repository that is used for internal process

communication in the Server identity that is stored in the repository field.

c. Alternatively, specify the user ID that is used to run the application server for security purposes in

the Server user ID or administrative user on a Version 6.0.x node field.

 5. Select the type of LDAP server to use from the Type list. The type of LDAP server determines the

default filters that are used by WebSphere Application Server. These default filters change the Type

field to Custom, which indicates that custom filters are used. This action occurs after you click OK or

Apply in the Advanced LDAP settings panel. Choose the Custom type from the list and modify the

user and group filters to use other LDAP servers, if required.

IBM Tivoli Directory Server users can choose IBM Tivoli Directory Server as the directory type. Use

the IBM Tivoli Directory Server directory type for better performance. For a list of supported LDAP

servers, see the Supported hardware, software, and APIs Web site.

Attention: IBM SecureWay Directory Server has been renamed to IBM Tivoli Directory Server in

WebSphere Application Server version 6.1.

 6. Enter the fully qualified host name of the LDAP server in the Host field. You can enter either the IP

address or domain name system (DNS) name.

1042 Administering applications and their environment

http://www.ibm.com/support/docview.wss?rs=180&uid=swg27006921

7. Enter the LDAP server port number in the Port field. The host name and the port number represent

the realm for this LDAP server in the WebSphere Application Server cell. So, if servers in different

cells are communicating with each other using Lightweight Third Party Authentication (LTPA) tokens,

these realms must match exactly in all the cells.

The default value is 389. If multiple WebSphere Application Servers are installed and configured to

run in the same single sign-on domain, or if the WebSphere Application Server interoperates with a

previous version of the WebSphere Application Server, then it is important that the port number match

all configurations. For example, if the LDAP port is explicitly specified as 389 in a version 5.x

configuration, and a WebSphere Application Server at version 6.0.x is going to interoperate with the

version 5.x server, then verify that port 389 is specified explicitly for the version 6.0.x server.

 8. Enter the base distinguished name (DN) in the Base distinguished name field. The base DN

indicates the starting point for searches in this LDAP directory server. For example, for a user with a

DN of cn=John Doe, ou=Rochester, o=IBM, c=US, specify the base DN as any of the following options

assuming a suffix of c=us): ou=Rochester, o=IBM, c=us or o=IBM c=us or c=us. For authorization

purposes, this field is case sensitive by default. Match the case in your directory server. If a token is

received (for example, from another cell or Lotus Domino) the base DN in the server must match

exactly the base DN from the other cell or Domino. If case sensitivity is not a consideration for

authorization, enable the Ignore case for authorization option.

In WebSphere Application Server, the distinguished name is normalized according to the Lightweight

Directory Access Protocol (LDAP) specification. Normalization consists of removing spaces in the

base distinguished name before or after commas and equal symbols. An example of a

non-normalized base distinguished name is o = ibm, c = us or o=ibm, c=us. An example of a

normalized base distinguished name is o=ibm,c=us.

To interoperate between WebSphere Application Server Version 5 and later versions, you must enter

a normalized base distinguished name in the Base Distinguished Name field. In WebSphere

Application Server, Version 5.0.1 or later, the normalization occurs automatically during runtime.

This field is required for all LDAP directories except the Lotus Domino Directory. The Base

Distinguished Name field is optional for the Domino server.

 9. Optional: Enter the bind DN name in the Bind distinguished name field. The bind DN is required if

anonymous binds are not possible on the LDAP server to obtain user and group information. If the

LDAP server is set up to use anonymous binds, leave this field blank. If a name is not specified, the

application server binds anonymously. See the Base Distinguished Name field description for

examples of distinguished names.

10. Optional: Enter the password corresponding to the bind DN in the Bind password field.

11. Optional: Modify the Search time out value. This timeout value is the maximum amount of time that

the LDAP server waits to send a response to the product client before stopping the request. The

default is 120 seconds.

12. Ensure that the Reuse connection option is selected. This option specifies that the server should

reuse the LDAP connection. Clear this option only in rare situations where a router is used to send

requests to multiple LDAP servers and when the router does not support affinity. Leave this option

selected for all other situations.

13. Optional: Verify that the Ignore case for authorization option is enabled. When you enable this

option, the authorization check is case insensitive. Normally, an authorization check involves checking

the complete DN of a user, which is unique in the LDAP server and is case sensitive. However, when

you use either the IBM Directory Server or the Sun ONE (formerly iPlanet) Directory Server LDAP

servers, you must enable this option because the group information that is obtained from the LDAP

servers is not consistent in case. This inconsistency affects the authorization check only. Otherwise,

this field is optional and can be enabled when a case sensitive authorization check is required. For

example, you might select this option when you use certificates and the certificate contents do not

match the case of the entry in the LDAP server.

You can also enable the Ignore case for authorization option when you are using single sign-on

(SSO) between the product and Lotus Domino. The default is enabled.

Chapter 16. Security 1043

14. Optional: Select the SSL enabled option if you want to use Secure Sockets Layer communications

with the LDAP server.

If you select the SSL enabled option, you can select either the Centrally managed or the Use

specific SSL alias option.

Centrally managed

Enables you to specify an SSL configuration for particular scope such as the cell, node,

server, or cluster in one location. To use the Centrally managed option, you must specify the

SSL configuration for the particular set of endpoints. The Manage endpoint security

configurations and trust zones panel displays all of the inbound and outbound endpoints that

use the SSL protocol. If you expand the Inbound or Outbound section of the panel and click

the name of a node, you can specify an SSL configuration that is used for every endpoint on

that node. For an LDAP registry, you can override the inherited SSL configuration by

specifying an SSL configuration for LDAP. To specify an SSL configuration for LDAP,

complete the following steps:

a. Click Security > SSL certificate and key management > Manage endpoint security

configurations and trust zones.

b. Expand Outbound > cell_name > Nodes > node_name > Servers > server_name >

LDAP.

Use specific SSL alias

Select the Use specific SSL alias option if you intend to select one of the SSL configurations

in the menu below the option.

 This configuration is used only when SSL is enabled for LDAP. The default is

DefaultSSLSettings. To modify or create a new SSL configuration, complete the following

steps:

a. Click Security > SSL certificate and key management.

b. Under Configuration settings, click Manage endpoint security configurations.

c. Select a Secure Sockets Layer (SSL) configuration_name for selected scopes, such as a

cell, node, server, or cluster.

d. Under Related items, click SSL configurations.

e. Click New.

15. Click OK and either Apply or Save until you return to the Secure administration, applications, and

infrastructure panel.

This set of steps is required to set up the LDAP user registry. This step is required as part of enabling

security in the WebSphere Application Server.

1. If you are enabling security, complete the remaining steps as specified in “Enabling security for the

realm” on page 1024.

2. Save, stop, and restart all the product servers (deployment managers, nodes and Application Servers)

for changes in this panel to take effect. If the server comes up without any problems the setup is

correct.

Standalone LDAP registry settings:

Use this page to configure Lightweight Directory Access Protocol (LDAP) settings when users and groups

reside in an external LDAP directory.

 To view this administrative console page, complete the following steps:

1. Click Security > Secure administration, applications, and infrastructure.

2. Under User account repository, click the Available realm definitions drop-down list, selectStandalone

LDAP registry, and click Configure.

1044 Administering applications and their environment

When security is enabled and any of these properties change, go to the Secure administration,

applications, and infrastructure panel and click Apply to validate the changes.

WebSphere Application Server Version 6.1 distinguishes between the user identities for administrators who

manage the environment and server identities for authenticating server to server communications. In most

cases, server identities are automatically generated and are not stored in a repository. However, if you are

adding a Version 5.0.x or 6.0.x node to a Version 6.1 cell, you must ensure that the Version 5.x or Version

6.0.x server identity and password are defined in the repository for this cell. Enter the server user identity

and password on this panel.

Primary administrative user name:

Specifies the name of a user with administrative privileges that is defined in your custom user registry.

 The user name is used to log onto the administrative console when administrative security is enabled.

Automatically generated server identity:

Enables the application server to generate the server identity that is used for internal process

communication.

 You can change this server identity on the Authentication mechanisms and expiration panel. To access the

Authentication mechanisms and expiration panel, click Security > Secure administration, applications,

and infrastructure > Authentication mechanisms and expiration. Change the value of the Internal

server ID field.

 Default: Disabled

Server identity that is stored in the repository:

Specifies a user identity in the repository that is used for internal process communication.

 Default: Enabled

Server user ID or administrative user on a Version 6.0.x node:

Specifies the user ID that is used to run the application server for security purposes.

Password:

Specifies the password that corresponds to the server ID.

Type of LDAP server:

Specifies the type of LDAP server to which you connect.

 IBM SecureWay Directory Server is not supported.

Host:

Specifies the host ID (IP address or domain name service (DNS) name) of the LDAP server.

Port:

Specifies the host port of the LDAP server.

Chapter 16. Security 1045

If multiple application servers are installed and configured to run in the same single sign-on domain or if

the application server interoperates with a previous version, it is important that the port number match all

configurations. For example, if the LDAP port is explicitly specified as 389 in a Version 4.0.x configuration,

and a WebSphere Application Server at Version 5 is going to interoperate with the Version 4.0.x server,

verify that port 389 is specified explicitly for the Version 5 server.

 Default: 389

Type: Integer

Base distinguished name (DN):

Specifies the base distinguished name (DN) of the directory service, which indicates the starting point for

LDAP searches of the directory service. In most cases, bind DN and bind password are needed. However,

when anonymous bind can satisfy all of the required functions, bind DN and bind password are not

needed.

 For example, for a user with a DN of cn=John Doe , ou=Rochester, o=IBM, c=US, specify the Base DN as

any of the following options: ou=Rochester, o=IBM, c=US or o=IBM c=US or c=US. For authorization purposes,

this field is case sensitive. This specification implies that if a token is received, for example, from another

cell or Lotus Domino, the base DN in the server must match the base DN from the other cell or Lotus

Domino server exactly. If case sensitivity is not a consideration for authorization, enable the Ignore case

for authorization option. This option is required for all Lightweight Directory Access Protocol (LDAP)

directories, except for the Lotus Domino Directory, IBM Tivoli Directory Server V6.0, and Novell eDirectory,

where this field is optional.

If you need to interoperate between the application server Version 5 and a Version 5.0.1 or later server,

you must enter a normalized base DN. A normalized base DN does not contain spaces before or after

commas and equal symbols. An example of a non-normalized base DN is o = ibm, c = us or o=ibm,

c=us. An example of a normalized base DN is o=ibm,c=us. In WebSphere Application Server, Version 5.0.1

or later, the normalization occurs automatically during runtime.

Bind distinguished name (DN):

Specifies the DN for the application server to use when binding to the directory service.

 If no name is specified, the application server binds anonymously. See the Base distinguished name (DN)

field description for examples of distinguished names.

Bind password:

Specifies the password for the application server to use when binding to the directory service.

Search timeout:

Specifies the timeout value in seconds for an Lightweight Directory Access Protocol (LDAP) server to

respond before stopping a request.

 Default: 120

Reuse connection:

Specifies whether the server reuses the LDAP connection. Clear this option only in rare situations where a

router is used to distribute requests to multiple LDAP servers and when the router does not support

affinity.

1046 Administering applications and their environment

Default: Enabled

Range: Enabled or Disabled

Important: Disabling the Reuse connection option causes the application server to create a new LDAP

connection for every LDAP search request. This situation impacts system performance if your

environment requires extensive LDAP calls. This option is provided because the router is not

sending the request to the same LDAP server. The option is also used when the idle

connection timeout value or firewall timeout value between the application server and LDAP is

too small.

If you are using WebSphere Edge Server for LDAP failover, you must enable TCP resets with

the Edge server. A TCP reset causes the connection to immediately closed and a backup

server to failover. For more information, see ″Sending TCP resets when server is down″ at

http://www-3.ibm.com/software/webservers/appserv/doc/v50/ec/infocenter/edge/
LBguide.htm#HDRRESETSERVER and the Edge Server V2 - TCP Reset feature in PTF #2

described in: ftp://ftp.software.ibm.com/software/websphere/edgeserver/info/doc/v20/en/
updates.pdf.

Ignore case for authorization:

Specifies that a case insensitive authorization check is performed when using the default authorization.

 This option is required when IBM Tivoli Directory Server is selected as the LDAP directory server.

This option is required when Sun ONE Directory Server is selected as the LDAP directory server. For

more information, see ″Using specific directory servers as the LDAP server″ in the documentation.

This option is optional and can be enabled when a case-sensitive authorization check is required. For

example, use this option when the certificates and the certificate contents do not match the case that is

used for the entry in the LDAP server. You can enable the Ignore case for authorization option when

using single sign-on (SSO) between the application server and Lotus Domino.

 Default: Enabled

Range: Enabled or Disabled

SSL enabled:

Specifies whether secure socket communication is enabled to the Lightweight Directory Access Protocol

(LDAP) server.

 When enabled, the LDAP Secure Sockets Layer (SSL) settings are used, if specified.

Centrally managed:

Specifies that the selection of an SSL configuration is based upon the outbound topology view for the Java

Naming and Directory Interface (JNDI) platform.

 Centrally managed configurations support one location to maintain SSL configurations rather than

spreading them across the configuration documents.

 Default: Enabled

Use specific SSL alias:

Chapter 16. Security 1047

http://www-3.ibm.com/software/webservers/appserv/doc/v50/ec/infocenter/edge/LBguide.htm#HDRRESETSERVER
http://www-3.ibm.com/software/webservers/appserv/doc/v50/ec/infocenter/edge/LBguide.htm#HDRRESETSERVER
ftp://ftp.software.ibm.com/software/websphere/edgeserver/info/doc/v20/en/updates.pdf
ftp://ftp.software.ibm.com/software/websphere/edgeserver/info/doc/v20/en/updates.pdf

Specifies the SSL configuration alias to use for LDAP outbound SSL communications.

 This option overrides the centrally managed configuration for the JNDI platform.

Standalone LDAP registry wizard settings:

Use this security wizard page to provide the basic settings to connect the application server to an existing

Lightweight Directory Access Protocol (LDAP) registry.

 To view this security wizard page, click Security > Secure administration, applications, and

infrastructure > Security configuration wizard. You can modify your LDAP registry configuration by

completing the following steps:

1. Click Security > Security administration, applications, and infrastructure.

2. Under User account repository, click the Available realm definitions drop-down list, selectStandalone

LDAP registry, and click Configure.

Primary administrative user name:

Specifies the name of a user with administrative privileges that is defined in your custom user registry.

 The user name is used to log onto the administrative console when administrative security is enabled.

Type of LDAP server:

Specifies the type of LDAP server to which you connect.

 IBM SecureWay Directory Server is not supported.

Host:

Specifies the host ID (IP address or domain name service (DNS) name) of the LDAP server.

Port:

Specifies the host port of the LDAP server.

 If multiple application servers are installed and configured to run in the same single sign-on domain or if

the application server interoperates with a previous version, it is important that the port number match all

configurations. For example, if the LDAP port is explicitly specified as 389 in a Version 4.0.x configuration,

and a WebSphere Application Server at Version 5 is going to interoperate with the Version 4.0.x server,

verify that port 389 is specified explicitly for the Version 5 server.

 Default: 389

Type: Integer

Base distinguished name (DN):

Specifies the base distinguished name (DN) of the directory service, which indicates the starting point for

LDAP searches of the directory service. In most cases, bind DN and bind password are needed. However,

when anonymous bind can satisfy all of the required functions, bind DN and bind password are not

needed.

 For example, for a user with a DN of cn=John Doe , ou=Rochester, o=IBM, c=US, specify the Base DN as

any of the following options: ou=Rochester, o=IBM, c=US or o=IBM, c=US or c=US. For authorization purposes,

1048 Administering applications and their environment

this field is case sensitive. This specification implies that if a token is received, for example, from another

cell or Lotus Domino, the base DN in the server must match the base DN from the other cell or Lotus

Domino server exactly.

If you need to interoperate between the application server Version 5 and a Version 5.0.1 or later server,

you must enter a normalized base DN. A normalized base DN does not contain spaces before or after

commas and equal symbols. An example of a non-normalized base DN is o = ibm, c = us or o=ibm,

c=us. An example of a normalized base DN is o=ibm,c=us. In WebSphere Application Server, Version 5.0.1

or later, the normalization occurs automatically during run time.

Bind distinguished name (DN):

Specifies the DN for the application server to use when binding to the directory service.

 If no name is specified, the application server binds anonymously. See the Base distinguished name (DN)

field description for examples of distinguished names.

Bind password:

Specifies the password for the application server to use when binding to the directory service.

Advanced Lightweight Directory Access Protocol user registry settings:

Use this page to configure the advanced Lightweight Directory Access Protocol (LDAP) user registry

settings when users and groups reside in an external LDAP directory.

 To view this administrative page, complete the following steps:

1. Click Security > Secure administration, applications, and infrastructure.

2. Under User account repository, click the Available realm definitions drop-down list, selectStandalone

LDAP registry, and click Configure.

3. Under Additional properties, click Advanced Lightweight Directory Access Protocol (LDAP) user

registry settings.

Default values for all the user and group related filters are already completed in the appropriate fields. You

can change these values depending on your requirements. These default values are based on the type of

LDAP server that is selected in the Standalone LDAP registry settings panel. If this type changes, for

example from Netscape to Secureway, the default filters automatically change. When the default filter

values change, the LDAP server type changes to Custom to indicate that custom filters are used. When

security is enabled and any of these properties change, go to the Secure administration, applications, and

infrastructure panel and click Apply or OK to validate the changes.

User filter:

Specifies the LDAP user filter that searches the user registry for users.

 This option is typically used for security role-to-user assignments and specifies the property by which to

look up users in the directory service. For example, to look up users based on their user IDs, specify

(&(uid=%v)(objectclass=inetOrgPerson)). For more information about this syntax, see the LDAP directory

service documentation.

 Data type: String

Group filter:

Specifies the LDAP group filter that searches the user registry for groups

Chapter 16. Security 1049

This option is typically used for security role-to-group assignments and specifies the property by which to

look up groups in the directory service. For more information about this syntax, see the LDAP directory

service documentation.

 Data type: String

User ID map:

Specifies the LDAP filter that maps the short name of a user to an LDAP entry.

 Specifies the piece of information that represents users when users display. For example, to display

entries of the object class = inetOrgPerson type by their IDs, specify inetOrgPerson:uid. This field takes

multiple objectclass:property pairs delimited by a semicolon (;).

 Data type: String

Group ID map:

Specifies the LDAP filter that maps the short name of a group to an LDAP entry.

 Specifies the piece of information that represents groups when groups display. For example, to display

groups by their names, specify *:cn. The asterisk (*) is a wildcard character that searches on any object

class in this case. This field takes multiple objectclass:property pairs, delimited by a semicolon (;).

 Data type: String

Group member ID map:

Specifies the LDAP filter that identifies user-to-group relationships.

 For directory types SecureWay, and Domino, this field takes multiple objectclass:property pairs, delimited

by a semicolon (;). In an objectclass:property pair, the object class value is the same object class that is

defined in the group filter, and the property is the member attribute. If the object class value does not

match the object class in the group filter, authorization might fail if groups are mapped to security roles.

For more information about this syntax, see your LDAP directory service documentation.

For IBM Directory Server, Sun ONE, and Active Directory, this field takes multiple group attribute:member

attribute pairs delimited by a semicolon (;). These pairs are used to find the group memberships of a

user by enumerating all the group attributes that are possessed by a given user. For example, attribute

pair memberof:member is used by Active Directory, and ibm-allGroup:member is used by IBM Directory

Server. This field also specifies which property of an object class stores the list of members belonging to

the group represented by the object class. For supported LDAP directory servers, see ″Supported directory

services″.

 Data type: String

Perform a nested group search:

Specifies a recursive nested group search.

 Select this option if the Lightweight Directory Access Protocol (LDAP) server does not support recursive

server-side group member searches and if recursive group member search is required. It is not

recommended that you select this option to locate recursive group memberships for LDAP servers.

1050 Administering applications and their environment

Application server security leverages the recursive search functionality of the LDAP server to search a

user’s group memberships, including recursive group memberships. For example:

v IBM Directory Server is preconfigured by the application server security to recursively calculate a user’s

group memberships using the ibm-allGroup attribute.

v SunONE directory server is preconfigured to calculate nested group memberships using the nsRole

attribute.

 Data type: String

Certificate map mode:

Specifies whether to map X.509 certificates into an LDAP directory by EXACT_DN or

CERTIFICATE_FILTER. Specify CERTIFICATE_FILTER to use the specified certificate filter for the

mapping.

 Data type: String

Certificate filter:

Specifies the filter certificate mapping property for the LDAP filter. The filter is used to map attributes in the

client certificate to entries in the LDAP registry.

 If more than one LDAP entry matches the filter specification at runtime, authentication fails because the

result is an ambiguous match. The syntax or structure of this filter is:

(&(uid=${SubjectCN})(objectclass=inetOrgPerson)). The left side of the filter specification is an LDAP

attribute that depends on the schema that your LDAP server is configured to use. The right side of the

filter specification is one of the public attributes in your client certificate. The right side must begin with a

dollar sign ($) and open bracket ({) and end with a close bracket (}). You can use the following certificate

attribute values on the right side of the filter specification. The case of the strings is important:

v ${UniqueKey}

v ${PublicKey}

v ${Issuer}

v ${NotAfter}

v ${NotBefore}

v ${SerialNumber}

v ${SigAlgName}

v ${SigAlgOID}

v ${SigAlgParams}

v ${SubjectCN}

v ${Version}

 Data type: String

Configuring Lightweight Directory Access Protocol search filters:

Use this topic to configure the LDAP search filters. These steps are required to modify existing user and

group filters for a particular LDAP directory type, and also to set up certificate filters to map certificates to

entries in the LDAP server.

 WebSphere Application Server uses Lightweight Directory Access Protocol (LDAP) filters to search and

obtain information about users and groups from an LDAP directory server. A default set of filters is

provided for each LDAP server that the product supports. You can modify these filters to fit your LDAP

configuration. After the filters are modified and you click OK or Apply the directory type in the Standalone

LDAP registry panel changes to custom, which indicates that custom filters are used. Also, you can

Chapter 16. Security 1051

develop filters to support any additional type of LDAP server. The effort to support additional LDAP

directories is optional and other LDAP directory types are not supported. Complete the following steps in

the administrative console.

 1. Click Security > Secure administration, applications, and infrastructure.

 2. Under User account repository, select Standalone LDAP registry and click Configure.

 3. Under Additional properties, click Advanced Lightweight Directory Access Protocol (LDAP) user

registry settings.

 4. Modify the user filter, if necessary. The user filter is used for searching the registry for users and is

typically used for the security role-to-user assignment. The filter is also used to authenticate a user

with the attribute that is specified in the filter. The filter specifies the property that is used to look up

users in the directory service.

In the following example, the property that is assigned to %v, which is the short name of the user,

must be a unique key. Two LDAP entries with the same object class cannot have the same short

name. To look up users based on their user IDs (uid) and to use the inetOrgPerson object class,

specify the following syntax:

(&(uid=%v)(objectclass=inetOrgPerson)

For more information about this syntax, see the “Using specific directory servers as the LDAP server”

on page 1055 documentation.

 5. Modify the group filter, if necessary. The group filter is used in searching the registry for groups and is

typically used for the security role-to-group assignment. Also, the filter is used to specify the property

by which to look up groups in the directory service.

In the following example, the property that is assigned to %v, which is the short name of the group,

must be a unique key. Two LDAP entries with the same object class cannot have the same short

name. To look up groups based on their common names (CN) and to use either the groupOfNames

object class or the groupOfUniqueNames object class, specify the following syntax:

(&(cn=%v)(|(objectclass=groupOfNames)(objectclass=groupOfUniqueNames)))

For more information about this syntax, see the “Using specific directory servers as the LDAP server”

on page 1055 documentation.

 6. Modify the user ID map, if necessary. This filter maps the short name of a user to an LDAP entry and

specifies the piece of information that represents users when these users are displayed with their

short names. For example, to display entries of object class = inetOrgPerson by their IDs, specify

inetOrgPerson:uid. This field takes multiple objectclass:property pairs, delimited by a semicolon (;).

To provide a consistent value for methods like the getCallerPrincipal method and the getUserPrincipal

method, the short name that is obtained by using this filter is used. For example, the CN=Bob Smith,

ou=austin.ibm.com, o=IBM, c=US user can log in using any attributes that are defined, for example,

e-mail address, social security number, and so on, but when these methods are called, the bob user

ID is returned no matter how the user logs in.

 7. Modify the group ID map filter, if necessary. This filter maps the short name of a group to an LDAP

entry and specifies the piece of information that represents groups when groups display. For example,

to display groups by their names, specify *:cn. The asterisk (*) is a wildcard character that searches

on any object class in this case. This field takes multiple objectclass:property pairs, delimited by a

semicolon (;).

 8. Modify the group member ID map filter, if necessary. This filter identifies user-to-group memberships.

For SecureWay, and Domino directory types, this field is used to query all the groups that match the

specified object classes to see if the user is contained in the specified attribute. For example, to get

all the users that belong to groups with the groupOfNames object class and the users that are

contained in the member attributes, specify groupOfNames:member. This syntax, which is a property of

an object class, stores the list of members that belong to the group that is represented by the object

class. This field takes multiple objectclass:property pairs that are delimited by a semicolon (;). For

more information about this syntax, see the “Using specific directory servers as the LDAP server” on

page 1055.

1052 Administering applications and their environment

For the IBM Tivoli Directory Server, Sun ONE, and Active Directory, this field is used to query all

users in a group with the information that is stored in the user object. For example, the

memberof:member filter (for Active Directory) is used to get the memberof attribute of the user object

to obtain all the groups to which the user belongs. The member attribute is used to get all the users

in a group that use the Group object. Using the User object to obtain the group information improves

performance.

 9. Select the Perform a nested group search option if your LDAP server does not support recursive

server-side searches.

10. Modify the Certificate map mode, if necessary. You can use the X.590 certificates for user

authentication when LDAP is selected as the registry. This field is used to indicate whether to map

the X.509 certificates into an LDAP directory user by EXACT_DN or CERTIFICATE_FILTER. If

EXACT_DN is selected, the DN in the certificate must exactly match the user entry in the LDAP

server, including case and spaces.

Select the Ignore case for authorization option on the Standalone LDAP registry settings to make

the authorization case insensitive. To access the Standalone LDAP registry settings panel, complete

the following steps:

a. Click Security > Secure administration, applications, and infrastructure.

b. Under User account repository, click the Available realm definitions drop-down list,

selectStandalone LDAP registry.

11. If you select CERTIFICATE_FILTER, specify the LDAP filter for mapping attributes in the client

certificate to entries in LDAP. If more than one LDAP entry matches the filter specification at run time,

authentication fails because an ambiguous match results. The syntax or structure of this filter is: LDAP

attribute=${Client certificate attribute} (for example, uid=${SubjectCN}).

The left side of the filter specification is an LDAP attribute that depends on the schema that your

LDAP server is configured to use. The right side of the filter specification is one of the public

attributes in your client certificate. Note that the right side must begin with a dollar sign ($), open

bracket ({), and end with a close bracket (}). Use the following certificate attribute values on the right

side of the filter specification. The case of the strings is important.

v ${UniqueKey}

v ${PublicKey}

v ${Issuer}

v ${NotAfter}

v ${NotBefore}

v ${SerialNumber}

v ${SigAlgName}

v ${SigAlgOID}

v ${SigAlgParams}

v ${SubjectDN}

v ${Version}

To enable this field, select CERTIFICATE_FILTER for the certificate mapping.

12. Click Apply.

When any LDAP user or group filter is modified in the Advanced LDAP Settings panel click Apply.

Clicking OK navigates you to the Standalone LDAP registry panel, which contains the previous LDAP

directory type, rather than the custom LDAP directory type. Clicking OK or Apply in the Standalone

LDAP registry panel saves the back-level LDAP directory type and the default filters of that directory.

This action overwrites any changes to the filters that you made. To avoid overwriting changes, you

can take either of the following actions:

v Click Apply in the Advanced Lightweight Directory Access Protocol (LDAP) user registry settings

panel. Click Security > Secure administration, applications, and infrastructure and change the

User account repository type to Standalone custom registry.

v Select Custom type from the Standalone LDAP registry panel. Click Apply and then change the

filters by clicking the Advanced Lightweight Directory Access Protocol (LDAP) user registry settings

panel. After you complete your changes, click Apply or OK.

Chapter 16. Security 1053

The validation of the changes does not take place in this panel. Validation is done when you click OK

or Apply on the Secure administration, applications, and infrastructure panel. If you are in the

process of enabling security for the first time, complete the remaining steps and go to the Secure

administration, applications, and infrastructure panel. Select Standalone LDAP registry as the user

account repository. If security is already enabled and any information on this panel changes, go to the

Secure administration, applications, and infrastructure panel and click OK or Apply to validate your

changes. If your changes are not validated, the server might not start.

These steps result in the configuration of the LDAP search filters. These steps are required to modify

existing user and group filters for a particular LDAP directory type. The steps are also used to set up

certificate filters to map certificates to entries in the LDAP server.

1. Validate this setup by clicking OK or Apply on the Secure administration, applications, and

infrastructure panel.

2. Save, stop, and start all the product servers, including the cell, nodes and all of the application servers

for any changes in this panel to become effective.

3. After the server starts, go through all the security-related tasks (getting users, getting groups, and so

on) to verify that the changes to the filters function.

Updating LDAP binding information:

Use this information to dynamically update security LDAP binding information by switching to a different

binding identity.

 You can dynamically update Lightweight Directory Access Protocol (LDAP) binding information without first

stopping and restarting WebSphere Application Server by using the wsadmin tool.

The resetLdapBindInfo method in SecurityAdmin MBean is used to dynamically update LDAP binding

information at WebSphere Application Server security runtime, and it takes the bind distinguished name

(DN) and bind password parameters as input. The resetLdapBindInfo method validates the bind

information against the LDAP server. If validation passes, new binding information is stored in

security.xml, and a copy of the information is placed in WebSphere Application Server security runtime.

If the new binding information is null, null, the resetLdapBindInfo method first extracts LDAP binding

information, including bind DN, bind password, and target binding host from WebSphere Application Server

security configuration in security.xml. It then pushes the binding information to WebSphere Application

Server security runtime.

There are two ways to dynamically update WebSphere Application Server security LDAP binding

information using the SecurityAdmin MBean through wsadmin:

v “Switching to a different binding identity”

v “Switching to a failover LDAP host” on page 1055

Switching to a different binding identity:

To dynamically update security LDAP binding information by switching to a different binding identity:

1. In the administrative console, click Security > Secure administration, applications, and

infrastructure.

2. Under User account repository, click the Available realm definitions drop-down list, selectStandalone

LDAP registry, and click Configure.

3. Create a new bind DN. It must have the same access authority as the current bind DN.

4. Run the SecurityAdmin MBean across all of the application server processes to validate the new

binding information, to save it to security.xml, and to push the new binding information to the runtime.

The following is a sample Jacl file for step 4:

1054 Administering applications and their environment

proc LDAPReBind {args} {

 global AdminConfig AdminControl ldapBindDn ldapBindPassword

 set ldapBindDn [lindex $args 0]

 set ldapBindPassword [lindex $args 1]

 set secMBeans [$AdminControl queryNames type=SecurityAdmin,*]

 set plist [list $ldapBindDn $ldapBindPassword]

 foreach secMBean $secMBeans {

 set result [$AdminControl invoke $secMBean resetLdapBindInfo $plist]

 }

 }

Switching to a failover LDAP host:

To dynamically update security LDAP binding information by switching to a failover LDAP host:

1. In the administrative console, click Security > Secure administration, applications, and

infrastructure.

2. Under User account repository, select Standalone LDAP registry and click Configure.

3. Change the password for bind DN on one LDAP server (it can be the primary or the backup).

4. Update the new bind DN password to WebSphere Application security runtime by calling

resetLdapBindInfo with the bind DN and by using its new password as a parameter.

5. Use the new bind DN password for all of the other LDAP servers. The binding information is now

consistent across WebSphere Application Server and the LDAP servers.

Note: If you call resetLdapBindInfo with null, null as input parameters, WebSphere Application

Server security runtime completes the following steps:

a. Reads the bind DN, bind password, and target LDAP hosts from security.xml.

b. Refreshes the cached connection to the LDAP server.

If you configure security to use multiple LDAP servers, this MBean call forces WebSphere

Application Server security to reconnect to the first available LDAP host in the list. For example,

if three LDAP servers are configured in the order of L1, L2, and L3, the reconnection process

always starts with the L1 server.

Using specific directory servers as the LDAP server:

This article provides important information about the directory servers that are supported as Lightweight

Directory Access Protocol (LDAP) servers in WebSphere Application Server.

 Microsoft Active Directory forest is not supported in the user registry in this product.

For a list of supported LDAP servers, refer to the Supported hardware and software Web site.

It is expected that other LDAP servers follow the LDAP specification. Support is limited to these specific

directory servers only. You can use any other directory server by using the custom directory type in the list

and by filling in the filters that are required for that directory.

To improve performance for LDAP searches, the default filters for IBM Tivoli Directory Server, Sun ONE,

and Active Directory are defined such that when you search for a user, the result contains all the relevant

information about the user (user ID, groups, and so on). As a result, the product does not call the LDAP

server multiple times. This definition is possible only in these directory types, which support searches

where the complete user information is obtained.

If you use the IBM Directory Server, select the Ignore case for authorization option. This option is

required because when the group information is obtained from the user object attributes, the case is not

the same as when you get the group information directly. For the authorization to work in this case,

perform a case insensitive check and verify the requirement for the Ignore case for authorization option.

Chapter 16. Security 1055

http://www.ibm.com/support/docview.wss?rs=180&uid=swg27006921

v Using IBM Tivoli Directory Server as the LDAP server

To use IBM Tivoli Directory Server, formerly IBM Directory Server, select IBM Tivoli Directory Server

as the directory type.

The difference between these two types is group membership lookup. It is recommended that you

choose the IBM Tivoli Directory Server for optimum performance during runtime. In the IBM Tivoli

Directory Server, the group membership is an operational attribute. With this attribute, a group

membership lookup is done by enumerating the ibm-allGroups attribute for the entry. All group

memberships, including the static groups, dynamic groups, and nested groups, can be returned with the

ibm-allGroups attribute.

WebSphere Application Server supports dynamic groups, nested groups, and static groups in IBM Tivoli

Directory Server using the ibm-allGroups attribute. To utilize this attribute in a security authorization

application, use a case-insensitive match so that attribute values returned by the ibm-allGroups attribute

are all in uppercase.

Important: It is recommended that you do not install IBM Tivoli Directory Server Version 6.0 on the

same machine that you install WebSphere Application Server Version 6.1. IBM Tivoli

Directory Server Version 6.0 includes WebSphere Application Server Express Version 5.1.1,

which the directory server uses for its administrative console. Install the Web Administration

tool Version 6.0 and WebSphere Application Server Express Version 5.1.1, which are both

bundled with IBM Tivoli Directory Server Version 6.0, on a different machine from

WebSphere Application Server Version 6.1. You cannot use WebSphere Application Server

Version 6.1 as the administrative console for IBM Tivoli Directory Server. If IBM Tivoli

Directory Server Version 6.0 and WebSphere Application Server Version 6.1 are installed on

the same machine, you might encounter port conflicts.

If you must install IBM Tivoli Directory Server Version 6.0 and WebSphere Application

Server Version 6.1 on the same machine, consider the following information:

– During the IBM Tivoli Directory Server installation process, you must select both the

Web Administration tool and WebSphere Application Server Express Version 5.1.1.

– Install WebSphere Application Server Version 6.1.

– When you install WebSphere Application Server Version 6.1, change the port number for

the application server.

– You might need to adjust the WebSphere Application Server environment variables on

WebSphere Application Server Version 6.1 for WAS_HOME and WAS_INSTALL_ROOT

(or APP_SERVER_ROOT for i5/OS). To change the variables using the administrative

console, click Environment > WebSphere Variables.

v Using a Lotus Domino Enterprise Server as the LDAP server

If you select the Lotus Domino Enterprise Server Version 6.5.4 or Version 7.0 and the attribute short

name is not defined in the schema, you can take either of the following actions:

– Change the schema to add the short name attribute.

– Change the user ID map filter to replace the short name with any other defined attribute (preferably

to UID). For example, change person:shortname to person:uid.

The userID map filter is changed to use the uid attribute instead of the shortname attribute as the

current version of Lotus Domino does not create the shortname attribute by default. If you want to use

the shortname attribute, define the attribute in the schema and change the userID map filter.

User ID Map : person:shortname

v Using Sun ONE Directory Server as the LDAP server

You can select Sun ONE Directory Server for your Sun ONE Directory Server system. In Sun ONE

Directory Server, the object class is the default groupOfUniqueName when you create a group. For

better performance, WebSphere Application Server uses the User object to locate the user group

membership from the nsRole attribute. Create the group from the role. If you want to use the

groupOfUniqueName attribute to search groups, specify your own filter setting. Roles unify entries.

1056 Administering applications and their environment

Roles are designed to be more efficient and easier to use for applications. For example, an application

can locate the role of an entry by enumerating all the roles that are possessed by a given entry, rather

than selecting a group and browsing through the members list. When using roles, you can create a

group using a:

– Managed role

– Filtered role

– Nested role

All of these roles are computable by the nsRole attribute.

v Using Microsoft Active Directory server as the LDAP server

To use Microsoft Active Directory as the LDAP server for authentication with WebSphere Application

Server you must take specific steps. By default, Microsoft Active Directory does not permit anonymous

LDAP queries. To create LDAP queries or to browse the directory, an LDAP client must bind to the

LDAP server using the distinguished name (DN) of an account that belongs to the administrator group

of the Windows system. A group membership search in the Active Directory is done by enumerating the

memberof attribute for a given user entry, rather than browsing through the member list in each group. If

you change the default behavior to browse each group, you can change the Group Member ID Map

field from memberof:member to group:member.

The following steps describe how to set up Microsoft Active Directory as your LDAP server.

1. Determine the full distinguished name (DN) and password of an account in the administrators group.

For example, if the Active Directory administrator creates an account in the Users folder of the Active

Directory Users and Computers Windows control panel and the DNS domain is ibm.com, the resulting

DN has the following structure:

cn=<adminUsername>, cn=users, dc=ibm,

dc=com

2. Determine the short name and password of any account in the Microsoft Active Directory.

3. Use the WebSphere Application Server administrative console to set up the information that is needed

to use Microsoft Active Directory.

a. Click Security > Secure administration, applications, and infrastructure.

b. Under User account repository, select Standalone LDAP registry and click Configure.

c. Set up LDAP with Active Directory as the type of LDAP server. Based on the information that is

determined in the previous steps, you can specify the following values on the LDAP settings panel:

Primary administrative user name

Specify the name of a user with administrative privileges that is defined in the registry. This

user name is used to access the administrative console or used by wsadmin.

Type Specify Active Directory

Host Specify the domain name service (DNS) name of the machine that is running Microsoft

Active Directory.

Base distinguished name (DN)

Specify the domain components of the DN of the account that is chosen in the first step.

For example: dc=ibm, dc=com

Bind distinguished name (DN)

Specify the full distinguished name of the account that is chosen in the first step. For

example: cn=adminUsername, cn=users, dc=ibm, dc=com

Bind password

Specify the password of the account that is chosen in the first step.

d. Click OK and Save to save the changes to the master configuration.

4. Click Security > Secure administration, applications, and infrastructure.

Chapter 16. Security 1057

5. Under User account repository, click the Available realm definitions drop-down list, selectStandalone

LDAP registry, and click Configure.

6. Select either the Automatically generated server identity or Server identity that is stored in the

repository option. If you select the Server identity that is stored in the repository option, enter the

following information:

Server user ID or administrative user on a Version 6.0.x node

Specify the short name of the account that is chosen in the second step.

Server user password

Specify the password of the account that is chosen in the second step.

7. Optional: Set ObjectCategory as the filter in the Group member ID map field to improve LDAP

performance.

a. Under Additional properties, click Advanced Lightweight Directory Access Protocol (LDAP)

user registry settings .

b. Add ;objectCategory:group to the end of the Group member ID map field.

8. Click OK and Save to save the changes to the master configuration.

9. Stop and restart the administrative server so that the changes take effect.

Locating a user’s group memberships in Lightweight Directory Access Protocol:

WebSphere Application Server security can be configured to search group memberships directly or

indirectly. It can also be configured to search only a static group, or it can be configured to search static

groups, recursive or nested groups, and dynamic groups for some Lightweight Directory Access Protocol

(LDAP) servers.

v Evaluate group memberships from user object directly.

– Several popular LDAP servers enable user objects to contain information about the groups to which

they belong such as Microsoft Active Directory Server, or eDirectory. Some user group memberships

can be computable attributes from the user object such as IBM Directory Server or Sun ONE

directory server. In some LDAP servers, this attribute can be used to include a user’s dynamic group

memberships, nesting group memberships, and static group memberships to locate all the group

memberships from a single attribute.

– For example, in IBM Directory Server all group memberships including the static groups, dynamic

groups, and nested groups can be returned using the ibm-allGroups attribute. In Sun ONE, all roles,

including managed roles, filtered roles, and nested roles, are calculated using the nsRole attribute. If

an LDAP server has such an attribute in a User object to include dynamic groups, nested groups,

and static groups, WebSphere Application Server security can be configured to use this attribute to

support these groups.

v Evaluate group memberships from a Group object indirectly.

– Some LDAP servers enable only Group objects, such as the Lotus Domino LDAP server to contain

information about users. The LDAP server does not enable the User object to contain information

about groups. For this type of LDAP server, group membership searches are performed by locating

the user on the member list of groups. The member list evaluation is not currently used in the static

group membership search for WebSphere Application Server.

v Use the direct method for searching group memberships if your LDAP server has an attribute in the

User object to include group information. To use the direct method or the indirect method, enter the

appropriate value in the Group Member ID map field on the Advanced LDAP Settings panel using the

following methods.

– objectclass:attribute pairs for the indirect method

– attribute:attribute pairs for the direct method

v Use the sample entries of attribute:attribute pairs in Group member ID map fields. Note that the

groupMembership attribute lists all the static groups for which a user is a member. This attribute is NOT

1058 Administering applications and their environment

updated whenever an object matches or does not match a dynamic group’s filter. Please refer to the

Novell eDirectory documentation for more information about the groupMembership attribute.

– ibm-allGroups:member for IBM Directory server

– nsRole:nsRole for Sun ONE directory, if groups are created with role inside Sun ONE

– memberOf:member in Microsoft Active Directory Server

– groupMembership:member for eDirectory

v Use the sample entries of objectClass:attribute pairs in the Group member ID map field.

– dominoGroup:member for Lotus Domino

– groupOfNames:member for eDirectory

While using the direct method, dynamic groups, recursive groups, and static groups can be returned as

multiple values of a single attribute. For example, in IBM Directory Server all group memberships,

including the static groups, dynamic groups, and nested groups, can be returned using the ibm-allGroups

attribute. In Sun ONE, all roles, including managed roles, filtered roles, and nested roles, are calculated

using the nsRole attribute. If an LDAP server can use the nsRole attribute, dynamic groups, nested

groups, and static groups are all supported by WebSphere Application Server.

Some LDAP servers do not have recursive computing functionality. For example, although Microsoft Active

Directory server has direct group search capability using the memberOf attribute, this attribute lists the

groups beneath, which the group is directly nested only and does not contain the recursive list of nested

predecessors. The Lotus Domino LDAP server only supports the indirect method to locate the group

memberships for a user. You cannot obtain recursive group memberships from a Domino server directly.

For LDAP servers without recursive searching capability, WebSphere Application Server security provides

a recursive function that is enabled by clicking Perform a Nested Group Search in the Advanced LDAP

user registry settings. Select this option only if your LDAP server does not provide recursive searches and

you want a recursive search.

Configuring dynamic and nested group support for the SunONE or iPlanet Directory Server:

Configure dynamic and nested groups to simplify WebSphere Application Server security management and

increase its effectiveness and flexibility.

 To use dynamic and nested groups with WebSphere Application Server security, you must be running

WebSphere Application Server Version 5.1.1 or later. Refer to “Dynamic and nested group support for the

SunONE or iPlanet Directory Server” on page 1138 for more information on this topic.

1. In the administrative console for WebSphere Application Server, click Security > Secure

administration, applications, and infrastructure.

2. Under User account repository, click the Available realm definitions drop-down list, selectStandalone

LDAP registry, and click Configure.

3. Select SunONE for the type of LDAP server.

4. Select the Ignore case for authorization option.

5. Under Additional Properties, click Advanced Lightweight Directory Access Protocol (LDAP) user

registry settings.

6. Change the Group filter setting to &(cn=%v)(objectclass=ldapsubentry)).

7. Change the Group member ID map setting to nsRole:nsRole.

8. Click Apply or OK to validate the changes.

Configuring dynamic and nested group support for the IBM Tivoli Directory Server:

Configure dynamic and nested groups to simplify WebSphere Application Server security management and

increase its effectiveness and flexibility.

Chapter 16. Security 1059

When creating groups, ensure that nested and dynamic group memberships work correctly.

1. In the administrative console for WebSphere Application Server, click Security > Secure

administration, applications, and infrastructure.

2. Under User account repository, click Standalone LDAP registry, and click Configure.

3. Select IBM Tivoli Directory Server for the type of LDAP server.

4. Under Additional properties, click Advanced Lightweight Directory Access Protocol (LDAP) user

registry settings.

5. Change the Group filter value to (&(cn=
%v)(|(objectclass=groupOfNames)(objectclass=groupOfUniqueNames)(objectclass=groupOfURLs))).

6. Change the Group member ID map value to ibm-allGroups:member;ibm-allGroups:uniqueMember.

7. Click Apply or OK to validate the changes.

8. Verify that Auxiliary object class field on the Add an LDAP entry panel for your IBM Tivoli Directory

server has the appropriate value. When you create a nested group, the Auxiliary object class value is

ibm-nestedGroup. When you create a dynamic group, the Auxiliary object class value is

ibm-dynamicGroup.

Configuring standalone custom registries

Before you begin this task, implement and build the UserRegistry interface. For more information on

developing standalone custom registries refer to Developing standalone custom registries. The following

steps are required to configure standalone custom registries through the administrative console.

 1. Click Security > Secure administration, applications, and infrastructure.

 2. Under User account repositories, select Standalone custom registry and click Configure.

 3. Enter a valid user name in the Primary administrative user name field. This ID is the security server

ID, which is only used for WebSphere Application Server security and is not associated with the

system process that runs the server. The server calls the local operating system registry to

authenticate and obtain privilege information about users by calling the native APIs in that particular

registry.

 4. Enter the complete location of the dot-separated class name that implements the

com.ibm.websphere.security.UserRegistry interface in the Custom registry class name field. For the

sample, this file name is com.ibm.websphere.security.FileRegistrySample.

The file exists in the WebSphere Application Server class path preferably in the app_server_root/lib/
ext directory.

 Attention: The sample provided is intended to familiarize you with this feature. Do not use this

sample in an actual production environment.

 5. Add your custom registry class name to the class path. It is recommended that you add the Java

Archive (JAR) file that contains your custom user registry implementation to the app_server_root/
classes directory.

 6. Optional: Select the Ignore case for authorization option for the authorization to perform a case

insensitive check. Enabling this option is necessary only when your user registry is case insensitive

and does not provide a consistent case when queried for users and groups.

 7. Click Apply if you have any other additional properties to enter for the registry initialization.

 8. Optional: Enter additional properties to initialize your implementation.

a. Click Custom properties > New.

b. Enter the property name and value.

For the sample, enter the following two properties. It is assumed that the users.props file and the

groups.props file are in the customer_sample directory under the product installation directory.

You can place these properties in any directory that you choose and reference their locations

through custom properties. However, make sure that the directory has the appropriate access

permissions.

1060 Administering applications and their environment

Property name Property value

usersFile ${USER_INSTALL_ROOT}/customer_sample /users.props

groupsFile ${USER_INSTALL_ROOT}/customer_sample /groups.props

Samples of these two properties are available in “users.props file” on page 1081 and

“groups.props file” on page 1081.

The Description, Required, and Validation Expression fields are not used and can remain

blank.

WebSphere Application Server version 4-based custom user registry is migrated to the custom

user registry based on the com.ibm.websphere.security.UserRegistry interface.

c. Click Apply.

d. Repeat this step to add other additional properties.

 9. Click Security > Secure administration, applications, and infrastructure.

10. Under User account repository, click the Available realm definitions drop-down list,

selectStandalone custom registry, and click Configure.

11. Select either the Automatically generated server identity or Server identity that is stored in the

repository option. If you select the Server identity that is stored in the repository option, enter the

following information:

Server user ID or administrative user on a Version 6.0.x node

Specify the short name of the account that is chosen in the second step.

Server user password

Specify the password of the account that is chosen in the second step.

12. Click OK and complete the required steps to turn on security.

This set of steps is required to set up the standalone custom registry and to enable security in WebSphere

Application Server.

Note: The security component of WebSphere Application Server expands a selected list of variables when

enabling security. See Variable settings for more detail.

1. Complete the remaining steps, if you are enabling security.

2. Validate the user and password. Save and synchronize in the cell environment.

3. After security is turned on, save, stop, and start all the product servers, including cell, nodes, and all of

the application servers, for any changes to take effect. If the server comes up without any problems,

the setup is correct.

Standalone custom registry settings:

Use this page to configure the standalone custom registry.

 To view this administrative console page, complete the following steps:

1. Click Security > Secure administration, applications, and infrastructure.

2. Under User account repository, click the Available realm definitions drop-down list, selectStandalone

custom registry, and click Configure.

After the properties are set in this panel, click Apply. Under Additional Properties, click Custom

properties to include additional properties that the custom user registry requires.

Note: Custom properties might include information such as specifying lists of users or groups.

When security is enabled and any of these custom user registry settings change, go to the Secure

administration, applications, and infrastructure panel and click Apply to validate the changes.

Chapter 16. Security 1061

WebSphere Application Server Version 6.1 distinguishes between the user identities for administrators who

manage the environment and server identities for authenticating server to server communications. In most

cases, server identities are automatically generated and are not stored in a repository. However, if you are

adding a Version 5.0.x or 6.0.x node to a Version 6.1 cell, you must ensure that the Version 5.x or Version

6.0.x server identity and password are defined in the repository for this cell. Enter the server user identity

and password on this panel.

Primary administrative user name:

Specifies the name of a user with administrative privileges that is defined in your custom user registry.

 The user name is used to log onto the administrative console when administrative security is enabled.

Automatically generated server identity:

Enables the application server to generate the server identity that is used for internal process

communication.

 You can change this server identity on the Authentication mechanisms and expiration panel. To access the

Authentication mechanisms and expiration panel, click Security > Secure administration, applications,

and infrastructure > Authentication mechanisms and expiration. Change the value of the Internal

server ID field.

 Default: Disabled

Server identity that is stored in the repository:

Specifies a user identity in the repository that is used for internal process communication.

 Default: Enabled

Server user ID or administrative user on a Version 6.0.x node:

Specifies the user ID that is used to run the application server for security purposes.

Password:

Specifies the password that corresponds to the server ID.

Custom registry class name:

Specifies a dot-separated class name that implements the com.ibm.websphere.security.UserRegistry

interface.

 Put the custom registry class name in the class path. A suggested location is the %install_root%/lib/ext

directory.

 Data type: String

Default: com.ibm.websphere.security.FileRegistrySample

Ignore case for authorization:

Indicates that a case-insensitive authorization check is performed when you use the default authorization.

 Default: Disabled

1062 Administering applications and their environment

Range: Enabled or Disabled

Standalone custom registry wizard settings:

Use this page to provide the basic settings to connect the application server to an existing standalone

custom registry.

 To view this security wizard page, complete the following steps:

1. Click Security > Secure administration, applications, and infrastructure > Security configuration

wizard.

2. Select your protection settings and click Next.

3. Select the Standalone custom registry option and click Next.

You can modify your standalone custom registry configuration by completing the following steps:

1. Click Security > Security administration, applications, and infrastructure.

2. Under User account repository, click the Available realm definitions drop-down list, selectStandalone

custom registry, and click Configure.

3. Enter additional properties to initialize your implementation

v Click Custom properties > New.

v Enter the property name and value. For the sample, enter the following two properties. It is assumed

that the users.props file and the groups.props file are in the customer_sample directory under the

product installation directory. You can place these properties in any directory that you choose and

reference their locations through Custom properties. However, make sure that the directory has the

appropriate access permissions.

 Property name Property value

usersFile ${USER_INSTALL_ROOT}/customer_sample /users.props

groupsFile ${USER_INSTALL_ROOT}/customer_sample /groups.props

Samples of these two properties are available in “users.props file” on page 1081 and “groups.props

file” on page 1081.

The Description, Required, and Validation Expression fields are not used and can remain blank.

WebSphere Application Server Version 4 based custom user registry is migrated to the custom user

registry based on the com.ibm.websphere.security.UserRegistry interface.

v Click Apply.

Primary administrative user name:

Specifies the name of a user with administrative privileges that is defined in your custom user registry.

 The user name is used to log onto the administrative console when administrative security is enabled.

Custom registry class name:

Specifies a dot-separated class name that implements the com.ibm.websphere.security.UserRegistry

interface.

 Put the custom registry class name in the class path. A suggested location is the %install_root%/lib/ext

directory.

 Data type: String

Default: com.ibm.websphere.security.FileRegistrySample

Chapter 16. Security 1063

Ignore case for authorization:

Indicates that a case-insensitive authorization check is performed when you use the default authorization.

 Default: Disabled

Range: Enabled or Disabled

FileRegistrySample.java file:

This provides an example of the FileRegistrySample.java file.

 The user and group information required by this sample is contained in the “users.props file” on page

1081 and “groups.props file” on page 1081 files.

Attention: The samples that are provided are intended to familiarize you with this feature. Do not use

these samples in an actual production environment.

The contents of the FileRegistrySample.java file:

//

// 5639-D57, 5630-A36, 5630-A37, 5724-D18

// (C) COPYRIGHT International Business Machines Corp. 1997, 2005

// All Rights Reserved * Licensed Materials - Property of IBM

////--

// This program may be used, run, copied, modified and distributed

// without royalty for the purpose of developing, using, marketing, or

// distributing.

//--

//

// This sample is for the custom user registry feature in WebSphere

// Application Server.

import java.util.*;

import java.io.*;

import java.security.cert.X509Certificate;

import com.ibm.websphere.security.*;

/**

 * The main purpose of this sample is to demonstrate the use of the

 * custom user registry feature available in WebSphere Application Server. This

 * sample is a file-based registry sample where the users and the groups

 * information is listed in files (users.props and groups.props). As such

 * simplicity and not the performance was a major factor. This

 * sample should be used only to get familiarized with this feature. An

 * actual implementation of a realistic registry should consider various

 * factors like performance, scalability, thread safety, and so on.

 **/

public class FileRegistrySample implements UserRegistry {

 private static String USERFILENAME = null;

 private static String GROUPFILENAME = null;

 /** Default Constructor **/

 public FileRegistrySample() throws java.rmi.RemoteException {

 }

 /**

 * Initializes the registry. This method is called when creating the

 * registry.

1064 Administering applications and their environment

*

 * @param props - The registry-specific properties with which to

 * initialize the custom registry

 * @exception CustomRegistryException

 * if there is any registry-specific problem

 **/

 public void initialize(java.util.Properties props)

 throws CustomRegistryException {

 try {

 /* try getting the USERFILENAME and the GROUPFILENAME from

 * properties that are passed in (For example, from the

 * administrative console). Set these values in the administrative

 * console. Go to the special custom settings in the custom

 * user registry section of the Authentication panel.

 * For example:

 * usersFile c:/temp/users.props

 * groupsFile c:/temp/groups.props

 */

 if (props != null) {

 USERFILENAME = props.getProperty("usersFile");

 GROUPFILENAME = props.getProperty("groupsFile");

 }

 } catch(Exception ex) {

 throw new CustomRegistryException(ex.getMessage(),ex);

 }

 if (USERFILENAME == null || GROUPFILENAME == null) {

 throw new CustomRegistryException("users/groups information missing");

 }

 } /**

 * Checks the password of the user. This method is called to authenticate

 * a user when the user’s name and password are given.

 *

 * @param userSecurityName the name of user

 * @param password the password of the user

 * @return a valid userSecurityName. Normally this is

 * the name of same user whose password was checked

 * but if the implementation wants to return any other

 * valid userSecurityName in the registry it can do so

 * @exception CheckPasswordFailedException if userSecurityName/

 * password combination does not exist

 * in the registry

 * @exception CustomRegistryException if there is any registry-

 * specific problem

 **/

 public String checkPassword(String userSecurityName, String passwd)

 throws PasswordCheckFailedException,

 CustomRegistryException {

 String s,userName = null;

 BufferedReader in = null;

 try {

 in = fileOpen(USERFILENAME);

 while ((s=in.readLine())!=null)

 {

 if (!(s.startsWith("#") || s.trim().length() <=0)) {

 int index = s.indexOf(":");

 int index1 = s.indexOf(":",index+1);

 // check if the userSecurityName:passwd combination exists

 if ((s.substring(0,index)).equals(userSecurityName) &&

 s.substring(index+1,index1).equals(passwd)) {

Chapter 16. Security 1065

// Authentication successful, return the userID.

 userName = userSecurityName;

 break;

 }

 }

 }

 } catch(Exception ex) {

 throw new CustomRegistryException(ex.getMessage(),ex);

 } finally {

 fileClose(in);

 }

 if (userName == null) {

 throw new PasswordCheckFailedException("Password check failed for user: "

 + userSecurityName);

 }

 return userName;

 } /**

 * Maps an X.509 format certificate to a valid user in the registry.

 * This is used to map the name in the certificate supplied by a browser

 * to a valid userSecurityName in the registry

 *

 * @param cert the X509 certificate chain

 * @return The mapped name of the user userSecurityName

 * @exception CertificateMapNotSupportedException if the

 * particular certificate is not supported.

 * @exception CertificateMapFailedException if the mapping of

 * the certificate fails.

 * @exception CustomRegistryException if there is any registry

 * -specific problem

 **/

 public String mapCertificate(X509Certificate[] cert)

 throws CertificateMapNotSupportedException,

 CertificateMapFailedException,

 CustomRegistryException {

 String name=null;

 X509Certificate cert1 = cert[0];

 try {

 // map the SubjectDN in the certificate to a userID.

 name = cert1.getSubjectDN().getName();

 } catch(Exception ex) {

 throw new CertificateMapNotSupportedException(ex.getMessage(),ex);

 }

 if(!isValidUser(name)) {

 throw new CertificateMapFailedException("user: " + name

 + " is not valid");

 }

 return name;

 } /**

 * Returns the realm of the registry.

 *

 * @return the realm. The realm is a registry-specific string

 * indicating the realm or domain for which this registry

 * applies. For example, for OS/400 or AIX this would be

 * the host name of the system whose user registry this

 * object represents. If null is returned by this method,

 * realm defaults to the value of "customRealm". It is

 * recommended that you use your own value for realm.

 *

 * @exception CustomRegistryException if there is any registry-

1066 Administering applications and their environment

* specific problem

 **/

 public String getRealm()

 throws CustomRegistryException {

 String name = "customRealm";

 return name;

 } /**

 * Gets a list of users that match a pattern in the registry.

 * The maximum number of users returned is defined by the limit

 * argument.

 * This method is called by the administrative console and scripting

 * (command line) to make the users in the registry available for

 * adding them (users) to roles.

 *

 * @param pattern the pattern to match. (For example, a* will

 * match all userSecurityNames starting with a)

 * @param limit the maximum number of users that should be

 * returned. This is very useful in situations where

 * there are thousands of users in the registry and

 * getting all of them at once is not practical. The

 * default is 100. A value of 0 implies get all the

 * users and hence must be used with care.

 * @return a Result object that contains the list of users

 * requested and a flag to indicate if more users

 * exist.

 * @exception CustomRegistryException if there is any registry-

 * specific problem

 **/

 public Result getUsers(String pattern, int limit)

 throws CustomRegistryException {

 String s;

 BufferedReader in = null;

 List allUsers = new ArrayList();

 Result result = new Result();

 int count = 0;

 int newLimit = limit+1;

 try {

 in = fileOpen(USERFILENAME);

 while ((s=in.readLine())!=null)

 {

 if (!(s.startsWith("#") || s.trim().length() <=0)) {

 int index = s.indexOf(":");

 String user = s.substring(0,index);

 if (match(user,pattern)) {

 allUsers.add(user);

 if (limit !=0 && ++count == newLimit) {

 allUsers.remove(user);

 result.setHasMore();

 break;

 }

 }

 }

 }

 } catch (Exception ex) {

 throw new CustomRegistryException(ex.getMessage(),ex);

 } finally {

 fileClose(in);

 }

 result.setList(allUsers);

 return result;

 } /**

 * Returns the display name for the user specified by

Chapter 16. Security 1067

* userSecurityName.

 *

 * This method may be called only when the user information

 * is displayed (information purposes only, for example, in

 * the administrative console) and hence not used in the actual

 * authentication or authorization purposes. If there are no

 * display names in the registry return null or empty string.

 *

 * In WebSphere Application Server 4.x custom registry, if you

 * had a display name for the user and if it was different from the

 * security name, the display name was returned for the EJB

 * methods getCallerPrincipal() and the servlet methods

 * getUserPrincipal() and getRemoteUser().

 * In WebSphere Application Server Version 5.x and later, for the

 * same methods, the security name will be returned by default.

 * This is the recommended way as the display name is not unique

 * and might create security holes. However, for backward

 * compatibility if you need the display name to be returned

 * set the property WAS_UseDisplayName to true.

 *

 *See the Information Center documentation for more information.

 *

 * @param userSecurityName the name of the user.

 * @return the display name for the user. The display

 * name is a registry-specific string that

 * represents a descriptive, not necessarily

 * unique, name for a user. If a display name

 * does not exist return null or empty string.

 * @exception EntryNotFoundException if userSecurityName

 * does not exist.

 * @exception CustomRegistryException if there is any registry-

 * specific problem

 **/

 public String getUserDisplayName(String userSecurityName)

 throws CustomRegistryException,

 EntryNotFoundException {

 String s,displayName = null;

 BufferedReader in = null;

 if(!isValidUser(userSecurityName)) {

 EntryNotFoundException nsee = new EntryNotFoundException("user: "

 + userSecurityName + " is not valid");

 throw nsee;

 }

 try {

 in = fileOpen(USERFILENAME);

 while ((s=in.readLine())!=null)

 {

 if (!(s.startsWith("#") || s.trim().length() <=0)) {

 int index = s.indexOf(":");

 int index1 = s.lastIndexOf(":");

 if ((s.substring(0,index)).equals(userSecurityName)) {

 displayName = s.substring(index1+1);

 break;

 }

 }

 }

 } catch(Exception ex) {

 throw new CustomRegistryException(ex.getMessage(), ex);

 } finally {

 fileClose(in);

1068 Administering applications and their environment

}

 return displayName;

 }

 /**

 * Returns the unique ID for a userSecurityName. This method is called

 * when creating a credential for a user.

 *

 * @param userSecurityName - The name of the user.

 * @return The unique ID of the user. The unique ID for a user

 * is the stringified form of some unique, registry-specific,

 * data that serves to represent the user. For example, for

 * the UNIX user registry, the unique ID for a user can be

 * the UID.

 * @exception EntryNotFoundException if userSecurityName does not

 * exist.

 * @exception CustomRegistryException if there is any registry-

 * specific problem

 **/

 public String getUniqueUserId(String userSecurityName)

 throws CustomRegistryException,

 EntryNotFoundException {

 String s,uniqueUsrId = null;

 BufferedReader in = null;

 try {

 in = fileOpen(USERFILENAME);

 while ((s=in.readLine())!=null)

 {

 if (!(s.startsWith("#") || s.trim().length() <=0)) {

 int index = s.indexOf(":");

 int index1 = s.indexOf(":", index+1);

 if ((s.substring(0,index)).equals(userSecurityName)) {

 int index2 = s.indexOf(":", index1+1);

 uniqueUsrId = s.substring(index1+1,index2);

 break;

 }

 }

 }

 } catch(Exception ex) {

 throw new CustomRegistryException(ex.getMessage(),ex);

 } finally {

 fileClose(in);

 }

 if (uniqueUsrId == null) {

 EntryNotFoundException nsee =

 new EntryNotFoundException("Cannot obtain uniqueId for user: "

 + userSecurityName);

 throw nsee;

 }

 return uniqueUsrId;

 } /**

 * Returns the name for a user given its unique ID.

 *

 * @param uniqueUserId - The unique ID of the user.

 * @return The userSecurityName of the user.

 * @exception EntryNotFoundException if the unique user ID does not exist.

 * @exception CustomRegistryException if there is any registry-specific

 * problem

 **/

Chapter 16. Security 1069

public String getUserSecurityName(String uniqueUserId)

 throws CustomRegistryException,

 EntryNotFoundException {

 String s,usrSecName = null;

 BufferedReader in = null;

 try {

 in = fileOpen(USERFILENAME);

 while ((s=in.readLine())!=null)

 {

 if (!(s.startsWith("#") || s.trim().length() <=0)) {

 int index = s.indexOf(":");

 int index1 = s.indexOf(":", index+1);

 int index2 = s.indexOf(":", index1+1);

 if ((s.substring(index1+1,index2)).equals(uniqueUserId)) {

 usrSecName = s.substring(0,index);

 break;

 }

 }

 }

 } catch (Exception ex) {

 throw new CustomRegistryException(ex.getMessage(), ex);

 } finally {

 fileClose(in);

 }

 if (usrSecName == null) {

 EntryNotFoundException ex =

 new EntryNotFoundException("Cannot obtain the

 user securityName for " + uniqueUserId);

 throw ex;

 }

 return usrSecName;

 } /**

 * Determines if the userSecurityName exists in the registry

 *

 * @param userSecurityName - The name of the user

 * @return True if the user is valid; otherwise false

 * @exception CustomRegistryException if there is any registry-

 * specific problem

 * @exception RemoteException as this extends java.rmi.Remote

 * interface

 **/

 public boolean isValidUser(String userSecurityName)

 throws CustomRegistryException {

 String s;

 boolean isValid = false;

 BufferedReader in = null;

 try {

 in = fileOpen(USERFILENAME);

 while ((s=in.readLine())!=null)

 {

 if (!(s.startsWith("#") || s.trim().length() <=0)) {

 int index = s.indexOf(":");

 if ((s.substring(0,index)).equals(userSecurityName)) {

 isValid=true;

 break;

 }

 }

 }

 } catch (Exception ex) {

 throw new CustomRegistryException(ex.getMessage(), ex);

1070 Administering applications and their environment

} finally {

 fileClose(in);

 }

 return isValid;

 }

 /**

 * Gets a list of groups that match a pattern in the registry

 * The maximum number of groups returned is defined by the

 * limit argument. This method is called by administrative console

 * and scripting (command line) to make available the groups in

 * the registry for adding them (groups) to roles.

 *

 * @param pattern the pattern to match. (For example, a* matches

 * all groupSecurityNames starting with a)

 * @param Limits the maximum number of groups to return

 * This is very useful in situations where there

 * are thousands of groups in the registry and getting all

 * of them at once is not practical. The default is 100.

 * A value of 0 implies get all the groups and hence must

 * be used with care.

 * @return A Result object that contains the list of groups

 * requested and a flag to indicate if more groups exist.

 * @exception CustomRegistryException if there is any registry-specific

 * problem

 **/

 public Result getGroups(String pattern, int limit)

 throws CustomRegistryException {

 String s;

 BufferedReader in = null;

 List allGroups = new ArrayList(); Result result = new Result();

 int count = 0;

 int newLimit = limit+1;

 try {

 in = fileOpen(GROUPFILENAME);

 while ((s=in.readLine())!=null)

 {

 if (!(s.startsWith("#") || s.trim().length() <=0)) {

 int index = s.indexOf(":");

 String group = s.substring(0,index);

 if (match(group,pattern)) {

 allGroups.add(group);

 if (limit !=0 && ++count == newLimit) {

 allGroups.remove(group);

 result.setHasMore();

 break;

 }

 }

 }

 }

 } catch (Exception ex) {

 throw new CustomRegistryException(ex.getMessage(),ex);

 } finally {

 fileClose(in);

 }

 result.setList(allGroups);

 return result;

 }

 /**

 * Returns the display name for the group specified by groupSecurityName.

 * For this version of WebSphere Application Server, the only usage of

Chapter 16. Security 1071

* this method is by the clients (administrative console and scripting)

 * to present a descriptive name of the user if it exists.

 *

 * @param groupSecurityName the name of the group.

 * @return the display name for the group. The display name

 * is a registry-specific string that represents a

 * descriptive, not necessarily unique, name for a group.

 * If a display name does not exist return null or empty

 * string.

 * @exception EntryNotFoundException if groupSecurityName does

 * not exist.

 * @exception CustomRegistryException if there is any registry-

 * specific problem

 **/

 public String getGroupDisplayName(String groupSecurityName)

 throws CustomRegistryException,

 EntryNotFoundException {

 String s,displayName = null;

 BufferedReader in = null;

 if(!isValidGroup(groupSecurityName)) {

 EntryNotFoundException nsee = new EntryNotFoundException("group: "

 + groupSecurityName + " is not valid");

 throw nsee;

 }

 try {

 in = fileOpen(GROUPFILENAME);

 while ((s=in.readLine())!=null)

 {

 if (!(s.startsWith("#") || s.trim().length() <=0)) {

 int index = s.indexOf(":");

 int index1 = s.lastIndexOf(":");

 if ((s.substring(0,index)).equals(groupSecurityName)) {

 displayName = s.substring(index1+1);

 break;

 }

 }

 }

 } catch(Exception ex) {

 throw new CustomRegistryException(ex.getMessage(),ex);

 } finally {

 fileClose(in);

 }

 return displayName;

 }

 /**

 * Returns the Unique ID for a group.

 * @param groupSecurityName the name of the group.

 * @return The unique ID of the group. The unique ID for

 * a group is the stringified form of some unique,

 * registry-specific, data that serves to represent

 * the group. For example, for the UNIX user registry,

 * the unique ID might be the GID.

 * @exception EntryNotFoundException if groupSecurityName does

 * not exist.

 * @exception CustomRegistryException if there is any registry-

 * specific problem

 * @exception RemoteException as this extends java.rmi.Remote

 **/

1072 Administering applications and their environment

public String getUniqueGroupId(String groupSecurityName)

 throws CustomRegistryException,

 EntryNotFoundException {

 String s,uniqueGrpId = null;

 BufferedReader in = null;

 try {

 in = fileOpen(GROUPFILENAME);

 while ((s=in.readLine())!=null)

 {

 if (!(s.startsWith("#") || s.trim().length() <=0)) {

 int index = s.indexOf(":");

 int index1 = s.indexOf(":", index+1);

 if ((s.substring(0,index)).equals(groupSecurityName)) {

 uniqueGrpId = s.substring(index+1,index1);

 break;

 }

 }

 }

 } catch(Exception ex) {

 throw new CustomRegistryException(ex.getMessage(),ex);

 } finally {

 fileClose(in);

 }

 if (uniqueGrpId == null) {

 EntryNotFoundException nsee =

 new EntryNotFoundException("Cannot obtain the uniqueId for group: "

 + groupSecurityName);

 throw nsee;

 }

 return uniqueGrpId;

 }

 /**

 * Returns the Unique IDs for all the groups that contain the unique ID

 * of a user. Called during creation of a user’s credential.

 *

 * @param uniqueUserId the unique ID of the user.

 * @return A list of all the group unique IDs that the unique user

 * ID belongs to. The unique ID for an entry is the

 * stringified form of some unique, registry-specific, data

 * that serves to represent the entry. For example, for the

 * UNIX user registry, the unique ID for a group might be

 * the GID and the Unique ID for the user might be the UID.

 * @exception EntryNotFoundException if uniqueUserId does not exist.

 * @exception CustomRegistryException if there is any registry-specific

 * problem

 **/

 public List getUniqueGroupIds(String uniqueUserId)

 throws CustomRegistryException,

 EntryNotFoundException {

 String s,uniqueGrpId = null;

 BufferedReader in = null;

 List uniqueGrpIds=new ArrayList();

 try {

 in = fileOpen(USERFILENAME);

 while ((s=in.readLine())!=null)

 {

 if (!(s.startsWith("#") || s.trim().length() <=0)) {

 int index = s.indexOf(":");

 int index1 = s.indexOf(":", index+1);

 int index2 = s.indexOf(":", index1+1);

Chapter 16. Security 1073

if ((s.substring(index1+1,index2)).equals(uniqueUserId)) {

 int lastIndex = s.lastIndexOf(":");

 String subs = s.substring(index2+1,lastIndex);

 StringTokenizer st1 = new StringTokenizer(subs, ",");

 while (st1.hasMoreTokens())

 uniqueGrpIds.add(st1.nextToken());

 break;

 }

 }

 }

 } catch(Exception ex) {

 throw new CustomRegistryException(ex.getMessage(),ex);

 } finally {

 fileClose(in);

 }

 return uniqueGrpIds;

 }

 /**

 * Returns the name for a group given its unique ID.

 *

 * @param uniqueGroupId the unique ID of the group.

 * @return The name of the group.

 * @exception EntryNotFoundException if the uniqueGroupId does

 * not exist.

 * @exception CustomRegistryException if there is any registry-

 * specific problem

 **/

 public String getGroupSecurityName(String uniqueGroupId)

 throws CustomRegistryException,

 EntryNotFoundException {

 String s,grpSecName = null;

 BufferedReader in = null;

 try {

 in = fileOpen(GROUPFILENAME);

 while ((s=in.readLine())!=null)

 {

 if (!(s.startsWith("#") || s.trim().length() <=0)) {

 int index = s.indexOf(":");

 int index1 = s.indexOf(":", index+1);

 if ((s.substring(index+1,index1)).equals(uniqueGroupId)) {

 grpSecName = s.substring(0,index);

 break;

 }

 }

 }

 } catch (Exception ex) {

 throw new CustomRegistryException(ex.getMessage(),ex);

 } finally {

 fileClose(in);

 }

 if (grpSecName == null) {

 EntryNotFoundException ex =

 new EntryNotFoundException("Cannot obtain the group

 security name for: " + uniqueGroupId);

 throw ex;

 }

 return grpSecName;

 }

1074 Administering applications and their environment

/**

 * Determines if the groupSecurityName exists in the registry

 *

 * @param groupSecurityName the name of the group

 * @return True if the groups exists; otherwise false

 * @exception CustomRegistryException if there is any registry-

 * specific problem

 **/

 public boolean isValidGroup(String groupSecurityName)

 throws CustomRegistryException {

 String s;

 boolean isValid = false;

 BufferedReader in = null;

 try {

 in = fileOpen(GROUPFILENAME);

 while ((s=in.readLine())!=null)

 {

 if (!(s.startsWith("#") || s.trim().length() <=0)) {

 int index = s.indexOf(":");

 if ((s.substring(0,index)).equals(groupSecurityName)) {

 isValid=true;

 break;

 }

 }

 }

 } catch (Exception ex) {

 throw new CustomRegistryException(ex.getMessage(),ex);

 } finally {

 fileClose(in);

 }

 return isValid;

 }

 /**

 * Returns the securityNames of all the groups that contain the user

 *

 * This method is called by the administrative console and scripting

 * (command line) to verify that the user entered for RunAsRole mapping

 * belongs to that role in the roles to user mapping. Initially, the

 * check is done to see if the role contains the user. If the role does

 * not contain the user explicitly, this method is called to get the groups

 * that this user belongs to so that a check can be made on the groups that

 * the role contains.

 *

 * @param userSecurityName the name of the user

 * @return A list of all the group securityNames that the user

 * belongs to.

 * @exception EntryNotFoundException if user does not exist.

 * @exception CustomRegistryException if there is any registry-

 * specific problem

 * @exception RemoteException as this extends the java.rmi.Remote

 * interface

 **/

 public List getGroupsForUser(String userName)

 throws CustomRegistryException,

 EntryNotFoundException {

 String s;

 List grpsForUser = new ArrayList();

 BufferedReader in = null;

 try {

 in = fileOpen(GROUPFILENAME);

Chapter 16. Security 1075

while ((s=in.readLine())!=null)

 {

 if (!(s.startsWith("#") || s.trim().length() <=0)) {

 StringTokenizer st = new StringTokenizer(s, ":");

 for (int i=0; i<2; i++)

 st.nextToken();

 String subs = st.nextToken();

 StringTokenizer st1 = new StringTokenizer(subs, ",");

 while (st1.hasMoreTokens()) {

 if((st1.nextToken()).equals(userName)) {

 int index = s.indexOf(":");

 grpsForUser.add(s.substring(0,index));

 }

 }

 }

 }

 } catch (Exception ex) {

 if (!isValidUser(userName)) {

 throw new EntryNotFoundException("user: " + userName

 + " is not valid");

 }

 throw new CustomRegistryException(ex.getMessage(),ex);

 } finally {

 fileClose(in);

 }

 return grpsForUser;

 }

 /**

 * Gets a list of users in a group.

 *

 * The maximum number of users returned is defined by the

 * limit argument.

 *

 * This method is being used by the WebSphere Application

 * Server Enterprise process choreographer (Enterprise) when

 * staff assignments are modeled using groups.

 *

 * In rare situations, if you are working with a registry where

 * getting all the users from any of your groups is not practical

 * (for example if there are a large number of users) you can create

 * the NotImplementedException for that particular group. Make sure

 * that if the process choreographer is installed (or if installed later)

 * the staff assignments are not modeled using these particular groups.

 * If there is no concern about returning the users from groups

 * in the registry it is recommended that this method be implemented

 * without creating the NotImplemented exception.

 * @param groupSecurityName the name of the group

 * @param Limits the maximum number of users that should be

 * returned. This is very useful in situations where there

 * are lots of users in the registry and getting all of

 * them at once is not practical. A value of 0 implies

 * get all the users and hence must be used with care.

 * @return A Result object that contains the list of users

 * requested and a flag to indicate if more users exist.

 * @deprecated This method will be deprecated in future.

 * @exception NotImplementedException create this exception in rare

 * situations if it is not practical to get this information

 * for any of the group or groups from the registry.

 * @exception EntryNotFoundException if the group does not exist in

 * the registry

 * @exception CustomRegistryException if there is any registry-specific

1076 Administering applications and their environment

* problem

 **/

 public Result getUsersForGroup(String groupSecurityName, int limit)

 throws NotImplementedException,

 EntryNotFoundException,

 CustomRegistryException {

 String s, user;

 BufferedReader in = null;

 List usrsForGroup = new ArrayList();

 int count = 0;

 int newLimit = limit+1;

 Result result = new Result();

 try {

 in = fileOpen(GROUPFILENAME);

 while ((s=in.readLine())!=null)

 {

 if (!(s.startsWith("#") || s.trim().length() <=0)) {

 int index = s.indexOf(":");

 if ((s.substring(0,index)).equals(groupSecurityName))

 {

 StringTokenizer st = new StringTokenizer(s, ":");

 for (int i=0; i<2; i++)

 st.nextToken();

 String subs = st.nextToken();

 StringTokenizer st1 = new StringTokenizer(subs, ",");

 while (st1.hasMoreTokens()) {

 user = st1.nextToken();

 usrsForGroup.add(user);

 if (limit !=0 && ++count == newLimit) {

 usrsForGroup.remove(user);

 result.setHasMore();

 break;

 }

 }

 }

 }

 }

 } catch (Exception ex) {

 if (!isValidGroup(groupSecurityName)) {

 throw new EntryNotFoundException("group: "

 + groupSecurityName

 + " is not valid");

 }

 throw new CustomRegistryException(ex.getMessage(),ex);

 } finally {

 fileClose(in);

 }

 result.setList(usrsForGroup);

 return result;

 }

 /**

 * This method is implemented internally by the WebSphere Application

 * Server code in this release. This method is not called for the custom

 * registry implementations for this release. Return null in the

 * implementation.

 *

 **/

 public com.ibm.websphere.security.cred.WSCredential

 createCredential(String userSecurityName)

 throws CustomRegistryException,

Chapter 16. Security 1077

NotImplementedException,

 EntryNotFoundException {

 // This method is not called.

 return null;

 }

 // private methods

 private BufferedReader fileOpen(String fileName)

 throws FileNotFoundException {

 try {

 return new BufferedReader(new FileReader(fileName));

 } catch(FileNotFoundException e) {

 throw e;

 }

 }

 private void fileClose(BufferedReader in) {

 try {

 if (in != null) in.close();

 } catch(Exception e) {

 System.out.println("Error closing file" + e);

 }

 }

 private boolean match(String name, String pattern) {

 RegExpSample regexp = new RegExpSample(pattern);

 boolean matches = false;

 if(regexp.match(name))

 matches = true;

 return matches;

 }

}

//--

// The program provides the Regular Expression implementation

// used in the sample for the custom user registry (FileRegistrySample).

// The pattern matching in the sample uses this program to search for the

// pattern (for users and groups).

//--

class RegExpSample

{

 private boolean match(String s, int i, int j, int k)

 {

 for(; k < expr.length; k++)

label0:

 {

 Object obj = expr[k];

 if(obj == STAR)

 {

 if(++k >= expr.length)

 return true;

 if(expr[k] instanceof String)

 {

 String s1 = (String)expr[k++];

 int l = s1.length();

 for(; (i = s.indexOf(s1, i)) >= 0; i++)

 if(match(s, i + l, j, k))

 return true;

1078 Administering applications and their environment

return false;

 }

 for(; i < j; i++)

 if(match(s, i, j, k))

 return true;

 return false;

 }

 if(obj == ANY)

 {

 if(++i > j)

 return false;

 break label0;

 }

 if(obj instanceof char[][])

 {

 if(i >= j)

 return false;

 char c = s.charAt(i++);

 char ac[][] = (char[][])obj;

 if(ac[0] == NOT)

 {

 for(int j1 = 1; j1 < ac.length; j1++)

 if(ac[j1][0] <= c && c <= ac[j1][1])

 return false;

 break label0;

 }

 for(int k1 = 0; k1 < ac.length; k1++)

 if(ac[k1][0] <= c && c <= ac[k1][1])

 break label0;

 return false;

 }

 if(obj instanceof String)

 {

 String s2 = (String)obj;

 int i1 = s2.length();

 if(!s.regionMatches(i, s2, 0, i1))

 return false;

 i += i1;

 }

 }

 return i == j;

 }

 public boolean match(String s)

 {

 return match(s, 0, s.length(), 0);

 }

 public boolean match(String s, int i, int j)

 {

 return match(s, i, j, 0);

 }

 public RegExpSample(String s)

 {

 Vector vector = new Vector();

 int i = s.length();

 StringBuffer stringbuffer = null;

 Object obj = null;

Chapter 16. Security 1079

for(int j = 0; j < i; j++)

 {

 char c = s.charAt(j);

 switch(c)

 {

 case 63: /* ’?’ */

 obj = ANY;

 break;

 case 42: /* ’*’ */

 obj = STAR;

 break;

 case 91: /* ’[’ */

 int k = ++j;

 Vector vector1 = new Vector();

 for(; j < i; j++)

 {

 c = s.charAt(j);

 if(j == k && c == ’^’)

 {

 vector1.addElement(NOT);

 continue;

 }

 if(c == ’\\’)

 {

 if(j + 1 < i)

 c = s.charAt(++j);

 }

 else

 if(c == ’]’)

 break;

 char c1 = c;

 if(j + 2 < i && s.charAt(j + 1) == ’-’)

 c1 = s.charAt(j += 2);

 char ac1[] = {

 c, c1

 };

 vector1.addElement(ac1);

 }

 char ac[][] = new char[vector1.size()][];

 vector1.copyInto(ac);

 obj = ac;

 break;

 case 92: /* ’\\’ */

 if(j + 1 < i)

 c = s.charAt(++j);

 break;

 }

 if(obj != null)

 {

 if(stringbuffer != null)

 {

 vector.addElement(stringbuffer.toString());

 stringbuffer = null;

 }

 vector.addElement(obj);

 obj = null;

 }

 else

1080 Administering applications and their environment

{

 if(stringbuffer == null)

 stringbuffer = new StringBuffer();

 stringbuffer.append(c);

 }

 }

 if(stringbuffer != null)

 vector.addElement(stringbuffer.toString());

 expr = new Object[vector.size()];

 vector.copyInto(expr);

 }

 static final char NOT[] = new char[2];

 static final Integer ANY = new Integer(0);

 static final Integer STAR = new Integer(1);

 Object expr[];

}

users.props file:

This example presents the format for the users.props file.

Attention: The sample that is provided is intended to familiarize you with this feature. Do not use this

sample in an actual production environment.

5639-D57, 5630-A36, 5630-A37, 5724-D18

(C) COPYRIGHT International Business Machines Corp. 1997, 2005

All Rights Reserved * Licensed Materials - Property of IBM

Format:

name:passwd:uid:gids:display name

where name = userId/userName of the user

passwd = password of the user

uid = uniqueId of the user

gid = groupIds of the groups that the user belongs to

display name = a (optional) display name for the user.

bob:bob1:123:567:bob

dave:dave1:234:678:

jay:jay1:345:678,789:Jay-Jay

ted:ted1:456:678:Teddy G

jeff:jeff1:222:789:Jeff

vikas:vikas1:333:789:vikas

bobby:bobby1:444:789:

groups.props file:

The following example illustrates the format for the groups.props file.

Attention: The sample provided is intended to familiarize you with this feature. Do not use this sample

in an actual production environment.

5639-D57, 5630-A36, 5630-A37, 5724-D18

(C) COPYRIGHT International Business Machines Corp. 1997, 2005

All Rights Reserved * Licensed Materials - Property of IBM

Format:

name:gid:users:display name

where name = groupId of the group

gid = uniqueId of the group

users = list of all the userIds that the group contains

Chapter 16. Security 1081

display name = a (optional) display name for the group.

admins:567:bob:Administrative group

operators:678:jay,ted,dave:Operators group

users:789:jay,jeff,vikas,bobby:

Managing the realm in a federated repository configuration

Follow this topic to manage the realm in a federated repository configuration.

The realm can consist of identities in:

v The file-based repository that is built into the system

v One or more external repositories

v Both the built-in, file-based repository and in one or more external repositories

Before you configure your realm, review “Limitations of federated repositories” on page 1084.

1. Configure your realm by using one of the following topics. You might be configuring your realm for the

first time or changing an existing realm configuration.

v “Using a single built-in, file-based repository in a new configuration under Federated repositories” on

page 1085

v “Changing a federated repository configuration to include a single built-in, file-based repository only”

on page 1087

v “Configuring a single, Lightweight Directory Access Protocol repository in a new configuration under

Federated repositories” on page 1088

v “Changing a federated repository configuration to include a single, Lightweight Directory Access

Protocol repository only” on page 1089

v “Configuring multiple Lightweight Directory Access Protocol repositories in a federated repository

configuration” on page 1090

v “Configuring a single built-in, file-based repository and one or more Lightweight Directory Access

Protocol repositories in a federated repository configuration” on page 1091

2. Configure supported entity types using the steps described in “Configuring supported entity types in a

federated repository configuration” on page 1114. You must configure supported entity types before you

can manage this account with Users and Groups. The Base entry for the default parent determines the

repository location where entities of the specified type are placed on a create operation.

3. Optional: Use one or more of the following tasks to extend the capabilities of storing data and

attributes in your realm:

a. Configure an entry mapping repository using the steps described in “Configuring an entry mapping

repository in a federated repository configuration” on page 1111. An entry mapping repository is

used to store data for managing profiles on multiple repositories.

b. Configure a property extension repository using the steps described in “Configuring a property

extension repository in a federated repository configuration” on page 1100. A property extension

repository is used to store attributes that cannot be stored in your Lightweight Directory Access

Protocol (LDAP) server.

a. Set up a database repository using wsadmin commands as described in “Setting up an entry

mapping repository, a property extension repository, or a database repository using wsadmin

commands” on page 1104

4. Optional: Use one or more of the following advanced user tasks to extend the capabilities of LDAP

repositories in your realm:

v “Increasing the performance of the federated repository configuration” on page 1119

v “Configuring Lightweight Directory Access Protocol entity types in a federated repository

configuration” on page 1123

v “Configuring group attribute definition settings in a federated repository configuration” on page 1125

5. Optional: Manage repositories that are configured in your system by following the steps described in

“Managing repositories in a federated repository configuration” on page 1117.

1082 Administering applications and their environment

6. Optional: Add an external repository into your realm by following the steps described in “Adding an

external repository in a federated repository configuration” on page 1099.

1. After configuring the federated repositories, click Security > Secure administration, applications,

and infrastructure to return to the Secure administration, applications, and infrastructure panel. Verify

that Federated repositories is identified in the Current realm definition field. If Federated repositories is

not identified, select Federated repositories from the Available realm definitions field and click Set as

current. To verify the federated repositories configuration, click Apply on the Secure administration,

applications, and infrastructure panel. If Federated repositories is not identified in the Current realm

definition field, your federated repositories configuration is not used by WebSphere Application Server.

2. If you are enabling security, complete the remaining steps as specified in “Enabling security for the

realm” on page 1024. As the final step, validate this setup by clicking Apply in the Secure

administration, applications, and infrastructure panel.

3. Save, stop, and restart all the product servers (deployment managers, nodes, and Application Servers)

for changes in this panel to take effect. If the server comes up without any problems, the setup is

correct.

Realm configuration settings:

Use this page to manage the realm. The realm can consist of identities in the file-based repository that is

built into the system, in one or more external repositories, or in both the built-in, file-based repository and

one or more external repositories.

 To view this administrative console page, complete the following steps:

1. In the administrative console, click Security > Secure administration, applications, and

infrastructure.

2. Under User account repository, select Federated repositories from the Available realm definitions field

and click Configure.

When you finish adding or updating your federated repository configuration, go to the Security > Secure

administration, applications, and infrastructure panel and click Apply to validate the changes.

A single built-in, file-based repository is built into the system and included in the realm by default.

You can configure one or more Lightweight Directory Access Protocol (LDAP) repositories to store

identities in the realm. Click Add base entry to realm to specify a repository configuration and a base

entry into the realm. You can configure multiple different base entries into the same repository.

Click Remove to remove selected repositories from the realm. Repository configurations and contents are

not destroyed. The following restrictions apply:

v The realm must always contain at least one base entry; therefore, you cannot remove every entry.

v If you plan to remove the built-in, file-based repository from the administrative realm, verify that at least

one user in another member repository is a console user with administrative rights. Otherwise, you must

disable security to regain access to the administrative console.

WebSphere Application Server Version 6.1 distinguishes between the user identities for administrators who

manage the environment and server identities for authenticating server to server communications. In most

cases, server identities are automatically generated and are not stored in a repository. However, if you are

adding a Version 5.0.x or 6.0.x node to a Version 6.1 cell, you must ensure that the Version 5.x or Version

6.0.x server identity and password are defined in the repository for this cell. Enter the server user identity

and password on this panel.

Ream name:

Specifies the name of the realm. You can change the realm name.

Chapter 16. Security 1083

Primary administrative user name:

Specifies the name of the user with administrative privileges that is defined in the repository, for example,

adminUser.

Automatically generated server identity:

Enables the application server to generate the server identity that is used for internal process

communication.

 You can change this server identity on the Authentication mechanisms and expiration panel. To access the

Authentication mechanisms and expiration panel, click Security > Secure administration, applications,

and infrastructure > Authentication mechanisms and expiration. Change the value of the Internal

server ID field.

 Default: Disabled

Server identity that is stored in the repository:

Specifies a user identity in the repository that is used for internal process communication.

 Default: Enabled

Server user ID or administrative user on a Version 6.0.x node:

Specifies the user ID that is used to run the application server for security purposes.

Password:

Specifies the password that corresponds to the server ID.

Ignore case for authorization:

Specifies that a case-insensitive authorization check is performed.

 If case sensitivity is not a consideration for authorization, enable the Ignore case for authorization

option.

Base entry:

Specifies the base entry within the realm. This entry and its descendents are part of the realm.

Repository identifier:

Specifies a unique identifier for the repository. This identifier uniquely identifies the repository within the

cell.

Repository type:

Specifies the repository type, such as File or LDAP.

Limitations of federated repositories:

This topic outlines known limitations and important information for configuring federated repositories.

1084 Administering applications and their environment

Configuring federated repositories in a mixed-version environment

In a mixed-version deployment manager cell that contains both Version 6.1.x and Version 5.x or 6.0.x

nodes, the following limitations apply for configuring federated repositories:

v You can configure only one Lightweight Directory Access Protocol (LDAP) repository under federated

repositories, and the repository must be supported by Version 5.x or 6.0.x.

v You can specify a realm name that is compatible with prior versions only. The host name and the port

number represent the realm for the LDAP server in a mixed-version nodes cell. For example,

machine1.austin.ibm.com:389.

v You must configure a stand-alone LDAP registry; the LDAP information in both the stand-alone LDAP

registry and the LDAP repository under the federated repositories configuration must match. During

node synchronization, the LDAP information from the stand-alone LDAP registry propagates to the

Version 5.x or 6.0.x nodes.

Important: Before node synchronization, verify that Federated repositories is identified in the Current

realm definition field. If Federated repositories is not identified, select Federated

repositories from the Available realm definitions field and click Set as current. Do not set

the stand-alone LDAP registry as the current realm definition.

v You cannot configure an entry mapping repository or a property extension repository in a mixed-version

deployment manager cell.

Coexisting with Tivoli Access Manager

For Tivoli Access Manager to coexist with a federated repositories configuration, the following limitations

apply:

v You can configure only one LDAP repository under federated repositories, and that LDAP repository

configuration must match the LDAP server configuration under Tivoli Access Manager.

v The distinguished name for the realm base entry must match the LDAP distinguished name (DN) of the

base entry within the repository. In WebSphere Application Server, Tivoli Access Manager recognizes

the LDAP user ID and LDAP DN for both authentication and authorization. The federated repositories

configuration does not include additional mappings for the LDAP user ID and DN.

v The federated repositories functionality does not recognize the metadata that is specified by Tivoli

Access Manager. When users and groups are created under user and group management, they are not

formatted using the Tivoli Access Manager metadata. The users and groups must be manually imported

into Tivoli Access Manager before you use them for authentication and authorization.

Using a single built-in, file-based repository in a new configuration under Federated repositories:

Follow this task to use a single built-in, file-based repository in a new configuration under Federated

repositories.

 To use the default configuration under Federated repositories that includes a single built-in, file-based

repository only, you need to know the primary administrative user name of the user who manages

WebSphere Application Server resources and user accounts.

Restriction: Client certificate login is not supported in a realm that includes a single built-in, file-based

repository or a single built-in, file-based repository with other repositories.

1. In the administrative console, click Security > Secure administration, applications, and

infrastructure.

2. Under User account repository, select Federated repositories from the Available realm definitions field

and click Configure.

3. Leave the Realm name field value as defaultWIMFileBasedRealm.

4. Enter the name of the primary administrative user in the Primary administrative user name field, for

example, adminUser.

5. Leave the Ignore case for authorization option enabled.

Chapter 16. Security 1085

6. Click OK.

7. Provide an administrative user password. This panel displays only when a built-in, file-based repository

is included in the realm. Otherwise, the panel does not display. If a built-in, file-based repository is

included, complete the following steps:

a. Supply a password for the administrative user in the Password field.

b. Confirm the password of the primary administrative user in the Confirm password field.

c. Click OK.

After completing these steps, your new configuration under Federated repositories includes a single

built-in, file-based repository only.

1. Before you can manage this account with Users and Groups, configure supported entity types as

described in “Configuring supported entity types in a federated repository configuration” on page 1114.

2. After configuring the federated repositories, click Security > Secure administration, applications,

and infrastructure to return to the Secure administration, applications, and infrastructure panel. Verify

that Federated repositories is identified in the Current realm definition field. If Federated repositories is

not identified, select Federated repositories from the Available realm definitions field and click Set as

current. To verify the federated repositories configuration, click Apply on the Secure administration,

applications, and infrastructure panel. If Federated repositories is not identified in the Current realm

definition field, your federated repositories configuration is not used by WebSphere Application Server.

3. If you are enabling security, complete the remaining steps, as specified in “Enabling security for the

realm” on page 1024. As the final step, validate this setup by clicking Apply in the Secure

administration, applications, and infrastructure panel.

4. Save, stop, and restart all the product servers (deployment managers, nodes, and Application Servers)

for changes in this panel to take effect. If the server comes up without any problems, the setup is

correct.

Administrative user password settings:

Use this page to set a password for the administrative user who manages the product resources and user

accounts.

 To view this administrative console page, complete the following steps:

1. In the administrative console, click Security > Secure administration, applications, and

infrastructure.

2. Under User account repository, select Federated repositories from the Available realm definitions field

and click Configure.

3. If your federated repository configuration includes a built-in, file-based repository, then the

Administrative user password panel displays when changes are applied.

When you finish adding or updating your federated repository configuration, go to the Security > Secure

administration, applications, and infrastructure panel and click Apply to validate the changes.

Password:

Specifies the password of the administrative user who manages the product resources and user accounts.

 Confirm password:

Confirms the password of the administrative user who manages the product resources and user accounts.

Federated repository wizard settings:

Use this security wizard page to complete the basic requirements to connect the application server to a

federated repository.

1086 Administering applications and their environment

To view this security wizard page, complete the following steps

1. Click Security > Secure administration, applications, and infrastructure > Security configuration

wizard.

2. Select your protection settings and click Next.

3. Select the Federated repositories option and click Next.

You can modify your federated repository configuration by completing the following steps:

1. Click Security > Security administration, applications, and infrastructure.

2. Under User account repository, select Federated repository and click Configure.

Note: This wizard is used for the initial configuration of a built-in, file-based repository. The user name

and password do not have to be in the federated repository because they will be created. If you

have previously configured federated repositories, do not use the Security configuration wizard to

modify your configuration. Instead, modify your configuration using the Federated repositories

selection under User account repository on the Secure administration, applications, and

infrastructure panel.

Primary administrative user name:

Specifies the name of the user with administrative privileges that is defined in the repository, for example,

adminUser.

Password:

Specifies the password of the administrative user who manages the product resources and user accounts.

 Confirm password:

Confirms the password of the administrative user who manages the product resources and user accounts.

Changing a federated repository configuration to include a single built-in, file-based repository

only:

Follow this task to change your federated repository configuration to include a single built-in, file-based

repository only.

 To change your federated repository configuration to include a single built-in, file-based repository only,

you need to know the primary administrative user name of the user who manages WebSphere Application

Server resources and user accounts.

Restriction: Client certificate login is not supported in a realm that includes a single built-in, file-based

repository or a single built-in, file-based repository with other repositories.

1. In the administrative console, click Security > Secure administration, applications, and

infrastructure.

2. Under User account repository, select Federated repositories from the Available realm definitions field

and click Configure.

3. Enter the name of the realm in the Realm name field. If the realm contains a single built-in, file-based

repository only, you must specify defaultWIMFileBasedRealm as the realm name.

4. Enter the name of the primary administrative user in the Primary administrative user name field, for

example, adminUser.

5. Enable the Ignore case for authorization option.

6. Click Use built-in repository if the built-in, file-based repository is not listed in the collection.

7. Select all repositories in the collection that are not of type File and click Remove.

Chapter 16. Security 1087

8. Click OK.

9. Provide an administrative user password. This panel displays only when a built-in, file-based repository

is included in the realm. Otherwise, it does not display. If a built-in, file-based repository is included,

complete the following steps:

a. Supply a password for the primary administrative user in the Password field.

b. Confirm the password of the primary administrative user in the Confirm password field.

c. Click OK.

After completing these steps, your federated repository configuration, which includes a single built-in,

file-based repository only, is configured.

1. Before you can manage this account with Users and Groups, configure supported entity types as

described in “Configuring supported entity types in a federated repository configuration” on page 1114.

2. After configuring the federated repositories, click Security > Secure administration, applications,

and infrastructure to return to the Secure administration, applications, and infrastructure panel. Verify

that Federated repositories is identified in the Current realm definition field. If Federated repositories is

not identified, select Federated repositories from the Available realm definitions field and click Set as

current. To verify the federated repositories configuration, click Apply on the Secure administration,

applications, and infrastructure panel. If Federated repositories is not identified in the Current realm

definition field, your federated repositories configuration is not used by WebSphere Application Server.

3. If you are enabling security, complete the remaining steps, as specified in “Enabling security for the

realm” on page 1024. As the final step, validate this setup by clicking Apply in the Secure

administration, applications, and infrastructure panel.

4. Save, stop, and restart all the product servers (deployment managers, nodes, and Application Servers)

for changes in this panel to take effect. If the server comes up without any problems, the setup is

correct.

Configuring a single, Lightweight Directory Access Protocol repository in a new configuration

under Federated repositories:

Follow this task to configure a single, Lightweight Directory Access Protocol (LDAP) repository in a new

configuration under Federated repositories.

 To configure an LDAP repository in a new configuration under Federated repositories, you must know a

valid user name (ID), the user password, the server host and port and, if necessary, the bind distinguished

name (DN) and the bind password. You can choose any valid user in the repository that is searchable. In

some LDAP servers, administrative users are not searchable and cannot be used (for example, cn=root in

SecureWay). This user is referred to as the WebSphere Application Server administrative user name or

administrative ID in the documentation. Being an administrative ID means a user has special privileges

when calling some protected internal methods. Normally, this ID and password are used to log in to the

administrative console after you turn on security. You can use other users to log in, if those users are part

of the administrative roles.

1. In the administrative console, click Security > Secure administration, applications, and

infrastructure.

2. Under User account repository, select Federated repositories from the Available realm definitions field

and click Configure.

3. On the Federated repositories panel, complete the following steps:

a. Enter the name of the realm in the Realm name field. You can change the existing realm name.

b. Enter the name of the primary administrative user in the Primary administrative user name field, for

example, adminUser.

c. Optional: Select the Ignore case for authorization option. When you enable this option, the

authorization check is case-insensitive. Normally, an authorization check involves checking the

complete DN of a user, which is unique in the realm and is case-insensitive. Clear this option when

all of the member repositories in the realm are case-sensitive.

1088 Administering applications and their environment

Restriction: Some repositories contain data that is case-sensitive only, and some repositories

contain data that is case-insensitive only. Do not include both case-sensitive and

case-insensitive repositories in the realm. For example, do not include case-sensitive

repositories in the realm with a built-in, file-based repository.

d. Click Add base entry to realm to add a base entry that uniquely identifies the external repository

in the realm. Then complete the steps in “Adding an external repository in a federated repository

configuration” on page 1099.

4. On the Federated repositories panel, complete the following steps:

a. Select the built-in, file-based repository in the collection, and click Remove.

Restriction: Before you remove the built-in, file-based repository from the administrative realm,

verify that at least one user in another member repository is a console user with

administrative rights. Otherwise, you must disable security to regain access to the

administrative console.

b. Click OK.

After completing these steps, your new configuration under Federated repositories includes a single, LDAP

repository only.

1. Before you can manage this account with Users and Groups, configure supported entity types as

described in “Configuring supported entity types in a federated repository configuration” on page 1114.

2. After configuring the federated repositories, click Security > Secure administration, applications,

and infrastructure to return to the Secure administration, applications, and infrastructure panel. Verify

that Federated repositories is identified in the Current realm definition field. If Federated repositories is

not identified, select Federated repositories from the Available realm definitions field and click Set as

current. To verify the federated repositories configuration, click Apply on the Secure administration,

applications, and infrastructure panel. If Federated repositories is not identified in the Current realm

definition field, your federated repositories configuration is not used by WebSphere Application Server.

3. If you are enabling security, complete the remaining steps as specified in “Enabling security for the

realm” on page 1024. As the final step, validate this setup by clicking Apply in the Secure

administration, applications, and infrastructure panel.

4. Save, stop, and restart all the product servers (deployment managers, nodes and Application Servers)

for changes in this panel to take effect. If the server comes up without any problems, the setup is

correct.

Changing a federated repository configuration to include a single, Lightweight Directory Access

Protocol repository only:

Follow this task to change your federated repository configuration to include a single, Lightweight Directory

Access Protocol repository (LDAP) repository only.

 To configure an LDAP repository in a federated repository configuration, you must know a valid user name

(ID), the user password, the server host and port and, if necessary, the bind distinguished name (DN) and

the bind password. You can choose any valid user in the repository that is searchable. In some LDAP

servers, administrative users are not searchable and cannot be used (for example, cn=root in SecureWay).

This user is referred to as a WebSphere Application Server administrative user name or administrative ID

in the documentation. Being an administrative ID means a user has special privileges when calling some

protected internal methods. Normally, this ID and password are used to log into the administrative console

after you turn on security. You can use other users to log in if those users are part of the administrative

roles.

1. In the administrative console, click Security > Secure administration, applications, and

infrastructure.

2. Under User account repository, select Federated repositories from the Available realm definitions field

and click Configure.

3. Enter the name of the realm in the Realm name field. You can change the existing realm name.

Chapter 16. Security 1089

4. Enter the name of the primary administrative user in the Primary administrative user name field, for

example, adminUser.

5. Optional: Select the Ignore case for authorization option. When you enable this option, the

authorization check is case-insensitive. Normally, an authorization check involves checking the

complete DN of a user, which is unique in the realm and is case-insensitive. Clear this option when all

of the member repositories in the realm are case-sensitive.

Restriction: Some repositories contain data that is case-sensitive only, and some repositories contain

data that is case-insensitive only. Do not include both case-sensitive and case-insensitive

repositories in the realm. For example, do not include case-sensitive repositories in the

realm with a built-in, file-based repository.

6. Optional: Click Add base entry to realm if the LDAP repository that you need is not contained in the

collection. Then complete the steps in “Adding an external repository in a federated repository

configuration” on page 1099.

7. On the Federated repositories panel, complete the following steps:

a. Optional: Select the repositories in the collection that you do not need in the realm and click

Remove.

Restriction: The realm must always contain at least one base entry; therefore, you cannot remove

every entry.

b. Click OK.

After completing these steps, your federated repository configuration, which includes a single LDAP

repository only, is configured.

1. Before you can manage this account with Users and Groups, configure supported entity types as

described in “Configuring supported entity types in a federated repository configuration” on page 1114.

2. After configuring the federated repositories, click Security > Secure administration, applications,

and infrastructure to return to the Secure administration, applications, and infrastructure panel. Verify

that Federated repositories is identified in the Current realm definition field. If Federated repositories is

not identified, select Federated repositories from the Available realm definitions field and click Set as

current. To verify the federated repositories configuration, click Apply on the Secure administration,

applications, and infrastructure panel. If Federated repositories is not identified in the Current realm

definition field, your federated repositories configuration is not used by WebSphere Application Server.

3. If you are enabling security, complete the remaining steps as specified in “Enabling security for the

realm” on page 1024. As the final step, validate this setup by clicking Apply in the Secure

administration, applications, and infrastructure panel.

4. Save, stop, and restart all the product servers (deployment managers, nodes, and Application Servers)

for changes in this panel to take effect. If the server comes up without any problems, the setup is

correct.

Configuring multiple Lightweight Directory Access Protocol repositories in a federated repository

configuration:

Follow this task to configure multiple Lightweight Directory Access Protocol (LDAP) repositories in a

federated repository configuration.

 To configure an LDAP repository in a federated repository configuration, you must know a valid user name

(ID), the user password, the server host and port and, if necessary, the bind distinguished name (DN) and

the bind password. You can choose any valid user in the repository that is searchable. In some LDAP

servers, administrative users are not searchable and cannot be used (for example, cn=root in SecureWay).

This user is referred to as a WebSphere Application Server administrative user name or administrative ID

in the documentation. Being an administrative ID means a user has special privileges when calling some

protected internal methods. Normally, this ID and password are used to log into the administrative console

after you turn on security. You can use other users to log in if those users are part of the administrative

roles.

1090 Administering applications and their environment

1. In the administrative console, click Security > Secure administration, applications, and

infrastructure.

2. Under User account repository, select Federated repositories from the Available realm definitions field

and click Configure.

3. Enter the name of the realm in the Realm name field. You can change the existing realm name.

4. Enter the name of the primary administrative user in the Primary administrative user name field, for

example, adminUser.

5. Optional: Select the Ignore case for authorization option. When you enable this option, the

authorization check is case-insensitive. Normally, an authorization check involves checking the

complete DN of a user, which is unique in the realm and is case-insensitive. Clear this option when all

of the member repositories in the realm are case-sensitive.

Restriction: Some repositories contain data that is case-sensitive only, and some repositories contain

data that is case-insensitive only. Do not include both case-sensitive and case-insensitive

repositories in the realm. For example, do not include case-sensitive repositories in the

realm with a built-in, file-based repository.

6. Optional: Click Add base entry to realm if the LDAP repository that you need is not listed in the

collection. Then complete the steps in “Adding an external repository in a federated repository

configuration” on page 1099.

7. On the Federated repositories panel, complete the following steps:

a. Optional: Repeat step 6 if the LDAP repository that you need is not listed in the collection.

b. Optional: Select the repositories in the collection that you do not need in the realm and click

Remove. The following restrictions apply:

v The realm must always contain at least one base entry; therefore, you cannot remove every

entry.

v If you plan to remove the built-in, file-based repository from the administrative realm, verify that

at least one user in another member repository is a console user with administrative rights.

Otherwise, you must disable security to regain access to the administrative console.

c. Click OK.

After completing these steps, your federated repository configuration, which includes multiple LDAP

repositories, is configured.

1. Before you can manage this account with Users and Groups, configure supported entity types as

described in “Configuring supported entity types in a federated repository configuration” on page 1114.

2. After configuring the federated repositories, click Security > Secure administration, applications,

and infrastructure to return to the Secure administration, applications, and infrastructure panel. Verify

that Federated repositories is identified in the Current realm definition field. If Federated repositories is

not identified, select Federated repositories from the Available realm definitions field and click Set as

current. To verify the federated repositories configuration, click Apply on the Secure administration,

applications, and infrastructure panel. If Federated repositories is not identified in the Current realm

definition field, your federated repositories configuration is not used by WebSphere Application Server.

3. If you are enabling security, complete the remaining steps as specified in “Enabling security for the

realm” on page 1024. As the final step, validate this setup by clicking Apply in the Secure

administration, applications, and infrastructure panel.

4. Save, stop, and restart all the product servers (deployment managers, nodes, and Application Servers)

for changes in this panel to take effect. If the server comes up without any problems, the setup is

correct.

Configuring a single built-in, file-based repository and one or more Lightweight Directory Access

Protocol repositories in a federated repository configuration:

Follow this task to configure a single built-in, file-based repository and multiple Lightweight Directory

Access Protocol (LDAP) repositories in a federated repository configuration.

Chapter 16. Security 1091

To configure a built-in, file-based repository in a federated repository configuration, you must know the

primary administrative user name of the user who manages WebSphere Application Server resources and

user accounts.

To configure an LDAP repository in a federated repository configuration, you must know a valid user name

(ID), the user password, the server host and port and, if necessary, the bind distinguished name (DN) and

the bind password. You can choose any valid user in the repository that is searchable. In some LDAP

servers, administrative users are not searchable and cannot be used (for example, cn=root in SecureWay).

This user is referred to as a WebSphere Application Server administrative user name or administrative ID

in the documentation. Being an administrative ID means a user has special privileges when calling some

protected internal methods. Normally, this ID and password are used to log in to the administrative console

after you turn on security. You can use other users to log in if those users are part of the administrative

roles.

Restriction: Client certificate login is not supported in a realm that includes a single built-in, file-based

repository or a single built-in, file-based repository with other repositories.

1. In the administrative console, click Security > Secure administration, applications, and

infrastructure.

2. Under User account repository, select Federated repositories from the Available realm definitions field

and click Configure.

3. Enter the name of the realm in the Realm name field. You can change the existing realm name.

4. Enter the name of the primary administrative user in the Primary administrative user name field, for

example, adminUser.

Restriction: When you configure multiple repositories that includes a single built-in, file-based

repository, the primary administrative user name must exist in the file-based repository. If

the primary administrative user name does not exist in the file-based repository, then the

name is created in the file-based repository. The primary administrative user name

cannot exist in other repositories.

5. Select the Ignore case for authorization option.

 Attention: When the realm includes a built-in, file-based repository, you must enable the Ignore

case for authorization option.
When you enable this option, the authorization check is case-insensitive. Normally, an authorization

check involves checking the complete DN of a user, which is unique in the realm and is

case-insensitive. Clear this option when all of the member repositories in the realm are case-sensitive.

Restriction: Some repositories contain data that is case-sensitive only, and some repositories contain

data that is case-insensitive only. Do not include both case-sensitive and case-insensitive

repositories in the realm. For example, do not include case-sensitive repositories in the

realm with a built-in, file-based repository.

6. Optional: Click Add base entry to realm if the LDAP repository that you need is not contained in the

collection. Then complete the steps in “Adding an external repository in a federated repository

configuration” on page 1099.

7. On the Federated repositories panel, complete the following steps:

a. Optional: Repeat step 6 if the LDAP repository that you need is not listed in the collection.

b. Click Use built-in repository if the built-in, file-based repository is not listed in the collection.

c. Optional: Select the repositories in the collection that you do not need in the realm and click

Remove.

Restriction: The realm must always contain at least one base entry; therefore, you cannot remove

every entry.

d. Click OK.

1092 Administering applications and their environment

8. Provide an administrative user password. This panel displays only when a built-in, file-based repository

is included in the realm. Otherwise, the panel does not display. If a built-in, file-based repository is

included, complete the following steps:

a. Supply a password for the administrative user in the Password field.

b. Confirm the password of the primary administrative user in the Confirm password field.

c. Click OK.

After completing these steps, your federated repository configuration, which includes a single built-in,

file-based repository and one or more LDAP repositories, is configured.

1. Before you can manage this account with Users and Groups, configure supported entity types as

described in “Configuring supported entity types in a federated repository configuration” on page 1114.

2. After configuring the federated repositories, click Security > Secure administration, applications,

and infrastructure to return to the Secure administration, applications, and infrastructure panel. Verify

that Federated repositories is identified in the Current realm definition field. If Federated repositories is

not identified, select Federated repositories from the Available realm definitions field and click Set as

current. To verify the federated repositories configuration, click Apply on the Secure administration,

applications, and infrastructure panel. If Federated repositories is not identified in the Current realm

definition field, your federated repositories configuration is not used by WebSphere Application Server.

3. If you are enabling security, complete the remaining steps as specified in “Enabling security for the

realm” on page 1024. As the final step, validate this setup by clicking Apply in the Secure

administration, applications, and infrastructure panel.

4. Save, stop, and restart all the product servers (deployment managers, nodes, and Application Servers)

for changes in this panel to take effect. If the server comes up without any problems, the setup is

correct.

Configuring Lightweight Directory Access Protocol in a federated repository configuration:

Follow this topic to configure Lightweight Directory Access Protocol (LDAP) settings in a federated

repository configuration.

 You have chosen among various ways to configure LDAP:

v “Configuring a single, Lightweight Directory Access Protocol repository in a new configuration under

Federated repositories” on page 1088

v “Changing a federated repository configuration to include a single, Lightweight Directory Access Protocol

repository only” on page 1089

v “Configuring multiple Lightweight Directory Access Protocol repositories in a federated repository

configuration” on page 1090

v “Configuring a single built-in, file-based repository and one or more Lightweight Directory Access

Protocol repositories in a federated repository configuration” on page 1091

v “Managing repositories in a federated repository configuration” on page 1117

At this point, you are viewing the LDAP repository configuration page of the administrative console.

 1. Enter a unique identifier for the repository in the Repository identifier field. This identifier uniquely

identifies the repository within the cell, for example: LDAP1.

 2. Select the type of LDAP server that is used from the Directory type list. The type of LDAP server

determines the default filters that are used by WebSphere Application Server.

IBM Tivoli Directory Server users can choose either IBM Tivoli Directory Server or SecureWay as the

directory type. Use the IBM Tivoli Directory Server directory type for better performance. For a list of

supported LDAP servers, see “Using specific directory servers as the LDAP server” on page 1055.

 3. Enter the fully qualified host name of the primary LDAP server in the Primary host name field. You

can enter either the IP address or the domain name system (DNS) name.

Chapter 16. Security 1093

4. Enter the server port of the LDAP directory in the Port field. The host name and the port number

represent the realm for this LDAP server in a mixed version nodes cell. If servers in different cells are

communicating with each other using Lightweight Third Party Authentication (LTPA) tokens, these

realms must match exactly in all the cells.

The default value is 389, which is not a Secure Sockets Layer (SSL) connection. Use port 636 for a

Secure Sockets Layer (SSL) connection. For some LDAP servers, you can specify a different port for

a non-SSL or SSL connection. If you do not know the port to use, contact your LDAP server

administrator.

If multiple WebSphere Application Servers are installed and configured to run in the same single

sign-on domain, or if WebSphere Application Server interoperates with a previous version of

WebSphere Application Server, then it is important that the port number match all configurations. For

example, if the LDAP port is explicitly specified as 389 in a Version 5.x or 6.0.x configuration, and

WebSphere Application Server at Version 6.1 is going to interoperate with the Version 5.x or 6.0.x

server, then verify that port 389 is specified explicitly for the Version 6.1 server.

 5. Optional: Enter the host name of the failover LDAP server in the Failover host name field. You can

specify a secondary directory server to be used in the event that your primary directory server

becomes unavailable. After switching to a secondary directory server, LDAP repository attempts to

reconnect to the primary directory server every 15 minutes.

 6. Optional: Enter the port of the failover LDAP server in the Port field and click Add. The default value

is 389, which is not a Secure Sockets Layer (SSL) connection. Use port 636 for a Secure Sockets

Layer (SSL) connection. For some LDAP servers, you can specify a different port for a non-SSL or

SSL connection. If you do not know the port to use, contact your LDAP server administrator.

 7. Optional: Select the type of referral. A referral is an entity that is used to redirect a client request to

another LDAP server. A referral contains the names and locations of other objects. It is sent by the

server to indicate that the information that the client requested can be found at another location,

possibly at another server or several servers. The default value is ignore.

ignore

Referrals are ignored.

follow Referrals are followed automatically.

 8. Optional: Enter the bind DN name in the Bind distinguished name field, for example, cn=root. The

bind DN is required if anonymous binds are not possible on the LDAP server to obtain user and

group information or for write operations. In most cases, bind DN and bind password are needed.

However, when anonymous bind can satisfy all of the required functions, bind DN and bind password

are not needed. If the LDAP server is set up to use anonymous binds, leave this field blank. If a

name is not specified, the application server binds anonymously.

 9. Optional: Enter the password that corresponds to the bind DN in the Bind password field.

10. Optional: Enter the property names to use to log into WebSphere Application Server in the Login

properties field. This field takes multiple login properties, delimited by a semicolon (;). For example,

uid;mail.

All login properties are searched during login. If multiple entries or no entries are found, an exception

is thrown. For example, if you specify the login properties as uid;mail and the login ID as Bob, the

search filter searches for uid=Bob or mail=Bob. When the search returns a single entry, then

authentication can proceed. Otherwise, an exception is thrown.

11. Optional: Select the certificate map mode in the Certificate mapping field. You can use the X.590

certificates for user authentication when LDAP is selected as the repository. The Certificate mapping

field is used to indicate whether to map the X.509 certificates into an LDAP directory user by

EXACT_DN or CERTIFICATE_FILTER. If EXACT_DN is selected, the DN in the certificate must

exactly match the user entry in the LDAP server, including case and spaces.

12. If you select CERTIFICATE_FILTER in the Certificate mapping field, specify the LDAP filter for

mapping attributes in the client certificate to entries in LDAP.

If more than one LDAP entry matches the filter specification at run time, authentication fails because

the result is an ambiguous match. The syntax or structure of this filter is:

1094 Administering applications and their environment

LDAP attribute=${Client certificate attribute}

For example, uid=${SubjectCN}.

The left side of the filter specification is an LDAP attribute that depends on the schema that your

LDAP server is configured to use. The right side of the filter specification is one of the public

attributes in your client certificate. The right side must begin with a dollar sign ($) and open bracket

({) and end with a close bracket (}). You can use the following certificate attribute values on the right

side of the filter specification. The case of the strings is important:

v ${UniqueKey}

v ${PublicKey}

v ${PublicKey}

v ${Issuer}

v ${NotAfter}

v ${NotBefore}

v ${SerialNumber}

v ${SigAlgName}

v ${SigAlgOID}

v ${SigAlgParams}

v ${SubjectCN}

v ${Version}

13. Optional: Select the Require SSL communications option if you want to use Secure Sockets Layer

communications with the LDAP server.

If you select the Require SSL communications option, you can select either the Centrally

managed or Use specific SSL alias option.

Centrally managed

Enables you to specify an SSL configuration for a particular scope, such as the cell, node,

server, or cluster in one location. To use the Centrally managed option, you must specify the

SSL configuration for the particular set of endpoints. The Manage endpoint security

configurations and trust zones panel displays all of the inbound and outbound endpoints that

use the SSL protocol. If you expand the Inbound or Outbound section of the panel and click

the name of a node, you can specify an SSL configuration that is used for every endpoint on

that node. For an LDAP registry, you can override the inherited SSL configuration by

specifying an SSL configuration for LDAP. To specify an SSL configuration for LDAP,

complete the following steps:

a. Click Security > SSL certificate and key management > Manage endpoint security

configurations and trust zones.

b. Expand Outbound > cell_name > Nodes > node_name > Servers > server_name >

LDAP.

Use specific SSL alias

Select the Use specific SSL alias option if you intend to select one of the SSL configurations

in the menu that follows the option.

 This configuration is used only when SSL is enabled for LDAP. The default is

DefaultSSLSettings. To modify or create a new SSL configuration, complete the following

steps:

a. Click Security > SSL certificate and key management.

b. Under Configuration settings, click Manage endpoint security configurations and trust

zones > configuration_name.

c. Under Related items, click SSL configurations.

14. Click OK.

After completing these steps, your LDAP repository settings are configured.

Return to the appropriate task to complete the steps for your federated repository configuration:

Chapter 16. Security 1095

v “Configuring a single, Lightweight Directory Access Protocol repository in a new configuration under

Federated repositories” on page 1088

v “Changing a federated repository configuration to include a single, Lightweight Directory Access Protocol

repository only” on page 1089

v “Configuring multiple Lightweight Directory Access Protocol repositories in a federated repository

configuration” on page 1090

v “Configuring a single built-in, file-based repository and one or more Lightweight Directory Access

Protocol repositories in a federated repository configuration” on page 1091

v “Managing repositories in a federated repository configuration” on page 1117

Lightweight Directory Access Protocol repository configuration settings:

Use this page to configure secure access to a Lightweight Directory Access Protocol (LDAP) repository

with optional failover servers.

 To view this administrative console page, complete the following steps:

1. In the administrative console, click Security > Secure administration, applications, and

infrastructure.

2. Under User account repository, select Federated repositories from the Available realm definitions field

and click Configure.

3. Under Related items, click Manage repositories.

4. Click Add to specify a new external repository or select an external repository that is preconfigured.

When you finish adding or updating your federated repository configuration, go to the Security > Secure

administration, applications, and infrastructure panel and click Apply to validate the changes.

Repository identifier:

Specifies a unique identifier for the LDAP repository. This identifier uniquely identifies the repository within

the cell, for example: LDAP1.

Directory type:

Specifies the type of LDAP server to which you connect.

 Expand the drop-down list to display a list of LDAP directory types.

Primary host name:

Specifies the host name of the primary LDAP server. This host name is either an IP address or a domain

name service (DNS) name.

Port:

Specifies the LDAP server port.

 The default value is 389, which is not a Secure Sockets Layer (SSL) connection. Use port 636 for a

Secure Sockets Layer (SSL) connection. For some LDAP servers, you can specify a different port for a

non-SSL or SSL connection. If you do not know the port to use, contact your LDAP server administrator.

 Data type: Integer

Default: 389

Range: 389, which is not a Secure Sockets

Layer (SSL) connection

636, which is a Secure Sockets Layer

(SSL) connection

1096 Administering applications and their environment

Failover host name:

Specifies the host name of the failover LDAP server.

 You can specify a secondary directory server to be used in the event that your primary directory server

becomes unavailable. After switching to a secondary directory server, the LDAP repository attempts to

reconnect to the primary directory server every 15 minutes.

Port:

Specifies the port of the failover LDAP server.

 The default value is 389, which is not a Secure Sockets Layer (SSL) connection. Use port 636 for a

Secure Sockets Layer (SSL) connection. For some LDAP servers, you can specify a different port for a

non-SSL or SSL connection. If you do not know the port to use, contact your LDAP server administrator.

 Data type: Integer

Range: 389, which is not a Secure Sockets

Layer (SSL) connection

636, which is a Secure Sockets Layer

(SSL) connection

Support referrals to other LDAP servers:

Specifies how referrals that are encountered by the LDAP server are handled.

 A referral is an entity that is used to redirect a client request to another LDAP server. A referral contains

the names and locations of other objects. It is sent by the server to indicate that the information that the

client requested can be found at another location, possibly at another server or several servers. The

default value is ignore.

 Default: ignore

Range:

ignore Referrals are ignored.

follow Referrals are followed automatically.

Bind distinguished name:

Specifies the distinguished name (DN) for the application server to use when binding to the LDAP

repository.

 If no name is specified, the application server binds anonymously. In most cases, bind DN and bind

password are needed. However, when anonymous bind can satisfy all of the required functions, bind DN

and bind password are not needed.

Bind password:

Specifies the password for the application server to use when binding to the LDAP repository.

Login properties:

Specifies the property names to use to log into the application server.

 This field takes multiple login properties, delimited by a semicolon (;). For example, uid;mail. All login

properties are searched during login. If multiple entries or no entries are found, an exception is thrown. For

Chapter 16. Security 1097

example, if you specify the login properties as uid;mail and the login ID as Bob, the search filter searches

for uid=Bob or mail=Bob. When the search returns a single entry, then authentication can proceed.

Otherwise, an exception is thrown.

Certificate mapping:

Specifies whether to map X.509 certificates into an LDAP directory by EXACT_DN or

CERTIFICATE_FILTER. Specify CERTIFICATE_FILTER to use the specified certificate filter for the

mapping.

Certificate filter:

Specifies the filter certificate mapping property for the LDAP filter. The filter is used to map attributes in the

client certificate to entries in the LDAP repository.

 If more than one LDAP entry matches the filter specification at run time, authentication fails because the

result is an ambiguous match. The syntax or structure of this filter is:

LDAP attribute=${Client certificate attribute}

For example, uid=${SubjectCN}.

The left side of the filter specification is an LDAP attribute that depends on the schema that your LDAP

server is configured to use. The right side of the filter specification is one of the public attributes in your

client certificate. The right side must begin with a dollar sign ($) and open bracket ({) and end with a close

bracket (}). You can use the following certificate attribute values on the right side of the filter specification.

The case of the strings is important:

v ${UniqueKey}

v ${PublicKey}

v ${PublicKey}

v ${Issuer}

v ${NotAfter}

v ${NotBefore}

v ${SerialNumber}

v ${SigAlgName}

v ${SigAlgOID}

v ${SigAlgParams}

v ${SubjectCN}

v ${Version}

Require SSL communications:

Specifies whether secure socket communication is enabled to the LDAP server.

 When enabled, the Secure Sockets Layer (SSL) settings for LDAP are used, if specified.

Centrally managed:

Specifies that the selection of an SSL configuration is based upon the outbound topology view for the Java

Naming and Directory Interface (JNDI) platform.

 Centrally managed configurations support one location to maintain SSL configurations, rather than

spreading them across the configuration documents.

 Default: Enabled

Range: Enabled or Disabled

1098 Administering applications and their environment

Use specific SSL alias:

Specifies the SSL configuration alias to use for LDAP outbound SSL communications.

 This option overrides the centrally managed configuration for the JNDI platform.

Adding an external repository in a federated repository configuration:

Follow this task to add an external repository into a federated repository configuration.

1. If the Lightweight Directory Access Protocol (LDAP) repository that you want to add to your federated

repository configuration is previously configured, select the corresponding Repository on the Repository

reference panel. To access the Repository reference panel, complete the following steps:

a. Click Security > Secure administration, applications, and infrastructure.

b. Under User account repository, select Federated repositories from the Available realm definitions

field and click Configure.

c. Click Add base entry to realm.

2. Enter a distinguished name for the realm base entry in the Distinguished name that uniquely

identifies... field. This base entry must uniquely identify the external repository in the realm. If multiple

repositories are included in the realm, use this field to define an additional distinguished name (DN)

that uniquely identifies this set of entries within the realm. For example, repositories LDAP1 and

LDAP2 might both use o=ibm,c=us as the base entry in the repository. Use the DN in this field to

uniquely identify this set of entries in the realm. For example: o=ibm,c=us for LDAP1 and o=ibm2,c=us

for LDAP2. The specified DN in this field maps to the LDAP DN of the base entry within the repository.

3. Enter the LDAP DN of the base entry within the repository in the Distinguished name of a base entry...

field. The base entry indicates the starting point for searches in this LDAP directory server. This entry

and its descendents are mapped to the subtree that is identified by this unique base name entry field.

For example, for a user with a DN of cn=John Doe, ou=Rochester, o=IBM, c=US, specify the LDAP

base entry as any of the following options:

ou=Rochester, o=IBM, c=us or o=IBM, c=us or c=us

In most cases, this LDAP DN is the same as the distinguished name for the realm base entry.

If this field is left blank, then the subtree defaults to the root of the LDAP repository. Consult your

LDAP administrator to determine if your LDAP repository provides support to search from the root, or

create users and groups under the root without defining a suffix beforehand.

In WebSphere Application Server, the distinguished name is normalized according to the LDAP

specification. Normalization consists of removing spaces in the base distinguished name before or after

commas and equal symbols. An example of a non-normalized base distinguished name is o = ibm, c =

us or o=ibm, c=us. An example of a normalized base distinguished name is o=ibm,c=us.

4. If the LDAP repository that you want to add to your realm is not previously configured, complete the

following steps:

a. Click Add Repository on the Repository reference panel to configure the LDAP repository. See

step 1 to access the Repository reference panel.

b. Configure LDAP on the LDAP configuration panel, as described in “Configuring Lightweight

Directory Access Protocol in a federated repository configuration” on page 1093.

c. Select the new Repository on the Repository reference panel.

5. Click OK.

You have added a new or previously configured external repository into your federated repository

configuration.

1. Before you can manage this account with Users and Groups, configure supported entity types as

described in “Configuring supported entity types in a federated repository configuration” on page 1114.

2. After configuring the federated repositories, click Security > Secure administration, applications,

and infrastructure to return to the Secure administration, applications, and infrastructure panel. Verify

Chapter 16. Security 1099

that Federated repositories is identified in the Current realm definition field. If Federated repositories is

not identified, select Federated repositories from the Available realm definitions field and click Set as

current. To verify the federated repositories configuration, click Apply on the Secure administration,

applications, and infrastructure panel. If Federated repositories is not identified in the Current realm

definition field, your federated repositories configuration is not used by WebSphere Application Server.

3. If you are enabling security, complete the remaining steps as specified in “Enabling security for the

realm” on page 1024. As the final step, validate this setup by clicking Apply in the Secure

administration, applications, and infrastructure panel.

4. Save, stop, and restart all the product servers (deployment managers, nodes and Application Servers)

for changes in this panel to take effect. If the server comes up without any problems, the setup is

correct.

Configuring a property extension repository in a federated repository configuration:

Follow this task to configure a property extension repository to store attributes that cannot be stored in

your Lightweight Directory Access Protocol (LDAP) server.

 For security and business reasons, you might not want to not allow write operations to your repositories.

However, applications calling the federated repository configuration might need to store additional

properties for the entities. A federated repository configuration provides a property extension repository,

which is a database regardless of the type of main profile repositories, for a property-level join

configuration. For example, a company that uses an LDAP directory for its internal employees and a

database for external customers and business partners might not allow write access to its LDAP and its

database. The company can use the property extension repository in a federated repository configuration

to store additional properties for the people in those repositories, excluding the user ID. When an

application uses the federated repository configuration to retrieve an entry for a person, the federated

repository configuration transparently joins the properties of the person that is retrieved from either the

LDAP or the customer’s database with the properties of the person that is retrieved from the property

extension repository into a single logical person entry.

When you configure a property extension repository, you can supply a valid data source, a direct

connection configuration, or both. The system first tries to connect by way of the data source. If the data

source is not available, then the system uses the direct access configuration.

Restriction: You cannot configure a property extension repository in a mixed-version deployment

manager cell.

1. Configure the WebSphere Application Server data source. See “Configuring the WebSphere

Application Server data source” on page 1111.

2. If you are adding new properties (including properties that are stored in the property extension

repository) to the schema, you must do the following before you create the property extension

repository.

a. Open or create the wimxmlextension.xml file under the <WAS61>\profiles\<propfile_name>\
config\cells\<cell_name>\wim\model directory.

 Attention: Make sure the editor is on the deployment manager node.

b. Add the schema definition of the new property. The following sample wimxmlextension.xml file

adds a new property called ibm-otherEmail to both the Person and PersonAccount entity types.

This new property type is ″String″ and it is multiple-valued.

<sdo:datagraph xmlns:sdo="commonj.sdo"

 xmlns:wim="http://www.ibm.com/websphere/wim">

 <wim:schema>

 <wim:propertySchema nsURI="http://www.ibm.com/websphere/wim"

 dataType="String"

 multiValued="true" propertyName="ibm-otherEmail">

 <wim:applicableEntityTypeNames>Person</wim:applicableEntityTypeNames>

 <wim:applicableEntityTypeNames>PersonAccount

1100 Administering applications and their environment

</wim:applicableEntityTypeNames>

 </wim:propertySchema>

</wim:schema>

</sdo:datagraph>

Available data types are defined in com.ibm.websphere.wim.SchemaConstants. For example:

/**

 * Instance Class: java.lang.String

 */

 String DATA_TYPE_STRING = "String";

 /**

 * Instance Class: int

 */

 String DATA_TYPE_INT = "Int";

 /**

 * Instance Class: java.lang.Object

 */

 String DATA_TYPE_DATE = "Date";

 /**

 * Instance Class: dobjava.lang.Object

 */

 String DATA_TYPE_ANY_SIMPLE_TYPE = "AnySimpleType";

 /**

 * Instance Class: java.lang.String

 */

 String DATA_TYPE_ANY_URI = "AnyURI";

 /**

 * Instance Class: java.lang.boolean

 */

 String DATA_TYPE_BOOLEAN = "Boolean";

 /**

 * Instance Class: long

 */

 String DATA_TYPE_LONG = "Long";

 /**

 * Instance Class: double

 */

 String DATA_TYPE_DOUBLE = "Double";

 /**

 * Instance Class: short

 */

 String DATA_TYPE_SHORT = "Short";

c. Add the new property to the property extension repository. Before running the

setupIdMgrPropertyExtensionRepositoryTables command, add the new properties into

<WAS61>\profiles\<propfile_name>\config\cells\<cell_name>\wim\config\wimlaproperties.xml.

d. Follow the example inside this file to define the new property definitions. The schema file for

wimlaproperties.xml is wimdbproperty.xsd and is in the same directory. It can be used for

reference.

e. Run the setupIdMgrPropertyExtensionRepositoryTables command to create the property

extension repository and to add the new properties.

3. Set up the property extension repository using wsadmin by following the procedure discussed in

“Setting up an entry mapping repository, a property extension repository, or a database repository

using wsadmin commands” on page 1104; ignore the ″Before you begin″ options.

4. Configure the property extension repository by completing the following steps:

a. In the administrative console, click Security > Secure administration, applications, and

infrastructure.

b. Under User account repository, select Federated repositories, and click Configure.

c. Click Property extension repository.

d. Supply the name of the data source in the Data source name field.

e. Select the type of database that is used for the property extension repository.

Chapter 16. Security 1101

f. Supply the name of the Java database connectivity (JDBC) driver in the JDBC driver field.

Values include:

DB2 COM.ibm.db2.jdbc.app.DB2Driver

Oracle

oracle.jdbc.driver.OracleDriver

Informix

com.informix.jdbc.IfxDriver

Microsoft SQL Server

com.microsoft.jdbc.sqlserver.SQLServerDriver

Derby org.apache.derby.jdbc.EmbeddedDriver

DB2 for z/OS

com.ibm.db2.jcc.DB2Driver

DB2 for iSeries

com.ibm.db2.jdbc.app.DB2Driver

g. Supply the database URL that is used to access the property extension repository with JDBC in the

Database URL field. Use an alphanumeric text string that conforms to the standard JDBC URL

syntax.

Values include:

DB2 jdbc:db2:wim

Oracle

jdbc:oracle:thin:@<hostname>:1521:orcl

Derby jdbc:derby:c:\derby\wim

Microsoft SQL Server

jdbc:microsoft:sqlserver://<hostname>:1433;databaseName=wim;selectmethod=cursor;

Informix

jdbc:informix-sqli://<hostname>:1526/wim:INFORMIXSERVER=<IFXServerName>;

h. Supply the user name of the database administrator in the Database administrator user name field.

i. Supply the password of the database administrator in the Password field.

j. Specify the entity retrieval limit in the Entity retrieval limit field. The entity retrieval limit is the

maximum number of entities that the system can retrieve from the property extension repository

with a single database query. The default value is 200.

k. Click OK.

After completing these steps, your federated repository configuration, which includes a property extension

repository, is configured.

1. If you are enabling security, complete the remaining steps as specified in “Enabling security for the

realm” on page 1024. As the final step, validate this setup by clicking Apply in the Secure

administration, applications, and infrastructure panel.

2. Save, stop, and restart all the product servers (deployment managers, nodes, and Application Servers)

for changes in this panel to take effect. If the server comes up without any problems, the setup is

correct.

Property extension repository settings:

Use this page to configure a property extension repository that is used to store attributes that cannot be

stored in existing repositories.

 To view this administrative console page, complete the following steps:

1102 Administering applications and their environment

1. In the administrative console, click Security > Secure administration, applications, and

infrastructure.

2. Under User account repository, select Federated repositories from the Available realm definitions field

and click Configure.

3. Under Additional properties, click Property extension repository.

When you finish adding or updating your federated repository configuration, go to the Security > Secure

administration, applications, and infrastructure panel and click Apply to validate the changes.

Data source name:

Specifies the Java Naming and Directory Interface (JNDI) name of the data source that is used to access

the property extension repository.

 Default: jdbc/wimDS

Database type:

Specifies the type of database that is used for the property extension repository.

 Default: DB2

JDBC driver:

Specifies the Java Database Connectivity (JDBC) driver that is used to access the entry mapping

repository.

 Values include:

DB2 COM.ibm.db2.jdbc.app.DB2Driver

Oracle

oracle.jdbc.driver.OracleDriver

Informix

com.informix.jdbc.IfxDriver

Microsoft SQL Server

com.microsoft.jdbc.sqlserver.SQLServerDriver

Derby org.apache.derby.jdbc.EmbeddedDriver

DB2 for z/OS

com.ibm.db2.jcc.DB2Driver

DB2 for iSeries

com.ibm.db2.jdbc.app.DB2Driver

Database URL:

Specifies the Web address for the property extension repository.

 Values include:

DB2 jdbc:db2:wim

Oracle

jdbc:oracle:thin:@<hostname>:1521:orcl

Derby jdbc:derby:c:\derby\wim

Chapter 16. Security 1103

Microsoft SQL Server

jdbc:microsoft:sqlserver://<hostname>:1433;databaseName=wim;selectmethod=cursor;

Informix

jdbc:informix-sqli://<hostname>:1526/wim:INFORMIXSERVER=<IFXServerName>;

Database administrator user name:

Specifies the user name of the database administrator that is used to access the property extension

repository.

Password:

Specifies the password that is used to enable the database administrator to access the property extension

repository.

Entity retrieval limit:

Specifies the maximum number of entities that the system can retrieve from the property extension

repository with a single database query.

 Data type: Integer

Default: 200

Setting up an entry mapping repository, a property extension repository, or a database repository using

wsadmin commands:

You can set up an entry mapping repository, a property extension repository, or a database repository

using wsadmin commands.

 If you are setting up an entry mapping repository, begin with the steps described in “Configuring an entry

mapping repository in a federated repository configuration” on page 1111.

If you are setting up a property extension repository, begin with the steps described in “Configuring a

property extension repository in a federated repository configuration” on page 1100.

Three types of repositories are currently supported: DB2 repository, property extension repository, and

entry mapping repository. When a repository is created, use the appropriate wsadmin command to define

the database schema and to populate the database property definitions.

1. Create an empty entry mapping repository as shown in the following examples:

a. For DB2, open a DB2 command window or command center and enter the following:

db2 create database <name> using codeset UTF-8 territory US

b. Enter the following database tuning commands:

db2 update database configuration for <name> using applheapsz 1024

db2 update database configuration for <name> using stmtheap 4096

db2 update database configuration for <name> using app_ctl_heap_sz 2048

db2 update database configuration for <name> using locklist 1024

db2 update database configuration for <name> using indexrec RESTART

db2 update database configuration for <name> using logfilsiz 1000

db2 update database configuration for <name> using logprimary 12

db2 update database configuration for <name> using logsecond 10

db2 update database configuration for <name> using sortheap 2048

db2set DB2_RR_TO_RS=yes

c. Optional: For Informix databases using dbaccess, enter the following command:

CREATE DATABASE <name> WITH BUFFERED LOG

1104 Administering applications and their environment

d. Optional: For Oracle databases, the database should already exist during Oracle installation (for

example, orcl).

2. Run the setupIdMgrDBTables command by doing the following:

a. Start WebSphere Application Server.

b. Open a command window and go to the <WAS>/Profiles/<PROFILE_NAME>bin directory.

c. Start wsadmin.

d. Type the necessary commands as described below.

The setupIdMgrDBTables command can be used to:

v Specify the arguments on the command line.

v Specify the arguments in a file.

For the commands below, the -file option enables you to specify a file in which some or all of the

parameters are specified. To use the -file argument on the command line, enter the full path to the file.

Parameters in the file must be specified in key=value pairs and each must be on its own line. If a

parameter is specified on both the command line and in the file, the value on the command line takes

precedence.

Note: If an argument is not properly specified on the command line or in the file, a message is returned

which states that the argument was not properly specified. This might mean that the argument was

not specified at all or was required for a given configuration but was not specified.

If the argument was not specified at all, check that the parameter is specified on the command line

or in the file, and that it is properly spelled and has matching case.

If the argument was required for a given configuration but was not specified, it is possible that a

value is not required solely by the command but is required for the type of database and

configuration you are setting.

For example, if you set the dn, wasAdminId, or wasAdminPassword parameters, you must also specify

the dbDriver parameter. Additionally, if the dn, wasAdminId or wasAdminPassword parameters are

specified, and the databaseType is not a Cloudscape 10 Version 1 database, then the dbAdminId

and dbAdminPassword parameters must also be specified.

The setupIdMgrDBTables command:

The setupIdMgrDBTables command sets up the database, which includes creating and populating the

tables in the database. Required arguments are prefixed by a double start (**). Arguments are

case-sensitive, both through the command line and the file.

Parameters:

**schemaLocation (String)

The location of the <WAS>/etc/wim/setup directory.

dbPropXML (String)

The location of database repository property definition XML file.

**databaseType (String)

The type of database. Supported databases are db2, oracle, informix, cloudscape, sqlserver,

db2zos, and db2iseries.

**dbURL (String)

The database URL for direct access mode. For example: jdbc:db2:wim.

dbDriver (String)

The name of the database driver. For example: COM.ibm.db2.jdbc.app.DB2Driver.

Chapter 16. Security 1105

dbAdminId (String)

The database administrator ID for direct access mode. For example: db2admin.

Note: For a Cloudscape 10 Version 1 embedded database, dbAdminId is not required.

dbAdminPassword (String)

The password associated with the dbAdminId.

Note: For a Cloudscape 10 Version 1 embedded database, dbAdminPassword is not required.

dn (String)

The default organization uniqueName to replace. For example: o=yourco. If it is not set, o=Default

Organization is used.

wasAdminId (String)

The WebSphere Application Server admin user ID. The ID should be a short name, not a

uniqueName. For example: wasadmin. After creation, the uniqueName is uid=wasadmin,

<defaultOrg>.

wasAdminPassword (String)

The WebSphere Application Server admin user password. If wasAdminId is set, then this parameter

is mandatory.

saltLength (Integer)

The salt length of the randomly generated salt for password hashing.

encryptionKey (String)

The password encryption key. Set the password encryption key to match the encryption key in the

wimconfig.xml file for the repository. If the encryption key is not set, the default is used.

derbySystemHome (String)

The home location of the Cloudscape 10 Version 1 system if you are setting up a Cloudscape 10

Version 1 database.

reportSqlError (String)

Specifies whether to report SQL errors while setting up databases.

file (String)

The full path to a file containing the input parameters. Each input parameter must match a

corresponding parameter as it would be typed on the command line, and it must be placed in a

key=value pair. Each pair must be on a separate line.

The deleteIdMgrDBTables command:

The deleteIdMgrDBTables command deletes the tables in the database.

Parameters:

**schemaLocation (String)

The location of the <WAS>/etc/wim/setup directory.

**databaseType (String)

The type of database. Supported databases are db2, oracle, informix, cloudscape, sqlserver,

db2zos, and db2iseries.

**dbURL (String)

The database URL for direct access mode. For example: jdbc:db2:wim.

dbDriver (String)

The name of the database driver. For example: COM.ibm.db2.jdbc.app.DB2Driver.

dbAdminId (String)

The database administrator ID for direct access mode. For example: db2admin.

1106 Administering applications and their environment

Note: For a Cloudscape 10 Version 1 embedded database, dbAdminId is not required.

dbAdminPassword (String)

The password associated with the dbAdminId.

Note: For a Cloudscape 10 Version 1 embedded database, dbAdminPassword is not required.

derbySystemHome (String)

The home location of the Cloudscape 10 Version 1 system if you are setting up a Cloudscape 10

Version 1 database.

reportSqlError (String)

Specifies whether to report SQL errors while setting up databases.

file (String)

The full path to a file containing the input parameters. Each input parameter must match a

corresponding parameter as it would be typed on the command line, and it must be placed in a

key=value pair. Each pair must be on a separate line.

The setupIdMgrPropertyExtensionRepositoryTables command:

The setupIdMgrPropertyExtensionRepositoryTables command sets up the property extension repository,

which includes creating and populating the tables in the database.

Parameters:

**schemaLocation (String)

The location of the <WAS>/etc/wim/setup directory.

laPropXML (String)

The location of the property extension repository definition XML file.

**databaseType (String)

The type of database. Supported databases are db2, oracle, informix, cloudscape, sqlserver,

db2zos, and db2iseries.

**dbURL (String)

The database URL for direct access mode. For example: jdbc:db2:wim.

dbAdminId (String)

The database administrator ID for direct access mode. For example: db2admin.

Note: For a Cloudscape 10 Version 1 embedded database, dbAdminId is not required.

dbAdminPassword (String)

The password associated with the dbAdminId.

Note: For a Cloudscape 10 Version 1 embedded database, dbAdminPassword is not required.

derbySystemHome (String)

The home location of the Cloudscape 10 Version 1 system if you are setting up a Cloudscape 10

Version 1 database.

reportSqlError (String)

Specifies whether to report SQL errors while setting up databases.

file (String)

The full path to a file containing the input parameters. Each input parameter must match a

corresponding parameter as it would be typed on the command line, and it must be placed in a

key=value pair. Each pair must be on a separate line.

The deleteIdMgrPropertyExtensionRepositoryTables command:

Chapter 16. Security 1107

The deleteIdMgrPropertyExtensionRepositoryTables command deletes the tables in the property extension

database.

Parameters:

**schemaLocation (String)

The location of the <WAS>/etc/wim/setup directory.

**databaseType (String)

The type of database. Supported databases are db2, oracle, informix, cloudscape, sqlserver,

db2zos, and db2iseries.

**dbURL (String)

The database URL for direct access mode. For example: jdbc:db2:wim.

dbDriver (String)

The name of the database driver. For example: COM.ibm.db2.jdbc.app.DB2Driver.

dbAdminId (String)

The database administrator ID for direct access mode. For example: db2admin.

Note: For a Cloudscape 10 Version 1 embedded database, dbAdminId is not required.

dbAdminPassword (String)

The password associated with the dbAdminId.

Note: For a Cloudscape 10 Version 1 embedded database, dbAdminPassword is not required.

derbySystemHome (String)

The home location of the Cloudscape 10 Version 1 system if you are setting up a Cloudscape 10

Version 1 database.

reportSqlError (String)

Specifies whether to report SQL errors while setting up databases.

file (String)

The full path to a file containing the input parameters. Each input parameter must match a

corresponding parameter as it would be typed on the command line, and it must be placed in a

key=value pair. Each pair must be on a separate line.

The setupIdMgrEntryMappingRepositoryTables command:

The setupIdMgrEntryMappingRepositoryTables command sets up the entry mapping repository, which

includes creating and populating the tables of the repository.

Parameters:

**schemaLocation (String)

The location of the <WAS>/etc/wim/setup directory.

**databaseType (String)

The type of database. Supported databases are db2, oracle, informix, cloudscape, sqlserver,

db2zos, and db2iseries.

**dbURL (String)

The database URL for direct access mode. For example: jdbc:db2:wim.

dbDriver (String)

The name of the database driver. For example: COM.ibm.db2.jdbc.app.DB2Driver.

dbAdminId (String)

The database administrator ID for direct access mode. For example: db2admin.

1108 Administering applications and their environment

Note: For a Cloudscape 10 Version 1 embedded database, dbAdminId is not required.

dbAdminPassword (String)

The password associated with the dbAdminId.

Note: For a Cloudscape 10 Version 1 embedded database, dbAdminPassword is not required.

derbySystemHome (String)

The home location of the Cloudscape 10 Version 1 system if you are setting up a Cloudscape 10

Version 1 database.

reportSqlError (String)

Specifies whether to report SQL errors while setting up databases.

file (String)

The full path to a file containing the input parameters. Each input parameter must match a

corresponding parameter as it would be typed on the command line, and it must be placed in a

key=value pair. Each pair must be on a separate line.

The deleteIdMgrEntryMappingRepositoryTables command:

The deleteIdMgrEntryMappingRepositoryTables command deletes the tables in the entry mapping

repository.

Parameters:

**schemaLocation (String)

The location of the <WAS>/etc/wim/setup directory.

**databaseType (String)

The type of database. Supported databases are db2, oracle, informix, cloudscape, sqlserver,

db2zos, and db2iseries.

**dbURL (String)

The database URL for direct access mode. For example: jdbc:db2:wim.

dbDriver (String)

The name of the database driver. For example: COM.ibm.db2.jdbc.app.DB2Driver.

dbAdminId (String)

The database administrator ID for direct access mode. For example: db2admin.

Note: For a Cloudscape 10 Version 1 embedded database, dbAdminId is not required.

dbAdminPassword (String)

The password associated with the dbAdminId.

Note: For a Cloudscape 10 Version 1 embedded database, dbAdminPassword is not required.

derbySystemHome (String)

The home location of the Cloudscape 10 Version 1 system if you are setting up a Cloudscape 10

Version 1 database.

reportSqlError (String)

Specifies whether to report SQL errors while setting up databases.

file (String)

The full path to a file containing the input parameters. Each input parameter must match a

corresponding parameter as it would be typed on the command line, and it must be placed in a

key=value pair. Each pair must be on a separate line.

Sample command line usage:

Chapter 16. Security 1109

To set up a database using the command line, enter the following:

$AdminTask setupIdMgrDBTables {-schemaLocation "C:\WAS7\etc\wim\setup" -dbPropXML

"C:\WAS7\etc\wim\setup\wimdbproperties.xml" -databaseType db2

-dbURL jdbc:db2:wim -dbAdminId db2admin

-dbDriver COM.ibm.db2.jdbc.app.DB2Driver -dbAdminPassword db2adminPwd

-reportSqlError true}

To delete database tables using the command line, enter the following:

$AdminTask deleteIdMgrDBTables {-schemaLocation "C:\WAS7\etc\wim\setup"

-databaseType db2 -dbURL jdbc:db2:wim -dbAdminId db2admin

-dbDriver COM.ibm.db2.jdbc.app.DB2Driver -dbAdminPassword db2adminPwd

-reportSqlError true}

To set up a property extension repository using the command line, enter the following:

$AdminTask setupIdMgrPropertyExtensionRepositoryTables {-schemaLocation

"C:\WAS7\etc\wim\setup"

-laPropXML "C:\WAS7\etc\wim\setup\wimlaproperties.xml" -databaseType db2

-dbURL jdbc:db2:wim -dbAdminId db2admin -dbDriver COM.ibm.db2.jdbc.app.DB2Driver

-dbAdminPassword db2adminPwd -reportSqlError true}

To delete a property extension repository using the command line, enter the following:

$AdminTask deleteIdMgrPropertyExtensionRepositoryTables {-schemaLocation "C:\WAS7\etc\wim\setup "

-databaseType db2 -dbURL jdbc:db2:wim -dbAdminId db2admin -dbDriver

COM.ibm.db2.jdbc.app.DB2Driver -dbAdminPassword db2adminPwd -reportSqlError true}

To set up an entry mapping repository using the command line, enter the following:

$AdminTask setupIdMgrEntryMappingRepositoryTables {-schemaLocation "C:\WAS7\etc\wim\setup"

-databaseType db2 -dbURL jdbc:db2:wim -dbAdminId db2admin -dbDriver

COM.ibm.db2.jdbc.app.DB2Driver -dbAdminPassword db2adminPwd -reportSqlError true}

To delete an entry mapping repository using the command line, enter the following:

$AdminTask deleteIdMgrEntryMappingRepositoryTables {-schemaLocation "C:\WAS7\etc\wim\setup"

-databaseType db2 -dbURL jdbc:db2:wim -dbAdminId db2admin -dbDriver

COM.ibm.db2.jdbc.app.DB2Driver -dbAdminPassword db2adminPwd -reportSqlError true}

Sample CLI Usage using -file option:

To set up a database with the -file option using the example params.txt file below, enter the following:

$AdminTask setupIdMgrDBTables {–file C:\params.txt -dbPropXML

"C:\OverrideDBPropParam\wimdbproperties.xml"}

Params.txt

schemaLocation=C:\WAS7\etc\wim\setup

dbPropXML=C:\Program Files\IBM\WebSphere\AppServer\profiles\default

\config\cells\mycell\wim\config\wimdbproperties.xml

laPropXML=C:\Program Files\IBM\WebSphere\AppServer\profiles\default

\config\cells\mycell\wim\config\wimlaproperties.xml

databaseType=db2

dbURL=jdbc:db2:wim

dbDriver=COM.ibm.db2.jdbc.app.DB2Driver

reportSqlError=true

dn=o=db.com

dbAdminId=db2admin

dbAdminPassword=dbPassword

wasAdminId=wasadmin

wasAdminPassword=wasadmin1

To set up a database with the -file option using a file only, enter the following:

$AdminTask setupIdMgrDBTables {-file C:\params.txt}

1110 Administering applications and their environment

Note: The use of a file only works if -file is the only parameter specified on the command line. If other

parameters are specified then the file is completely ignored, and only the parameters on the

command line are used to execute the command.

Configuring the WebSphere Application Server data source:

This section describes how to configure the data source service in WebSphere Application Server.

 1. Start the WebSphere Application Server administrative console.

 2. Click Security -> Secure administration, applications and infrastructure.

 3. On the Configuration panel, expand Java Authentication and Authorization Service and click J2C

authentication data.

 4. Click New and enter the Alias, User ID and Password.

 5. Click Ok.

 6. Click Resources -> JDBC -> JDBC Providers.

 7. In the Scope section, choose the Node level.

 8. Click New to create a new JDBC driver.

 9. Select the Database type, Provider type, Implementation type and Name.

10. Click Next and configure the database class path. Click Next.

11. On the Summary page, click Finish.

12. In the Additional properties section, click Data sources.

13. Click New to create a new data source. Enter the Data source name and the JNDI name, and choose

the authentication alias from the drop-down list in Component-managed authentication alias. The

JNDI name should match the datasourceName value set in wimconfig.xml. By default, it is

jdbc/wimDS.

Note: For Cloudscape 10 Version 1 embedded databases, leave the Component-managed

authentication alias field set to NONE.

14. Click Next.

15. Enter the Database name and deselect Use this data source in container managed persistence

(CMP). Click Next.

16. Under Component-managed authentication alias, select the authentication alias previously created.

Click Test Connection. The message should indicate that the connection is successful. Ignore any

warnings, and then click Next.

17. On the Summary page, click Finish.

18. Save the configurations, and restart WebSphere Application Server.

Configuring an entry mapping repository in a federated repository configuration:

Follow this task to configure an entry mapping repository that is used to store data for managing profiles

on multiple repositories.

 An entry-level join means that the federated repository configuration uses multiple repositories

simultaneously and recognizes the entries in the different repositories as entries representing distinct

entities. For example, a company might have a Lightweight Directory Access Protocol (LDAP) directory

that contains entries for its employees and a database that contains entries for business partners and

customers. By configuring an entry mapping repository, a federated repository configuration can use both

the LDAP and the database at the same time. The federated repository configuration hierarchy and

constraints for identifiers provide the aggregated namespace for both of those repositories and prevent

identifiers from colliding.

Chapter 16. Security 1111

When you configure an entry mapping repository, you can supply a valid data source, a direct connection

configuration, or both. The system first tries to connect by way of the data source. If the data source is not

available, then the system uses the direct access configuration.

Restriction: You cannot configure an entry mapping repository in a mixed-version deployment manager

cell.

1. Configure the WebSphere Application Server data source. See “Configuring the WebSphere

Application Server data source” on page 1111.

2. Set up the entry mapping repository using wsadmin. See “Setting up an entry mapping repository, a

property extension repository, or a database repository using wsadmin commands” on page 1104.

3. Configure the entry mapping repository into the federated repository by doing the following:

a. In the administrative console, click Security > Secure administration, applications, and

infrastructure.

b. Under User account repository, select Federated repositories from the Available realm definitions

field and click Configure.

c. Click Entry mapping repository.

d. Supply the name of the data source in the Data source name field.

e. Select the type of database that is used for the property extension repository.

f. Supply the name of the Java database connectivity (JDBC) driver in the JDBC driver field.

Values include:

DB2 COM.ibm.db2.jdbc.app.DB2Driver

Oracle

oracle.jdbc.driver.OracleDriver

Informix

com.informix.jdbc.IfxDriver

Microsoft SQL Server

com.microsoft.jdbc.sqlserver.SQLServerDriver

Derby org.apache.derby.jdbc.EmbeddedDriver

DB2 for z/OS

com.ibm.db2.jcc.DB2Driver

DB2 for iSeries

com.ibm.db2.jdbc.app.DB2Driver

g. Supply the database URL that is used to access the property extension repository with JDBC in the

Database URL field. Use an alphanumeric text string that conforms to the standard JDBC URL

syntax.

Values include:

DB2 jdbc:db2:wim

Oracle

jdbc:oracle:thin:@<hostname>:1521:orcl

Derby jdbc:derby:c:\derby\wim

Microsoft SQL Server

jdbc:microsoft:sqlserver://<hostname>:1433;databaseName=wim;selectmethod=cursor;

Informix

jdbc:informix-sqli://<hostname>:1526/wim:INFORMIXSERVER=<IFXServerName>;

h. Supply the user name of the database administrator in the Database administrator user name field.

i. Supply the password of the database administrator in the Password field.

1112 Administering applications and their environment

j. Click OK.

After completing these steps, your federated repository configuration, which includes an entry mapping

repository, is configured.

1. After configuring the federated repositories, click Security > Secure administration, applications,

and infrastructure to return to the Secure administration, applications, and infrastructure panel. Verify

that Federated repositories is identified in the Current realm definition field. If Federated repositories is

not identified, select Federated repositories from the Available realm definitions field and click Set as

current. To verify the federated repositories configuration, click Apply on the Secure administration,

applications, and infrastructure panel. If Federated repositories is not identified in the Current realm

definition field, your federated repositories configuration is not used by WebSphere Application Server.

2. If you are enabling security, complete the remaining steps as specified in “Enabling security for the

realm” on page 1024. As the final step, validate this setup by clicking Apply in the Secure

administration, applications, and infrastructure panel.

3. Save, stop, and restart all the product servers (deployment managers, nodes, and Application Servers)

for changes in this panel to take effect. If the server comes up without any problems, the setup is

correct.

Entry mapping repository settings:

Use this page to configure an entry mapping repository that is used to store data for managing profiles on

multiple repositories.

 To view this administrative console page, complete the following steps:

1. In the administrative console, click Security > Secure administration, applications, and

infrastructure.

2. Under User account repository, select Federated repositories from the Available realm definitions field

and click Configure.

3. Under Additional properties, click Entry mapping repository.

When you finish adding or updating your federated repository configuration, go to the Security > Secure

administration, applications, and infrastructure panel and click Apply to validate the changes.

Data source name:

Specifies the Java Naming and Directory Interface (JNDI) name of the data source that is used to access

the entry mapping repository.

 Default: jdbc/wimDS

Database type:

Specifies the type of database that is used to access the entry mapping repository.

 Default: DB2

JDBC driver:

Specifies the Java Database Connectivity (JDBC) driver that is used to access the entry mapping

repository.

 Values include:

DB2 COM.ibm.db2.jdbc.app.DB2Driver

Chapter 16. Security 1113

Oracle

oracle.jdbc.driver.OracleDriver

Informix

com.informix.jdbc.IfxDriver

Microsoft SQL Server

com.microsoft.jdbc.sqlserver.SQLServerDriver

Derby org.apache.derby.jdbc.EmbeddedDriver

DB2 for z/OS

com.ibm.db2.jcc.DB2Driver

DB2 for iSeries

com.ibm.db2.jdbc.app.DB2Driver

Database URL:

Specifies the Web address for the entry mapping repository.

 Values include:

DB2 jdbc:db2:wim

Oracle

jdbc:oracle:thin:@<hostname>:1521:orcl

Derby jdbc:derby:c:\derby\wim

Microsoft SQL Server

jdbc:microsoft:sqlserver://<hostname>:1433;databaseName=wim;selectmethod=cursor;

Informix

jdbc:informix-sqli://<hostname>:1526/wim:INFORMIXSERVER=<IFXServerName>;

Database administrator user name:

Specifies the user name of the database administrator that is used to access the entry mapping repository.

Password:

Specifies the password that is used to enable the database administrator to access the entry mapping

repository.

Configuring supported entity types in a federated repository configuration:

Follow this task to configure supported entity types for user and group management.

 You must configure the supported entity types before you can manage this account with Users and Groups

in the administrative console. The supported entity types are Group, OrgContainer, and PersonAccount. A

Group entity represents a simple collection of entities that might not have any relational context. An

OrgContainer entity represents an organization, such as a company or an enterprise, a subsidiary, or an

organizational unit, such as a division, a location, or a department. A PersonAccount entity represents a

human being. You cannot add or delete the supported entity types, because these types are predefined.

The Base entry for the default parent determines the repository location where entities of the specified

type are placed on write operations by user and group management.

Note: To manage users and groups, click Users and Groups in the console navigation tree. Click either

Manage Users or Manage Groups.

1114 Administering applications and their environment

1. In the administrative console, click Security > Secure administration, applications, and

infrastructure.

2. Under User account repository, select Federated repositories from the Available realm definitions field

and click Configure.

3. Click Supported entity types to view a list of predefined entity types.

4. Click the name of a predefined entity type to change its configuration.

5. Supply the distinguished name of a base entry in the repository in the Base entry for the default parent

field. This entry determines the default location in the repository where entities of this type are placed

on write operations by user and group management.

6. Supply the relative distinguished name (RDN) properties for the specified entity type in the Relative

Distinguished Name properties field. Possible values are cn for Group, uid or cn for PersonAccount,

and o, ou, dc, and cn for OrgContainer. Delimit multiple properties for the OrgContainer entity with a

semicolon (;).

The following list outlines known requirements and limitations that apply to specific Lightweight

Directory Access Protocol (LDAP) servers:

Using Microsoft Active Directory as the LDAP server

v Unless you modify the LDAP schema to use uid, you must specify cn in the Relative

Distinguished Name (RDN) properties field for the PersonAccount entity type.

v Secure Sockets Layer communications must be enabled to create users with passwords. To

select the Require SSL communications option, see the topic “Configuring Lightweight

Directory Access Protocol in a federated repository configuration” on page 1093.

v Typically the value of user is specified as the value in the Object classes field for the

PersonAccount entity type and the value of group is specified as the value in the Object

classes field for the Group entity type.

Using a Lotus Domino Enterprise Server as the LDAP server

v Typically, the value of cn is specified in the Relative Distinguished Name (RDN) properties

field for the PersonAccount entity type. The value of uid is also acceptable.

v Typically, both inetOrgPerson and dominoPerson are used as values in the Object classes

field for the PersonAccount entity type.

Using Sun ONE Directory Server as the LDAP server

v Typically, groupOfUniqueNames is specified as the value in the Object classes field for the

Group entity type.

7. Click OK.

After completing these steps, your federated repository configuration, which uses supported entity types, is

configured.

1. After configuring the federated repositories, click Security > Secure administration, applications,

and infrastructure to return to the Secure administration, applications, and infrastructure panel. Verify

that Federated repositories is identified in the Current realm definition field. If Federated repositories is

not identified, select Federated repositories from the Available realm definitions field and click Set as

current. To verify the federated repositories configuration, click Apply on the Secure administration,

applications, and infrastructure panel. If Federated repositories is not identified in the Current realm

definition field, your federated repositories configuration is not used by WebSphere Application Server.

2. If you are enabling security, complete the remaining steps as specified in “Enabling security for the

realm” on page 1024. As the final step, validate this setup by clicking Apply in the Secure

administration, applications, and infrastructure panel.

3. Save, stop, and restart all the product servers (deployment managers, nodes, and Application Servers)

for changes in this panel to take effect. If the server comes up without any problems, the setup is

correct.

Supported entity types collection:

Chapter 16. Security 1115

Use this page to list entity types that are supported by the member repositories or to select an entity type

to view or change its configuration properties.

 To view this administrative console page, complete the following steps:

1. In the administrative console, click Security > Secure administration, applications, and

infrastructure.

2. Under User account repository, select Federated repositories from the Available realm definitions field

and click Configure.

3. Under Additional properties, click Supported entity types.

You must configure the supported entity types before you can manage this account with Users and Groups

in the administrative console. The Base entry for the default parent determines the repository location

where entities of the specified type are placed on write operations by user and group management.

When you finish adding or updating your federated repository configuration, go to the Security > Secure

administration, applications, and infrastructure panel and click Apply to validate the changes.

 Related reference

 “Lightweight Directory Access Protocol entity types settings” on page 1124
Use this page to configure Lightweight Directory Access Protocol (LDAP) entity types that are

supported by the member repositories.

Entity type:

Specifies the entity type name.

Base entry for the default parent:

Specifies the distinguished name of a base entry in the repository.

 This entry determines the default location in the repository where entities of this type are placed on write

operations by user and group management.

Relative Distinguished Name properties:

Specifies the relative distinguished name (RDN) properties for the specified entity type.

 Possible values are cn for Group, uid or cn for PersonAccount, and o, ou, dc, and cn for OrgContainer.

Delimit multiple properties for the OrgContainer entity with a semicolon (;).

Supported entity types settings:

Use this page to configure entity types that are supported by the member repositories.

 To view this administrative console page, complete the following steps:

1. In the administrative console, click Security > Secure administration, applications, and

infrastructure.

2. Under User account repository, select Federated repositories from the Available realm definitions field

and click Configure.

3. Under Additional properties, click Supported entity types.

4. Click the name of a configured entity type to view or change its configuration.

You must configure the supported entity types before you can manage this account with Users and Groups

in the administrative console. The Base entry for the default parent determines the repository location

where entities of the specified type are placed on write operations by user and group management.

1116 Administering applications and their environment

When you finish adding or updating your federated repository configuration, go to the Security > Secure

administration, applications, and infrastructure panel and click Apply to validate the changes.

Entity type:

Specifies the name of the entity type.

Base entry for the default parent:

Specifies the distinguished name of a base entry in the repository.

 This entry determines the default location in the repository where entities of this type are placed on write

operations by user and group management.

Relative Distinguished Name properties:

Specifies the relative distinguished name (RDN) properties for the specified entity type.

 Possible values are cn for Group, uid or cn for PersonAccount, and o, ou, dc, and cn for OrgContainer.

Delimit multiple properties for the OrgContainer entity with a semicolon (;).

Managing repositories in a federated repository configuration:

Follow this topic to manage repositories in a federated repository configuration.

1. In the administrative console, click Security > Secure administration, applications, and

infrastructure.

2. Under User account repository, select Federated repositories from the Available realm definitions field

and click Configure.

3. Under Related items, click Manage repositories. Repositories that are configured in the system are

listed in the collection panel. This list includes repositories that are configured using the federated

repository functionality as well as repositories that are created using wsadmin commands described in

the topic “Commands for the IdMgrRepositoryConfig group of the AdminTask object” on page 1487.

4. Optional: Click Add to configure a new external repository. The Lightweight Directory Access Protocol

(LDAP) repository configuration settings are described in detail in “Configuring Lightweight Directory

Access Protocol in a federated repository configuration” on page 1093.

Restriction: You cannot add a database repository using the administrative console. This repository

configuration is supported by using wsadmin commands only.

5. Optional: Click Delete to delete a repository that you specified previously using the administrative

console or wsadmin commands.

Restriction: You cannot delete the built-in, file-based repository from the collection panel.

6. Optional: Select one of the LDAP repository identifier entries to view or update an external repository

that is configured in the system previously. The steps to configure LDAP settings are described in

detail in “Configuring Lightweight Directory Access Protocol in a federated repository configuration” on

page 1093.

Restriction: While database repositories that are configured in the system are listed in the collection

panel, you cannot update a database repository using the administrative console.

Updates to a database repository are supported by using wsadmin commands only.

7. Click OK.

After completing these steps, the collection panel under Managing repositories reflects a current list of

repositories that are configured in your system.

Chapter 16. Security 1117

1. To add one or more external repositories that are listed on this collection panel into the realm, see

“Managing the realm in a federated repository configuration” on page 1082.

2. After configuring the federated repositories, click Security > Secure administration, applications,

and infrastructure to return to the Secure administration, applications, and infrastructure panel. Verify

that Federated repositories is identified in the Current realm definition field. If Federated repositories is

not identified, select Federated repositories from the Available realm definitions field and click Set as

current. To verify the federated repositories configuration, click Apply on the Secure administration,

applications, and infrastructure panel. If Federated repositories is not identified in the Current realm

definition field, your federated repositories configuration is not used by WebSphere Application Server.

3. If you are enabling security, complete the remaining steps as specified in “Enabling security for the

realm” on page 1024. As the final step, validate this setup by clicking Apply in the Secure

administration, applications, and infrastructure panel.

4. Save, stop, and restart all the product servers (deployment managers, nodes, and Application Servers)

for changes in this panel to take effect. If the server comes up without any problems, the setup is

correct.

Manage repositories collection:

Use this page to list repositories that are configured in the system or to select a repository to view or

change its configuration properties. You can add or delete external repositories.

 To view this administrative console page, complete the following steps:

1. In the administrative console, click Security > Secure administration, applications, and

infrastructure.

2. Under User account repository, select Federated repositories from the Available realm definitions field

and click Configure.

3. Under Related items, click Manage repositories.

When you finish adding or updating your federated repository configuration, go to the Security > Secure

administration, applications, and infrastructure panel and click Apply to validate the changes.

Repository identifier:

Specifies a unique identifier for the repository. This identifier uniquely identifies the repository within the

cell.

Repository type:

Specifies the repository type, such as File or LDAP.

Repository reference settings:

Use this page to configure a repository reference. A repository reference is a single repository that

contains a set of identity entries that are referenced by a base entry into the directory information tree.

 To view this administrative console page, complete the following steps:

1. In the administrative console, click Security > Secure administration, applications, and

infrastructure.

2. Under User account repository, select Federated repositories from the Available realm definitions field

and click Configure.

3. Click Add base entry to realm.

When you finish adding or updating your federated repository configuration, go to the Security > Secure

administration, applications, and infrastructure panel and click Apply to validate the changes.

1118 Administering applications and their environment

Repository:

Specifies a unique identifier for the repository. This identifier uniquely identifies the repository within the

cell.

 Expand the drop-down list to display a list of previously defined repository identifiers.

Distinguished name that uniquely identifies this set of entries in the realm:

Specifies the distinguished name (DN) that uniquely identifies this set of entries in the realm.

 If multiple repositories are included in the realm, it is necessary to define an additional distinguished name

that uniquely identifies this set of entries within the realm.

Distinguished name of a base entry in this repository:

Specifies the Lightweight Directory Access Protocol (LDAP) distinguished name (DN) of the base entry

within the repository. The entry and its descendents are mapped to the subtree that is identified by the

unique base name entry field.

 If this field is left blank, then the subtree defaults to the root of the LDAP repository.

Increasing the performance of the federated repository configuration:

Follow this page to manage the realm in a federated repository configuration.

 The settings that are available on the Performance panel are independent options that pertain specifically

to the federated repositories functionality. These options do not affect your entire WebSphere Application

Server configuration.

 1. In the administrative console, click Security > Secure administration, applications, and

infrastructure.

 2. Under User account repository, select Federated repositories from the Available realm definitions

field and click Configure.

 3. Under Related items, click Manage repositories > repository_name.

 4. Under Additional properties, click Performance.

 5. Optional: Select the Limit search time option and enter the maximum number of milliseconds that

the Application Server can use to search through your Lightweight Directory Access Protocol (LDAP)

entries.

 6. Optional: Select the Limit search returns option and enter the maximum number of entries to return

that match the search criteria.

 7. Optional: Select the Use connection pooling option to specify whether the Application Server can

store separate connections to the LDAP server for reuse.

 8. Optional: Select the Enable context pool option to specify whether multiple applications can use the

same connection to the LDAP server. If you select the option, specify the initial, preferred, and

maximum number of entries that can use the same connection. The Enable context pool option can

be enabled either in conjunction with the Use connection pool option or separately. If this option is

disabled, a new connection is created for each context. You can also select the Context pool times

out option and specify the number of seconds after which the entries in the context pool expire.

 9. Optional: Select the Cache the attributes option and specify the maximum number of search

attribute entries. This option enables WebSphere Application Server to save the LDAP entries so that

it can search the entries locally rather than making multiple calls to the LDAP server. Click the Cache

times out option that is associated with the Cache the attributes option to specify the maximum

number of seconds that the Application Server can save these entries.

Chapter 16. Security 1119

10. Optional: Select the Cache the search results option and specify the maximum number of search

result entries. This option enables WebSphere Application Server to save the results of a search

inquiry instead of making multiple calls to the LDAP server to search and retrieve the results of that

search. Click the Cache times out option that is associated with the Cache the search results

option to specify the maximum number of seconds that the Application Server can save the results.

These options are available to potentially increase the performance of your federated repositories

configuration. However, the any increase in performance is dependant upon your specific configuration.

Lightweight Directory Access Protocol performance settings:

Use this page to minimize impacts to performance by adding opened connections and contexts to

internally maintained pools and reusing them. Also minimize performance impacts by maintaining internal

caches of retrieved data.

 To view this administrative console page, complete the following steps:

1. In the administrative console, click Security > Secure administration, applications, and

infrastructure.

2. Under User account repository, select Federated repositories from the Available realm definitions field

and click Configure.

3. Under Related items, click Manage repositories.

4. Click Add to specify a new external repository or select an external repository that is preconfigured.

5. Under Additional properties, click Performance.

When you finish adding or updating your federated repository configuration, go to the Security > Secure

administration, applications, and infrastructure panel and click Apply to validate the changes.

Limit search time:

Specifies the timeout value in milliseconds for a Lightweight Directory Access Protocol (LDAP) server to

respond before stopping a request.

 Data type: Integer

Units: Milliseconds

Default: 0

Range: Equal to or greater than 0. A value of 0 specifies that no

search time limit exists.

Limit search returns:

Specifies the maximum number of entries that are returned in a search result.

 Data type: Integer

Units: Entries

Default: 0

Range: Equal to or greater than 0. A value of 0 specifies that no

search return limit exists.

Use connection pooling:

Specifies whether to utilize the connection pooling function, which is provided in the Software Development

Kit (SDK).

1120 Administering applications and their environment

Connection pooling is maintained by the Java run time. It is configured by system properties.

 Default: Disabled

Range: Enabled or Disabled

Enable context pool:

Specifies whether context pooling is enabled to the LDAP server. To improve performance, use the context

pool in combination with connection pooling.

 Default: Enabled

Range: Enabled or Disabled

Initial size:

Specifies the number of context instances in the pool when the pool is initially created by the LDAP

repository.

 Data type: Integer

Default: 1

Range: 1 to 50

Preferred size:

Specifies the preferred number of context instances that the context pool maintains. Both in-use and idle

context instances contribute to this number.

 Data type: Integer

Default: 3

Range: 0 to 100

Maximum size:

Specifies the maximum number of context instances that can be maintained concurrently by the context

pool. Both in-use and idle context instances contribute to this number.

 When the pool size reaches the maximum size, no new context instances can be created for a new

request. The new request is blocked until a context instance is released or removed. The request

periodically checks for context instances that are available in the pool. A request for a pooled context

instance uses an existing pooled and idle context instance or a newly created pooled context instance.

A maximum pool size of 0 indicates that the context pool can maintain an infinite number of context

instances.

 Data type: Integer

Default: 0

Context pool times out:

Specifies the number of seconds for the context pool to time out and remove idle context instances.

Chapter 16. Security 1121

A timeout value of 0 indicates that the context pool does not time out context instances.

 Data type: Integer

Default: 0

Cache the attributes:

Specifies whether to cache the attributes that are returned from the LDAP server.

 Default: Enabled

Range: Enabled or Disabled

Cache size:

Specifies the maximum size of the cache.

 Data type: Integer

Default: 4000

Range: Equal to or greater than 100

Cache times out:

Specifies the maximum number of seconds that the cached search results can stay in the cache.

 A timeout value of 0 indicates that the cached search results stay in the cache until update operations are

made.

 Data type: Integer

Units: Seconds

Default: 1200

Range: Equal to or greater than 0

Cache the search results:

Specifies whether to cache the search results that are returned from the LDAP server.

 Default: Enabled

Range: Enabled or Disabled

Cache size:

Specifies the maximum size of the cache.

 Data type: Integer

Default: 2000

Range: Equal to or greater than 100

Cache times out:

Specifies the maximum number of seconds that the cached search results can stay in the cache.

 A timeout value of 0 indicates that the cached search results stay in the cache until update operations are

made.

1122 Administering applications and their environment

Data type: Integer

Units: Seconds

Default: 600

Range: Equal to or greater than 0

Configuring Lightweight Directory Access Protocol entity types in a federated repository

configuration:

Follow this task to configure Lightweight Directory Access Protocol (LDAP) entity types in a federated

repository configuration.

1. In the administrative console, click Security > Secure administration, applications, and

infrastructure.

2. Under User account repository, select Federated repositories from the Available realm definitions field

and click Configure.

3. Under Related items, click Manage repositories.

4. Click Add to specify a new external repository or select an external repository that is preconfigured.

Note: If you click Add to specify a new external repository, you must first complete the required fields

and click Apply before you can proceed to the next step.

5. Under Additional properties, click LDAP entity types.

6. View the entity types that are supported by the member repositories, or select an entity type to view or

change its configuration properties.

7. Supply the object classes that are mapped to this entity type in the Object classes field. LDAP entries

that contain one or more of the object classes belong to this entity type.

8. Supply the search bases that are used to search this entity type. The search bases specified must be

subtrees of the base entry in the repository. For example, you can specify the following search bases,

where o=ibm,c=us is the base entry in the repository:

o=ibm,c=us or cn=users,o=ibm,c=us or ou=austin,o=ibm,c=us

In the preceding example, you cannot specify search bases c=us or o=ibm,c=uk.

Delimit multiple search bases with a semicolon (;). For example:

ou=austin,o=ibm,c=us;ou=raleigh,o=ibm,c=us

9. Supply the LDAP search filter that is used to search this entity type.

For example, use (objectclass=ePerson) to search for users or

(|(objectclass=groupOfNames)(objectclass=groupOfUniqueNames) to search for groups in an external

LDAP repository.

If a search filter is not specified, the object classes and the relative distinguished name (RDN)

properties are used to generate the search filter. For information on RDN properties, see “Configuring

supported entity types in a federated repository configuration” on page 1114.

After completing these steps, LDAP entity types are configured for your LDAP repository.

1. After configuring the federated repositories, click Security > Secure administration, applications,

and infrastructure to return to the Secure administration, applications, and infrastructure panel. Verify

that Federated repositories is identified in the Current realm definition field. If Federated repositories is

not identified, select Federated repositories from the Available realm definitions field and click Set as

current. To verify the federated repositories configuration, click Apply on the Secure administration,

applications, and infrastructure panel. If Federated repositories is not identified in the Current realm

definition field, your federated repositories configuration is not used by WebSphere Application Server.

2. If you are enabling security, complete the remaining steps as specified in “Enabling security for the

realm” on page 1024. As the final step, validate this setup by clicking Apply in the Secure

administration, applications, and infrastructure panel.

Chapter 16. Security 1123

3. Save, stop, and restart all the product servers (deployment managers, nodes, and Application Servers)

for changes in this panel to take effect. If the server comes up without any problems, the setup is

correct.

Lightweight Directory Access Protocol entity types collection:

Use this page to list Lightweight Directory Access Protocol (LDAP) entity types that are supported by the

member repositories or to select an LDAP entity type to view or change its configuration properties.

 To view this administrative console page, complete the following steps:

1. In the administrative console, click Security > Secure administration, applications, and

infrastructure.

2. Under User account repository, select Federated repositories from the Available realm definitions field

and click Configure.

3. Under Related items, click Manage repositories.

4. Click Add to specify a new external repository or select an external repository that is preconfigured.

5. Under Additional properties, click LDAP entity types.

When you finish adding or updating your federated repository configuration, go to the Security > Secure

administration, applications, and infrastructure panel and click Apply to validate the changes.

Entity type:

Specifies the entity type name.

Object classes:

Specifies the object classes that are mapped to this entity type. LDAP entries that contain one or more of

the object classes belong to this entity type.

Lightweight Directory Access Protocol entity types settings:

Use this page to configure Lightweight Directory Access Protocol (LDAP) entity types that are supported

by the member repositories.

 To view this administrative console page, complete the following steps:

1. In the administrative console, click Security > Secure administration, applications, and

infrastructure.

2. Under User account repository, select Federated repositories from the Available realm definitions field

and click Configure.

3. Under Related items, click Manage repositories.

4. Click Add to specify a new external repository or select an external repository that is preconfigured.

5. Under Additional properties, click LDAP entity types.

6. Select an entity type to view or change its configuration properties.

When you finish adding or updating your federated repository configuration, go to the Security > Secure

administration, applications, and infrastructure panel and click Apply to validate the changes.

Entity type:

Specifies the entity type.

Object classes:

1124 Administering applications and their environment

Specifies the object classes that are mapped to this entity type. LDAP entries that contain one or more of

the object classes belong to this entity type.

Search bases:

Specifies the search bases that are used to search this entity type.

 The search bases specified must be subtrees of the base entry in the repository. For example, you can

specify the following search bases, where o=ibm,c=us is the base entry in the repository:

o=ibm,c=us or cn=users,o=ibm,c=us or ou=austin,o=ibm,c=us

In the preceding example, you cannot specify search bases c=us or o=ibm,c=uk.

Delimit multiple search bases with a semicolon (;). For example:

ou=austin,o=ibm,c=us;ou=raleigh,o=ibm,c=us

Search filter:

Specifies the LDAP search filter that is used to search this entity type.

 For example, use (objectclass=ePerson) to search for users or

(|(objectclass=groupOfNames)(objectclass=groupOfUniqueNames) to search for groups in an external

LDAP repository.

If a search filter is not specified, the object classes and the relative distinguished name (RDN) properties

are used to generate the search filter.

Configuring group attribute definition settings in a federated repository configuration:

Follow this task to configure group definition settings in a federated repository configuration.

 Because group attribute definition settings apply only to a Lightweight Directory Access Protocol (LDAP)

repository, you must first configure an LDAP repository. For more information, see “Managing repositories

in a federated repository configuration” on page 1117.

1. In the administrative console, click Security > Secure administration, applications, and

infrastructure.

2. Under User account repository, select Federated repositories from the Available realm definitions field

and click Configure.

3. Under Related items, click Manage repositories.

4. Click Add to specify a new external repository or select an external repository that is preconfigured.

Note: If you click Add to specify a new external repository, you must first complete the required fields

and click Apply before you can proceed to the next step.

5. Under Additional properties, click Group attribute definition.

6. Supply the name of the group membership attribute in the Name of group membership attribute field.

Only one membership attribute can be defined for each LDAP repository.

Every LDAP entry should have this attribute to indicate the groups to which this entry belongs. For

example, memberOf is the name of the membership attribute that is used in Active Directory. The

group membership attribute contains values that reference groups to which this entry belongs. If UserA

belongs to GroupA, then the value of the memberOf attribute of UserA should contain the distinguished

name of GroupA.

Chapter 16. Security 1125

If your LDAP server does not support the group membership attribute, then do not specify this

attribute. The LDAP repository can look up groups by searching the group member attributes, though

the performance might be slower.

7. Select the scope of the group membership attribute. The default value is Direct.

Direct The membership attribute contains direct groups only. Direct groups are the groups that

contain the member. For example, if Group1 contains Group2 and Group2 contains User1,

then Group2 is a direct group of User1, but Group1 is not a direct group of User1.

Nested

The membership attribute contains both direct groups and nested groups.

All The membership attribute contains direct groups, nested groups, and dynamic members.

After completing these steps, group attribute definition settings are configured for your LDAP repository.

1. After configuring the federated repositories, click Security > Secure administration, applications,

and infrastructure to return to the Secure administration, applications, and infrastructure panel. Verify

that Federated repositories is identified in the Current realm definition field. If Federated repositories is

not identified, select Federated repositories from the Available realm definitions field and click Set as

current. To verify the federated repositories configuration, click Apply on the Secure administration,

applications, and infrastructure panel. If Federated repositories is not identified in the Current realm

definition field, your federated repositories configuration is not used by WebSphere Application Server.

2. If you are enabling security, complete the remaining steps as specified in “Enabling security for the

realm” on page 1024. As the final step, validate this setup by clicking Apply in the Secure

administration, applications, and infrastructure panel.

3. Save, stop, and restart all the product servers (deployment managers, nodes, and Application Servers)

for changes in this panel to take effect. If the server comes up without any problems, the setup is

correct.

Group attribute definition settings:

Use this page to specify the name of the group membership attribute. Every Lightweight Directory Access

Protocol (LDAP) entry includes this attribute to indicate the group to which this entry belongs.

 To view this administrative console page, complete the following steps:

1. In the administrative console, click Security > Secure administration, applications, and

infrastructure.

2. Under User account repository, select Federated repositories from the Available realm definitions field

and click Configure.

3. Under Related items, click Manage repositories.

4. Click Add to specify a new external repository or select an external repository that is preconfigured.

5. Under Additional properties, click Group attribute definition.

When you finish adding or updating your federated repository configuration, go to the Security > Secure

administration, applications, and infrastructure panel and click Apply to validate the changes.

Name of group membership attribute:

Specifies the name of the group membership attribute. Only one membership attribute can be defined for

each Lightweight Directory Access Protocol (LDAP) repository.

 Every LDAP entry should have this attribute to indicate the groups to which this entry belongs. For

example, memberOf is the name of the membership attribute that is used in Active Directory. The group

membership attribute contains values that reference groups to which this entry belongs. If UserA belongs

to GroupA, then the value of the memberOf attribute of UserA should contain the distinguished name of

GroupA.

1126 Administering applications and their environment

If your LDAP server does not support the group membership attribute, then do not specify this attribute.

The LDAP repository can look up groups by searching the group member attributes, though the

performance might be slower.

Scope of group membership attribute:

Specifies the scope of the group membership attribute.

 Default: Direct

Range:

Direct The membership attribute contains direct groups

only. Direct groups are the groups that contain

the member. For example, if Group1 contains

Group2 and Group2 contains User1, then Group2

is a direct group of User1, but Group1 is not a

direct group of User1.

Nested The membership attribute contains both direct

groups and nested groups.

All The membership attribute contains direct groups,

nested groups, and dynamic members.

Configuring member attributes in a federated repository configuration:

Follow this task to configure member attributes in a federated repository configuration.

 Because member attributes apply only to a Lightweight Directory Access Protocol (LDAP) repository, you

must first configure an LDAP repository. For more information, see “Managing repositories in a federated

repository configuration” on page 1117.

 1. In the administrative console, click Security > Secure administration, applications, and

infrastructure.

 2. Under User account repository, select Federated repositories from the Available realm definitions

field and click Configure.

 3. Under Related items, click Manage repositories.

 4. Click Add to specify a new external repository or select an external repository that is preconfigured.

Note: If you click Add to specify a new external repository, you must first complete the required

fields and click Apply before you can proceed to the next step.

 5. Under Additional properties, click Group attribute definition.

 6. Under Additional properties, click Member attributes.

 7. Click New to specify a new member attribute or Delete to remove a preconfigured member attribute.

 8. Accept the default, or supply the name of the member attribute in the Name of member attribute field.

For example, member and uniqueMember are two commonly used names of member attributes.

The member attribute is used to store the values that reference members that the group contains. For

example, a group type with an object class groupOfNames has a member attribute named member;

group type with object class groupOfUniqueNames has a member attribute named uniqueMember. An

LDAP repository supports multiple group types if multiple member attributes and their associated

group object classes are specified.

 9. Supply the object class of the group that uses this member attribute in the Object class field. If this

field is not defined, this member attribute applies to all group object classes.

10. Select the scope of the member attribute. The default value is Direct.

Direct The member attribute contains direct members only. Direct members are members that are

Chapter 16. Security 1127

directly contained by the group. For example, if Group1 contains Group2 and Group2

contains User1, then User1 is a direct member of Group2, but User1 is not a direct member

of Group1.

Nested

The member attribute contains both direct members and nested members.

All The member attribute contains direct members, nested members, and dynamic members.

After completing these steps, member attributes are configured for your LDAP repository.

1. After configuring the federated repositories, click Security > Secure administration, applications,

and infrastructure to return to the Secure administration, applications, and infrastructure panel. Verify

that Federated repositories is identified in the Current realm definition field. If Federated repositories is

not identified, select Federated repositories from the Available realm definitions field and click Set as

current. To verify the federated repositories configuration, click Apply on the Secure administration,

applications, and infrastructure panel. If Federated repositories is not identified in the Current realm

definition field, your federated repositories configuration is not used by WebSphere Application Server.

2. If you are enabling security, complete the remaining steps as specified in “Enabling security for the

realm” on page 1024. As the final step, validate this setup by clicking Apply in the Secure

administration, applications, and infrastructure panel.

3. Save, stop, and restart all the product servers (deployment managers, nodes, and Application Servers)

for changes in this panel to take effect. If the server comes up without any problems, the setup is

correct.

Member attributes collection:

Use this page to list Lightweight Directory Access Protocol (LDAP) member attributes or to select a

member attribute to view or change its configuration properties.

 To view this administrative console page, complete the following steps:

1. In the administrative console, click Security > Secure administration, applications, and

infrastructure.

2. Under User account repository, select Federated repositories from the Available realm definitions field

and click Configure.

3. Under Related items, click Manage repositories.

4. Click Add to specify a new external repository or select an external repository that is preconfigured.

5. Under Additional properties, click Group attribute definition.

6. Under Additional properties, click Member attributes.

When you finish adding or updating your federated repository configuration, go to the Security > Secure

administration, applications, and infrastructure panel and click Apply to validate the changes.

Name:

Specifies the name of the member attribute in LDAP. For example, member and uniqueMember are two

commonly used names of member attributes.

 The member attribute is used to store the values that reference members that the group contains. For

example, a group type with an object class groupOfNames has a member attribute named member; group

type with object class groupOfUniqueNames has a member attribute named uniqueMember. An LDAP

repository supports multiple group types if multiple member attributes and their associated group object

classes are specified.

Scope:

Specifies the scope of the member attribute.

1128 Administering applications and their environment

Default: Direct

Range:

Direct The member attribute contains direct members

only. Direct members are members that are

directly contained by the group. For example, if

Group1 contains Group2 and Group2 contains

User1, then User1 is a direct member of Group2,

but User1 is not a direct member of Group1.

Nested The member attribute contains both direct

members and nested members.

All The member attribute contains direct members,

nested members, and dynamic members.

Object class:

Specifies the object class of the group that uses this member attribute. If this field is not defined, this

member attribute applies to all group object classes.

Member attributes settings:

Use this page to configure Lightweight Directory Access Protocol (LDAP) member attributes.

 To view this administrative console page, complete the following steps:

1. In the administrative console, click Security > Secure administration, applications, and

infrastructure.

2. Under User account repository, select Federated repositories from the Available realm definitions field

and click Configure.

3. Under Related items, click Manage repositories.

4. Click Add to specify a new external repository or select an external repository that is preconfigured.

5. Under Additional properties, click Group attribute definition.

6. Under Additional properties, click Member attributes.

7. Click New to specify a new member attribute.

When you finish adding or updating your federated repository configuration, go to the Security > Secure

administration, applications, and infrastructure panel and click Apply to validate the changes.

Name of member attribute:

Specifies the name of the member attribute in LDAP. For example, member and uniqueMember are two

commonly used names of member attributes.

 The member attribute is used to store the values that reference members that the group contains. For

example, a group type with an object class groupOfNames has a member attribute named member; group

type with object class groupOfUniqueNames has a member attribute named uniqueMember. An LDAP

repository supports multiple group types if multiple member attributes and their associated group object

classes are specified.

Object class:

Specifies the object class of the group that uses this member attribute. If this field is not defined, this

member attribute applies to all group object classes.

Scope:

Chapter 16. Security 1129

Specifies the scope of the member attribute.

 Default: Direct

Range:

Direct The member attribute contains direct members

only. Direct members are members that are

directly contained by the group. For example, if

Group1 contains Group2 and Group2 contains

User1, then User1 is a direct member of Group2,

but User1 is not a direct member of Group1.

Nested The member attribute contains both direct

members and nested members.

All The member attribute contains direct members,

nested members, and dynamic members.

Configuring dynamic member attributes in a federated repository configuration:

Follow this task to configure dynamic member attributes in a federated repository configuration.

 Because dynamic member attributes apply only to a Lightweight Directory Access Protocol (LDAP)

repository, you must first configure an LDAP repository. For more information, see “Managing repositories

in a federated repository configuration” on page 1117.

1. In the administrative console, click Security > Secure administration, applications, and

infrastructure.

2. Under User account repository, select Federated repositories from the Available realm definitions field

and click Configure.

3. Under Related items, click Manage repositories.

4. Click Add to specify a new external repository or select an external repository that is preconfigured.

Note: If you click Add to specify a new external repository, you must first complete the required fields

and click Apply before you can proceed to the next step.

5. Under Additional properties, click Group attribute definition.

6. Under Additional properties, click Dynamic member attributes.

7. Click New to specify a new dynamic member attribute or Delete to remove a preconfigured dynamic

member attribute.

8. Accept the default, or supply the name of the dynamic member attribute in the Name of dynamic

member attribute field. The name of the dynamic member attribute defines the filter for dynamic group

members in LDAP, for example, memberURL is the name of a commonly used dynamic member

attribute.

If both member and dynamic member attributes are specified for the same group type, this group type

is a hybrid group with both static and dynamic members.

A dynamic group defines its members differently than a static group. Instead of listing the members

individually, the dynamic group defines its members using an LDAP search. The filter for the search is

defined in a dynamic member attribute. For example, the dynamic group uses the structural objectclass

groupOfURLs, or auxiliary objectclass ibm-dynamicGroup, and the attribute memberURL, to define the

search using a simplified LDAP URL syntax:

ldap:///<base DN of search> ? ? <scope of search> ? <searchfilter>

The following is an example of the LDAP URL that defines all entries that are under o=Acme with the

objectclass=person:

ldap:///o=Acme,c=US??sub?objectclass=person

1130 Administering applications and their environment

9. Supply the object class of the group that contains the dynamic member attribute in the Dynamic object

class field, for example, groupOfURLs. If this property is not defined, the dynamic member attribute

applies to all group object classes.

After completing these steps, dynamic member attributes are configured for your LDAP repository.

1. After configuring the federated repositories, click Security > Secure administration, applications,

and infrastructure to return to the Secure administration, applications, and infrastructure panel. Verify

that Federated repositories is identified in the Current realm definition field. If Federated repositories is

not identified, select Federated repositories from the Available realm definitions field and click Set as

current. To verify the federated repositories configuration, click Apply on the Secure administration,

applications, and infrastructure panel. If Federated repositories is not identified in the Current realm

definition field, your federated repositories configuration is not used by WebSphere Application Server.

2. If you are enabling security, complete the remaining steps as specified in “Enabling security for the

realm” on page 1024. As the final step, validate this setup by clicking Apply in the Secure

administration, applications, and infrastructure panel.

3. Save, stop, and restart all the product servers (deployment managers, nodes, and Application Servers)

for changes in this panel to take effect. If the server comes up without any problems, the setup is

correct.

Dynamic member attributes collection:

Use this page to manage Lightweight Directory Access Protocol (LDAP) dynamic member attributes.

 To view this administrative console page, complete the following steps:

1. In the administrative console, click Security > Secure administration, applications, and

infrastructure.

2. Under User account repository, select Federated repositories from the Available realm definitions field

and click Configure.

3. Under Related items, click Manage repositories.

4. Click Add to specify a new external repository or select an external repository that is preconfigured.

5. Under Additional properties, click Group attribute definition.

6. Under Additional properties, click Dynamic member attributes.

When you finish adding or updating your federated repository configuration, go to the Security > Secure

administration, applications, and infrastructure panel and click Apply to validate the changes.

Name:

Specifies the name of the attribute that defines the filter for dynamic group members in LDAP. For

example, memberURL is the name of a commonly used dynamic member attribute.

 If both member and dynamic member attributes are specified for the same group type, this group type is a

hybrid group with both static and dynamic members.

A dynamic group defines its members differently than a static group. Instead of listing the members

individually, the dynamic group defines its members using an LDAP search. The filter for the search is

defined in a dynamic member attribute. For example, the dynamic group uses the structural objectclass

groupOfURLs, or auxiliary objectclass ibm-dynamicGroup, and the attribute memberURL, to define the

search using a simplified LDAP URL syntax:

ldap:///<base DN of search>??<scope of search>?<searchfilter>

The following is an example of the LDAP URL that defines all entries that are under o=Acme with the

objectclass=person:

Chapter 16. Security 1131

ldap:///o=Acme,c=US??sub?objectclass=person

Object class:

Specifies the object class of the group that contains this dynamic member attribute, for example,

groupOfURLs. If this property is not defined, the dynamic member attribute applies to all group object

classes.

Dynamic member attributes settings:

Use this page to configure Lightweight Directory Access Protocol (LDAP) dynamic member attributes.

 To view this administrative console page, complete the following steps:

1. In the administrative console, click Security > Secure administration, applications, and

infrastructure.

2. Under User account repository, select Federated repositories from the Available realm definitions field

and click Configure.

3. Under Related items, click Manage repositories.

4. Click Add to specify a new external repository or select an external repository that is preconfigured.

5. Under Additional properties, click Group attribute definition.

6. Under Additional properties, click Dynamic member attributes.

7. Click New to specify a new dynamic member attribute.

When you finish adding or updating your federated repository configuration, go to the Security > Secure

administration, applications, and infrastructure panel and click Apply to validate the changes.

Name of dynamic member attribute:

Specifies the name of the attribute that defines the filter for dynamic group members in LDAP. For

example, memberURL is the name of a commonly used dynamic member attribute.

 If both member and dynamic member attributes are specified for the same group type, this group type is a

hybrid group with both static and dynamic members.

A dynamic group defines its members differently than a static group. Instead of listing the members

individually, the dynamic group defines its members using an LDAP search. The filter for the search is

defined in a dynamic member attribute. For example, the dynamic group uses the structural objectclass

groupOfURLs, or auxiliary objectclass ibm-dynamicGroup, and the attribute memberURL, to define the

search using a simplified LDAP URL syntax:

ldap:///<base DN of search>??<scope of search>?<searchfilter>

The following is an example of the LDAP URL that defines all entries that are under o=Acme with the

objectclass=person:

ldap:///o=Acme,c=US??sub?objectclass=person

Dynamic object class:

Specifies the object class of the group that contains this dynamic member attribute, for example,

groupOfURLs. If this property is not defined, the dynamic member attribute applies to all group object

classes.

1132 Administering applications and their environment

Local operating system registries

With the registry implementation for the local operating system, the WebSphere Application Server

authentication mechanism can use the user accounts database of the local operating system.

Lightweight Directory Access Protocol (LDAP) is a centralized registry. Most local operating system

registries are not centralized registries.

WebSphere Application Server provides implementations for the Windows local accounts registry and

domain registry, as well as implementations for the Linux, Solaris, and AIX user accounts registries.

Windows Active Directory is supported through the LDAP user registry implementation discussed later.

Note: For an Active Directory (domain controller), the three group scopes are Domain Local Group, Global

Group, and Universal Group. For an Active Directory (Domain Controller), the two group types are

Security and Distribution.

When a group is created, the default value is Global and the default type is Security. With Windows NT

domain registry support for Windows 2000 and 2003 domain controllers, WebSphere Application Server

only supports Global groups that are the Security type. It is recommended that you use the Active

Directory registry support rather than a Windows NT domain registry if you use Windows 2000 and 2003

domain controllers because the Active Directory supports all group scopes and types. The Active Directory

also supports a nested group that is not support by Windows NT domain registry. The Active Directory is a

centralized control registry.

WebSphere Application Server does not have to install the member of the domain because it can be

installed on any machine on any platform. Note that the Windows NT domain native call returns the

support group only without an error.

Do not use a local operating system registry in a WebSphere Application Server environment where

application servers are dispersed across more than one machine because each machine has its own user

registry.

The Windows domain registry and Network Information Services (NIS) are exceptions. Both the Windows

domain registry and Network Information Services (NIS) are centralized registries. The Windows domain

registry is supported by WebSphere Application Server; however, NIS is not supported.

As mentioned previously, the access IDs taken from the user registry are used during authorization

checks. Because these IDs are typically unique identifiers, they vary from machine to machine, even if the

exact users and passwords exist on each machine.

Web client certificate authentication is not currently supported when using the local operating system user

registry. However, Java client certificate authentication does function with a local operating user registry.

Java client certificate authentication maps the first attribute of the certificate domain name to the user ID in

the user registry.

Even though Java client certificates function correctly, the following error displays in the SystemOut.log file:

CWSCJ0337E: The mapCertificate method is not supported

The error is intended for Web client certificates; however, it also displays for Java client certificates. Ignore

this error for Java client certificates.

Required privileges

The user that is running the WebSphere Application Server process requires enough operating system

privilege to call the Windows systems application programming interface (API) for authenticating and

obtaining user and group information from the Windows operating system. This user logs into the machine,

Chapter 16. Security 1133

or if running as a service, is the Log On As user. Depending on the machine and whether the machine is a

standalone machine or a machine that is part of a domain or is the domain controller, the access

requirements vary.

v For a standalone machine, the user:

– Is a member of the administrative group.

– Has the Act as part of the operating system privilege.

– Has the Log on as a service privilege, if the server is run as a service.
v For a machine that is a member of a domain, only a domain user can start the server process and:

– Is a member of the domain administrative groups in the domain controller.

– Has the Act as part of the operating system privilege in the Domain security policy on the domain

controller.

– Has the Act as part of the operating system privilege in the Local security policy on the local

machine.

– Has the Log on as a service privilege on the local machine, if the server is run as a service.

The user is a domain user and not a local user, which implies that when a machine is part of a

domain, only a domain user can start the server.
v For a domain controller machine, the user:

– Is a member of the domain administrative groups in the domain controller.

– Has the Act as part of the operating system privilege in the Domain security policy on the domain

controller.

– Has the Log on as a service privilege on the domain controller, if the server is run as a service.

If the user running the server does not have the required privilege, you might see one of the following

exception messages in the log files:

v A required privilege is not held by the client.

v Access is denied.

Domain and local user registries

When WebSphere Application Server is started, the security run-time initialization process dynamically

attempts to determine if the local machine is a member of a Windows domain. If the machine is part of a

domain then by default both the local registry users or groups and the domain registry users or groups can

be used for authentication and authorization purposes with the domain registry taking precedence. The list

of users and groups that is presented during the security role mapping includes users and groups from

both the local user registry and the domain user registry. The users and groups can be distinguished by

the associated host names.

WebSphere Application Server does not support trusted domains.

If the machine is not a member of a Windows system domain, the user registry local to that machine is

used.

Using both the domain user registry and the local operating system registry

When the machine that hosts the WebSphere Application Server process is a member of a domain, both

the local and the domain user registries are used by default. The following section describes more on this

topic and recommends some best practices to avoid unfavorable consequences.

Note: Although this section does not directly describe z/OS considerations, you should be aware that

overall security operations are affected by how well you set up these registries.

v Best practices

In general, if the local and the domain registries do not contain common users or groups, it is simpler to

administer and it eliminates unfavorable side effects. If possible, give users and groups access to

unique security roles, including the server ID and administrative roles. In this situation, select the users

and groups from either the local user registry or the domain user registry to map to the roles.

1134 Administering applications and their environment

In cases where the same users or groups exist in both the local user registry and the domain user

registry, it is recommended that at least the server ID and the users and groups that are mapped to the

administrative roles be unique in the registries and exist only in the domain.

If a common set of users exists, set a different password to make sure that the appropriate user is

authenticated.

v How it works

When a machine is part of a domain, the domain user registry takes precedence over the local user

registry. For example, when a user logs into the system, the domain user registry tries to authenticate

the user first. If authentication fails, the local user registry is used. When a user or a group is mapped to

a role, the user and group information is first obtained from the domain user registry. In case of failure,

the local user registry is tried.

However, when a fully qualified user or a group name, one with an attached domain or host name, is

mapped to a role, only that user registry is used to get the information. Use the administrative console

or scripts to get the fully qualified user and group names, which is the recommended way to map users

and groups to roles.

Tip: A user, Bob, on one machine in the local OS user registry, for example, is not the same as the user

Bob on another machine in the domain user registry, for example, because the unique ID of Bob,

which is the security identifier [SID] in this case, is different in different user registries.

v Examples

The MyMachine machine is part of the MyDomain domain. The MyMachine machine contains the following

users and groups:

– MyMachine\user2

– MyMachine\user3

– MyMachine\group2

The MyDomain domain contains the following users and groups:

– MyDomain\user1

– MyDomain\user2

– MyDomain\group1

– MyDomain\group2

Here are some scenarios that assume the previous set of users and groups:

1. When user2 logs into the system, the domain user registry is used for authentication. If the

authentication fails because the password is different, for example, the local user registry is used.

2. If the MyMachine\user2 user is mapped to a role, only the user2 user in MyMachine machine has

access. Thus, if the user2 password is the same on both the local and the domain user registries,

the user2 user cannot access the resource because the user2 user is always authenticated using

the domain user registry. If both user registries have common users, it is recommended that you

have different passwords.

3. If the group2 group is mapped to a role, only the users who are members of the MyDomain\group2

group can access the resource because group2 information is first obtained from the domain user

registry.

4. If the MyMachine\group2 group is mapped to a role, only the users who are members of the

MyMachine\group2 group can access the resource. A specific group is mapped to the role

(MyMachine\group2 instead of just group2).

5. Use either the user3 user or the MyMachine\user3 user to map to a role because the user3 user is

unique as it exists in one user registry only.

Authorizing with the domain user registry first can cause problems if a user exists in both the domain

and local user registries with the same password. Role-based authorization can fail in this situation

because the user is first authenticated within the domain user registry. This authentication produces a

unique domain security ID that is used in WebSphere Application Server during the authorization check.

However, the local user registry is used for role assignment. The domain security ID does not match the

unique security ID that is associated with the role. To avoid this problem, map security roles to domain

users instead of local users.

Chapter 16. Security 1135

Using either the local or the domain user registry. If you want to access users and groups from either

the local or the domain user registry, instead of both, set the com.ibm.websphere.registry.UseRegistry

property. This property can be set to either localor domain. When this property is set to local(case

insensitive) only the local user registry is used. When this property is set to domain, (case insensitive) only

the domain user registry is used.

Set this property by completing the following steps to access the Custom Properties panel in the

administrative console:

1. Click Security > Secure administration, applications, and infrastructure

2. Under User account repository, click the Available realm definitions drop-down list, select Local

operating system, and click Configure.

3. Under Additional properties, click Custom properties.

You can also use wsadmin to configure this property. When the property is set, the privilege requirement

for the user who is running the product process does not change. For example, if this property is set to

local, the user that is running the process requires the same privilege, as if the property was not set.

Using UNIX system user registries

When using UNIX system user registries, the process ID that runs the WebSphere Application Server

process needs the root authority to call the local operating system APIs for authentication and for obtaining

user or group information.

Note: In UNIX systems, only the local machine user registry is used. Network Information Service (NIS)

(Yellow Pages) is not supported.

Using Linux and Solaris system user registries Linux

Solaris

For WebSphere Application Server local operating system registry to work on the Linux and Solaris

platforms, a shadow password file must exist. The shadow password file is named shadow and is located in

the /etc directory. If the shadow password file does not exist, an error occurs after enabling administrative

security and configuring the registry as local operating system.

To create the shadow file, run the pwconv command (with no parameters). This command creates an

/etc/shadow file from the /etc/passwd file. After creating the shadow file, you can enable local operating

system security successfully.

Standalone Lightweight Directory Access Protocol registries

A Standalone Lightweight Directory Access Protocol (LDAP) registry performs authentication using an

LDAP binding.

WebSphere Application Server security provides and supports the implementation of most major LDAP

directory servers, which can act as the repository for user and group information. These LDAP servers are

called by the product processes for authenticating a user and other security-related tasks. For example,

the servers are used to retrieve user or group information. This support is provided by using different user

and group filters to obtain the user and group information. These filters have default values that you can

modify to fit your needs. The custom LDAP feature enables you to use any other LDAP server, which is

not in the product-supported list of LDAP servers, for its user registry by using the appropriate filters.

To use LDAP as the user registry, you need to know a administrative user name that is defined in the

registry, the server host and port, the base distinguished name (DN) and, if necessary, the bind DN and

the bind password. You can choose any valid user in the registry that is searchable and have

administrative privileges. In some LDAP servers, the administrative users are not searchable and cannot

be used, for example, cn=root in SecureWay. This user is referred to as WebSphere Application Server

security server ID, server ID, or server user ID in the documentation. Being a server ID means a user has

1136 Administering applications and their environment

special privileges when calling some protected internal methods. Normally, this ID and password are used

to log into the administrative console after security is turned on. You can use other users to log in if those

users are part of the administrative roles.

When security is enabled in the product, the primary administrative user name and password are

authenticated with the registry during the product startup. If authentication fails, the server does not start. It

is important to choose an ID and password that do not expire or change often. If the product server user

ID or password need to change in the registry, make sure that the changes are performed when all the

product servers are up and running.

When the changes are done in the registry, use the steps that are described in “Configuring Lightweight

Directory Access Protocol user registries” on page 1041. Change the ID, password, and other

configuration information, save, stop, and restart all the servers so that the new ID or password is used by

the product. If any problems occur starting the product when security is enabled, disable security before

the server can start up. To avoid these problems, make sure that any changes in this panel are validated

in the Secure administration, applications, and infrastructure panel. When the server is up, you can change

the ID, password, and other configuration information and then enable security.

You can use the custom Lightweight Directory Access Protocol (LDAP) feature to support any LDAP server

by setting up the correct configuration. However, support is not extended to these custom LDAP servers

because many configuration possibilities exist.

The users and groups and security role mapping information is used by the configured authorization

engine to perform access control decisions.

Dynamic groups and nested group support:

Dynamic and nested groups simplify WebSphere Application Server security management and increase its

effectiveness and flexibility.

 Dynamic groups contain a group name and membership criteria:

v The group membership information is as current as the information on the user object.

v There is no need to manually maintain members on the group object.

v Dynamic groups are designed so an application does not need a large amount of information from the

directory to find out if someone is a member of a group.

Nested groups enable the creation of hierarchical relationships that are used to define inherited group

membership. A nested group is defined as a child group entry whose distinguished name (DN) is

referenced by a parent group entry attribute.

You only need to assign a larger parent group if all nested groups share the same privilege. Assigning a

role to a single parent group simplifies the run-time authorization table.

Dynamic groups and nested group support for the IBM Tivoli Directory Server:

Dynamic and nested groups simplify WebSphere Application Server security management and increase its

effectiveness and flexibility.

 WebSphere Application Server supports all Lightweight Directory Access Protocol (LDAP) dynamic and

nested groups when using IBM Tivoli Directory Server. This function is enabled by default by taking

advantage of a new feature in IBM Tivoli Directory Server. IBM Tivoli Directory Server uses the

ibm-allGroups forward-reference group attribute that automatically calculates all the group memberships

including dynamic and recursive memberships for a user. Security directly locates a user group

membership from a user object rather than indirectly search all the groups to match group members.

Chapter 16. Security 1137

For more information, see “Configuring dynamic and nested group support for the IBM Tivoli Directory

Server” on page 1059.

Dynamic and nested group support for the SunONE or iPlanet Directory Server:

Dynamic and nested groups simplify WebSphere Application Server security management and increase its

effectiveness and flexibility.

 The SunONE or iPlanet Directory Server uses two grouping mechanisms:

Groups

Entries that name other entries as a list of members or as a filter for members.

Roles Entries that name other entries as a list of members or as a filter for members. Additional

functionality is provided by generating the nsrole attribute on each role member.

Three types of roles are available:

Filtered roles

Depends upon the attributes that are contained in each entry. Entries are members, if they match

a specified Lightweight Directory Access Protocol (LDAP) filter. This role is equivalent to a dynamic

group.

Nested roles

Creates roles that contain other roles. This role is equivalent to a nested group.

Managed roles

Explicitly assigns a role to member entries. This role is equivalent to a static group.

Refer to “Configuring dynamic and nested group support for the SunONE or iPlanet Directory Server” on

page 1059 for more information.

Security failover among multiple LDAP servers:

WebSphere Application Server security can be configured to attempt failovers between multiple

Lightweight Directory Access Protocol (LDAP) hosts.

 If the current active LDAP server is unavailable, WebSphere Application Server security attempts a failover

to the first available LDAP host in the specified host list. The multiple LDAP servers can be replicas of the

same master LDAP server, or they can be any LDAP host with the same schema, which contain data that

is imported from the same LDAP Data Interchange Format (LDIF) file.

Whenever a failover occurs, WebSphere Application Server security always uses the first available LDAP

server in the specified host list. For example, if there are four LDAP servers configured in the order of L1,

L2, L3, and L4, L1 is treated as the primary LDAP server. The preference of connection is from L1 to L4.

If, for example, WebSphere Application Server security is currently connected to L4, and failover or

reconnection is necessary, WebSphere Application Server security first attempts to connect to L1, L2, and

then L3 in that order until the connection is successful.

The current LDAP host name is logged in message CWSCJ0419I in the WebSphere Application Server log

file, SystemOut.log. If you want to reconnect to the primary LDAP host, run the WebSphere Application

Server MBean method, resetLDAPBindInfo, with null,null as the input.

To configure LDAP failover among multiple LDAP hosts, you must use wsadmin or ConfigService to

include the backup LDAP host, which does not have a number limitation. The LDAP host that is displayed

in the administrative console is the primary LDAP host, and is the first item listed in the LDAP host list in

security.xml.

1138 Administering applications and their environment

The WebSphere Application Server security realm name defaults to the primary LDAP host name that is

displayed in the administrative console. It includes a trailing colon and a port number (if one exists).

However, the custom property, com.ibm.websphere.security.ldap.logicRealm, can be added to override the

default security realm name. Use the logicRealm name to configure each cell to have its own LDAP host

for interoperability and backward compatibility, and to provide flexibility for adding or removing the LDAP

host dynamically. If migrating from a previous installation, the new logicRealm name does not take effect

until administrative security is enabled again. To be compatible with a previous release that does not

support logic realm, the logicRealm name has to be the same as that used by the previous installation (the

LDAP host name, including a trailing colon and port number).

The following example shows how to use wsadmin to add a backup LDAP host for failover:

proc LDAPAdd {args} {

 global AdminConfig AdminControl ldapServer ldapPort

 set ldapServer [lindex $args 0]

 set ldapPort [lindex $args 1]

 global ldapUserRegistryId

 if {[catch {$AdminConfig list LDAPUserRegistry} result]} {

 puts stdout "\$AdminConfig list LDAPUserRegistry caught an exception $result\n"

 return

 } else {

 if {$result != {}} {

 set ldapUserRegistryId [lindex $result 0]

 } else {

 return;

 }

 }

 set secMbean [$AdminControl queryNames type=SecurityAdmin,*]

 set Attrs2 [list [list hosts [list [list [list host $ldapServer]

 [list port $ldapPort]]]]]

 $AdminConfig modify $ldapUserRegistryId $Attrs2

 $AdminConfig save

}

Federated repositories

Federated repositories enable you to use multiple repositories with WebSphere Application Server. These

repositories, which can be file-based repositories, LDAP repositories, or a sub-tree of an LDAP repository,

are defined and theoretically combined under a single realm. All of the user repositories that are

configured under the federated repository functionality are invisible to WebSphere Application Server.

When you use the federated repositories functionality, all of the configured repositories, which you specify

as part of the federated repository configuration, become active. It is recommended that the user ID, and

the distinguished name (DN) for an LDAP repository, be unique in multiple user repositories that are

configured under the same federated repository configuration. For example, there might be three different

repositories that are configured for the federated repositories configuration: Repository A, Repository B,

and Repository C. When user1 logs in, the federated repository adapter searches each of the repositories

for all of the occurrences of that user. If multiple instances of that user are found in the combined

repositories, an error message displays.

In addition, the federated repositories functionality in WebSphere Application Server supports the logical

joining of entries across multiple user repositories when the Application Server searches and retrieves

entries from the repositories. For example, when an application calls for a sorted list of people whose age

is greater than twenty, WebSphere Application searches all of the repositories in the federated repositories

configuration. The results are combined and sorted before the Application Server returns the results to the

application.

Unlike the local operating system, standalone LDAP registry, or custom registry options, federated

repositories provide user and group management with read and write capabilities. When you configure

federated repositories, you can use one of the following methods to add, create, and delete users and

groups:

Chapter 16. Security 1139

Important: If you configure multiple repositories under the federated repositories realm, you must also

configure supported entity types and specify a base entry for the default parent. The base

entry for the default parent determines the repository location where entities of the specified

type are placed on write operations by user and group management. See “Configuring

supported entity types in a federated repository configuration” on page 1114 for details.

v Use the user management application programming interfaces (API). For more information, refer to

articles under ″Developing with virtual member manager″ in this information center.

v Use the administrative console. To manage users and groups within the administrative console, click

Users and Groups > Manage Users or Users and Groups > Manage Groups. For information on

user and group management, click the Help link that displays in the upper right corner of the window.

From the left navigation pane, click Users and Groups.

v Use the wsadmin commands. For more information, see “Commands for the

WIMManagementCommands group of the AdminTask object” on page 1584.

If you do not configure the federated repositories functionality or do not enable federated repositories as

the active repository, you cannot use the user management capabilities that are associated with federated

repositories. You can configure an LDAP server as the active user registry and configure the same LDAP

server under federated repositories, but not select federated repositories as the active user repository.

With this scenario, authentication takes place using the LDAP server, and you can use the user

management functionality for the LDAP server that is available for federated repositories.

The following table compares the federated repository functionality that is available in WebSphere

Application Server Version 6.1 with the registry functionality that remains unchanged from previous

versions of the Application Server.

 Table 9. Federated repositories versus user registry implementations

Federated repositories User registry

Supports multiple types of repositories such as file-based,

LDAP, database, and custom. In WebSphere Application

Server Version 6.1, file-based and LDAP repositories are

supported by the administrative console. However, the

federated repositories functionality does not support local

operating system implementations. For database and

custom repositories, you can use the wsadmin

command-line interface or the configuration application

programming interfaces (API).

Supports multiple types of registries such as the local

operating system, a standalone LDAP registry, and a

standalone custom registry.

Supports multiple repositories in a realm within a cell. Supports one registry only in a realm within a cell.

Provides read and write capabilities for the repositories

that are defined in the federated repository configuration.

Provides read only capability for the registries.

Provides account and password policy support as defined

by the registry type. However, this support is not provided

by the federated repository functionality.

Provides account and password policy support as defined

by the registry type.

Supports identity profiles. Does not support identity profiles.

Uses the custom UserRegistry implementation. Uses the custom UserRegistry implementation.

Authentication mechanisms

An authentication mechanism defines rules about security information, such as whether a credential is

forwardable to another Java process, and the format of how security information is stored in both

credentials and tokens.

Authentication is the process of establishing whether a client is who or what it claims to be in a particular

context. A client can be either an end user, a machine, or an application. An authentication mechanism in

WebSphere Application Server typically collaborates closely with a user registry. The user registry is the

1140 Administering applications and their environment

user and groups account repository that the authentication mechanism consults with when performing

authentication. The authentication mechanism is responsible for creating a credential, which is an internal

product representation of a successfully authenticated client user. Not all credentials are created equally.

The abilities of the credential are determined by the configured authentication mechanism.

WebSphere Application Server provides two authentication mechanisms: Lightweight Third Party

Authentication (LTPA) and Simple WebSphere Authentication Mechanism (SWAM). You configure LTPA,

which is the default authentication mechanism, in the administrative console by clicking Security > Secure

administration, applications, and infrastructure > Authentication mechanisms and expiration.

SWAM is deprecated in Version 6.1. SWAM does not provide authenticated communication between

different servers. To use SWAM instead of LTPA, select the Use SWAM-no authenticated

communication between servers option on the Authentication mechanisms and expiration panel.

However, if you select the Use SWAM-no authenticated communication between servers option, the

other information on the Authentication mechanisms and expiration panel will be ignored.

Authentication process

The figure demonstrates the authentication process. Authentication is required for enterprise bean clients

and Web clients when they access protected resources. Enterprise bean clients, like a servlet or other

enterprise beans or a pure client, send the authentication information to a Web application server using

one of the following protocols:

V6.0.x

v Common Secure Interoperability Version 2 (CSIv2)

v Secure Authentication Service (SAS)

Important: SAS is supported only between Version 6.0.x and previous version servers that have been

federated in a Version 6.1 cell.

Web clients use the HTTP or HTTPS protocol to send the authentication information, as shown in the

previous figure.

Authentication

module

WebSphere Application Server

(1)

(1)

(2)

(2)

CSIV2/SAS, TCP/IP,

SSL

Basic or

token credentials

HTTP or HTTPS

Basic, token, or

certificate

SWAM

module

LTPA

module

Login

module

Local

operating

system

Standalone

LDAP

registry

Standalone

custom

registry

Enterprise beans

authenticator

Web

authenticator

ORB

current

Java client

Web client

(6) (3)

(3)

(4)

(4)

Authorization

data

Received

credentials

(6)

Received

credentials

(5)

(5)

Credentials

Credentials

Authorization

data

Authentication

Federated

repositories

Chapter 16. Security 1141

The authentication information can be basic authentication (user ID and password), a credential token (in

the case of Lightweight Third Party Authentication (LTPA)), or a client certificate. The Web authentication is

performed by the Web Authentication module.

You can configure Web authentication for a Web client by using the administrative console. Click Security

> Secure administration and applications. Under Authentication, expand Web security and click

General settings. The following options exist for Web authentication:

Authenticate only when the URI is protected

Specifies that the Web client can retrieve an authenticated identity only when it accesses a

protected Uniform Resource Identifier (URI). WebSphere Application Server challenges the Web

client to provide authentication data when the Web client accesses a URI that is protected by a

J2EE role. This default option is also available in previous versions of WebSphere Application

Server.

Use available authentication data when an unprotected URI is accessed

Specifies that the Web client is authorized to call the getRemoteUser, isUserInRole, and

getUserPrincipal methods; retrieves an authenticated identity from either a protected or an

unprotected URI. Although the authentication data is not used when you access an unprotected

URI, the authentication data is retained for future use. This option is available when you select the

Authentication only when the URI is protected check box.

Authenticate when any URI is accessed

Specifies that the Web client must provide authentication data regardless of whether the URI is

protected.

Default to basic authentication when certificate authentication for the HTTPS client fails.

Specifies that WebSphere Application Server challenges the Web client for a user ID and

password when the required HTTPS client certificate authentication fails.

V6.0.x

The enterprise bean authentication is performed by the Enterprise JavaBean (EJB)

authentication module, which resides in the CSIv2 and SAS layer.

The authentication module is implemented using the Java Authentication and Authorization Service (JAAS)

login module. The Web authenticator and the EJB authenticator pass the authentication data to the login

module (2), which can use any of the following mechanisms to authenticate the data:

v LTPA

v Simple WebSphere Authentication Mechanism (SWAM)

Note: SWAM is deprecated in WebSphere Application Server Version 6.1 and will be removed in a

future release. LTPA is the default authentication mechanism.

The authentication module uses the registry that is configured on the system to perform the authentication

(4). Four types of registries are supported:

v Federated repositories

v Local operating system

v Standalone Lightweight Directory Access Protocol (LDAP) registry

v Standalone custom registry

External registry implementation following the registry interface that is specified by IBM can replace either

the local operating system or the LDAP registry.

The login module creates a JAAS subject after authentication and stores the credential that is derived from

the authentication data in the public credentials list of the subject. The credential is returned to the Web

authenticator or to the enterprise beans authenticator (5).

1142 Administering applications and their environment

The Web authenticator and the enterprise beans authenticator store the received credentials in the Object

Request Broker (ORB) current for the authorization service to use in performing further access control

checks. If the credentials are forwardable, they are sent to other application servers.

Portlet URL security

WebSphere Application Server enables direct access to portlet Uniform Resource Locators (URLs), just

like servlets. This section describes security considerations when accessing portlets using URLs.

For security purposes, portlets are treated similar to servlets. Most portlet security uses the underlying

servlet security mechanism. However, portlet security information resides in the portlet.xml file, while the

servlet and JavaServer Pages files reside in the web.xml file. Also, when you make access decisions for

portlets, the security information, if any, in the web.xml file is combined with the security information in the

portlet.xml file.

Portlet security must support both programmatic security, that is isUserInRole, and declarative security.

The programmatic security is exactly the same as for servlets. However, for portlets, the isUserInRole

method uses the information from the security-role-ref element in portlet.xml. The other two methods

used by programmatic security, getRemoteUser and getUserPrincipal, behave the same way as they do

when accessing a servlet. Both of these methods return the authenticated user information accessing the

portlet.

The declarative security aspect of the portlets is defined by the security-constraint information in the

portlet.xml file. This is similar to the security-constraint information used for the servlets in the web.xml

file with the following differences:

v The auth-constraint element, which lists the names of the roles that can access the resources, does not

exist in the portlet.xml file. The portlet.xml file contains only the user-data-constraint element, which

indicates what type of transport layer security (HTTP or HTTPS) is required to access the portlet.

v The security-constraint information in the portlet.xml file contains the portlet-collection element, while

the web.xml file contains the web-resource-collection element. The portlet-collection element contains

only a list of simple portlet names, while the web-resource-collection contains the url-patterns as well as

the HTTP methods that need protection.

The portlet container does not deal with the user authentication directly. For example, it does not prompt

you to collect the credential information. The portlet container must, instead, use the underlying servlet

container for the user authentication mechanism. As a result, there is no auth-constraint element in the

security-constraint information in the portlet.xml file.

In WebSphere Application Server, when a portlet is accessed using a URL, the user authentication is

processed based on the security-constraint information for that portlet in the web.xml file. This implies that

to authenticate a user for a portlet, the web.xml file must contain the security-constraint information for that

portlet with the relevant auth-constraints contained in it. If a corresponding auth-constraint for the portlet

does not exist in the web.xml file, it indicates that the portlet is not required to have authentication. In this

case, unauthenticated access is permitted just like a URL pattern for a servlet that does not contain any

auth-constraints in the web.xml file. An auth-constraint for a portlet can be specified directly by using the

portlet name in the url-pattern element, or indirectly by a url-pattern that implies the portlet.

Note: You cannot have a servlet or JSP with the same name as a portlet for WebSphere Application

Server security to work with portlet.

The following examples demonstrate how the security-constraint information contained in the portlet.xml

and web.xml files in a portlet application are used to make security decisions for portlets. The

security-role-ref element, which is used for isUserInRole calls, is not discussed here because it is used the

same way for servlets.

Chapter 16. Security 1143

In the examples below (unless otherwise noted), there are four portlets (MyPortlet1, MyPortlet2,

MyPortlet3, MyPortlet4) defined in portlet.xml. The portlets are secured by combining the information, if

any, in the web.xml file when they are accessed directly through URLs.

All of the examples show the contents of the web.xml and portlet.xml files. Use the correct tools when

creating these deployment descriptor files as you normally would when assembling a portlet application.

Example 1: The web.xml file does not contain any security-constraint data

In the following example, the security-constraint information is contained in portlet.xml:

<security-constraint id="SecurityConstraint_1">

 <web-resource-collection id="WebResourceCollection_1">

 <web-resource-name>Protected Area</web-resource-name>

 <url-pattern>/*</url-pattern>

 </web-resource-collection>

 <auth-constraint id="AuthConstraint_1">

 <role-name>Manager</role-name>

 </auth-constraint>

 </security-constraint>

In this example, when you access anything under MyPortlet1 and MyPortlet3, and these portlets are

accessed using the unsecured HTTP protocol, you are redirected through the secure HTTPS protocol. The

transport-guarantee is set to use secure connections. For MyPortlet2 and MyPortlet4, unsecured (HTTP)

access is permitted because the transport-guarantee is not set. There is no corresponding

security-constraint information for all four portlets in the web.xml file. Therefore, all of the portlets can be

accessed without any user authentication and role authorization. The only security involved in this instance

is the transport-layer security using Secure Sockets Layer (SSL) for MyPortlet1 and MyPortlet3.

The following table lists the security constraints that are applicable to the individual portlets.

 URL Transport Protection User Authentication Role Based Authorization

/MyPortlet1/* HTTPS None None

/MyPortlet2/* None None None

/MyPortlet3/* HTTPS None None

/MyPortlet4/* None None None

Example 2: The web.xml file contains portlet specific security-constraint data

In the following example, the security-constraint information that corresponds to the portlet is contained in

web.xml. The portlet.xml file is the same as that shown in the previous example.

<security-constraint id="SecurityConstraint_1">

 <web-resource-collection id="WebResourceCollection_1">

 <web-resource-name>Protected Area</web-resource-name>

 <url-pattern>/MyPortlet1/*</url-pattern>

 <url-pattern>/MyPortlet2/*</url-pattern>

 </web-resource-collection>

 <auth-constraint id="AuthConstraint_1">

 <role-name>Employee</role-name>

 </auth-constraint>

</security-constraint>

The security-constraint information contained in the web.xml file in this example indicates that the user

authentication must be performed when accessing anything under the MyPortlet1 and MyPortlet2 portlets.

When you attempt to access these portlets directly using URLs, and there is no authentication information

available, you are prompted to enter their credentials. After you are authenticated, the authorization check

1144 Administering applications and their environment

is performed to see if you are listed in the Employee role. The user/group to role mapping is assigned

during the portlet application deployment. In the web.xml file listed above, note the following:

v Because the web.xml file uses url-pattern, the portlet names have been modified slightly. MyPortlet1 is

now /MyPortlet1/*, which indicates that everything under the MyPortlet1 URL is protected. This matches

the information in the portlet.xml file because the security runtime code converts the portlet-name

element in the portlet.xml file to url-pattern (for example, MyPortlet1 to /MyPortlet1/*), even for the

transport-guarantee.

v The http-method element in the web.xml file is not used in the example because all HTTP methods must

be protected.

The following table lists the new security constraints that are applicable to the individual portlets.

 URL Transport Protection User Authentication Role Based Authorization

MyPortlet1/* HTTPS Yes Yes (Employee)

MyPortlet2/* None Yes Yes (Employee)

MyPortlet3/* HTTPS None None

MyPortlet4/* None None None

Example 3: The web.xml file contains generic security-constraint data implying all portlets.

In the following example, the security-constraint information is contained in the web.xml file that

corresponds to the portlet. The portlet.xml file is the same as that shown in the first example.

<security-constraint id="SecurityConstraint_1">

 <web-resource-collection id="WebResourceCollection_1">

 <web-resource-name>Protected Area</web-resource-name>

 <url-pattern>/*</url-pattern>

 </web-resource-collection>

 <auth-constraint id="AuthConstraint_1">

 <role-name>Manager</role-name>

 </auth-constraint>

 </security-constraint>

In this example, /* implies that all resources that do not contain their own explicit security-constraints

should be protected by the Manager role as per the URL pattern matching rules. Because the portlet.xml

file contains explicit security-constraint information for MyPortlet1 and MyPortlet3, these two portlets are

not protected by the Manager role, only by the HTTPS transport. Because the portlet.xml file cannot

contain the auth-constraint information, any portlets that contain security-contraints in it are rendered

unprotected when an implying URL (/* for example) is listed in the web.xml file because of the URL

matching rules.

In the case above, both MyPortlet1 and MyPortlet3 can be accessed without user authentication. However,

because MyPortlet2 and MyPortlet4 do not have security-constraints in the portlet.xml file, the /* pattern

is used to match these portlets and are protected by the Manager role, which requires user authentication.

The following table lists the new security constraints that are applicable to the individual portlets with this

setup.

 URL Transport Protection User Authentication Role Based Authorization

MyPortlet1/* HTTPS None None

MyPortlet2/* None Yes Yes (Manager)

MyPortlet3/* HTTPS None None

MyPortlet4/* None Yes Yes (Manager)

Chapter 16. Security 1145

If in the example above, if you must also protect a portlet contained in the portlet.xml file (for example,

MyPortlet1), the web.xml file should contain an explicit security-constraint entry in addition to /* as shown

in the following example:

<security-constraint id="SecurityConstraint_1">

 <web-resource-collection id="WebResourceCollection_1">

 <web-resource-name>Protected Area</web-resource-name>

 <url-pattern>/*</url-pattern>

 </web-resource-collection>

 <auth-constraint id="AuthConstraint_1">

 <role-name>Manager</role-name>

 </auth-constraint>

 </security-constraint>

 <security-constraint id="SecurityConstraint_2">

 <web-resource-collection id="WebResourceCollection_2">

 <web-resource-name>Protection for MyPortlet1</web-resource-name>

 <url-pattern>/MyPortlet1/*</url-pattern>

 </web-resource-collection>

 <auth-constraint id="AuthConstraint_1">

 <role-name>Manager</role-name>

 </auth-constraint>

 </security-constraint>

In this case, MyPortlet1 is protected by the Manager role and requires authentication. The data-constraint

of CONFIDENTIAL is also applied to it because the information in the web.xml file and the portlet.xml file

are combined. Because MyPortlet3 is not explicitly listed in the web.xml file, it is still not protected by the

Manager role and does not require user authentication.

The following table shows the effect of this change.

 URL Transport Protection User Authentication Role Based Authorization

MyPortlet1/* HTTPS Yes Yes (Manager)

MyPortlet2/* None Yes Yes (Manager)

MyPortlet3/* HTTPS None None

MyPortlet4/* None Yes Yes (Manager)

Lightweight Third Party Authentication

Lightweight Third Party Authentication (LTPA) is intended for distributed, multiple application server and

machine environments. LTPA supports forwardable credentials and single sign-on (SSO). LTPA can

support security in a distributed environment through cryptography. This support permits LTPA to encrypt,

digitally sign, and securely transmit authentication-related data, and later decrypt and verify the signature.

Application servers distributed in multiple nodes and cells can securely communicate using the LTPA

protocol. It also provides the single sign-on (SSO) feature wherein a user is required to authenticate only

once in a domain name system (DNS) domain and can access resources in other WebSphere Application

Server cells without getting prompted. The realm names on each system in the DNS domain are case

sensitive and must match identically.

Windows

For local OS, the realm name is the domain name, if a domain is in use or the realm name is

the machine name.

The realm name is the same as the host name.

For the Lightweight Directory Access Protocol (LDAP), the realm name is the host:port value of the LDAP

server.

1146 Administering applications and their environment

The LTPA protocol uses cryptographic keys to encrypt and decrypt user data that passes between the

servers. These keys must be shared between the different cells for the resources in one cell to access

resources in other cells, assuming that all the cells involved use the same LDAP or custom registry.

When using LTPA, a token is created with the user information and an expiration time and is signed by the

keys. The LTPA token is time sensitive. All product servers that participate in a protection domain must

have their time, date, and time zone synchronized. If not, LTPA tokens appear prematurely expired and

cause authentication or validation failures.

This token passes to other servers, in the same cell or in a different cell through cookies, for Web

resources when SSO is enabled, or through the authentication protocol layer for enterprise beans.

If the receiving servers share the same keys as the originating server, the token can be decrypted to

obtain the user information, which then is validated to make sure that it has not expired and that the user

information in the token is valid in its registry. On successful validation, the resources in the receiving

servers are accessible after the authorization check.

All of the WebSphere Application Server processes in a cell (deployment manager, nodes, application

servers) share the same set of keys. If key sharing is required between different cells, export them from

one cell and import them to the other. For security purposes, the exported keys are encrypted with a

user-defined password. This same password is needed when importing the keys into another cell.

WebSphere Application Server supports the LTPA and the Simple WebSphere Authentication Mechanism

(SWAM) protocols.

Note: SWAM is deprecated in WebSphere Application Server Version 6.1 and will be removed in a future

release.

When security is enabled during profile creation time, LTPA is configured by default.

LTPA requires that the configured user registry be a centrally shared repository such as LDAP or a

Windows domain-type registry so that users and groups are the same, regardless of the machine.

The following table summarizes the authentication mechanism capabilities and user registries with which

LTPA can work.

 Forwardable

credentials

SSO Local OS user

registry

LDAP user

registry

Custom user

registry

SWAM No No Yes Yes Yes

LTPA Yes Yes Yes Yes Yes

Lightweight Third Party Authentication key sets and key set groups:

Key set groups contain lists of key sets and Lightweight Third Party Authentication (LTPA) key generation

schedules. Each key set contains key references to keys in key stores. To generate keys automatically,

each key set must be a member of a key set group.

 The keys for some key configurations must be generated together. The LTPA key pair is referenced in one

key set while the secret or private key is in a separate key set. When the key set group is created, the two

key sets are added as members of the key set group. Key set group settings determine whether the keys

for both key sets are generated together automatically or manually.

The key set group contains the following attributes:

v Member key sets

Chapter 16. Security 1147

v Choice of either manual or automatic key generation in the member key sets

v Schedule for automatically generating keys

Trust associations

Trust association enables the integration of IBM WebSphere Application Server security and third-party

security servers. More specifically, a reverse proxy server can act as a front-end authentication server

while the product applies its own authorization policy onto the resulting credentials that are passed by the

proxy server.

Demand for such an integrated configuration has become more compelling, especially when a single

product cannot meet all of the customer needs or when migration is not a viable solution. This article

provides a conceptual background behind the approach.

In this setup, WebSphere Application Server is used as a back-end server to further exploit its fine-grained

access control. The reverse proxy server passes the HTTP request to WebSphere Application Server that

includes the credentials of the authenticated user. WebSphere Application Server then uses these

credentials to authorize the request.

Trust association model

The idea that WebSphere Application Server can support trust association implies that the product

application security recognizes and processes HTTP requests that are received from a reverse proxy

server. WebSphere Application Server and the proxy server engage in a contract in which the product

gives its full trust to the proxy server and the proxy server applies its authentication policies on every Web

request that is dispatched to WebSphere Application Server. This trust is validated by the interceptors that

reside in the product environment for every request received. The method of validation is agreed upon by

the proxy server and the interceptor.

Running in trust association mode does not prohibit WebSphere Application Server from accepting

requests that did not pass through the proxy server. In this case, no interceptor is needed for validating

trust. It is possible, however, to configure WebSphere Application Server to strictly require that all HTTP

requests go through a reverse proxy server. In this case, all requests that do not come from a proxy server

are immediately denied by WebSphere Application Server.

WebSphere Application Server supports the following trust association interceptor (TAI) interfaces:

com.ibm.ws.security.web.WebSealTrustAssociationInterceptor

This Tivoli TAI interceptor that implements the WebSphere Application Server TAI interface is

provided to support WebSEAL Version 4.1. If you plan to use WebSEAL 5.1 or a later version of

WebSEAL, it is recommended that you migrate to use the new

com.ibm.ws.security.web.TAMTrustAssociationInterceptorPlus interceptor; which implements the

new com.ibm.wsspi.security.tai.TrustAssociationInterceptor interface.

com.ibm.ws.security.web.TAMTrustAssociationInterceptorPlus

This TAI interceptor implementation that implements the new WebSphere Application Server

interface supports WebSphere Application Server Version 5.1.1 and later. The interface supports

WebSEAL Version 5.1 and later, but does not support WebSEAL Version 4.1. For an explanation

of security attribute propagation, see “Security attribute propagation” on page 1160

1148 Administering applications and their environment

IBM WebSphere Application Server: WebSEAL Integration

The integration of WebSEAL and WebSphere Application Server security is achieved by placing the

WebSEAL server at the front-end as a reverse proxy server. From a WebSEAL management perspective,

a junction is created with WebSEAL on one end, and the product Web server on the other end. A junction

is a logical connection that is created to establish a path from the WebSEAL server to another server.

In this setup, a request for Web resources that are stored in a protected domain of the product is

submitted to the WebSEAL server where it is authenticated against the WebSEAL security realm. If the

requesting user has access to the junction, the request is transmitted to the WebSphere Application Server

HTTP server through the junction, and then to the application server.

Meanwhile, WebSphere Application Server validates every request that comes through the junction to

ensure that the source is a trusted party. This process is referenced as validating the trust and it is

performed by a WebSEAL product-designated interceptor. If the validation is successful, WebSphere

Application Server authorizes the request by checking whether the client user has the required

permissions to access the Web resource. If so, the Web resource is delivered to the WebSEAL server

through the Web server, which then gives the resource to the client user.

WebSEAL server

The policy director delegates all of the Web requests to its Web component, the WebSEAL server. One of

the major functions of the server is to perform authentication of the requesting user. The WebSEAL server

consults a Lightweight Directory Access Protocol (LDAP) directory. It can also map the original user ID to

another user ID, such as when global single sign-on (GSO) is used.

Trust association model

User ID and password in basic authentication data

Trusted server ID and password in data

and user ID in the HTTP request header

basic authentication

Web application server

Requested

resource

HTTP

request

Web

client

Reverse

proxy

server

Modified

HTTP

request

Requested

resource

(4)

(1)

(6)

(2)

(5)

(3)

User ID

User ID

or Subject

if trust is valid

(using the old TAI interface)

(using the version 5.1.1
TAI++ interface)

Credentials

Modified HTTP

HTTP Request:

Modified HTTP Request:

Trust

association

interceptor

User

request

Web

authenticator

Chapter 16. Security 1149

For successful authentication, the server plays the role of a client to WebSphere Application Server when

channeling the request. The server needs its own user ID and password to identify itself to WebSphere

Application Server. This identity must be valid in the security realm of WebSphere Application Server. The

WebSEAL server replaces the basic authentication information in the HTTP request with its own user ID

and password. In addition, WebSphere Application Server must determine the credentials of the requesting

client so that the application server has an identity to use as a basis for its authorization decisions. This

information is transmitted through the HTTP request by creating a header called iv-creds, with the Tivoli

Access Manager user credentials as its value.

HTTP server

The junction that is created in the WebSEAL server must get to the HTTP server that serves as the

product front end. However, the HTTP server is shielded from knowing that trust association is used. As

far as it is concerned, the WebSEAL product is just another HTTP client, and as part of its normal

routines, it sends the HTTP request to the product. The only requirement on the HTTP server is a Secure

Sockets Layer (SSL) configuration using server authentication only. This requirement protects the requests

that flow within the junction.

HitCount

servlet

HitCountBean

Servlet engine

Enterprise beans

container

WebSEAL

trust

Security

collaborator

Security

application

Authorization

and delegation

Product

resources

Trust

validation

Requested

resource

HTTP

request with

credentials

Web server

Web server and

WebSphere Application Server

Web server

plug-in

Web server

resource

Requested

resource

HTTP

request

Web

client
WebSEAL

1150 Administering applications and their environment

Web collaborator

When trust association is enabled, the Web collaborator manages the interceptors that are configured in

the system. The Web collaborator loads and initializes these interceptors when you restart your servers.

When a request is passed to WebSphere Application Server by the Web server, the Web collaborator

eventually receives the request for a security check. Two actions must take place:

1. The request must be authenticated.

2. The request must be authorized.

The Web authenticator is called to authenticate the request by passing the HTTP request. If successful, a

good credential record is returned by the authenticator, which the Web collaborator uses to base its

authorization for the requested resource. If the authorization succeeds, the Web collaborator indicates to

WebSphere Application Server that the security check has succeeded and that the requested resource can

be served.

Web authenticator

The Web authenticator is asked by the Web collaborator to authenticate a given HTTP request. Knowing

that trust association is enabled, the task of the Web authenticator is to find the appropriate trust

association interceptor to direct the request for processing. The Web authenticator queries every available

interceptor. If no target interceptor is found, the Web authenticator processes the request as though trust

association is not enabled.

For an HTTP request sent by the WebSEAL server, the WebSEAL trust association interceptor replies with

a positive response to the Web authenticator. Subsequently, the interceptor is asked to validate its trust

association with the WebSEAL server and retrieve the Subject, using the new trust association interceptor

(TAI) interface, or user ID, using the old TAI interface, of the original user client.

Note: The new Trust Association Interceptor (TAI) interface,

com.ibm.wsspi.security.tai.TrustAssociationInterceptor, supports several new features and is

different from the existing com.ibm.websphere.security.TrustAssociationInterceptor interface.

HTTP

request

HTTP

request
HTTP

server

WebSphere Application Server

WebSEAL

WebSEAL

trust association

interceptor

HTTP request

HTTP

request

Authorization

policy

HitCount

servlet

HitCountBean

Servlet engine

Enterprise beans

container

Web

collaborator

Web

authenticator

Chapter 16. Security 1151

WebSphere Application Server Version 4 through WebSphere Application Server Version 5.x

support the com.ibm.websphere.security.TrustAssociationInterceptor.java interface. WebSphere

Application Server Version 6.0.x and later supports the

com.ibm.wsspi.security.tai.TrustAssociationInterceptor interface.

Trust association interceptor interface

The intent of the trust association interceptor interface is to have reverse proxy security servers (RPSS)

exist as the exposed entry points to perform authentication and coarse-grained authorization, while

WebSphere Application Server enforces further fine-grained access control. Trust associations improve

security by reducing the scope and risk of exposure.

In a typical e-business infrastructure, the distributed environment of a company consists of Web

application servers, Web servers, existing systems, and one or more RPSS, such as the Tivoli WebSEAL

product. Such reverse proxy servers, front-end security servers, or security plug-ins registered within Web

servers, guard the HTTP access requests to the Web servers and the Web application servers. While

protecting access to the Uniform Resource Identifiers (URIs), these RPSS perform authentication,

coarse-grained authorization, and request routing to the target application server.

Using the trust association interceptor feature

The following points further describe the benefits of the trust association interceptor (TAI) feature:

v RPSS can authenticate WebSphere Application Server users up front and send credential information

about the authenticated user to the product so that the product can trust the RPSS to perform

authentication and not prompt the end user for authentication data later. The strength of the trust

relationship between RPSS and the product is based on the criteria of trust association that is particular

to RPSS and enforced through the TAI implementation. This level of trust might need relaxing based on

the environment. Be aware of the vulnerabilities in cases where the RPSS is not trusted, based on a

security technology.

v The end user credentials most likely are sent in a special format as part of the Hypertext Transfer

Protocol (HTTP) headers as in the case of RPSS authentication. The credentials can be a special

header or a cookie. The data that passes is implementation specific, and the TAI feature considers this

fact and accommodates the idea. The TAI implementation works with the credential data and returns a

Subject, using the new TAI interface, or a user ID, using the old TAI interface that represents the end

user. WebSphere Application Server uses the information to enforce security policies.

Single sign-on

With single sign-on (SSO) support, Web users can authenticate once when accessing both WebSphere

Application Server resources, such as HTML, JavaServer Pages (JSP) files, servlets, enterprise beans,

and Lotus Domino resources, such as documents in a Domino database, or accessing resources in

multiple WebSphere Application Server domains.

Application servers distributed in multiple nodes and cells can securely communicate using the Lightweight

Third Party Authentication (LTPA) protocol. LTPA is intended for distributed, multiple application server and

machine environments. LTPA can support security in a distributed environment through cryptography. This

support permits LTPA to encrypt, digitally sign, and securely transmit authentication-related data, and later

decrypt and verify the signature.

LTPA also provides the SSO feature wherein a user is required to authenticate only once in a domain

name system (DNS) domain and can access resources in other WebSphere Application Server cells

without getting prompted. Web users can authenticate once to a WebSphere Application Server or to a

Domino server. This authentication is accomplished by configuring WebSphere Application Servers and the

Domino servers to share authentication information.

Without logging in again, Web users can access other WebSphere Application Servers or Domino servers

in the same DNS domain that are enabled for SSO. You can enable SSO among WebSphere Application

1152 Administering applications and their environment

Servers by configuring SSO for WebSphere Application Server. To enable SSO between WebSphere

Application Servers and Domino servers, you must configure SSO for both WebSphere Application Server

and for Domino.

Prerequisites and conditions

To take advantage of support for SSO between WebSphere Application Servers or between WebSphere

Application Server and a Domino server, applications must meet the following prerequisites and conditions:

v Verify that all servers are configured as part of the same DNS domain. The realm names on each

system in the DNS domain are case sensitive and must match identically. For example, if the DNS

domain is specified as mycompany.com, then SSO is effective with any Domino server or WebSphere

Application Server on a host that is part of the mycompany.com domain, for example, a.mycompany.com

and b.mycompany.com.

v Verify that all servers share the same registry.

This registry can be either a supported Lightweight Directory Access Protocol (LDAP) directory server

or, if SSO is configured between two WebSphere Application Servers, a standalone custom

registry.Domino servers do not support standalone custom registries, but you can use a

Domino-supported registry as a standalone custom registry within WebSphere Application Server.

You can use a Domino directory that is configured for LDAP access or other LDAP directories for the

registry. The LDAP directory product must have WebSphere Application Server support. Supported

products include both Domino and LDAP servers, such as IBM Tivoli Directory Server. Regardless of

the choice to use an LDAP or a standalone custom registry, the SSO configuration is the same. The

difference is in the configuration of the registry.

v Define all users in a single LDAP directory. Using LDAP referrals to connect more than one directory

together is not supported. Using multiple Domino directory assistance documents to access multiple

directories also is not supported.

v Enable HTTP cookies in browsers because the authentication information that is generated by the

server is transported to the browser in a cookie. The cookie is used to propagate the authentication

information for the user to other servers, exempting the user from entering the authentication

information for every request to a different server.

v For a Domino server:

– Domino Release 6.5.4 for iSeries and other platforms are supported.

– A Lotus Notes client Release 5.0.5 or later is required for configuring the Domino server for SSO.

– You can share authentication information across multiple Domino domains.
v For WebSphere Application Server:

– WebSphere Application Server Version 3.5 or later for all platforms are supported.

– You can use any HTTP Web server that is supported by WebSphere Application Server.

– You can share authentication information across multiple product administrative domains.

– Basic authentication (user ID and password) using the basic and form-login mechanisms is

supported.

– By default, WebSphere Application Server does a case-sensitive comparison for authorization. This

comparison implies that a user who is authenticated by Domino matches the entry exactly (including

the base distinguished name) in the WebSphere Application Server authorization table. If case

sensitivity is not considered for the authorization, enable the Ignore Case property in the LDAP user

registry settings.

Single sign-on for HTTP requests using SPNEGO:

WebSphere Application Server provides a trust association interceptor (TAI) that uses the Simple and

Protected GSS-API Negotiation Mechanism (SPNEGO) to securely negotiate and authenticate HTTP

requests for secured resources in WebSphere Application Server.

 SPNEGO is a standard specification defined in The Simple and Protected GSS-API Negotiation

Mechanism (IETF RFC 2478).

Chapter 16. Security 1153

ftp://ftp.isi.edu/in-notes/rfc2478.txt
ftp://ftp.isi.edu/in-notes/rfc2478.txt

When WebSphere Application Server administrative security is enabled, the SPNEGO TAI is initialized.

While processing inbound HTTP requests, the Web authenticator component interacts with the SPNEGO

TAI, which is defined and enabled in the security configuration repository. One interceptor is selected and

is responsible for authenticating access to the secured resource that is identified in the HTTP request.

Important: The use of TAIs is an optional feature. If no TAI is selected, the authentication process

continues normally.

HTTP users log in and authenticate only once at their desktop and are subsequently authenticated

(internally) with WebSphere Application Server. The SPNEGO TAI is invisible to the end-user of

WebSphere applications. The SPNEGO TAI is only visible to the Web administrator who is responsible for

ensuring a proper configuration, capacity, and maintenance of the Web environment.

In addition to WebSphere Application Server security runtime services, some external components are

required to completely enable operation of the SPNEGO TAI. The external components include:

v Microsoft’s Windows 2000 or Windows 2003 Servers with Active Directory domain and associated

Kerberos Key Distribution Center (KDC).

v A client application, for example, a browser or .NET client, that supports the SPNEGO authentication

mechanism, as defined in IETF RFC 2478. Microsoft Internet Explorer Version 5.5 or later and Mozilla

Firefox Version 1.0 are browser examples. Any browser needs to be configured to use the SPNEGO

mechanism. For more information on performing this configuration, see “Configuring SPNEGO TAI in

WebSphere Application Server” on page 1208

The authentication of HTTP requests is triggered by the requestor (the client-side), which generates a

SPNEGO token. WebSphere Application Server receives this token and validates trust between the

requester and WebSphere Application Server. Specifically, the SPNEGO TAI decodes and retrieves the

requester’s identity from the SPNEGO token. The identity is used to establish a secure context between

the requester and the application server.

Remember: The SPNEGO TAI is a server-side solution in WebSphere Application Server. Client-side

applications are responsible for generating the SPNEGO token for use by the SPNEGO TAI.

The requester’s identity in WebSphere Application Server security registry must be identical

to that identity the SPNEGO TAI retrieves. An identical match does occur when Microsoft

Windows Active Directory server is the Lightweight Directory Access Protocol (LDAP) server

that is used in WebSphere Application Server. A custom login module is available as a

plug-in to support custom mapping of the identity from the Active Directory to the WebSphere

Application Server security registry. See “Mapping user Ids from client to server for

SPNEGO” on page 1221 for details on using this custom login module.
WebSphere Application Server validates the identity against its security registry and, if the validation is

successful, produces a Lightweight Third Party Authentication (LTPA) security token and places and

returns a cookie to the requester in the HTTP response. Subsequent HTTP requests from this same

requester to access additional secured resources in WebSphere Application Server use the LTPA security

token previously created, to avoid repeated login challenges.

The challenge-response handshake process is illustrated in the following graphic:

1154 Administering applications and their environment

The SPNEGO TAI can be enabled for all or for selected WebSphere Application Servers in a WebSphere

Application Server cell configuration. Also, the behavior of each SPNEGO TAI instance is controlled by

custom configuration properties that are used to identify, for example, the criteria used to filter HTTP

requests, such as the host name and security realm name used to construct the Kerberos Service

Principal Name (SPN). For more information regarding establishing and setting the SPNEGO TAI custom

configuration properties, see the following topics:

v Setting up the Kerberos configuration properties. See “Kerberos configuration requirements for

SPNEGO TAI” on page 1158.

v Setting or adjusting the SPNEGO TAI custom attributes. See SPNEGO TAI custom configuration

attributes.

v Adjusting the SPNEGO TAI filter settings. See Filtering HTTP requests for SPNEGO TAI

v Using the custom login module to map the identity from the Active Directory to the WebSphere

Application Server registry. See Mapping user Ids from client to server for SPNEGO.

v Setting the major and additional Java virtual machine (JVM) attributes. See SPNEGO TAI JVM

configuration attributes

The Web administrator has access to the following SPNEGO TAI security components and associated

configuration data, as illustrated in the following graphic.

Active Directory Kerberos KDC
WebSphere

Registry

SPNEGO TAI
WebSphere

Application Server
Browser/.NET Client

Client
Machine

Server Machine

8. Get userid from SPNEGO token
9. Validate user with Registry
10. Create LTPA Token

1. HTTP/Post/Get/Web-Service

2. HTTP 401 Authenticate/Negotiate

7. HTTP/Post/Get/Web-Service + Authorization SPNEGO Token

11. HTTP 200, Content, LTPA Token

Windows 2000/3
Server

3. Request Ticket Granting Ticket (AS_REQ)
4. Get Ticket Granting Ticket (AS_REP)
5. Request Service Ticket (TGS_REQ)
6. Get Service Ticket (TGS_REP)

Figure 12. HTTP request processing, WebSphere Application Server - SPNEGO TAI

Chapter 16. Security 1155

v The Web authentication module and the Lightweight Third Party Authentication (LTPA) mechanism

provide the plug-in runtime framework for trust association interceptors. See “Configuring the

Lightweight Third Party Authentication mechanism” on page 1190 for more detail is configuring the LTPA

mechanism for use with the SPNEGO TAI.

v The Java Generic Security Service (JGSS) provider is included in the Java SDK (jre/lib/
ibmjgssprovider.jar) and used to obtain the Kerberos security context and credentials that are used

for authentication. IBM JGSS 1.0 is a Java Generic Security Service Application Programming Interface

(GSSAPI) framework with Kerberos V5 as the underlying default security mechanism. GSSAPI is a

standardized abstract interface under which can be plugged different security mechanisms based on

private-key, public-key and other security technologies. GSSAPI shields secure applications from the

complexities and peculiarities of the different underlying security mechanisms. GSSAPI provides identity

and message origin authentication, message integrity, and message confidentiality. For more

information, see JGSS

v The Kerberos configuration properties (krb5.conf or krb5.ini) and Kerberos encryption keys (stored in

a Kerberos keytab file) are used to establish secure mutual authentication.

The Kerberos key table manager (Ktab), which is part of JGSS, allows you to manage the principal

names and service keys stored in a local Kerberos keytab file. Principal name and key pairs listed in the

Kerberos keytab file allow services running on a host to authenticate themselves to the Kerberos Key

Distribution Center (KDC). Before a server can use Kerberos, a Kerberos keytab file must be initialized

on the host that runs the server.

“Kerberos configuration requirements for SPNEGO TAI” on page 1158 highlights the Kerberos

configuration requirements for the SPNEGO TAI as well as the use of Ktab.

v The SPNEGO provider supplies the implementation of the SPNEGO authentication mechanism, located

at /$WAS_HOME/java/jre/lib/ext/ibmspnego.jar.

v The custom configuration properties control the runtime behavior of the SPNEGO TAI. Configuration

operations are performed with the administrative console or scripting facilities. Refer to “SPNEGO TAI

custom configuration attributes” on page 1208 for more information about these custom configuration

properties.

v Java virtual machine (JVM) system properties control diagnostic trace information for problem

determination of the JGSS security provider and use of the property reload feature.“SPNEGO TAI JVM

configuration attributes” on page 1219 describes these JVM configuration attributes

The benefits of having WebSphere Application Server use the SPNEGO TAI include:

v An integrated single sign-on environment with Microsoft Windows 2000 or 2003 Servers using Active

Directory domain is established.

v The cost of administering a large number of ids and passwords is reduced.

v A secure and mutually authenticated transmission of security credentials from the Web browser or .NET

clients is established.

v Interoperability with Web services and .NET applications that use SPNEGO authentication at the

transport level is achieved.

Web
Authentication

module

SPNEGO
Trust

Association
Interceptor

JGSS and
SPNEGO
security

providers

Kerberos
configuration

(krb5.conf) and
keytab

file
Kerberos

SPNEGO TAI
configuration

properties

JVM
System

properties

Figure 13. SPNEGO TAI security and configuration elements

1156 Administering applications and their environment

http://www-128.ibm.com/developerworks/java/jdk/security/142/secguides/jgssDocs/users_guide.jgss.ibm.html

Using the SPNEGO TAI in your WebSphere Application Server environment requires planning then

implementation. See “Configuring single sign-on capability with SPNEGO TAI” on page 1202 for the steps

to take in planning for SPNEGO TAI. Implementing the use of the SPNEGO TAI is divided into the

following areas responsibility:

End user

The end user must configure the Web browser or .NET application to issue HTTP requests that

are processed by the SPNEGO TAI.

Web administrator

The Web administrator is responsible for configuring the SPNEGO TAI of WebSphere Application

Server to respond to HTTP requests of the client.

WebSphere Application Server administrator

The WebSphere Application Server administrator is responsible for configuring WebSphere

Application Server and the SPNEGO TAI for optimum installation performance.

See “Configuring WebSphere Application Server environment to use SPNEGO” on page 1204 for an

explanation of the tasks required to use the SPNEGO TAI and the responsible party associated with each

task.

SPNEGO TAI configuration requirements:

The configuration that is used by the Simple and Protected GSS-API Negotiation Mechanism (SPNEGO)

trust association interceptor (TAI) on each selected application server is governed by various system

requirements.

 The following list of configuration requirements highlights those attributes, properties, qualities, restrictions,

exclusions, inclusions, and dependencies that you need to be aware of when planning a WebSphere

Application Server configuration that incorporates the use of the SPNEGO TAI.

 Table 10. SPNEGO TAI requirements

Function item Description

SPNEGO TAI The SPNEGO TAI is a server side solution in WebSphere Application Server.

Client-side applications are responsible for generating the SPNEGO token for

use by the SPNEGO TAI.

Microsoft Windows Windows 2000 or Windows 2003 servers with Active Directory domain and its

associated Kerberos key distribution center (KDC) is required.

Client application (browser or .NET

client)

A browser (client application) or .NET client that supports the SPNEGO

authentication mechanism, as defined in IETF RFC 2478 is required.

Simple and Protected GSS-API

Negotiation Mechanism (SPNEGO)

SPNEGO authentication, as defined in IETF RFC 2478 is used.

Internet browsers v Use Microsoft Internet Explorer version 5.5 or higher

v Use Mozilla Firefox version 1.0

Kerberos Level Kerberos version 5 is required.

WebSphere Application Server Version 6.1 is required.

Java generic security service

(JGSS)

Version 1.0.1 is required.

Java Virtual Machine (JVM) See Configuring the JVM for information on configuring JVM.

Java SDK level Java 5.0 SDK is required.

Encryption Types RC4-HMAC encryption is only supported when using a Windows 2003 Server

as Kerberos key distribution center (KDC) and is not supported with a Windows

2000 Server.

Chapter 16. Security 1157

Kerberos configuration requirements for SPNEGO TAI:

Kerberos configuration settings, the Kerberos key distribution center (KDC) name, and realm settings for

the Simple and Protected GSS-API Negotiation Mechanism (SPNEGO) trust association interceptor (TAI)

are provided in the Kerberos configuration file or through java.security.krb5.kdc and

java.security.krb5.realm system property files.

 The Web administrator creates the Kerberos configuration file with the appropriate settings that allow

HTTP requests to be processed by the SPNEGO TAI. See “Creating the Kerberos configuration file for use

with the SPNEGO TAI” on page 1205 for more information.

The Web administrator can provide the same Kerberos configuration system properties in separate files:

java.security.krb5.kdc and java.security.krb5.realm.. See Kerberos Requirements for information on

how this is accomplished.

The Kerberos key table manager command (Ktab) allows the Web administrator to manage the principal

names and service keys stored in a local Kerberos keytab file. Kerberos service principal (SPN) name and

keys listed in the Kerberos keytab file allow services running on the host to authenticate themselves to the

KDC. Before SPNEGO TAI can use Kerberos, the WebSphere Application Server administrator must setup

a Kerberos keytab file on the host running WebSphere Application Server.

Important: It is very important to protect the keytab files, making them readable only by the authorized

WebSphere users.

Important: Any updates to the Kerberos keytab file using Ktab do not affect the Kerberos database. If you

change the keys in the Kerberos keytab file, you must also make the corresponding changes

to the Kerberos database.
Below is an example of how Ktab is used on a LINUX platform to add new principal names to the

Kerberos keytab file.

[root@wssecjibe bin]# ./java com.ibm.security.krb5.internal.tools.Ktab -a

HTTP/wssecjibe.austin.ibm.com@WSSEC.AUSTIN.IBM.COM ot56prod -k /etc/krb5.keytab

Done!

Service key for principal HTTP/wssecjibe.austin.ibm.com@WSSEC.AUSTIN.IBM.COM saved

[root@wssecjibe bin]# ./java com.ibm.security.krb5.internal.tools.Ktab

1 entries in keytab, name: /etc/krb5.keytab

 KVNO Principal

 ---- ---------

 1 HTTP/wssecjibe.austin.ibm.com@WSSEC.AUSTIN.IBM.COM

[root@wssecjibe bin]# ls /etc/krb5.*

/etc/krb5.conf /etc/krb5.ini.orig /etc/krb5.keytab.good

/etc/krb5.conf.orig /etc/krb5.keytab

[root@wssecjibe bin]# ./java com.ibm.security.krb5.internal.tools.Ktab -a

HTTP/wssecredhat.austin.ibm.com@WSSEC.AUSTIN.IBM.COM ot56prod -k /etc/krb5.keytab

Done!

Service key for principal HTTP/wssecredhat.austin.ibm.com@WSSEC.AUSTIN.IBM.COM

saved

[root@wssecjibe bin]# ./java com.ibm.security.krb5.internal.tools.Ktab

2 entries in keytab, name: /etc/krb5.keytab

 KVNO Principal

 ---- ---------

 1 HTTP/wssecjibe.austin.ibm.com@WSSEC.AUSTIN.IBM.COM

 1 HTTP/wssecredhat.austin.ibm.com@WSSEC.AUSTIN.IBM.COM

Tip: On WebSphere Application Server, Ktab is located at:

<install root>/java/jre/bin

Global single sign-on principal mapping:

1158 Administering applications and their environment

http://w3.hursley.ibm.com/java/docs/jdk5.0/guide/security/jgss/tutorials/KerberosReq.html

You can use the Java Authorization Contract for Containers (JACC) provider for Tivoli Access Manager to

manage authentication to enterprise information systems (EIS) such as databases, transaction processing

systems, and message queue systems that are located within the WebSphere Application Server security

domain. Such authentication is achieved using the global single sign-on (GSO) principal mapper Java

Authentication and Authorization Service (JAAS) login module for Java 2 Platform, Enterprise Edition

(J2EE) Connector Architecture resources.

 With GSO principal mapping, a special-purpose JAAS login module inserts a credential into the subject

header. This credential is used by the resource adapter to authenticate to the EIS. The JAAS login module

used is configured on a per-connection factory basis. The default principal mapping module retrieves the

user name and password information from XML configuration files. The JACC provider for Tivoli Access

Manager bypasses the credential that is stored in the Extensible Markup Language (XML) configuration

files and uses the Tivoli Access Manager global sign-on (GSO) database instead to provide the

authentication information for the EIS security domain.

WebSphere Application Server provides a default principal mapping module that associates user credential

information with EIS resources. The default mapping module is defined in the WebSphere Application

Server administrative console on the Application login panel. To access the panel, click Security > Secure

administration, applications, and infrastructure. Under Java Authentication and Authorization Service,

click Application logins. The mapping module name is DefaultPrincipalMapping.

The EIS security domain user ID and password are defined under each connection factory by an

authDataAlias attribute. The authDataAlias attribute does not contain the user name and password; this

attribute contains an alias that refers to a user name and password pair that is defined elsewhere.

The Tivoli Access Manager principal mapping module uses the authDataAlias attribute to determine the

GSO resource name and the user name that is required to perform the lookup on the Tivoli Access

Manager GSO database. The Tivoli Access Manager Policy Server retrieves the GSO data from the user

registry.

Tivoli Access Manager stores authentication information on the Tivoli Access Manager GSO database

against a resource and user name pair.

GSO principal mapping architecture

Chapter 16. Security 1159

Security attribute propagation

With Security attribute propagation, WebSphere Application Server can transport security attributes

(authenticated Subject contents and security context information) from one server to another in your

configuration. WebSphere Application Server might obtain these security attributes from either an

enterprise user registry, which queries static attributes, or a custom login module, which can query static or

dynamic attributes. Dynamic security attributes, which are custom in nature, might include the

authentication strength that is used for the connection, the identity of the original caller, the location of the

original caller, the IP address of the original caller, and so on.

Security attribute propagation provides propagation services using Java serialization for any objects that

are contained in the Subject. However, Java code must be able to serialize and deserialize these objects.

The Java programming language specifies the rules for how Java code can serialize an object. Because

problems can occur when dealing with different platforms and versions of software, WebSphere Application

Server also offers a token framework that enables custom serialization functionality. The token framework

has other benefits that include the ability to identify the uniqueness of the token. This uniqueness

determines how the Subject gets cached and the purpose of the token. The token framework defines four

marker token interfaces that enable the WebSphere Application Server runtime to determine how to

propagate the token.

Important: Any custom tokens that are used in this framework are not used by WebSphere Application

Server for authorization or authentication. The framework serves as a way to notify

WebSphere Application Server that you want these tokens propagated in a particular way.

WebSphere Application Server handles the propagation details, but does not handle

serialization or deserialization of custom tokens. Serialization and deserialization of these

custom tokens are carried out by the implementation and handled by a custom login module.

With WebSphere Application Server Version 6.0 and later, a custom Java Authorization

Contract for Container (JACC) provider can be configured to enforce access control for Java 2

WebSphere Application Server

User

Application

Java 2 Connector (J2C)

Tivoli Access
Manager principal
mapping module

Resource
adapter

User name
and password

authDataAlias

User name
and password

GSO
resource

name

user user name
password

User name
and password

GSO resource
name and
user name

Security.xml

LDAP
global single signon (GSO)

database

Tivoli Access
Manager

Policy Server

Enterprise
information

system

1160 Administering applications and their environment

Platform, Enterprise Edition (J2EE) applications. A custom JACC provider can explore the

custom security attributes in the caller JAAS subject in making access control decisions.

When a request is being authenticated, a determination is made by the login modules whether this request

is an initial login or a propagation login. An initial login is the process of authenticating the user

information, typically a user ID and password, and then calling the application programming interfaces

(APIs) for the remote user registry to look up secure attributes that represent the user access rights. A

propagation login is the process of validating the user information, typically a Lightweight Third Party

Authentication (LTPA) token, and then deserializing a series of tokens that constitute both custom objects

and token framework objects known to WebSphere Application Server.

The following marker tokens are introduced in the framework:

Authorization token

The authorization token contains most of the authorization-related security attributes that are

propagated. The default authorization token is used by the WebSphere Application Server

authorization engine to make Java 2 Platform, Enterprise Edition (J2EE) authorization decisions.

Service providers can use custom authorization token implementations to isolate their data in a

different token, perform custom serialization and de-serialization, and make custom authorization

decisions using the information in their token at the appropriate time. For information on how to

use and implement this token type, see “Default propagation token” on page 1164 and

Implementing a custom propagation token.

Single sign-on (SSO) token

A custom SingleSignonToken token that is added to the Subject is automatically added to the

response as an HTTP cookie and contains the attributes sent back to Web browsers. The token

interface getName method with the getVersion method defines the cookie name. WebSphere

Application Server defines a default SingleSignonToken token with the LtpaToken name and

Version 2. The cookie name added is LtpaToken2. Do not add sensitive information, confidential

information, or unencrypted data to the response cookie.

 It is also recommended that any time that you use cookies, use the Secure Sockets Layer (SSL)

protocol to protect the request. Using an SSO token, Web users can authenticate once when

accessing Web resources across multiple WebSphere Application Servers. A custom SSO token

extends this functionality by adding custom processing to the single sign-on scenario. For more

information on SSO tokens, see “Implementing single sign-on to minimize Web user

authentications” on page 1199. For information on how to use and implement this token type, see

“Default single sign-on token” on page 1173 and Implementing a custom single sign-on token.

Propagation token

The propagation token is not associated with the authenticated user so it is not stored in the

Subject. Instead, the propagation token is stored on the thread and follows the invocation

wherever it goes. When a request is sent outbound to another server, the propagation tokens on

that thread are sent with the request and the tokens are run by the target server. The attributes

that are stored on the thread are propagated regardless of the Java 2 Platform, Enterprise Edition

(J2EE) RunAs user switches.

 The default propagation token monitors and logs all user switches and host switches. You can add

additional information to the default propagation token using the WSSecurityHelper application

programming interfaces (APIs). To retrieve and set custom implementations of a propagation

token, you can use the WSSecurityPropagationHelper class. For information on how to use and

implement this token type, see “Default propagation token” on page 1164 and Implementing a

custom propagation token.

Authentication token

The authentication token flows to downstream servers and contains the identity of the user. This

token type serves the same function as the Lightweight Third Party Authentication (LTPA) token in

Chapter 16. Security 1161

previous versions. Although this token type is typically reserved for internal WebSphere Application

Server purposes, you can add this token to the Subject and the token is propagated using the

getBytes method of the token interface.

 A custom authentication token is used solely for the purpose of the service provider that adds it to

the Subject. WebSphere Application Server does not use it for authentication purposes because a

default authentication token exists that is used for WebSphere Application Server authentication.

This token type is available for the service provider to identify how the custom data uses the token

to perform custom authentication decisions. For information on how to use and implement this

token type, see “Default authentication token” on page 1174 and Implementing a custom

authentication token.

Horizontal propagation versus downstream propagation

In WebSphere Application Server, both horizontal propagation, which uses single sign-on for Web

requests, and downstream propagation, which uses Remote Method Invocation over the Internet

Inter-ORB Protocol (RMI/IIOP) to access enterprise beans, are available.

Horizontal propagation

In horizontal propagation, security attributes are propagated among front-end servers. The serialized

security attributes, which are the Subject contents and the propagation tokens, can contain both static and

dynamic attributes. The single sign-on (SSO) token stores additional system-specific information that is

needed for horizontal propagation. The information contained in the SSO token tells the receiving server

where the originating server is located and how to communicate with that server. Additionally, the SSO

token also contains the key to look up the serialized attributes. To enable horizontal propagation, you must

configure the single sign-on token and the Web inbound security attribute propagation features. You can

configure both of these features using the administrative console.

When front-end servers are configured and in the same distributed replication service (DRS) replication

domain, the application server automatically propagates the serialized information to all of the servers

within the same domain. In figure 1, application 1 is deployed on server 1 and server 2, and both servers

are members of the same DRS replication domain. If a request originates from application 1 on server 1

and then gets redirected to application 1 on server 2, the original login attributes are found on server 2

without additional remote requests.

However, if the request originates from application 1 on either server 1 or server 2, but the request is

redirected to application 2 on either server 1 or server 2, the serialized information is not found in the DRS

cache because the servers are not configured in the same replication domain. As a result, a remote Java

Management Extensions (JMX) request is sent back to the originating server that hosts application 1 to

obtain the serialized information so that original login information is available to the application. By getting

the serialized information using a single JMX remote call back to the originating server, the following

benefits are realized:

v You gain the function of retrieving login information from the original server.

v You do not need to perform any remote user registry calls because the application server can

regenerate the Subject from the serialized information. Without this ability, the application server might

make five to six separate remote calls.

Figure 1

1162 Administering applications and their environment

Initial HTTP

authentication

Later HTTP request

with single signon

Data Replication Service

(DRS)

attribute replication

Application 1 in server 1

Application 1 in server 2

Application 2 in server 3

Application 3 in server 5

Application 2 in server 4

Data Replication Service

(DRS)

attribute replication

Java Management Extensions (JMX)

request for subject

The subject is kept in the

Common Secure Interoperability Version 2 (CSIv2) session

The Subject is requested from original server

because it is not found in DynaCache

The Subject is replicated

using DynaCache in this cluster.

No return to the original cluster

The Subject and propagation attributes

are sent using RMI/IIOP

1. User authenticates to server 1.

2. Server 1 makes an RMI request to server 5.

3. User accesses another Web application on server 3.

Security

cache

DynaCache

DynaCache

Security

cache

DynaCache

DynaCache

CSIv2 session

cache

Performance implications for horizontal propagation

The performance implications of either the DRS or JMX remote call depends upon your environment. THE

DRS or JMX remote call is used for obtaining the original login attributes. Horizontal propagation reduces

many of the remote user registry calls in cases where these calls cause the most performance problems

for an application. However, the de-serialization of these objects also might cause performance

degradation, but this degradation might be less than the remote user registry calls. It is recommended that

you test your environment with horizontal propagation enabled and disabled. In cases where you must use

horizontal propagation for preserving original login attributes, test whether DRS or JMX provides better

performance in your environment. Typically, it is recommended that you configure DRS both for failover

and performance reasons. However, because DRS propagates the information to all of the servers in the

same replication domain (whether the servers are accessed or not), there might be a performance

degradation if too many servers are in the same replication domain. In this case, either reduce the number

of servers in the replication domain or do not configure the servers in a DRS replication domain. The later

suggestion causes a JMX remote call to retrieve the attributes, when needed, which might be quicker

overall.

Downstream propagation

In downstream propagation, a Subject is generated at the Web front-end server, either by a propagation

login or a user registry login. WebSphere Application Server propagates the security information

downstream for enterprise bean invocations when both Remote Method Invocation (RMI) outbound and

inbound propagation are enabled.

Benefits of propagating security attributes

The security attribute propagation feature of WebSphere Application Server has the following benefits:

v Enables WebSphere Application Server to use the security attribute information for authentication and

authorization purposes. The propagation of security attributes can eliminate the need for user registry

Chapter 16. Security 1163

calls at each remote hop along an invocation. Previous versions of WebSphere Application Server

propagated only the user name of the authenticated user, but ignored other security attribute information

that needed to be regenerated downstream using remote user registry calls. To accentuate the benefits

of this new functionality, consider the following example:

In previous releases, you might use a reverse proxy server (RPSS), such as WebSEAL, to authenticate

the user, gather group information, and gather other security attributes. As stated previously,

WebSphere Application Server accepted the identity of the authenticated user, but disregarded the

additional security attribute information. To create a Java Authentication and Authorization Service

(JAAS) Subject containing the needed WSCredential and WSPrincipal objects, WebSphere Application

Server made 5 to 6 calls to the user registry. The WSCredential object contains various security

information that is required to authorize a J2EE resource. The WSPrincipal object contains the realm

name and the user that represents the principal for the Subject.

In the current release of the Application Server, information that is obtained from the reverse proxy

server can be used by WebSphere Application Server and propagated downstream to other server

resources without additional calls to the user registry. The retaining of the security attribute information

enables you to protect server resources properly by making appropriate authorization and trust-based

decisions User switches that occur because of J2EE RunAs configurations do not cause the application

server to lose the original caller information. This information is stored in the PropagationToken located

on the running thread.

v Enables third-party providers to plug in custom tokens. The token interface contains a getBytes method

that enables the token implementation to define custom serialization, encryption methods, or both.

v Provides the ability to have multiple tokens of the same type within a Subject created by different

providers. WebSphere Application Server can handle multiple tokens for the same purpose. For

example, you might have multiple authorization tokens in the Subject and each token might have

distinct authorization attributes that are generated by different providers.

v Provides the ability to have a unique ID for each token type that is used to formulate a more unique

subject identifier than just the user name in cases where dynamic attributes might change the context of

a user login. The token type has a getUniqueId() method that is used for returning a unique string for

caching purposes. For example, you might need to propagate a location ID, which indicates the location

from which the user logs into the system. This location ID can be generated during the original login

using either an reverse proxy server or the WEB_INBOUND login configuration and added to the

Subject prior to serialization. Other attributes might be added to the Subject as well and use a unique

ID. All of the unique IDs must be considered for the uniqueness of the entire Subject. WebSphere

Application Server has the ability to specify what is unique about the information in the Subject, which

might affect how the user accesses the Subject later.

Default propagation token:

A default propagation token is located on the running thread for applications and the security infrastructure

to use. WebSphere Application Server propagates this default propagation token downstream and the

token stays on the thread where the invocation lands at each hop.

 The data is available from within the container of any resource where the propagation token lands.

Remember that you must enable the propagation feature at each server where a request is sent for

propagation to work. Make sure that you enable security attribute propagation for all of the cells in your

environment where you want propagation

There is a WSSecurityHelper class that has application programming interfaces (APIs) for accessing the

PropagationToken attributes. This topic documents the usage scenarios and includes examples. A close

relationship exists between the propagation token and the work area feature. The main difference between

these features is that after you add attributes to the propagation token, you cannot change the attributes.

You cannot change these attributes so that the security runtime can add auditable information and have

that information remain there for the life of the invocation. Any time that you add an attribute to a specific

key, an ArrayList object is stored to hold that attribute. Any new attribute that is added with the same key

1164 Administering applications and their environment

is added to the ArrayList object. When you call getAttributes, the ArrayList object is converted to a String

array and the order is preserved. The first element in the String array is the first attribute added for that

specific key.

In the default propagation token, a change flag is kept that logs any data changes to the token. These

changes are tracked to enable WebSphere Application Server to know when to send the authentication

information downstream again so that the downstream server has those changes. Normally, Common

Secure Interoperability Version 2 (CSIv2) maintains a session between servers for an authenticated client.

If the propagation token changes, a new session is generated and subsequently a new authentication

occurs. Frequent changes to the propagation token during a method cause frequent downstream calls. If

you change the token prior to making many downstream calls or you change the token between each

downstream call, you might impact security performance.

Getting the server list from the default propagation token

Every time the propagation token is propagated and used to create the authenticated Subject, either

horizontally or downstream, the name of the receiving application server is logged into the propagation

token. The format of the host is ″Cell:Node:Server″, which provides you access to the cell name, node

name, and server name of each application server that receives the invocation. The following code

provides you with this list of names and can be called from a Java 2 Platform, Enterprise Edition (J2EE)

application:

 String[] server_list = null;

 // If security is disabled on this application server, do not bother checking

 if (com.ibm.websphere.security.WSSecurityHelper.isServerSecurityEnabled())

 {

 try

 {

 // Gets the server_list string array

 server_list = com.ibm.websphere.security.WSSecurityHelper.getServerList();

 }

 catch (Exception e)

 {

 // Performs normal exception handling for your application

 }

 if (server_list != null)

 {

 // print out each server in the list, server_list[0] is the first server

 for (int i=0; i<server_list.length; i++)

 {

 System.out.println(″Server[″ + i + ″] = ″ + server_list[i]);

 }

 }

 }

The format of each server in the list is: cell:node_name:server_name. The output, for example, is:

myManager:node1:server1

Getting the caller list from the default propagation token

A default propagation token is generated any time an authenticated user is set on the running thread or

anyone tries to add attributes to the propagation token. Whenever an authenticated user is set on the

thread, the user is logged in the default propagation token. At times, the same user might be logged in

Chapter 16. Security 1165

multiple times if the RunAs user is different from the caller. The following list provides the rules that are

used to determine if a user that is added to the thread gets logged into the propagation token:

v The current Subject must be authenticated. For example, an unauthenticated Subject is not logged.

v The current authenticated Subject is logged if a Subject is not previously logged.

v The current authenticated Subject is logged if the last authenticated Subject that is logged does not

contain the same user.

v The current authenticated Subject is logged on each unique application server that is involved in the

propagation process.

The following code sample shows how to use the getCallerList API:

 String[] caller_list = null;

 // If security is disabled on this application server, do not check the caller list

 if (com.ibm.websphere.security.WSSecurityHelper.isServerSecurityEnabled())

 {

 try

 {

 // Gets the caller_list string array

 caller_list = com.ibm.websphere.security.WSSecurityHelper.getCallerList();

 }

 catch (Exception e)

 {

 // Performs normal exception handling for your application

 }

 if (caller_list != null)

 {

 // Prints out each caller in the list, caller_list[0] is the first caller

 for (int i=0; i<caller_list.length;i++)

 {

 System.out.println(″Caller[″ + i + ″] = ″ + caller_list[i]);

 }

 }

 }

The format of each caller in the list is: cell:node_name:server_name:realm:port_number/securityName. The

output, for example, is: myManager:node1:server1:ldap.austin.ibm.com:389/jsmith.

Getting the first caller from the default propagation token

Whenever you want to know which authenticated caller started the request, you can call the getFirstCaller

method and the caller list is parsed. However, this method returns the security name of the caller only. If

you need to know more than the security name, call the getCallerList method and retrieve the first entry in

the String array. This entry provides all the caller information. The following code sample retrieves the

security name of the first authenticated caller using the getFirstCaller API:

 String first_caller = null;

 // If security is disabled on this application server, do not bother checking

 if (com.ibm.websphere.security.WSSecurityHelper.isServerSecurityEnabled())

 {

 try

 {

 // Gets the first caller

1166 Administering applications and their environment

first_caller = com.ibm.websphere.security.WSSecurityHelper.getFirstCaller();

 // Prints out the caller name

 System.out.println(″First caller: ″ + first_caller);

 }

 catch (Exception e)

 {

 // Performs normal exception handling for your application

 }

 }

The output, for example, is: jsmith.

Getting the first application server name from the default propagation token

Whenever you want to know what the first application server is for this request, call the getFirstServer

method directly. The following code sample retrieves the name of the first application server using the

getFirstServer API:

 String first_server = null;

 // If security is disabled on this application server, do not bother checking

 if (com.ibm.websphere.security.WSSecurityHelper.isServerSecurityEnabled())

 {

 try

 {

 // Gets the first server

 first_server = com.ibm.websphere.security.WSSecurityHelper.getFirstServer();

 // Prints out the server name

 System.out.println(″First server: ″ + first_server);

 }

 catch (Exception e)

 {

 // Performs normal exception handling for your application

 }

 }

The output, for example, is: myManager:node1:server1.

Adding custom attributes to the default propagation token

You can add custom attributes to the default propagation token for application usage. This token follows

the request downstream so that the attributes are available when needed. When you use the default

propagation token to add attributes, you must understand the following issues:

v Adding information to the propagation token affects CSIv2 session caching. Add information sparingly

between remote requests.

v After you add information with a specific key, the information cannot be removed.

v You can add as many values to a specific key as you need. However, all of the values must be

available from a returned String array in the order that they were added.

v The propagation token is available only on servers where propagation and security are enabled.

v The Java 2 Security javax.security.auth.AuthPermission wssecurity.addPropagationAttribute attribute is

needed to add attributes to the default propagation token.

Chapter 16. Security 1167

v An application cannot use keys that begin with either com.ibm.websphere.security or

com.ibm.wsspi.security. These prefixes are reserved for system usage.

The following code sample shows how to use the addPropagationAttribute API:

 // If security is disabled on this application server,

 // do not check the status of server security

 if (com.ibm.websphere.security.WSSecurityHelper.isServerSecurityEnabled())

 {

 try

 {

 // Specifies the key and values

 String key = ″mykey″;

 String value1 = ″value1″;

 String value2 = ″value2″;

 // Sets key, value1

 com.ibm.websphere.security.WSSecurityHelper.

 addPropagationAttribute (key, value1);

 // Sets key, value2

 String[] previous_values = com.ibm.websphere.security.WSSecurityHelper.

 addPropagationAttribute (key, value2);

 // Note: previous_values should contain value1

 }

 catch (Exception e)

 {

 // Performs normal exception handling for your application

 }

 }

See “Getting custom attributes from the default propagation token” to retrieve attributes using the

getPropagationAttributes application programming interface (API).

Getting custom attributes from the default propagation token

Custom attributes are added to the default propagation token using the addPropagationAttribute API.

Retrieve these attributes using the getPropagationAttributes API. This token follows the request

downstream so the attributes are available when needed. When you use the default propagation token to

retrieve attributes, you must understand the following issues:

v The propagation token is available only on servers where propagation and security are enabled.

v The Java 2 Security javax.security.auth.AuthPermission ″wssecurity.getPropagationAttributes″

permission is needed to retrieve attributes from the default propagation token.

The following code sample shows how to use the getPropagationAttributes API:

 // If security is disabled on this application server, do not bother checking

 if (com.ibm.websphere.security.WSSecurityHelper.isServerSecurityEnabled())

 {

 try

 {

 String key = ″mykey″;

 String[] values = null;

1168 Administering applications and their environment

// Sets key, value1

 values = com.ibm.websphere.security.WSSecurityHelper.

 getPropagationAttributes (key);

 // Prints the values

 for (int i=0; i<values.length; i++)

 {

 System.out.println(″Value[″ + i + ″] = ″ + values[i]);

 }

 }

 catch (Exception e)

 {

 // Performs normal exception handling for your application

 }

 }

The output, for example, is:

Value[0] = value1

Value[1] = value2

See Adding custom attributes to the default PropagationToken to add attributes using the

addPropagationAttributes API.

Changing the token factory that is associated with the default propagation token

When WebSphere Application Server generates a default propagation token, the Application Server utilizes

the TokenFactory class that is specified using the com.ibm.wsspi.security.token.propagationTokenFactory

property. To modify this property using the administrative console, complete the following steps:

1. Click Security > Secure administration, applications, and infrastructure.

2. Under Additional properties, click Custom properties.

The default token factory that is specified for this property is called

com.ibm.ws.security.ltpa.AuthzPropTokenFactory. This token factory encodes the data in the propagation

token and does not encrypt the data. Because the propagation token typically flows over CSIv2 using

Secure Sockets Layer (SSL), encrypting the token is not required. However, if you need additional security

for the propagation token, you can associate a different token factory implementation with this property to

get encryption. For example, if you choose to associate the com.ibm.ws.security.ltpa.LTPAToken2Factory

token factory with this property, the token is AES encrypted. However, you need to weigh the performance

impacts against your security needs. Adding sensitive information to the propagation token is a good

reason to change the token factory implementation to something that encrypts rather than just encodes.

If you want to perform your own signing and encryption of the default propagation token, you must

implement the following classes:

v com.ibm.wsspi.security.ltpa.Token

v com.ibm.wsspi.security.ltpa.TokenFactory

Your token factory implementation instantiates and validates your token implementation. You can choose

to use the Lightweight Third Party Authentication (LTPA) keys and have them pass into the initialize

method of the token factory, or you can use your own keys. If you use your own keys, they must be the

same everywhere to validate the tokens that are generated using those keys. See the API documentation,

available through a link on the front page of the information center, for more information on implementing

your own custom token factory. To associate your token factory with the default propagation token, using

the administrative console, complete the following steps:

1. Click Security > Secure administration, applications, and infrastructure.

Chapter 16. Security 1169

2. Under Additional properties, click Custom properties.

3. Locate the com.ibm.wsspi.security.token.propagationTokenFactory property and verify that the value of

this property matches your custom token factory implementation.

4. Verify that your implementation classes are put into the app_server_root/classes directory so that the

WebSphere Application Server class loader can load the classes.

5. Verify that your implementation classes are located in the ${USER_INSTALL_ROOT}/classes directory

so that the WebSphere Application Server class loader can load the classes.

 Related tasks

 “Propagating security attributes among application servers” on page 1238
Use the security attribute propagation feature of WebSphere Application Server to send security

attribute information regarding the original login to other servers using a token. This topic will help to

configure WebSphere Application Server to propagate security attributes to other servers.

Default authorization token:

This topic explains how WebSphere Application Server uses the default authorization token. Consider

using the default authorization token when you are looking for a place to add string attributes that get

propagated downstream.

 However, make sure that the attributes you add to the authorization token are specific to the user that is

associated with the authenticated Subject. If they are not specific to a user, the attributes probably belong

in the propagation token, which is also propagated with the request. For more information on the

propagation token, see “Default propagation token” on page 1164. To add attributes into the authorization

token, you must plug in a custom login module into the various system login modules that are configured.

Any login module configuration that has the

com.ibm.ws.security.server.lm.wsMapDefaultInboundLoginModule implementation configured can receive

propagated information and can generate propagation information that can be sent outbound to another

server.

If propagated attributes are not presented to the login configuration during an initial login, a default

authorization token is created in the wsMapDefaultInboundLoginModule login module after the login occurs

in the ltpaLoginModule login module. You can obtain a reference to the default authorization token from

the login method using the sharedState hashmap. You must plug in the custom login module after the

wsMapDefaultInboundLoginModule implementation for WebSphere Application Server to see the default

authorization token.

For more information on the Java Authentication and Authorization Service (JAAS) programming model,

see Security: Resources for learning.

Important: Whenever you plug a custom login module into the WebSphere Application Server login

infrastructure, you must ensure that the code is trusted. When you add the login module into

the app_server_root/classes directory, it has Java 2 Security AllPermissions permissions. It is

recommended that you add your login module and other infrastructure classes into a private

directory. However, if you use a private directory, modify the $(WAS_INSTALL_ROOT)/
properties/server.policy file so that the private directory, Java archive (JAR) file, or both

have the permissions that are needed to run the application programming interfaces (API) that

are called from the login module. Because the login module might run after the application

code on the call stack, you might consider adding a doPrivileged code block so that you do

not need to add additional permissions to your applications.

The following sample code shows you how to obtain a reference to the default authorization token from

the login method, how to add attributes to the token, and how to read from the existing attributes that are

used for authorization.

1170 Administering applications and their environment

public customLoginModule()

{

 public void initialize(Subject subject, CallbackHandler callbackHandler,

 Map sharedState, Map options)

 {

 // (For more information on initialization, see

 // Custom login module development for a system login configuration.)

 // Get a reference to the sharedState map that is passed in during initialization.

 _sharedState = sharedState;

 }

 public boolean login() throws LoginException

 {

 // (For more information on what to do during login, see

 // Custom login module development for a system login configuration.)

 // Look for the default AuthorizationToken in the shared state

 defaultAuthzToken = (com.ibm.wsspi.security.token.AuthorizationToken)

 sharedState.get

 (com.ibm.wsspi.security.auth.callback.Constants.WSAUTHZTOKEN_KEY);

 // Might not always have one of these generated. It depends on the login

 // configuration setup.

 if (defaultAuthzToken != null)

 {

 try

 {

 // Add a custom attribute

 defaultAuthzToken.addAttribute("key1", "value1");

 // Determine all of the attributes and values that exist in the token.

 java.util.Enumeration listOfAttributes = defaultAuthorizationToken.

 getAttributeNames();

 while (listOfAttributes.hasMoreElements())

 {

 String key = (String) listOfAttributes.nextElement();

 String[] values = (String[]) defaultAuthorizationToken.getAttributes (key);

 for (int i=0; i<values.length; i++)

 {

 System.out.println ("Key: " + key + ", Value[" + i + "]: "

 + values[i]);

 }

 }

 // Read the existing uniqueID attribute.

 String[] uniqueID = defaultAuthzToken.getAttributes

 (com.ibm.wsspi.security.token.AttributeNameConstants.

 WSCREDENTIAL_UNIQUEID);

 // Getthe uniqueID from the String[]

 String unique_id = (uniqueID != null &&

 uniqueID[0] != null) ? uniqueID[0] : "";

 // Read the existing expiration attribute.

 String[] expiration = defaultAuthzToken.getAttributes

 (com.ibm.wsspi.security.token.AttributeNameConstants.

 WSCREDENTIAL_EXPIRATION);

 // An example of getting a long expiration value from the string array.

Chapter 16. Security 1171

long expire_time = 0;

 if (expiration != null && expiration[0] != null)

 expire_time = Long.parseLong(expiration[0]);

 // Read the existing display name attribute.

 String[] securityName = defaultAuthzToken.getAttributes

 (com.ibm.wsspi.security.token.AttributeNameConstants.

 WSCREDENTIAL_SECURITYNAME);

 // Get the display name from the String[]

 String display_name = (securityName != null &&

 securityName[0] != null) ? securityName[0] : "";

 // Read the existing long securityName attribute.

 String[] longSecurityName = defaultAuthzToken.getAttributes

 (com.ibm.wsspi.security.token.AttributeNameConstants.

 WSCREDENTIAL_LONGSECURITYNAME);

 // Get the long security name from the String[]

 String long_security_name = (longSecurityName != null &&

 longSecurityName[0] != null) ? longSecurityName[0] : "";

 // Read the existing group attribute.

 String[] groupList = defaultAuthzToken.getAttributes

 (com.ibm.wsspi.security.token.AttributeNameConstants.

 WSCREDENTIAL_GROUPS);

 // Get the groups from the String[]

 ArrayList groups = new ArrayList();

 if (groupList != null)

 {

 for (int i=0; i<groupList.length; i++)

 {

 System.out.println ("group[" + i + "] = " + groupList[i]);

 groups.add(groupList[i]);

 }

 }

 }

 catch (Exception e)

 {

 throw new WSLoginFailedException (e.getMessage(), e);

 }

 }

 }

 public boolean commit() throws LoginException

 {

 // (For more information on what to do during commit, see

 // Custom login module development for a system login configuration.)

 }

 private java.util.Map _sharedState = null;

 private com.ibm.wsspi.security.token.AuthorizationToken defaultAuthzToken = null;

}

1172 Administering applications and their environment

Changing the token factory that is associated with the default authorization token

When WebSphere Application Server generates a default authorization token, the application server

utilizes the TokenFactory class that is specified using the

com.ibm.wsspi.security.token.authorizationTokenFactory property. To modify this property using the

administrative console, complete the following steps:

1. Click Security > Secure administration, applications, and infrastructure.

2. Under Additional properties, click Custom properties.

The com.ibm.ws.security.ltpa.AuthzPropTokenFactory token factory is the default. This token factory

encodes the data, but does not encrypt the data in the authorization token. Because the authorization

token typically flows over Common Secure Interoperability Version 2 (CSIv2) using Secure Sockets Layer

(SSL), encrypting the token is not necessary. However, if you need additional security for the authorization

token, you can associate a different token factory implementation with this property to get encryption. For

example, if you associate the com.ibm.ws.security.ltpa.LTPAToken2Factory token factory with this property,

the token uses Advanced Encryption Standard (AES) encryption. However, you need to weigh the

performance impacts against your security needs. Adding sensitive information to the authorization token is

one reason to change the token factory implementation to something that encrypts rather than just

encodes.

If you want to perform your own signing and encryption of the default authorization token, you must

implement the following classes:

v com.ibm.wsspi.security.ltpa.Token

v com.ibm.wsspi.security.ltpa.TokenFactory

Your token factory implementation instantiates and validates your token implementation. You can use the

Lightweight Third Party Authentication (LTPA) keys that are passed into the initialize method of the token

factory or you can use your own keys. If you use your own keys, they must be the same everywhere to

validate the tokens that are generated using those keys. See the API documentation, that is available

through a link on the front page of the information center, for more information on implementing your own

custom token factory. To associate your token factory with the default authorization token, using the

administrative console, complete the following steps:

1. Click Security > Secure administration, applications, and infrastructure.

2. Under Additional properties, click Custom properties.

3. Locate the com.ibm.wsspi.security.token.authorizationTokenFactory property and verify that the value of

this property matches your custom token factory implementation.

4. Verify that your implementation classes are put into the app_server_root/classes directory so that the

WebSphere Application Server class loader can load the classes.

5. Verify that your implementation classes are put into the ${USER_INSTALL_ROOT}/classes directory so

that the WebSphere Application Server class loader can load the classes.

Default single sign-on token:

Do not use the default single sign-on token in service provider code. This default token is used by the

WebSphere Application Server run-time code only.

 Size limitations exist for this token when it is added as an HTTP cookie. If you need to create an HTTP

cookie using this token framework, you can implement a custom single sign-on token. To implement a

custom single sign-on token see Implementing a custom single sign-on token for more information.

Changing the token factory that is associated with the default single sign-on token

When the default single sign-on token is generated, the application server utilizes the TokenFactory class

that is specified using the com.ibm.wsspi.security.token.singleSignonTokenFactory property. To modify this

property using the administrative console, complete the following steps:

Chapter 16. Security 1173

1. Click Security > Secure administration, applications, and infrastructure.

2. Under Additional properties, click Custom properties.

The com.ibm.ws.security.ltpa.LTPAToken2Factory token factory is the default that is specified for this

property. This token factory creates a single sign-on (SSO) token called LtpaToken2, which WebSphere

Application Server uses for propagation. This token factory uses the AES/CBC/PKCS5Padding cipher. If

you change this token factory, you lose the interoperability with any servers running a version of

WebSphere Application Server prior to version 5.1.1 that use the default token factory. Only servers

running WebSphere Application Server Version 5.1.1 or later with propagation enabled are aware of the

LtpaToken2 cookie. If all of your application servers use WebSphere Application Server Version 5.1.1 or

later and all of your servers use your new token factory this awareness is not a problem.

If you need to perform your own signing and encryption of the default single sign-on token, you must

implement the following classes:

v com.ibm.wsspi.security.ltpa.Token

v com.ibm.wsspi.security.ltpa.TokenFactory

Your token factory implementation instantiates (createToken) and validates (validateTokenBytes) your

token implementation. You can use the Lightweight Third-Party Authentication (LTPA) keys passed into the

initialize method of the token factory or you can use your own keys. If you use your own keys, they must

be the same everywhere to validate the tokens that are generated using those keys. See the API

documentation, available through a link on the front page of the information center, for more information on

implementing your own custom token factory. To associate your token factory with the default single

sign-on token using the administrative console, complete the following steps:

1. Click Security > Secure administration, applications, and infrastructure.

2. Under Additional properties, click Custom properties.

3. Locate the com.ibm.wsspi.security.token.singleSignonTokenFactory property and verify that the value of

this property matches your custom TokenFactory implementation.

4. Verify that your implementation classes are put into the app_server_root/classes directory so that the

WebSphere Application Server class loader can load the classes.

5. Verify that your implementation classes are located in the ${USER_INSTALL_ROOT}/classes directory

so that the WebSphere Application Server class loader can load the classes.

 Related tasks

 “Propagating security attributes among application servers” on page 1238
Use the security attribute propagation feature of WebSphere Application Server to send security

attribute information regarding the original login to other servers using a token. This topic will help to

configure WebSphere Application Server to propagate security attributes to other servers.

 Implementing a custom single sign-on token
You can create your own single sign-on token implementation. The single sign-on token implementation

is set in the login Subject and added to the HTTP response as an HTTP cookie.

Default authentication token:

Do not use the default authentication token in service provider code. This default token is used by the

WebSphere Application Server run-time code only and is authentication mechanism specific.

 Any modifications to this token by service provider code can potentially cause interoperability problems. If

you need to create an authentication token for custom usage, see Implementing a custom authentication

token for more information.

1174 Administering applications and their environment

Changing the token factory that is associated with the default authentication token

When WebSphere Application Server generates a default authentication token, the application server

utilizes the TokenFactory class that is specified using the

com.ibm.wsspi.security.token.authenticationTokenFactory property. To modify this property using the

administrative console, complete the following steps:

1. Click Security > Secure administration, applications, and infrastructure.

2. Under Additional properties, click Custom properties.

The com.ibm.ws.security.ltpa.LTPATokenFactory token factory is the default for this property. The

LTPATokenFactory token factory uses the DESede/ECB/PKCS5Padding cipher. This token factory creates

an interoperable Lightweight Third Party Authentication (LTPA) token. If you change this token factory, you

lose the interoperability with any servers running a version of WebSphere Application Server prior to

Version 5.1.1 and any other servers that do not support the new token factory implementation. However, if

all of your application servers use WebSphere Application Server Version 5.1.1 or later and all of your

servers use your new token factory, this interoperability is not a problem.

If you associate the com.ibm.ws.security.ltpa.LTPAToken2Factory token factory with the

com.ibm.wsspi.security.token.authenticationTokenFactory property, the token is Advanced Encryption

Standard (AES) encrypted. However, you need to weigh the performance against your security needs. You

might add additional attributes to the authentication token in the Subject during a login that are available

downstream.

If you need to perform your own signing and encryption of the default authentication token, you must

implement the following classes:

v com.ibm.wsspi.security.ltpa.Token

v com.ibm.wsspi.security.ltpa.TokenFactory

Your token factory implementation instantiates (createToken) and validates (validateTokenBytes) your

token implementation. You can use the LTPA keys that are passed into the initialize method of the token

factory or you can use your own keys. If you use your own keys, they must be the same everywhere to

validate the tokens that are generated using those keys. See the API documentation, available through a

link on the front page of the information center, for more information on implementing your own custom

token factory. To associate your token factory with the default authentication token using the administrative

console, complete the following steps:

1. Click Security > Secure administration, applications, and infrastructure.

2. Under Additional properties, click Custom properties.

3. Locate the com.ibm.wsspi.security.token.authenticationTokenFactory property and verify that the value

of this property matches your custom token factory implementation.

4. Verify that your implementation classes are put into the install_dir/classes directory so that the

WebSphere Application Server class loader can load the classes.

Simple WebSphere authentication mechanism

The Simple WebSphere authentication mechanism (SWAM) is intended for simple, non-distributed, single

application server runtime environments.

Note: SWAM is deprecated in WebSphere Application Server Version 6.1 and will be removed in a future

release.

The single application server restriction is due to the fact that SWAM does not support forwardable

credentials. If a servlet or enterprise bean in application server process 1, invokes a remote method on an

enterprise bean living in another application server process 2, the identity of the caller identity in process 1

is not transmitted to server process 2. What is transmitted is an unauthenticated credential, which,

depending on the security permissions configured on the EJB methods, can cause authorization failures.

Chapter 16. Security 1175

Because SWAM is intended for a single application server process, single sign-on (SSO) is not supported.

The SWAM authentication mechanism is suitable for simple environments, software development

environments, or other environments that do not require a distributed security solution.

UserRegistry interface methods

Implementing this interface enables WebSphere Application Server security to use custom registries. This

capability extends the java.rmi file. With a remote registry, you can complete this process remotely.

Implementation of this interface must provide implementations for:

v initialize(java.util.Properties)

v checkPassword(String,String)

v mapCertificate(X509Certificate[])

v getRealm

v getUsers(String,int)

v getUserDisplayName(String)

v getUniqueUserId(String)

v getUserSecurityName(String)

v isValidUser(String)

v getGroups(String,int)

v getGroupDisplayName(String)

v getUniqueGroupId(String)

v getUniqueGroupIds(String)

v getGroupSecurityName(String)

v isValidGroup(String)

v getGroupsForUser(String)

v getUsersForGroup(String,int)

v createCredential(String)

public void initialize(java.util.Properties props)

 throws CustomRegistryException,

 RemoteException;

This method is called to initialize the UserRegistry method. All the properties that are defined in the

Custom User Registry panel propagate to this method.

For the FileRegistrySample.java sample file, the initialize method retrieves the names of the registry files

that contain the user and group information.

This method is called during server bringup to initialize the registry. This method is also called when

validation is performed by the administrative console, when security is on. This method remains the same

as in Version 4.x.

public String checkPassword(String userSecurityName, String password)

 throws PasswordCheckFailedException,

 CustomRegistryException,

 RemoteException;

The checkPassword method is called to authenticate users when they log in using a name or user ID and

a password. This method returns a string which, in most cases, is the user security name. A credential is

created for the user for authorization purposes. This user name is also returned for the getCallerPrincipal

enterprise bean call and the servlet calls the getUserPrincipal and getRemoteUser methods. See the

getUserDisplayName method for more information if you have display names in your registry. In some

situations, if you return a user other than the one who is logged in, you must verify that the user is valid in

the registry.

1176 Administering applications and their environment

#rsecusers/initialize
#rsecusers/checkpw
#rsecusers/mapcert
#rsecusers/getrealm
#rsecusers/getusers
#rsecusers/getuserdis
#rsecusers/getuserid
#rsecusers/getusersec
#rsecusers/isvalid
#rsecusers/getgroups
#rsecusers/getgroupdis
#rsecusers/getgroupid
#rsecusers/getgroupids
#rsecusers/getgroupsec
#rsecusers/isvalidgroup
#rsecusers/getgroupsuser
#rsecusers/getusersgroup
#rsecusers/createcred

For the FileRegistrySample.java sample file, the mapCertificate method gets the distinguished name

(DN) from the certificate chain and makes sure it is a valid user in the registry before returning the user.

For the sample, the checkPassword method checks the name and password combination in the user

registry and, if they match, the method returns the user being authenticated.

This method is called for various scenarios, for example, by the administrative console to validate the user

information after the user registry is initialized. This method is also called when you access protected

resources in the product for authenticating the user and before proceeding with the authorization. This

method is the same as in Version 4.x.

public String mapCertificate(X509Certificate[] cert)

 throws CertificateMapNotSupportedException,

 CertificateMapFailedException,

 CustomRegistryException,

 RemoteException;

The mapCertificate method is called to obtain a user name from an X.509 certificate chain that is supplied

by the browser. The complete certificate chain is passed to this method and the implementation can

validate the chain if needed and get the user information. A credential is created for this user for

authorization purposes. If browser certificates are not supported in your configuration, you can create the

CertificateMapNotSupportedException exception. The consequence of not supporting certificates is

authentication failure if the challenge type is certificates, even if valid certificates are in the browser.

This method is called when certificates are provided for authentication. For Web applications, when the

authentication constraints are set to CLIENT-CERT in the web.xml file of the application, this method is

called to map a certificate to a valid user in the registry. For Java clients, this method is called to map the

client certificates in the transport layer, when using transport layer authentication. When the identity

assertion token, using the CSIv2 authentication protocol, is set to contain certificates, this method is called

to map the certificates to a valid user.

In WebSphere Application Server Version 4.x, the input parameter is the X509Certificate certificate. In

WebSphere Application Server Version 5.x and later, this parameter changes to accept an array of

X509Certificate certificates such as a certificate chain. In Version 4.x, this parameter is called for Web

applications only, but in version 5.x and later, you can call this method for both Web and Java clients.

public String getRealm()

 throws CustomRegistryException,

 RemoteException;

The getRealm method is called to get the name of the security realm. The name of the realm identifies the

security domain for which the registry authenticates users. If this method returns a null value, a

customRealm default name is used.

For the FileRegistrySample.java sample file, the getRealm method returns the customRealm string. One

of the calls to this method occurs when the user registry information is validated. This method is the same

method as in Version 4.x.

public Result getUsers(String pattern, int limit)

 throws CustomRegistryException,

 RemoteException;

The getUsers method returns the list of users from the registry. The names of users depend on the pattern

parameter. The number of users are limited by the limit parameter. In a registry that has many users,

getting all the users is not practical. So the limit parameter is introduced to limit the number of users

retrieved from the registry. A limit of zero (0) indicates to return all the users that match the pattern and

might cause problems for large registries. Use this limit with care.

Chapter 16. Security 1177

The custom registry implementations are expected to support at least the wildcard search (*). For

example, a pattern of asterisk (*) returns all the users and a pattern of (b*) returns the users starting with

b.

The return parameter is an object with a com.ibm.websphere.security.Result type . This object contains

two attributes, a java.util.List and a java.lang.boolean attribute. The list contains the users that are returned

and the Boolean flag indicates if more users are available in the user registry for the search pattern. This

Boolean flag is used to indicate to the client whether more users are available in the registry.

In the FileRegistrySample.java sample file, the getUsers method retrieves the required number of users

from the user registry and sets them as a list in the Result object. To find out if more users are presented

than requested, the sample gets one more user than requested and if it finds the additional user, it sets

the Boolean flag to true. For pattern matching, the match method in the RegExpSample class is used,

which supports wildcard characters such as the asterisk (*) and the question mark (?).

This method is called by the administrative console to add users to roles in the various map-users-to-roles

panels. The administrative console uses the Boolean set in the Result object to indicate that more entries

matching the pattern are available in the user registry.

In WebSphere Application Server Version 4.x, this method specifies to take only the pattern parameter.

The return is a list. In WebSphere Application Server Version 5.x or later, this method is changed to take

one additional parameter, the limit. Ideally, your implementation changes to take the limit value and limits

the users that are returned. The return is changed to return a Result object, which consists of the list and

a flag that indicates if more entries exist. When the list returns, use the Result.setList(List) method to set

the list in the Result object. If more entries exist than requested in the limit parameter, set the Boolean

attribute to true in the result object, using the Result.setHasMore method. The default for the Boolean

attribute in the result object is false.

public String getUserDisplayName(String userSecurityName)

 throws EntryNotFoundException,

 CustomRegistryException,

 RemoteException;

The getUserDisplayName method returns a display name for a user, if one exists. The display name is an

optional string that describes the user that you can set in some registries. This descriptive name is for the

user and does not have to be unique in the registry.

For example in Windows systems, you can display the full name of the user.

If you do not need display names in your registry, return null or an empty string for this method.

If display names existed for any user in WebSphere Application Server Version 4.x, these names were

useful for the Enterprise JavaBean (EJB) method call getCallerPrincipal and the servlet calls

getUserPrincipal and getRemoteUser. If the display names are not the same as the security name for any

user, the display names are returned for the previously mentioned enterprise beans and servlet methods.

Returning display names for these methods might become problematic in some situations because the

display names might not be unique in the user registry. Avoid this problem by changing the default

behavior to return the user security name instead of the user display name in this version of the product.

For more information on how to set properties for the custom registry, see the section on Setting

Properties for Custom Registries.

In the FileRegistrySample.java sample file, this method returns the display name of the user whose

name matches the user name that is provided. If the display name does not exist, this method returns an

empty string.

1178 Administering applications and their environment

This method can be called by the product to present the display names in the administrative console, or by

using the command line and the wsadmin tool. Use this method for display purposes only. This method is

the same as in Version 4.x.

public String getUniqueUserId(String userSecurityName)

 throws EntryNotFoundException,

 CustomRegistryException,

 RemoteException;

This method returns the unique ID of the user, given the security name.

In the FileRegistrySample.java sample file, this method returns the uniqueUserId value of the user whose

name matches the supplied name. This method is called when forming a credential for a user and also

when creating the authorization table for the application.

public String getUserSecurityName(String uniqueUserId)

 throws EntryNotFoundException,

 CustomRegistryException,

 RemoteException;

This method returns the security name of a user given the unique ID. In the FileRegistrySample.java

sample file, this method returns the security name of the user whose unique ID matches the supplied ID.

This method is called to make sure a valid user exists for a given uniqueUserId. This method is called to

get the security name of the user when the uniqueUserId is obtained from a token.

public boolean isValidUser(String userSecurityName)

 throws CustomRegistryException,

 RemoteException;

This method indicates whether the given user is a valid user in the registry.

In the FileRegistrySample.java sample file, this method returns true if the user is found in the registry,

otherwise this method returns false. This method is primarily called in situations where knowing if the user

exists in the directory prevents problems later. For example, in the mapCertificate call, when the name is

obtained from the certificate if the user is not found as a valid user in the user registry, you can avoid

trying to create the credential for the user.

 public Result getGroups(String pattern, int limit)

 throws CustomRegistryException,

 RemoteException;

The getGroups method returns the list of groups from the user registry. The names of groups depend on

the pattern parameter. The number of groups is limited by the limit parameter. In a registry that has many

groups, getting all the groups is not practical. So, the limit parameter is introduced to limit the number of

groups retrieved from the user registry. A limit of zero (0) implies to return all the groups that match the

pattern and can cause problems for large user registries. Use this limit with care. The custom registry

implementations are expected to support at least the wildcard search (*). For example, a pattern of

asterisk (*) returns all the users and a pattern of (b*) returns the users starting with b.

The return parameter is an object of the com.ibm.websphere.security.Result type. This object contains the

java.util.List and java.lang.boolean attributes. The list contains the groups that are returned and the

Boolean flag indicates whether more groups are available in the user registry for the pattern searched.

This Boolean flag is used to indicate to the client if more groups are available in the registry.

Chapter 16. Security 1179

In the FileRegistrySample.java sample file, the getUsers method retrieves the required number of groups

from the user registry and sets them as a list in the Result object. To find out if more groups are presented

than requested, the sample gets one more user than requested and if it finds the additional user, it sets

the Boolean flag to true. For pattern matching, the match method in the RegExpSample class is used,

which supports the asterisk (*) and question mark (?) characters.

This method is called by the administrative console to add groups to roles in the various

map-groups-to-roles panels. The administrative console uses the boolean set in the Result object to

indicate that more entries matching the pattern are available in the user registry.

In WebSphere Application Server Version 4, this method is used to take the pattern parameter only and

returns a list. In WebSphere Application Server Version 5.x or later, this method is changed to take the

limit parameter. Change to take the limit value and limit the users that are returned. The return is changed

to return a Result object, which consists of the list and a flag that indicates whether more entries exist.

Use the Result.setList(List) method to set the list in the Result object. If more entries exist than requested

in the limit parameter, set the Boolean attribute to true in the Result object using the Result.setHasMore

method. The default for the Boolean attribute in the Result object is false.

public String getGroupDisplayName(String groupSecurityName)

 throws EntryNotFoundException,

 CustomRegistryException,

 RemoteException;

The getGroupDisplayName method returns a display name for a group if one exists. The display name is

an optional string that describes the group that you can set in some user registries. This name is a

descriptive name for the group and does not have to be unique in the registry. If you do not need to have

display names for groups in your registry, return null or an empty string for this method.

In the FileRegistrySample.java sample file, this method returns the display name of the group whose

name matches the group name that is provided. If the display name does not exist, this method returns an

empty string.

The product can call this method to present the display names in the administrative console or through the

command line using the wsadmin tool. This method is used for display purposes only.

public String getUniqueGroupId(String groupSecurityName)

 throws EntryNotFoundException,

 CustomRegistryException,

 RemoteException;

This method returns the unique ID of the group that is given the security name.

In the FileRegistrySample.java sample file, this method returns the unique ID of the group whose name

matches the supplied name. This method is called when creating the authorization table for the

application.

public List getUniqueGroupIds(String uniqueUserId)

 throws EntryNotFoundException,

 CustomRegistryException,

 RemoteException;

This method returns the unique IDs of all the groups to which a user belongs.

In the FileRegistrySample.java sample file, this method returns the unique ID of all the groups that

contain this uniqueUserID ID. This method is called when creating the credential for the user. As part of

1180 Administering applications and their environment

creating the credential, all the groupUniqueIds IDsin which the user belongs are collected and put in the

credential for authorization purposes when groups are given access to a resource.

public String getGroupSecurityName(String uniqueGroupId)

 throws EntryNotFoundException,

 CustomRegistryException,

 RemoteException;

This method returns the security name of a group given its unique ID.

In the FileRegistrySample.java sample file, this method returns the security name of the group whose

unique ID matches the supplied ID. This method verifies that a valid group exists for a given

uniqueGroupId ID.

public boolean isValidGroup(String groupSecurityName)

 throws CustomRegistryException,

 RemoteException;

This method indicates if the given group is a valid group in the registry.

In the FileRegistrySample.java sample file, this method returns true if the group is found in the registry,

otherwise the method returns false. This method can be used in situations where knowing whether the

group exists in the directory might prevent problems later.

public List getGroupsForUser(String userSecurityName)

 throws EntryNotFoundException,

 CustomRegistryException,

 RemoteException;

This method returns all the groups to which a user belongs whose name matches the supplied name. This

method is similar to the getUniqueGroupIds method with the exception that the security names are used

instead of the unique IDs.

In the FileRegistrySample.java sample file, this method returns all the group security names that contain

the userSecurityName name.

This method is called by the administrative console or the scripting tool to verify that the users entered for

the RunAs roles are already part of that role in the users and groups-to-role mapping. This check is

required to ensure that a user cannot be added to a RunAs role unless that user is assigned to the role in

the users and groups-to-role mapping either directly or indirectly through a group that contains this user.

Because a group in which the user belongs can be part of the role in the users and groups-to-role

mapping, this method is called to check if any of the groups that this user belongs to mapped to that role.

public Result getUsersForGroup(String groupSecurityName, int limit)

 throws NotImplementedException,

 EntryNotFoundException,

 CustomRegistryException,

 RemoteException;

This method retrieves users from the specified group. The number of users returned is limited by the limit

parameter. A limit of zero (0) indicates to return all of the users in that group. This method is not directly

called by the WebSphere Application Server security component. However, this method can be called by

other components. In rare situations, if you are working with a user registry where getting all the users

from any of your groups is not practical, you can create the NotImplementedException exception for the

particular groups. In this case, verify that if the process choreographer is installed the staff assignments

Chapter 16. Security 1181

are not modeled using these particular groups. If no concern exists about returning the users from groups

in the user registry, it is recommended that you do not create the NotImplemented exception when

implementing this method.

The return parameter is an object with a com.ibm.websphere.security.Result type. This object contains the

java.util.List and java.lang.boolean attributes. The list contains the users that are returned and the Boolean

flag, which indicates whether more users are available in the user registry for the search pattern. This

Boolean flag indicates to the client whether users are available in the user registry.

In the example, this method gets one user more than the requested number of users for a group, if the

limit parameter is not set to zero (0). If the method succeeds in getting one more user, the Boolean flag is

set to true.

In WebSphere Application Server Version 4, this getUsers method is mandatory for the product. For

WebSphere Application Server Version 5.x or later, this method can create the NotImplementedException

exception in situations where it is not practical to get the requested set of users. However, create this

exception in rare situations when as other components can be affected. In Version 4, this method accepts

only the pattern parameter and returns a list. In Version 5, this method accepts the limit parameter.

Change your implementation to take the limit value and limit the users that are returned. The return

changes to return a Result object, which consists of the list and a flag that indicates whether more entries

exist. When the list is returned, use the Result.setList(List) method to set the list in the Result object. If

more entries than requested are in the limit parameter, set the Boolean attribute to true in the Result

object using Result.setHasMore method. The default for the Boolean attribute in the Result object is false.

Attention: The first two lines of the following code sample are split for illustrative purposes only.

 public com.ibm.websphere.security.cred.WSCredential

 createCredential(String userSecurityName)

 throws NotImplementedException,

 EntryNotFoundException,

 CustomRegistryException,

 RemoteException;

In this release the WebSphere Application Server, the createCredential method is not called. You can

return null. In the example, a null value is returned.

Authentication protocol for EJB security

WebSphere Application Server Version 6.1 servers support the CSIv2 authentication protocol only. SAS is

only supported between Version 6.0.x and earlier version servers that have been federated in a Version

6.1 cell. The option to select between SAS, CSIv2, or both is only available in the administration console

when a Version 6.0.x or earlier release has been federated in a Version 6.1 cell.

V6.0.x

SAS is the authentication protocol used by all previous releases of WebSphere Application

Server and is maintained for backwards compatibility. The Object Management Group (OMG) has defined

the authentication protocol called CSIv2 so that vendors can interoperate securely. CSIv2 is implemented

in WebSphere Application Server with more features than SAS and is considered the strategic protocol.

Important: SAS is supported only between Version 6.0.x and previous version servers that have been

federated in a Version 6.1 cell.

Invoking Enterprise Java Beans (EJB) methods in a secure WebSphere Application Server environment

requires an authentication protocol to determine the level of security and the type of authentication that

occur between any given client and server for each request. It is the job of the authentication protocol

during a method invocation to merge the server authentication requirements that are determined by the

1182 Administering applications and their environment

object Interoperable Object Reference (IOR) with the client authentication requirements that are

determined by the client configuration and come up with an authentication policy specific to that client and

server pair.

The authentication policy makes the following decisions, among others, which are all based on the client

and server configurations:

v What kind of connection can you make to this server--Secure Sockets Layer (SSL) or TCP/IP?

v If SSL is chosen, how strong is the encryption of the data?

v If SSL is chosen, do you authenticate the client using client certificates?

v Do you authenticate the client with a user ID and password? Does an existing credential exist?

v Do you assert the client identity to downstream servers?

v Given the configuration of the client and server, can a secure request proceed?

V6.0.x

You can configure both protocols (SAS and CSIv2) to work simultaneously. If a server supports

both protocols, it exports an IOR containing tagged components describing the configuration for SAS and

CSIv2. If a client supports both protocols, it reads tagged components for both CSIv2 and SAS. If the

client supports both and the server supports both, CSIv2 is used. However, if the server supports SAS (for

example, it is a previous WebSphere Application Server release) and the client supports both, the client

chooses SAS for this request because the SAS protocol is what both have in common.

V6.0.x

Choose a protocol by specifying the com.ibm.CSI.protocol property on the client side and

configuring through the administrative console on the server side. More details are included in the SAS

and CSIv2 properties articles.

Common Secure Interoperability Specification, Version 2

V6.0.x

The Common Secure Interoperability Specification, Version 2 (CSIv2) defines the Security

Attribute Service (SAS) that enables interoperable authentication, delegation, and privileges. The CSIv2

SAS and SAS protocols are entirely different. The CSIv2 SAS is a subcomponent of CSIv2 that supports

SSL and interoperability with the EJB Specification, Version 2.1.

Security Attribute Service

V6.0.x

The Common Secure Interoperability Specification, Version 2 Security Attribute Service (CSIv2

SAS) protocol is designed to exchange its protocol elements in the service context of a General Inter-ORB

Protocol (GIOP) request and reply messages that are communicated over a connection-based transport.

The protocol is intended for use in environments where transport layer security, such as that available

through Secure Sockets Layer (SSL) and Transport Layer Security (TLS), is used to provide message

protection (that is, integrity and or confidentiality) and server-to-client authentication. The protocol provides

client authentication, delegation, and privilege functionality that might be applied to overcome

corresponding deficiencies in an underlying transport. The CSIv2 SAS protocol facilitates interoperability by

serving as the higher-level protocol under which secure transports can be unified.

Connection and request interceptors

The authentication protocols that are used by WebSphere Application Server are add-on Interoperable

Inter-ORB Protocol (IIOP) services. IIOP is a request-and-reply communications protocol that is used to

send messages between two Object Request Brokers (ORBs). For each request made by a client ORB to

a server ORB, an associated reply is made by the server ORB back to the client ORB. Prior to any

request flowing, a connection between the client ORB and the server ORB must be established over the

TCP/IP transport (SSL is a secure version of TCP/IP). The client ORB invokes the authentication protocol

client connection interceptor, which is used to read the tagged components in the IOR of the object that is

located on the server. As mentioned previously, the authentication policy is established here for the

Chapter 16. Security 1183

request. Given the authentication policy (a coalescing of the server configuration with the client

configuration), the strength of the connection is returned to the ORB. The ORB makes the appropriate

connection, usually over SSL.

After the connection is established, the client ORB invokes the authentication protocol client request

interceptor, which is used to send security information other than what is established by the transport. The

security information includes the user ID and password token that are authenticated by the server, an

authentication mechanism-specific token that is validated by the server, or an identity assertion token.

Identity assertion is a way for one server to trust another server without the need to re-authenticate or

re-validate the originating client. However, some work is required for the server to trust the upstream

server. This additional security information is sent with the message in a service context. A service context

has a registered identifier so that the server ORB can identify which protocol is sending the information.

V6.0.x

The fact that a service context contains a unique identity is another way for WebSphere

Application Server to support both SAS and CSIv2 simultaneously because both protocols have different

service context IDs. After the client request interceptor finishes adding the service context to the message,

the message is sent to the server ORB.

V6.0.x

When the message is received by the server ORB, the ORB invokes the authentication

protocol server request interceptor. This interceptor looks for the service context ID known by the protocol.

When both SAS and CSIv2 are supported by a server, two different server request interceptors are

invoked and both interceptors look for different service context IDs.

However, only one finds a service context for any given request. When the server request interceptor finds

a service context, it reads the information in the service context. A method is invoked to the security server

to authenticate or validate client identity. The security server either rejects the information or returns a

credential. A credential contains additional information about the client that is retrieved from the user

registry so that authorization can make the appropriate decision. Authorization is the process of

determining if the user can invoke the request based on the roles that are applied to the method and the

roles given to the user.

If a service context is not found by the CSIv2 server request interceptor, the interceptor process looks at

the transport connection to see if a client certificate chain is sent. This process is done when SSL client

authentication is configured between the client and server.

If a client certificate chain is found, the distinguished name (DN) is extracted from the certificate and is

used to map to an identity in the user registry. If the user registry is Lightweight Directory Access Protocol

(LDAP), the search filters defined in the LDAP registry configuration determine how the certificate maps to

an entry in the registry. If the user registry is local OS, the first attribute of the distinguished name (DN)

maps to the user ID of the registry. This attribute is typically the common name.

If the certificate does not map, no credential is created and the request is rejected. When valid security

information is not presented, the method request is rejected and a NO_PERMISSION exception is sent

back with the reply. However, when no security information is presented, an unauthenticated credential is

created for the request and the authorization engine determines if the method gets invoked. For an

unauthenticated credential to invoke an Enterprise JavaBean (EJB) method, either no security roles are

defined for the method or a special Everyone role is defined for the method.

When the method invocation is completed in the EJB container, the server request interceptor is invoked

again to complete server authentication and a new reply service context is created to inform the client

request interceptor of the outcome. This process is typically for making the request stateful. When a

stateful request is made, only the first request between a client and server requires that security

1184 Administering applications and their environment

information is sent. All subsequent method requests need to send a unique context ID only so that the

server can look up the credential that is stored in a session table. The context ID is unique within the

connection between a client and server.

Finally, the method request cycle is completed by the client request interceptor receiving a reply from the

server with a reply service context providing information so that the client-side stateful context ID can be

confirmed and reused.

Specifying a stateful client is done through the property com.ibm.CSI.performStateful (true/false).

Specifying a stateful server is done through the administrative console configuration.

Authentication policy for each request

The authentication policy of a given request determines the security protection between a client and a

server. A client or server authentication protocol configuration can describe required features, supported

features, and non-supported features. When a client requires a feature, it can talk only to servers that

either require or support that feature. When a server requires a feature, it can talk only to clients that

either require or support that feature. When a client supports a feature, it can talk to a server that supports

or requires that feature, but can also talk to servers that do not support the feature. When a server

supports a feature, it can talk to a client that supports or requires the feature, but can also talk to clients

that do not support the feature or chose not to support the feature.

For example, for a client to support client certificate authentication, some setup is required to either

generate a self-signed certificate or to get one from a certificate authority (CA). Some clients might not

need to complete these actions, therefore, you can configure this feature as not supported. By making this

decision, the client cannot communicate with a secure server that requires client certificate authentication.

Instead, this client can choose to use the user ID and password as the method of authenticating itself to

the server.

Authentication protocol flow

Step 1:

Client ORB calls the connection

interceptor to create the connection.

Step 5:

Client ORB calls the request interceptor

so that the client can clean up and set

the session status as good or bad.

Client request

interceptor -

receive_reply()

Client connection

interceptor

Client request

interceptor -

send_request()

Server request

interceptor -

receive_request()

Server request

interceptor -

send_reply()

Step 3:

Server ORB calls the request interceptor

to receive the security information,

authenticate, and set the received credential.

Step 4:

Server ORB calls the request interceptor

so that security can send information

back to the client with the reply.

Step 2:

Client ORB calls the request

interceptor to get client security

information.

Client ORB Server ORB

Invocation

credential:

user: peter

pass: beans

1

2

Request

Service context

Service context

3

Received

credential:

security

token

45
Reply

User: peter,

Password: beans

foo.getCoffee()

Coffee

Stateful request

valid

Transport connectionfoo.getCoffee() Server enterprise
beans Foo

. Authentication protocol flow

Chapter 16. Security 1185

Typically, supporting a feature is the most common way of configuring features. It is also the most

successful during runtime because it is more forgiving than requiring a feature. Knowing how secure

servers are configured in your domain, you can choose the right combination for the client to ensure

successful method invocations and still get the most security. If you know that all of your servers support

both client certificate and user ID and password authentication for the client, you might want to require one

and not support the other. If both the user ID and password and the client certificate are supported on the

client and server, both are performed, but user ID and password take precedence at the server. This

action is based on the CSIv2 specification requirements.

Supported authentication protocols

Use this page to reference information regarding supported authentication protocols.

V6.0.x

Beginning with WebSphere Application Server Version 6.1, the WebSphere Application Server

Version 6.1 servers only support the Common Secure Interoperability Version 2 (CSIv2) authentication

protocol. Secure Authentication Service (SAS) is only supported between Version 6.0.x and previous

version servers that have been federated in a Version 6.1 cell. The option to select between SAS, CSIv2,

or both will only be made available in the administration console when a Version 6.0.x or previous release

has been federated in a Version 6.1 cell.

V6.0.x

In future releases, IBM will no longer ship or support the Secure Authentication Service (SAS)

IIOP security protocol. It is recommended that you use the Common Secure Interoperability version 2

(CSIv2) protocol.

V6.0.x

You can configure both protocols to work simultaneously between Version 6.0.x and previous

version servers that have been federated in a Version 6.1 cell. If a server supports both protocols, it

exports an interoperable object reference (IOR) that contains tagged components describing the

configuration for SAS and CSIv2. If a client supports both protocols, it reads tagged components for both

CSIv2 and SAS. If the client and server support both protocols, CSIv2 is used. However, if the server

supports SAS (for example, the server is a previous WebSphere Application Server release) and the client

supports both protocols, the client chooses SAS for this request.

Choose a protocol using the com.ibm.CSI.protocol property on the client side and configure this protocol

through the administrative console on the server side.

Common Secure Interoperability Version 2 features

The following Common Secure Interoperability Version 2 (CSIv2) features are available in IBM WebSphere

Application Server: Secure Sockets Layer (SSL) client certificate authentication, message layer

authentication, identity assertion, and security attribute propagation.

v Identity Assertion.

Supports a downstream server in accepting the client identity that is established on an upstream server,

without having to authenticate again. The downstream server trusts the upstream server.

v Message Layer Authentication.

Authenticates credential information and sends that information across the network so that a receiving

server can interpret it.

v Security attribute propagation

Supports the use of the authorization token to propagate serialized Subject contents and

PropagationToken contents with the request. You can propagate these objects using a pure client or a

server login that adds custom objects to the Subject. Propagating security attributes prevents

downstream logins from having to make user registry calls to look up these attributes.

Propagating security attributes is also useful when the security attributes contain information that is only

available at the time of authentication. This information cannot be located using the user registry on

downstream servers.

1186 Administering applications and their environment

Identity assertion

Identity assertion is the invocation credential that is asserted to the downstream server.

When a client authenticates to a server, the received credential is set. When the authorization engine

checks the credential to determine whether access is permitted, it also sets the invocation credential so

that if the Enterprise JavaBeans (EJB) method calls another EJB method that is located on other servers,

the invocation credential can be the identity used to invoke the downstream method. Depending on the

RunAs mode for the enterprise beans, the invocation credential is set as the originating client identity, the

server identity, or a specified different identity. Regardless of the identity that is set, when identity assertion

is enabled, it is the invocation credential that is asserted to the downstream server.

The invocation credential identity is sent to the downstream server in an identity token. In addition, the

sending server identity, including the password or token, is sent in the client authentication token when

basic authentication is enabled. The sending server identity is sent through a Secure Sockets Layer (SSL)

client certification authentication when client certificate authentication is enabled. Basic authentication

takes precedence over client certificate authentication.

Both identity tokens are needed by the receiving server to accept the asserted identity. The receiving

server completes the following actions to accept the asserted identity:

v The server determines whether the sending server identity, sent with a basic authentication token or

with an SSL client certificate, is on the trusted principal list of the receiving server. The server

determines whether the sending server can send an identity token to the receiving server.

v After it is determined that the sending server is on the trusted list, the server authenticates the sending

server to verify its identity.

v The server is authenticated by comparing the user ID and password from the sending server to the

receiving server. If the credentials of the sending server are authenticated and on the trusted principal

list, then the server proceeds to evaluate the identity token.

Evaluation of the identity token consists of the following four identity formats that exist in an identity token:

v Principal name

v Distinguished name

v Certificate chain

v Anonymous identity

The product servers that receive authentication information typically support all four identity types. The

sending server decides which one is chosen, based on how the original client authenticated. The existing

type depends on how the client originally authenticates to the sending server. For example, if the client

uses Secure Sockets Layer (SSL) client authentication to authenticate to the sending server, then the

identity token sent to the downstream server contains the certificate chain. With this information, the

receiving server can perform its own certificate chain mapping and interoperability is increased with other

vendors and platforms.

After the identity format is understood and parsed, the identity maps to a credential. For an ITTPrincipal

identity token, this identity maps one-to-one with the user ID fields.

For an ITTDistinguishedName identity token, the mapping depends on the user registry. For Lightweight

Directory Access Protocol (LDAP), the configured search filter determines how the mapping occurs. For

LocalOS, the first attribute of the distinguished name (DN), which is typically the same as the common

name, maps to the user ID of the registry.

Some user registry methods are called to gather additional credential information that is used by

authorization. In a stateful server, this action completes once for the sending server and the receiving

server pair where the identity tokens are the same. Subsequent requests are made through a session ID.

Identity assertion is only available using the Common Secure Interoperability Version 2 (CSIv2) protocol.

Chapter 16. Security 1187

Identity assertions with trust validation

If you want an application or system provider to perform an identity assertion with trust validation, it can be

accomplished by use of the Java Authentication and Authorization Service (JAAS) login framework, where

trust validation is performed in one login module and credential creation in another. These two custom

login modules are used to create a JAAS login configuration that performs a login to an identity assertion.

Two custom login module are required:

v A user-implemented trust association login module. This login module performs whatever trust

verification the user requires. When trust is verified, the trust verification status and the login identity

must be placed in a map in the share state of the login module to enable the credential creation login

module to use that information. The map must be stored in the

com.ibm.wsspi.security.common.auth.module.IdentityAssertionLoginModule.state property. State maps

contain the following information:

– com.ibm.wsspi.security.common.auth.module.IdentityAssertionLoginModule.trusted – set to true, if

trusted, and false, if not trusted.

– com.ibm.wsspi.security.common.auth.module.IdenityAssertionLoginModule.principal – contains the

principal of the identity.

– com.ibm.wsspi.security.common.auth.module.IdentityAssertionLoginModule.certificates – contains the

certificate of the identity

v The com.ibm.wsspi.security.common.auth.module.IdentityAssertionLoginModule module performs the

credential creation. It requires that the trust state information be in the login context’s shared state. This

login module is protected by the Java 2 security runtime permissions for the following:

– com.ibm.wsspi.security.common.auth.module.IdentityAssertionLoginModule.initialize

– com.ibm.wsspi.security.common.auth.module.IdentityAssertionLoginModule.login

IdentityAssertionLoginModule searches for the trust information in the shared state property,

com.ibm.wsspi.security.common.auth.module.IdentityAssertionLoginModule.state. This is a map that

contains the trust status and the identity used to login. The map includes the following:

v com.ibm.wsspi.security.common.auth.module.IdentityAssertionLoginModule.trusted – if set to true it is

trusted, false if not trusted.

v com.ibm.wsspi.security.common.auth.module.IdentityAssertionLoginModule.principal – if a principal is

used, it contains the principal of the identity necessary to login.

v com.ibm.wsspi.security.common.auth.module.IdentityAssertionLoginModule.certificates – if a certificate is

used, it contains an array of a certificate chain that includes the identity necessary to login.

A WSLoginFailedException is returned if the state, trust, or identity information is missing. The login

module then performs a login of the identity. The subject now contains the new identity.

Message layer authentication

Defines the credential information and sends that information across the network so that a receiving server

can interpret it.

When you send authentication information across the network using a token the transmission is

considered message layer authentication because the data is sent with the message inside a service

context.

A pure Java client uses basic authentication, Generic Security Services Username Password (GSSUP), as

the authentication mechanism to establish client identity.

However, a servlet can use either basic authentication (GSSUP) or the authentication mechanism of the

server, Lightweight Third Party Authentication (LTPA), to send security information in the message layer.

Use LTPA by authenticating or by mapping the basic authentication credentials to the security mechanism

of the server.

1188 Administering applications and their environment

The security token that is contained in a token-based credential is authentication mechanism-specific. The

way that the token is interpreted is only known by the authentication mechanism. Therefore, each

authentication mechanism has an object ID (OID) representing it. The OID and the client token are sent to

the server, so that the server knows which mechanism to use when reading and validating the token. The

following list contains the OIDs for each mechanism:

BasicAuth (GSSUP): oid:2.23.130.1.1.1

LTPA: oid:1.3.18.0.2.30.2

SWAM: No OID because it is not forwardable

Note: SWAM is deprecated in WebSphere Application Server Version 6.1 and will be removed in a future

release.

On the server, the authentication mechanisms can interpret the token and create a credential, or they can

authenticate basic authentication data from the client, and create a credential. Either way, the created

credential is the received credential that the authorization check uses to determine if the user has access

to invoke the method. You can specify the authentication mechanism by using the following property on

the client side:

v com.ibm.CORBA.authenticationTarget

Basic authentication is currently the only valid value. You can configure the server through the

administrative console.

Note: When perform basic authentication is enabled, if the client is not similarly configured (and does

not pass a credential such as a user ID and password), the server object request broker (ORB)

does not.

Configuring authentication retries

Situations occur where you want a prompt to display again if you entered your user ID and password

incorrectly or you want a method to retry when a particular error occurs back at the client. If you can

correct the error by information at the client side, the system automatically performs a retry without the

client seeing the failure, if the system is configured appropriately.

Some of these errors include:

v Entering a user ID and password that are not valid

v Having an expired credential on the server

v Failing to find the stateful session on the server

By default, authentication retries are enabled and perform three retries before returning the error to the

client. Use the com.ibm.CORBA.authenticationRetryEnabled property (True or False) to enable or disable

authentication retries. Use the com.ibm.CORBA.authenticationRetryCount property to specify the number

of retry attempts.

Immediate validating of a basic authentication login

In WebSphere Application Server Version 6.x, a behavior is defined during request_login for a BasicAuth

login. In releases prior to Version 5, a BasicAuth login takes the user ID and password entered through the

loginSource method and creates a BasicAuth credential. If either the user ID or the password is not valid,

the client program does not find out until the first method request is attempted. When the user ID or

password is specified during a prompt or programmatic login, the user ID and password are authenticated

by default with the security server, with a True or False returned as the result. If False, an

org.omg.SecurityLevel2.LoginFailed exception is returned to the client indicating that the user ID and

password are not valid. If True, then the BasicAuth credential is returned to the caller of the request_login.

To disable this feature on the pure client, specify com.ibm.CORBA.validateBasicAuth=false. By default, this

feature is set to True. On the server side, specify this property in the security dynamic properties.

Chapter 16. Security 1189

Configuring the Lightweight Third Party Authentication mechanism

You must configure Lightweight Third Party Authentication (LTPA) when you set up security for the first

time. LTPA is the default authentication mechanism for WebSphere Application Server.

1. Open the administrative console.

Type http://fully_qualified_host_name:port_number/ibm/console to access the administrative

console in a Web browser.

Port 9060 is the default port number for accessing the administrative console. During installation,

however, you might have specified a different port number. Use the appropriate port number.

2. Click Security > Secure administration, applications, and infrastructure > Authentication

mechanisms and expiration.

3. Select the appropriate group from the Key set group field that contains your public, private, and

shared LTPA keys. These keys are used to encrypt and decrypt data that is sent between servers. You

can access these key set group configurations using the Key set group link. In the Key set group

configuration, you can indicate whether to automatically generate new keys and when to generate

them.

4. Enter a positive integer value in the Authentication cache timeout field. This timeout value refers to

how long an LTPA token is valid in minutes. The token contains this expiration time so that any server

that receives the token can verify that the token is valid before proceeding further. When the token

expires, the user must log in again. An optimal value for this field depends on your configuration.

However, the default value is 10 minutes.

5. Enter a positive integer in the Timeout value for forwarded credentials between servers field. This

value refers to how long the server credentials from another server are valid before they expire. The

default value is 120 minutes. The value in the Timeout value for forwarded credentials between

servers field must be greater than the value in the Authentication cache timeout field.

6. Click Apply or OK. The LTPA configuration is now set. Do not generate the LTPA keys in this step

because they are automatically generated later. Proceed with the rest of the steps that are required to

enable security, and start with single sign-on (SSO), if it is required.

7. Complete the information in the Security > Secure administration, applications, and infrastructure panel

and click OK. The LTPA keys are generated automatically the first time. Do not generate the keys

manually.

The previous steps configured LTPA.

After configuring LTPA, you can also complete the following tasks:

1. Generate key files. For more information, see “Generating Lightweight Third Party Authentication keys”

on page 1193.

2. Export key files. For more information, see “Exporting Lightweight Third Party Authentication keys” on

page 1194.

3. Import key files. For more information, see “Importing Lightweight Third Party Authentication keys” on

page 1195.

4. Manage LPTA keys from multiple cells. For more information, see tsec_sslmanagelptakeys.dita.

5. If you are enabling security, you can also enable single sign-on (SSO). See:

v “Configuring single sign-on capability with Tivoli Access Manager or WebSEAL” on page 1223
6. If you generated a new set of keys or imported a new set of keys, verify that the keys are saved to the

master configuration by clicking Save at the top of the panel. Because LTPA authentication uses

time-sensitive tokens, verify that the time, date, and time zone are synchronized among all of the

product servers that are participating in the protected domain. Changes to the time, date, and time

zone are done independently from WebSphere Application Server. If the clock skew is too high

between servers, the LTPA token seems prematurely expired and causes authentication or validation

failures.

1190 Administering applications and their environment

tsec_sslmanagelptakeys.dita

Authentication mechanisms and expiration

Use this page to specify the shared keys and configure the authentication mechanism that is used to

exchange information between servers. You can also use this page to specify the amount of time that the

authentication information remains valid and specify the single sign-on configuration.

To view this administrative console page, complete the following steps:

1. Click Security > Secure administration, applications, and infrastructure.

2. Under Authentication, click Authentication mechanisms and expiration.

After you configure the properties on this page, complete the following steps:

1. Click Security > Secure administration, applications, and infrastructure.

2. Verify that the appropriate registry is configured.

3. Click Apply. When security is enabled and any of these properties change, return to the Secure

administration, applications, and infrastructure panel and click Apply to validate the changes.

Key set group:

Specifies groups of public, private, and shared keys. These key groups enable the application server to

manage multiple sets of Lightweight Third Party Authentication (LTPA) keys.

Generate Keys:

Specifies whether to generate a new set of LTPA keys in the configured keystore, and to update the

runtime with the new keys. By default, LTPA keys are regenerated on a schedule every 90 days,

configurable to the day of the week.

 Each new set of LTPA keys is stored in the keystore associated with the key set group. A maximum

number of keys (or even one) can be configured. However, it is recommended to have at least two keys;

the old keys can be used for validation while the new keys are being distributed.

This step is not necessary during security enablement. A default set of keys is created during the first

server startup. If any nodes are down during a key generation event, the nodes should be synchronized

with the Deployment Manager before restart.

Authentication cache timeout:

Specifies the time period in minutes at which an LTPA token expires. Verify that this time period is less

than the value for the Timeout value for forwarded credentials between servers field.

 If the application server infrastructure security is enabled, the security cache timeout can influence

performance. The timeout setting specifies how often to refresh the security-related caches. Security

information pertaining to beans, permissions, and credentials is cached. When the cache timeout expires,

all cached information not accessed within the timeout period is purged from the cache. Subsequent

requests for the information result in a database lookup. Sometimes, acquiring the information requires

invoking a Lightweight Directory Access Protocol (LDAP)-bind or native authentication. Both invocations

are relatively costly operations for performance. Determine the best trade off for the application, by looking

at usage patterns and security needs for the site.

The default security cache timeout value is 10 minutes. If you have a small number of users, it should be

set higher than that, or if a large number of users, it should be set lower.

The LTPA timeout value should not be set lower than the security cache timeout. It is also recommended

that the LTPA timeout value should be set higher than the orb request timeout value. However, there is no

relation between the security cache timeout value and the orb request timeout value.

Chapter 16. Security 1191

In a 20-minute performance test, setting the cache timeout so that a timeout does not occur yields a 40%

performance improvement.

 Data type Integer

Units Minutes and seconds

Default 10 minutes

Range: Greater than 30 seconds

Timeout value for forwarded credentials between servers:

Specifies the period of time after which forwarded credentials expire.

 Specify a value for this field that is greater than the authentication cache timeout value.

 Default 120 minutes

Password:

Enter a password which will be used to encrypt and decrypt the LTPA keys from the SSO properties file.

During import, this password should match the password used to export the keys at another LTPA server

(for example, another application server Cell, Lotus Domino Server, and so on). During export, remember

this password in order to provide it during the import operation.

 After the keys are generated or imported, they are used to encrypt and decrypt the LTPA token. Whenever

the password is changed, a new set of LTPA keys are automatically generated when you click OK or

Apply. The new set of keys is used after the configuration changes are saved.

 Data type String

Confirm password:

Specifies the confirmed password that is used to encrypt and decrypt the LTPA keys.

 Use this password when importing these keys into other application server administrative domain

configurations and when configuring SSO for a Lotus Domino server.

 Data type String

Fully qualified key file name:

Specifies the name of the file that is used when importing or exporting keys.

 Enter a fully qualified key file name, and click Import Keys or Export Keys.

 Data type String

Internal server ID:

Specifies the server ID that is used for interprocess communication between servers. The server ID is

protected with an LTPA token when sent remotely. You can edit the internal server ID to make it identical

to server IDs across multiple application server administrative domains (cells). By default this ID is the cell

name.

1192 Administering applications and their environment

This internal server ID should only be used in a Version 6.1 or higher environment. For mixed-version

Cells, you should convert to using a server user ID and server password for interoperability.

To switch back to the server user ID and password for interoperability, complete the following steps:

1. Click Security > Secure administration, applications, and infrastructure.

2. Under User account repository, click the Available realm definitions drop-down list, select a user

registry, and click Configure.

3. Select the Server identity that is stored in the repository option and type a valid registry ID and

password.

 Data type String

Import Keys:

Specifies whether the server imports new LTPA keys.

 To support single sign-on (SSO) in the application server product across multiple application server

domains (cells), share the LTPA keys and the password among the domains. You can use the Import

Keys option to import the LTPA keys from other domains. The LTPA keys are exported from one of the

cells to a file. To import a new set of LTPA keys, complete the following steps:

1. Enter the appropriate password in the Password and Confirm password fields.

2. Click OK and click Save.

3. Enter the directory location where the LTPA keys are located in the Fully qualified key file name field

prior to clicking Import keys.

4. Do not click OK or Apply, but save the settings.

Export Keys:

Specifies whether the server exports LTPA keys.

 To support single sign-on (SSO) in the WebSphere product across multiple application server domains

(cells), share the LTPA keys and the password among the domains. Use the Export Keys option to export

the LTPA keys to other domains.

To export the LTPA keys, make sure that the system is running with security enabled and is using LTPA.

Enter the file name in the Fully qualified key file name field and click Export Keys. The encrypted keys

are stored in the specified file.

Use SWAM-no authenticated communication between servers:

Specifies the Simple WebSphere Authentication Mechanism (SWAM). Unauthenticated credentials are

forwarded between servers. When a caller process invokes a remote method, its identity is not verified.

Depending upon the security permissions for the EJB methods, authentication failures might occur.

 SWAM is a deprecated feature and will be removed in a future release. It is recommend that you use

LTPA for authenticated communication between servers.

Generating Lightweight Third Party Authentication keys

WebSphere Application Server generates Lightweight Third Party Authentication (LTPA) keys automatically

during the first server startup. You can generate additional keys as you need them in the Authentication

mechanisms and expiration panel.

At runtime, the default key sets are NodeLTPASecret and NodeLTPAKeyPair. The default key group is

NodeLTPAKeySetGroup. After generation, keys are stored in the default key store NodeLTPAKeys.

Chapter 16. Security 1193

Complete the following steps to generate new LTPA keys in the administrative console.

1. Access the administrative console.

Type http://fully_qualified_host_name:port_number/ibm/console to access the administrative

console in a Web browser.

2. Verify that all the WebSphere Application Server processes are running, including the cell, nodes, and

application servers.

Important: If any of the servers are down at the time of key generation and then restarted later, these

servers might contain old keys. Copy the new set of keys to these servers to restart them

after you generate them.

3. Click Security > Secure administration, applications, and infrastructure > Authentication

mechanisms and expiration.

4. Click Generate keys to generate a new set of LTPA keys in the local keystore and update the runtime

with the new keys. By default, LTPA keys are regenerated on a schedule every 90 days, configurable

to the day of the week. Each new set of LTPA keys is stored in the keystore that is associated with the

key set group. The same password that is already stored in the configuration is used when you

generate new keys.

Tip: This step is not necessary when you enable security because, by default, a set of keys is created

during the first server startup. However, the keystore should have at least two keys: the old keys

can be used for validation while the new keys are being distributed. If any nodes are down during

a key generation event, the nodes should be synchronized with the Deployment Manager before

restarting the server.

5. Restart the server for the changes to become active.

After WebSphere Application Server generates and saves a new set of keys, the generated keys are not

used in the configuration until WebSphere Application Server is restarted. Token generation uses the keys

that were last imported. To view the latest key version, see “Activating Lightweight Third Party

Authentication key versions” on page 1197.

Exporting Lightweight Third Party Authentication keys

To support single sign-on (SSO) in WebSphere Application Server across multiple WebSphere Application

Server domains or cells, you must share the Lightweight Third Party Authentication (LTPA) keys and the

password among the domains.

Make sure that the time in the domains is similar so that you do not mistakenly interpret the tokens as

expired between the cells.

Complete the following steps in the administrative console to export key files for LTPA so that they can be

shared across domains:

1. Type http://server_name:port_number/ibm/console in a Web browser to access the administrative

console.

2. Click Security > Secure administration, applications, and infrastructure > Authentication

mechanisms and expiration.

3. In the Password and Confirm password fields, enter the password that is used to encrypt the LTPA

keys. Remember the password so that you can use it later when the keys are imported into the other

cell.

4. In the Fully qualified key file name field, specify the fully qualified path to the location where you want

the exported LTPA keys to reside. You must have write permission to this file.

5. Click Export keys to export the keys to the location that you specified in the Fully qualified key file

name field.

1194 Administering applications and their environment

6. Specify the Internal server ID that is used for interprocess communication between servers. The

server ID is protected with an LTPA token when sent remotely. You can edit the internal server ID to

make it identical to server IDs across multiple application server administrative domains (cells). By

default this ID is the cell name.

7. Click OK and Save.

You can share LTPA keys and passwords among domains on WebSphere Application Server.

After exporting the keys from one cell, you must import those keys into the other cell. For more

information, see “Importing Lightweight Third Party Authentication keys”

Importing Lightweight Third Party Authentication keys

To support single sign-on (SSO) in WebSphere Application Server across multiple WebSphere Application

Server domains or cells, you must share the LTPA keys and the password among the domains. You can

import LTPA keys from other domains and export keys to other domains.

After you export LTPA keys from one cell, you must import these keys into another cell. To import keys,

you must know the password for the exported key file to access the LTPA keys. Verify that key files are

exported from one of the cells into a file.

Complete the following steps in the administrative console to import key files for LTPA.

1. Access the administrative console for the cell that will receive the imported keys by typing

http://server_name:port_number/ibm/console in a Web browser.

2. Click Security > Secure administration, applications, and infrastructure > Authentication

mechanisms and expiration.

3. In the Password and Confirm password fields, enter the password that is used to decrypt the LTPA

keys . This password must match the password that was used in the cell from which you are importing

the keys.

4. In the Fully qualified key file name field, specify the fully qualified path to the location where the

signer keys reside. You must have write permission to this file.

5. Click Import keys to import the keys to the location that you specified in the Fully qualified key file

name field.

6. Click OK and Save to save the changes to the master configuration. It is important to save the new set

of keys to match the new password so that no problems are encountered when starting the servers

later.

After a new set of keys is generated and saved, the generated keys are not used in the configuration until

WebSphere Application Server is restarted.

Important: After you enter the password in the Password and Confirm password fields and click Save,

the password is not redisplayed on the administrative console panel.

Disabling automatic generation of Lightweight Third Party Authentication keys

You can disable the automatic generation of new Lightweight Third Party Authentication (LTPA) keys for

key sets that are members of a key set group. Automatic generation creates new keys on a schedule that

you specify when you configure a key set group, which manages one or more key sets. WebSphere

Application Server uses key set groups to automatically generate cryptographic keys or multiple

synchronized key sets.

You must know the name of the key set group and the management scope where the key set group is

defined.

The default key set group that is created to manage LTPA keys is NodeLTPAKeySetGroup.

Chapter 16. Security 1195

LTPA keys are used to encrypt the LTPA token. You might want to disable the auto-generation of these

keys so that you can generate them on a schedule. The following steps are needed to complete this task

in the administrative console.

1. Click Security > SSL certificate and key management > Manage endpoint security

configurations.

2. Expand the tree to the inbound or outbound management scope that contains the key set group, and

then click the scope link.

3. Under Related Items, click Key Set Groups.

4. Click the key set group that you want to disable.

5. Clear the Automatically generate keys option.

6. Click OK and Save to save the changes to the master configuration.

7. Start the server again for the changes to become active.

You have disabled the automatic generation of LTPA keys for the key sets in the key set group.

Tip: You can generate keys manually at any time by completing the following steps:

1. Open the key set group collection.

2. Select the check box beside the key set group.

3. Click Generate keys.

Managing LTPA keys from multiple WebSphere Application Server cells

You can specify the shared keys and configure the authentication mechanism that is used to exchange

information between servers to import and export LTPA keys across multiple WebSphere Application

Server cells.

You must be sure that the exported key file for the multiple cells is accessible on the host where

WebSphere Application Server is running. Also, you must know the password that was used when the

keys were exported.

At runtime, the default key sets are NodeLTPASecret and NodeLTPAKeyPair. The default key group is

NodeLTPAKeySetGroup. After generation, keys are stored in the default key store NodeLTPAKeys.

Complete the following steps to manage LTPA keys using the administrative console.

1. Access the administrative console.

Type http://fully_qualified_host_name:port_number/ibm/console to access the administrative

console in a Web browser.

2. Verify that all of the WebSphere Application Server processes are running, including cells, nodes, and

all of the application servers. If any of the servers are down at the time of key generation and then

brought back up later, these servers might contain old keys. Copy the new set of keys to these

servers, then bring them back up.

3. Click Security > Secure administration, applications, and infrastructure > Authentication

mechanisms and expiration.

4. Type the password for the LTPA keys in the Password field. Enter a password that is used to encrypt

and decrypt the LTPA keys from the single sign-on (SSO) properties file. During import, this password

should match the password that is used to export the keys at another LTPA server. During export,

remember this password in order to provide it during the import operation.

5. Type the password again in the Confirm password field.

6. Select from among the following options:

v To support SSO in the WebSphere product across multiple application server domains (cells), you

can share the LTPA keys and the password among the domains. Before exporting, make sure that

security is enabled and using LTPA on the system that is running. For more information, see

“Exporting Lightweight Third Party Authentication keys” on page 1194.

1196 Administering applications and their environment

v To support SSO in the application server product across multiple application server domains (cells),

you can share the LTPA keys and the password among the domains. For more information, see

“Importing Lightweight Third Party Authentication keys” on page 1195.

v To import LTPA keys for the current cell if they were previously exported, see “Importing Lightweight

Third Party Authentication keys” on page 1195.

7. Start the server again for any changes you make to become active.

The shared LTPA keys are now available for WebSphere Application Server to use for secure connections.

After the keys are generated or imported, they are used to encrypt and decrypt the LTPA token. To view

the latest key version, see “Activating Lightweight Third Party Authentication key versions.”

Activating Lightweight Third Party Authentication key versions

Key sets manage Lightweight Third Party Authentication (LTPA) keys in a key store that is based on a key

alias prefix. A key alias prefix is automatically generated when you generate a new key and store it in a

key store. Key stores can contain multiple versions of keys for any given key alias prefix. You can specify

a maximum number of active keys in the key set configuration.

You must know the name of the key set group and the management scope where the key set group is

defined.

The default key set group that is created to manage LTPA keys is NodeLTPAKeySetGroup.

Complete the following steps in the administrative console.

LTPA keys are used to encrypt the LTPA token. You might want to set a specific number of active keys that

WebSphere Application Server returns when the server queries for keys for a particular key set. The

following steps are needed to complete this task in the administrative console.

1. Click Security > SSL certificate and key management > Manage endpoint security

configurations.

2. Expand the tree to the inbound or outbound management scope that contains the key set group, and

then click the scope link.

3. Under Related Items, click Key Sets.

4. Click the key set that you want to modify.

5. In the Maximum number of keys referenced field, type a numerical value for the maximum number

of keys that you want to activate.

6. Click OK and Save to save the changes to the master configuration.

7. Start the server again for the changes to become active. WebSphere Application Server activates only

the number of recent keys that you specified.

The Maximum number of keys referenced value determines how many active keys are returned when

the server queries for keys for the selected key set.

You can click Active key history in the Key set panel to display the keys that are active for this key set.

Integrating third-party HTTP reverse proxy servers

These steps are required to use either a WebSEAL trust association interceptor or your own trust

association interceptor with a reverse proxy security server.

WebSphere Application Server enables you to use multiple trust association interceptors. The Application

Server uses the first interceptor that can handle the request.

1. Access the administrative console.

Type http://fully_qualified_host_name:port_number/ibm/console in a Web browser.

Chapter 16. Security 1197

Port 9060 is the default port number for accessing the administrative console. During installation,

however, you might have specified a different port number. Use the appropriate port number.

2. Click Security > Secure administration, applications, and infrastructure.

3. Under Web security, click Trust association.

4. Select the Enable trust association option.

5. Under Additional properties, click Interceptors. The default value appears.

6. Verify that the appropriate trust association interceptors are listed. If you need to use a WebSEAL trust

association interceptor, see “Configuring single sign-on using the trust association interceptor” on page

1231 or “Configuring single sign-on using trust association interceptor ++” on page 1232. If you are not

using WebSEAL and need to use a different interceptor, complete the following steps:

a. Select both the com.ibm.ws.security.web.WebSealTrustAssociationInterceptor and the

com.ibm.ws.security.web.TAMTrustAssociationInterceptorPlus class name and click Delete.

b. Click New and specify a trust association interceptor.

Enables trust association.

1. If you are enabling security, make sure that you complete the remaining steps for enabling security.

2. Save, stop and restart all of the product servers (deployment managers, nodes and Application

Servers) for the changes to take effect.

Trust association settings

Use this page to enable trust association, which integrates application server security and third-party

security servers. More specifically, a reverse proxy server can act as a front-end authentication server

while the product applies its own authorization policy onto the resulting credentials passed by the proxy

server.

To view this administrative console page, complete the following steps:

1. Click Security > Secure administration, applications, and infrastructure.

2. Under Authentication, expand Web security and click Trust association.

When security is enabled and any of these properties change, go to the Secure administration,

applications, and infrastructure panel and click Apply to validate the changes.

Enable trust association:

Specifies whether trust association is enabled.

 Data type: Boolean

Default: Disable

Range: Enable or Disable

Trust association interceptor collection

Use this page to specify trust information for reverse security proxy servers.

To view this administrative console page, complete the following steps:

1. Click Security > Secure administration, applications, and infrastructure.

2. Under Authentication, expand Web security and click Trust association.

3. Under Additional Properties, click Interceptors.

When security is enabled and any of these properties are changed, go to the Secure administration,

applications, and infrastructure panel and click Apply to validate the changes.

Interceptor class name:

1198 Administering applications and their environment

Specifies the trust association interceptor class name.

Data type

String

Default

com.ibm.ws.security.web.WebSealTrustAssociationInterceptor

Trust association interceptor settings

Use this page to specify trust information for reverse security proxy servers.

To view this administrative console page, complete the following steps:

1. Click Security > Secure administration, applications, and infrastructure.

2. Under Authentication, expand Web security and click Trust association.

3. Under Additional Properties, click Interceptors > New.

When security is enabled and any of these properties are changed, go to the Secure administration,

applications, and infrastructure panel and click Apply to validate the changes.

Interceptor class name:

Specifies the trust association interceptor class name.

Data type

String

Default

com.ibm.ws.security.web.WebSealTrustAssociationInterceptor

Implementing single sign-on to minimize Web user authentications

With single sign-on (SSO) support, Web users can authenticate once when accessing Web resources

across multiple WebSphere Application Servers. Form login mechanisms for Web applications require that

SSO is enabled. Use this topic to configure single sign-on for the first time.

SSO is supported only when Lightweight Third Party Authentication (LTPA) is the authentication

mechanism.

When SSO is enabled, a cookie is created containing the LTPA token and inserted into the HTTP

response. When the user accesses other Web resources in any other WebSphere Application Server

process in the same domain name service (DNS) domain, the cookie is sent in the request. The LTPA

token is then extracted from the cookie and validated. If the request is between different cells of

WebSphere Application Servers, you must share the LTPA keys and the user registry between the cells for

SSO to work. The realm names on each system in the SSO domain are case sensitive and must match

identically.

Windows

For local OS, the realm name is the domain name if a domain is in use. If a domain is not

used, the realm name is the machine name.

Linux

The realm name is the same as the host name.

For the Lightweight Directory Access Protocol (LDAP) the realm name is the host:port realm name of the

LDAP server. The LTPA authentication mechanism requires that you enable SSO if any of the Web

applications have form login as the authentication method.

Because single sign-on is a subset of LTPA, it is recommended that you read “Lightweight Third Party

Authentication” on page 1146 for more information.

Chapter 16. Security 1199

When you enable security attribute propagation, the following cookies are added to the response:

LtpaToken

LtpaToken is used for inter-operating with previous releases of WebSphere Application Server.

This token contains the authentication identity attribute only.

LtpaToken2

LtpaToken2 contains stronger encryption and enables you to add multiple attributes to the token.

This token contains the authentication identity and additional information such as the attributes that

are used for contacting the original login server and the unique cache key for looking up the

Subject when considering more than just the identity in determining uniqueness.

For more information, see “Security attribute propagation” on page 1160.

Note: LtpaToken is generated for releases prior to WebSphere Application Server Version 5.1.1.

LtpaToken2 is generated for WebSphere Application Server Version 5.1.1 and beyond.

 Token type Purpose How to specify

LtpaToken only This token type is used for the same

SSO behavior existing in WebSphere

Application Server Version 5.1 and

previous releases. Also, this token

type is interoperable with those

previous releases.

Disable the Web inbound security

attribute propagation option, which

is located in the SSO configuration

panel in the administrative console.

To access this panel, complete the

following steps:

1. Click Security > Secure

administration, applications,

and infrastructure.

2. Under Web security, click Single

sign-on (SSO).

LtpaToken2 only This token type is used for Web

inbound security attribute propagation

and uses the AES, CBC, PKCS5

padding encryption strength (128-bit

key size). However, this token type is

not interoperable with releases prior

to WebSphere Application Server

Version 5.1.1. The token type

supports multiple attributes that are

specified in the token, mostly

containing information to contact the

original login server.

Enable the Web inbound security

attribute propagation option in the

SSO configuration panel within the

administrative console. Disable the

Interoperability mode option in the

SSO configuration panel within the

administrative console. To access this

panel, complete the following steps:

1. Click Security > Secure

administration, applications,

and infrastructure.

2. Under Web security, click Single

sign-on (SSO).

LtpaToken and LtpaToken2 These tokens together support both

of the previous two options. The

token types are interoperable with

releases prior to WebSphere

Application Server Version 5.1.1

because LtpaToken is present. The

security attribute propagation function

is enabled because the LtpaToken2 is

present.

Enable the Web inbound security

attribute propagation option in the

SSO configuration panel within the

administrative console. Enable the

Interoperability mode option in the

SSO configuration panel within the

administrative console. To access this

panel, complete the following steps:

1. Click Security > Secure

administration, applications,

and infrastructure.

2. Under Web security, click Single

sign-on (SSO).

The following steps are required to configure SSO for the first time.

1200 Administering applications and their environment

1. Open the administrative console.

Type http://localhost:port_number/ibm/console to access the administrative console in a Web

browser.

Port 9060 is the default port number for accessing the administrative console. During installation,

however, you might have specified a different port number. Use the appropriate port number.

2. Click Security > Secure administration, applications, and infrastructure.

3. Under Web security, click Single sign-on (SSO).

4. Click the Enabled option if SSO is disabled. After you click the Enabled option, make sure that you

complete the remaining steps to enable security.

5. Click Requires SSL if all of the requests are expected to use HTTPS.

6. Enter the fully qualified domain names in the Domain name field where SSO is effective. If you specify

domain names, they must be fully qualified. If the domain name is not fully qualified, WebSphere

Application Server does not set a domain name value for the LtpaToken cookie and SSO is valid only

for the server that created the cookie.

When you specify multiple domains, you can use the following delimiters: a semicolon (;), a space (),

a comma (,), or a pipe (|). WebSphere Application Server searches the specified domains in order from

left to right. Each domain is compared with the host name of the HTTP request until the first match is

located. For example, if you specify ibm.com; austin.ibm.com and a match is found in the ibm.com

domain first, WebSphere Application server does not continue to search for a match in the

austin.ibm.com domain. However, if a match is not found in either the ibm.com or austin.ibm.com

domains, then WebSphere Application Server does not set a domain for the LtpaToken cookie.

You can configure the Domain name field using any of the following values:

 Domain name value type Example Purpose

Blank The domain is not set. This causes the

browser to set the domain to the

request host name. The sign-on is

valid on that single host only.

Single domain name austin.ibm.com If the request is to a host within the

configured domain, the sign-on is valid

for all hosts within that domain.

Otherwise, it is valid on the request

host name only.

UseDomainFromURL UseDomainFromURL If the request is to a host within the

configured domain, the sign-on is valid

for all hosts within that domain.

Otherwise, it is valid on the request

host name only.

Multiple domain names austin.ibm.com;raleigh.ibm.com The sign-on is valid for all hosts within

the domain of the request host name.

Multiple domain names and

UseDomainFromURL

v austin.ibm.com;raleigh.ibm.com;

UseDomainFromURL

The sign-on is valid for all hosts within

the domain of the request host name.

If you specify the UseDomainFromURL, WebSphere Application Server sets the SSO domain name

value to the domain of the host that makes the request. For example, if an HTTP request comes from

server1.raleigh.ibm.com, WebSphere Application Server sets the SSO domain name value to

raleigh.ibm.com .

Tip: The value, UseDomainFromURL, is case insensitive. You can type usedomainfromurl to use this

value.

For more information, see “Single sign-on settings” on page 1224.

Chapter 16. Security 1201

7. Optional: Enable the Interoperability mode option if you want to support SSO connections in

WebSphere Application Server version 5.1.1 or later to interoperate with previous versions of the

application server. This option sets the old-style LtpaToken token into the response so it can be sent to

other servers that work only with this token type. However, this option applies only when the Web

inbound security attribute propagation option is enabled. In this case, both the LtpaToken and

LtpaToken2 tokens are added to the response. Otherwise, only the LtpaToken2 token is added to the

response. If the Web inbound security attribute propagation option is disabled, then only the

LtpaToken token is added to the response.

8. Optional: Enable the Web inbound security attribute propagation option if you want information

added during the login at a specific front-end server to propagate to other front-end servers. The SSO

token does not contain any sensitive attributes, but does understand where the original login server

exists in cases where it needs to contact that server to retrieve serialized information. It also contains

the cache look-up value for finding the serialized information in DynaCache, if both front-end servers

are configured in the same DRS replication domain. For more information, see “Security attribute

propagation” on page 1160.

Important: If the following statements are true, it is recommended that you disable the Web inbound

security attribute propagation option for performance reasons:

v You do not have any specific information added to the Subject during a login that

cannot be obtained at a different front-end server.

v You did not add custom attributes to the PropagationToken token using

WSSecurityHelper application programming interfaces (APIs).

If you find that you are missing custom information in the Subject, re-enable the Web

inbound security attribute propagation option to see if the information is propagated

successfully to other front-end application servers. If you disable SSO, but use a trust

association interceptor instead, you might still need to enable the Web inbound security

attribute propagation option if you want to retrieve the same Subject generated at

different front-end servers.

9. Click OK.

For the changes to take effect, save, stop, and restart all the product servers.

Configuring single sign-on capability with SPNEGO TAI

WebSphere Application Server provides a trust association interceptor (TAI) that uses the Simple and

Protected GSS-API Negotiation Mechanism (SPNEGO) to securely negotiate and authenticate HTTP

requests for secured resources in WebSphere Application Server. To deploy and use the SPNEGO TAI you

need to examine your installation and decide on how best to configure the SPNEGO TAI.

Lightweight Third Party Authentication (LTPA) is the default authentication mechanism for WebSphere

Application Server. However, you may need to configure LTPA prior to configuring the SPNEGO TAI. LTPA

is the required authentication mechanism for all trust association interceptors. You can configure LTPA by

clicking Security > Secure administration, applications, and infrastructure > Authentication

mechanisms and expiration.

Note: Enabling Web security single sign-on (SSO) is optional when you configure the SPNEGO TAI. For

more information, see “Implementing single sign-on to minimize Web user authentications” on page

1199.

Answer the following questions to establish how the SPNEGO TAI is deployed.

1. What is your criteria for intercepting HTTP requests?

v You must decide if the SPNEGO TAI deployment will use the HTTPHeaderFilter class as the default.

If you do use this class, then you must specify the exact filter properties for this class. The default

behavior of the SPNEGO TAI is to use the com.ibm.ws.spnego.HTTPHeaderFilter class to intercept

all requests.

1202 Administering applications and their environment

v If you do not use the sample com.ibm.ws.spnego.HTTPHeaderFilter class, then you must define a

new class that implements the com.ibm.wsspi.security.spnego.SpnegoTAIFilter interface.

v You can decide to further control what HTTP requests are intercepted using the Service Provider

Programming Interface (SPI), “Filtering HTTP requests for SPNEGO TAI” on page 1222

See “SPNEGO TAI custom configuration attributes” on page 1208 for descriptions of

v com.ibm.ws.security.spnego.SPN<id>.filterClass

v com.ibm.ws.security.spnego.SPN<id>.filter

2. Is user Id mapping to be used? If not, why not? WebSphere Application Server enables you to define

or develop a custom login module to map user IDs. See “Mapping user Ids from client to server for

SPNEGO” on page 1221 for more detail about performing this mapping.

You must decide, before deploying the TAI, whether or not to use this custom login module to perform

the SPNEGO TAI identity mapping

3. What type of encryption is to be used to process the SPNEGO tokens? Microsoft Windows Active

Directory supports two different Kerberos encryption types: RC4-HMAC and DES-CBC-MD5. The IBM

Java Generic Security Service (JGSS) library (and SPNEGO library) support both of these encryption

types.

Restriction: RC4-HMAC encryption is only supported with a Windows 2003 Server key distribution

center (KDC). RC4-HMAC encryption is not supported when using a Windows 2000

Server as a Kerberos KDC.

4. How will you handle credential delegation? Kerberos supports the delegation of credentials. A server

that receives Kerberos credentials from a client can impersonate that client to other servers by using

delegated credentials. Since SPNEGO TAI tokens are a wrapping of a Kerberos credential, a server

that receives Kerberos credentials within an SPNEGO token can use those Kerberos credentials to

impersonate the original user. That server can interact using SPNEGO over HTTP as a SPNEGO

client to other SPNEGO servers by composing an appropriate HTTP Authorization header.

5. Will the SPNEGO TAI be deployed in a single or multiple domain name service (DNS) domain

environment?

Web browsers running on Windows are sensitive to DNS domains. They only send a SPNEGO token

when the target host name identifies a host name defined in the DNS domain of the client machine.

You can use HTTP redirection to support this configuration with the creation of a pseudo Kerberos

service principal name (SPN) in each DNS domain. All SPNs that WebSphere Application Server

supports must have their secret keys available in Kerberos keytab files. To enable single sign-on

across multiple DNS domains, a separate Kerberos keytab file is generated for each SPN per domain.

These individual Kerberos keytab files must be merged before they can be used by WebSphere

Application Server.

6. How frequently will application servers reload the SPNEGO TAI properties The SPNEGO TAI has an

optional property reload feature that allows the reloading of the TAI properties without restarting the

Java virtual machine (JVM). This reload feature is controlled by the system properties

com.ibm.ws.security.spnego.propertyReloadFile and

com.ibm.ws.security.spnego.propertyReloadTimeout. These properties taken together enable the

SPNEGO TAI internal properties to be reloaded from a file on the file system after a certain time

period. If the com.ibm.ws.security.spnego.propertyReloadTimeout attribute is set to a valid integer

value, and the com.ibm.ws.security.spnego.propertyReloadFile attribute points to a file on the file

system, then each JVM reloads the SPNEGO TAI properties from the file after the timeout period

expires. Also, the SPNEGO TAI properties are reloaded only if the date on the file has changed. If

these reload properties are not set, then the SPNEGO TAI properties are only loaded once, at JVM

initialization, from the SPNEGO TAI custom properties that are defined in WebSphere Application

Server configuration data. See “SPNEGO TAI JVM configuration attributes” on page 1219 for more

information about these reload properties.

Chapter 16. Security 1203

The Windows Active Directory (Web) administrator, the WebSphere Application Server administrator, and

the application team review and answer these questions to determine the best deployment and

configuration settings for the SPNEGO TAI.

Configuring WebSphere Application Server environment to use SPNEGO:

The objective of the Web administrator is to configure and administer the Simple and Protected GSS-API

Negotiation Mechanism (SPNEGO) trust association interceptor (TAI) in WebSphere Application Server to

provide users who successfully authenticated in a Microsoft Active Directory domain with a single sign-on

capability. The administrator specifies additional criteria that selects what Web transactions to authenticate

in the single sign-on environment.

 Verify that the Web browser is configured to use the SPNEGO authentication mechanism. “Configuring the

Web browser to use SPNEGO” on page 1222 describes what the user needs to do to configure the Web

browser.

The Web administrator configures and enables the SPNEGO TAI. The process to configure and enable the

SPNEGO TAI operation in WebSphere Application Server requires some tasks that use tools not supplied

by WebSphere Application Server. Refer to those appropriate documents that describe these tasks and

tools. These documents are supplied by the appropriate supplier.

1. Create a user account in the Microsoft Active Directory.

2. Map the user account to the Kerberos service principal name (SPN). This user account represents the

WebSphere Application Server as being a Kerberize’d service with the Kerberos key distribution center

(KDC). Use the setspn tool to establish WebSphere Application Server as the user. This user account

is not the account name of the user. More information about the setspn tool can be found here,

Windows 2003 Technical Reference (setspn command)

3. Create the Kerberos keytab file and make it available to WebSphere Application Server. Use the

ktpass tool to create the Kerberos keytab file (krb5.keytab). Windows 2003 Technical Reference

(Kerberos keytab file and ktpass command) provides more information on creating the Kerberos keytab

file.

4. Configure and enable the application server and the associated SPNEGO TAI using the administrative

console or using the wsadmin command to perform command tasks. See “Configuring SPNEGO TAI in

WebSphere Application Server” on page 1208.

5. Select Lightweight Third-Party Authentication (LTPA) as the authentication mechanism. See

“Configuring the Lightweight Third Party Authentication mechanism” on page 1190.

6. Enable the SPNEGO TAI in each application server in which it is defined.

7. Install the Kerberos keytab file (krb5.keytab).

8. Update the associated Kerberos configuration (krb5.conf).

9. Configure JVM properties and enable SPNEGO TAI. See “Configuring JVM properties and enabling

SPNEGO TAI in WebSphere Application Server” on page 1217.

WebSphere Application Server is configured to use the SPNEGO TAI.

Configuring the Kerberos configuration properties:

The Kerberos configuration properties, or krb5.ini and krb5.conf files, must be configured on every

WebSphere Application Server instance in a cell in order to use the Simple and Protected GSS-API

Negotiation Mechanism (SPNEGO) trust association interceptor (TAI) for WebSphere Application Server.

 A configuration file for a Kerberos configuration on a UNIX platform follows:

[libdefaults]

 default_realm = WSSEC.AUSTIN.IBM.COM

 default_keytab_name = FILE:/etc/krb5.keytab

 default_tkt_enctypes = des-cbc-md5

1204 Administering applications and their environment

http://www.microsoft.com/technet/prodtechnol/windowsserver2003/library/TechRef/b3a029a1-7ff0-4f6f-87d2-f2e70294a576.mspx
http://www.microsoft.com/technet/prodtechnol/windowsserver2003/library/TechRef/64042138-9a5a-4981-84e9-d576a8db0d05.mspx
http://www.microsoft.com/technet/prodtechnol/windowsserver2003/library/TechRef/64042138-9a5a-4981-84e9-d576a8db0d05.mspx

default_tgs_enctypes = des-cbc-md5

[realms]

 WSSEC.AUSTIN.IBM.COM = {

 kdc = axel.austin.ibm.com:88

 default_domain = austin.ibm.com

 admin_server = axel.austin.ibm.com

 default domain = austin.ibm.com

 }

[domain_realm]

 .austin.ibm.com = WSSEC.AUSTIN.IBM.COM

In the above example, the Kerberos key distribution center (KDC) is axel.austin.ibm.com:88. The

Kerberos keytab file is located at: FILE:/etc/krb5.keytab. The Kerberos realm name is

WSSEC.AUSTIN.IBM.COM, which is also the Microsoft domain controller. After you update your Kerberos

configuration properties for your particular system deployment, your Kerberos configuration is ready for

use with the SPNEGO TAI.

The Kerberos configuration is configured for use with the SPNEGO TAI.

Creating the Kerberos configuration file for use with the SPNEGO TAI:

You use the wsadmin utility to create the Kerberos keytab configuration file for use with the Simple and

Protected GSS-API Negotiation Mechanism (SPNEGO) trust association interceptor (TAI) for WebSphere

Application Server.

 Note: A Kerberos keytab configuration file contains a list of keys that are analogous to user passwords. It

is important for hosts to protect their Kerberos keytab files by storing them on the local disk, which

makes them readable only by authorized users.

Use the wsadmin utility to configure the SPNEGO TAI for WebSphere Application Server:

1. Start WebSphere Application Server.

2. Start the command-line utility by running the wsadmin command from the app_server_root/bin

directory.

3. At the wsadmin prompt, enter the following command:

$AdminTask createKrbConfigFile

You can use the following parameters with this command:

 Option Description

<krbPath> This parameter is required. It provides the fully qualified

file system location of the Kerberos configuration (krb5.ini

or krb5.conf) file.

<realm> This parameter is required. It provides the Kerberos realm

name. The value of this attribute is used by the SPNEGO

TAI to form the Kerberos service principal name for each

of the hosts specified with the property

com.ibm.ws.security.spnego.SPN<id>.hostName.

<kdcHost> This parameter is required. It provides the host name of

the Kerberos Key Distribution Center (KDC).

<kdcPort> This parameter is optional. It provides the port number of

the KDC. The default value, if not specified, is 88.

<dns> This parameter is required. It provides the default domain

name service (DNS) that is used to produce a fully

qualified host name.

Chapter 16. Security 1205

Option Description

<keytabPath> This parameter is required. It provides the file system

location of the Kerberos keytab file.

<encryption> This parameter is optional. It identifies the list of

supported encryption types, separated by a space. The

specified value is used for the default_tkt_enctypes and

default_tgs_enctypes. The default encryption types, if not

specified, are des-cbc-md5 and rc4-hmac.

In the following example, the wsadmin command creates the krb5.ini file in the c:\winnt directory.

The default Kerberos keytab file is also in c:\winnt. The actual Kerberos realm name is

WSSEC.AUSTIN.IBM.COM and the KDC host name is host1.austin.ibm.com.

wsadmin>$AdminTask createKrbConfigFile {-krbPath

c:\winnt\krb5.ini -realm WSSEC.AUSTIN.IBM.COM -kdcHost host1.austin.ibm.com

 -dns austin.ibm.com -keytabPath c:\winnt\krb5.keytab}

The Kerberos keytab configuration file is created for use with the SPNEGO TAI.

Note: The default Kerberos krb5.ini file on Windows is /winnt/krb5.ini and on a distributed

environment is /etc/krb5. If you specify another location path, then you must also specify the

java.security.krb5.conf JVM property.

For example, if your krb5.conf file is specified at /opt/IBM/WebSphere/profiles/AppServer/etc/
krb5.conf, then you need to specify -Djava.security.krb5.con=/opt/IBM/WebSphere/profiles/
AppServer/etc/krb5.conf.

Creating the Kerberos keytab file:

You use the ktpass tool to create the Kerberos keytab file (krb5.keytab) for use with the Simple and

Protected GSS-API Negotiation Mechanism (SPNEGO) trust association interceptor (TAI) for WebSphere

Application Server.

 Below is a summary of the functions available when you enter ktpass -? on the command line.

C:\MS SDK>ktpass -?

Command line options:

---------------------most useful args

[- /] out : Keytab to produce

[- /] princ : Principal name (user@REALM)

[- /] pass : password to use

 use "*" to prompt for password.

---------------------less useful stuff

[- /] mapuser : map princ (above) to this user account (default: don’t)

[- /] mapOp : how to set the mapping attribute (default: add it)

[- /] mapOp : is one of:

[- /] mapOp : add : add value (default)

[- /] mapOp : set : set value

[- +] DesOnly : Set account for des-only encryption (default:no)

[- /] in : Keytab to read/digest

---------------------options for key generation

[- /] crypto : Cryptosystem to use

[- /] crypto : is one of:

[- /] crypto : DES-CBC-CRC : for compatibility

[- /] crypto : DES-CBC-MD5 : default

[- /] crypto : RC4 :

[- /] ptype : principal type in question

[- /] ptype : is one of:

[- /] ptype : KRB5_NT_PRINCIPAL : The general ptype-- recommended

[- /] ptype : KRB5_NT_SRV_INST : user service instance

[- /] ptype : KRB5_NT_SRV_HST : host service instance

1206 Administering applications and their environment

[- /] kvno : Override Key Version Number

 Default: query DC for kvno. Use /kvno 1 for Win2K compat.

[- +] Answer : +Answer answers YES to prompts. -Answer answers NO.

[- /] Target : Which DC to use. Default:detect

You use the ktpass tool in the following ways to create the Kerberos keytab file:

For a single DES encryption type

 From a command prompt, run the ktpass command:

ktpass -out c:\temp\server3.keytab

-princ HTTP/server3.wasteched30.torolab.ibm.com@WASTECHED30.TOROLAB.IBM.COM

-mapUser server3

-mapOp set -pass was1edu

-crypto DES-CBC-MD5

+DesOnly

 Table 11. Using ktpass for a single DES encryption type

Option Explanation

-out c:\temp\server3.keytab The key is written to this output file.

-princ HTTP/server3.

wasteched30.torolab.ibm.com

@WASTECHED30.TOROLAB.IBM.COM

The concatenation of the user logon name, and the realm must

be in uppercase.

-mapUser The key is mapped to the user, server3.

-mapOp This option sets the mapping.

-pass was1edu This option is the password for the user ID.

-crypto DES-CBC-MD5 This option uses the single DES encryption type.

+DesOnly This option generates only DES encryptions.

For the RC4-HMAC encryption type

 Important: RC4-HMAC encryption is only supported when using a Windows 2003 Server as KDC.

RC4-HMAC encryption is not supported with a Windows 2000 Server as KDC.
From a command prompt, run the ktpass command.

ktpass -out c:\temp\poc.keytab

-princ HTTP/interop.wasteched2.torolab.ibm.com@WASTECHED2.TOROLAB.IBM.COM

-mapUser server3

-mapOp set

–pass was1edu

-crypto RC4

 Table 12. Using ktpass for the RC4-HMAC encryption type

Option Explanation

-out f:\abc\server3.keytab The key is written to this output file.

-princ HTTP/server3.

wasteched30.torolab.ibm.com

@WASTECHED30.TOROLAB.IBM.COM

The concatenation of the user logon name, and the realm must be

in uppercase.

-mapUser The key is mapped to the user, server3.

-mapOp This option sets the mapping.

-pass was1edu This option is the password for the user ID.

-crypto RC4 This option chooses the RC4-HMAC encryption type.

The Kerberos keytab file is created for use with the SPNEGO TAI.

Chapter 16. Security 1207

Configuring SPNEGO TAI in WebSphere Application Server:

Performing this task helps you, as Web administrator, to ensure that WebSphere Application Server is

properly configured to enable the operation of the Simple and Protected GSS-API Negotiation (SPNEGO)

trust association interceptor (TAI).

 You need to know how to use the WebSphere Application Server administrative console to manage the

security configuration and have the proper authority to modify the security configuration of the application

server.

Note: It is recommended that you use wsadmin to manage the SPNEGO TAI properties.

Complete the following steps to enable the operation of the SPNEGO TAI.

1. Log on to the WebSphere Application Server administrative console.

2. Click Security > Secure administration, applications, and infrastructure.

3. Expand Web security and click Trust association.

4. Under the General Properties heading, select the Enable trust association check box, then click

Interceptors.

5. Select the SPNEGO TAI in the list of interceptors, then click Custom properties.

6. Click New and then fill in the Name and Value fields. Click OK. Repeat this step for each custom

property that you want to apply to the SPNEGO TAI.

7. After you finish defining your custom properties, click Save to store the updated SPNEGO TAI

configuration.

Your SPNEGO TAI configuration is now configured for WebSphere Application Server. You must ensure

that:

v A user account is created in the Microsoft Active Directory and mapped to a Kerberos principal name.

v A Kerberos keytab file (krb5.keytab) is created and made available to the WebSphere Application

Server. The Kerberos keytab file contains keys WebSphere Application Server uses to authenticate the

user in the Microsoft Active Directory and the Kerberos account.

SPNEGO TAI custom configuration attributes:

The Simple and Protected GSS-API Negotiation Mechanism (SPNEGO) trust association interceptor (TAI)

custom configuration attributes control different operational aspects of the SPNEGO TAI. You can specify

different attribute values for each application server.

 Each of the attributes defined in the following table is specified in the Custom Properties panel for the

SPNEGO TAI using the administrative console facility. For convenience, you can optionally place these

attributes in a properties file. In this case, the SPNEGO TAI loads the configuration attributes from the file

instead of the Custom Properties panel definition. Refer to com.ibm.ws.security.spnego.propertyReloadFile

property as defined in “SPNEGO TAI JVM configuration attributes” on page 1219.

To assign unique attribute names that identify each possible SPN, an SPN<id> is embedded in the

attribute name and used to group the attributes that are associated with each SPN. The SPN<id> s are

numbered sequentially for each attribute group.

 Table 13.

Attribute Name Required Default Value

com.ibm.ws.security.spnego.SPN<id>.hostName Yes None

com.ibm.ws.security.spnego.SPN<id>.filterClass No See the description that

follows.

1208 Administering applications and their environment

Table 13. (continued)

Attribute Name Required Default Value

com.ibm.ws.security.spnego.SPN<id>.filter No See the description that

follows.

com.ibm.ws.security.spnego.SPN<id>.enableCredDelegate No false

com.ibm.ws.security.spnego.SPN<id>.spnegoNotSupportedPage No See the description that

follows.

com.ibm.ws.security.spnego.SPN<id>.NTLMTokenReceivedPage No See the description that

follows.

com.ibm.ws.security.spnego.SPN<id>.trimUserName No true

com.ibm.ws.security.spnego.SPN<id>.hostName

This attribute is required. It specifies the hostname in the SPN used by the SPNEGO TAI to establish

a Kerberos secure context.

Note: The hostname is the long form of hostname. For example, myHostName.austin.ibm.com.
The Kerberos SPN is a string of the form HTTP/hostname@realm. The complete SPN is used with the

Java Generic Security Service (JGSS) by the SPNEGO provider to obtain the security credential and

security context that are used in the authentication process.

com.ibm.ws.security.spnego.SPN<id>.filterClass

This attribute is optional. It specifies the name of the Java class that is used by the SPNEGO TAI to

select which HTTP requests are subject to SPNEGO authentication. If no class is specified, the default

com.ibm.ws.security.spnego.HTTPHeaderFilter implementation class is used. The Java class that is

specified must implement the com.ibm.wsspi.security.spnego.SpnegoFilter interface. A default

implementation of this interface is provided. Specify the

com.ibm.ws.security.spnego.HTTPHeaderFilter class to use the default implementation. This class

uses the selection rules specified with the com.ibm.ws.security.spnego.SPN<id>.filter property.

com.ibm.ws.security.spnego.SPN<id>.filter

This attribute is optional. It defines the filtering criteria that is used by the specified class with the

previous attribute. It defines arbitrary criteria that is meaningful to the implementation class used. The

com.ibm.ws.security.spnego.HTTPHeaderFilter default implementation class uses this attribute to

define a list of selection rules that represent conditions that are matched against the HTTP request

headers to determine whether or not the HTTP request is selected for SPNEGO authentication.

 Each condition is specified with a key-value pair, separated from each other by a semicolon. The

conditions are evaluated from left to right, as they display in the specified attribute. If all conditions are

met, the HTTP request is selected for SPNEGO authentication.

 The key and value in the key-value pair are separated by an operator that defines which condition is

checked. The key identifies an HTTP request header to extract from the request and its value is

compared with the value that is specified in the key-value pair according to the operator specification.

If the header that is identified by the key is not present in the HTTP request, the condition is treated as

not being met.

 Any of the standard HTTP request headers can be used as the key in the key-value pairs. Refer to the

HTTP specification for the list of valid headers. In addition, two keys are defined to extract information

from the request, also useful as a selection criterion, which is not available through standard HTTP

request headers. The remote-address key is used as a pseudo header to retrieve the remote TCP/IP

address of the client application that sent the HTTP request. The request-URL key is used as a

pseudo header to retrieve the URL that is used by the client application to make the request. The

interceptor uses the result of the getRequestURL operation in the javax.servlet.http.HttpServletRequest

interface to construct the Web address. If a query string is present, the result of the getQueryString

operation in the same interface is also used. In this case, the complete URL is constructed as follows:

String url = request.getRequestURL() + ‘?’ + request.getQueryString();

Chapter 16. Security 1209

The following operators and conditions are defined:

 Table 14. Filter conditions and operations

Condition Operator Example

Match exactly = =

Arguments are compared as

equal.

host=host.my.company.com

Match partially (includes) %=

Arguments are compared with a

partial match being valid.

user-agent%=IE 6

Match partially (includes one of

many)

^=

Arguments are compared with a

partial match being valid for one

of many arguments specified.

request-url^=webApp1|webApp2|webApp3

Does not match !=

Arguments are compared as not

equal.

request-url!=noSPNEGO

Greater than >

Arguments are compared

lexogaphically as greater than.

remote-address>192.168.255.130

Less than <

Arguments are compared

lexographically as less than.

remote-address<192.168.255.135

com.ibm.ws.security.spnego.SPN<id>.enableCredDelegate

This attribute is optional. It indicates whether or not the Kerberos SPNEGO delegated credentials are

stored by the SPNEGO TAI. This attribute enables the capability for an application to retrieve the

stored credentials and propagate them to other applications downstream for additional SPNEGO

authentication.

 This attribute requires use of the advanced Kerberos credential delegation feature and requires

development of custom logic by the application developer. The developer must interact directly with the

Kerberos Ticket Granting Service (TGS) to obtain a Ticket Granting Ticket (TGT) using the delegated

Kerberos credentials on behalf of the end-user who originated the request. The developer must also

construct the appropriate Kerberos SPNEGO token and include it in the HTTP request to continue the

downstream SPNEGO authentication process, including handling additional SPNEGO

challenge-response exchange, if necessary.

com.ibm.ws.security.spnego.SPN<id>.spnegoNotSupportedPage

This attribute is optional. It specifies the Web address of a resource that contains the content that the

SPNEGO TAI includes in the HTTP response that the (browser) client application displays if it does not

support SPNEGO authentication. It can specify a Web (http://) or a file (file://) resource. If this attribute

is not specified or the interceptor cannot find the specified resource, the following content is used:

<html><head><title>SPNEGO authentication is not supported</title></head>

<body>SPNEGO authentication is not supported on this client</body></html>;

com.ibm.ws.security.spnego.SPN<id>.NTLMTokenReceivedPage

This attribute is optional. It specifies the Web address of a resource that contains the content that the

SPNEGO TAI includes in the HTTP response that the (browser) client application displays when the

SPNEGO token is received by the interceptor when the challenge-response handshake contains a NT

1210 Administering applications and their environment

LAN Manager (NTLM) token instead of the expected SPNEGO token. It can specify a Web (http://) or

a file (file://) resource. If this attribute is not specified or the interceptor cannot find the specified

resource, the following content is used:

<html><head><title>An NTLM Token was received.</title></head>

<body>Your browser configuration is correct, but you have not logged into a supported

Microsoft(R) Windows(R) Domain.

<p>Please login to the application using the normal login page.</html>

com.ibm.ws.security.spnego.SPN<id>.trimUserName

This attribute is optional. It specifies whether (true) or not (false) the SPNEGO TAI is to remove the

suffix of the principal user name, starting from the ″@″ that precedes the Kerberos realm name. If this

attribute is set to true, the suffix of the principal user name is removed. If this attribute is set to false,

the suffix of the principal name is retained. The default value used is true. For example,

 When com.ibm.ws.security.spnego.SPN<id>.trimUserName = true

bobsmith@myKerberosRealm becomes bobsmith

When com.ibm.ws.security.spnego.SPN<id>.trimUserName = false

bobsmith@myKerberosRealm remains bobsmith@myKerberosRealm

Note: The following commands tasks can be used to operate on these SPNEGO TAI attributes:

v “Adding SPNEGO TAI properties using the wsadmin utility”

v “Deleting SPNEGO TAI properties using the wsadmin utility” on page 1216

v “Modifying SPNEGO TAI properties using the wsadmin utility” on page 1214

v “Displaying SPNEGO TAI properties using the wsadmin utility” on page 1216

 Related concepts

 “Single sign-on for HTTP requests using SPNEGO” on page 1153
WebSphere Application Server provides a trust association interceptor (TAI) that uses the Simple and

Protected GSS-API Negotiation Mechanism (SPNEGO) to securely negotiate and authenticate HTTP

requests for secured resources in WebSphere Application Server.

 Related tasks

 “Adding SPNEGO TAI properties using the wsadmin utility”
You use the wsadmin utility to add properties for the Simple and Protected GSS-API Negotiation

Mechanism (SPNEGO) trust association interceptor (TAI) in the security configuration for WebSphere

Application Server.

 “Deleting SPNEGO TAI properties using the wsadmin utility” on page 1216
You use the wsadmin utility to delete properties in the configuration of the Simple and Protected

GSS-API Negotiation Mechanism (SPNEGO) trust association interceptor (TAI) for WebSphere

Application Server.

 “Modifying SPNEGO TAI properties using the wsadmin utility” on page 1214
You use the wsadmin utility to modify the properties in the configuration of the Simple and Protected

GSS-API Negotiation Mechanism (SPNEGO) trust association interceptor (TAI) for WebSphere

Application Server.

 “Displaying SPNEGO TAI properties using the wsadmin utility” on page 1216
You use the wsadmin utility to display the properties in the configuration of the Simple and Protected

GSS-API Negotiation Mechanism (SPNEGO) trust association interceptor (TAI) for WebSphere

Application Server.

 “Mapping user Ids from client to server for SPNEGO” on page 1221
You can use a system programming interface to customize the behavior of the Simple and Protected

GSS-API Negotiation Mechanism (SPNEGO) trust association interceptor (TAI) by implementing

arbitrary mappings of the end-user’s identity, which is retrieved from Microsoft Active Directory to the

identity that is used in the WebSphere Application Server security registry.

Adding SPNEGO TAI properties using the wsadmin utility:

Chapter 16. Security 1211

You use the wsadmin utility to add properties for the Simple and Protected GSS-API Negotiation

Mechanism (SPNEGO) trust association interceptor (TAI) in the security configuration for WebSphere

Application Server.

 Use the wsadmin utility to configure the SPNEGO TAI for WebSphere Application Server:

1. Start WebSphere Application Server.

2. Start the command-line utility by running the wsadmin command from the app_server_root/bin

directory.

3. At the wsadmin prompt, enter the following command:

$AdminTask addSpnegoTAIProperties

You can use the following parameters with this command:

 Option Description

<spnId> This is the SPN identifier for the group of custom

properties that are to be defined with this command. If

you do not specify this parameter, an unused SPN

identifier is assigned.

<host> It specifies the host name portion in the SPN used by the

SPNEGO TAI to establish a Kerberos secure context.

This parameter is required.

<filter> This attribute is optional. It defines the filtering criteria

used by the class specified with the above attribute. If no

filter is specified, all HTTP requests are subject to

SPNEGO authentication.

<filterClass> This attribute is optional. It specifies the name of the Java

class used by the SPNEGO TAI to select which HTTP

requests will be subject to SPNEGO authentication. If no

filter class is specified, the default filter class,

com.ibm.ws.security.spnego.HTTPHeaderFilter, is used.

<noSpnegoPage> This attribute is optional. It specifies the URL of a

resource that contains the content the SPNEGO TAI will

include in the HTTP response to be displayed by the

(browser) client application if it does not support

SPNEGO authentication.

If you do not specify the noSpnegoPage attribute then the

default is used:

"<html><head><title>SPNEGO

authentication is not supported.

</title></head>" +

"<body>SPNEGO authentication is

not supported on this client.

</body></html>";

1212 Administering applications and their environment

Option Description

<ntlmTokenPage> This attribute is optional. It specifies the URL of a

resource that contains the content the SPNEGO TAI will

include in the HTTP response to be displayed by the

(browser) client application when the SPNEGO token

received by the interceptor after the challenge-response

handshake contains a NT LAN manager (NTLM) token

instead of the expected SPNEGO token.

If you do not specify the ntlmTokenPage attribute then the

default is used:

"<html><head><title>An NTLM

Token was received.</title></head>"

+ "<body>Your browser configuration

is correct, but you have not

logged into a supported Windows

Domain."

+ "<p>Please login to the application

using the normal login page.</html>";

<trimUserName> This parameter is optional. It specifies whether (true) or

not (false) the SPNEGO TAI is to remove the suffix of

the principal user name, starting from the ″@″ that

precedes the Kerberos realm name. If this attribute is set

to true, the suffix of the principal user name is removed.

If this attribute is set to false, the suffix of the principal

name is retained. The default value used is true.

SPNEGO TAI properties have been added for this WebSphere Application Server.

Example 1

The following example configures the SPNEGO TAI to intercept HTTP request that contain IE 6 in the

user agent request header. The SPNEGO TAI uses the SPN of HTTP/
myhost.ibm.com@<default_realm> to authenticate the request originator.

$AdminTask addSpnegoTAIProperties -host myhost.ibm.com -filter user-agent%=IE 6

Example 2

 The following is an example of adding SPNEGOTAIProperties for SPN1 to use the default filterClass

and to intercept all requests for the host, central01.austin.ibm.com.

wsadmin>$AdminTask addSpnegoTAIProperties -interactive

Add SPNEGO TAI properties

Add SPNEGO TAI configuration properties.

*Host name in Service Principal Name (host): central01.austin.ibm.com

Service Principal Name identifier (spnId): 1

HTTP header filter rule (filter):

Name of class used to filter HTTP requests (filterClass):

SPNEGO not supported browser response (noSpnegoPage):

NTLM Token received browser response (ntlmTokenPage):

Trim User Name browser response (trimUserName):

Add SPNEGO TAI properties

F (Finish)

C (Cancel)

Select [F, C]: [F] f

WASX7278I: Generated command line: $AdminTask addSpnegoTAIProperties {-host central01.austin.ibm.com}

com.ibm.ws.security.spnego.SPN1.hostName=central01.austin.ibm.com

wsadmin>

Chapter 16. Security 1213

Modifying SPNEGO TAI properties using the wsadmin utility:

You use the wsadmin utility to modify the properties in the configuration of the Simple and Protected

GSS-API Negotiation Mechanism (SPNEGO) trust association interceptor (TAI) for WebSphere Application

Server.

 You use the wsadmin utility to configure the SPNEGO TAI for WebSphere Application Server:

1. Start WebSphere Application Server.

2. Start the command-line utility by running the wsadmin command from the app_server_root/bin

directory.

3. At the wsadmin prompt, enter the following command:

$AdminTask modifySpnegoTAIProperties

You can use the following parameters with this command:

 Option Description

<spnId> The SPN identifier for the group of custom properties that

are to be defined with this command. You must specify

this parameter.

<host> This parameter is optional. It specifies the host name

portion in the SPN used by the SPNEGO TAI to establish

a Kerberos secure context.

<filter> This parameter is optional. It defines the filtering criteria

used by the class specified with the above attribute.

<filterClass> This parameter is optional. It specifies the name of the

Java class used by the SPNEGO TAI to select which

HTTP requests will be subject to SPNEGO authentication.

If no class is specified, all HTTP requests will be subject

to SPNEGO authentication.

<noSpnegoPage> This parameter is optional. It specifies the URL of a

resource that contains the content the SPNEGO TAI will

include in the HTTP response to be displayed by the

(browser) client application if it does not support

SPNEGO authentication.

If you do not specify the noSpnegoPage attribute then the

default is used:

"<html><head><title>SPNEGO

authentication is not supported.

</title></head>" +

"<body>SPNEGO authentication is

not supported on this client.

</body></html>";

1214 Administering applications and their environment

Option Description

<ntlmTokenPage> This parameter is optional. It specifies the URL of a

resource that contains the content the SPNEGO TAI will

include in the HTTP response to be displayed by the

(browser) client application when the SPNEGO token

received by the interceptor after the challenge-response

handshake contains a NT LAN manager (NTLM) token

instead of the expected SPNEGO token.

If you do not specify the ntlmTokenPage attribute then the

default is used:

"<html><head><title>An NTLM Token

was received.</title></head>"

+ "<body>Your browser configuration

is correct, but you have not

logged into a supported Windows

Domain."

+ "<p>Please login to the application

using the normal login page.</html>";

<trimUserName> This parameter is optional. It specifies whether (true) or

not (false) the SPNEGO TAI is to remove the suffix of

the principal user name, starting from the ″@″ that

precedes the Kerberos realm name. If this attribute is set

to true, the suffix of the principal user name is removed.

If this attribute is set to false, the suffix of the principal

name is retained. The default value used is true.

SPNEGO TAI properties are modified for this WebSphere Application Server.

Example 1

The following example configures the SPNEGO TAI to intercept HTTP request that contain IE 6 in the

user agent request header. The SPNEGO TAI uses the SPN of HTTP/
myhost.ibm.com@<default_realm> to authenticate the request originator. Then the example modifies

the value of the filter custom property that was defined and changes it from user-agent%=IE 6 to

host==myhost.company.com.

$AdminTask addSpnegoTAIProperties -host myhost.ibm.com -filter user-agent%=IE 6

$AdminTask modifySpnegoTAIProperties -spnId 1 -filter host==myhost.company.com

Example 2

This is an example of modifying the SPNEGO TAI for SPN1 properties to add a filter for host

central01.austin.ibm.com.

wsadmin>$AdminTask modifySpnegoTAIProperties -interactive

Modify SPNEGO TAI properties

Modify SPNEGO TAI configuration properties

*Service Principal Name identifier (spnId): 1

Host name in Service Principal Name (host): central01.austin.ibm.com

HTTP header filter rule (filter): request-url!=noSPNEGO;request-url%=snoop

Name of class used to filter HTTP requests (filterClass):

SPNEGO not supported browser response (noSpnegoPage):

NTLM Token received browser response (ntlmTokenPage):

Trim User Name browser response (trimUserName):

Modify SPNEGO TAI properties

F (Finish)

Chapter 16. Security 1215

C (Cancel)

Select [F, C]: [F] f

WASX7278I: Generated command line: $AdminTask modifySpnegoTAIProperties {-spnId

1 -host w2003secdev.austin.ibm.com -filter request-url!=noSPNEGO;request-url%=sn

oop}

com.ibm.ws.security.spnego.SPN1.filter=request-url!=noSPNEGO;request-url%=snoop

com.ibm.ws.security.spnego.SPN1.hostName=central01.austin.ibm.com

wsadmin>

Deleting SPNEGO TAI properties using the wsadmin utility:

You use the wsadmin utility to delete properties in the configuration of the Simple and Protected GSS-API

Negotiation Mechanism (SPNEGO) trust association interceptor (TAI) for WebSphere Application Server.

 You use the wsadmin utility to configure the SPNEGO TAI for WebSphere Application Server:

1. Start WebSphere Application Server.

2. Start the command-line utility by running the wsadmin command from the app_server_root/bin

directory.

3. At the wsadmin prompt, enter the following command:

$AdminTask deleteSpnegoTAIProperties

You can use the following parameters with this command:

 Option Description

<spnId> This is an optional parameter. The SPN identifier for the

group of custom properties that are to be deleted with this

command. If you do not specify this parameter, all

SPNEGO TAI custom properties are deleted.

SPNEGO TAI properties are deleted for this WebSphere Application Server.

Example 1

The following example deletes all the SPNEGO TAI properties for SPN2

wsadmin>$AdminTask deleteSpnegoTAIProperties {-spnId 2}

Example 2

The following example deletes all SPNEGO TAI properties

wsadmin>$AdminTask deleteSpnegoTAIProperties

com.ibm.ws.security.spnego.SPN1.filter=request-url!=noSPNEGO;request-url%=snoop

com.ibm.ws.security.spnego.SPN1.hostName=central01.austin.ibm.com

com.ibm.ws.security.spnego.SPN2.hostName=wssecpd.austin.ibm.com

wsadmin>

Displaying SPNEGO TAI properties using the wsadmin utility:

You use the wsadmin utility to display the properties in the configuration of the Simple and Protected

GSS-API Negotiation Mechanism (SPNEGO) trust association interceptor (TAI) for WebSphere Application

Server.

 You use the wsadmin utility to configure the SPNEGO TAI for WebSphere Application Server:

1. Start WebSphere Application Server.

2. Start the command-line utility by running the wsadmin command from the app_server_root/bin

directory.

3. At the wsadmin prompt, enter the following command:

1216 Administering applications and their environment

$AdminTask showSpnegoTAIProperties

You can use the following parameters with this command:

 Option Description

<spnId> This is an optional parameter. The service principal name

(SPN) identifier for the group of custom properties that

are to be displayed with this command. If you do not

specify this parameter, all SPNEGO TAI custom

properties are displayed.

SPNEGO TAI properties are displayed for this WebSphere Application Server.

Example 1

The following example displays all SPNEGO TAI properties.

wsadmin>$AdminTask showSpnegoTAIProperties

com.ibm.ws.security.spnego.SPN1.filter=request-url!=noSPNEGO;request-url%=snoop

com.ibm.ws.security.spnego.SPN1.hostName=central01.austin.ibm.com

com.ibm.ws.security.spnego.SPN2.hostName=wssecpd.austin.ibm.com

wsadmin>

Example 2

The following example displays SPNEGO TAI properties for SPN1 and host, central01.austin.ibm.com.

wsadmin>$AdminTask showSpnegoTAIProperties -interactive

Show SPNEGO TAI configuration properties.

Display SPNEGO TAI configuration properties.

Service Principal Name identifier (spnId): 1

Show SPNEGO TAI configuration properties.

F (Finish)

C (Cancel)

Select [F, C]: [F]

WASX7278I: Generated command line: $AdminTask showSpnegoTAIProperties {-spnId 1}

com.ibm.ws.security.spnego.SPN1.filter=request-url!=noSPNEGO;request-url%=snoop

com.ibm.ws.security.spnego.SPN1.hostName=central01.austin.ibm.com

com.ibm.ws.security.spnego.SPN1.trimUserName=true

wsadmin>

Configuring JVM properties and enabling SPNEGO TAI in WebSphere Application Server:

Performing this task helps you, as Web administrator, to ensure that WebSphere Application Server is

configured to enable the operation of the Simple and Protected GSS-API Negotiation mechanism

(SPNEGO) trust association interceptor (TAI) with the required Java virtual machine (JVM) property.

 You need to know how to use the WebSphere Application Server administrative console to manage the

security configuration and have the proper authority to modify the security configuration of the application

server.

Complete the following steps to enable the operation of the SPNEGO TAI by setting the JVM required

property.

1. Log on to WebSphere Application Server administrative console.

2. Click Servers > Application servers.

Chapter 16. Security 1217

3. Select the appropriate servers and click Java and process management > Process Definition.

4. Click Java virtual machine. In the Generic JVM arguments field, type

-Dcom.ibm.ws.security.spnego.isEnabled=true.

5. Click Apply > OK to save the configuration

The application server is configured and ready to provide a single sign-on environment for end users who

have successfully authenticated in a Microsoft Active Directory domain. You must restart each application

server that is configured for SPNEGO Web authentication.

Enabling the SPNEGO TAI using scripting:

You use the wsadmin utility to enable the Simple and Protected GSS-API Negotiation Mechanism

(SPNEGO) trust association interceptor (TAI) for WebSphere Application Server.

 Before starting this task, the wsadmin tool must be running. See the Starting the wsadmin scripting client

article for more information.

Perform the following steps to enable the SPNEGO TAI:

1. Identify the server and assign it to the server1 variable:

v Using Jacl:

set server1 [$AdminConfig getid /Cell:mycell/Node:mynode/Server:server1/]

v Using Jython:

server1 = AdminConfig.getid("Cell:mycell/Node:mynode/Server:server1/")

print server1

Example output:

server1(cells/mycell/nodes/mynode|servers/seerver1|server.xml#Server_1)

2. Identify the Java virtual machine (JVM) belonging to this server and assign it to the jvm variable:

v Using Jacl:

set jvm [$AdminConfig list JavaVirutalMachine $server1]

v Using Jython:

jvm = AdminConfig.list(’JavaVirutalMachine’,server1’)

Example output:

(cells/mycell/nodes/mynode/servers/server1:server.xml#JavaVirtualMachine_1)

(cells/mycell/nodes/mynode/servers/server1:server.xml#JavaVirtualMachine_2)

3. Identify the controller JVM of the server:

v Using Jacl:

set cjvm [lindex $jvm 0]

Using Jython:

get line separator

import java

lineSeparator = java.lang.System.getProperty(’line.separator’)

arrayJVMs = jvm.split(lineSeparator)

cjvm = arrayJVMs[0]

4. Modify the generic JVM arguments to enable SPNEGO TAI:

v Using Jacl:

$AdminConfig modify $cjvm { {genericJvmArguments "-Dcom.ibm.ws.security.spnego.isEnabled=true"} }

v Using Jython:

AdminConfig.modify(cjvm, [[’genericJvmArguments’, "-Dcom.ibm.ws.security.spnego.isEnabled=true"]])

5. Save the configuration changes. See the Saving configuration changes with the wsadmin tool article

for more information.

1218 Administering applications and their environment

6. In a network deployment environment only, synchronize the node. See the Synchronizing nodes with

the wsadmin tool article for more information.

SPNEGO TAI JVM configuration attributes:

Java virtual machine (JVM) attributes control the operation of the Simple and Protected GSS-API

Negotiation Mechanism (SPNEGO) trust association interceptor (TAI).

 The following JVM attributes control operation of the SPNEGO TAI. Different attribute values can be

specified for each application server.

 Table 15. JVM configuration attributes

Attribute Name Required

Value

Type

Default

Value Recommended Value

com.ibm.ws.security.spnego.isEnabled No Boolean False True

com.ibm.ws.security.spnego.propertyReloadFile No String None For Windows

C:\temp\TAI.props

For UNIX

/tmp/TestTAI.Properties

com.ibm.ws.security.spnego.propertyReloadTimeout No Integer None 120

com.ibm.ws.security.spnego.isEnabled

Use this attribute to enable or disable operation of the SPNEGO TAI in a given application server.

When set to false, the SPNEGO TAI is disabled and not used by the Web authentication module for

authenticating any Web requests. When set to true, the SPNEGO TAI is enabled and used by the

Web authentication module for authenticating any Web requests.

com.ibm.ws.security.spnego.propertyReloadFile

Use this attribute to identify the file that contains configuration properties for the SPNEGO TAI, when it

is not convenient to stop and restart the application server. The properties contained in this file can be

reloaded to configure the SPNEGO TAI.

Important: the properties that are defined in the specified file override any properties defined using

the administrative console.

A sample of this reload file follows:

Template properties files for SPNEGO TAI

Where possible defaults have been provided.

#---

Hostname

#---

#com.ibm.ws.spnego.SPN1.HostName=wsecurity.austin.ibm.com

#---

(Optional) SpnegoNotSupportedPage

#---

#com.ibm.ws.spnego.SPN1.SpnegoNotSupportedPage=

#---

(Optional) NTLMTokenReceivedPage

#---

#com.ibm.ws.spnego.SPN1.NTLMTokenReceivedPage=

Chapter 16. Security 1219

#---

(Optional) FilterClass

#---

#com.ibm.ws.spnego.SPN1.FilterClass=com.ibm.ws.spnego.HTTPHeaderFilter

#---

(Optional) Filter

#---

#com.ibm.ws.spnego.SPN1.Filter=

Important: If com.ibm.ws.security.spnego.propertyReloadFile attribute is set, but the

com.ibm.ws.security.spnego.propertyReloadTimeout attribute is not, then the SPNEGO TAI

is not initialized.

com.ibm.ws.security.spnego.propertyReloadTimeout

Use this attribute to specify a time interval in seconds that elapses after which the SPNEGO TAI

reloads the configuration properties. Also, the SPNEGO TAI reloads the configuration properties if the

file that is identified by the com.ibm.ws.security.spnego.propertyReloadFile attribute changed since the

last time the configuration attributes were retrieved. This time interval in seconds must be specified as

a positive integer.

Important:

v If the com.ibm.ws.security.spnego.propertyReloadFile attribute and the

com.ibm.ws.security.spnego.propertyReloadTimeout attribute are not set, then the SPNEGO

TAI properties are only loaded once from the SPNEGO TAI custom properties defined in the

WebSphere Application Server configuration data. This one time loading occurs when the

JVM is initialized.

v If com.ibm.ws.security.spnego.propertyReloadTimeout attribute is set, but the

com.ibm.ws.security.spnego.propertyReloadFile attribute is not, then the SPNEGO TAI is

not initialized.

The following examples show how to enable operation of the SPNEGO TAI by setting the

com.ibm.ws.security.spnego.isEnabled JVM property to true using the scripting that is available in

WebSphere Application Server for AdminConfig commands.

Using JACL:

set server [$AdminConfig getid /Cell:mycell/Node:mynode/Server:myserver]

set jvm [$AdminConfig list JavaVirtualMachine $server]

$AdminConfig modify $jvm {{genericJvmArguments "-Dcom.ibm.ws.security.spnego.isEnabled =true"}}

$AdminConfig save

Using Jython:

server = AdminConfig.getid(‘/Cell:mycell/Node:mynode/Server:myserver’)

 jvm = AdminConfig.list(‘JavaVirtualMachine’, server)

 AdminConfig.modify(jvm, [[‘genericJvmArguments’, “Dcom.ibm.ws.security.spnego.isEnabled =true”]])

AdminConfig.save()

Remember: You can also use the wsadmin command for the AdminConfig scripting object to interactively

set the com.ibm.ws.security.spnego.isEnabled attribute. See “Enabling the SPNEGO TAI

using scripting” on page 1218 for more information.

The following attributes are not used directly by the SPNEGO TAI; however, they affect the operation of

the core security runtime and can also be used for problem determination.

 Table 16. JVM configuration attributes

Attribute Name Required Value Type Default Value Recommended Value

java.security.properties No String None

com.ibm.security.jgss.debug No String None ″off″ or ″all″

1220 Administering applications and their environment

Table 16. JVM configuration attributes (continued)

Attribute Name Required Value Type Default Value Recommended Value

com.ibm.security.krb5.Krb5Debug No String None ″off″ or ″all″

javax.security.auth.useSubjectCredsOnly Yes Boolean True False

java.security.properties

This property is optional. It can be used when different application servers in a cell have different

security requirements and it is not convenient to modify the global java.security file for the entire cell.

In such situations, the java.security.properties attribute is used to specify the location of the

java.security file used by the JVM for each application server.

com.ibm.security.jgss.debug

This attribute is optional. It can be used to collect diagnostic trace information for problem

determination in the Java Generic Security Service (JGSS) application programmer interface (API)

implementation. The value can be set to all or off to enable or disable tracing, respectively. See Java

Generic Security Service User’s Guide for specific JGSS API information.

com.ibm.security.krb5.Krb5Debug

This attribute is optional. It can be used to collect additional diagnostic trace information for problem

determination in the JGSS implementation. The value can be set to all or off to enable or disable

tracing, respectively.

javax.security.auth.useSubjectCredsOnly

JGSS includes an optional Java Authentication and Authorization Service (JAAS) login facility that

saves Principal credentials and secret keys in the Subject of the application’s JAAS login context.

JGSS retrieves credentials and secret keys from the Subject by default. This feature can be disabled

by setting the Java property javax.security.auth.useSubjectCredsOnly to false.

Attention: The SPNEGO TAI does not use the optional JAAS login module. The

javax.security.auth.useSubjectCredsOnly property must be set to false.

Mapping user Ids from client to server for SPNEGO:

You can use a system programming interface to customize the behavior of the Simple and Protected

GSS-API Negotiation Mechanism (SPNEGO) trust association interceptor (TAI) by implementing arbitrary

mappings of the end-user’s identity, which is retrieved from Microsoft Active Directory to the identity that is

used in the WebSphere Application Server security registry.

 You need to perform some administrative tasks in the WebSphere Application Server environment to use

SPNEGO TAI and to ensure that the requester’s identity matches the identity in the WebSphere

Application Server user registry.

In the simplest deployment of the SPNEGO TAI, it is assumed that the requester’s identity in the

WebSphere Application Server user registry is identical to the identity retrieved. This is the case when

Microsoft Windows Active Directory server is the lightweight directory access protocol (LDAP) server used

in WebSphere Application Server. This is default behavior of the SPNEGO TAI.

You do not need to use this simple deployment of the SPNEGO TAI. WebSphere Application Server can

use a different registry, such as a local OS, LDAP, or custom registry instead of the Microsoft Active

Directory. If WebSphere Application Server uses a different registry than the Microsoft Active Directory,

then a mapping from the Microsoft Windows user Id to a WebSphere Application Server user Id is

necessary.

1. Configure the Web browser to use SPNEGO.

2. Configure Java virtual machine (JVM) properties and custom SPNEGO TAI properties.

3. Enable the SPNEGO TAI.

Chapter 16. Security 1221

http://dwmaster.raleigh.ibm.com/dwcontent/developerworks/java/jdk/security/142/secguides/jgssDocs/users_guide.jgss.ibm.html
http://dwmaster.raleigh.ibm.com/dwcontent/developerworks/java/jdk/security/142/secguides/jgssDocs/users_guide.jgss.ibm.html

4. Use the custom login module to perform any custom mapping of user Ids from the user registry to the

user registry of WebSphere Application Server. The custom login module is a plug-in mechanism that

is defined for authenticating incoming and outgoing requests in WebSphere Application Server. The

custom login module is inserted before the ltpaLoginModule and maps the name in the

com.ibm.wsspi.security.tai.TAIResult (which was returned to the Web authenticator) to the

corresponding name in the user registry. The ltpaLoginModule then uses the mapped identity to create

a WSCredential.

The custom login module can also supply the full set of security attributes in the

javax.security.auth.Subject in the com.ibm.wsspi.security.tai.TAIResult to fully assert the mapped

identity. When the identity is fully asserted, the wsMapDefaultInboundLoginModule maps those security

attributes to a WSCredential.

Using the custom login module, Microsoft Active Directory identities are mapped to the WebSphere

Application Server’s security registry.

Filtering HTTP requests for SPNEGO TAI:

You can use a system programming interface to customize the behavior of the Simple and Protected

GSS-API Negotiation Mechanism (SPNEGO) trust association interceptor (TAI) by specifying whether or

not a particular HTTP request should be intercepted.

 Before you begin, you need to fully understand the deployment of the SPNEGO TAI in your installation.

Verify the configuration of your SPNEGO TAI. The deployment of the SPNEGO TAI can vary from a single

WebSphere Application Server system on which a single application is running to a large multinode

WebSphere Application Server Network Deployment (ND) cell, with dozens of application servers, hosting

many applications. Every SPNEGO TAI is installed at the cell level. You must be aware of your particular

SPNEGO TAI configuration.

The default behavior of the SPNEGO TAI is to not intercept HTTP requests. This default behavior ensures

that the SPNEGO TAI can be installed into an existing cell, configured for a single application server and

not change any other application servers in the cell. Other WebSphere Application Servers can run exactly

as before within a given configuration.

Then decide whether or not to use the sample SPN<id>.filter class and determine the exact filter

properties to use.

Note: The default behavior of the SPNEGO TAI is to use the com.ibm.ws.security.spnego.SPN<id>.filter

class and intercept all requests.

If the default behavior is not appropriate, you can use a customer provided class, or extend or modify the

sample class as required. The system programmer interface, com.ibm.ws.security.spnego.SpnegoFilter

allows you to implement a custom filter to determine whether or not to intercept a particular HTTP request.

With the default implementation, you can set filter rules for coarse as well as fine-grained criteria in

selecting which HTTP requests to intercept.

1. Set the com.ibm.ws.security.spnego.isEnabled Java virtual machine (JVM) custom property to true to

enable the SPNEGO TAI on any JVM.

2. Identify when the SPNEGO TAI intercepts a given request. A set of filter properties is provided, but you

must determine what is appropriate and modify the com.ibm.ws.security.spnego.SPN<id>.filter class

accordingly.

Your SPNEGO TAI is set to filter HTTP requests when it is operating.

Configuring the Web browser to use SPNEGO:

1222 Administering applications and their environment

You can configure your browser to utilize the Simple and Protected GSS-API Negotiation (SPNEGO)

mechanism. Authentication of your browser requests are processed by the SPNEGO trust association

interceptor (TAI) in the WebSphere Application Server.

 You need to know how to display and set options in the Microsoft Internet Explorer browser or any other

browser (such as Firefox). You must have a browser installed that supports SPNEGO authentication.

Complete the following steps to ensure that your Microsoft Internet Explorer browser is enabled to perform

SPNEGO authentication.

1. At the desktop, log in to the windows active directory domain.

2. Activate Internet Explorer.

3. In the Internet Explorer window, click Tools > Internet Options > Security tab.

4. Select the Local intranet icon and click Sites.

5. In the Local intranet window, ensure that the ″check box″ to include all local (intranet) not listed in

other zones is selected, then click Advanced .

6. In the Local intranet window, fill in the Add this Web site to the zone field with the Web address of the

host name so that the single sign-on (SSO) can be enabled to the list Web sites shown in the Web

sites field. Your site information technology staff provides this information. Click OK to complete this

step and close the Local intranet window.

7. On the Internet Options window, click the Advanced tab and scroll to Security settings. Ensure that

the Enable Integrated Windows Authentication (requires restart) box is selected.

8. Click OK. Restart your Microsoft Internet Explorer to activate this configuration.

Complete the following steps to ensure that your Firefox browser is enabled to perform SPNEGO

authentication.

1. At the desktop, log in to the windows active directory domain.

2. Activate Firefox.

3. At the address field, type about:config.

4. In the Filter, type network.n

5. If the deployed SPNEGO solution is using the advanced Kerberos feature of Credential Delegation

double click on network.negotiate-auth.delegation-uris. This preference lists the sites for which the

browser may delegate user authorization to the server.

6. Enter a comma delimited list of trusted domains or URLs.

7. Click OK. The configuration appears as updated.

8. Restart your Firefox browser to activate this configuration.

Your Internet browser is properly configured for SPNEGO authentication. You can use applications that are

deployed in WebSphere Application Server that use secured resources without being repeatedly requested

for an ID and password.

Configuring single sign-on capability with Tivoli Access Manager or WebSEAL

Either Tivoli Access Manager WebSEAL or Tivoli Access Manager plug-in for Web servers can be used as

reverse proxy servers to provide access management and single sign-on (SSO) capability to WebSphere

Application Server resources. With such an architecture, either WebSEAL or the plug-in authenticates

users and forwards the collected credentials to WebSphere Application Server in the form of an IV Header.

Two types of single sign-on are available, the TAI interface and the TAI++ interface, so named as both use

WebSphere Application Server trust association interceptors (TAI). With the TAI, the end-user name is

extracted from the HTTP header and forwarded to embedded Tivoli Access Manager where the end-user

name is used to construct the client credential information and authorize the user. With the TAI++, all of

the user credential information is available in the HTTP header and not just the user name. The TAI++ is

Chapter 16. Security 1223

the more efficient of the two solutions because a Lightweight Directory Access Protocol (LDAP) call is not

required. TAI functionality is retained for backwards compatibility.

Complete the following tasks to enable single sign-on to WebSphere Application Server using either

WebSEAL or the plug-in for Web servers. These tasks assume that embedded Tivoli Access Manager is

configured for use.

1. Create a trusted user account for Tivoli Access Manager in the shared Lightweight Directory Access

Protocol (LDAP) user registry. For more information, see “Creating a trusted user account in Tivoli

Access Manager” on page 1229.

2. Configure either WebSEAL or the Tivoli Access Manager plug-in for Web servers to work with

WebSphere Application Server. For more information, see either of the following articles:

v “Configuring WebSEAL for use with WebSphere Application Server” on page 1230

v “Configuring Tivoli Access Manager plug-in for Web servers for use with WebSphere Application

Server” on page 1231

3. Configure single sign-on using either the TAI or TAI++ interface. For more information, see either of the

following articles:

v “Configuring single sign-on using the trust association interceptor” on page 1231

v “Configuring single sign-on using trust association interceptor ++” on page 1232

Single sign-on settings:

Use this page to set the configuration values for single sign-on (SSO).

 To view this administrative console page, complete the following steps:

1. Click Security > Secure administration, applications, and infrastructure.

2. Under Authentication, click Web security > Single sign-on (SSO).

Enabled:

Specifies that the single sign-on function is enabled.

 Web applications that use J2EE FormLogin style login pages, such as the administrative console, require

single sign-on (SSO) enablement. Only disable SSO for certain advanced configurations where LTPA

SSO-type cookies are not required.

 Data type: Boolean

Default: Enabled

Range: Enabled or Disabled

Requires SSL:

Specifies that the single sign-on function is enabled only when requests are made over HTTPS Secure

Sockets Layer (SSL) connections.

 Data type: Boolean

Default: Disable

Range: Enable or Disable

Domain name:

Specifies the domain name (.ibm.com, for example) for all single sign-on hosts.

1224 Administering applications and their environment

The application server uses all the information after the first period, from left to right, for the domain

names. If this field is not defined, the Web browser defaults the domain name to the host name where the

Web application is running. Also, single sign-on is then restricted to the application server host name and

does not work with other application server host names in the domain.

You can specify multiple domains separated by a semicolon (;), a space (), a comma (,), or a pipe (|).

Each domain is compared with the host name of the HTTP request until the first match is located. For

example, if you specify ibm.com;austin.ibm.com and a match is found in the ibm.com domain first, the

application server does not match the austin.ibm.com domain. However, if a match is not found in either

ibm.com or austin.ibm.com, then the application server does not set a domain for the LtpaToken cookie.

If you specify the UseDomainFromURL value, the application server sets the SSO domain name value to the

domain of the host that is used in the Web address. For example, if an HTTP request comes from

server1.raleigh.ibm.com, the application server sets the SSO domain name value to raleigh.ibm.com.

Tip: The UseDomainFromURL value is case insensitive. You can type usedomainfromurl to use this value.

 Data type: String

Interoperability mode:

Specifies that an interoperable cookie is sent to the browser to support back-level servers.

 In WebSphere Application Server, Version 6 and later, a new cookie format is needed by the security

attribute propagation functionality. When the interoperability mode flag is enabled, the server can send a

maximum of two single sign-on (SSO) cookies back to the browser. In some cases, the server just sends

the interoperable SSO cookie.

Web inbound security attribute propagation:

When Web inbound security attribution propagation is enabled, security attributes are propagated to

front-end application servers. When this option is disabled, the single sign-on (SSO) token is used to log in

and recreate the Subject from the user registry.

 If the application server is a member of a cluster and the cluster is configured with a distributed replication

service (DRS) domain, then propagation occurs. If DRS is not configured, then the SSO token contains the

originating server information. With this information, the receiving server can contact the originating server

using an MBean call to get the original serialized security attributes.

com.tivoli.pd.jcfg.PDJrteCfg utility for Tivoli Access Manager single sign-on:

The com.tivoli.pd.jcfg.PDJrteCfg utility configures the Java Runtime Environment component for Tivoli

Access Manager. This component enables WebSphere Application Server to use Tivoli Access Manager

security.

 Purpose

Syntax

java com.tivoli.pd.jcfg.PDJrteCfg -action {config | unconfig} -cfgfiles_path

configuration_file_path -host policy_server_host jre_path]

Parameters

-action {config|unconfig}

Specifies the action to be performed. Actions include:

config Use to configure the Access Manager Java Runtime Environment component.

Chapter 16. Security 1225

unconfig

Use to reconfigure the Access Manager Java Runtime Environment component.

-host policy_server_host

Specifies the policy server host name.

 Valid values for policy_server_host include any valid IP host name.

 Examples include:

host = libra

host = libra.dallas.ibm.com

Comments

This command copies Tivoli Access Manager Java libraries to a library extensions directory that exists for

a Java runtime that has already been installed on the system.

You can install more than one Java Runtime Environment (JRE) on a given machine. The pdjrtecfg

command can be used to configure the Tivoli Access Manager Java Runtime Environment component

independently for each of the JRE configurations.

${JAVA_HOME}/bin/java

-Dfile.encoding=ISO8859-1 \

-Dws.output.encoding=CP1047 \

-Xnoargsconversion \

-Dpd.home=${WAS_HOME}/java/jre/PolicyDirector \

-cp ${WAS_HOME}/java/jre/lib/ext/PD.jar \

 com.tivoli.pd.jcfg.PDJrteCfg \

-action config \

 -cfgfiles_path ${WAS_HOME}/java/jre \

 -host gary.us.ibm.com \

com.tivoli.pd.jcfg.SvrSslCfg utility for Tivoli Access Manager single sign-on:

The utility is used to configure and remove the configuration information associated with WebSphere

Application Server and the Tivoli Access Manager server.

 Purpose

Syntax

java com.tivoli.pd.jcfg.SvrSslCfg

-action {config | unconfig} -admin_id admin_user_ID

-admin_pwd admin_password -appsvr_id application_server_name

-appsvr_pwd application_server_password -mode{local|remote}

-host host_name_of_application_server

-policysvr policy_server_name:port:rank [,...]

-authzsvr authorization_server_name:port:rank [,...]

-cfg_file fully_qualified_name_of_configuration_file

-domain Tivoli_Acccess_Manager_domain

-key_file fully_qualified_name_of_keystore_file

-cfg_action {create|replace}

Parameters

-action {config | unconfig}

Specifies the configuration action that is performed by the script. The following options apply:

1226 Administering applications and their environment

-action config

Configuring a server creates user and server information in the user registry and creates local

configuration and key store files on the application server. Use the -action unconfig option to

reverse this operation.

 If this action is specified, the following options are required: -admin_id, -admin_pwd,

-appsvr_id, -port, -mode, -policysvr, -authzsvr, and -key_file.

-action unconfig

Reconfigures an application server to complete the following actions:

v Remove the user and server information from the user registry

v Delete the local key store file

v Remove information for this application from the configuration file without deleting the file

The reconfiguration operation fails only if the caller is unauthorized or the policy server cannot

be contacted.

 This action can succeed when a configuration file does not exist. When the configuration file

does not exist, it is created and used as a temporary file to hold configuration information

during the operation, and then the file is deleted completely.

 If this action is specified, the following options are required: -admin_id, -admin_pwd,

-appsvr_id, and -policysvr.

-admin_id admin_user_ID

Specifies the Tivoli Access Manager administrator name. If this option is not specified, sec_master is

the default.

 A valid administrative ID is an alphanumeric, case-sensitive string. String values are expected to be

characters that are part of the local code set. You cannot use a space in the administrative ID.

 For example, for U.S. English the valid characters are the letters a-Z, the numbers 0-9, a period (.), an

underscore (_), a plus sign (+), a hyphen (-), an at sign (@), an ampersand (&), and an asterisk (*).

The minimum and maximum lengths of the administrative ID, if there are limits, are imposed by the

underlying registry.

-admin_password admin_password

 Specifies the password of the Tivoli Access Manager administrator user that is associated with the

-admin_id parameter. The password restrictions depend upon the password policy for your Tivoli

Access Manager configuration.

-appsvr_id application_server_name

Specifies the name of the application server. The name is combined with the host name to create

unique names for Tivoli Access Manager objects created for your application. The following names are

reserved for Tivoli Access Manager applications: ivacld, secmgrd, ivnet, and ivweb.

-appsvr_pwd application_server_password

Specifies the password of the application server. This option is required. A password is created by the

system and the configuration file is updated with the password created by the system.

 If this option is not specified, the server password will be read from standard input.

-authzsvr authorization_server_name

Specifies the name of the Tivoli Access Manager authorization server with which the application server

communicates. The server is specified by fully qualified host name, the SSL port number, and the

rank. The default SSL port number is 7136. For example: myauth.mycompany.com:7136:1. You can

specify multiple servers if the entries are separated by a comma (,).

-cfg_action {create | replace}

Specifies the action to take when creating the configuration and key files. Valid values are create or

Chapter 16. Security 1227

replace. Use the create option to initially create the configuration and keystore files. Use the replace

option if these files already exist. If you use the create option and the configuration or keystore files

already exist, an exception is created.

 Options are as follows:

create Specifies to create the configuration and key store files during server configuration.

Configuration fails if either of these files already exists.

replace

Specifies to replace the configuration and key store files during server configuration.

Configuration deletes any existing files and replaces them with new ones.

-cfg_file fully_qualified_name_of_configuration_file

Specifies the configuration file path and name.

 A file name should be an absolute file name (fully qualified file name) to be valid.

-domain Tivoli_Access_Manager_domain

Specifies the Tivoli Access Manager domain name to which the administrator is authenticated. This

domain must exist and an the administrator ID and password must be valid for this domain. The

application server is specified in this domain.

 If not specified, the local domain that was specified during Tivoli Access Manager runtime configuration

will be used. The local domain value will be retrieved from the configuration file.

 A valid domain name is an alphanumeric, case-sensitive string. String values are expected to be

characters that are part of the local code set. You cannot use a space in the domain name.

 For example, for U.S. English the valid characters for domain names are the letters a-Z, the numbers

0-9, a period (.), an underscore (_), a plus sign (+), a hyphen (-), an at sign (@), an ampersand (&),

and an asterisk (*). The minimum and maximum lengths of the domain name, if there are limits, are

imposed by the underlying registry.

-host host_name_of_application_server

Specifies the TCP host name used by the Tivoli Access Manager policy server to contact this server.

This name is saved in the configuration file using the azn-app-host key.

 The default is the local host name returned by the operating system. Valid values for host_name

include any valid IP host name.

 Examples:

host = libra

host = libra.dallas.ibm.com

-key_file fully_qualified_name_of_keystore_file

Specifies the directory that is to contain the key files for the server. A valid directory name is

determined by the operating system. Use a fully qualified file name that contains the application server

certificate and key file.

 Make sure that server user (for example, ivmgr) or all users have permission to access the .kdb file

and the folder that contains the .kdb file.

 This option is required.

-mode server_mode

Specifies the mode in which the application operates. This value must be either local or remote.

-policysvr policy_server_name

Specifies the name of the policy server.

1228 Administering applications and their environment

Comments

After the successful configuration of a Tivoli Access Manager Java application server, SvrSslCfg creates a

user account and server entries representing the Java application server in the Tivoli Access Manager user

registry. In addition, SvrSslCfg creates a configuration file and a Java key store file, which securely stores

a client certificate, locally on the application server. This client certificate permits callers to make

authenticated use of Tivoli Access Manager services. Conversely, reconfiguration removes the user and

server entries from the user registry and cleans up the local configuration and keystore files.

The contents of an existing configuration file can be modified by using the SvrSslCfg utility. The

configuration file and the key store file must already exist when calling SvrSslCfg with all options other

than -action config or -action unconfig.

The following options are parsed and processed into the configuration file, but are otherwise ignored in this

version of Tivoli Access Manager:

The host name is used to build a unique name (identity) for the application. The pdadmin user list

command displays the application identity name in the following format:

server_name/host_name

Note that the pdadmin server list command displays the server name in a slightly different format:

server_name-host_name

CLASSPATH=${WAS_HOME}/java/jre/lib/ext/PD.jar:${WAS_CLASSPATH}

java \

-cp ${CLASSPATH} \

-Dpd.cfg.home= ${WAS_HOME}/java/jre \

-Dfile.encoding=ISO8859-1 \

-Dws.output.encoding=CP1047 \

-Xnoargsconversion \

 com.tivoli.pd.jcfg.SvrSslCfg \

-action config \

-admin_id sec_master \

-admin_pwd $TAM_PASSWORD \

-appsvr_id $APPSVR_ID \

-policysvr ${TAM_HOST}:7135:1 \

-port 7135 \

-authzsvr ${TAM_HOST}:7136:1 \

-mode remote \

-cfg_file ${CFG_FILE} \

-key_file ${KEY_FILE} \

-cfg_action create

Creating a trusted user account in Tivoli Access Manager:

Tivoli Access Manager trust association interceptors require the creation of a trusted user account in the

shared LDAP user registry.

 This account includes the ID and password that WebSEAL uses to identify itself to WebSphere Application

Server. To prevent potential vulnerabilities, do not use the sec_master ID as the trusted user account and

ensure that the password you use is unique and generated randomly. Use the trusted user account should

for the TAI or TAI++ only.

1. Use either the Tivoli Access Manager pdadmin command-line utility or Web Portal Manager to create

the trusted user. For example, from the pdadmin command line.

Chapter 16. Security 1229

2. Reference the code listed below as an example for creating a trusted user account.

3. Reference the following additional resources for more information:

a. “Configuring WebSEAL for use with WebSphere Application Server”

b. “Configuring Tivoli Access Manager plug-in for Web servers for use with WebSphere Application

Server” on page 1231

pdadmin> user create webseal_userid webseal_userid_DN firstname

 surname password

pdadmin> user modify webseal_userid account-valid yes

Configuring WebSEAL for use with WebSphere Application Server:

Use this topic to set the SSO password in WebSEAL for single sign-on to WebSphere Application Server.

 A junction must be created between WebSEAL and WebSphere Application Server. This junction carries

the iv-credentials (for TAI++) or iv-user (for TAI) and the HTTP basic authentication headers with the

request. You can configure WebSEAL to pass the end user identity in other ways, the iv-credentials header

is the only one supported by the TAI++ and the iv-user is the only one supported by TAI.

We recommend that communications over the junction use Secure Sockets Layer (SSL) for increased

security. Setting up SSL across this junction requires that you configure the HTTP Server used by

WebSphere Application Server, and WebSphere Application Server itself, to accept inbound SSL traffic and

route it correctly to WebSphere Application Server. This activity requires importing the necessary signing

certificates into the WebSEAL certificate keystore, and possibly also the HTTP Server certificate keystore.

Create the junction between WebSEAL and WebSphere Application Server using the -c iv_creds option

for TAI++ and -c iv_user for TAI. Enter either of the following commands as one line using the variables

that are appropriate for your environment:

TAI++

server task webseald-server create -t ssl -b supply -c iv_creds

 -h host_name -p websphere_app_port_number junction_name

TAI

server task webseald-server create -t ssl -b supply -c iv_user

 -h host_name -p websphere_app_port_number junction_name

Notes:

1. If warning messages are displayed about the incorrect setup of certificates and key databases,

delete the junction, correct problems with the key databases, and recreate the junction.

2. The junction can be created as -t tcp or -t ssl, depending on your requirements.

For single sign-on (SSO) to WebSphere Application Server the SS) password must be set in WebSEAL.

To set the password, complete the following steps:

1. Edit the WebSEAL configuration file webseal_install_directory/etc/webseald-default.conf Set the

following parameter: basicauth-dummy-passwd=webseal_userid_passwd

where webseal_userid_passwd is the SSO password for the trusted user account set in “Creating a

trusted user account in Tivoli Access Manager” on page 1229.

2. Restart WebSEAL.

For more details and options about how to configure junctions between WebSEAL and WebSphere

Application Server, including other options for specifying the WebSEAL server identity, refer to the Tivoli

Access Manager WebSEAL Administration Guide as well as to the documentation for the HTTP Server

you are using with your WebSphere Application Server. Tivoli Access Manager documentation is available

at http://publib.boulder.ibm.com/tividd/td/tdprodlist.html.

1230 Administering applications and their environment

http://publib.boulder.ibm.com/tividd/td/tdprodlist.html

Configuring Tivoli Access Manager plug-in for Web servers for use with WebSphere Application

Server:

Tivoli Access Manager plug-in for Web servers can be used as a security gateway for your protected

WebSphere Application Server resources.

 With such an arrangement the plug-in authorizes all user requests before passing the credentials of the

authorized user to WebSphere Application Server in the form of an iv-creds header. Trust between the

plug-in and WebSphere Application Server is established through use of basic authentication headers

containing the single sign-on (SSO) user password.

1. The Tivoli Access Manager plug-in for Web servers configuration shows IV headers configured for

post-authorization processing, and basic authentication that is configured as the authentication

mechanism and for post-authorization processing, as shown in the example below.

2. After a request is authorized, the basic authentication header is removed from the request

(strip-hdr=always) and a new one is added (add-hdr=supply).

3. Included in this new header is the password that is set when the SSO user is created in “Creating a

trusted user account in Tivoli Access Manager” on page 1229.

4. Specify this password in the supply-password parameter and is passed in the newly created header.

This basic authentication header enables trust between WebSphere Application Server and the plug-in.

5. An iv-creds header is also added (generate=iv-creds), which contains the credential information of the

user passed onto WebSphere Application Server. Session cookies are used to maintain session state.

[common-modules]

authentication = BA

session = session-cookie

post-authzn = BA

post-authzn = iv-headers

[iv-headers]

accept = all

generate = iv-creds

[BA]

strip-hdr = always

add-hdr = supply

supply-password = sso_user_password

“Configuring single sign-on using the trust association interceptor” or “Configuring single sign-on using trust

association interceptor ++” on page 1232

Configuring single sign-on using the trust association interceptor:

This task is performed to enable single sign-on using the trust association interceptor. These steps involve

setting up trust association and creating the interceptor properties.

 The following steps are required when setting up security for the first time. Ensure that Lightweight Third

Party Authentication (LTPA) is the active authentication mechanism:

1. From the WebSphere Application Server console click Security > Global security.

2. Ensure that the Active authentication mechanism field is set to Lightweight Third Party

Authentication (LTPA). If not, set it and save your changes.

Lightweight Third Party Authentication (LTPA) is the default authentication mechanism for WebSphere

Application Server. You can configure LTPA prior to configuring single sign-on (SSO) by clicking Security >

Secure administration, applications, and infrastructure > Authentication mechanisms and

expiration. Although you can use Simple WebSphere Authentication Mechanism (SWAM) by selecting the

Chapter 16. Security 1231

Use SWAM-no authenticated communication between servers option on the Authentication

mechanisms and expiration panel, single sign-on (SSO) requires LTPA as the configured authentication

mechanism.

 1. From the administrative console for WebSphere Application Server, click Security > Secure

administration, applications, and infrastructure.

 2. Under Web security, click Trust association.

 3. Select the Enable trust association option.

 4. Under Additional properties, click the Interceptors link.

 5. Click com.ibm.ws.security.web.WebSealTrustAssociationInterceptor to use the WebSEAL

interceptor. This interceptor is the default.

 6. Under Additional properties, click Custom Properties.

 7. Click New to enter the property name and value pairs. Ensure the following parameters are set:

 Table 17. Trust association interceptor properties

Option Description

com.ibm.websphere.security.

trustassociation.types

Ensure that webseal is listed.

com.ibm.websphere.security.

webseal.loginId

The WebSEAL trusted user as created in “Creating a trusted user account in

Tivoli Access Manager” on page 1229 The format of the username is the short

name representation. This property is mandatory. If the property is not set in the

WebSphere Application Server, TAI initialization fails.

com.ibm.websphere.security.

webseal.id

The iv-user header, which is com.ibm.websphere.security.webseal.id=iv-user

com.ibm.websphere.security.

webseal.hostnames

Do not set this property if using Tivoli Access Manager plug-in for Web servers.

The host names (case sensitive) are trusted and expected in the request header.

For example: com.ibm.websphere.security.webseal.hostnames=host1

This includes the proxy host names unless the

com.ibm.websphere.security.webseal.ignoreProxy is set to true. Obtain a list of

servers using the server list pdadmin command.

com.ibm.websphere.security.

webseal.ports

Do not set this property if using Tivoli Access Manager Plug-in for Web Servers.

The corresponding port number of the host names that are expected are in the

request header. This includes the proxy ports unless the

com.ibm.websphere.security.webseal.ignoreProxy is set to true. For example:

com.ibm.websphere.security.webseal.ports=80,443

com.ibm.websphere.security.

webseal.ignoreProxy

An optional property that if set to true or yes ignores the proxy host names and

ports in the IV header. By default this property is set to false.

 8. Click OK.

 9. Save the configuration and log out.

10. Restart WebSphere Application Server.

Configuring single sign-on using trust association interceptor ++:

Perform this task to enable single sign-on using trust association interceptor ++. The steps involve setting

up trust association and creating the interceptor properties.

 Lightweight Third Party Authentication (LTPA) is the default authentication mechanism for WebSphere

Application Server. However, you may need to configure LTPA prior to configuring the

TAMTrustAssociationInterceptorPlus. LTPA is the required authentication mechanism for all trust

association interceptors. You can configure LTPA by clicking Security > Secure administration,

applications, and infrastructure > Authentication mechanisms and expiration.

1232 Administering applications and their environment

Note: Enabling Web security single sign-on (SSO) is optional when you configure the

TAMTrustAssociationInterceptorPlus. For more information, see “Implementing single sign-on to

minimize Web user authentications” on page 1199.

Although you can use Simple WebSphere Authentication Mechanism (SWAM) by selecting the Use

SWAM-no authenticated communication between servers option on the Authentication mechanisms

and expiration panel, single sign-on (SSO) requires LTPA as the configured authentication mechanism.

 1. From the administrative console for WebSphere Application Server, click Security > Secure

administration, applications, and infrastructure.

 2. Under Web security, click Trust association.

 3. Click Enable Trust Association.

 4. Click Interceptors.

 5. Click com.ibm.ws.security.web.TAMTrustAssociationInterceptorPlus to use the WebSEAL

interceptor. This interceptor is the default.

 6. Click Custom Properties.

 7. Click New to enter the property name and value pairs. Verify that the following parameters are set:

 Table 18. Custom properties

Option Description

com.ibm.websphere.security.

webseal.checkViaHeader

You can configure TAI so that the via header can be ignored when validating trust

for a request. Set this property to false if none of the hosts in the via header

need to be trusted. When set to false you do not need to set the trusted host

names and host ports properties. The only mandatory property to check when via

header is false is com.ibm.websphere.security.webseal.loginId.

The default value of the check via header property is false. When using Tivoli

Access Manager plug-in for Web servers, set this property to false.

Note: The via header is part of the standard HTTP header that records the

server names the request that passed through.

com.ibm.websphere.security.

webseal.loginId

The WebSEAL trusted user as created in “Creating a trusted user account in

Tivoli Access Manager” on page 1229 The format of the username is the short

name representation. This property is mandatory. If it is not set in WebSphere

Application Server, the TAI initialization fails.

com.ibm.websphere.security.

webseal.id

A comma-separated list of headers that exists in the request. If all of the

configured headers do not exist in the request, trust cannot be established. The

default value for the ID property is iv-creds. Any other values set in WebSphere

Application Server are added to the list along with iv-creds, separated by

commas.

com.ibm.websphere.security.

webseal.hostnames

Do not set this property if using Tivoli Access Manager Plug-in for Web Servers.

The property specifies the host names (case sensitive) that are trusted and

expected in the request header. Requests arriving from un-listed hosts might not

be trusted. If the checkViaHeader property is not set or is set to false then the

trusted host names property has no influence. If the checkViaHeader property is

set to true, and the trusted host names property is not set, TAI initialization fails.

com.ibm.websphere.security.

webseal.ports

Do not set this property if using Tivoli Access Manager plug-in for Web servers.

This property is a comma-separated list of trusted host ports. Requests that

arrive from unlisted ports might not be trusted. If the checkViaHeader property is

not set, or is set to false this property has no influence. If the checkViaHeader

property is set to true, and the trusted host ports property is not set in

WebSphere Application Server, the TAI initialization fails.

Chapter 16. Security 1233

Table 18. Custom properties (continued)

Option Description

com.ibm.websphere.security.

webseal.viaDepth

A positive integer that specifies the number of source hosts in the via header to

check for trust. By default, every host in the via header is checked, and if any

host is not trusted, trust cannot be established. The via depth property is used

when only some of the hosts in the via header have to be trusted. The setting

indicates the number of hosts that are required to be trusted.

As an example, consider the following header:

Via: HTTP/1.1 webseal1:7002, 1.1 webseal2:7001

If the viaDepth property is not set, is set to 2 or is set to 0, and a request with the

previous via header is received then both webseal1:7002 and webseal2:7001

need to be trusted. The following configuration applies:

com.ibm.websphere.security.webseal.hostnames = webseal1,webseal2

com.ibm.websphere.security.webseal.ports = 7002,7001

If the via depth property is set to 1, and the previous request is received, then

only the last host in the via header needs to be trusted. The following

configuration applies:

com.ibm.websphere.security.webseal.hostnames = webseal2

com.ibm.websphere.security.webseal.ports = 7001

The viaDepth property is set to 0 by default, which means all of the hosts in the

via header are checked for trust.

com.ibm.websphere.security.

webseal.ssoPwdExpiry

After trust is established for a request, the single sign-on user password is

cached, eliminating the need to have the TAI re-authenticate the single sign-on

user with Tivoli Access Manager for every request. You can modify the cache

timeout period by setting the single sign-on password expiry property to the

required time in seconds. If the password expiry property is set to 0, the cached

password never expires. The default value for the password expiry property is

600.

com.ibm.websphere.security.

webseal.ignoreProxy

This property can be used to tell the TAI to ignore proxies as trusted hosts. If set

to true the comments field of the hosts entry in the via header is checked to

determine if a host is a proxy. Remember that not all proxies insert comments in

the via header indicating that they are proxies. The default value of the

ignoreProxy property is false. If the checkViaHeader property is set to false then

the ignoreProxy property has no influence in establishing trust.

com.ibm.websphere.security.

webseal.configURL

For the TAI to establish trust for a request, it requires that the SvrSslCfg run for

the Java Virtual Machine on the Application Server and result in the creation of a

properties file. If this properties file is not at the default URL, which is

file://java.home/PdPerm.properties, the correct URL of the properties file must

be set in the configuration URL property. If this property is not set, and the

SvrSslCfg-generated properties file is not in the default location, the TAI

initialization fails. The default value for the config URL property is

file://${WAS_INSTALL_ROOT}/java/jre/PdPerm.properties.

 8. Click OK.

 9. Save the configuration and log out.

10. Restart WebSphere Application Server.

Configuring global sign-on principal mapping:

You can create a new application login that uses the Tivoli Access Manager GSO database to store the

login credentials.

 1. Click Security > Secure administration, applications, and infrastructure.

 2. Under Authentication, click Java Authentication and Authorization Service > Application logins.

1234 Administering applications and their environment

3. Click New to create a new Java Authentication and Authorization Service (JAAS) login configuration.

 4. Enter the alias name of the new application login. Click Apply.

 5. Under Additional properties, click JAAS login modules to define the JAAS Login Modules.

 6. Click New and enter the following information:

Module class name: com.tivoli.pdwas.gso.AMPrincipalMapper

Use Login Module Proxy: enable

Authentication strategy: REQUIRED

 7. Click Apply

 8. Under Additional Properties section, click Custom Properties to define login module-specific values

that are passed directly to the underlying login modules.

 9. Click New.

The Tivoli Access Manager principal mapping module uses the authDataAlias configuration string to

retrieve the correct user name and password from the security configuration.

The authDataAlias attribute that is passed to the module is configured for the J2C connection factory.

Because the authDataAlias attribute is an arbitrary string that is entered at configuration time, the

following scenarios are possible:

v The authDataAlias attribute contains both the global sign-on (GSO) resource name and the user

name. The format of this string is ″Resource/User″.

v The authDataAlias attribute contains the GSO Resource name only. The user name is determined

by using the Subject of the current session.

The scenario to use is determined by a JAAS configuration option, as shown here:

 Name: com.tivoli.pd.as.gso.AliasContainsUserName

 Value: True, if the alias contains the user name; false, if the user name must be retrieved from the

security context

When entering authDataAlias attributes through the WebSphere Application Server administrative

console, the node name is automatically pre-pended to the alias. The JAAS configuration entry

determines whether this node name is removed or included as part of the resource name, as shown

here:

 Name: com.tivoli.pd.as.gso.AliasContainsNodeName

 Value: True, if the alias contains the node name

Note: If the PdPerm.properties configuration file is not located in the JAVA_HOME/PdPerm.properties

default location, then you also need to add the following property:

 Name: com.tivoli.pd.as.gso.AMCfgURL

 Value: file:///path to PdPerm.properties

Enter each new parameter using the following scenario information as a guide, then click Apply.

Scenario 1

Auth Data Alias - BackendEIS/eisUser

Resource - BackEndEIS

User - eisUser

Principal Mapping Parameters

 Name Value

delegate com.tivoli.pdwas.gso.AMPrincipalMapper

com.tivoli.pd.as.gso.AliasContainsUserName true

com.tivoli.pd.as.gso.AliasContainsNodeName false

com.tivoli.pd.as.gso.AMLoggingURL file:///jlog_props_path

Chapter 16. Security 1235

debug false

Scenario 2

Auth Data Alias - BackendEIS

Resource - BackEndEIS

User - Currently authenticated WebSphere Application Server user

Principal Mapping Parameters

 Name Value

delegate com.tivoli.pdwas.gso.AMPrincipalMapper

com.tivoli.pd.as.gso.AliasContainsUserName false

com.tivoli.pd.as.gso.AliasContainsNodeName false

com.tivoli.pd.as.gso.AMLoggingURL file:///jlog_props_path

debug false

Scenario 3

Auth Data Alias - nodename/BackendEIS/eisUser

Resource - BackEndEIS

User - eisUser

Principal Mapping Parameters

 Name Value

delegate com.tivoli.pdwas.gso.AMPrincipalMapper

com.tivoli.pd.as.gso.AliasContainsUserName true

com.tivoli.pd.as.gso.AliasContainsNodeName true

com.tivoli.pd.as.gso.AMLoggingURL file:///jlog_props_path

debug false

Scenario 4

Auth Data Alias - nodename/BackendEIS/eisUser

Resource - nodename/BackEndEIS (notice that node name is not removed)

User - eisUser

Principal Mapping Parameters

 Name Value

delegate com.tivoli.pdwas.gso.AMPrincipalMapper

com.tivoli.pd.as.gso.AliasContainsUserName true

com.tivoli.pd.as.gso.AliasContainsNodeName false

com.tivoli.pd.as.gso.AMLoggingURL file:///jlog_props_path

debug false

Scenario 5

Auth Data Alias - BackendEIS/eisUser

Resource - BackEndEIS

User - eisUser

Principal Mapping Parameters

 Name Value

1236 Administering applications and their environment

delegate com.tivoli.pdwas.gso.AMPrincipalMapper

com.tivoli.pd.as.gso.AliasContainsUserName false

com.tivoli.pd.as.gso.AliasContainsNodeName true

com.tivoli.pd.as.gso.AMLoggingURL file:///jlog_props_path

debug false

Scenario 6

Auth Data Alias - nodename/BackendEIS/eisUser

Resource - nodename/BackendEIS/eisUser

 (notice that the resource is the same as Auth Data Alias).

User - Currently authenticated WebSphere Application Server user

Principal Mapping Parameters

 Name Value

delegate com.tivoli.pdwas.gso.AMPrincipalMapper

com.tivoli.pd.as.gso.AliasContainsUserName false

com.tivoli.pd.as.gso.AliasContainsNodeName false

com.tivoli.pd.as.gso.AMLoggingURL file:///jlog_props_path

debug false

10. Create the Java 2 Connector (J2C) authentication aliases. The user name and password that are

assigned to these alias entries are irrelevant because Tivoli Access Manager is responsible for

providing user names and passwords. However, the user name and password that are assigned to

the J2C authentication aliases need to exist so that they can be selected for the J2C connection

factory in the administrative console.

To create the J2C authentication aliases, from the WebSphere Application Server administrative

console, click Security >Secure administration, applications, and infrastructure. Under

Authentication, click Java Authentication and Authorization Service > J2C authentication data,

and then click New for each new entry. Refer to the previous table for scenario inputs.

The connection factories for each resource adapter that need to use the GSO database must be

configured to use the Tivoli Access Manager Principal mapping module:

a. From the WebSphere Application Server administrative console, click Applications > Enterprise

Applications > application_name > Resourcer references. Note that J2C connection factories

must be already configured for the selected application. To configure a new J2C connection

factory, see tdat_confconfac.dita.

b. Under Additional properties, click Resource Adapter.

The resource adapter can be standalone and does not need to be packaged with the application.

The resource adapter is configured from Resources > Resource Adapters for standalone

scenarios.

c. Under Additional properties, click J2C Connection Factories.

d. Click New and enter the connection factory properties.

e. When finished, click Apply > Save.

Attention:

Custom mapping configuration for the connection factory is deprecated in WebSphere Application

Server Version 6. To configure the GSO credential mapping, use the Map Resource References to

Resources panel on the administrative console. For more information, see “J2EE connector security”

on page 633.

Chapter 16. Security 1237

tdat_confconfac.dita

Propagating security attributes among application servers

Use the security attribute propagation feature of WebSphere Application Server to send security attribute

information regarding the original login to other servers using a token. This topic will help to configure

WebSphere Application Server to propagate security attributes to other servers.

To fully enable security attribute propagation, you must configure the single sign-on (SSO), Common

Secure Interoperability Version 2 (CSIv2) inbound, and CSIv2 outbound panels in the WebSphere

Application Server administrative console. You can enable just the portions of security attribute propagation

relevant to your configuration. For example, you can enable Web propagation, which is propagation

amongst front-end application servers, using either the push technique (DynaCache) or the pull technique

(remote method to originating server).

You also can choose whether to enable Remote Method Invocation (RMI) outbound and inbound

propagation, which is commonly called downstream propagation. Typically both types of propagation are

enabled for any given cell. In some cases, you might want to choose a different option for a specific

application server using the server security panel within the specific application server settings.

To access the server security panel in the administrative console, click Servers > Application Servers >

server_name. Under Security, click Server security.

Complete the following steps to configure WebSphere Application Server for security attribute propagation:

 1. Access the WebSphere Application Server administrative console by typing http://
server_name:port_number/ibm/console. The administrative console address might differ if you have

previously changed the port number.

 2. Click Security > Secure administration, applications, and infrastructure.

 3. Under Web security, click Single sign-on (SSO).

 4. Optional: Select the Interoperability Mode option if you need to interoperate with servers that do

not support security attribute propagation. Servers that do not support security attribute propagation

receive the Lightweight Third Party Authentication (LTPA) token and the Propagation token, but ignore

the security attribute information that they do not understand.

 5. Select the Web inbound security attribute propagation option. The Web inbound security attribute

propagation option enables horizontal propagation, which allows the receiving SSO token to retrieve

the login information from the original login server. If you do not enable this option, downstream

propagation can occur if you enable the Security Attribute Propagation option on both the CSIv2

Inbound authentication and CSIv2 outbound authentication panels.

Typically, you enable the Web inbound security attribute propagation option if you need to gather

dynamic security attributes set at the original login server that cannot be regenerated at the new

front-end server. These attributes include any custom attributes that might be set in the

PropagationToken token using the com.ibm.websphere.security.WSSecurityHelper application

programming interfaces (APIs). You must determine whether enabling this option improves or

degrades the performance of your system. While the option prevents some remote user registry calls,

the deserialization and decryption of some tokens might impact performance. In some cases

propagation is faster, especially if your user registry is the bottleneck of your topology. It is

recommended that you measure the performance of your environment both using and not using this

option. When you test the performance, it is recommended that you test in the operating environment

of the typical production environment with the typical number of unique users accessing the system

simultaneously.

 6. Click Security > Secure administration, applications, and infrastructure. Under RMI/IIOP security,

click CSIv2 inbound authentication. The Login configuration field specifies RMI_INBOUND as the

system login configuration that is used for inbound requests. To add custom Java Authentication and

Authorization Service (JAAS) login modules, complete the following steps:

a. Click Security > Secure administration, applications, and infrastructure. Under Java

Authentication and Authorization Service, click System logins. A list of the system login

1238 Administering applications and their environment

configurations is displayed. WebSphere Application Server provides the following pre-configured

system login configurations: DEFAULT, LTPA, LTPA_WEB, RMI_INBOUND, RMI_OUTBOUND,

SWAM, WEB_INBOUND, wssecurity.IDAssertion, and wssecurity.Signature. Do not delete these

predefined configurations.

Note: SWAM is deprecated in WebSphere Application Server Version 6.1 and will be removed in

a future release.

b. Click the name of the login configuration that you want to modify.

c. Under Additional Properties, click JAAS Login Modules. The JAAS Login Modules panel is

displayed, which lists all of the login modules that are processed in the login configuration. Do not

delete the required JAAS login modules. Instead, you can add custom login modules before or

after the required login modules. If you add custom login modules, do not begin their names with

com.ibm.ws.security.server.

You can specify the order in which the login modules are processed by clicking Set Order.

 7. Select the Security attribute propagation option on the CSIv2 inbound authentication panel. When

you select Security Attribute Propagation, the server advertises to other application servers that it

can receive propagated security attributes from another server in the same realm over the Common

Secure Interoperability version 2 (CSIv2) protocol.

 8. Click Security > Secure administration, applications, and infrastructure. Under RMI/IIOP security,

click CSIv2 Outbound authentication. The CSIv2 outbound authentication panel is displayed. The

Login configuration field specifies RMI_OUTBOUND as the JAAS login configuration that is used for

outbound configuration. You cannot change this login configuration. Instead, you can customize this

login configuration by completing the substeps that are listed previously for CSIv2 Inbound

authentication.

 9. Optional: Verify that the Security Attribute Propagation option is selected if you want to enable

outbound Subject and security context token propagation for the Remote Method Invocation (RMI)

protocol. When you select this option, WebSphere Application Server serializes the Subject contents

and the PropagationToken contents. After the contents are serialized, the server uses the CSIv2

protocol to send the Subject and PropagationToken token to the target servers that support security

attribute propagation. If the receiving server does not support security attribute tokens, WebSphere

Application Server sends the Lightweight Third Party Authentication (LTPA) token only.

Important: WebSphere Application Server propagates only the objects within the Subject that it can

serialize. The server propagates custom objects on a best-effort basis.

When Security Attribute Propagation is enabled, WebSphere Application Server adds marker

tokens to the Subject to enable the target server to add additional attributes during the inbound login.

During the commit phase of the login, the marker tokens and the Subject are marked as read-only

and cannot be modified thereafter.

10. Optional: Select the Custom Outbound Mapping option if you clear the Security Attribute

Propagation option and you want to use the RMI_OUTBOUND login configuration. If neither the

Custom Outbound Mapping option nor the Security Attribute Propagation option is selected,

WebSphere Application Server does not call the RMI_OUTBOUND login configuration. If you need to

plug in a credential mapping login module, you must select the Custom Outbound Mapping option.

11. Optional: Specify trusted target realm names in the Trusted Target Realms field. By specifying

these realm names, information can be sent to servers that reside outside the realm of the sending

server to support inbound mapping that is at these downstream servers. To perform outbound

mapping to a realm different from the current realm, you must specify the realm in this field so that

you can get to this point without having the request rejected because of a realm mismatch. If you

need WebSphere Application Server to propagate security attributes to another realm when a request

is sent, you must specify the realm name in the Trusted Target Realms field. Otherwise, the security

attributes are not propagated to the unspecified realm. You can add multiple target realms by adding

a pipe (|) delimiter between each entry.

Chapter 16. Security 1239

12. Optional: Enable propagation for a pure client. For a pure client to propagate attributes added to the

invocation Subject, you must add the following property to the sas.client.props file:

com.ibm.CSI.rmiOutboundPropagationEnabled=true

Note: The sas.client.props file is located at <WAS-HOME>/profiles/<ProfileName>/properties>.

After completing these steps, you have configured WebSphere Application Server to propagate security

attributes to other servers.

If you need to disable security attribute propagation, determine whether you need to disable it for either

the server level or the cell level.

Attention: Changes to the server-level settings override the cell settings.

To disable security attribute propagation on the server level, complete the following steps:

1. Click Server > Application Servers > server_name.

2. Under Security, click Server security.

3. Select the RMI/IIOP security for this server overrides cell settings option.

4. Disable security attribute propagation for inbound requests by clicking CSI inbound authentication

under Additional Properties and clearing the Security attribute propagation option.

5. Disable security attribute propagation for outbound requests by clicking CSI outbound authentication

under Additional Properties and clearing the Security attribute propagation option.

To disable security attribute propagation on the cell level, undo each of the steps that you completed to

enable security attribute propagation in this task.

Configuring the authentication cache

The security authentication cache affects the frequency of rehashing and the distribution of the hash

algorithms.

To configure the authentication cache properties, complete the following steps:

1. Click Servers > Application Servers > server_name .

2. Under Server infrastructure, click Java and Process Management > Process definition.

3. Under Additional properties, click Java Virtual Machine > Custom Properties.

4. Click New to specify a new custom property.

For information on the supported authentication cache properties, see “Security cache properties.”

Security cache properties

The following Java virtual machine (JVM) security cache custom properties determine whether the

authentication cache is enabled or disabled. If the authentication cache is enabled, as recommended,

these custom properties specify the initial size of the primary and secondary hash table caches, which

affect the frequency of rehashing and the distribution of the hash algorithms.

Important: The com.ibm.websphere.security.util.tokenCacheSize and

com.ibm.websphere.security.util.LTPAValidationCacheSize properties were replaced with the

com.ibm.websphere.security.util.authCacheSize property.

You can specify these system properties by completing the following steps:

1. Click Servers > Application servers > server_name.

2. Click Java and Process Management > Process Definition.

3. Under Additional properties, click Java Virtual Machine.

1240 Administering applications and their environment

4. Specify the property name and its value in the Generic JVM arguments field. You can specify multiple

property name and value pairs delimited by a space.

WebSphere Application Server includes the following security cache custom properties:

com.ibm.websphere.security.util.authCacheEnabled

Specifies whether to disable the authentication cache. It is recommended that you leave the

authentication cache enabled for performance reasons. However, you can disable the

authentication cache for debug or measurement purposes.

 Default: True

com.ibm.websphere.security.util.authCacheSize

Specifies the initial size of the primary and secondary hash table caches. A higher number of

available hash values might decrease the occurrence of hash collisions. A hash collision results in

a linear search for the hash bucket, which might decrease the retrieval time. If several entries

compose a hash table cache, you create a table with a larger capacity that supports more efficient

hash entries instead of allowing automatic rehashing determine the growth of the table. Rehashing

causes every entry to move each time.

 Default: 200

Type: Integer

Configuring IIOP authentication

WebSphere Application Server enables you to specify Internet Inter-ORB Protocol (IIOP) authentication for

both inbound and outbound authentication requests. For inbound requests, you can specify the type of

accepted authentication, such as basic authentication. For outbound requests, you can specify properties

such as type of authentication, identity assertion or login configurations that are used for requests to

downstream servers.

The following topics are covered in this section:

v Configuring Common Secure Interoperability Version 2 inbound authentication

v Configuring Common Secure Interoperability Version 2 outbound authentication

Configuring Common Secure Interoperability Version 2 inbound authentication

Inbound authentication refers to the configuration that determines the type of accepted authentication for

inbound requests. This authentication is advertised in the interoperable object reference (IOR) that the

client retrieves from the name server.

1. Start the administrative console.

2. Click Security > Secure administration, applications, and infrastructure.

3. Under RMI/IIOP security, click CSIv2 inbound authentication.

4. Consider the following layers of security:

v Identity assertion (attribute layer).

When selected, this server accepts identity tokens from upstream servers. If the server receives an

identity token, the identity is taken from an originating client. For example, the identity is in the same

form that the originating client presented to the first server. An upstream server sends the identity of

the originating client. The format of the identity can be either a principal name, a distinguished

name, or a certificate chain. In some cases, the identity is anonymous. It is important to trust the

upstream server that sends the identity token because the identity authenticates on this server. Trust

of the upstream server is established either using Secure Sockets Layer (SSL) client certificate

authentication or basic authentication. You must select one of the two layers of authentication in

both inbound and outbound authentication when you choose identity assertion.

Chapter 16. Security 1241

The server ID is sent in the client authentication token with the identity token. The server ID is

checked against the trusted server ID list. If the server ID is on the trusted server list, the server ID

is authenticated. If the server ID is valid, the identity token is put into a credential and used for

authorization of the request.

For more information, refer to Identity assertion.

v User ID and password (message layer).

This type of authentication is the most typical. The user ID and password or authenticated token is

sent from a pure client or from an upstream server. However, the upstream server cannot be a z/OS

server because z/OS does not support a user ID or password from a server acting as a client. When

a user ID and password are received at the server, they are authenticated with the user registry.

Usually, a token is sent from an upstream server and a user ID and password are sent from a client,

including a servlet. When a token is received at the server level, the token is validated to determine

whether tampering has occurred or whether it is expired.

For more information, refer to User ID and password.

v Secure Sockets Layer client certificate authentication (transport layer).

The SSL client certificate is used to authenticate instead of using user ID and Password. If a server

delegates an identity to a downstream server, the identity comes from either the message layer (a

client authentication token) or the attribute layer (an identity token), and not from the transport layer

through the client certificate authentication.

A client has an SSL client certificate that is stored in the keystore file of the client configuration.

When SSL client authentication is enabled on this server, the server requests that the client send

the SSL client certificate when the connection is established. The certificate chain is available on the

socket whenever a request is sent to the server. The server request interceptor gets the certificate

chain from the socket and maps this certificate chain to a user in the user registry. This type of

authentication is optimal for communicating directly from a client to a server. However, when you

have to go downstream, the identity typically flows over the message layer or through identity

assertion.

5. Consider the following points when deciding what type of authentication to accept:

v A server can receive multiple layers simultaneously, so an order of precedence rule decides which

identity to use. The identity assertion layer has the highest priority, the message layer follows, and

the transport layer has the lowest priority. The SSL client certificate authentication is used when it is

the only layer provided. If the message layer and the transport layer are provided, the message

layer is used to establish the identity for authorization. The identity assertion layer is used to

establish precedence when provided.

v Does this server usually receive requests from a client, from a server, or both? If the server always

receives requests from a client, identity assertion is not needed. You can choose either the message

layer, the transport layer, or both. You also can decide when authentication is required or just

supported. To select a layer as required, the sending client must supply this layer, or the request is

rejected. However, if the layer is only supported, the layer might not be supplied.

v What kind of client identity is supplied? If the client identity is client certificates authentication and

you want the certificate chain to flow downstream so that it maps to the downstream server user

registries, identity assertion is the appropriate choice. Identity assertion preserves the format of the

originating client. If the originating client authenticated with a user ID and password, a principal

identity is sent. If authentication is done with a certificate, the certificate chain is sent.

In some cases, if the client authenticated with a token and a Lightweight Directory Access Protocol

(LDAP) server is the user registry, then a distinguished name (DN) is sent.

6. Configure a trusted server list. When identity assertion is selected for inbound requests, insert a

pipe-separated (|) list of server administrator IDs to which this server can support identity token

submission. For backwards compatibility, you can still use a comma-delimited list. However, if the

server ID is a distinguished name (DN), then you must use a pipe-delimited (|) list because a comma

delimiter does not work. If you choose to support any server sending an identity token, you can enter

an asterisk (*) in this field. This action is called presumed trust. In this case, use SSL client certificate

authentication between servers to establish the trust.

1242 Administering applications and their environment

7. Configure session management. You can choose either stateful or stateless security. Performance is

optimum when choosing stateful sessions. The first method request between a client and server is

authenticated. All subsequent requests (or until the credential token expires) reuse the session

information, including the credential. A client sends a context ID for subsequent requests. The context

ID is scoped to the connection for uniqueness.

When you finish configuring this panel, you have configured most of the information that a client gathers

when determining what to send to this server. A client or server outbound configuration with this server

inbound configuration, determines the security that is applied. When you know what clients send, the

configuration is simple. However, if you have a diverse set of clients with differing security requirements,

your server considers various layers of authentication.

For a J2EE application server, the authentication choice is usually either identity assertion or message

layer because you want the identity of the originating client delegated downstream. You cannot easily

delegate a client certificate using an SSL connection. It is acceptable to enable the transport layer

because additional server security, as the additional client certificate portion of the SSL handshake, adds

some overhead to the overall SSL connection establishment.

After you determine which type of authentication data this server might receive, you can determine what to

select for outbound security. For more information, see Configuring Common Secure Interoperability

Version 2 outbound authentication.

Common Secure Interoperability inbound authentication settings:

Use this page to specify the features that a server supports for a client accessing its resources.

 To view this administrative console page, complete the following steps:

1. Click Security > Secure administration, applications, and infrastructure.

2. Under Authentication, click RMI/IIOP security > CSIv2 inbound authentication.

You can also view this administrative console page on the server page by completing the following steps:

1. Click Servers > Application servers > server_name.

2. Under Security, click Server security.

3. Under Additional properties, click CSIv2 inbound authentication.

Use common secure interoperability (CSI) inbound authentication settings for configuring the type of

authentication information that is contained in an incoming request or transport.

Authentication features include three layers of authentication that you can use simultaneously:

v Transport layer. The transport layer, which is the lowest layer, might contain a Secure Sockets Layer

(SSL) client certificate as the identity.

v Message layer. The message layer might contain a user ID and password or an authenticated token

with an expiration.

v Attribute layer. The attribute layer might contain an identity token, which is an identity from an

upstream server that already is authenticated. The identity layer has the highest priority, followed by the

message layer, and then the transport layer. If a client sends all three, only the identity layer is used.

The only way to use the SSL client certificate as the identity is if it is the only information that is

presented during the request. The client picks up the interoperable object reference (IOR) from the

namespace and reads the values from the tagged component to determine what the server needs for

security.

Basic authentication:

Specifies that basic authentication occurs over the message layer.

Chapter 16. Security 1243

Basic authentication occurs in the message layer. This type of authentication typically involves sending a

user ID and a password from the client to the server for authentication.

This authentication also involves delegating a credential token from an already authenticated credential,

provided the credential type is forwardable, for example, Lightweight Third Party Authentication (LTPA).

If you click Basic Authentication and LTPA is the configured authentication protocol, user name,

password, and LTPA tokens are accepted.

The following options are available for Basic Authentication:

Never This option indicates that this server cannot accept user ID and password authentication.

Supported

This option indicates that a client communicating with this server can specify a user ID and

password. However, a method might be invoked without this type of authentication. For example,

an anonymous or client certificate might be used instead.

Required

This option indicates that clients communicating with this server must specify a user ID and

password for any method request.

Basic authentication takes precedence over client certificate authentication, if both are performed.

Client certificate authentication:

Specifies that authentication occurs when the initial connection is made between the client and the server

during a method request.

 In the transport layer, Secure Sockets Layer (SSL) client certificate authentication occurs. In the message

layer, basic authentication (user ID and password) is performed. Client certificate authentication typically

performs better than message layer authentication, but requires some additional setup. These additional

steps involve verifying that the server trusts the signer certificate of each client to which it is connected. If

the client uses a certificate authority (CA) to create its personal certificate, you only need the CA root

certificate in the server signer section of the SSL trust file.

When the certificate is authenticated to a Lightweight Directory Access Protocol (LDAP) user registry, the

distinguished name (DN) is mapped based on the filter that is specified when configuring LDAP. When the

certificate is authenticated to a local OS user registry, the first attribute of the distinguished name (DN) in

the certificate, which is typically the common name, is mapped to the user ID in the registry.

The identity from client certificates is used only if no other layer of authentication is presented to the

server.

Never This option indicates that clients cannot attempt Secure Sockets Layer (SSL) client certificate

authentication with this server.

Supported

This option indicates that clients connecting to this server can authenticate using SSL client

certificates. However, the server can invoke a method without this type of authentication. For

example, anonymous or basic authentication can be used instead.

Required

This option indicates that clients connecting to this server must authenticate using SSL client

certificates before invoking the method.

Trusted identities:

1244 Administering applications and their environment

Specifies a pipe-separated (|) list of trusted server administrator user IDs, which are trusted to perform

identity assertion to this server. For example, serverid1|serverid2|serverid3. The application server

supports the comma (,) character as the list delimiter for backwards compatibility. The application server

checks the comma character when the pipe character (|) fails to find a valid trusted server ID.

Use this list to decide whether a server is trusted. Even if the server is on the list, the sending server must

still authenticate with the receiving server to accept the identity token of the sending server.

 Data type String

Stateful sessions:

Select this option to enable stateful sessions, which are used mostly for performance improvements.

 The first contact between a client and server must fully authenticate. However, all subsequent contacts

with valid sessions reuse the security information. The client passes a context ID to the server, and the ID

is used to look up the session. The context ID is scoped to the connection, which guarantees uniqueness.

Whenever the security session is not valid and the authentication retry is enabled, which is the default, the

client-side security interceptor invalidates the client-side session and submits the request again without

user awareness. This situation might occur if the session does not exist on the server (the server failed

and resumed operation). When this value is disabled, every method invocation must authenticate again.

 Data type String

Login configuration:

Specifies the type of system login configuration to use for inbound authentication.

 You can add custom login modules by clicking Security > Secure administration, applications, and

infrastructure. Under Authentication, click Java Authentication and Authorization Service > System

logins.

Security attribute propagation:

Select this option to support security attribute propagation during login requests. When you select this

option, the application server retains additional information about the login request, such as the

authentication strength used, and retains the identity and location of the request originator.

 Verify that you are using Lightweight Third Party Authentication (LTPA) as your authentication mechanism.

LTPA is the only authentication mechanism supported when you enable the security attribute propagation

feature.

To configure LTPA, click Security > Secure administration, applications, and infrastructure. Under

Authentication, click Authentication mechanisms and expiration.

If you do not select this option, the application server does not accept any additional login information to

propagate to downstream servers.

Configuring Common Secure Interoperability Version 2 outbound authentication

The following choices are available when configuring the Common Secure Interoperability Version 2

(CSIv2) Outbound Authentication panel.

Outbound authentication refers to the configuration that determines the type of authentication that is

performed for outbound requests to downstream servers. Several layers or methods of authentication can

occur. The downstream server inbound authentication configuration must support at least one choice made

Chapter 16. Security 1245

in this server outbound authentication configuration. If nothing is supported, the request might go outbound

as unauthenticated. This situation does not create a security problem because the authorization runtime is

responsible for preventing access to protected resources. However, if you choose to prevent an

unauthenticated credential from going outbound, you might want to designate one of the authentication

layers as required, rather than supported. If a downstream server does not support authentication, then

when authentication is required, the method request fails to go outbound.

The following choices are available in the Common Secure Interoperability Version 2 (CSIv2) Outbound

Authentication panel. Remember that you are not required to complete these steps in the displayed order.

Rather, these steps are provided to help you understand your choices for configuring outbound

authentication.

v Select Identity Assertion (attribute layer). When selected, this server sends an identity token to a

downstream server if the downstream server supports identity assertion. When an originating client

authenticates to this server, the authentication information supplied is preserved in the outbound identity

token. If the client authenticating to this server uses client certificate authentication, then the identity

token format is a certificate chain, containing the exact client certificate chain from the inbound socket.

The same scenario is true for other mechanisms of authentication. Read theIdentity Assertion topic for

more information.

v Select User ID and Password (message layer). This type of authentication is the most typical. The user

ID and password (if BasicAuth credential) or authenticated token (if authenticated credential) are sent

outbound to the downstream server if the downstream server supports message layer authentication in

the inbound authentication panel. Refer to the Message Layer Authentication article for more

information.

v Select SSL Client certificate authentication (transport layer). The main reason to enable outbound

Secure Sockets Layer (SSL) client authentication from one server to a downstream server is to create a

trusted environment between those servers. For delegating client credentials, use one of the two layers

mentioned previously. However, you might want to create SSL personal certificates for all the servers in

your domain, and only trust those servers in your SSL truststore file. No other servers or clients can

connect to the servers in your domain, except at the tiers where you want them. This process can

protect your enterprise bean servers from access by anything other than your servlet servers.

Configuring session management:

You can choose either stateful or stateless security. Performance is optimum when choosing stateful

sessions. The first method request between this server and the downstream server is authenticated. All

subsequent requests reuse the session information, including the credential. A unique session entry is

defined as the combination of a unique client authentication token and an identity token, scoped to the

connection.

When you finish configuring this panel, you configured the information that this server uses to make

decisions about the type of authentication to perform with downstream servers. If the downstream server is

configured not to support the outbound configuration of the server, the following exception likely occurs:

Exception received: org.omg.CORBA.INITIALIZE:

CWWSA1477W: SECURITY CLIENT/SERVER CONFIG MISMATCH: The client security

configuration (sas.client.props or outbound settings in GUI) does not

support the server security configuration for the following reasons:

ERROR 1: CWWSA0607E: The client requires SSL Confidentiality but the server

does not support it.

ERROR 2: CWWSA0610E: The server requires SSL Integrity but the client does

not support it.

ERROR 3: CWWSA0612E: The client requires client (e.g., userid/password or token),

but the server does not support it.

minor code: 0 completed: No

 at com.ibm.ISecurityLocalObjectBaseL13Impl.SecurityConnectionInterceptor.

getConnectionKey(SecurityConnectionInterceptor.java:1770)

 at com.ibm.ws.orbimpl.transport.WSTransport.getConnection(Unknown Source)

 at com.ibm.rmi.iiop.TransportManager.get(TransportManager.java:79)

 at com.ibm.rmi.iiop.GIOPImpl.locate(GIOPImpl.java:167)

1246 Administering applications and their environment

at com.ibm.CORBA.iiop.ClientDelegate._createRequest(ClientDelegate.java:2088)

 at com.ibm.CORBA.iiop.ClientDelegate.createRequest(ClientDelegate.java:1264)

 at com.ibm.CORBA.iiop.ClientDelegate.createRequest(ClientDelegate.java:1177)

 at com.ibm.CORBA.iiop.ClientDelegate.request(ClientDelegate.java:1726)

 at org.omg.CORBA.portable.ObjectImpl._request(ObjectImpl.java:245)

 at com.ibm.WsnOptimizedNaming._NamingContextStub.get_compatibility_level

(Unknown Source)

 at com.ibm.websphere.naming.DumpNameSpace.getIdlLevel(DumpNameSpace.java:300)

 at com.ibm.websphere.naming.DumpNameSpace.getStartingContext

(DumpNameSpace.java:329)

 at com.ibm.websphere.naming.DumpNameSpace.main(DumpNameSpace.java:268)

 at java.lang.reflect.Method.invoke(Native Method)

 at com.ibm.ws.bootstrap.WSLauncher.main(WSLauncher.java:163)

The reasons for the mismatch are explained in the exception. You can make the corrections when you

configure the outbound configuration for this server, or when you configure the inbound configuration of the

downstream server. If multiple reasons exist for a failure, the reasons are explained as message text in the

exception.

Typically, the outbound authentication configuration is for an upstream server to communicate with a

downstream server. Most likely, the upstream server is a servlet server and the downstream server is an

Enterprise JavaBeans (EJB) server. On a servlet server, the client authentication that is performed to

access the servlet can be one of many different types of authentication, including client certificate and

basic authentication. When receiving basic authentication data, whether through a prompt login or a

form-based login, the basic authentication information is typically authenticated to from a credential of the

mechanism type that is supported by the server, such as the Lightweight Third Party Authentication

(LTPA). When LTPA is the mechanism, a forwardable token exists in the credential. Choose the message

layer (BasicAuth) authentication to propagate the client credentials. If the credential is created using a

certificate login and you want to preserve sending the certificate downstream, you might decide to go

outbound with identity assertion.

Save the configuration and restart the server for the changes to take effect.

Common Secure Interoperability Version 2 outbound authentication settings:

Use this page to specify the features that a server supports when acting as a client to another downstream

server.

 To view this administrative console page, complete the following steps:

1. Click Security > Secure administration, applications, and infrastructure.

2. Under Authentication, click RMI/IIOP security > CSIv2 outbound authentication.

You also can view this administrative console page by completing the following steps:

1. Click Servers > Application Servers > server_name.

2. Under Security, click Server security.

3. Click CSIv2 outbound authentication.

Authentication features include the following layers of authentication that you can use simultaneously:

Transport layer

The transport layer, the lowest layer, might contain a Secure Sockets Layer (SSL) client certificate

as the identity.

Message layer

The message layer might contain a user ID and password or authenticated token.

Attribute layer

The attribute layer might contain an identity token, which is an identity from an upstream server

that is already authenticated. The attribute layer has the highest priority, followed by the message

Chapter 16. Security 1247

layer and then the transport layer. If this server sends all three - the attribute layer, the message

layer, and the transport layer - only the attribute layer is used by the downstream server. The only

way to use the SSL client certificate as the identity is if it is the only information presented during

the outbound request.

Basic authentication:

Specifies whether to send a user ID and a password from the client to the server for authentication.

 This type of authentication occurs over the message layer. Basic authentication also involves delegating a

credential token from an already authenticated credential, provided the credential type is forwardable (for

example, Lightweight Third Party Authentication (LTPA)). Basic authentication refers to any authentication

over the message layer and indicates user ID and password as well as token-based authentication.

The following options are available:

Never This option indicates that this server does not send user ID and password authentication

information to downstream servers. By selecting never, requests to downstream servers that

require basic authentication fail.

Supported

This option indicates that this server can specify a user ID and password to authenticate with

downstream servers. However, a method might be invoked without this type of authentication. For

example, the server can use anonymous or client certificate instead.

Required

This option indicates that this server must specify a user ID and password to authenticate with

downstream servers for any method request. This server cannot initiate requests with servers that

do not support or require basic authentication for inbound requests.

Client certificate authentication:

Specifies whether a client certificate from the configured keystore is used to authenticate to the server

when the SSL connection is made between this server and a downstream server, provided that the

downstream server supports client certificate authentication.

 Typically, client certificate authentication has a higher performance than message layer authentication, but

requires some additional setup. These additional steps include verifying that this server has a personal

certificate and that the downstream server has the signer certificate of this server.

If you select client certificate authentication, the following options are available:

Never This option indicates that this server does not attempt Secure Sockets Layer (SSL) client

certificate authentication with downstream servers.

Supported

This option indicates that this server can use SSL client certificates to authenticate to downstream

servers. However, a method can be invoked without this type of authentication. For example, the

server can use anonymous or basic authentication instead.

Required

This option indicates that this server must use SSL client certificates to authenticate to

downstream servers.

Identity assertion:

Specifies whether to assert identities from one server to another during a downstream enterprise bean

invocation.

1248 Administering applications and their environment

The identity asserted is the invocation credential that is determined by the RunAs mode for the enterprise

bean. If the RunAs mode is Client, the identity is the client identity. If the RunAs mode is System, the

identity is the server identity. If the RunAs mode is Specified, the identity is the identity specified. The

receiving server receives the identity in an identity token and also receives the sending server identity in a

client authentication token. The receiving server validates the identity of the sending server to ensure a

trusted identity.

When specifying identity assertion on the CSIv2 authentication outbound panel, you must also select basic

authentication as supported or required on the CSIv2 authentication inbound panel. The server identity can

then be submitted with the identity token, so that the receiving server can trust the sending server. Without

specifying basic authentication as supported or required, trust is not established and the identity assertion

fails.

Use server trusted identity

Specifies the server identity that the application server uses to establish trust with the target

server. The server identity can be sent using one of the following methods:

v A server ID and password when the server password is specified in the registry configuration.

v A server ID in a Lightweight Third Party Authentication (LTPA) token when the internal server ID

is used.

For interoperability with application servers other than WebSphere Application Server, use of the

following methods:

v Configure the server ID and password in the registry.

v Select the Specify an alternative trusted identity option and specify the trusted identity and

password so that an interoperable Generic Security Services Username Password (GSSUP)

token is sent instead of an LTPA token.

Specify an alternative trusted identity

 Specifies an alternative user as the trusted identity that is sent to the target servers instead of

sending the server identity. This option is recommended for identity assertion. The identity is

automatically trusted when it is sent within the same cell and does not need to be in the trusted

identities list within the same cell. However, this identity must be in the registry of the target

servers in an external cell and the user ID must be on the trusted identities list or the identity is

rejected during trust evaluation.

Trusted identity

Specifies the trusted identity that is sent from the sending server to the receiving server.

 If you specify an identity in this field, it can be selected on the panel for your configured

user account repository. If you do not specify an identity, a Lightweight Third Party

Authentication (LTPA) token is sent between the servers.

Password

Specifies the password that is associated with the trusted identity.

Confirm password

Confirms the password that is associated with the trusted identity.

Stateful sessions:

Specifies whether to reuse security information during authentication. This option is usually used to

increase performance.

 The first contact between a client and server must fully authenticate. However, all subsequent contacts

with valid sessions reuse the security information. The client passes a context ID to the server, and that ID

is used to look up the session. The context ID is scoped to the connection, which guarantees uniqueness.

When the security session is not valid and if authentication retry is enabled, which is the default, the

Chapter 16. Security 1249

client-side security interceptor invalidates the client-side session and resubmits the request transparently.

For example, if the session does not exist on the server; the server fails and resumes operation.

When this value is disabled, every method invocation must authenticate again.

Login configuration:

Specifies the type of system login configuration that is used for outbound authentication.

 You can add custom login modules before or after this login module by completing the following steps:

1. Click Security > Secure administration, applications, and infrastructure.

2. Under Authentication, click Java Authentication and Authorization Service > System logins > New.

Custom outbound mapping:

Enables the use of custom Remote Method Invocation (RMI) outbound login modules.

 The custom login module maps or performs other functions before the predefined RMI outbound call.

To declare a custom outbound mapping, complete the following steps:

1. Click Security > Secure administration, applications, and infrastructure.

2. Under Authentication, click Java Authentication and Authorization Service > System logins > New.

Security attribute propagation:

Enables the application server to propagate the Subject and the security content token to other application

servers using the Remote Method Invocation (RMI) protocol.

 Verify that you are using Lightweight Third Party Authentication (LTPA) as your authentication mechanism.

LTPA is the only authentication mechanism that is supported when you enable the security attribute

propagation feature. To configure LTPA, complete the following steps:

1. Click Security > Secure administration, applications, and infrastructure.

2. Under Authentication, click Authentication mechanisms and expiration.

By default, the Security attribute propagation option is enabled and outbound login configuration is

invoked. If you clear this option, the application server does not propagate any additional login information

to downstream servers. If you select the Use SWAM-no authenticated communication between servers

option on the Authentication mechanisms and expiration panel, the security attribute propagation feature is

not supported.

Note: SWAM is deprecated in the application server Version 6.1 and will be removed in a future release.

Trusted target realms:

Specifies a list of trusted target realms, separated by a pipe character (|), that differ from the current

realm.

 Prior to WebSphere Application Server, Version 5.1.1, if the current realm does not match the target realm,

the authentication request is not sent outbound to other application servers.

Example: Common Secure Interoperability Version 2 scenarios

The articles included in this section provide specific scenarios demonstrating how to configure Common

Secure Interoperability Version 2 (CSIv2).

Scenario 1: Basic authentication and identity assertion:

1250 Administering applications and their environment

This example presents a pure Java client, C, that accesses a secure enterprise bean on server, S1,

through user bob. The following steps take you through the configuration of C, S1, and S2.

The enterprise bean code on S1 accesses another enterprise bean on server, S2. This configuration uses

identity assertion to propagate the identity of bob to the downstream server, S2. S2 trusts that bob already

is authenticated by S1 because it trusts S1. To gain this trust, the identity of S1 also flows to S2

simultaneously and S2 validates the identity by checking the trustedPrincipalList list to verify that it is a

valid server principal. S2 also authenticates S1. The following steps take you through the configuration of

C, S1, and S2.

Configuring client, C

Client C requires message layer authentication with a Secure Sockets Layer (SSL) transport. To

accomplish this task:

1. Point the client to the sas.client.props file.

Use the com.ibm.CORBA.ConfigURL=file:/C:/was/properties/sas.client.props property. All further

configuration involves setting properties within this file.

2. Enable SSL.

In this case, SSL is supported but not required:

com.ibm.CSI.performTransportAssocSSLTLSSupported=true,

com.ibm.CSI.performTransportAssocSSLTLSRequired=false

3. Enable client authentication at the message layer.

In this case, client authentication is supported but not required:

com.ibm.CSI.performClientAuthenticationRequired=false,

com.ibm.CSI.performClientAuthenticationSupported=true

4. Use all of the remaining defaults in the sas.client.props file.

Configuring server, S1

In the administrative console, server S1 is configured for incoming requests to support message-layer

client authentication and incoming connections to support SSL without client certificate authentication.

Server S1 is configured for outgoing requests to support identity assertion.

1. Configure S1 for incoming connections.

a. Disable identity assertion.

b. Enable user ID and password authentication.

c. Enable SSL.

server1/passwordbob/password

Java client Enterprise beans

Invocation credentials: bob

Message layerMessage layer

Transport layer Transport layer

Identity assertion layer

SSLSSL

bob

C S1 S2

Received credentials: bob

Enterprise beans

Chapter 16. Security 1251

d. Disable SSL client certificate authentication.

2. Configure S1 for outgoing connections.

a. Enable identity assertion.

b. Disable user ID and password authentication.

c. Enable SSL.

d. Disable SSL client certificate authentication.

Configuring server, S2

In the administrative console, server S2 is configured for incoming requests to support identity assertion

and to accept SSL connections. Complete the following steps to configure incoming connections.

Configuration for outgoing requests and connections are not relevant for this scenario.

1. Enable identity assertion.

2. Disable user ID and password authentication.

3. Enable SSL.

4. Disable SSL client authentication.

Scenario 2: Basic authentication, identity assertion, and client certificates:

This scenario is the same as Scenario 1, except for the interaction from client C2 to server S2. Therefore,

the configuration of Scenario 1 still is valid, but you have to modify server S2 slightly and add a

configuration for client C2. The configuration is not modified for C1 or S1.

server1/passwordbob/password

Java client Enterprise beans

Invocation credentials: bob

Message layerMessage layer

Transport layer Transport layer

Identity assertion layer

SSLSSL

bob

C S1 S2

Received credentials: bob

Enterprise beans

Transport layer

SSL: cn=bob, o=ibm, c=us

C S1

1252 Administering applications and their environment

Configuring client C2

Client C2 requires transport layer authentication (Secure Sockets Layer (SSL) client certificates). To

configure transport layer authentication:

1. Point the client to the sas.client.props file.

Use the com.ibm.CORBA.ConfigURL=file:/C:/was/properties/sas.client.props property. All further

configuration involves setting properties within this file.

2. Enable SSL.

In this case, SSL is supported but not required:

com.ibm.CSI.performTransportAssocSSLTLSSupported=true,

com.ibm.CSI.performTransportAssocSSLTLSRequired=false

3. Disable client authentication at the message layer.

com.ibm.CSI.performClientAuthenticationRequired=false,

com.ibm.CSI.performClientAuthenticationSupported=false

4. Enable client authentication at the transport layer where it is supported, but not required:

com.ibm.CSI.performTLClientAuthenticationRequired=false,

com.ibm.CSI.performTLClientAuthenticationSupported=true

Configuring server, S2

In the administrative console, server S2 is configured for incoming requests to SSL client authentication

and identity assertion. Configuration for outgoing requests is not relevant for this scenario.

1. Enable identity assertion.

2. Disable user ID and password authentication.

3. Enable SSL.

4. Enable SSL client authentication.

You can mix and match these configuration options. However, a precedence exists as to which

authentication features become the identity in the received credential:

1. Identity assertion

2. Message-layer client authentication (basic authentication or token)

3. Transport-layer client authentication (SSL certificates)

Scenario 3: Client certificate authentication and RunAs system:

This example presents a pure Java client, C, accessing a secure enterprise bean on S1.

Chapter 16. Security 1253

C authenticates to S1 using Secure Sockets Layer (SSL) client certificates. S1 maps the common name of

the distinguished name (DN) in the certificate to a user in the local registry. The user in this case is bob.

The enterprise bean code on S1 accesses another enterprise bean on S2. Because the RunAs mode is

system, the invocation credential is set as server1 for any outbound requests.

Configuring C

C requires transport layer authentication (SSL client certificates):

1. Point the client to the sas.client.props file.

Use the com.ibm.CORBA.ConfigURL=file:/C:/was/properties/sas.client.props property. All further

configuration involves setting properties within this file.

2. Enable SSL.

In this case, SSL is supported but not required:

com.ibm.CSI.performTransportAssocSSLTLSSupported=true,

com.ibm.CSI.performTransportAssocSSLTLSRequired=false

3. Disable client authentication at the message

layer:com.ibm.CSI.performClientAuthenticationRequired=false,

com.ibm.CSI.performClientAuthenticationSupported=false

4. Enable client authentication at the transport layer. It is supported, but not required:

com.ibm.CSI.performTLClientAuthenticationRequired=false,

com.ibm.CSI.performTLClientAuthenticationSupported=true

Configuring S1

In the administrative console, S1 is configured for incoming connections to support SSL with client

certificate authentication. The S1 server is configured for outgoing requests to support message layer

client authentication.

1. Configure S1 for incoming connections:

a. Disable identity assertion.

b. Disable user ID and password authentication.

c. Enable SSL.

d. Enable SSL client certificate authentication.

2. Configure S1 for outgoing connections:

a. Disable identity assertion.

b. Disable user ID and password authentication.

server1/password

Java client Enterprise beans

Invocation credentials: bob

RunAs system

Message layer

Transport layer Transport layer

SSLSSL: cn=bob, o=ibm, c=us

C S1 S2

Received credentials: server1

Enterprise beans

1254 Administering applications and their environment

c. Enable SSL.

d. Enable SSL client certificate authentication.

Configuring S2

In the administrative console, the S2 server is configured for incoming requests to support message layer

authentication over SSL. Configuration for outgoing requests is not relevant for this scenario.

1. Disable identity assertion.

2. Enable user ID and password authentication.

3. Enable SSL.

4. Disable SSL client authentication.

Scenario 4: TCP/IP transport using a virtual private network:

This scenario illustrates the ability to choose TCP/IP as the transport when it is appropriate. In some

cases, when two servers are on the same virtual private network (VPN), it can be appropriate to select

TCP/IP as the transport for performance reasons because the VPN already encrypts the message.

Configuring C

C requires message layer authentication with an Secure Sockets Layer (SSL) transport:

1. Point the client to the sas.client.props file.

tom/password
token

Java client Enterprise

beans

Virtual Private Network

Invocation

credentials: tom

Received

credentials: tom

Message layer
Message layer

Transport layer

TCP/IP

C S1 S2

Transport layer

SSL

Enterprise

beans

Chapter 16. Security 1255

Use the com.ibm.CORBA.ConfigURL=file:/C:/was/properties/sas.client.props property. All further

configuration involves setting properties within this file.

2. Enable SSL. In this case, SSL is supported but not required:

com.ibm.CSI.performTransportAssocSSLTLSSupported=true,

com.ibm.CSI.performTransportAssocSSLTLSRequired=false

3. Enable client authentication at the message layer. In this case, client authentication is supported but

not required: com.ibm.CSI.performClientAuthenticationRequired=false,

com.ibm.CSI.performClientAuthenticationSupported=true

4. Use the remaining defaults in the sas.client.props file.

Configuring the S1 server

In the administrative console, the S1 server is configured for incoming requests to support message-layer

client authentication and incoming connections to support SSL without client certificate authentication. The

S1 server is configured for outgoing requests to support identity assertion.

1. Configure S1 for incoming connections:

a. Disable identity assertion.

b. Enable user ID and password authentication.

c. Enable SSL.

d. Disable SSL client certificate authentication.

2. Configure S1 for outgoing connections:

a. Disable identity assertion.

b. Enable user ID and password authentication.

c. Disable SSL.

It is possible to enable SSL for inbound connections and disable SSL for outbound connections. The same

is true in reverse.

Configuring the S2 server

In the administrative console, the S2 server is configured for incoming requests to support identity

assertion and to accept SSL connections. Configuration for outgoing requests and connections are not

relevant for this scenario.

1. Disable identity assertion.

2. Enable user ID and password authentication.

3. Disable SSL.

Configuring RMI over IIOP

Complete the following steps to configure Common Secure Interoperability Version 2 (CSIV2) and Security

Authentication Service (SAS).

Important: SAS is supported only between Version 6.0.x and previous version servers that have been

federated in a Version 6.1 cell.

1. Determine how to configure security inbound and outbound at each point in your infrastructure.

For example, you might have a Java client communicating with an Enterprise JavaBeans (EJB)

application server, which in turn communicates to a downstream EJB application server.

The Java client utilizes the sas.client.props file to configure outbound security. Pure clients must

configure outbound security only.

The upstream EJB application server configures inbound security to handle the correct type of

authentication from the Java client. The upstream EJB application server utilizes the outbound security

configuration when going to the downstream EJB application server.

1256 Administering applications and their environment

This type of authentication might be different than what you expect from the Java client into the

upstream EJB application server. Security might be tighter between the pure client and the first EJB

server, depending on your infrastructure. The downstream EJB server utilizes the inbound security

configuration to accept requests from the upstream EJB server. These two servers require similar

configuration options as well. If the downstream EJB application server communicates to other

downstream servers, the outbound security might require a special configuration.

2. Specify the type of authentication.

By default, authentication by a user ID and password is performed.

Both Java client certificate authentication and identity assertion are disabled by default. If you want this

type of authentication performed at every tier, use the CSIv2 authentication protocol configuration as is.

However, if you have any special requirements where some servers authenticate differently from other

servers, consider how to configure CSIv2 to its best advantage.

3. Configure clients and servers.

Configuring a pure Java client is done through the sas.client.props file, where properties are

modified.

Configuring servers is always done from the administrative console or scripting, either from the security

navigation for cell-level configurations or from the server security of the application server for

server-level configurations. If you want some servers to authenticate differently from others, modify

some of the server-level configurations. When you modify the server-level configurations, you are

overriding the cell-level configurations.

Configuring inbound transports

By using this configuration, you can configure a different transport for inbound security versus outbound

security.

V6.0.x

Inbound transports refer to the types of listener ports and their attributes that are opened to

receive requests for this server. Both Common Secure Interoperability Specification, Version 2 (CSIv2) and

Secure Authentication Service (SAS) have the ability to configure the transport.

Important: SAS is supported only between Version 6.0.x and previous version servers that have been

federated in a Version 6.1 cell.

However, the following differences between the two protocols exist: V6.0.x

v CSIv2 is much more flexible than SAS, which requires Secure Sockets Layer (SSL); CSIv2 does not

require SSL.

v SAS does not support SSL client certificate authentication, while CSIv2 does.

v CSIv2 can require SSL connections, while SAS only supports SSL connections.

v SAS always has two listener ports open: TCP/IP and SSL.

v CSIv2 can have as few as one listener port and as many as three listener ports. You can open one port

for just TCP/IP or when SSL is required. You can open two ports when SSL is supported, and open

three ports when SSL and SSL client certificate authentication is supported.

Complete the following steps to configure the Inbound transport panels in the administrative console:

1. Click Security > Secure administration, applications, and infrastructure.

2. Under RMI/IIOP security, click CSIv2 inbound transport to select the type of transport and the SSL

settings. By selecting the type of transport, as noted previously, you choose which listener ports you

want to open. In addition, you disable the SSL client certificate authentication feature if you choose

TCP/IP as the transport.

3. Select the SSL settings that correspond to an SSL transport. You can define these settings by

accessing the SSL configurations panel. For more information, see tsec_sslconfiguration.dita.

4. Click Apply in the CSIv2 inbound transport panel.

5. Consider fixing the listener ports that you configured.

Chapter 16. Security 1257

tsec_sslconfiguration.dita

You complete this action in a different panel, but think about this action now. Most endpoints are

managed at a single location, which is why they do not display in the Inbound transport panels.

Managing end points at a single location helps you decrease the number of conflicts in your

configuration when you assign the endpoints. The location for SSL end points is at each server. The

following port names are defined in the End points panel and are used for Object Request Broker

(ORB) security:

v CSIV2_SSL_MUTUALAUTH_LISTENER_ADDRESS - CSIv2 Client Authentication SSL Port

v CSIV2_SSL_SERVERAUTH_LISTENER_ADDRESS - CSIv2 SSL Port

v

V6.0.x

SAS_SSL_SERVERAUTH_LISTENER_ADDRESS - SAS SSL Port

v ORB_LISTENER_PORT - TCP/IP Port

For an application server, click Servers > Application servers > server_name. Under

Communications, click Ports. The Ports panel is displayed for the specified server.

The Object Request Broker (ORB) on WebSphere Application Server uses a listener port for Remote

Method Invocation over the Internet Inter-ORB Protocol (RMI/IIOP) communications, and is statically

specified using configuration dialogs or during migration. If you are working with a firewall, you must

specify a static port for the ORB listener and open that port on the firewall so that communication can

pass through the specified port. The endPoint property for setting the ORB listener port is:

ORB_LISTENER_ADDRESS.

Complete the following steps using the administrative console to specify the

ORB_LISTENER_ADDRESS port or ports.

a. Click Servers > Application Servers > server_name. Under Communications, click Ports > New.

b. Select ORB_LISTENER_ADDRESS from the Port name field in the Configuration panel.

c. Enter the IP address, the fully qualified Domain Name System (DNS) host name, or the DNS host

name by itself in the Host field. For example, if the host name is myhost, the fully qualified DNS

name can be myhost.myco.com and the IP address can be 155.123.88.201.

d. Enter the port number in the Port field. The port number specifies the port for which the service is

configured to accept client requests. The port value is used with the host name. Using the previous

example, the port number might be 9000.

6. Click Security > Secure administration, applications, and infrastructure. Under RMI/IIOP security,

click CSIv2 inbound transport to select the SSL settings that are used for inbound requests from

CSIv2 clients. Remember that the CSIv2 protocol is used to inter-operate with previous releases.

When configuring the keystore and truststore files in the SSL configuration, these files need the right

information for inter-operating with previous releases of WebSphere Application Server. For example, a

previous release has a different truststore file than the Version 6 release. If you use the Version 6

keystore file, add the signer to the truststore file of the previous release for those clients connecting to

this server.

The inbound transport configuration is complete. With this configuration, you can configure a different

transport for inbound security versus outbound security. For example, if the application server is the first

server that is used by users, the security configuration might be more secure. When requests go to

back-end enterprise bean servers, you might lessen the security for performance reasons when you go

outbound. With this flexibility you can design the right transport infrastructure to meet your needs.

When you finish configuring security, perform the following steps to save, synchronize, and restart the

servers:

1. Click Save in the administrative console to save any modifications to the configuration.

2. Stop and restart all servers, when synchronized.

Common Secure Interoperability Version 2 transport inbound settings:

Use this page to specify which listener ports to open and which Secure Sockets Layer (SSL) settings to

use. These specifications determine which transport a client or upstream server uses to communicate with

this server for incoming requests.

1258 Administering applications and their environment

To view this administrative console page, complete the following steps:

1. Click Security > Secure administration, applications, and infrastructure.

2. Under Authentication, click RMI/IIOP security > CSIv2 inbound transport.

Transport:

Specifies whether client processes connect to the server using one of its connected transports.

 You can choose to use either Secure Sockets Layer (SSL), TCP/IP or both as the inbound transport that a

server supports. If you specify TCP/IP, the server only supports TCP/IP and cannot accept SSL

connections. If you specify SSL-supported, this server can support either TCP/IP or SSL connections. If

you specify SSL-required, then any server communicating with this one must use SSL.

If you specify SSL-supported or SSL-required, decide which set of SSL configuration settings you want to

use for the inbound configuration. This decision determines which key file and trust file are used for

inbound connections to this server.

TCP/IP

If you select TCP/IP, then the server opens a TCP/IP listener port only and all inbound requests

do not have SSL protection.

SSL-required

If you select SSL-required, then the server opens an SSL listener port only and all inbound

requests are received using SSL.

Important:

V6.0.x

If you set the active authentication protocol to CSI and SAS, then the

server opens a TCP/IP listener port for the Secure Authentication Service (SAS)

protocol regardless of this setting.

V6.0.x

Only an SSL listener port is opened, and all requests come through SSL connections. If

you choose SSL-required, you must also choose CSI as the active authentication protocol. If you

choose CSI and SAS, SAS requires an open TCP/IP socket for some special requests.

Important: SAS is supported only between Version 6.0.x and previous version servers that have

been federated in a Version 6.1 cell.

SSL-supported

If you select SSL-supported, then the server opens both a TCP/IP and an SSL listener port and

most inbound requests are received using SSL.

V6.0.x

By default, SSL ports for Common Secure Interoperability Version 2 (CSIv2) and Security

Authentication Service (SAS) are dynamically generated. In cases where you need to fix the SSL ports on

application servers, click Servers > Application Servers > server_name. Under Additional properties,

click Endpoint listeners.

Provide a fixed port number for the following ports. A zero port number indicates that a dynamic

assignment is made at runtime.

CSIV2_SSL_MUTUALAUTH_LISTENER_ADDRESS

CSIV2_SSL_SERVERAUTH_LISTENER_ADDRESS

SAS_SSL_SERVERAUTH_LISTENER_ADDRESS

 Default: SSL-Supported

Range: TCP/IP, SSL Required, SSL-Supported

Chapter 16. Security 1259

SSL settings:

Specifies a list of predefined SSL settings to choose from for inbound connections.

Note:

V6.0.x

This option is available for non-z/OS platform servers when there is a version 6.0.x

server in your environment. However, if your environment contains only Version 6.1 servers, this

option does not apply.

These settings are configured at the SSL Repertoire panel. To access the SSL Repertoire panel, complete

the following steps:

1. Clicking Security > SSL certificate and key management.

2. Under configuration settings, click Manage endpoint security configurations and trust zones.

3. Expand Inbound and click inbound_configuration.

4. Under Related items, click SSL configurations.

 Data type: String

Default: DefaultSSLSettings

DefaultIIOPSSL

Range: Any SSL settings configured in the SSL Configuration

Repertoire

Centrally managed:

Specifies that the selection of an SSL configuration is based upon the outbound topology view for the Java

Naming and Directory Interface (JNDI) platform.

 Centrally managed configurations support one location to maintain SSL configurations rather than

spreading them across the configuration documents.

 Default: Enabled

Use specific SSL alias:

Specifies the SSL configuration alias to use for LDAP outbound SSL communications.

 This option overrides the centrally managed configuration for the JNDI platform.

z/OS SSL settings:

Specifies a list of predefined Secure Sockets Layer (SSL) settings for inbound connections. Configure

these settings on the SSL panel by clicking Secure communications on the administrative console.

Secure Authentication Service inbound transport settings:

Use this page to specify transport settings for connections that are accepted by this server using the

Secure Authentication Service (SAS) authentication protocol. The SAS protocol is used to communicate

securely to enterprise beans with previous releases of the application server.

 To view this administrative console page, complete the following steps:

1. Click Security > Secure administration, applications, and infrastructure.

2. Under Authentication, expand RMI/IIOP security and click SAS inbound transport.

1260 Administering applications and their environment

Attention:

V6.0.x

The panel associated with this article displays only when you have a Version 6.0.x

server in your environment. SAS is supported only between Version 6.0.x and previous version

servers that have been federated in a Version 6.1 cell.

SSL Settings:

Specifies a list of predefined SSL settings to choose from for inbound connections.

 These settings are configured on the Secure Sockets Layer (SSL) configuration panel. To access the SSL

configuration panel, complete the following steps:

1. Click Security > SSL certificate and key management > Manage endpoint security configurations

and trust zones.

2. Expand Inbound > configuration_name.

3. Under Related Items, click SSL configurations.

 Data type: String

Default: DefaultSSLSettings

Configuring outbound transports

By using this configuration, you can configure a different transport for inbound security versus outbound

security.

Outbound transports refers to the transport that is used to connect to a downstream server. When you

configure the outbound transport, consider the transports that the downstream servers support. If you are

considering Secure Sockets Layer (SSL), also consider including the signers of the downstream servers in

this server truststore file for the handshake to succeed.

When you select an SSL configuration, that configuration points to keystore and truststore files that contain

the necessary signers.

If you configured client certificate authentication for this server by completing the following steps, then the

downstream servers contain the signer certificate belonging to the server personal certificate:

1. Click Security > Secure administration, applications, and infrastructure.

2. Under RMI/IIOP security, click CSIv2 outbound authentication

Complete the following steps to configure the outbound transport panels.

1. Select the type of transport and the SSL settings by clicking Security > Secure administration,

applications, and infrastructure. Under RMI/IIOP security, click CSIv2 outbound transport. By

selecting the type of transport, you choose the transport to use when connecting to downstream

servers. The downstream servers support the transport that you choose. If you choose

SSL-Supported, the transport that is used is negotiated during the connection. If both the client and

server support SSL, always select the SSL-Supported option unless the request is considered a

special request that does not require SSL, such as if an object request broker (ORB) is a request.

2. Select the SSL required option if you want to use Secure Sockets Layer communications with the

outbound transport.

If you select the SSL required option, you can select either the Centrally managed or Use specific

SSL alias option.

Centrally managed

Enables you to specify an SSL configuration for particular scope such as the cell, node, server,

or cluster in one location. To use the Centrally managed option, you must specify the SSL

configuration for the particular set of endpoints. The Manage endpoint security configurations

and trust zones panel displays all of the inbound and outbound endpoints that use the SSL

Chapter 16. Security 1261

protocol. If you expand the Inbound or Outbound section of the panel and click the name of a

node, you can specify an SSL configuration that is used for every endpoint on that node. For

an outbound transport, you can override the inherited SSL configuration by specifying an SSL

configuration for a particular endpoint. To specify an SSL configuration for an outbound

transport, click Security > SSL certificate and key management > Manage endpoint

security configurations and trust zones and expand Outbound.

Use specific SSL alias

Select the Use specific SSL alias option if you intend to select one of the SSL configurations

in the menu below the option.

 This configuration is used only when SSL is enabled for LDAP. The default is

DefaultSSLSettings. To modify or create a new SSL configuration, complete the steps

described in “Creating a Secure Sockets Layer configuration” on page 1385.

3.

V6.0.x

Select the SSL that are settings used for outbound requests to downstream Secure

Authentication Service (SAS) servers. Click Security > Secure administration, applications, and

infrastructure. Under RMI/IIOP security, click SAS outbound transport. Remember that the SAS

protocol allows interoperability with previous releases. When configuring the keystore and truststore

files in the SSL configuration, these files have the correct information for inter-operating with previous

releases of WebSphere Application Server. For example, a previous release has a different personal

certificate than the Version 6.x release. If you use the keystore file from the Version 6.x release, you

must add the signer to the truststore file of the previous release. Also, you must extract the signer for

the Version 6.x release and import that signer into the truststore file of the previous release.

Important: SAS is supported only between Version 6.0.x and previous version servers that have been

federated in a Version 6.1 cell.

The outbound transport configuration is complete. With this configuration, you can configure a different

transport for inbound security versus outbound security. For example, if the application server is the first

server used by end users, the security configuration might be more secure. When requests go to back-end

enterprise beans servers, you might consider less security for performance reasons when you go

outbound. With this flexibility you can design a transport infrastructure that meets your needs.

When you finish configuring security, perform the following steps to save, synchronize, and restart the

servers.

v Click Save in the administrative console to save any modifications to the configuration.

v Stop and restart all servers, after synchronization.

Common Secure Interoperability Version 2 outbound transport settings:

Use this page to specify which transports and Secure Sockets Layer (SSL) settings this server uses when

communicating with downstream servers for outbound requests.

 To view this administrative console page, complete the following steps:

1. Click Security > Secure administration, applications, and infrastructure.

2. Under Authentication, click RMI/IIOP security > CSIv2 outbound transport.

You also can view this administrative console by completing the following steps:

1. Click Servers > Application servers > server_name.

2. Under Security, click Server security.

3. Under Additional properties, click CSIv2 outbound transport.

Transport:

Specifies whether the client processes connect to the server using one of the server-connected transports.

1262 Administering applications and their environment

You can choose to use either SSL, TCP/IP, or Both as the outbound transport that a server supports. If

you specify TCP/IP, the server supports only TCP/IP and cannot initiate SSL connections with downstream

servers. If you specify SSL-supported, this server can initiate either TCP/IP or SSL connections. If you

specify SSL-required, this server must use SSL to initiate connections to downstream servers. When you

do specify SSL, decide which set of SSL configuration settings you want to use for the outbound

configuration.

This decision determines which keyfile and trustfile to use for outbound connections to downstream

servers.

Consider the following options:

TCP/IP

If you select this option, the server opens TCP/IP connections with downstream servers only.

SSL-required

If you select this option, the server opens SSL connections with downstream servers.

SSL-supported

If you select this option, the server opens SSL connections with any downstream server that

supports them and opens TCP/IP connections with any downstream servers that do not support

SSL.

 Default: SSL-supported

Range: TCP/IP, SSL-required, SSL-supported

SSL settings:

Specifies a list of predefined SSL settings for outbound connections. These settings are configured at the

SSL Configuration Repertoires panel.

 To access the panel, complete the following steps:

1. Click Security > SSL certificate and key management.

2. Under Configuration settings, click Manage endpoint security configurations and trust zones.

3. Expand Outbound > outbound_configuration_name.

4. Under Related items, click SSL configurations.

 Data type: String

Range: Any SSL settings that are configured in the SSL

Configuration Repertoires panel

Note:

V6.0.x

This field is available only if a Version 6.0.x server exists in your environment.

SSL enabled:

Specifies whether secure socket communication is enabled to the server.

Centrally managed:

Specifies that the selection of an SSL configuration is based upon the outbound topology view for the Java

Naming and Directory Interface (JNDI) platform.

 Centrally managed configurations support one location to maintain SSL configurations rather than

spreading them across the configuration documents.

 Default: Enabled

Chapter 16. Security 1263

Use specific SSL alias:

Specifies the SSL configuration alias that you want to use for outbound SSL communications.

 This option overrides the centrally managed configuration for the JNDI (LDAP) protocol.

Secure Authentication Service outbound transport settings:

Use this page to specify transport settings for connections that are accepted by this server using the

Secure Authentication Service (SAS) authentication protocol.

 To view this administrative console page, complete the following steps:

1. Click Security > Secure administration, applications, and infrastructure.

2. Under Authentication, expand RMI/IIOP security and click SAS outbound transport.

Attention:

V6.0.x

The panel associated with this article displays only when you have a Version 6.0.x

server in your environment.

SSL settings:

Specifies a list of predefined Secure Sockets Layer (SSL) settings to choose from for outbound

connections.

 These settings are configured on the SSL configuration panel. To access the SSL configuration panel,

complete the following steps:

1. Click Security > SSL certificate and key management > Manage endpoint security configurations

and trust zones.

2. Expand Outbound > configuration_name.

3. Under Related Items, click SSL configurations.

 Data type: String

Default: DefaultSSLSettings

Performing identity mapping for authorization across servers in different realms

Identity mapping is a one-to-one mapping of a user identity between two servers so that the proper

authorization decisions are made by downstream servers. Identity mapping is necessary when the

integration of servers is needed, but the user registries are different and not shared between the systems.

The following topics are covered in this section:

v Configuring inbound identity mapping

v Configuring outbound identity mapping to a different target realm

Configuring inbound identity mapping:

For inbound identity mapping, write a custom login module and configure WebSphere Application Server to

run the login module first within the system login configurations. Consider the following steps when you

write your custom login module.

1. Get the inbound user identity from the callbacks and map the identity, if necessary This step occurs in

the login method of the login module. A valid authentication has either or both NameCallback and the

WSCredTokenCallback callbacks present. The following code sample shows you how to determine the

user identity:

1264 Administering applications and their environment

javax.security.auth.callback.Callback callbacks[] =

 new javax.security.auth.callback.Callback[3];

 callbacks[0] = new javax.security.auth.callback.NameCallback("");

 callbacks[1] = new javax.security.auth.callback.PasswordCallback

 ("Password: ", false);

 callbacks[2] = new com.ibm.websphere.security.auth.callback.

 WSCredTokenCallbackImpl("");

 callbacks[3] = new com.ibm.wsspi.security.auth.callback.

 WSTokenHolderCallback("");

 try

 {

 callbackHandler.handle(callbacks);

 }

 catch (Exception e)

 {

 // Handles exceptions

 throw new WSLoginFailedException (e.getMessage(), e);

 }

 // Shows which callbacks contain information

 boolean identitySwitched = false;

 String uid = ((NameCallback) callbacks[0]).getName();

 char password[] = ((PasswordCallback) callbacks[1]).getPassword();

 byte[] credToken = ((WSCredTokenCallbackImpl) callbacks[2]).getCredToken();

 java.util.List authzTokenList = ((WSTokenHolderCallback)

 callbacks[3]).getTokenHolderList();

 if (credToken != null)

 {

 try

 {

 String uniqueID = WSSecurityPropagationHelper.validateLTPAToken(credToken);

 String realm = WSSecurityPropagationHelper.getRealmFromUniqueID (uniqueID);

 // Now set the string to the UID so that you can use the result for either

 // mapping or logging in.

 uid = WSSecurityPropagationHelper.getUserFromUniqueID (uniqueID);

 }

 catch (Exception e)

 {

 // Handles the exception

 }

 }

 else if (uid == null)

 {

 // Throws an exception if authentication data is not valid.

 // You must have either UID or CredToken

 throw new WSLoginFailedException("invalid authentication data.");

 }

 else if (uid != null && password != null)

 {

 // This is a typical authentication. You can choose to map this ID to

 // another ID or you can skip it and allow WebSphere Application Server

 // to log in for you. When passwords are presented, be very careful to not

 // validate the password because this is the initial authentication.

 return true;

 }

 // If desired, map this uid to something else and set the identitySwitched

 // boolean. If the identity was changed, clear the propagated attributes

 // below so they are not used incorrectly.

 uid = myCustomMappingRoutine (uid);

 // Clear the propagated attributes because they are no longer applicable

 // to the new identity

Chapter 16. Security 1265

if (identitySwitched)

 {

 ((WSTokenHolderCallback) callbacks[3]).setTokenHolderList(null);

 }

2. Check to see if attribute propagation occurred and if the attributes for the user are already present

when the identity remains the same. Check to see if the user attributes are already present from the

sending server to avoid duplicate calls to the user registry lookup. To check for the user attributes, use

a method on the WSTokenHolderCallback callback that analyzes the information present in the

callback to determine if the information is sufficient for WebSphere Application Server to create a

Subject. The following code sample checks for the user attributes:

boolean requiresLogin =

((com.ibm.wsspi.security.auth.callback.WSTokenHolderCallback)

callbacks[2]).requiresLogin();

If sufficient attributes are not present to form the WSCredential and the WSPrincipal objects that are

needed to perform authorization, the previous code sample returns a true result. When the result is

false, you can choose to discontinue processing as the necessary information exists to create the

Subject without performing additional remote user registry calls.

3. Optional: Look up the required attributes from the user registry, put the attributes in a hashtable, and

add the hashtable to the shared state. If the identity is switched in this login module, you must

complete the following steps:

a. Create the hashtable of attributes, as shown in the following example.

b. Add the hashtable to the shared state.

If the identity is not switched, but the value of the requiresLogin code sample shown previously is true,

you can create the hashtable of attributes. However, you are not required to create a hashtable in this

situation as WebSphere Application Server handles the login for you. However, you might consider

creating a hashtable to gather attributes in special cases where you are using your own special user

registry. Creating a UserRegistry implementation, using a hashtable, and letting WebSphere Application

Server gather the user attributes for you might be the easiest solution. The following table shows how

to create a hashtable of user attributes:

if (requiresLogin || identitySwitched)

 {

 // Retrieves the default InitialContext for this server.

 javax.naming.InitialContext ctx = new javax.naming.InitialContext();

 // Retrieves the local UserRegistry implementation.

 com.ibm.websphere.security.UserRegistry reg = (com.ibm.websphere.

 security.UserRegistry)

 ctx.lookup("UserRegistry");

 // Retrieves the user registry uniqueID based on the uid specified

 // in the NameCallback.

 String uniqueid = reg.getUniqueUserId(uid);

 uid = WSSecurityPropagationHelper.getUserFromUniqueID (uniqueID);

 // Retrieves the display name from the user registry based on the uniqueID.

 String securityName = reg.getUserSecurityName(uid);

 // Retrieves the groups associated with the uniqueID.

 java.util.List groupList = reg.getUniqueGroupIds(uid);

 // Creates the java.util.Hashtable with the information that you gathered

 // from the UserRegistry implementation.

 java.util.Hashtable hashtable = new java.util.Hashtable();

 hashtable.put(com.ibm.wsspi.security.token.AttributeNameConstants.

 WSCREDENTIAL_UNIQUEID, uniqueid);

 hashtable.put(com.ibm.wsspi.security.token.AttributeNameConstants.

 WSCREDENTIAL_SECURITYNAME, securityName);

 hashtable.put(com.ibm.wsspi.security.token.AttributeNameConstants.

 WSCREDENTIAL_GROUPS, groupList);

1266 Administering applications and their environment

// Adds a cache key that is used as part of the lookup mechanism for

 // the created Subject. The cache key can be an object, but should have

 // an implemented toString method. Make sure that the cacheKey contains

 // enough information to scope it to the user and any additional attributes

 // that you are using. If you do not specify this property the Subject is

 // scoped to the returned WSCREDENTIAL_UNIQUEID, by default.

 hashtable.put(com.ibm.wsspi.security.token.AttributeNameConstants.

 WSCREDENTIAL_CACHE_KEY, "myCustomAttribute" + uniqueid);

 // Adds the hashtable to the sharedState of the Subject.

 _sharedState.put(com.ibm.wsspi.security.token.AttributeNameConstants.

 WSCREDENTIAL_PROPERTIES_KEY, hashtable);

 }

The following rules define in more detail how a hashtable login is performed. You must use a

java.util.Hashtable object in either the Subject (public or private credential set) or the shared-state

HashMap. The com.ibm.wsspi.security.token.AttributeNameConstants class defines the keys that

contain the user information. If the Hashtable object is put into the shared state of the login context

using a custom login module that is listed prior to the Lightweight Third Party Authentication (LTPA)

login module, the value of the java.util.Hashtable object is searched using the following key within the

shared-state hashMap:

Property

com.ibm.wsspi.security.cred.propertiesObject

Reference to the property

AttributeNameConstants.WSCREDENTIAL_PROPERTIES_KEY

Explanation

This key searches for the Hashtable object that contains the required properties in the shared

state of the login context.

Expected result

A java.util.Hashtable object.

If a java.util.Hashtable object is found either inside the Subject or within the shared state area, verify

that the following properties are present in the hashtable:

Property

com.ibm.wsspi.security.cred.uniqueId

Reference to the property

AttributeNameConstants.WSCREDENTIAL_UNIQUEID

Returns

java.util.String

Explanation

The value of the property must be a unique representation of the user. For the WebSphere

Application Server default implementation, this property represents the information that is

stored in the application authorization table. The information is located in the application

deployment descriptor after it is deployed and user-to-role mapping is performed. See the

expected format examples if the user to role mapping is performed using a lookup to a

WebSphere Application Server user registry implementation.

 If a third-party authorization provider overrides the user-to-role mapping, then the third-party

authorization provider defines the format. To ensure compatibility with the WebSphere

Application Server default implementation for the unique ID value, call the WebSphere

Application Server public String getUniqueUserId(String userSecurityName) UserRegistry

method.

Chapter 16. Security 1267

Expected format examples

 Realm Format (uniqueUserId)

Lightweight Directory Access

Protocol (LDAP)

ldaphost.austin.ibm.com:389/cn=user,o=ibm,c=us

Windows MYWINHOST/S-1-5-21-963918322-163748893-4247568029-500

UNIX MYUNIXHOST/32

The com.ibm.wsspi.security.cred.uniqueId property is required.

Property

com.ibm.wsspi.security.cred.securityName

Reference to the property

AttributeNameConstants. WSCREDENTIAL_ SECURITYNAME

Returns

java.util.String

Explanation

This property searches for the securityName of the authentication user. This name is

commonly called the display name or short name. WebSphere Application Server uses the

securityName attribute for the getRemoteUser, getUserPrincipal and getCallerPrincipal

application programming interfaces (APIs). To ensure compatibility with the WebSphere

Application Server default implementation for the securityName value, call the WebSphere

Application Server public String getUserSecurityName(String uniqueUserId) UserRegistry

method.

Expected format examples

 Realm Format (uniqueUserId)

LDAP user (LDAP UID)

Windows user (Windows username)

UNIX user (UNIX username)

The com.ibm.wsspi.security.cred.securityName property is required.

Property

com.ibm.wsspi.security.cred.groups

Reference to the property

AttributeNameConstants. WSCREDENTIAL_GROUPS

Returns

java.util.ArrayList

Explanation

This key searches for the array list of groups to which the user belongs. The groups are

specified in the realm_name/user_name format. The format of these groups is important as the

groups are used by the WebSphere Application Server authorization engine for group-to-role

mappings in the deployment descriptor. The format that is provided must match the format

expected by the WebSphere Application Server default implementation. When you use a

third-party authorization provider, you must use the format that is expected by the third-party

provider. To ensure compatibility with the WebSphere Application Server default

implementation for the unique group IDs value, call the WebSphere Application Server public

List getUniqueGroupIds(String uniqueUserId) UserRegistry method.

1268 Administering applications and their environment

Expected format examples for each group in the array list

 Realm Format

LDAP ldap1.austin.ibm.com:389/cn=group1,o=ibm,c=us

Windows MYWINREALM/S-1-5-32-544

UNIX MY/S-1-5-32-544

The com.ibm.wsspi.security.cred.groups property is not required. A user is not required to have

associated groups.

Property

com.ibm.wsspi.security.cred.cacheKey

Reference to the property

AttributeNameConstants. WSCREDENTIAL_CACHE_KEY

Returns

java.lang.Object

Explanation

This key property can specify an object that represents the unique properties of the login,

including the user-specific information and the user dynamic attributes that might affect

uniqueness. For example, when the user logs in from location A, which might affect their

access control, the cache key needs to include location A so that the Subject that is received is

the correct Subject for the current location.

This com.ibm.wsspi.security.cred.cacheKey property is not required. When this property is not

specified, the cache lookup is the value that is specified for WSCREDENTIAL_UNIQUEID. When this

information is found in the java.util.Hashtable object, WebSphere Application Server creates a Subject

similar to the Subject that goes through the normal login process at least for LTPA. The new Subject

contains a WSCredential object and a WSPrincipal object that is fully populated with the information

found in the Hashtable object.

4. Add your custom login module into the RMI_INBOUND, WEB_INBOUND, and DEFAULT Java

Authentication and Authorization Service (JAAS) system login configurations. Configure the

RMI_INBOUND login configuration so that WebSphere Application Server loads your new custom login

module first.

a. Click Security > Secure administration, applications, and infrastructure > Java

Authentication and Authorization Service > System logins > RMI_INBOUND

b. Under Additional Properties, click JAAS login modules > New to add your login module to the

RMI_INBOUND configuration.

c. Return to the JAAS login modules panel for RMI_INBOUND.

d. Click Set order to change the order that the login modules are loaded so that WebSphere

Application Server loads your custom login module first. Use the Move Up or Move Down buttons

to arrange the order of the login modules.

e. Repeat the previous three steps for the WEB_INBOUND and DEFAULT login configurations.

This process configures identity mapping for an inbound request.

The “Example: Custom login module for inbound mapping” on page 1271 topic shows a custom login

module that creates a java.util.Hashtable hashtable that is based on the specified NameCallback callback.

The java.util.Hashtable hashtable is added to the sharedState java.util.Map map so that the WebSphere

Application Server login modules can locate the information in the hashtable.

Identity mapping:

Chapter 16. Security 1269

Identity mapping is a one-to-one mapping of a user identity between two servers so that the proper

authorization decisions are made by downstream servers. Identity mapping is necessary when the

integration of servers is needed, but the user registries are different and not shared between the systems.

 In most cases, requests flow downstream between two servers that are part of the same security domain.

In WebSphere Application Server, two servers that are members of the same cell are also members of the

same security domain. In the same cell, the two servers have the same user registry and the same

Lightweight Third Party Authentication (LTPA) keys for token encryption. These two commonalities ensure

that the LTPA token, among other user attributes, which flows between the two servers, not only can be

decrypted and validated, but also the user identity in the token can be mapped to attributes that are

recognized by the authorization engine.

The most reliable and recommended configuration involves two servers within the same cell. However,

sometimes you need to integrate multiple systems that cannot use the same user registry. When the user

registries are different between two servers, the security domain or realm of the target server does not

match the security domain of the sending server.

WebSphere Application Server enables mapping to occur either before sending the request outbound or

before enabling the existing security credentials to flow to the target server. The credentials are mapped

inbound with the specification that the target realm is trusted.

An alternative to mapping is to send the user identity without the token or the password to a target server

without actually mapping the identity. The use of the user identity is based on trust between the two

servers. Use Common Secure Interoperability Version 2 (CSIv2) identity assertion. When enabled, the

server sends just the X.509 certificate, principal name, or distinguished name (DN) based upon what was

used by the original client to perform the initial authentication. During CSIv2 identity assertion, trust is

established between WebSphere Application Servers.

The user identity must exist in the target user registry for identity assertion to work. This process can also

enable interoperability between other Java 2 Platform, Enterprise Edition (J2EE) Version 1.4 and higher

compliant application servers. If both the sending server and target servers have identity assertion

configured, WebSphere Application Server always uses this method of authentication, even when both

servers are in the same security domain. For more information on CSIv2 identity assertion, see “Identity

assertion” on page 1187.

When the user identity is not present in the user registry of the target server, identity mapping must occur

either before the request is sent outbound or when the request comes inbound. This decision depends

upon your environment and requirements. However, it is typically easier to map the user identity before the

request is sent outbound for the following reasons:

v You know the user identity of the existing credential as it comes from the user registry of the sending

server.

v You do not have to worry about sharing Lightweight Third Party Authentication (LTPA) keys with the

other target realm because you are not mapping the identity to LTPA credentials. Typically, you are

mapping the identity to a user ID and password that are present in the user registry of the target realm.

When you do perform outbound mapping, in most cases, it is recommended that you use Secure Sockets

Layer (SSL) to protect the integrity and confidentiality of the security information sent across the network.

If LTPA keys are not shared between servers, an LTPA token cannot be validated at the inbound server. In

this case, outbound mapping is necessary because the user identity cannot be determined at the inbound

server to do inbound mapping. For more information, see “Configuring outbound mapping to a different

target realm” on page 1273.

When you need inbound mapping, potentially due to the mapping capabilities of the inbound server, you

must ensure that both servers have the same LTPA keys so that you can get access to the user identity.

Typically, in secure communications between servers, an LTPA token is passed into the

WSCredTokenCallback callback of the inbound JAAS login configuration for the purposes of client

1270 Administering applications and their environment

authentication. A method is available that enables you to open the LTPA token, if valid, and get access to

the user unique ID so that mapping can be performed. For more information, see “Configuring inbound

identity mapping” on page 1264. In other cases, such as identity assertion, you might receive a user name

in the NameCallback callback of the inbound login configuration that enables you to map the identity.

Example: Custom login module for inbound mapping:

This sample shows a custom login module that creates a java.util.Hashtable hashtable that is based on

the specified NameCallback callback. The java.util.Hashtable hashtable is added to the sharedState

java.util.Map map so that the WebSphere Application Server login modules can locate the information in

the Hashtable.

 public customLoginModule()

{

public void initialize(Subject subject, CallbackHandler callbackHandler,

 Map sharedState, Map options)

{

 // (For more information on initialization, see

 // Custom login module development for a system login configuration.)

 _sharedState = sharedState;

}

public boolean login() throws LoginException

{

 // (For more information on what to do during login, see

 // Custom login module development for a system login configuration.)

 // Handles the WSTokenHolderCallback to see if this is an initial or

 // propagation login.

 javax.security.auth.callback.Callback callbacks[] =

 new javax.security.auth.callback.Callback[3];

 callbacks[0] = new javax.security.auth.callback.NameCallback("");

 callbacks[1] = new javax.security.auth.callback.PasswordCallback(

 "Password: ", false);

 callbacks[2] = new com.ibm.websphere.security.auth.callback.

 WSCredTokenCallbackImpl("");

 callbacks[3] = new com.ibm.wsspi.security.auth.callback.

 WSTokenHolderCallback("");

 try

 {

 callbackHandler.handle(callbacks);

 }

 catch (Exception e)

 {

 // Handles the exception

 }

 // Determines which callbacks contain information

 boolean identitySwitched = false;

 String uid = ((NameCallback) callbacks[0]).getName();

 char password[] = ((PasswordCallback) callbacks[1]).getPassword();

 byte[] credToken = ((WSCredTokenCallbackImpl) callbacks[2]).getCredToken();

 java.util.List authzTokenList = ((WSTokenHolderCallback) callbacks[3]).

 getTokenHolderList();

 if (credToken != null)

 {

 try

 {

 String uniqueID = WSSecurityPropagationHelper.validateLTPAToken(credToken);

 String realm = WSSecurityPropagationHelper.getRealmFromUniqueID (uniqueID);

 // Set the string to the UID so you can use the information to either

 // map or login.

 uid = WSSecurityPropagationHelper.getUserFromUniqueID (uniqueID);

Chapter 16. Security 1271

}

 catch (Exception e)

 {

 // handle exception

 }

 }

 else if (uid == null)

 {

 // The authentication data is not valid. You must have either UID

 // or CredToken

 throw new WSLoginFailedException("invalid authentication data.");

 }

 else if (uid != null && password != null)

 {

 // This is a typical authentication. You can choose to map this ID to

 // another ID or you can skip it and allow WebSphere Application Server

 // to log in for you. When passwords are presented, be very careful not

 // to validate the password because this is the initial authentication.

 return true;

 }

 // You can map this uid to something else and set the identitySwitched

 // boolean. If the identity is changed, clear the following propagated

 // attributes so they are not used incorrectly.

 uid = myCustomMappingRoutine (uid);

 // Clear the propagated attributes because they no longer apply to the new identity

 if (identitySwitched)

 {

 ((WSTokenHolderCallback) callbacks[3]).setTokenHolderList(null);

 }

 boolean requiresLogin = ((com.ibm.wsspi.security.auth.callback.

 WSTokenHolderCallback) callbacks[2]).requiresLogin();

 if (requiresLogin || identitySwitched)

 {

 // Retrieves the default InitialContext for this server.

 javax.naming.InitialContext ctx = new javax.naming.InitialContext();

 // Retrieves the local UserRegistry object.

 com.ibm.websphere.security.UserRegistry reg =

 (com.ibm.websphere.security.UserRegistry) ctx.lookup("UserRegistry");

 // Retrieves the registry uniqueID based on the uid that is specified

 // in the NameCallback.

 String uniqueid = reg.getUniqueUserId(uid);

 uid = WSSecurityPropagationHelper.getUserFromUniqueID (uniqueID);

 // Retrieves the display name from the user registry based on the uniqueID.

 String securityName = reg.getUserSecurityName(uid);

 // Retrieves the groups associated with this uniqueID.

 java.util.List groupList = reg.getUniqueGroupIds(uid);

 // Creates the java.util.Hashtable with the information that you gathered

 // from the UserRegistry.

 java.util.Hashtable hashtable = new java.util.Hashtable();

 hashtable.put(com.ibm.wsspi.security.token.AttributeNameConstants.

 WSCREDENTIAL_UNIQUEID, uniqueid);

 hashtable.put(com.ibm.wsspi.security.token.AttributeNameConstants.

 WSCREDENTIAL_SECURITYNAME, securityName);

 hashtable.put(com.ibm.wsspi.security.token.AttributeNameConstants.

 WSCREDENTIAL_GROUPS, groupList);

 // Adds a cache key that is used as part of the lookup mechanism for

 // the created Subject. The cache key can be an object, but has

1272 Administering applications and their environment

// an implemented toString method. Make sure the cacheKey contains enough

 // information to scope it to the user and any additional attributes you are

 // using. If you do not specify this property, the Subject is scoped to the

 // WSCREDENTIAL_UNIQUEID returned, by default.

 hashtable.put(com.ibm.wsspi.security.token.AttributeNameConstants.

 WSCREDENTIAL_CACHE_KEY, "myCustomAttribute" + uniqueid);

 // Adds the hashtable to the shared state of the Subject.

 _sharedState.put(com.ibm.wsspi.security.token.AttributeNameConstants.

 WSCREDENTIAL_PROPERTIES_KEY, hashtable);

 }

 else if (requiresLogin == false)

 {

 // For more information on this section, see

 // “Security attribute propagation” on page 1160.

 // If you added a custom Token implementation, you can search through the

 // token holder list for it to deserialize.

 // Note: Any Java objects are automatically deserialized by

 // wsMapDefaultInboundLoginModule

 for (int i=0; i<authzTokenList.size(); i++)

 {

 if (authzTokenList[i].getName().equals("com.acme.MyCustomTokenImpl")

 {

 byte[] myTokenBytes = authzTokenList[i].getBytes();

 // Passes these bytes into the constructor of your implementation

 // class for deserialization.

 com.acme.MyCustomTokenImpl myTokenImpl =

 new com.acme.MyCustomTokenImpl(myTokenBytes);

 }

 }

 }

}

public boolean commit() throws LoginException

{

 // (For more information on what to do during a commit, see

 // Custom login module development for a system login configuration.)

}

// Defines your login module variables

com.ibm.wsspi.security.token.AuthorizationToken customAuthzToken = null;

com.ibm.wsspi.security.token.AuthenticationToken defaultAuthToken = null;

java.util.Map _sharedState = null;

}

Configuring outbound mapping to a different target realm:

By default, when WebSphere Application Server makes an outbound request from one server to another

server in a different security realm, the request is rejected. This topic details alternatives for enabling one

server to send outbound requests to a target server in a different realm.

 This outbound request is rejected to protect against a rogue server reading potentially sensitive information

if successfully impersonating the home of the object. Select one of the following alternative procedures so

that one server can send outbound requests to a target server in a different realm. When you are finished

with a procedure on the administrative console, click Apply.

v Do not perform mapping. Instead, allow the existing security information to flow to a trusted target

server, even if the target server resides in a different realm. Complete the following steps in the

administrative console:

1. Click Security > Secure administration, applications, and infrastructure.

2. Under RMI/IIOP security, click CSIv2 outbound authentication.

Chapter 16. Security 1273

3. Specify the target realms in the Trusted target realms field. You can specify each trusted target

realm that is separated by a pipe (|) character. For example, specify

server_name.domain:port_number for a Lightweight Directory Access Protocol (LDAP) server or the

machine name for local operating system. If you want to propagate security attributes to a different

target realm, you must specify that target realm in the Trusted target realms field.

v Use the Java Authentication and Authorization Service (JAAS) WSLogin application login configuration

to create a basic authentication Subject that contains the credentials of the new target realm. This

configuration enables you to log in with a realm, user ID, and password that are specific to the user

registry of the target realm. You can provide the login information from within the Java 2 Platform,

Enterprise Edition (J2EE) application that is making the outbound request or from within the

RMI_OUTBOUND system login configuration. These two login options are described in the following

information:

1. Use the WSLogin application login configuration from within the J2EE application to log in and get a

Subject that contains the user ID and the password of the target realm. The application can wrap

the remote call with a WSSubject.doAs call. For an example, see “Example: Using the WSLogin

configuration to create a basic authentication subject” on page 1275.

2. Use the code sample in “Example: Using the WSLogin configuration to create a basic authentication

subject” on page 1275 from this plug point within the RMI_OUTBOUND login configuration. Every

outbound Remote Method Invocation (RMI) request passes through this login configuration when it

is enabled. Complete the following steps to enable and plug in this login configuration:

a. Click Security > Secure administration, applications, and infrastructure.

b. Under RMI/IIOP security, click CSIv2 outbound authentication.

c. Select the Custom outbound mapping option. If the Security Attribute Propagation option is

selected, then WebSphere Application Server is already using this login configuration and you do

not need to enable custom outbound mapping.

d. Write a custom login module. For more information, see Custom login module development for a

system login configuration.

The “Example: Sample login configuration for RMI_OUTBOUND” on page 1276 shows a custom

login module that determines whether the realm names match. In this example, the realm names

do not match so the WSLoginmodule is used to create a basic authentication Subject based on

custom mapping rules. The custom mapping rules are specific to the customer environment and

must be implemented using a realm to user ID and password mapping utility.

e. Configure the RMI_OUTBOUND login configuration so that your new custom login module is first

in the list.

1) Click Security > Secure administration, applications, and infrastructure.

2) Under Java Authentication and Authorization Service, click System logins >

RMI_OUTBOUND

3) Under Additional Properties, click JAAS login modules > New to add your login module to

the RMI_OUTBOUND configuration.

4) Return to the JAAS login modules panel for RMI_OUTBOUND.

5) Click Set order to change the order that the login modules are loaded so that your custom

login is loaded first.

v Add the use_realm_callback and use_appcontext_callback options to the outbound mapping module for

WSLogin. To add these options, complete the following steps:

1. Click Security > Secure administration, applications, and infrastructure.

2. Under Java Authentication and Authorization Service, click Application logins > WSLogin.

3. Under Additional properties, click JAAS login modules >

com.ibm.ws.security.common.auth.module.WSLoginModuleImpl.

4. Under Additional properties, click Custom Properties > New.

5. On the Custom properties panel, enter use_realm_callback in the Name field and true in the Value

field.

1274 Administering applications and their environment

6. Click OK.

7. Click New to enter the second custom property.

8. On the Custom properties panel, enter use_appcontext_callback in the Name field and true in the

Value field.

The following changes are made to the security.xml file:

<entries xmi:id="JAASConfigurationEntry_2" alias="WSLogin">

 <loginModules xmi:id="JAASLoginModule_2"

 moduleClassName="com.ibm.ws.security.common.auth.module.proxy.WSLoginModuleProxy"

 authenticationStrategy="REQUIRED">

 <options xmi:id="Property_2" name="delegate"

 value="com.ibm.ws.security.common.auth.module.WSLoginModuleImpl"/>

 <options xmi:id="Property_3" name="use_realm_callback" value="true"/>

 <options xmi:id="Property_4" name="use_appcontext_callback" value="true"/>

 </loginModules>

</entries>

Example: Using the WSLogin configuration to create a basic authentication subject:

This example shows how to use the WSLogin application login configuration from within a Java 2 Platform,

Enterprise Edition (J2EE) application to log in and get a Subject that contains the user ID and the

password of the target realm.

 javax.security.auth.Subject subject = null;

try

{

 // Create a login context using the WSLogin login configuration and specify a

 // user ID, target realm, and password. Note: If the target_realm_name is the

 // same as the current realm, an authenticated Subject is created. However, if

 // the target_realm_name is different from the current realm, a basic

 // authentication Subject is created that is not validated. This unvalidated

 // Subject is created so that you can send a request to the different target

 // realm with valid security credentials for that realm.

 javax.security.auth.login.LoginContext ctx = new LoginContext("WSLogin",

 new WSCallbackHandlerImpl("userid", "target_realm_name", "password"));

 // Note: The following code is an alternative that validates the user ID and

 // password specified against the target realm. The code performs a remote call

 // to the target server and will return true if the user ID and password are

 // valid and false if the user ID and password are not valid. If false is

 // returned, a WSLoginFailedException exception is created. You can catch

 // that exception and perform a retry or stop the request from flowing by

 // allowing that exception to surface out of this login.

 // ALTERNATIVE LOGIN CONTEXT THAT VALIDATES THE USER ID AND PASSWORD TO THE

 // TARGET REALM

 /**** currently remarked out ****

 java.util.Map appContext = new java.util.HashMap();

 appContext.put(javax.naming.Context.INITIAL_CONTEXT_FACTORY,

 "com.ibm.websphere.naming.WsnInitialContextFactory");

 appContext.put(javax.naming.Context.PROVIDER_URL,

 "corbaloc:iiop:target_host:2809");

 javax.security.auth.login.LoginContext ctx = new LoginContext("WSLogin",

 new WSCallbackHandlerImpl("userid", "target_realm_name", "password", appContext));

 **** currently remarked out ****/

 // Starts the login

 ctx.login();

 // Gets the Subject from the context

 subject = ctx.getSubject();

 }

Chapter 16. Security 1275

catch (javax.security.auth.login.LoginException e)

 {

 throw new com.ibm.websphere.security.auth.WSLoginFailedException (e.getMessage(), e);

 }

 if (subject != null)

 {

 // Defines a privileged action that encapsulates your remote request.

java.security.PrivilegedAction myAction = java.security.PrivilegedAction()

 {

 public Object run()

 {

 // Assumes a proxy is already defined. This example method returns a String

 return proxy.remoteRequest();

 }

 });

 // Starts this action using the basic authentication Subject needed for

 // the target realm security requirements.

 String myResult = (String) com.ibm.websphere.security.auth.WSSubject.doAs

 (subject, myAction);

 }

Example: Sample login configuration for RMI_OUTBOUND:

This example shows a sample login configuration for RMI_OUTBOUND that determines whether the realm

names match between two servers.

 public customLoginModule()

{

 public void initialize(Subject subject, CallbackHandler callbackHandler,

 Map sharedState, Map options)

 {

 // (For more information on what to do during initialization, see

 // Custom login module development for a system login configuration.)

 }

 public boolean login() throws LoginException

 {

 // (For more information on what to do during login, see

 // Custom login module development for a system login configuration.)

 // Gets the WSProtocolPolicyCallback object

 Callback callbacks[] = new Callback[1];

 callbacks[0] = new com.ibm.wsspi.security.auth.callback.

 WSProtocolPolicyCallback("Protocol Policy Callback: ");

 try

 {

 callbackHandler.handle(callbacks);

 }

 catch (Exception e)

 {

 // Handles the exception

 }

 // Receives the RMI (CSIv2) policy object for checking the target realm

 // based upon information from the IOR.

 // Note: This object can be used to perform additional security checks.

 // See the application programming interface (API) documentation for

 // more information.

 csiv2PerformPolicy = (CSIv2PerformPolicy) ((WSProtocolPolicyCallback)callbacks[0]).

 getProtocolPolicy();

 // Checks if the realms do not match. If they do not match, then log in to

 // perform a mapping

 if (!csiv2PerformPolicy.getTargetSecurityName().equalsIgnoreCase(csiv2PerformPolicy.

1276 Administering applications and their environment

getCurrentSecurityName()))

 {

 try

 {

 // Do some custom realm -> user ID and password mapping

 MyBasicAuthDataObject myBasicAuthData = MyMappingLogin.lookup

 (csiv2PerformPolicy.getTargetSecurityName());

 // Creates the login context with basic authentication data gathered from

 // custom mapping

 javax.security.auth.login.LoginContext ctx = new LoginContext("WSLogin",

 new WSCallbackHandlerImpl(myBasicAuthData.userid,

 csiv2PerformPolicy.getTargetSecurityName(),

 myBasicAuthData.password));

 // Starts the login

 ctx.login();

 // Gets the Subject from the context. This subject is used to replace

 // the passed-in Subject during the commit phase.

 basic_auth_subject = ctx.getSubject();

 }

 catch (javax.security.auth.login.LoginException e)

 {

 throw new com.ibm.websphere.security.auth.

 WSLoginFailedException (e.getMessage(), e);

 }

 }

 }

 public boolean commit() throws LoginException

 {

 // (For more information on what to do during commit, see

 // Custom login module development for a system login configuration.)

 if (basic_auth_subject != null)

 {

 // Removes everything from the current Subject and adds everything from the

 // basic_auth_subject

 try

 {

 public final Subject basic_auth_subject_priv = basic_auth_subject;

 // Do this in a doPrivileged code block so that application code

 // does not need to add additional permissions

 java.security.AccessController.doPrivileged(new java.security.

 PrivilegedExceptionAction()

 {

 public Object run() throws WSLoginFailedException

 {

 // Removes everything user-specific from the current outbound

 // Subject. This a temporary Subject for this specific invocation

 // so you are not affecting the Subject set on the thread. You may

 // keep any custom objects that you want to propagate in the Subject.

 // This example removes everything and adds just the new information

 // back in.

 try

 {

 subject.getPublicCredentials().clear();

 subject.getPrivateCredentials().clear();

 subject.getPrincipals().clear();

 }

 catch (Exception e)

 {

 throw new WSLoginFailedException (e.getMessage(), e);

 }

 // Adds everything from basic_auth_subject into the login subject.

Chapter 16. Security 1277

// This completes the mapping to the new user.

 try

 {

 subject.getPublicCredentials().addAll(basic_auth_subject.

 getPublicCredentials());

 subject.getPrivateCredentials().addAll(basic_auth_subject.

 getPrivateCredentials());

 subject.getPrincipals().addAll(basic_auth_subject.

 getPrincipals());

 }

 catch (Exception e)

 {

 throw new WSLoginFailedException (e.getMessage(), e);

 }

 return null;

 }

 });

 }

 catch (PrivilegedActionException e)

 {

 throw new WSLoginFailedException (e.getException().getMessage(),

 e.getException());

 }

 }

 }

 // Defines your login module variables

 com.ibm.wsspi.security.csiv2.CSIv2PerformPolicy csiv2PerformPolicy = null;

 javax.security.auth.Subject basic_auth_subject = null;

}

Common Secure Interoperability Version 2 and Security Authentication Service

client configuration

A secure Java client requires configuration properties to determine how to perform security with a server.

These configuration properties are typically put into a properties file somewhere on the client system and

referenced by specifying the following system property on the command line of the Java client. For

example, this property accepts any valid Web address.

 -Dcom.ibm.CORBA.ConfigURL=file:profile_root/properties/sas.client.props

When this file is processed by the Object Request Broker (ORB), security can be enabled between the

Java client and the target server.

If any syntax problems exist with the ConfigURL property and the sas.client.props file is not found, the

Java client proceeds to connect insecurely. Errors display indicating the failure to read the ConfigURL

property. Typically the problem is related to having two slashes after file, which is not valid.

V6.0.x

Use the following properties to configure the SAS and CSIv2 authentication protocols:

v

v “Security Authentication Service authentication protocol client settings” on page 1282

Important: SAS is supported only between Version 6.0.x and previous version servers that have been

federated in a Version 6.1 cell.

Common authentication protocol settings for a client configuration:

You can use settings in the sas.client.props file to configure Security Authentication Service (SAS) and

Common Secure Interoperability Version 2 (CSIv2) clients.

1278 Administering applications and their environment

V6.0.x Use the following settings in the app_server_root/properties/sas.client.props file to configure

SAS and CSIv2 clients.

Important: SAS is supported only between Version 6.0.x and previous version servers that have been

federated in a Version 6.1 cell.

com.ibm.CORBA.securityEnabled

Use to determine if security is enabled for the client process.

 Setting Value

Data Type Boolean

Default True

Valid values True or false

com.ibm.CSI.protocol

Use to determine which authentication protocols are active.

The client can configure protocols of ibm, csiv2 or both as active. The only possible values for an

authentication protocol are ibm, csiv2 and both. Do not use sas for the value of an authentication protocol.

This restriction applies to both client and server configurations. The following list provides information

about using each of these protocol options:

ibm Use this authentication protocol option when you are communicating with WebSphere Application

Server Version 4.x or earlier servers.

V6.0.x

csiv2

Use this authentication protocol option when you are communicating with WebSphere Application

Server Version 5 or later servers because the SAS interceptors are not loaded and running for

each method request.

both Use this authentication protocol option for interoperability between WebSphere Application Server

Version 4.x or earlier servers and WebSphere Application Server Version 5 or later servers.

Typically, specifying both provides greater interoperability with other servers.

 Setting Value

Data type String

Default Both

Valid values ibm, csiv2, both

com.ibm.CORBA.authenticationTarget

Use to determine the type of authentication mechanism for sending security information from the client to

the server.

If basic authentication is specified, the user ID and password are sent to the server. Using the Secure

Sockets Layer (SSL) transport with this type of authentication is recommended; otherwise, the password is

not encrypted. The target server must support the specified authentication target.

If you specify Lightweight Third Party Authentication (LTPA), then LTPA must be the mechanism configured

at the server for a method request to proceed securely.

Chapter 16. Security 1279

Setting Value

Data type String

Default BasicAuth

Valid values BasicAuth, LTPA

com.ibm.CORBA.validateBasicAuth

Use to determine if the user ID and password get validated immediately after the login data is entered

when the authenticationTarget property is set to BasicAuth.

In previous releases, BasicAuth logins validated only with the initial method request. During the first

request, the user ID and password are sent to the server. This request is the first time that the client can

notice an error, if the user ID or password is incorrect. The validateBasicAuth method is specified and the

validation of the user ID and password occurs immediately to the security server.

For performance reasons, you might want to disable this property if you do not want to verify the user ID

and password immediately. If the client program can wait, it is better to have the initial method request

flow to the user ID and password. However, program logic might not be this simple because of error

handling considerations.

 Setting Value

Data type Boolean

Default True

Valid values True, False

com.ibm.CORBA.authenticationRetryEnabled

Use to specify that a failed login attempt is retried. This property determines if a retry occurs for other

errors, such as stateful sessions that are not found on a server or validation failures at the server because

of an expiring credential.

The minor code in the exception that is returned to a client determines which errors are retried. The

number of retry attempts is dependent upon the com.ibm.CORBA.authenticationRetryCount property.

 Setting Value

Data type Boolean

Default True

Valid values True, False

com.ibm.CORBA.authenticationRetryCount

Use to specify the number of retries that occur until either a successful authentication occurs or the

maximum retry value is reached.

When the maximum retry value is reached, the authentication exception is returned to the client.

 Setting Value

Data type Integer

Default 3

1280 Administering applications and their environment

Setting Value

Range 1-10

com.ibm.CORBA.loginSource

Use to specify how the request interceptor attempts to log in if it does not find an invocation credential

already set.

This property is valid only if message layer authentication occurs. If only transport layer authentication

occurs, this property is ignored. When specifying properties, the following two additional properties must

be defined:

v com.ibm.CORBA.loginUserid

v com.ibm.CORBA.loginPassword

When performing a programmatic login, it is not necessary to specify none as the login source. The

request fails if a credential is set as the invocation credential during a method request.

 Setting Value

Data type String

Default Prompt

Valid values Prompt, key file, stdin, none, properties

com.ibm.CORBA.loginUserid

Use to specify the user ID when a properties login is configured and message layer authentication occurs.

This property is valid only when com.ibm.CORBA.loginSource=properties. Also set the

com.ibm.CORBA.loginPassword property.

 Setting Value

Data type String

Range Any string that is appropriate for a user ID in the

configured user registry of the server.

com.ibm.CORBA.loginPassword

Use to specify the password when a properties login is configured and message layer authentication

occurs.

This property is valid only when com.ibm.CORBA.loginSource=properties. Also set the

com.ibm.CORBA.loginUserid property.

 Setting Value

Data type String

Range Any string that is appropriate for a password in the

configured user registry of the server.

com.ibm.CORBA.keyFileName

Use to specify the key file that is used to log in.

Chapter 16. Security 1281

A key file is a file that contains a list of realm, user ID, and password combinations that a client uses to log

into multiple realms. The realm that is used is the one found in the interoperable object reference (IOR) for

the current method request. The value of this property is used when the com.ibm.CORBA.loginSource=key

file is used.

 Setting Value

Data type String

Default C;/WebSphere/AppServer/properties/wsserver.key

Range Any fully qualified path and file name of a WebSphere

Application Server key file.

com.ibm.CORBA.loginTimeout

Use to specify the length of time that the login prompt stays available before it is considered a failed login.

 Setting Value

Data type Integer

Units Seconds

Default 300 (5 minute intervals)

Range 0 - 600 (10 minute intervals)

com.ibm.CORBA.securityEnabled

Use to determine if security is enabled for the client process.

 Setting Value

Data type Boolean

Default True

Range True, False

 Related tasks

 “Configuring RMI over IIOP” on page 1256
Complete the following steps to configure Common Secure Interoperability Version 2 (CSIV2) and

Security Authentication Service (SAS).

 Related reference

 “Common Secure Interoperability Version 2 and Security Authentication Service client configuration” on

page 1278
A secure Java client requires configuration properties to determine how to perform security with a

server.

Security Authentication Service authentication protocol client settings:

In addition to those properties which are valid for both Security Authentication Service (SAS) and Common

Secure Interoperability Version 2 (CSIv2), this article documents properties which are valid only for the

SAS authentication protocol.

 Important: SAS is supported only between Version 6.0.x and previous version servers that have been

federated in a Version 6.1 cell.

1282 Administering applications and their environment

com.ibm.CORBA.standardPerformQOPModels

Specifies the strength of the ciphers when making an Secure Sockets Layer (SSL) connection.

 Data type: String

Default: High

Range Low, Medium, High

Java Authentication and Authorization Service

The standard Java 2 security application programming interface (API) helps enforce access control based

on the location of the code source or the author or packager of the code that signed the jar file. The

current principal of the running thread is not considered in the Java 2 security authorization. Instances

where authorization is based on the principal, as opposed to the code base, and the user exist. The Java

Authentication and Authorization Service is a standard Java API that supports the Java 2 security

authorization to extend the code base on the principal as well as the code base and users.

The Java Authentication and Authorization Service (JAAS) Version 1.0 extends the Java 2 security

architecture of the Java 2 platform with additional support to authenticate and enforce access control with

principals and users. JAAS implements a Java version of the standard Pluggable Authentication Module

(PAM) framework, and extends the access control architecture of the Java 2 platform in a compatible

fashion to support user-based authorization or principal-based authorization. WebSphere Application

Server fully supports the JAAS architecture. JAAS extends the access control architecture to support

role-based authorization for Java 2 Platform, Enterprise Edition (J2EE) resources including servlets,

JavaServer Pages (JSP) files, and Enterprise JavaBeans (EJB) components.

Refer to “Java 2 security” on page 1014 for more information.

The following sections cover the JAAS implementation and programming model:

v Login configuration for Java Authentication and Authorization Service

v “Programmatic login” on page 1312

v “Java Authentication and Authorization Service authorization”

The JAAS documentation can be found at http://www.ibm.com/developerworks/java/jdk/security. Scroll

down to find the JAAS documentation for your platform.

Java Authentication and Authorization Service authorization

Java 2 security architecture uses a security policy to specify which access rights are granted to running

code. This architecture is code-centric. The permissions are granted based on code characteristics

including where the code is coming from, whether it is digitally signed, and by whom. Authorization of the

Java Authentication and Authorization Service (JAAS) augments the existing code-centric access controls

with new user-centric access controls. Permissions are granted based on what code is running and who is

running it.

When using JAAS authentication to authenticate a user, a subject is created to represent the authenticated

user. A subject is comprised of a set of principals, where each principal represents an identity for that user.

You can grant permissions in the policy to specific principals. After the user is authenticated, the

application can associate the subject with the current access control context. For each subsequent

security-checked operation, the Java runtime automatically determines whether the policy grants the

required permission to a specific principal only. If so, the operation is supported if the subject that is

associated with the access control context contains the designated principal only.

Associate a subject with the current access control context by calling the static doAs method from the

subject class, passing it an authenticated subject and the java.security.PrivilegedAction or

java.security.PrivilegedExceptionAction method. The doAs method associates the provided subject with the

Chapter 16. Security 1283

http://www.ibm.com/developerworks/java/jdk/security

current access control context and then invokes the run method from the action. The run method

implementation contains all the code that ran as the specified subject. The action runs as the specified

subject.

In the Java 2 Platform, Enterprise Edition (J2EE) programming model, when invoking the Enterprise

JavaBeans (EJB) method from an enterprise bean or servlet, the method runs under the user identity that

is determined by the run-as setting. The J2EE Version 1.4 Specification does not indicate which user

identity to use when invoking an enterprise bean from a Subject.doAs action block within either the EJB

code or the servlet code. A logical extension is to use the proper identity that is specified in the subject

when invoking the EJB method within the Subject doAs action block.

Letting the Subject.doAs action overwrite the run-as identity setting is an ideal way to integrate the JAAS

programming model with the J2EE run-time environment. However, JAAS introduced an issue into the

Software Development Kit (SDK), Java Technology Edition Versions 1.3 or later when integrating the JAAS

Version 1.0 or later implementation with the Java 2 security architecture. A subject, which is associated

with the access control context is cut off by a doPrivileged call when a doPrivileged call occurs within the

Subject.doAs action block. Until this problem is corrected, no reliable and run-time efficient way is

available to guarantee the correct behavior of Subject.doAs action in a J2EE run-time environment.

The problem can be explained better with the following example:

Subject.doAs(subject, new java.security.PrivilegedAction() {

 Public Object run() {

 // Subject is associated with the current thread context

 java.security.AccessController.doPrivileged(new

 java.security.PrivilegedAction() {

 public Object run() {

 // Subject was cut off from the current

 // thread context

 return null;

 }

 });

 // Subject is associated with the current thread context

 return null;

 }

});

In the previous code example, the Subject object is associated with the context of the current thread.

Within the run method of a doPrivileged action block, the Subject object is removed from the thread

context. After leaving the doPrivileged block, the Subject object is restored to the current thread context.

Because doPrivileged blocks can be placed anywhere along the running path and instrumented quite often

in a server environment, the run-time behavior of a doAs action block becomes difficult to manage.

To resolve this difficulty, WebSphere Application Server provides a WSSubject helper class to extend the

JAAS authorization to a J2EE EJB method invocation, as described previously. The WSSubject class

provides static doAs and doAsPrivileged methods that have identical signatures to the subject class. The

WSSubject.doAs method associates the Subject to the currently running thread. The WSSubject.doAs and

WSSubject.doAsPrivileged methods then invoke the corresponding Subject.doAs and

Subject.doAsPrivileged methods. The original credential is restored and associated with the running thread

upon leaving the WSSubject.doAs and WSSubject.doAsPrivileged methods.

The WSSubject class is not a replacement of the subject object, but rather a helper class to ensure

consistent run-time behavior as long as an EJB method invocation is a concern.

The following example illustrates the run-time behavior of the WSSubject.doAs method:

1284 Administering applications and their environment

WSSubject.doAs(subject, new java.security.PrivilegedAction() {

 Public Object run() {

 // Subject is associated with the current thread context

 java.security.AccessController.doPrivileged(new

 java.security.PrivilegedAction() {

 public Object run() {

 // Subject was cut off from the current thread

 // context.

 return null;

 }

 });

 // Subject is associated with the current thread context

 return null;

 }

});

The Subject.doAs and Subject.doAsPrivileged methods are not integrated with the J2EE run-time

environment. EJB methods that are invoked within the Subject.doAs and Subject.doAsPrivileged action

blocks run under the identity that is specified by the run-as setting and not by the subject identity.

v The Subject object that is generated by the WSLoginModuleImpl instance and the

WSClientLoginModuleImpl instance contains a principal that implements the WSPrincipal interface.

Using the getCredential method for a WSPrincipal object returns an object that implements the

WSCredential interface. You can also find the WSCredential object instance in the PublicCredentials list

of the subject instance. Retrieve the WSCredential object from the PublicCredentials list instead of using

the getCredential method.

v The getCallerPrincipal method for the WSSubject class returns a string that represents the caller

security identity. The return type differs from the getCallerPrincipal method of the java.security.Principal

EJBContext interface.

v The Subject object that is generated by the Java 2 Connector (J2C) DefaultPrincipalMapping module

contains a resource principal and a PasswordCredentials list. The resource principal represents the

RunAs identity.

For more information, see “J2EE connector security” on page 633.

Using the Java Authentication and Authorization Service programming model for

Web authentication

WebSphere Application Server supports the Java 2 Platform, Enterprise Edition (J2EE) declarative security

model. You can define the authentication and access control policy using the J2EE deployment descriptor.

You can further stack custom login modules to customize the WebSphere Application Server authentication

mechanism.

A custom login module can perform principal and credential mapping, custom security token and custom

credential-processing, and error-handling among other possibilities. Typically, you do not need to use

application code to perform authentication function. Use the programming techniques that are described in

this section if you have to perform authentication function in application code. For example, if you have

applications that programmed to the SSOAuthenticator helper function, you can use the following

programming interface. The SSOAuthenticator helper function was deprecated starting with WebSphere

Application Server Version 4.0. Use declarative security as a rule; use the techniques that are described in

this section as a last resort.

When the Lightweight Third-Party Authentication (LTPA) mechanism single sign-on (SSO) option is

enabled, the Web client login session is tracked by an LTPA SSO token cookie after successful login. At

logout, this token is deleted to terminate the login session, but the server-side subject is not deleted. When

you use the declarative security model, the WebSphere Application Server Web container performs client

authentication and login session management automatically. You can perform authentication in application

code by setting a login page without a J2EE security constraint and by directing client requests to your

login page first. Your login page can use the Java Authentication and Authorization Service (JAAS)

Chapter 16. Security 1285

programming model to perform authentication. To enable WebSphere Application Server Web login

modules to generate SSO cookies, use the following steps.

1. Select the wsMapDefaultInboundLoginModule login module and click Custom properties. There are two

login modules defined in your login configuration: ltpaLoginModule and

wsMapDefaultInboundLoginModule.

2. Create a new system login JAAS configuration. To access the panel, click Security > Secure

administration, applications, and infrastructure. Under Java Authentication and Authorization

Service, click System logins.

3. Manually clone the WEB_INBOUND login configuration, and give it a new alias. To clone the login

configuration, click New, enter a name for the configuration, click Apply, then click JAAS login

modules under Additional properties. Click New and configure the JAAS login module. For more

information, see Login module settings for Java Authentication and Authorization Service. WebSphere

Application Server Web container uses the WEB_INBOUND login configuration to authenticate Web

clients. Changing the WEB_INBOUND login configuration affects all Web applications in the cell. You

should create your own login configuration by cloning the contents of the WEB_INBOUND login

configuration.

4. Select the wsMapDefaultInboundLoginModule login module and click Custom properties. There are two

login modules defined in your login configuration: ltpaLoginModule and

wsMapDefaultInboundLoginModule.

5. Add a login property name cookie with a value of true. The two login modules are enabled to generate

LTPA SSO cookies. Do not add the cookie login option to the original WEB_INBOUND login

configuration.

6. Stack your custom LoginModule(s) in the new login configuration (optional).

7. Use your login page for programmatic login by perform a JAAS LoginContext.login using your newly

defined login configuration. After a successful login, either the ltpaLoginModule or the

wsMapDefaultInboundLoginModule generates an LTPA SSO cookie upon a successful authentication.

Exactly which LoginModule generates the SSO cookie depends on many factors, including system

authentication configuration and runtime condition (which is beyond the scope of this section).

8. Call the modified WSSubject.setRunAsSubject method to add the subject to the authentication cache.

The subject must be a WebSphere Application Server JAAS subject created by LoginModule. Adding

the subject to the authentication cache recreates a subject from SSO token.

9. Use your programmatic logout page to revoke SSO cookies by invoking the revokeSSOCookies method

from the WSSecurityHelper class. The term cookies is used because WebSphere Application Server

Release 5.1.1 (and later) release supports a new LTPA SSO token with a different encryption

algorithm, but can be configured to generate the original LTPA SSO token for backward compatibility.

Note that the subject is still in the authentication cache and only the SSO cookies are revoked.

Use the following code sample to perform authentication:

Suppose you wrote a LoginServlet.java:

 Import com.ibm.wsspi.security.auth.callback.WSCallbackHandlerFactory;

 Import com.ibm.websphere.security.auth.WSSubject;

 public Object login(HttpServletRequest req, HttpServletResponse res)

 throws ServletException {

 PrintWriter out = null;

 try {

 out = res.getWriter();

 res.setContentType("text/html");

 } catch (java.io.IOException e){

 // Error handling

 }

 Subject subject = null;

 try {

 LoginContext lc = new LoginContext("system.Your_login_configuration",

1286 Administering applications and their environment

WSCallbackHandlerFactory.getInstance().getCallbackHandler(

userid, null, password, req, res, null));

 lc.login();

 subject = lc.getSubject();

 WSSubject.setRunAsSubject(subject);

 } catch(Exception e) {

 // catch all possible exceptions if you want or handle them separately

 out.println("Exception in LoginContext login + Exception = " +

 e.getMessage());

 throw new ServletException(e.getMessage());

 }

The following is sample code to revoke the SSO cookies upon a programming logout:

The LogoutServlet.java:

 public void logout(HttpServletRequest req, HttpServletResponse res,

 Object retCreds) throws ServletException {

 PrintWriter out =null;

 try {

 out = res.getWriter();

 res.setContentType("text/html");

 } catch (java.io.IOException e){

 // Error Handling

 }

 try {

 WSSecurityHelper.revokeSSOCookies(req, res);

 } catch(Exception e) {

 // catch all possible exceptions if you want or handle them separately

 out.println("JAASLogoutServlet: logout Exception = " + e.getMessage());

 throw new ServletException(e);

 }

 }

For more information on JAAS authentication, refer to Developing programmatic logins with the Java

Authentication and Authorization Service. For more information on the AuthenLoginModule login module,

refer to Example: Customizing a server-side Java Authentication and Authorization Service authentication

and login configuration.

Authorizing access to resources

WebSphere Application Server provides many different methods for authorizing accessing resources. For

example, you can assign roles to users and configure a built-in or external authorization provider.

You can create an application, an Enterprise JavaBeans (EJB) module, or a Web module and secure them

using assembly tools.

To authorize user or group access to resources, read the following articles:

1. Secure you application during assembly and deployment. For more information on how to create a

secure application using an assembly tool, such as the IBM Rational Application Developer, see

Securing applications during assembly and deployment.

For general information about the tools that WebSphere Application Server supports, see Assembly

tools and Assembling applications.

2. Authorize access to Java 2 Platform, Enterprise Edition (J2EE) resources. WebSphere Application

Server supports authorization that is based on the Java Authorization Contract for Containers (JACC)

specification in addition to the default authorization. When security is enabled in WebSphere

Application Server, the default authorization is used unless a JACC provider is specified. For more

information, see “Authorization providers” on page 1298.

Chapter 16. Security 1287

3. Authorize access to administrative resources. You can assign users and groups to predefined

administrative roles such as the monitor, configurator, operator, administrator, and iscadmins roles.

These roles determine which tasks a user can perform in the administrative console. For more

information, see “Authorizing access to administrative roles” on page 1341.

After authorizing access to resources, configure the Application Server for secure communication. For

more information, see “Securing communications” on page 1349.

Authorization technology

Authorization information determines whether a user or group has the necessary privileges to access

resources.

WebSphere Application Server supports many authorization technologies including the following:

v Authorization involving the Web container and Java 2 Platform, Enterprise Edition (J2EE) technology

v Authorization involving an enterprise bean application and J2EE technology

v Authorization involving Web services and J2EE technology

v Java Message Service (JMS)

v Java Authorization Contract for Containers (JACC)

WebSphere Application Server supports both a default authorization provider, which was supported in

previous releases, and an authorization provider that is based on the Java Authorization Contract for

Containers (JACC) specification. The JACC-based authorization provider enables third-party security

providers to handle the J2EE authorization. For more information, see “JACC support in WebSphere

Application Server” on page 1298.

v Java Authentication and Authorization Service (JAAS)

For more information, see “Java Authentication and Authorization Service” on page 1283.

v Java 2 security

For more information, see “Java 2 security” on page 1014.

v Naming and administrative authorization

v Pluggable authorization

WebSphere Application Server supports an authorization infrastructure that enables you to plug in an

external authorization provider. For more information, see “Enabling an external JACC provider” on page

1323.

Administrative roles and naming service authorization

WebSphere Application Server extends the Java 2 Platform, Enterprise Edition (J2EE) security role-based

access control to protect the product administrative and naming subsystems.

Administrative roles

A number of administrative roles are defined to provide the degrees of authority that are needed to

perform certain WebSphere Application Server administrative functions from either the administrative

console or the system management scripting interface called wsadmin. The authorization policy is only

enforced when administrative security is enabled. The following table describes the administrative roles:

 Table 19. Administrative roles that are available through the administrative console and wsadmin

Role Description

Monitor An individual or group that uses the monitor role has the least amount of privileges. A

monitor can complete the following tasks:

v View the WebSphere Application Server configuration.

v View the current state of the Application Server.

1288 Administering applications and their environment

Table 19. Administrative roles that are available through the administrative console and wsadmin (continued)

Role Description

Configurator An individual or group that uses the configurator role has the monitor privilege plus the

ability to change the WebSphere Application Server configuration. The configurator can

perform all the day-to-day configuration tasks. For example, a configurator can complete

the following tasks:

v Create a resource.

v Map an application server.

v Install and uninstall an application.

v Deploy an application.

v Assign users and groups-to-role mapping for applications.

v Set up Java 2 security permissions for applications.

v Customize the Common Secure Interoperability Version 2 (CSIv2), Security

Authentication Service (SAS), and Secure Sockets Layer (SSL) configurations.

Important: SAS is supported only between Version 6.0.x and previous version servers

that have been federated in a Version 6.1 cell.

Operator An individual or group that uses the operator role has monitor privileges plus ability to

change the runtime state. For example, an operator can complete the following tasks:

v Stop and start the server.

v Monitor the server status in the administrative console.

Administrator An individual or group that uses the administrator role has the operator and configurator

privileges plus additional privileges that are granted solely to the administrator role. For

example, an administrator can complete the following tasks:

v Modify the server user ID and password.

v Configure authentication and authorization mechanisms.

v Enable or disable administrative security.

Note: In previous releases of WebSphere Application Server, the Enable

administrative security option is known as the Enable global security option.

v Enforce Java 2 security using the Use Java 2 security to restrict application access

to local resources option.

v Change the Lightweight Third Party Authentication (LTPA) password and generate

keys.

v Create, update, or delete users in the federated repositories configuration.

v Create, update, or delete groups in the federated repositories configuration.

Note: An administrator cannot map users and groups to the administrator roles.

AdminSecurityManager Only users who are granted this role can map users to administrative roles. Also, when

fine-grained administrative security is used, only users who are granted this role can

manage authorization groups. See “Administrative roles” on page 1295 for more

information.

 Table 20. Additional administrative role that is available through the administrative console

Role Description

iscadmins This role is only available for administrative console users and not for wsadmin users.

Users who are granted this role have administrator privileges for managing users and

groups in the federated respositories. For example, a user of the iscadmins role can

complete the following tasks:

v Create, update, or delete users in the federated repositories configuration.

v Create, update, or delete groups in the federated repositories configuration.

Chapter 16. Security 1289

Table 21. Additional administrative role that is available through wsadmin

Role Description

Deployer This role is only available for wsadmin users and not for administrative console users.

Users who are granted this role can perform both configuration actions and run-time

operations on applications.

When administrative security is enabled, the administrative subsystem role-based access control is

enforced. The administrative subsystem includes the security server, the administrative console, the

wsadmin scripting tool, and all the Java Management Extensions (JMX) MBeans. When administrative

security is enabled, both the administrative console and the administrative scripting tool require users to

provide the required authentication data. Moreover, the administrative console is designed so the control

functions that display on the pages are adjusted, according to the security roles that a user has. For

example, a user who has only the monitor role can see only the non-sensitive configuration data. A user

with the operator role can change the system state.

When you are changing registries (for example, from a federated repository to LDAP), make sure you

remove the information that pertains to the previously configured registry for console users and console

groups.

When administrative security is enabled, WebSphere Application Servers run under the server identity that

is defined under the active user registry configuration. Although it is not shown on the administrative

console and in other tools, a special Server subject is mapped to the administrator role. The WebSphere

Application Server runtime code, which runs under the server identity, requires authorization to runtime

operations. If no other user is assigned administrative roles, you can log into the administrative console or

to the wsadmin scripting tool using the server identity to perform administrative operations and to assign

other users or groups to administrative roles. Because the server identity is assigned to the administrative

role by default, the administrative security policy requires the administrative role to perform the following

operations:

v Change server ID and server password

v Enable or disable WebSphere Application Serveradministrative security

v Enforce Java 2 security using the Use Java 2 security to restrict application access to local

resources option.

v Change the LTPA password or generate keys

v Assign users and groups to administrative roles

Primary administrative user name

The Version 6.1 release of WebSphere Application Server requires an administrative user, distinguished

from the server user identity, to improve auditability of administrative actions. The user name specifies a

user with administrative privileges that is defined in the local operating system.

Server user identity

The Version 6.1 release of WebSphere Application Server distinguishes the server identity from the

administrative user identity to improve auditability. The server user identity is used for authenticating

server-to-server communications.

Internal server ID

The internal server ID enables the automatic generation of the user identity for server-to-server

authentication. Automatic generation of the server identity supports improved auditability for cells only for

Version 6.1 or later nodes. In the Version 6.1 release of WebSphere Application Server, you can save the

internally-generated server ID because the Security WebSphere Common Configuration Model (WCCM)

model contains a new tag, internalServerId. You do not need to specify a server user ID and a password

1290 Administering applications and their environment

during security configuration except in a mixed-cell environment. An internally-generated server ID adds a

further level of protection to the server environment because the server password is not exposed as it is in

releases prior to Version 6.1. However, to maintain backwards compatibility, you must specify the server

user ID if you use earlier versions of WebSphere Application Server.

When enabling security, you can assign one or more users and groups to naming roles. For more

information, see Assigning users to naming roles. However, before assigning users to naming roles,

configure the active user registry. User and group validation depends on the active user registry. For more

information, see Configuring user registries.

Special subject

In addition to mapping users or groups, you can map a special-subject to the administrative roles. A

special-subject is a generalization of a particular class of users. The AllAuthenticated special subject

means that the access check of the administrative role ensures that the user making the request is at least

authenticated. The Everyone special subject means that anyone, authenticated or not, can perform the

action as if security is not enabled.

Naming service authorization

CosNaming security offers increased granularity of security control over CosNaming functions. CosNaming

functions are available on CosNaming servers such as the WebSphere Application Server. These functions

affect the content of the WebSphere Application Server name space. Generally, you have two ways in

which client programs result in CosNaming calls. The first is through the Java Naming and Directory

Interface (JNDI) call. The second is with common object request broker architecture (CORBA) clients

invoking CosNaming methods directly.

Four security roles are introduced :

v CosNamingRead

v CosNamingWrite

v CosNamingCreate

v CosNamingDelete

The roles have authority levels from low to high:

CosNamingRead

You can query the WebSphere Application Server name space, using, for example, the JNDI

lookup method. The special-subject, Everyone, is the default policy for this role.

CosNamingWrite

You can perform write operations such as JNDI bind, rebind, or unbind, and CosNamingRead

operations. As a default policy, Subjects are not assigned this role.

CosNamingCreate

You can create new objects in the name space through such operations as JNDI createSubcontext

and CosNamingWrite operations. As a default policy, Subjects are not assigned this role.

CosNamingDelete

You can destroy objects in the name space, for example using the JNDI destroySubcontext

method and CosNamingCreate operations. As a default policy, Subjects are not assigned this role.

Additionally, a Server special-subject is assigned to all of the four CosNaming roles by default. The Server

special-subject provides a WebSphere Application Server process, which runs under the server identity, to

access all the CosNaming operations. The Server special-subject does not display and cannot be modified

through the administrative console or other administrative tools.

Special configuration is not required to enable the server identity as specified when enabling administrative

security for administrative use because the server identity is automatically mapped to the administrator

role.

Chapter 16. Security 1291

Users, groups, or the special subjects AllAuthenticated and Everyone can be added or removed to or from

the naming roles from the WebSphere Application Server administrative console at any time. However, a

server restart is required for the changes to take effect. A best practice is to map groups or one of the

special-subjects, rather than specific users, to naming roles because it is more flexible and easier to

administer in the long run. By mapping a group to a naming role, adding or removing users to or from the

group occurs outside of WebSphere Application Server and does not require a server restart for the

change to take effect.

The CosNaming authorization policy is only enforced when administrative security is enabled. When

administrative security is enabled, attempts to do CosNaming operations without the proper role

assignment result in an org.omg.CORBA.NO_PERMISSION exception from the CosNaming server.

Each CosNaming function is assigned to only one role. Therefore, users who are assigned the

CosNamingCreate role cannot query the name space unless they have also been assigned

CosNamingRead. And in most cases a creator needs to be assigned three roles: CosNamingRead,

CosNamingWrite, and CosNamingCreate. The CosNamingRead and CosNamingWrite roles assignment for

the creator example are included in the CosNamingCreate role. In most of the cases, WebSphere

Application Server administrators do not have to change the roles assignment for every user or group

when they move to this release from a previous one.

Although the ability exists to greatly restrict access to the name space by changing the default policy,

unexpected org.omg.CORBA.NO_PERMISSION exceptions can occur at runtime. Typically, J2EE

applications access the name space and the identity they use is that of the user that authenticated to

WebSphere Application Server when accessing the J2EE application. Unless the J2EE application provider

clearly communicates the expected naming roles, use caution when changing the default naming

authorization policy.

Role-based authorization

Use authorization information to determine whether a caller has the necessary privileges to request a

service.

The following figure illustrates the process that is used during authorization.

1292 Administering applications and their environment

Web resource access from a Web client is handled by a Web collaborator. The Enterprise JavaBeans

(EJB) resource access from a Java client, whether an enterprise bean or a servlet, is handled by an EJB

collaborator. The EJB collaborator and the Web collaborator extract the client credentials from the object

request broker (ORB) current object. The client credentials are set during the authentication process as

received credentials in the ORB current object. The resource and the received credentials are presented to

the WSAccessManager access manager to check whether access is permitted to the client for accessing

the requested resource.

The access manager module contains two main modules:

v The resource permission module helps determine the required roles for a given resource. This module

uses a resource-to-roles mapping table that is built by the security runtime during application startup. To

build the resource-to-role mapping table, the security runtime reads the deployment descriptor of the

enterprise beans or the Web module (ejb-jar.xml file or web.xml file)

v The authorization table module consults a role-to-user or group table to determine whether a client is

granted one of the required roles. The role-to-user or group mapping table, also known as the

authorization table, is created by the security runtime during application startup.

To build the authorization table, the security runtime reads the ibm-application-bnd.xmi application

binding file.

Use authorization information to determine whether a caller has the necessary privilege to request a

service. You can store authorization information many ways. For example, with each resource, you can

store an access-control list, which contains a list of users and user privileges. Another way to store the

information is to associate a list of resources and the corresponding privileges with each user. This list is

called a capability list.

WebSphere Application Server uses the Java 2 Platform, Enterprise Edition (J2EE) authorization model. In

this model, authorization information is organized as follows:

During the assembly of an application, permission to invoke methods is granted to one or more roles. A

role is a set of permissions; for example, in a banking application, roles can include teller, supervisor,

clerk, and other industry-related positions. The teller role is associated with permissions to run methods

Access manager

module

WebSphere Application Server

(1)

(1)

(2)

(2)

CSIv2/SAS, TCP/IP,

SSL

EJB

resource access

HTTP or HTTPS

Web resource access

Authorization

table

Resource

permission

Access

manager

Enterprise beans

collaborator

Web

collaborator

ORB

current object

Java client

Web client

(2)

(4)

(5)

Authorization

data

Received

credentials

(2)

Received

credentials

(3)

(3)

Resource and

credentials

Resource and

credentials

Resource

True/False

Roles

Roles, credentials

Authorization

data

Authentication

Role
Users/
Groups

Resource Roles

Chapter 16. Security 1293

that are related to managing the money in an account, such as the withdraw and deposit methods. The

teller role is not granted permission to close accounts; this permission is given to the supervisor role. The

application assembler defines a list of method permissions for each role. This list is stored in the

deployment descriptor for the application.

Two special subjects are not defined by the J2EE model: AllAuthenticatedUsers and Everyone. A special

subject is a product-defined entity that is independent of the user registry. This entity is used to generically

represent a class of users or groups in the registry.

v The AllAuthenticatedUsers subject permits all authenticated users to access protected methods. As long

as the user can authenticate successfully, the user is permitted access to the protected resource. All of

this is done independent of the user registry.

v Everyone is a special subject that permits unrestricted access to a protected resource. Users do not

have to authenticate to get access; this special subject provides access to protected methods as if the

resources are unprotected. All of this is done independent of the user registry.

During the deployment of an application, real users or groups of users are assigned to the roles. When a

user is assigned to a role, the user gets all the method permissions that are granted to that role.

The application deployer does not need to understand the individual methods. By assigning roles to

methods, the application assembler simplifies the job of the application deployer. Instead of working with a

set of methods, the deployer works with the roles, which represent semantic groupings of the methods.

Users can be assigned to more than one role; the permissions that are granted to the user are the union

of the permissions granted to each role. Additionally, if the authentication mechanism supports the

grouping of users, these groups can be assigned to roles. Assigning a group to a role has the same effect

as assigning each individual user to the role.

A best practice during deployment is to assign groups instead of individual users to roles for the following

reasons:

v Improves performance during the authorization check. Typically far fewer groups exist than users.

v Provides greater flexibility, by using group membership to control resource access.

v Supports the addition and deletion of users from groups outside of the product environment. This action

is preferred to adding and removing them to WebSphere Application Server roles. Stop and restart the

enterprise application for these changes to take effect. This action can be very disruptive in a production

environment.

At runtime, WebSphere Application Server authorizes incoming requests based on the user’s identification

information and the mapping of the user to roles. If the user belongs to any role that has permission to run

a method, the request is authorized. If the user does not belong to any role that has permission, the

request is denied.

The J2EE approach represents a declarative approach to authorization, but it also recognizes that you

cannot deal with all situations declaratively. For these situations, methods are provided for determining

user and role information programmatically. For enterprise beans, the following two methods are supported

by WebSphere Application Server:

v getCallerPrincipal: This method retrieves the user identification information.

v isCallerInRole: This method checks the user identification information against a specific role.

For servlets, the following methods are supported by WebSphere Application Server:

v getRemoteUser

v isUserInRole

v getUserPrincipal

These methods correspond in purpose to the enterprise bean methods.

1294 Administering applications and their environment

For more information on the J2EE security authorization model, see the following Web site:

http://java.sun.com

Administrative roles

The Java 2 Platform, Enterprise Edition (J2EE) role-based authorization concept is extended to protect the

WebSphere Application Server administrative subsystem.

A number of administrative roles are defined to provide degrees of authority that are needed to perform

certain administrative functions from either the Web-based administrative console or the system

management scripting interface. The authorization policy is only enforced when administrative security is

enabled. The following table describes the administrative roles:

 Administrative roles

Role Description

Monitor An individual or group that uses the monitor role has the least amount of privileges. A

monitor can complete the following tasks:

v View the WebSphere Application Server configuration.

v View the current state of the Application Server.

Configurator An individual or group that uses the configurator role has the monitor privilege plus the

ability to change the WebSphere Application Server configuration. The configurator can

perform all the day-to-day configuration tasks. For example, a configurator can

complete the following tasks:

v Create a resource.

v Map an application server.

v Install and uninstall an application.

v Deploy an application.

v Assign users and groups-to-role mapping for applications.

v Set up Java 2 security permissions for applications.

v Customize the Common Secure Interoperability Version 2 (CSIv2), Security

Authentication Service (SAS), and Secure Sockets Layer (SSL) configurations.

Important: SAS is supported only between Version 6.0.x and previous version

servers that have been federated in a Version 6.1 cell.

Operator An individual or group that uses the operator role has monitor privileges plus ability to

change the runtime state. For example, an operator can complete the following tasks:

v Stop and start the server.

v Monitor the server status in the administrative console.

Administrator An individual or group that uses the administrator role has the operator and

configurator privileges plus additional privileges that are granted solely to the

administrator role. For example, an administrator can complete the following tasks:

v Modify the server user ID and password.

v Configure authentication and authorization mechanisms.

v Enable or disable administrative security.

v Enable or disable Java 2 security.

v Change the Lightweight Third Party Authentication (LTPA) password and generate

keys.

v Create, update, or delete users in the federated repositories configuration.

v Create, update, or delete groups in the federated repositories configuration.

Note: An administrator cannot map users and groups to the administrator roles.

Chapter 16. Security 1295

http://java.sun.com

Administrative roles

iscadmins This role is only available for administrative console users, not for wsadmin users.

Users who are granted this role have administrator privileges for managing users and

groups in the federated repositories. For example, a user of the iscadmins role can

complete the following tasks:

v Create, update, or delete users in the federated repositories configuration.

v Create, update, or delete groups in the federated repositories configuration.

Deployer This role is only available for wsadmin users, not for administrative console users.

Users granted this role can perform both configuration actions and runtime operations

on applications. See the “Deployer role” section for more details.

AdminSecurityManager This role is only available for wsadmin users, not for administrative console users.

When using wsadmin, users granted this role can map users to administrative roles.

Also, when fine grained admin security is used, users granted this role can manage

authorization groups. See the “AdminSecurityManager role” on page 1297 section for

more details.

The server ID that is specified and the administrative ID, if specified, when enabling administrative security

is automatically mapped to the administrator role.

Users and groups can be added or removed from the administrative roles from the WebSphere Application

Server administrative console at any time. A best practice is to map a group or groups, rather than specific

users, to administrative roles because it is more flexible and easier to administer.

In addition to mapping user or groups, a special-subject can also be mapped to the administrative roles. A

special-subject subject is a generalization of a particular class of users. The AllAuthenticated special

subject means that the access check of the administrative role ensures that the user making the request is

at least authenticated. The Everyone special subject means that anyone, authenticated or not, can perform

the action, as if security was not enabled.

Deployer role

A user that is granted a deployer role can perform all of the configuration and runtime operations on an

application. A deployer role can be subsets of both configurator and operator roles. However, a user

granted a deployer role cannot configure or operate any other resources (server, node).

When fine-grained administrative security is used, only a user granted a deployer role to an application

can configure and operate that application.

Cell level configurators can configure applications (install, edit, deploy, and uninstall). Cell level operators

can also operate (start and stop) applications. However, a user granted a deployer role at cell level can

also perform configuration and operation on all applications.

The following table lists the capabilities of the deployer role when fine-grained administrative security is

used:

 Operation Required Roles (Any one)

Install application Cell-configurator, target-deployer

Uninstall application Cell-configurator, application-deployer

List application Cell-monitor, application-monitor

Edit, update and redeploy application Cell-configurator, application-deployer

Export application Cell-monitor, application-monitor

Start-stop application Cell-operator, application-deployer

1296 Administering applications and their environment

Where:

Cell-configurator

is the configurator role at cell level.

Application-deployer

is the deployer role for the application that is being managed.

Target-deployer

is the deployer role for all servers or clusters for which an application is targeted. If you have a

target-deployer role, you can install a new application on the target. However, to edit or update the

installed application, you must be included in the authorization group of the installed

application-deployer.

 The target-deployer can not explicitly start or stop a new application. However, when a

target-deployer starts a server on a target, all of the applications that have their auto-start attribute

set to yes are started when the server starts.

 It is recommended that the application-deployer set this attribute to true if the application-deployer

does not want the application to be started by the target-deployer.

AdminSecurityManager role

The AdminSecurityManager role separates administrative security administration from other application

administration.

By default, serverId and adminID, if specified, are assigned to this role in the cell level authorization table.

This role implies a monitor role. However, an administrator role does not imply the AdminSecurityManager

role.

When fine-grained admin security is used, only a user granted this role at cell level can manage

administrative authorization groups. However, a user granted this role for each administrative authorization

group can map users to administrative roles for those groups. The following lists the capabilities of the

AdminSecurityManager role at different levels (cell and administrative authorization group):

 Action Who can perform

Map users to administrative roles for cell level Only the AdminSecurityManager of the cell

Map users to administrative roles for an authorization

group

Only the AdminSecurityManager of that authorization

group or the AdminSecurityManager of the cell

Manage authorization groups (create, delete, add

resource to an authorization group, or remove resource

from an authorization group or list)

Only the AdminSecurityManager of the cell

 Related tasks

 “Assigning users to naming roles” on page 1345
Use this task to assign users to naming roles by using the administrative console.

Enterprise bean component security

An Enterprise JavaBeans (EJB) module consists of one or more beans. You can use development tools

such as Rational Application Developer to develop an EJB module. You can also enforce security at the

EJB method level.

You can assign a set of EJB methods to a set of one or more roles. When an EJB method is secured by

associating a set of roles, grant at least one role in that set so that you can access that method. To

exclude a set of EJB methods from access mark the set excluded. You can give everyone access to a set

of enterprise beans methods by clearing those methods. You can run enterprise beans as a different

identity, using the runAs identity, before invoking other enterprise beans.

Chapter 16. Security 1297

Authorization providers

WebSphere Application Server supports authorization that is based on the Java Authorization Contract for

Containers (JACC) specification in addition to the default authorization.

JACC is a new specification in Java 2 Platform, Enterprise Edition (J2EE) 1.4. It enables third-party

security providers to manage authorization in the application server.

When security is enabled in WebSphere Application Server, the default authorization is used unless a

JACC provider is specified. The default authorization does not require special setup, and the default

authorization engine makes all of the authorization decisions. However, if a JACC provider is configured

and set up for WebSphere Application Server to use, all of the enterprise beans and Web authorization

decisions are delegated to the JACC provider.

WebSphere Application Server supports security for J2EE applications and also for its administrative

components. J2EE applications, such as Web and Enterprise JavaBeans (EJB) components are protected

and authorized per the J2EE specification. The administrative components are internal to WebSphere

Application Server and are protected by the role-based authorizer. The administrative components include

the administrative console, MBeans, and other components such as naming and security. For more

information on administrative security, see “Role-based authorization” on page 1292.

When a JACC provider is used for authorization in WebSphere Application Server, all of the J2EE

application-based authorization decisions are delegated to the provider per the JACC specification.

However, all administrative security authorization decisions are made by the WebSphere Application

Server default authorization engine. The JACC provider is not called to make the authorization decisions

for administrative security.

When a protected J2EE resource is accessed, the authorization decision to give access to the principal is

the same whether using the default authorization engine or a JACC provider. Both of the authorization

models satisfy the J2EE specification, and function the same. Choose a JACC provider only when you

want to work with an external security provider such as Tivoli Access Manager. In this instance, the

security provider must support the JACC specification and be set up to work with WebSphere Application

Server. Setting up and configuring a JACC provider requires additional configuration steps, depending on

the provider. Unless you have an external security provider that you can use with WebSphere Application

Server, use the default authorization.

JACC support in WebSphere Application Server:

WebSphere Application Server supports the Java Authorization Contract for Containers (JACC)

specification, which enables third-party security providers to handle the Java 2 Platform, Enterprise Edition

(J2EE) authorization.

 The JACC specification requires that both the containers in the application server and the provider satisfy

some requirements. Specifically, the containers are required to propagate the security policy information to

the provider during the application deployment and to call the provider for all authorization decisions. The

providers are required to store the policy information in their repository during application deployment. The

providers then use this information to make authorization decisions when called by the container.

JACC access decisions

When security is enabled and an enterprise bean or Web resource is accessed, the Enterprise JavaBeans

(EJB) container or Web container calls the security runtime to make an authorization decision on whether

to permit access. When using an external provider, the access decision is delegated to that provider.

According to the Java Authorization Contract for Containers (JACC) specification, the appropriate

permission object is created, the appropriate policy context handlers are registered, and the appropriate

1298 Administering applications and their environment

policy context identifier (contextID) is set. A call is made to the java.security.Policy object method that is

implemented by the provider to make the access decision.

The following sections describe how the provider is called for both the enterprise bean and the Web

resources.

Access decisions for enterprise beans

When security is enabled, and an EJB method is accessed, the EJB container delegates the authorization

check to the security runtime. If JACC is enabled, the security runtime uses the following process to

perform the authorization check:

1. Creates the EJBMethodPermission object using the bean name, method name, interface name, and

the method signature.

2. Creates the context ID and sets it on the thread by using the PolicyContext.setContextID(contextID)

method.

3. Registers the required policy context handlers, including the Subject policy context handler.

4. Creates the ProtectionDomain object with principal in the Subject. If no principal exists, null is passed

for the principal name.

5. The access decision is delegated to the JACC provider by calling the implies method of the Policy

object, which is implemented by the provider. The EJBMethodPermission and the ProtectionDomain

objects are passed to this method.

6. The isCallerInRole access check also follows the same process, except that an EJBRoleRefPermission

object is created instead of an EJBMethodPermission object.

Access decisions for Web resources

When security is enabled and configured to use a JACC provider, and when a Web resource such as a

servlet or a JavaServer Pages (JSP) file is accessed, the security runtime delegates the authorization

decision to the JACC provider by using the following process:

1. A WebResourcePermission object is created to see if the URI is cleared. If the provider honors the

Everyone subject it is also selected here.

a. The WebResourcePermission object is constructed with the urlPattern and the HTTP method

accessed.

b. A ProtectionDomain object with a null principal name is created.

c. The JACC provider Policy.implies method is called with the permission and the protection domain.

If the URI access is cleared or given access to the Everyone subject, the provider permits access

(return true) in the implies method. Access is then granted without further checks.

2. If access is not granted in the previous step, a WebUserDataPermission object is created and used to

see if the Uniform Resource Identifier (URI) is precluded, excluded or must be redirected using the

HTTPS protocol.

a. The WebUserDataPermission object is constructed with the urlPattern accessed, the HTTP method

invoked, and the transport type of the request. If the request is over HTTPS, the transport type is

set to CONFIDENTIAL; otherwise, null is passed.

b. A ProtectionDomain object with a null principal name is created.

c. The JACC provider Policy.implies method is called with the permission and the protection domain.

If the request is using the HTTPS protocol and the implies method returns false, the HTTP 403

error is returned to imply excluded and precluded permission. In this case no further checks are

performed. If the request is not using the HTTPS protocol, and the implies returns false, the

request is redirected over HTTPS.

3. The security runtime attempts to authenticate the user. If the authentication information already exists

(for example, LTPA token), it is used. Otherwise, the user’s credentials must be entered.

Chapter 16. Security 1299

4. After the user credentials are validated, a final authorization check is performed to see if the user is

granted access privileges to the URI.

a. As in Step 1, the WebResourcePermission object is created. The ProtectionDomain object now

contains the Principal that is attempting to access the URI. The Subject policy context handler also

contains the user’s information, which can be used for the access check.

b. The provider implies method is called using the Permission object and the ProtectionDomain object

created previously. If the user is granted permission to access the resource, the implies method

returns true. If the user is not granted access, the implies method returns false.

Even if the order listed previously is changed later (for example, to improve performance) the end result is

the same. For example, if the resource is precluded or excluded, the end result is that the resource cannot

be accessed.

Using information from the Subject for access decision

If the provider relies on the WebSphere Application Server generated Subject for access decision, the

provider can query the public credentials in the Subject to obtain the WSCredential credential. The

WSCredential API is used to obtain information about the user, including the name and the groups that the

user belongs to. This information is used to make the access decision.

If the provider adds the required information to the Subject, WebSphere Application Server can use the

information to make the access decision. The provider might add the information by using the Trust

Association Interface feature or by plugging login modules into the Application Server.

The security attribute propagation section contains additional documentation on how to add the

WebSphere Application Server required information to the Subject. For more information, see “Propagating

security attributes among application servers” on page 1238.

Dynamic module updates in JACC

WebSphere Application Server supports dynamic updates to Web modules under certain conditions. If a

Web module is updated, deleted or added to an application, only that module is stopped and started as

appropriate. The other existing modules in the application are not impacted, and the application itself is not

stopped and then restarted.

When using the default authorization engine, any security policies are modified in the Web modules and

the application is stopped and then restarted. When using the Java Authorization Contract for Containers

(JACC) based authorization, the behavior depends on the functionality that a provider supports. If a

provider can handle dynamic changes to the Web modules, then only the Web modules are impacted.

Otherwise, the entire application is stopped and restarted for the new changes in the Web modules to take

effect.

A provider can indicate if it supports the dynamic updates by configuring the Supports dynamic module

updates option in the JACC configuration model (see “Authorizing access to J2EE resources using Tivoli

Access Manager” on page 1319 for more information). This option can be enabled or disabled using the

administrative console or by scripting. It is expected that most providers store the policy information in their

external repository, which makes it possible for them to support these dynamic updates. This option should

be enabled by default for most providers.

When the Supports dynamic module updates option is enabled, if a Web module that contains security

roles is dynamically added, modified, or deleted, only the specific Web modules are impacted and

restarted. If the option is disabled, the entire application is restarted. When dynamic updates are

performed, the security policy information of the modules impacted are propagated to the provider. For

more information about security policy propagation, see “JACC policy propagation” on page 1302.

1300 Administering applications and their environment

Initialization of the JACC provider

If a Java Authorization Contract for Containers (JACC) provider requires initialization during server startup,

for example, to enable the client code to communicate to the server code, the provider can implement the

com.ibm.wsspi.security.authorization.InitializeJACCProvider interface. See “Interfaces that support JACC”

on page 1335 for more information.

When this interface is implemented, it is called during server startup. Any custom properties in the JACC

configuration model are propagated to the initialize method of this implementation. The custom properties

can be entered using either the administrative console or by scripting.

During server shutdown, the cleanup method is called for any clean-up work that a provider requires.

Implementation of this interface is strictly optional, and is used only if the provider requires initialization

during server startup.

Mixed node environment and JACC

Authorization using Java Authorization Contract for Containers (JACC) is a new feature in WebSphere

Application Server Version 6.0.x. Also, the JACC configuration is set up at the cell level and is applicable

for all the nodes and servers in that cell.

If you are planning to use the JACC-based authorization, the cell must contain Version 6.0.x and later

nodes only. This restriction implies that a mixed node environment containing a set of Version 5.x nodes in

a Version 6.0.x or later cell is not supported.

JACC providers:

The Java Authorization Contract for Containers (JACC) is a new specification that is introduced in Java 2

Platform, Enterprise Edition (J2EE) Version 1.4 through the Java Specifications Request (JSR) 115

process. This specification defines a contract between J2EE containers and authorization providers.

 The contract enables third-party authorization providers to plug into J2EE 1.4 application servers, such as

WebSphere Application Server, to make the authorization decisions when a J2EE resource is accessed.

The access decisions are made through the standard java.security.Policy object.

In WebSphere Application Server, two authorization contracts are supported using both a native and a

third-party JACC provider implementation.

To plug in to WebSphere Application Server, the third-party JACC provider must implement the policy

class, policy configuration factory class, and policy configuration interface, which are all required by the

JACC specification.

The JACC specification does not specify how to handle the authorization table information between the

container and the provider. It is the responsibility of the provider to provide some management facilities to

handle this information. The container is not required to provide the authorization table information in the

binding file to the provider.

WebSphere Application Server provides the RoleConfigurationFactory and the RoleConfiguration role

configuration interfaces to help the provider obtain information from the binding file, as well as an

initialization interface (InitializeJACCProvider). The implementation of these interfaces is optional. See

“Interfaces that support JACC” on page 1335 for more information about these interfaces.

Tivoli Access Manager as the default JACC provider for WebSphere Application Server

The JACC provider in WebSphere Application Server is implemented by both the client and the server

pieces of the Tivoli Access Manager. The client piece of Tivoli Access Manager is embedded in

Chapter 16. Security 1301

WebSphere Application Server. The server piece is located on a separate installable CD that is shipped as

part of the WebSphere Application Server Network Deployment (ND) package.

The JACC provider is not the default authorization. You must configure WebSphere Application Server to

use the JACC provider.

JACC policy context handlers:

WebSphere Application Server supports all of the policy context handlers that are required by the Java

Authorization Contract for Containers (JACC) specification. However, due to performance impacts, the

Enterprise JavaBeans (EJB) arguments policy context handler is not activated unless it is specifically

required by the provider. Performance impacts result if objects must be created for each arguments of

each EJB method.

 If the provider supports and requires this context handler, select the Requires the EJB arguments policy

context handler for access decisions check box in the External JACC provider link under the

Authorization providers panel or by using scripting. Any changes to this option are effective after the

servers are restarted. By default this option is disabled. Disable this option when using Tivoli Access

Manager as the JACC provider, because the argument values are not required for access decisions.

JACC policy context identifiers (ContextID) format:

A policy context identifier is defined as a unique string that represents a policy context. A policy context

contains all of the security policy statements as defined by the Java Contract for Containers (JACC)

specification that affect access to the resources in a Web or Enterprise JavaBeans (EJB) module.

 During policy propagation to the JACC provider, a PolicyConfiguration object is created for each policy

context. The object is populated with the policy statements, represented by the JACC permission objects

that correspond to the context. The object is propagated to the JACC provider using the JACC

specification APIs.

WebSphere Application Server makes the contextID unique by using the href:cellName/appName/
moduleName string as the contextID format for the modules. The href part of the string indicates that a

hierarchical name is passed as the context ID.

The cellName represents the name of the deployment manager cell or the base cell where the application

is installed. After an application is installed in one cell (for example, in a base application server where the

cell name is base1) and is added to a deployment manager cell whose name is cell1 by using addNode,

the context ID for the modules in the application contain base1 (not cell1) as the cell name because the

application is initially installed in base1.

The appName part of the string in the context ID represents the application name containing the module.

The moduleName refers to the name of the module.

As an example, the context ID for the module Increment.jar file in an application named

DefaultApplication that is installed in cell1 is the href:cell1/DefaultApplication/Increment.jar file.

JACC policy propagation:

When an application is installed or deployed in WebSphere Application Server, the security policy

information in the application is propagated to the provider when the configuration is saved. The context ID

for the application is saved in its application.xml file, that is used for propagating the policy to the Java

Authorization Contract for Containers (JACC) provider, and also for access decisions for Java 2 Platform,

Enterprise Edition (J2EE) resources.

1302 Administering applications and their environment

When an application is uninstalled, the security policy information in the application is removed from the

provider when the configuration is saved.

If the provider implemented the RoleConfiguration interface, the security policy information that is

propagated to the policy provider also contains the authorization table information. See “Interfaces that

support JACC” on page 1335 for more information about this interface.

If an application does not contain security policy information, the PolicyConfiguration (and the

RoleConfiguration, if implemented) objects do not contain any information. The existence of empty

PolicyConfiguration and RoleConfiguration objects indicates that security policy information for the module

does not exist.

After an application is installed, it can be updated without being uninstalled and reinstalled. For example, a

new module can be added to an existing application, or an existing module can be modified. In this

instance, the information in the impacted modules is propagated to the provider by default. A module is

impacted when the deployment descriptor of the module is changed as part of the update. If the provider

supports the RoleConfiguration interfaces, the entire authorization table for that application is propagated

to the provider.

If the security information is not propagated to the provider during application updates, you can set the

com.ibm.websphere.security.jacc.propagateonappupdate Java virtual machine (JVM) property to false in

the deployment manager, in a Network Deployment environment, or the unmanaged base application

server. If this property is set to false, any updates to an existing application in the server are not

propagated to the provider. You also can set this property on a per-application basis using the custom

properties of an application. The wsadmin tool can be used to set the custom property of an application. If

this property is set at the application level, any updates to that application are not propagated to the

provider. If the update to an application is a full update, for example, a new application enterprise archive

(EAR) file is used to replace the existing one, and the provider is refreshed with the entire application

security policy information.

As mentioned earlier, the security policy information is propagated to the JACC provider during the save

operation. The SystemOut.log file indicates the success or failure of the propagation to the provider. Check

the log file after the installation to ensure that the propagation had no problems. If the propagation had any

problems, access to the application fails when Tivoli Access Manager is used as the JACC provider.

If the security policy information for the application is successfully propagated to the provider, the audit

statements with the message key SECJ0415I appear. However, if there was a problem propagating the

security policy information to the provider (for example: network problems, JACC provider is not available),

the SystemOut.log files contain the error message with the message keys SECJ0396E during install or

SECJ0398E during modification. The installation of the application is not stopped due to a failure to

propagate the security policy to the JACC provider. Also, in the case of failure, no exception or error

messages appear during the save operation. When the problem causing this failure is fixed, run the

propagatePolicyToJaccProvider tool to propagate the security policy information to the provider without

reinstalling the application. For more information, see “Propagating security policy of installed applications

to a JACC provider using wsadmin scripting” on page 1473.

JACC registration of the provider implementation classes:

The JACC specification states that providers can plug in their provider using the

javax.security.jacc.policy.provider and the javax.security.jacc.PolicyConfigurationFactory.provider system

properties.

 The javax.security.jacc.policy.provider property is used to set the policy object of the provider, while the

javax.security.jacc.PolicyConfigurationFactory.provider property is used to set the provider

PolicyConfigurationFactory implementation.

Chapter 16. Security 1303

Although both system properties are supported in WebSphere Application Server, it is highly recommended

that you use the configuration model that is provided. You can set these values using either the JACC

configuration panel (see “Authorizing access to J2EE resources using Tivoli Access Manager” on page

1319 for more information) or by using wsadmin scripting. One of the advantages of using the

configuration model instead of the system properties is that the information is entered in one place at the

cell level, and is propagated to all nodes during synchronization. Also, as part of the configuration model,

additional properties can be entered, as described in the JACC configuration panel.

Role-based security with embedded Tivoli Access Manager:

The Java 2 Platform, Enterprise Edition (J2EE) role-based authorization model uses the concepts of roles

and resources. An example is provided here.

 Methods

Roles getBalance deposit closeAccount

Teller granted granted

Cashier granted

Supervisor granted

In the example of the banking application that is conceptualized in the previous table, three roles are

defined: teller, cashier, and supervisor. Permission to perform the getBalance, deposit, and closeAccount

application methods are mapped to these roles. From the example, you can see that users assigned the

role, Supervisor, can run the closeAccount method, whereas the other two roles are unable to run this

method.

The term, principal, within WebSphere Application Sever security refers to a person or a process that

performs activities. Groups are logical collections of principals that are configured in WebSphere

Application Server to promote the ease of applying security. Roles can be mapped to principals, groups, or

both. The entry that is invoked in the following table indicates that the principal or group can invoke any

methods that are granted to that role.

 Roles

Principal/Group Teller Cashier Supervisor

TellerGroup Invoke

CashierGroup Invoke

SupervisorGroup

Frank: A principal who is

not a member of any of the

previous groups

Invoke Invoke

In the previous example, the principal Frank, can invoke the getBalance and the closeAccount methods,

but cannot invoke the deposit method because this method is not granted either the Cashier or the

Supervisor role.

At the time of application deployment, the Java Authorization Contract for Container (JACC) provider of

Tivoli Access Manager populates the Tivoli Access Manager-protected object space with any security

policy information that is contained in the application deployment descriptor. This security information is

used to determine access whenever the WebSphere Application Server resource is requested.

By default, the Tivoli Access Manager access check is performed using the role name, the cell name, the

application name, and the module name.

1304 Administering applications and their environment

Tivoli Access Manager access control lists (ACLs) determine which application roles are assigned to a

principal. ACLs are attached to the applications in the Tivoli Access Manager-protected object space at the

time of application deployment.

Principal-to-role mappings are managed from the WebSphere Application Server administrative console

and are never modified using Tivoli Access Manager. Direct updates to ACLs are performed for

administrative security users only.

The following sequence of events occur:

1. During application deployment, policy information is sent to the JACC provider of Tivoli Access

Manager . This policy information contains permission-to-role mappings and role-to-principal and

role-to-group mapping information.

2. The JACC provider of Tivoli Access Manager converts the information into the required format, and

passes this information to the Tivoli Access Manager policy server.

3. The policy server adds entries to the Tivoli Access Manager-protected object space to represent the

roles that are defined for the application and the permission-to-role mappings. A permission is

represented as a Tivoli Access Manager-protected object and the role that is granted to this object is

attached as an extended attribute.

Tivoli Access Manager integration as the JACC provider:

Tivoli Access Manager uses the Java Authorization Contract for Container (JACC) model in WebSphere

Application Server to perform access checks.

 Tivoli Access Manager consists of the following components:

v Run time

v Client configuration

v Authorization table support

v Access check

v Authentication using the PDLoginModule module

Tivoli Access Manager run-time changes that are used to support JACC

For the run-time changes, Tivoli Access Manager implements the PolicyConfigurationFactory and the

PolicyConfiguration interfaces, as required by JACC. During the application installation, the security policy

information in the deployment descriptor and the authorization table information in the binding files are

propagated to the Tivoli provider using these interfaces. The Tivoli provider stores the policy and the

authorization table information in the Tivoli Access Manager policy server by calling the respective Tivoli

Access Manager application programming interfaces (API).

Tivoli Access Manager also implements the RoleConfigurationFactory and the RoleConfiguration

interfaces. These interfaces are used to ensure that the authorization table information is passed to the

provider with the policy information. See “Interfaces that support JACC” on page 1335 for more information

about these interfaces.

Tivoli Access Manager client configuration

To configure the Tivoli Access Manager client, you can use either the administrative console or wsadmin

scripting. You can access the administrative console panels for the Tivoli Access Manager client

configuration by clicking Security > Secure administration, applications, and infrastructure > External

authorization providers. Under Related Items, click External JACC provider. The Tivoli client must be

set up to use the Tivoli Access Manager JACC Provider.

Chapter 16. Security 1305

For more information about how to configure the Tivoli Access Manager client, see “Tivoli Access Manager

JACC provider configuration” on page 1325.

Authorization table support

Tivoli Access Manager uses the RoleConfiguration interface to ensure that the authorization table

information is passed to the Tivoli Access Manager provider when the application is installed or deployed.

When an application is deployed or edited, the set of users and groups for the user or group-to-role

mapping are obtained from the Tivoli Access Manager server, which shares the same Lightweight Directory

Access Protocol (LDAP) server as WebSphere Application Server. This sharing is accomplished by

plugging into the application management users or groups-to-role administrative console panels. The

management APIs are called to obtain users and groups rather than relying on the WebSphere Application

Server-configured LDAP registry.

Access check

When WebSphere Application Server is configured to use the JACC provider for Tivoli Access Manager , it

passes the information to Tivoli Access Manager to make the access decision. The Tivoli Access Manager

policy implementation queries the local replica of the access control list (ACL) database for the access

decision.

Authentication using the PDLoginModule module

The custom login module in WebSphere Application Server can do the authentication. This login module is

plugged in before the WebSphere Application Server-provided login modules. The custom login modules

can provide information that can be stored in the Subject. If the required information is stored, no

additional registry calls are made to obtain that information.

As part of the JACC integration, the Tivoli Access Manager-provided PDLoginModule module is also used

to plug into WebSphere Application Server for both Lightweight Third Party Authentication (LTPA) and

Simple WebSphere Authentication Mechanism (SWAM) authentication. The PDLoginModule module is

modified to authenticate with the user ID or password. The module is also used to fill in the required

attributes in the Subject so that no registry calls are made by the login modules in WebSphere Application

Server. The information that is placed in the Subject is available for the Tivoli Access Manager policy

object to use for access checking.

Note:

V6.0.x

SWAM is deprecated in WebSphere Application Server Version 6.1 and will be removed

in a future release.

Tivoli Access Manager security for WebSphere Application Server:

WebSphere Application Server provides embedded IBM Tivoli Access Manager client technology to secure

your WebSphere Application Server-managed resources.

 The benefits of using Tivoli Access Manager that are described here are only applicable when Tivoli

Access Manager client code is used with the Tivoli Access Manager server:

v Robust container-based authorization

v Centralized policy management

v Management of common identities, user profiles, and authorization mechanisms

v Single-point security management for Java 2 Platform, Enterprise Edition (J2EE) compliant and

non-compliant J2EE resources using the administrative console for Tivoli Access Manager Web Portal

Manager

v No requirements for coding or deployment changes to applications

1306 Administering applications and their environment

v Easy management of users, groups, and roles using the WebSphere Application Server administrative

console

WebSphere Application Server supports the Java Authorization Contract for Containers (JACC)

specification. JACC details the contract requirements for J2EE containers and authorization providers. With

this contract, authorization providers can perform the access decisions for resources in J2EE Version 1.4

application servers such as WebSphere Application Server. The Tivoli Access Manager security utility that

is embedded within WebSphere Application Server is JACC-compliant and is used to:

v Add security policy information when applications are deployed

v Authorize access to WebSphere Application Server-secured resources.

When applications are deployed, the embedded Tivoli Access Manger client takes any policy and or user

and role information that is stored within the application deployment descriptor and stores it within the

Tivoli Access Manager Policy Server.

The Tivoli Access Manager JACC provider is also called when a user requests access to a resource that is

managed by WebSphere Application Server.

Embedded Tivoli Access Manager client architecture

The previous figure illustrates the following sequence of events:

1. Users that access protected resources are authenticated using the Tivoli Access Manager login module

that is configured for use when the embedded Tivoli Access Manager client is enabled.

2. The WebSphere Application Server container uses information from the J2EE application deployment

descriptor to determine the required role membership.

3. WebSphere Application Server uses the embedded Tivoli Access Manager client to request an

authorization decision from the Tivoli Access Manager authorization server. Additional context

information, when present, is also passed to the authorization server. This context information is

comprised of the cell name, J2EE application name, and J2EE module name. If the Tivoli Access

Manager policy database has policies that are specified for any of the context information, the

authorization server uses this information to make the authorization decision.

Tivoli Access
Manager

login module

Tivoli Access Manager
JACC provider

Tivoli Access Manager
authorization server

Tivoli Access Manager
policy server

WebSphere Application Server

Policy
database
replication

LDAP
server

Policy
database

Policy
database

Protected object
space

/

SD

Client

Request

Response

Chapter 16. Security 1307

4. The authorization server consults the permissions that are defined for the specified user within the

Tivoli Access Manager-protected object space. The protected object space is part of the policy

database.

5. The Tivoli Access Manager authorization server returns the access decision to the embedded Tivoli

Access Manager client.

6. WebSphere Application Server either grants or denies access to the protected method or resource,

based on the decision that is returned from the Tivoli Access Manager authorization server.

At its core, Tivoli Access Manager provides an authentication and authorization framework. You can learn

more about Tivoli Access Manager, including the information that is necessary to make deployment

decisions, by reviewing the product documentation. The following guides are available at the IBM Tivoli

Access Manager for e-business information center:

v IBM Tivoli Access Manager Base Installation Guide

This guide describes how to plan, install, and configure a Tivoli Access Manager secure domain. Using

a series of easy installation scripts, you can quickly deploy a fully functional secure domain. These

scripts are very useful when prototyping the deployment of a secure domain.

To access this guide in the IBM Tivoli Access Manager for e-business information center, click Access

Manager for e-business > Base Information > Base Installation Guide.

v IBM Tivoli Access Manager Base Administration Guide

This document presents an overview of the Tivoli Access Manager security model for managing

protected resources. This guide describes how to configure the Tivoli Access Manager servers that

make access control decisions. In addition, detailed instructions describe how to perform important

tasks, such as declaring security policies, defining protected object spaces, and administering user and

group profiles.

To access this guide in the IBM Tivoli Access Manager for e-business information center, click Access

Manager for e-business > Base Information > Base Administration Guide.

Tivoli Access Manager provides centralized administration of multiple servers.

1308 Administering applications and their environment

http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/index.jsp
http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/index.jsp

The previous figure is an example architecture showing WebSphere Application Servers secured by Tivoli

Access Manager.

The participating WebSphere Application Servers use a local replica of the Tivoli Access Manager policy

database to make authorization decisions for incoming requests. The local policy databases are replicas of

the master policy database. The master policy database is installed as part of the Tivoli Access Manager

installation. Having policy database replicas on each participating WebSphere Application Server node

optimizes performance when making authorization decisions and provides failover capability.

Although the authorization server can also be installed on the same system as WebSphere Application

Server, this configuration is not illustrated in the diagram.

All instances of Tivoli Access Manager and WebSphere Application Server in the example architecture

share the Lightweight Directory Access Protocol (LDAP) user registry on Machine E.

The LDAP registries that are supported by WebSphere Application Server are also supported by Tivoli

Access Manager.

It is possible to have separate WebSphere Application Server profiles on the same host that is configured

for different Tivoli Access Manager servers. Such an architecture requires that the profiles are configured

for separate Java Runtime Environments (JRE) and therefore you need multiple JREs installed on the

same host.

Machine C

Tivoli
Access Manager
policy database

machine A - Cell manager

Machine D - Node 1

Policy database
replication

Machine B

WebSphere Application Server

Tivoli Access
Manager JACC

provider

Tivoli Access Manager
local policy

database replica

Policy database
replication

WebSphere Application Server

Tivoli Access
Manager JACC

provider

Tivoli Access Manager
local policy

database replica

Authorization
decisions

User registry
shared by all
applications

WebSphere Application Server Cell

Authorization
decisions

Master Policy
database

Machine E

Tivoli
Access Manager

Authorization
Server

Tivoli Access Manager
local policy

database replica

Credential
acquisition

Credential
acquisition

Chapter 16. Security 1309

Delegations

Delegation is a process security identity propagation from a caller to a called object. As per the Java 2

Platform, Enterprise Edition (J2EE) specification, a servlet and enterprise beans can propagate either the

client or remote user identity when invoking enterprise beans, or they can use another specified identity as

indicated in the corresponding deployment descriptor.

The extension supports enterprise bean propagation to the server ID when invoking other entity beans.

Three types of delegations are possible:

v Delegate (RunAs) client identity

v Delegate (RunAs) specified identity

v Delegate (RunAs) system identity

Note: The RunAs system identity delegation only works when server ID and password are used. When

the internalServerId feature is used, it does not work because runAs with system identity is not

supported. You must specify RunAs roles. When internalServerID is used, use the RunAsSpecified

ID=user1

Enterprise beans

or Web client

RunAs client ID

Enterprise beans

or servlet

Other

enterprise beans

ID=user1

Delegate (RunAs) client identity

ID=user1

Delegate (RunAs) specified identity

Other

enterprise beans

Run As specified role

mapped to user2

Enterprise beans

or Web client

Enterprise beans

or servlet

ID=user2

ID=user1

RunAs system ID

ID=user1

Delegate (RunAs) system identity

Enterprise beans

or Web servlet
Enterprise beans

Other

enterprise beans

server1

1310 Administering applications and their environment

with a user ID and password that is mapped to the administrator role. See “Administrative roles and

naming service authorization” on page 1288 for more information about internalServerId.

The EJB specification only supports delegation (RunAs) at the Enterprise JavaBeans (EJB) level. But an

extension allows EJB method-level RunAs specification. With an EJB method level, the RunAs

specification you can specify a different RunAs role for different methods within the same enterprise

beans.

The RunAs specification is detailed in the deployment descriptor, which is the ejb-jar.xml file in the EJB

module and the web.xml file in the Web module. The extension to the RunAs specification is included in

the ibm-ejb-jar-ext.xmi file.

An IBM-specific binding file is available for each application that contains a mapping from the RunAs role

to the user. This file is specified in the ibm-application-bnd.xmi file.

These specifications are read by the runtime during application startup. The following figure illustrates the

delegation mechanism, as implemented in the WebSphere Application Server security model.

Delegation Process

Two tables help in the delegation process:

v Resource to RunAs role mapping table

v RunAs role to user ID and password mapping table

Use the Resource to RunAs role mapping table to get the role that is used by a servlet or by enterprise

beans to propagate to the next enterprise beans call.

Use the RunAsRole to user ID and password mapping table to get the user ID that belongs to the RunAs

role and its password.

Delegation is performed after successful authentication and authorization. During this process, the

delegation module consults the Resource to RunAs role mapping table to get the RunAs role (3). The

delegation module consults the RunAs role to user ID and password mapping table to get the user that

belongs to the RunAs role (4). The user ID and password is used to create a new credential using the

authentication module, which is not shown in the figure.

Java client

Delegation process

WebSphere Application Server

(1)

(1)

CSIv2/SAS, TCP/IP,

SSL

EJB

resource access

HTTP or HTTPS

Web resource access

Enterprise beans

collaborator

Web

authenticator
Web client

(2)

Resource

(2)

Resource

Delegation

RunAs role to

credentials

Resource

to RunAs role

(3)

(4)

(5)

(6)

(7)

(7)

(6)

Resource

Credentials

RunAs roles

RunAs roles

RunAs
role

Users and
passwords

Resource
RunAs
roles

Delegate

module

Invoke credentials ORB

current

Enterprise

beans

Servlet

Chapter 16. Security 1311

The resulting credential is stored in the Object Request Broker (ORB) Current as an invocation credential

(5). Servlet and enterprise beans when invoking other enterprise beans pick up the invocation credential

from the ORB Current (6) and call the next enterprise beans (7).

Programmatic login

Programmatic login is a type of form login that supports application presentation site-specific login forms

for the purpose of authentication.

When enterprise bean client applications require the user to provide identifying information, the writer of

the application must collect that information and authenticate the user. The work of the programmer can be

broadly classified in terms of where the actual user authentication is performed:

v In a client program

v In a server program

Users of Web applications can receive prompts for authentication data in many ways. The <login-config>

element in the Web application deployment descriptor file defines the mechanism that is used to collect

this information. Programmers who want to customize login procedures, rather than relying on general

purpose devices like a 401 dialog window in a browser, can use a form-based login to provide an

application-specific HTML form for collecting login information.

No authentication occurs unless administrative security is enabled. If you want to use form-based login for

Web applications, you must specify FORM in the auth-method tag of the <login-config> element in the

deployment descriptor of each Web application.

Applications can present site-specific login forms by using the WebSphere Application Server form-login

type. The Java 2 Platform, Enterprise Edition (J2EE) specification defines form login as one of the

authentication methods for Web applications. WebSphere Application Server provides a form-logout

mechanism.

Java Authentication and Authorization Service programmatic login

Java Authentication and Authorization Service (JAAS) is a new feature in WebSphere Application Server. It

is also mandated by the J2EE 1.4 Specification. JAAS is a collection of strategic authentication application

programming interfaces (API) that replace the Common Object Request Broker Architecture (CORBA)

programmatic login APIs. WebSphere Application Server provides some extensions to JAAS:

Before you begin developing with programmatic login APIs, consider the following points :

v For the pure Java client application or client container application, initialize the client Object Request

Broker (ORB) security prior to performing a JAAS login. Do this by running the following code prior to

the JAAS login:

...

import java.util.Hashtable;

import javax.naming.Context;

import javax.naming.InitialContext;

...

// Perform an InitialContext and default lookup prior to logging

// in to initialize ORB security and for the bootstrap host/port

// to be determined for SecurityServer lookup. If you do not want

// to validate the userid/password during the JAAS login, disable

// the com.ibm.CORBA.validateBasicAuth property in the

// sas.client.props file.

Hashtable env = new Hashtable();

env.put(Context.INITIAL_CONTEXT_FACTORY,

 "com.ibm.websphere.naming.WsnInitialContextFactory");

env.put(Context.PROVIDER_URL,

 "corbaloc:iiop:myhost.mycompany.com:2809");

Context initialContext = new InitialContext(env);

Object obj = initialContext.lookup("");

1312 Administering applications and their environment

For more information, see Example: Programmatic logins.

v For the pure Java client application or the client container application, make sure that the host name

and the port number of the target Java Naming and Directory Interface (JNDI) bootstrap properties are

specified properly. See the Developing applications that use CosNaming (CORBA Naming interface)

section for details.

v If the application uses custom JAAS login configuration, make sure that the custom JAAS login

configuration is properly defined. See the Configuring programmatic logins for Java Authentication and

Authorization Service section for details.

v Some of the JAAS APIs are protected by Java 2 security permissions. If these APIs are used by

application code, make sure that these permissions are added to the application was.policy file. See

Adding the was.policy file to applications to the application, Using PolicyTool to edit policy files and

Configuring the was.policy file sections for details. For more details of which APIs are protected by Java

2 Security permissions, check the IBM Developer Kit, Java Technology Edition; JAAS and the

WebSphere Application Server public APIs documentation for more details. The following list contains

the APIs that are used in the samples code provided in this documentation.

– javax.security.auth.login.LoginContext constructors are protected by

javax.security.auth.AuthPermission ″createLoginContext″.

– javax.security.auth.Subject.doAs and com.ibm.websphere.security.auth.WSSubject.doAs are

protected by javax.security.auth.AuthPermission ″doAs″.

– javax.security.auth.Subject.doAsPrivileged and

com.ibm.websphere.security.auth.WSSubject.doAsPrivileged are protected by

javax.security.auth.AuthPermission ″doAsPrivileged″.
v com.ibm.websphere.security.auth.WSSubject: Due to a design oversight in JAAS Version 1.0,

javax.security.auth.Subject.getSubject does not return the Subject associated with the running thread

inside a java.security.AccessController.doPrivileged code block. This can present an inconsistent

behavior that is problematic and causes an undesirable effort to work around. The

com.ibm.websphere.security.auth.WSSubject API provides a workaround to associate the Subject to the

running thread. The com.ibm.websphere.security.auth.WSSubject API extends the JAAS model to J2EE

resources for authorization checks. The Subject that is associated with the running thread within

com.ibm.websphere.security.auth.WSSubject.doAs or

com.ibm.websphere.security.auth.WSSubject.doAsPrivileged code block is used for J2EE resources

authorization checks.

v Administrative console support for defining new JAAS login configuration: You can configure JAAS login

configuration in the administrative console and store it in the WebSphere Application Server

configuration API. Applications can define new JAAS login configuration in the administrative console

and the data is persisted in the configuration repository that is stored with the WebSphere Application

Server configuration API. However, WebSphere Application Server still supports the default JAAS login

configuration format that is provided by the JAAS default implementation. If duplication login

configurations are defined in both the WebSphere Application Server configuration API and the plain text

file format, the login configuration in the WebSphere Application Server configuration API takes

precedence. Advantages to define the login configuration in the WebSphere Application Server

configuration API include:

– Defining the JAAS login configuration using the administrative console.

– Managing the JAAS login configuration centrally.
v JAAS login configurations for WebSphere Application Server: WebSphere Application Server provides

JAAS login configurations for applications to perform programmatic authentication to the WebSphere

Application Server security runtime. These JAAS login configurations for WebSphere Application Server

perform authentication to the configured authentication mechanism, Simple WebSphere Authentication

Mechanism (SWAM) or Lightweight Third-Party Authentication (LTPA), and user registry (Local OS,

LDAP, or Custom) based on the authentication data supplied. The authenticated Subject from these

JAAS login configurations contain the required principal and credentials that can be used by the

WebSphere Application Server security runtime to perform authorization checks on J2EE role-based

protected resources.

Chapter 16. Security 1313

Note: SWAM is deprecated in WebSphere Application Server Version 6.1 and will be removed in a

future release.
Here are the JAAS login configurations that are provided by WebSphere Application Server:

– WSLogin JAAS login configuration: A generic JAAS login configuration that a Java client, client

container application, servlet, JSP file, enterprise bean, and so on, can use to perform authentication

that is based on a user ID and password, or a token to the WebSphere Application Server security

runtime. However, this configuration does not support the CallbackHandler handler that is specified in

the client container deployment descriptor.

– ClientContainer JAAS login configuration: This JAAS login configuration recognizes the

CallbackHandler handler that is specified in the client container deployment descriptor. The login

module of this login configuration uses the CallbackHandler handler in the client container

deployment descriptor if one is specified, even if the application code specified one CallbackHandler

handler in the login context. This is for client container application.

– The Subjects that are authenticated with the previously mentioned JAAS login configurations contain

a com.ibm.websphere.security.auth.WSPrincipal principal and a

com.ibm.websphere.security.auth.WSCredential credential. If the authenticated Subject is passed to

the com.ibm.websphere.security.auth.WSSubject.doAs method or the other doAs methods, the

WebSphere Application Server security runtime can perform authorization checks on J2EE

resources, based on the Subject com.ibm.websphere.security.auth.WSCredential credential.
v Customer-defined JAAS login configurations: You can define other JAAS login configurations. See

Configuring programmatic logins for Java Authentication and Authorization Service for details. Use these

login configurations to perform programmatic authentication to the custom authentication mechanism.

However, the subjects from these customer-defined JAAS login configurations might not be used by the

WebSphere Application Server security runtime to perform authorization checks if the subject does not

contain the required principal and credentials.

Finding the root cause login exception from a JAAS login

If you get a LoginException exception after issuing the LoginContext.login API, you can find the root cause

exception from the configured user registry. In the login modules, the registry exceptions are wrapped by a

com.ibm.websphere.security.auth.WSLoginFailedException class. This exception has a getCause method

with which you can pull out the exception that was wrapped after issuing the previous command.

You are not always guaranteed to get a WSLoginFailedException exception, but most of the exceptions

that are generated from the user registry display here. The following example illustrates a

LoginContext.login API with the associated catch block. Cast the WSLoginFailedException exception to

com.ibm.websphere.security.auth.WSLoginFailedException class if you want to issue the getCause API.

The following determineCause example can be used for processing CustomUserRegistry exception types.

try

 {

 lc.login();

 }

 catch (LoginException le)

 {

 // drill down through the exceptions as they might cascade through the runtime

 Throwable root_exception = determineCause(le);

 // now you can use "root_exception" to compare to a particular exception type

 // for example, if you have implemented a CustomUserRegistry type, you would

 // know what to look for here.

 }

/* Method used to drill down into the WSLoginFailedException to find the

"root cause" exception */

 public Throwable determineCause(Throwable e)

1314 Administering applications and their environment

{

 Throwable root_exception = e, temp_exception = null;

 // keep looping until there are no more embedded WSLoginFailedException or

 // WSSecurityException exceptions

 while (true)

 {

 if (e instanceof com.ibm.websphere.security.auth.WSLoginFailedException)

 {

 temp_exception = ((com.ibm.websphere.security.auth.WSLoginFailedException)

 e).getCause();

 }

 else if (e instanceof com.ibm.websphere.security.WSSecurityException)

 {

 temp_exception = ((com.ibm.websphere.security.WSSecurityException)

 e).getCause();

 }

 else if (e instanceof javax.naming.NamingException)

 // check for Ldap embedded exception

 {

 temp_exception = ((javax.naming.NamingException)e).getRootCause();

 }

 else if (e instanceof your_custom_exception_here)

 {

 // your custom processing here, if necessary

 }

 else

 {

 // this exception is not one of the types we are looking for,

 // lets return now, this is the root from the WebSphere

 // Application Server perspective

 return root_exception;

 }

 if (temp_exception != null)

 {

 // we have an exception; go back and see if this has another

 // one embedded within it.

 root_exception = temp_exception;

 e = temp_exception;

 continue;

 }

 else

 {

 // we finally have the root exception from this call path, this

 // has to occur at some point

 return root_exception;

 }

 }

 }

Finding the root cause login exception from a Servlet filter

You can also receive the root cause exception from a servlet filter when addressing post-form login

processing. This exception is useful because it shows the user what happened. You can issue the

following API to obtain the root cause exception:

Throwable t = com.ibm.websphere.security.auth.WSSubject.getRootLoginException();

if (t != null)

 t = determineCause(t);

When you have the exception, you can run it through the previous determineCause example to get the

native registry root cause.

Chapter 16. Security 1315

Enabling root cause login exception propagation to pure Java clients

Currently, the root cause does not get propagated to a pure client for security reasons. However, you

might want to propagate the root cause to a pure client in a trusted environment. If you want to enable

root cause login exception propagation to a pure client, click Security > Secure administration,

applications, and infrastructure > Custom Properties on the WebSphere Application Server

Administrative Console and set the following property:

com.ibm.websphere.security.registry.propagateExceptionsToClient=true

Non-prompt programmatic login

WebSphere Application Server provides a non-prompt implementation of the

javax.security.auth.callback.CallbackHandler interface, which is called

com.ibm.websphere.security.auth.callback.WSCallbackHandlerImpl. Using this interface, an application can

push authentication data to the WebSphere LoginModule instance to perform authentication. This

capability is useful for server-side application code to authenticate an identity and to use that identity to

invoke downstream J2EE resources.

javax.security.auth.login.LoginContext lc = null;

try {

lc = new javax.security.auth.login.LoginContext("WSLogin",

new com.ibm.websphere.security.auth.callback.WSCallbackHandlerImpl("user",

 "securityrealm", "securedpassword"));

// create a LoginContext and specify a CallbackHandler implementation

// CallbackHandler implementation determine how authentication data is collected

// in this case, the authentication data is "push" to the authentication mechanism

// implemented by the LoginModule.

} catch (javax.security.auth.login.LoginException e) {

System.err.println("ERROR: failed to instantiate a LoginContext and the exception: "

+ e.getMessage());

e.printStackTrace();

// maybe javax.security.auth.AuthPermission "createLoginContext" is not granted

// to the application, or the JAAS login configuration is not defined.

}

if (lc != null)

try {

lc.login(); // perform login

javax.security.auth.Subject s = lc.getSubject();

// get the authenticated subject

// Invoke a J2EE resource using the authenticated subject

com.ibm.websphere.security.auth.WSSubject.doAs(s,

new java.security.PrivilegedAction() {

public Object run() {

try {

bankAccount.deposit(100.00); // where bankAccount is a protected EJB

} catch (Exception e) {

System.out.println("ERROR: error while accessing EJB resource, exception: "

+ e.getMessage());

e.printStackTrace();

}

return null;

}

}

);

} catch (javax.security.auth.login.LoginException e) {

System.err.println("ERROR: login failed with exception: " + e.getMessage());

1316 Administering applications and their environment

e.printStackTrace();

// login failed, might want to provide relogin logic

}

You can use the com.ibm.websphere.security.auth.callback.WSCallbackHandlerImpl callback handler with

a pure Java client, a client application container, enterprise bean, JavaServer Pages (JSP) files, servlet, or

other Java 2 Platform, Enterprise Edition (J2EE) resources. See Example: Programmatic logins for more

information about Object Request Broker (ORB) security initialization requirements in a pure Java client.

Note: The WSCallbackHandlerImpl callback handler is different depending on whether you use

WebSphere Application Server security or Web services security. It is located in the sas.jar file for

security, and in the was-wssecurity.jar file for Web services security.

User interface prompt programmatic login

WebSphere Application Server also provides a user interface implementation of the

javax.security.auth.callback.CallbackHandler implementation to collect authentication data from a user

through user interface login prompts. The

com.ibm.websphere.security.auth.callback.WSGUICallbackHandlerImpl callback handler presents a user

interface login panel to prompt users for authentication data.

Note: This behavior requires an X11 server to be called out by the DISPLAY environment.

javax.security.auth.login.LoginContext lc = null;

try {

lc = new javax.security.auth.login.LoginContext("WSLogin",

new com.ibm.websphere.security.auth.callback.WSGUICallbackHandlerImpl());

// create a LoginContext and specify a CallbackHandler implementation

// CallbackHandler implementation determine how authentication data is collected

// in this case, the authentication date is collected by GUI login prompt

// and pass to the authentication mechanism implemented by the LoginModule.

} catch (javax.security.auth.login.LoginException e) {

System.err.println("ERROR: failed to instantiate a LoginContext and the exception: "

+ e.getMessage());

e.printStackTrace();

// maybe javax.security.auth.AuthPermission "createLoginContext" is not granted

// to the application, or the JAAS login configuration is not defined.

}

if (lc != null)

try {

lc.login(); // perform login

javax.security.auth.Subject s = lc.getSubject();

// get the authenticated subject

// Invoke a J2EE resources using the authenticated subject

com.ibm.websphere.security.auth.WSSubject.doAs(s,

new java.security.PrivilegedAction() {

public Object run() {

try {

bankAccount.deposit(100.00); // where bankAccount is a protected enterprise bean

} catch (Exception e) {

System.out.println("ERROR: error while accessing EJB resource, exception: "

+ e.getMessage());

e.printStackTrace();

}

return null;

Chapter 16. Security 1317

}

}

);

} catch (javax.security.auth.login.LoginException e) {

System.err.println("ERROR: login failed with exception: " + e.getMessage());

e.printStackTrace();

// login failed, might want to provide relogin logic

}

Attention: Do not use the com.ibm.websphere.security.auth.callback.WSGUICallbackHandlerImpl callback

handler for server-side resources like enterprise bean, servlet, JSP files, and so on. The user

interface login prompt blocks the server for user input. This behavior is not good for a server

process.

Stdin prompt programmatic login

WebSphere Application Server also provides a stdin implementation of the

javax.security.auth.callback.CallbackHandler interface. The callback handler,

com.ibm.websphere.security.auth.callback.WSStdinCallbackHandlerImpl, prompts and collects

authentication data from a user through the stdin prompt.

javax.security.auth.login.LoginContext lc = null;

try {

lc = new javax.security.auth.login.LoginContext("WSLogin",

new com.ibm.websphere.security.auth.callback.WSStdinCallbackHandlerImpl());

// create a LoginContext and specify a CallbackHandler implementation

// CallbackHandler implementation determines how authentication data is collected

// in this case, the authentication date is collected by stdin prompt

// and passed to the authentication mechanism implemented by the LoginModule.

} catch (javax.security.auth.login.LoginException e) {

System.err.println("ERROR: failed to instantiate a LoginContext and the exception:

 " + e.getMessage());

e.printStackTrace();

// maybe javax.security.auth.AuthPermission "createLoginContext" is not granted

// to the application, or the JAAS login configuration is not defined.

}

if (lc != null)

try {

lc.login(); // perform login

javax.security.auth.Subject s = lc.getSubject();

// get the authenticated subject

// Invoke a J2EE resource using the authenticated subject

com.ibm.websphere.security.auth.WSSubject.doAs(s,

new java.security.PrivilegedAction() {

public Object run() {

try {

bankAccount.deposit(100.00);

// where bankAccount is a protected enterprise bean

} catch (Exception e) {

System.out.println("ERROR: error while accessing EJB resource, exception: "

 + e.getMessage());

e.printStackTrace();

}

return null;

}

}

1318 Administering applications and their environment

);

} catch (javax.security.auth.login.LoginException e) {

System.err.println("ERROR: login failed with exception: " + e.getMessage());

e.printStackTrace();

// login failed, might want to provide relogin logic

}

Attention: Do not use the com.ibm.websphere.security.auth.callback.WSStdinCallbackHandlerImpl

callback handler for server-side resources like enterprise beans, servlets, JSP files, and so on. The input

from the stdin prompt is not sent to the server environment. Most servers run in the background and do

not have a console. However, if the server does have a console, the stdin prompt blocks the server for

user input. This behavior is not good for a server process.

Authorizing access to J2EE resources using Tivoli Access Manager

The Java Authorization Contract for Containers (JACC) defines a contract between Java 2 Platform,

Enterprise Edition (J2EE) containers and authorization providers. You can use the default authorization or

an external JACC authorization provider. When security is enabled in WebSphere Application Server, the

default authorization is used unless a JACC provider is specified.

JACC enables any third-party authorization providers to plug into a J2EE application server (such as

WebSphere Application Server) to make the authorization decisions when a J2EE resource is accessed.

By default, WebSphere Application Server implements the JACC provider by using Tivoli Access Manager

as the external authorization provider.

Read the following articles for more detailed information about JACC before you attempt to configure

WebSphere Application Server to use a JACC provider:

v “JACC support in WebSphere Application Server” on page 1298

v “JACC providers” on page 1301

v “Tivoli Access Manager integration as the JACC provider” on page 1305

Using the default authorization provider

You can extend the capabilities of WebSphere Application Server by plugging in your own authorization

provider. You can use the default authorization or an external JACC authorization provider.

For an explanation of the administrative console panels that support these capabilities, see:

v Use the default authorization provider. It is recommended that you do not modify any settings on the

authorization provider panels if you use the Default authorization option. For more information, see

“External authorization provider settings.”

v Use an external authorization provider. If you use the External authorization using a JACC provider

option, the external providers must be based on the Java™ Authorization Contract for Containers

(JACC) specification to handle the Java 2 Platform, Enterprise Edition (J2EE) authorization. By default,

WebSphere Application Server enables you to configure the Tivoli Access Manager Java Authorization

Contract for Containers (JACC) provider as the default external JACC provider. For more information,

see “External Java Authorization Contract for Containers provider settings” on page 1320 and “Tivoli

Access Manager JACC provider settings” on page 1326.

External authorization provider settings:

Use this page to enable a Java Authorization Contract for Containers (JACC) provider for authorization

decisions.

 To view this administrative console page, complete the following steps:

1. Click Security > Secure administration, applications, and infrastructure.

2. Click External authorization providers.

Chapter 16. Security 1319

The application server provides a default authorization engine that performs all of the authorization

decisions. In addition, the application server also supports an external authorization provider using the

JACC specification to replace the default authorization engine for Java 2 Platform, Enterprise Edition

(J2EE) applications.

JACC is part of the J2EE specification, which enables third-party security providers such as Tivoli Access

Manager to plug into the application server and make authorization decisions.

Important: Unless you have an external JACC provider or want to use a JACC provider for Tivoli Access

Manager that can handle J2EE authorizations based on JACC, and it is configured and set up

to use with the application server, do not enable External authorization using a JACC

provider.

Default authorization:

Use this option all the time unless you want an external security provider such as the Tivoli Access

Manager to perform the authorization decision for J2EE applications that are based on the JACC

specification.

 Default: Enabled

External JACC provider: Use this link to configure the application server to use an external JACC

provider. For example, to configure an external JACC provider, the policy class name and the policy

configuration factory class name are required by the JACC specification.

The default settings that are contained in this link are used by Tivoli Access Manager for authorization

decisions. If you intend to use another provider, modify the settings as appropriate.

External Java Authorization Contract for Containers provider settings:

Use this page to configure the application server to use an external Java Authorization Contract for

Containers (JACC) provider. For example, the policy class name and the policy configuration factory class

name are required by the JACC specification.

 Use these settings when you have set up an external security provider that supports the JACC

specification to work with the application server. The configuration process involves installing and

configuring the provider server and configuring the client of the provider in the application server to

communicate with the server. If the JACC provider is not enabled, these settings will be ignored.

To view this administrative console page, complete the following steps:

1. Click Security > Secure administration, applications, and infrastructure.

2. Click External authorization providers.

3. Under Related items, click External JACC provider.

Use the default settings when you use Tivoli Access Manager as the JACC provider. Install and configure

the Tivoli Access Manager server prior to using it with the application server. Use the Tivoli Access

Manager properties link under Additional properties, and configure the Tivoli Access Manager client in the

application server to use the Tivoli Access Manager server. If you intend to use another provider, modify

the settings as appropriate.

Name:

Specifies the name that is used to identify the external JACC provider.

1320 Administering applications and their environment

This field is required.

 Data type: String

Description:

Provides an optional description for the provider.

 Data type: String

Policy class name:

Specifies a fully qualified class name that represents the javax.security.jacc.policy.provider property as per

the JACC specification. The class represents the provider-specific implementation of the

java.security.Policy abstract methods.

 The class file must reside in the class path of each application server process. This class is used during

authorization decisions. The default class name is for Tivoli Access Manager implementation of the policy

file.

This field is required. For information on enabling the JACC provider using this field, see the ″Enabling the

JACC provider for Tivoli Access Manager″ article in the information center.

 Data type: String

Default: com.tivoli.pd.as.jacc.TAMPolicy

Policy configuration factory class name:

Specifies a fully qualified class name that represents the

javax.security.jacc.PolicyConfigurationFactory.provider property as per the JACC specification. The class

represents the provider-specific implementation of the javax.security.jacc.PolicyConfigurationFactory

abstract methods.

 This class represents the provider-specific implementation of the PolicyConfigurationFactory abstract class.

The class file must reside in the class path of each application server process. This class is used to

propagate the security policy information to the JACC provider during the installation of the J2EE

application. The default class name is for the Tivoli Access Manager implementation of the policy

configuration factory class name.

This field is required.

 Data type: String

Default: com.tivoli.pd.as.jacc.TAMPolicyConfigurationFactory

Role configuration factory class name:

Specifies a fully qualified class name that implements the

com.ibm.wsspi.security.authorization.RoleConfigurationFactory interface.

 The class file must reside in the class path of each application server process. When you implement this

class, the authorization table information in the binding file is propagated to the provider during the

installation of the J2EE application. The default class name is for the Tivoli Access Manager

implementation of the role configuration factory class name.

Chapter 16. Security 1321

This field is optional. For information on enabling the JACC provider using this field, see the ″Enabling the

JACC provider for Tivoli Access Manager″ article in the information center.

 Data type: String

Default: com.tivoli.pd.as.jacc.TAMRoleConfigurationFactory

Provider initialization class name:

Specifies a fully qualified class name that implements the

com.ibm.wsspi.security.authorization.InitializeJACCProvider interface.

 The class file must reside in the class path of each application server process. When implemented, this

class is called at the start and the stop of all the application server processes. You can use this class for

any required initialization that is needed by the provider client code to communicate with the provider

server. The properties that are entered in the custom properties link are passed to the provider when the

process starts up. The default class name is for the Tivoli Access Manager implementation of the provider

initialization class name.

This field is optional. For information on enabling the JACC provider using this field, see the ″Enabling the

JACC provider for Tivoli Access Manager″ article in the information center.

 Data type: String

Default: com.tivoli.pd.as.jacc.cfg.TAMConfigInitialize

Requires the EJB arguments policy context handler for access decisions:

Specifies whether the JACC provider requires the EJBArgumentsPolicyContextHandler handler to make

access decisions.

 Because this option has an impact on performance, do not set it unless it is required by the provider.

Normally, this handler is required only when the provider supports instance-based authorization. Tivoli

Access Manager does not support this option for J2EE applications.

 Default: Disabled

Supports dynamic module updates:

Specifies whether you can apply changes made to security policies of Web modules in a running

application, dynamically without affecting the rest of the application.

 If this option is enabled, the security policies of the added or modified Web modules are propagated to the

JACC provider and only the affected Web modules are started.

If this option is disabled, then the security policies of the entire application are propagated to the JACC

provider for any module-level changes. The entire application is restarted for the changes to take effect.

Typically, this option is enabled for an external JACC provider.

 Default: Enabled

Custom properties:

Specifies the properties that are required by the provider.

1322 Administering applications and their environment

These properties are propagated to the provider during the startup process when the provider initialization

class name is initialized. If the provider does not implement the provider initialization class name as

described previously, the properties are not used.

The Tivoli Access Manager implementation does not require that you enter any properties in this link.

Tivoli Access Manager properties:

Specifies properties that are required by the Tivoli Access Manager implementation.

 These properties are used to set up the communication between the application server and the Tivoli

Access Manager server. You must install and configure the Tivoli Access Manager server before entering

these properties.

Enabling an external JACC provider

Use this topic to enable an external JACC provider using the administrative console.

The Java Authorization Contract for Containers (JACC) defines a contract between Java 2 Platform,

Enterprise Edition (J2EE) containers and authorization providers. This contract enables any third-party

authorization providers to plug into a J2EE 1.4 application server, such as WebSphere Application Server

to make the authorization decisions when a J2EE resource is accessed.

1. From the WebSphere Application Server administrative console, click Security > Secure

administration, applications, and infrastructure > External authorization providers.

2. Under Related items, click External JACC provider.

3. The fields are set for Tivoli Access Manager by default. If you do not plan to use Tivoli Access

Manager as the JACC provider, replace these fields with the details for your own external JACC

provider.

4. If any custom properties are required by the JACC provider, click Custom properties under Additional

properties and enter the properties. When using the Tivoli Access Manager, use the Tivoli Access

Manager properties link instead of the Custom properties link. For more information, see “Configuring

the JACC provider for Tivoli Access Manager using the administrative console.”

5. On the External authorization providers panel, select the External authorization using a JACC

provider option and click OK.

6. Complete the remaining steps to enable security. If you are using Tivoli Access Manager, you must

select LDAP as the user registry and use the same LDAP server. For more information on configuring

LDAP registries, see “Configuring Lightweight Directory Access Protocol user registries” on page 1041.

7. In a multinode environment, stop and start the deployment manager configuration.

Issue the following commands:

profile_root/bin/stopManager.bat

 -username user_name

 -password password

profile_root/bin/startManager.bat

8. Restart all servers to make these changes effective.

Configuring the JACC provider for Tivoli Access Manager using the administrative console:

Use this task to configure Tivoli Access Manager as the Java Authorization Contract for Containers (JACC)

provider using the administrative console.

 Prior to completing the following steps, verify that you have previously created a security administrative

user. For more information, see “Creating the security administrative user” on page 1325.

Chapter 16. Security 1323

The following configuration is performed on the management server. When you click either Apply or OK,

configuration information is checked for consistency, saved, and applied if successful.

To configure Tivoli Access Manager as the JACC provider using the administrative console, complete the

following steps:

1. Start the WebSphere Application Server administrative console by clicking http://
yourhost.domain:port_number/ibm/console after starting WebSphere Application Server. If security is

currently disabled, log in with any user ID. If security is currently enabled, log in with a predefined

administrative ID and password. This ID is typically the server user ID that is specified when you

configure the user registry.

2. Click Security > Secure administration, applications, and infrastructure > External authorization

providers.

3. Under General properties, select External authorization using a JACC provider.

4. Under Related items, click External JACC provider.

5. Under Additional properties, click Tivoli Access Manager Properties. The Tivoli Access Manager

JACC provider configuration screen is displayed.

6. Enter the following information:

Enable embedded Tivoli Access Manager

Select this option to enable Tivoli Access Manager.

Ignore errors during embedded Tivoli Access Manager disablement

Select this option when you want to unconfigure the JACC provider. Do not select this option

during configuration.

Client listening port set

WebSphere Application Server must listen using a TCP/IP port for authorization database

updates from the policy server. More than one process can run on a particular node or

machine. More than one authorization server can be specified by separating the entries with

commas. Specifying more than one authorization server at a time is useful for reasons of

failover and performance. Enter the listening ports used by Tivoli Access Manager clients,

separated by a comma. If a range of ports is specified, separate the lower and higher values

by a colon (:) (for example, 7999, 9990:999).

Policy server

Enter the name of the Tivoli Access Manager policy server and the connection port. Use the

policy_server:port form. The policy communication port is set at the time of the Tivoli Access

Manager configuration, and the default is 7135.

Authorization servers

Enter the name of the Tivoli Access Manager authorization server. Use the

auth_server:port:priority form. The authorization server communication port is set at the

time of the Tivoli Access Manager configuration, and the default is 7136. The priority value is

determined by the order of the authorization server use (for example, auth_server1:7136:1

and auth_server2:7137:2). A priority value of 1 is required when configuring against a single

authorization server.

Administrator user name

Enter the Tivoli Access Manager administrator user name that was created when Tivoli Access

Manager was configured; it is usually sec_master.

Administrator user password

Enter the Tivoli Access Manager administrator password.

User registry distinguished name suffix

Enter the distinguished name suffix for the user registry that is shared between Tivoli Access

Manager and WebSphere Application Server, for example, o=ibm, c=us.

1324 Administering applications and their environment

Security domain

You can create more than one security domain in Tivoli Access Manager, each with its own

administrative user. Users, groups and other objects are created within a specific domain, and

are not permitted to access resource in another domain. Enter the name of the Tivoli Access

Manager security domain that is used to store WebSphere Application Server users and

groups.

 If a security domain is not established at the time of the Tivoli Access Manager configuration,

leave the value as Default.

Administrator user distinguished name

Enter the full distinguished name of the WebSphere Application Server security administrator

ID (for example, cn=wasdmin, o=organization, c=country). The ID name must match the

Server user ID on the Lightweight Directory Access Protocol (LDAP) User Registry panel in the

administrative console. To access the LDAP User Registry panel, click Security > Secure

administration, applications, and infrastructure. Under User account repository, choose

Standalone LDAP registry as the available realm definition. Then click Configure.

7. When all information is entered, click OK to save the configuration properties. The configuration

parameters are checked for validity and the configuration is attempted at the host server or cell

manager.

After you click OK, WebSphere Application Server completes the following actions:

v Validates the configuration parameters.

v Configures the host server or cell manager.

These processes might take some time depending on network traffic or the speed of your machine.

If the configuration is successful, the parameters are copied to all subordinate servers, including the node

agents. To complete the embedded Tivoli Access Manager client configuration, you must restart all of the

servers, including the host server, and enable WebSphere Application Server security.

Creating the security administrative user:

Enabling security requires the creation of a WebSphere Application Server administrative user. Use the

Tivoli Access Manager command-line pdadmin utility to create the Tivoli Access Manager administrative

user for WebSphere Application Server. This utility is available on the policy server host machine.

 Follow these steps to use the pdadmin utility.

1. From a command line, start the pdadmin utility as the Tivoli Access Manager administrative user,

sec_master:

pdadmin -a sec_master -p sec_master_password

2. Create a WebSphere Application Server security user. For example, the following instructions create a

new user, wasadmin. The command is entered as one continuous line:

pdadmin> user create wasadmin cn=wasadmin,o=organization,

c=country wasadmin wasadmin myPassword

Substitute values for organization and country that are valid for your Lightweight Directory Access

Protocol (LDAP) user registry.

3. Enable the account for the WebSphere Application Server security administrative user by issuing the

following command:

pdadmin> user modify wasadmin account-valid yes

Configure the Java Authorization Contract for Container (JACC) provider for Tivoli Access Manager. For

more information, see “Tivoli Access Manager JACC provider configuration.”

Tivoli Access Manager JACC provider configuration:

Chapter 16. Security 1325

You can configure the Java Authorization Contract for Containers (JACC) provider for Tivoli Access

Manager to deliver authentication and authorization protection for your applications or for authentication

only. Most deployments that use the JACC provider for Tivoli Access Manager to configure Tivoli Access

Manager provide both authentication and authorization functionality.

 If you want Tivoli Access Manager to provide authentication, but leave authorization as part of WebSphere

Application Server’s native security, add the

com.tivoli.pd.as.amwas.DisableAddAuthorizationTableEntry=true property to the

amwas.amjacc.template.properties file. The file is located in the profile_root/config/cells/cell_name

directory.

After this property is set, perform the tasks for setting Tivoli Access Manager Security, as documented.

You can configure the JACC provider for Tivoli Access Manager using either the WebSphere Application

Server administrative console or the wsadmin command-line utility.

v For details on configuring the JACC provider for Tivoli Access Manager using the administrative

console, refer to “Configuring the JACC provider for Tivoli Access Manager using the administrative

console” on page 1323.

v For details on configuring the Tivoli Access Manager JACC provider using the wsadmin command line

utility, refer to “Configuring the JACC provider for Tivoli Access Manager using the wsadmin utility” on

page 1474.

The JACC configuration files for Tivoli Access Manager that are common across multiple WebSphere

Application Server profiles are created by default under the java/jre directory. When you install WebSphere

Application Server, you are given permissions to read and write to the files in this directory.

Profiles created by users who are different to the user that installed the application have read-only

permissions for this directory.

This situation is not ideal because configuration of the JACC provider for Tivoli Access Manager fails in

these situations. To avoid this situation, you can add the following property to the profile_root/config/cells/
cell_name/amwas.amjacc.template.properties file: com.tivoli.pd.as.jacc.CommonFileLocation=new

location where new location is a fully qualified directory name.

This property applies read and write permissions to the java/jre directory.

The wsadmin command is available to reconfigure the Java Authorization Contract for Containers (JACC)

Tivoli Access Manager interface:

$AdminTask reconfigureTAM -interactive

This command effectively prompts you through the process of unconfiguring the interface and then

reconfiguring it.

Tivoli Access Manager JACC provider settings:

Use this page to configure the Java Authorization Contract for Container (JACC) provider for Tivoli Access

Manager.

Note: When a third-party authorization such as Tivoli Access Manager or SAF for z/OS is used, the

information in the administrative console panel might not represent the data in the provider. Also,

any changes to the panel might not be reflected in the provider automatically. Follow the provider’s

instructions to propagate any changes made to the provider.

To view the JACC provider settings for Tivoli Access Manager, complete the following steps:

1326 Administering applications and their environment

1. Click Security > Secure administration, applications, and infrastructure.

2. Under Authentication, click External authorization providers.

3. Under Related items, click External JACC provider.

4. Under Additional properties, click Tivoli Access Manager Properties.

Enable embedded Tivoli Access Manager:

Enables or disables the embedded Tivoli Access Manager client configuration.

 Default: Disabled

Range: Enabled or Disabled

Note: If you want to disable Tivoli Access Manager as the JACC provider, clear this option and also select

Default authorization.

Ignore errors during embedded Tivoli Access Manager disablement:

When selected, errors are ignored during disablement of the embedded Tivoli Access Manager client.

 This option is applicable only when re-configuring an embedded Tivoli Access Manager client or disabling

an embedded Tivoli Access Manager.

 Default: Disabled

Range: Enabled or Disabled

Client listening port set:

Enter the ports that are used as listening ports by Tivoli Access Manager clients.

 The application server needs to listen on a TCP/IP port for authorization database updates from the policy

server. More than one process can run on a particular node and machine, so a list of ports is required for

use by the processes. If you specify a range of ports, separate the lower and higher values by a colon (:).

Single ports and port ranges are specified on separate lines. An example list might look like the following

example:

7999

 9900:9999

Note: Each of the servants might need to open up a listener port.

Policy server:

Enter the name, fully-qualified domain name, or IP address of the Tivoli Access Manager policy server and

the connection port.

 Use the form policy_server:port. The policy server communication port was set at the time of the Tivoli

Access Manager configuration. The default is 7135.

Authorization servers:

Enter the name, fully-qualified domain name, or IP address of the Tivoli Access Manager authorization

server. Use the form, auth_server:port:priority.

Chapter 16. Security 1327

The authorization server communication port is set at the time of Tivoli Access Manager configuration. The

default is 7136. You can specify more than one authorization server by entering each server on a new line.

Configuring more than one authorization server provides for failover. The priority value is the order of

authorization server use. For example:

auth_server1.mycompany.com:7136:1

auth_server2.mycompany.com:7137:2

A priority of 1 is still required when configuring a single authorization server.

Administrator user name:

Enter the Tivoli Access Manager administration user ID, as created at the time of Tivoli Access Manager

configuration. This ID is usually, sec_master.

Administrator user password:

Enter the Tivoli Access Manager administration password for the user ID that is entered in the

Administrator user name field.

User registry distinguished name suffix:

Enter the distinguished name suffix for the user registry to share between Tivoli Access Manager and the

application server. For example: o=organization,c=country

Security domain:

Enter the name of the Tivoli Access Manager security domain that is used to store application server users

and groups.

 Specification of the Tivoli Access Manager domain is required because more than one security domain can

be created in Tivoli Access Manager with its own administrative user. Users, groups, and other objects are

created within a specific domain and are not permitted to access resources in another domain. If a security

domain is not established at the time of Tivoli Access Manager configuration, leave the value as Default.

 Default: Default

Administrator user distinguished name:

Enter the fully distinguished name of the security administrator ID for the application server. For example,

cn=wasadmin,o=organization,c=country

JACC provider configuration properties for Tivoli Access Manager:

The JACC provider configuration properties detailed below may require configuration.

 The Java property files are created in the profile_root/etc/tam directory.

Two properties files might require configuration:

v amwas.node_name_server_name.amjacc.properties contains properties that are used by the JACC

provider of Tivoli Access Manager.

v amwas.node_name_server_name.pdjlog.properties contains logging properties that are created from the

amwas.pdjlog.template.properties file for the specific node and server combination at the time of

configuration.

1328 Administering applications and their environment

Use amwas.node_name_server_name.amjacc.properties file to configure static role caching, dynamic role

caching, object caching, and role-based policy framework properties.

Static role caching properties:

The static role cache holds role memberships that do not expire.

 These properties are in the profile_root/etc/tam/amwas.node_name_server_name.amjacc.properties file.

The profile_root directory is the value of the profilePath parameter at profile creation time.

Enabling static role caching

com.tivoli.pd.as.cache.EnableStaticRoleCaching=true

Enables or disables static role caching. Static role caching is enabled by default.

Setting the static role cache

com.tivoli.pd.as.cache.StaticRoleCache=com.tivoli.pd.as.cache.StaticRoleCacheImpl

This property holds the implementation class of the static role cache. You do not need to change this

property, although the opportunity exists to implement your own cache, if necessary.

Define static roles

com.tivoli.pd.as.cache.StaticRoleCache.Roles=Administrator,Operator,Monitor,Deployer

Defines the administration roles for WebSphere Application Server.

Tip: Enhance Application performance by adding the static roles: CosNamingRead, CosNamingWrite,

CosNamingCreate, CosNamingDelete. These roles support for improved lookup performance within

the application naming service.

Dynamic role caching properties:

The dynamic role cache holds role memberships that expire.

 These properties are in the profile_root/etc/tam/amwas.node_name_server_name.amjacc.properties file.

The profile_root directory is the value of the profilePath parameter at profile creation time.

Enabling dynamic role caching

com.tivoli.pd.as.cache.EnableDynamicRoleCaching=true

Enables or disables dynamic role caching. Dynamic role caching is enabled by default.

Setting the dynamic role cache

com.tivoli.pd.as.cache.DynamicRoleCache=com.tivoli.pd.as.cache.DynamicRoleCacheImpl

This property holds the implementation class of the dynamic role cache. You do not need to change this

property, although the opportunity exists to implement your own cache, if necessary.

Chapter 16. Security 1329

Specifying the maximum number of users

com.tivoli.pd.as.cache.DynamicRoleCache.MaxUsers=100000

The maximum number of users that the cache supports before a cache cleanup is performed. The default

number of users is 100000.

Specifying the number of cache tables

com.tivoli.pd.as.cache.DynamicRoleCache.NumBuckets=20

The number of tables that is used internally by the dynamic role cache. The default is 20. When a large

number of threads use the cache, increase the value to tune and optimize cache performance.

Specifying the principal lifetime

com.tivoli.pd.as.cache.DynamicRoleCache.PrincipalLifeTime=10

The period of time in minutes that a principal entry is stored in the cache. The default time is 10 minutes.

The term, principal, here refers to the Tivoli Access Manager credential that is returned from a unique

Lightweight Directory Access Protocol user.

Specifying the role lifetime

com.tivoli.pd.as.cache.DynamicRoleCache.RoleLifetime=20

The period of time in seconds that a role is stored in the role list for a user before it is discarded. The

default is 20 seconds.

Object caching properties:

The object cache is used to cache all Tivoli Access Manager objects, including their extended attributes.

This bypasses the need to query the Tivoli Access Manager authorization server for each resource

request.

 These properties are in the profile_root/etc/tam/amwas.node_name_server_name.amjacc.properties file.

The profile_root directory is the value of the profilePath parameter when the profile is created.

Enabling object caching

com.tivoli.pd.as.cache.EnableObjectCaching=true

This property enables or disables object caching. The default value is true.

Setting the object cache

com.tivoli.pd.as.cache.ObjectCache=com.tivoli.pd.as.cache.ObjectCacheImpl

This property is the class used to perform object caching. You can implement your own object cache if

required. This can be done by implementing the com.tivoli.pd.as.cache.IObjectCache interface. The default

is com.tivoli.pd.as.cache.ObjectCacheImpl.

Setting the number of cache buckets

com.tivoli.pd.as.cache.ObjectCache.NumBuckets=20

1330 Administering applications and their environment

This property specifies the number of buckets used to store object cache entries in the underlying hash

table. The default is 20.

Setting the number of cache bucket entries

com.tivoli.pd.as.cache.ObjectCache.MaxResources=10000

This property specifies the total number of entries for all buckets in the cache. This figure, divided by

NumBuckets determines the maximum size of each bucket. The default is 10000.

Setting the resource lifetime

com.tivoli.pd.as.cache.ObjectCache.ResourceLifeTime=20

This property specifies the length of time in minutes that objects are kept in the object cache. The default

is 20.

These object cache properties cannot be changed after configuration. If any require changing, it should be

done before configuration of the nodes in the cell. Changes need to be made in the template properties

file before any configuration actions are performed. Properties changed after configuration might cause

access decisions to fail.

Role-based policy framework properties:

Although it is very unlikely that you will need to change these properties, use this file to reference

supported properties within the role-based policy framework.

 The role-based policy framework parameters are located in the Java Authorization Contract for Containers

(JACC) configuration file and in the authorization configuration file. These parameters are set at the time of

JACC provider configuration and authorization server configuration. The role-based policy framework

settings for the authorization table and the JACC provider can be modified separately for each WebSphere

Application Server instance. The amwas.node_server.authztable.properties configuration file is generated

from the authorization table. The configuration file is generated from the JACC provider,

amwas.node_name_server_name.amjacc.properties. Both files are stored on the WebSphere Application

Server profile_root/etc/tam directory. It is unlikely that you need to change these properties, but these

properties are described here for reference:

Supported properties include:

com.tivoli.pd.as.rbpf.AMAction=i

This property is used to signify that a user is granted access to a role. This value is added to a Tivoli

Access Manager access control list (ACL) and places invoke access on roles for users and groups.

com.tivoli.pd.as.rbpf.AMActionGroup=WebAppServer

This property sets the Tivoli Access Manager action group that serves as a container for the action

that is specified by the com.tivoli.pd.as.rbpf.AMAction property. The permission set in the

com.tivoli.pd.as.rbpf.AMAction property goes into this action group.

com.tivoli.pd.as.rbpf.PosRoot=WebAppServer

This property is used to determine where roles are stored in the protected object space.

com.tivoli.pd.as.rbpf.ProductId=deployedResources

This property specifies the location under the root location that is specified in the posroot property to

separate other products in the protected object space. Embedded Tivoli Access Manager objects are

found in the /WebAppServer/deployedResources directory. The default value is deployedResources.

com.tivoli.pd.as.rbpf.ResourceContainerName=Resources

This property specifies the Tivoli Access Manager object space container name for the protected

resources. The default location is the /WebAppServer/deployedResources/Resources directory.

Chapter 16. Security 1331

com.tivoli.pd.as.rbpf.RoleContainerName=Roles

This property specifies the Tivoli Access Manager protected object space container name for the

security roles. The default location is the /WebAppServer/deployedResources/Roles directory.

The previous settings cannot be changed after configuration. Make changes in the template properties file

before any configuration actions are performed. Properties that are changed after configuration will cause

access decisions to fail.

System-dependent configuration properties:

Do not change these system-dependent configuration properties. These properties are included in this

article for reference only.

 These properties are in the app_server_root/etcamwas.node_name_server_name.amjacc.properties file.

The profile_root variable is the value of the profilePath parameter when the profile is created.

The supported arguments include:

com.tivoli.pd.as.rbpf.AmasSession.CfgURL=file/:$WAS_HOME/profiles/profile_name/etc/tam/
amwas.node_server.pdperm.properties

This entry is generated by the Java Authorization Contract for Containers (JACC) provider

configuration. This argument specifies the location of the file that contains information about the JACC

provider of Tivoli Access Manager. Do not change this entry or the properties in the

amwas.node_server.pdperm.properties file.

com.tivoli.pd.as.rbpf.AmasSession.LoggingURL=file/:$WAS_HOME/profiles/profile_name/etc/tam/
amwas.node_server.pdjlog.properties

This entry contains the location of the logging configuration file for the JACC provider of Tivoli Access

Manager. The referenced file is generated by the JACC provider of Tivoli Access Manager

configuration. Do not change this entry.

Administering security users and roles with Tivoli Access Manager:

Use these steps to manage user-to-role mappings and user-to-group mappings for applications.

 User-to-role mapping and user-to-group mapping for the JACC provider of Tivoli Access Manager are

performed using the WebSphere Application Server administrative console.

1. Click Applications > Enterprise applications > application_name.

2. Under Additional properties, click Security role to user/group mapping. The user and groups

management screen is displayed.

3. Select the role that requires user or group management and use Lookup users or Lookup groups to

manage the users or groups for the selected role. The native role mapping uses the MapRolesToUsers

administrative task. If you are using Tivoli Access Manager, use the TAMMapRolesToUsers

administrative task instead. The syntax and options for the Tivoli version are the same as those used

in the native version. For more information, see csec_role_based_sec.dita and

tsec_use_TAM_groups.dita.

Configuring Tivoli Access Manager groups:

Use these steps to configure the WebSphere Application Server administrative console to add objects of

the accessGroup class to the list of object classes that represent user registry groups.

1332 Administering applications and their environment

csec_role_based_sec.dita
tsec_use_TAM_groups.dita

You can use the WebSphere Application Server administrative console to specify security policies for

applications that run in the WebSphere Application Server environment. You can also use the WebSphere

Application Server administrative console specify security policies for other Web resources, based on the

entities that are stored in the user registry.

Tivoli Access Manager adds the accessGroup object class to the registry. Tivoli Access Manager

administrators can use the pdadmin utility, which is available only on the policy server host in the PD.RTE

fileset, to create new groups. These new groups are added to the registry as the accessGroup object

class.

The WebSphere Application Server administrative console is not configured by default to recognize objects

of the accessGroup class as user registry groups. You can configure the WebSphere Application Server

administrative console to add this object class to the list of object classes that represent user registry

groups. To do this configuration, complete the following instructions:

1. From the WebSphere Application Server administrative console, access the advanced settings for

configuring security by clicking Security > Secure administration, applications, and infrastructure.

2. Under User account repository, click the Available realm definitions drop-down list, selectStandalone

LDAP registry, and click Configure.

3. Under Additional properties, click Advanced Lightweight Directory Access Protocol (LDAP) user

registry settings.

4. Modify the Group Filter field. Add the following entry: (objectclass=accessGroup)

The Group Filter field looks like the following example:

(&(cn=%w)(|(objectclass=groupOfNames)

(objectclass=groupOfUniqueNames)(objectclass=accessGroup)))

5. Modify the Group Member ID Map field. Add the following entry: accessGroup:member The Group

Member ID Map field looks like the following example:

groupOfNames:member;groupOfUniqueNames:uniqueMember;

accessGroup:member

6. Stop and restart WebSphere Application Server.

Configuring additional authorization servers:

Tivoli Access Manager secure domains can contain more than one authorization server. Having multiple

authorization servers is useful for providing a failover capability as well as improving performance when

the volume of access requests is large.

1. Refer to the Tivoli Access Manager Base Administration Guide for details on installing and configuring

authorization servers. This document is available in the IBM Tivoli Access Manager for e-business

information center.

2. Re-configure the Java Authorization Contract for Containers (JACC) provider using the $AdminTask

reconfigureTAM interactive wsadmin command. Enter all new and existing options.

Logging Tivoli Access Manager security:

Use this topic to enable the trace specification to indicate tracing at the required level.

 The Java Authorization Contract for Containers (JACC) for Tivoli Access Manager provider messages are

logged to the configured trace output location, and messages are written to standard out SystemOut.log

file. When trace is enabled, all logging, both trace and messaging, is sent to the trace.log file.

1. The amwas.node_server.pdjlog.properties file must be updated and the isLogging attribute set to

true for the required component. For example, to enable tracing for the JACC provider for Tivoli Access

Manager, set the following line to true:

amwas.node_server.pdjlog.properties:baseGroup.AMWASWebTraceLogger.isLogging=true

Chapter 16. Security 1333

http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/index.jsp
http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/index.jsp

2. Enable tracing for the JACC provider of Tivoli Access Manager components in the WebSphere

Application Server administrative console by completing the following steps:

a. Click Troubleshooting > Logs and Trace > server_name.

b. Under Logs and Trace tasks, click Diagnostic trace.

c. Select the Enable Log option.

d. Click Apply.

e. Click Troubleshooting > Logs and Trace > server_name.

f. Click Change Log Detail Levels.

g. Click Components. Tracing for all components can be enabled using the com.tivoli.pd.as.*

command. Tracing for separate components can be enabled using the following commands:

v com.tivoli.pd.as.rbpf.* for role-based policy framework tracing

v com.tivoli.pd.as.jacc.* for JACC provider tracing

v com.tivoli.pd.as.pdwas.* for the authorization table

v com.tivoli.pd.as.cfg.* for configuration

v com.tivoli.pd.as.cache.* for caching

For more information, see utrb_loglevel.dita.

h. Click Apply.

The trace specification now indicates that tracing is enabled at the required level. Save the configuration

and restart the server for the changes to take effect.

Tivoli Access Manager loggers:

The Java Authorization Contract for Containers (JACC) for Tivoli Access Manager provider messages are

logged to the configured trace output location, and messages are written to standard out SystemOut.log

file. When trace is enabled, all logging, both trace and messaging, is sent to the trace.log file.

The JACC provider for Tivoli Access Manager uses the JLog logging framework as does the Java runtime

environment for Tivoli Access Manager. You can enable tracing and messaging selectively for specific

JACC provider for Tivoli Access Manager components.

Tracing and message logging for the JACC provider for Tivoli Access Manager are configured in the

amwas.node_server.pdjlog.properties properties file, which is located in the profile_root/etc/tam

directory. This file contains logging properties from the amwas.pdjlog.template.properties template file for

the specific node and server combination at the time of JACC provider for Tivoli Access Manager

configuration.

The contents of this file let the user control:

v Whether tracing is enabled or disabled for the JACC provider of Tivoli Access Manager components.

v Whether message logging is enabled or disabled for the JACC provider of Tivoli Access Manager

components.

The amwas.node_server.pdjlog.properties file defines several loggers, each of which is associated with

one JACC provider of Tivoli Access Manager component. These loggers include:

 Logger Name Description

AmasRBPFTraceLogger

AmasRBPFMessageLogger

Logs messages and trace for the role-based policy framework. This

underlying framework is used by embedded Tivoli Access Manager to

make access decisions.

AmasCacheTraceLogger

AmasCacheMessageLogger

Logs messages and trace for the policy caches that are used by the

role-based policy framework.

1334 Administering applications and their environment

utrb_loglevel.dita

Logger Name Description

AMWASWebTraceLogger

AMWASWebMessageLogger

Logs messages and trace for the WebSphere Application Server

authorization plug-in.

AMWASConfigTraceLogger

AMWASConfigMessageLogger

Logs messages and trace for the configuration actions of the JACC

provider for Tivoli Access Manager .

JACCTraceLogger JACCMessageLogger Logs messages and trace for the JACC provider activity of Tivoli

Access Manager .

Note: Tracing can have a significant impact on system performance. Enable tracing only when diagnosing

the cause of a problem.

The implementation of these loggers routes messages to the WebSphere Application Server logging

sub-system. All messages are written to the WebSphere Application Server trace.log file.

For each logger, the amwas.node_server.pdjlog.properties file defines an isLogging attribute which, when

set to true, enables logging for the specific component. A value of false disables logging for that

component.

The amwas.node_server.pdjlog.properties file defines the parent loggers MessageLogger and

TraceLogger that also have an isLogging attribute. If the child loggers do not specify this isLogging

attribute, they inherit the value of their respective parent. When the JACC provider for Tivoli Access

Manager is enabled, the isLogging attribute is set to true for the MessageLogger and set tofalse for the

TraceLogger logger. Message logging is enabled for all components and tracing is disabled for all

components, by default.

To turn on tracing for a JACC provider component, see Logging Tivoli Access Manager security .

Interfaces that support JACC:

WebSphere Application Server provides the RoleConfigurationFactory and the RoleConfiguration

interfaces, which are similar to PolicyConfigurationFactory and PolicyConfiguration interfaces so the

information that is stored in the bindings file can be propagated to the provider during installation. The

implementation of these interfaces is optional.

 RoleConfiguration interface

Use the RoleConfiguration interface to propagate the authorization information to the provider. This

interface is similar to the PolicyConfiguration interface that is found in Java Authorization Contact for

Containers (JACC).

RoleConfiguration

 - com.ibm.wsspi.security.authorization.RoleConfiguration

/**

 * This interface is used to propagate the authorization table information

 * in the binding file during application installation. Implementation of this interface is

 * optional. When a JACC provider implements this interface during an application, both

 * the policy and the authorization table information are propagated to the provider.

* If this is not implemented, only the policy information is propagated as per

 * the JACC specification.

 * @ibm-spi

 * @ibm-support-class-A1

 */

public interface RoleConfiguration

Chapter 16. Security 1335

/**

 * Add the users to the role in RoleConfiguration.

 * The role is created, if it does not exist in RoleConfiguration.

 * @param role the role name.

 * @param users the list of the user names.

 * @exception RoleConfigurationException if the users cannot be added.

 */

 public void addUsersToRole(String role, List users)

 throws RoleConfigurationException

/**

 * Remove the users to the role in RoleConfiguration.

 * @param role the role name.

 * @param users the list of the user names.

 * @exception RoleConfigurationException if the users cannot be removed.

 */

 public void removeUsersFromRole(String role, List users)

 throws RoleConfigurationException

/**

 * Add the groups to the role in RoleConfiguration.

 * The role is created if it does not exist in RoleConfiguration.

 * @param role the role name.

 * @param groups the list of the group names.

 * @exception RoleConfigurationException if the groups cannot be added.

 */

 public void addGroupsToRole(String role, List groups)

 throws RoleConfigurationException

/**

 * Remove the groups to the role in RoleConfiguration.

 * @param role the role name.

 * @param groups the list of the group names.

 * @exception RoleConfigurationException if the groups cannot be removed.

 */

 public void removeGroupsFromRole(String role, List groups)

 throws RoleConfigurationException

/**

 * Add the everyone to the role in RoleConfiguration.

 * The role is created if it does not exist in RoleConfiguration.

 * @param role the role name.

 * @exception RoleConfigurationException if the everyone cannot be added.

 */

 public void addEveryoneToRole(String role)

 throws RoleConfigurationException

/**

 * Remove the everyone to the role in RoleConfiguration.

 * @param role the role name.

 * @exception RoleConfigurationException if the everyone cannot be removed.

 */

 public void removeEveryoneFromRole(String role)

 throws RoleConfigurationException

/**

 * Add the all authenticated users to the role in RoleConfiguration.

 * The role is created if it does not exist in RoleConfiguration.

 * @param role the role name.

 * @exception RoleConfigurationException if the authentication users cannot

 * be added.

 */

 public void addAuthenticatedUsersToRole(String role)

 throws RoleConfigurationException

/**

 * Remove the all authenticated users to the role in RoleConfiguration.

 * @param role the role name.

 * @exception RoleConfigurationException if the authentication users cannot

1336 Administering applications and their environment

* be removed.

 */

 public void removeAuthenticatedUsersFromRole(String role)

 throws RoleConfigurationException

/**

 * This commits the changes in Roleconfiguration.

 * @exception RoleConfigurationException if the changes cannot be

 * committed.

 */

 public void commit()

 throws RoleConfigurationException

/**

 * This deletes the RoleConfiguration from the RoleConfiguration Factory.

 * @exception RoleConfigurationException if the RoleConfiguration cannot

 * be deleted.

 */

 public void delete()

 throws RoleConfigurationException

/**

 * This returns the contextID of the RoleConfiguration.

 * @exception RoleConfigurationException if the contextID cannot be

 * obtained.

 */

 public String getContextID()

 throws RoleConfigurationException

RoleConfigurationFactory interface

The RoleConfigurationFactory interface is similar to the PolicyConfigurationFactory interface that is

introduced by JACC, and is used to obtain RoleConfiguration objects based on the contextID IDs.

RoleConfigurationFactory

 - com.ibm.wsspi.security.authorization.RoleConfigurationFactory

/**

 * This interface is used to instantiate the com.ibm.wsspi.security.authorization.RoleConfiguration

 * objects based on the context identifier similar to the policy context identifier.

 * Implementation of this interface is required only if the RoleConfiguration interface is implemented.

 *

 * @ibm-spi

 * @ibm-support-class-A1

 */

public interface RoleConfigurationFactory

/**

 * This gets a RoleConfiguration with contextID from the

 * RoleConfigurationfactory. If the RoleConfiguration does not exist

 * for the contextID in the RoleConfigurationFactory, a new

 * RoleConfiguration with contextID is created in the

 * RoleConfigurationFactory. The contextID is similar to

 * PolicyContextID, but it does not contain the module name.

 * If remove is true, the old RoleConfiguration is removed and a new

 * RoleConfiguration is created, and returns with the contextID.

 * @return the RoleConfiguration object for this contextID

 * @param contextID the context ID of RoleConfiguration

 * @param remove true or false

 * @exception RoleConfigurationException if RoleConfiguration

 * cannot be obtained.

 **/

public abstract com.ibm.ws.security.policy.RoleConfiguration

 getRoleConfiguration(String contextID, boolean remove)

 throws RoleConfigurationException

InitializeJACCProvider provider

Chapter 16. Security 1337

When implemented by the provider, this interface is called by every process where the JACC provider can

be used for authorization. All additional properties that are entered during the authorization check are

passed to the provider. For example, the provider can use this information to initialize client code to

communicate with their server or repository. The cleanup method is called during server shutdown to clean

up the configuration.

Declaration

public interface InitializeJACCProvider

Description

This interface has two methods. The JACC provider can implement the interface, and WebSphere

Application Server calls it to initialize the JACC provider. The name of the implementation class is obtained

from the value of the initializeJACCProviderClassName system property.

This class must reside in a Java archive (JAR) file on the class path of each server that uses this provider.

InitializeJACCProvider

 - com.ibm.wsspi.security.authorization.InitializeJACCProvider

 /**

 * Initializes the JACC provider

 * @return 0 for success.

 * @param props the custom properties that are included for this provider will

 * pass to the implementation class.

 * @exception Exception for any problems encountered.

 **/

 public int initialize(java.util.Properties props)

 throws Exception

 /**

 * This method is for the JACC provider cleanup and will be called during a process stop.

 **/

 public void cleanup()

Enabling the JACC provider for Tivoli Access Manager:

The Java Authorization Contract for Container (JACC) provider for Tivoli Access Manager is configured by

default. Use this topic to enable the JACC provider for Tivoli Access Manager.

 Restriction: Do not perform this task if you are configuring the JACC provider for Tivoli Access Manager

to supply authentication services only. Only perform this task for installations that require

both Tivoli Access Manager authentication and authorization protection.

The JACC provider for Tivoli Access Manager is configured by default. The following list shows the JACC

provider configuration settings for Tivoli Access Manager:

 Field Value

Name Tivoli Access Manager

Description This field is optional and used as a reference.

J2EE policy class name com.tivoli.pd.as.jacc.TAMPolicy

Policy configuration factory class name com.tivoli.pd.as.jacc.TAMPolicyConfigurationFactory

Role configuration factory class name com.tivoli.pd.as.jacc.TAMRoleConfigurationFactory

JACC provider initialization class name com.tivoli.pd.as.jacc.cfg.TAMConfigInitialize

Requires the EJB arguments policy

context handler for access decisions

false

1338 Administering applications and their environment

Field Value

Supports dynamic module updates true

To enable the JACC provider for Tivoli Access Manager, use the previous settings and complete the

following steps:

 1. Click Security > Secure administration, applications, and infrastructure > External authorization

providers.

 2. Select the External authorization using a JACC provider option, then click Apply.

 3. Under Related Items, click External JACC provider. The JACC provider settings for Tivoli Access

Manager are displayed.

 4. Verify that the correct settings are present to work with your Tivoli Access Manager configuration. For

more information, see “External Java Authorization Contract for Containers provider settings” on page

1320.

 5. Under Additional properties, click Tivoli Access Manager properties.

 6. Click the Enable embedded Tivoli Access Manager option and verify that the correct Tivoli Access

Manager server and WebSphere Application Server settings exist. For more information, see “Tivoli

Access Manager JACC provider settings” on page 1326.

 7. Click OK.

 8. Save the settings by clicking Save at the top of the page.

 9. Log out of the WebSphere Application Server administrative console.

10. Restart WebSphere Application Server. The security configuration is now replicated to managed

servers and node agents. These other servers within a cell also require restarting before the security

changes take effect.

Enabling embedded Tivoli Access Manager:

Embedded Tivoli Access Manager is not enabled by default, and you need to configure it for use.

 Enabling Tivoli Access Manager security within WebSphere Application Server requires:

v A supported Lightweight Directory Access Protocol (LDAP) installed somewhere on your network. This

user registry contains the user and group information for both Tivoli Access Manager and WebSphere

Application Server.

v Tivoli Access Manager server exists and is configured to use the user registry. For details on the

installation and configuration of Tivoli Access Manager, refer to the IBM Tivoli Access Manager for

e-business information center.

Note: WebSphere Application Server contains an embedded client for Tivoli Access Manager. To use

Tivoli Access Manager, you must also configure the Tivoli Access Manager server.

However, the server version must be the same version or later as the client version. For

information on the supported version of Tivoli Access Manager, see WebSphere Application

Server - Supported Prerequisites.

v WebSphere Application Server is installed either in a single server model or as WebSphere Application

Server Network Deployment.

v When administrative security is configured with a Federal Information Processing Standard (FIPS)

provider, the Tivoli Access Manager server must be configured for FIPS as well

Complete the following steps to enable embedded Tivoli Access Manager security:

1. Create the security administrative user.

For more information, see the Securing applications and their environment PDF.

Chapter 16. Security 1339

http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/index.jsp
http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/index.jsp
http://www-306.ibm.com/software/webservers/appserv/doc/v60/prereqs/was_v602.htm
http://www-306.ibm.com/software/webservers/appserv/doc/v60/prereqs/was_v602.htm

2. Configure the Java Authorization Contract for Containers (JACC) provider for Tivoli Access Manager .

For more information, see the Securing applications and their environment PDF.

3. Enable WebSphere Application Server security. When you are using Tivoli Access Manager you must

configure LDAP as the user registry.

For more information, see the Securing applications and their environment PDF.

4. Enable the JACC provider for Tivoli Access Manager.

For more information, see the Securing applications and their environment PDF.

Disabling embedded Tivoli Access Manager client:

To unconfigure Tivoli Access Manager Security in WebSphere Application Server, you can use either the

wsadmin command-line utility or the WebSphere Application Server administrative console.

v For details on unconfiguring the embedded Tivoli Access Manager client using the WebSphere

Application Server administrative console, refer to “Disabling embedded Tivoli Access Manager client

using the administrative console.”

v For details on unconfiguring the embedded Tivoli Access Manager client using the wsadmin command

line utility, refer to “Disabling embedded Tivoli Access Manager client using wsadmin” on page 1476.

Disabling embedded Tivoli Access Manager client using the administrative console:

To unconfigure the JACC provider for Tivoli Access Manager, you can use the WebSphere Application

Server administrative console.

1. Click Security > Secure administration, applications, and infrastructure > External authorization

providers.

2. Under Related items, click External JACC provider.

3. Under Additional properties, click Tivoli Access Manager Properties. The configuration screen for the

JACC provider for Tivoli Access Manager is displayed.

4. Clear the Enable embedded Tivoli Access Manager option. If you want to ignore errors when

unconfiguring, select the Ignore errors during embedded Tivoli Access Manager disablement

option. Select this option only when the Tivoli Access Manager domain is in an irreparable state.

5. Click OK.

6. Optional: If you want security enabled without Tivoli Access Manager re-enable administrative

securityy.

7. Restart all WebSphere Application Server instances for the changes to take effect.

Forcing the unconfiguration of the Tivoli Access Manager JACC provider:

If you find you cannot restart WebSphere Application Server after configuring the JACC provider for Tivoli

Access Manager a utility is available to clear the security configuration and return WebSphere Application

Server to an operable state.

 The utility removes all of the PDLoginModuleWrapper entries as well as the Tivoli Access Manager

authorization table from security.xml and wsjaas.conf files. This utility effectively removes the JACC

provider for Tivoli Access Manager.

1. Back up the security.xml and wsjaas.conf files.

2. Enter the following command as one continuous line.

app_server_root/java/jre/bin/java

-classpath "app_server_root /$WAS_HOME/plug-in/com.ibm.ws.runtime_1.0.0.jar"

 com.tivoli.pd.as.jacc.cfg.CleanSecXML

 fully_qualified_path/security.xml fully_qualified_path/wsjaas.conf

1340 Administering applications and their environment

Authorizing access to administrative roles

You can assign users and groups to administrative roles to identify users who can perform WebSphere

Application Server administrative functions.

Administrative roles enable you to control access to WebSphere Application Server administrative

functions. Refer to the descriptions of these roles in rsec_adminroles.dita.

Before you assign users to administrative roles, you must set up your user registry. For information on the

supported registry types, see “Selecting a registry or repository” on page 1036.

The following steps are needed to assign users to administrative roles.

In the administrative console, click Users and Groups. Click either Administrative User Roles or

Administrative Group Roles.

1. To add a user or a group, click Add on the Console users or Console groups panel.

2. To add a new administrator user, enter a user identity in the User field, highlight Administrator, and

click OK. If there is no validation error, the specified user is displayed with the assigned security role.

3. To add a new administrative group, either enter a group name in the Specify group field or select

EVERYONE or ALL AUTHENTICATED from the Special subject menu, highlight Administrator, and

click OK. If no validation error occurs, the specified group or special subject is displayed with the

assigned security role.

4. To remove a user or group assignment, click Remove on the Console Users or the Console Groups

panel. On the Console Users or the Console Groups panel, select the check box of the user or group

to remove and click OK.

5. To manage the set of users or groups to display, click Show filter function on the User Roles or

Group Roles panel. In the Search term(s) box, type a value, then click Go. For example, user*

displays only users with the user prefix.

6. After the modifications are complete, click Save to save the mappings.

7. Restart the application server for changes to take effect.

After you assign users to administrative roles, you must restart the server for the new roles to take effect.

However, the administrative resources are not protected until you enable security.

Administrative user roles settings and CORBA naming service user settings

Use the Administrative User Roles page to give users specific authority to administer application servers

through tools such as the administrative console or wsadmin scripting. The authority requirements are only

effective when global security is enabled. Use the Common Object Request Broker Architecture (CORBA)

naming service users settings page to manage CORBA naming service users settings.

To view the Console Users administrative console page, complete either of the following steps:

v Click Security > Secure administration, applications, and infrastructure > Administrative User

Roles.

v Click Users and Groups > Administrative User Roles.

To view the CORBA naming service groups administrative console page, click Environment > Naming >

CORBA Naming Service Groups.

Note: When a third-party authorization such as Tivoli Access Manager or Service Access Facility (SAF) for

z/OS is used, the information in this panel might not represent the data in the provider. Also, any

changes to this panel might not be reflected in the provider automatically. Follow the provider’s

instructions to propagate any changes made here to the provider.

User (Administrative user roles):

Chapter 16. Security 1341

rsec_adminroles.dita

Specifies users.

 The users that are entered must exist in the configured active user registry.

 Data type: String

User (CORBA naming service users):

Specifies CORBA naming service users.

 The users that are entered must exist in the configured active user registry.

 Data type: String

Role (Administrative user roles):

Specifies user roles.

 The following administrative roles provide different degrees of authority that are needed to perform certain

application server administrative functions:

Administrator

The administrator role has operator permissions, configurator permissions, and the permission that

is required to access sensitive data including server password, Lightweight Third Party

Authentication (LTPA) password and keys, and so on.

Operator

The operator role has monitor permissions and can change the run-time state. For example, the

operator can start or stop services.

Configurator

The configurator role has monitor permissions and can change the WebSphere Application Server

configuration.

Monitor

The monitor role has the least permissions. This role primarily confines the user to viewing the

application server configuration and current state.

adminsecuritymanager

The adminsecuritymanager role has privileges for managing users and groups from within the

administrative console and determines who has access to modify users and groups using

administrative role mapping. Only the adminsecuritymanager role can map users and groups to

administrative roles, and by default, AdminId is granted to the adminsecuritymanager.

iscadmins

The iscadmins role has administrator privileges for managing users and groups from within the

administrative console only.

Note: To manage users and groups, click Users and Groups in the console navigation tree. Click

either Manage Users or Manage Groups.

 Data type: String

Range: Administrator, Operator, Configurator, Monitor, and

iscadmins

Note: Other arbitrary administrative roles might also be visible in the administrative console collection

table. Other contributors to the console might create these additional roles, which can be used for

applications that are deployed to the console.

Role (CORBA naming service users):

1342 Administering applications and their environment

Specifies naming service user roles.

 A number of naming roles are defined to provide degrees of authority that are needed to perform certain

application server naming service functions. The authorization policy is only enforced when global security

is enabled. The following roles are valid: CosNamingRead, CosNamingWrite, CosNamingCreate, and

CosNamingDelete.

The roles now have authority levels from low to high:

CosNamingRead

You can query the application server name space by using, for example, the Java Naming and

Directory Interface (JNDI) lookup method. The EVERYONE special-subject is the default policy for

this role.

CosNamingWrite

You can perform write operations such as JNDI bind, rebind, or unbind, plus CosNamingRead

operations.

CosNamingCreate

You can create new objects in the name space through operations such as JNDI createSubcontext

and CosNamingWrite operations.

CosNamingDelete

You can destroy objects in the name space, for example using the JNDI destroySubcontext

method and CosNamingCreate operations.

 Data type: String

Range: CosNamingRead, CosNamingWrite, CosNamingCreate

and CosNamingDelete

Login status (Administrative user roles):

Species whether the user is active or inactive.

Administrative group roles and CORBA naming service groups

Use the Administrative Group Roles page to give groups specific authority to administer application servers

through tools such as the administrative console or wsadmin scripting. The authority requirements are only

effective when administrative security is enabled. Use the Common Object Request Broker Architecture

(CORBA) naming service groups page to manage CORBA Naming Service groups settings.

To view the Console Groups administrative console page, complete either of the following steps:

v Click Security > Secure administration, applications, and infrastructure > Administrative Group

Roles.

v Click Users and Groups > Administrative Group Roles.

To view the CORBA naming service groups administrative console page, click Environment > Naming >

CORBA Naming Service Groups.

Group (CORBA naming service groups):

Identifies CORBA naming service groups.

 In previous releases of WebSphere Application Server, there were two default groups: ALL

AUTHENTICATED and EVERYONE. However, EVERYONE is now the only default group, and it provides

CosNamingRead privileges only.

 Data type: String

Chapter 16. Security 1343

Range: EVERYONE

Role (CORBA naming service groups):

Identifies naming service group roles.

 A number of naming roles are defined to provide the degrees of authority that are needed to perform

certain application server naming service functions. The authorization policy is only enforced when global

security is enabled.

Four name space security roles are available: CosNamingRead, CosNamingWrite, CosNamingCreate, and

CosNamingDelete. The roles have authority levels from low to high:

Cos Naming Read

You can query the application server name space using, for example, the Java Naming and

Directory Interface (JNDI) lookup method. The EVERYONE special-subject is the default policy for

this role.

Cos Naming Write

You can perform write operations such as JNDI bind, rebind, or unbind, and CosNamingRead

operations. The ALL_AUTHENTICATED special-subject is the default policy for this role.

Cos Naming Create

You can create new objects in the name space through operations such as JNDI createSubcontext

and CosNamingWrite operations. The ALL_AUTHENTICATED special-subject is the default policy

for this role.

Cos Naming Delete

You can destroy objects in the name space, for example using the JNDI destroySubcontext

method and CosNamingCreate operations. The ALL_AUTHENTICATED special-subject is the

default policy for this role.

 Data type: String

Range: CosNamingRead, CosNamingWrite, CosNamingCreate,

and CosNamingDelete

Group (Administrative group roles):

Specifies groups.

 The ALL_AUTHENTICATED and the EVERYONE groups can have the following role privileges:

Administrator, Configurator, Operator, and Monitor.

 Data type: String

Range: ALL_AUTHENTICATED, EVERYONE

Role (Administrative group roles):

Specifies user roles.

 The following administrative roles provide different degrees of authority needed to perform certain

application server administrative functions:

Administrator

The administrator role has operator permissions, configurator permissions, and the permission that

is required to access sensitive data, including server password, Lightweight Third Party

Authentication (LTPA) password and keys, and so on.

1344 Administering applications and their environment

Operator

The operator role has monitor permissions and can change the run-time state. For example, the

operator can start or stop services.

Configurator

The configurator role has monitor permissions and can change the application server

configuration.

Monitor

The monitor role has the least permissions. This role primarily confines the user to viewing the

application server configuration and current state.

iscadmins

The iscadmins role has administrator privileges for managing users and groups from within the

administrative console only.

Note: To manage users and groups, click Users and Groups in the console navigation tree. Click

either Manage Users or Manage Groups.

 Data type: String

Range: Administrator, Operator, Configurator, Monitor, and

iscadmins

Note: Other arbitrary administrative roles might also be visible in the administrative console collection

table. Other contributors to the console might create these additional roles, which can be used for

applications that are deployed to the console.

Assigning users to naming roles

Use this task to assign users to naming roles by using the administrative console.

The following steps are needed to assign users to naming roles. In the administrative console, click

Environment > Naming, and click CORBA Naming Service Users or CORBA Naming Service Groups.

1. Click Add on the CORBA Naming Service Users or the CORBA Naming Service Groups panel.

2. To add a new naming service user, enter a user identity in the User field, highlight one or more naming

roles, and click OK. If no validation errors occur, the specified user is displayed with the assigned

security role.

3. To add a new naming service group, either select Specify group and enter a group name or select

Select from special subject and then select EVERYONE. Click OK. If no validation errors occur, the

specified group or special subject is displayed with the assigned security role.

4. To remove a user or group assignment, go to the CORBA Naming Service Users or CORBA Naming

Service Groups panel. Select the check box next to the user or group that you want to remove and

click Remove.

5. To manage the set of users or groups to display, expand the Filter folder on the right panel, and

modify the filter text box. For example, setting the filter to user* displays only users with the user

prefix.

6. After modifications are complete, click Save to save the mappings. Restart the server for the changes

to take effect.

The default naming security policy is to grant all users read access to the CosNaming space and to grant

any valid user the privilege to modify the contents of the CosNaming space. You can perform the

previously mentioned steps to restrict user access to the CosNaming space. However, use caution when

changing the naming security policy. Unless a Java 2 Platform, Enterprise Edition (J2EE) application has

clearly specified its naming space access requirements, changing the default policy can result in

unexpected org.omg.CORBA.NO_PERMISSION exceptions at runtime.

Propagating administrative role changes to Tivoli Access Manager

These steps provide an example of how to migrate the admin-authz.xml file.

Chapter 16. Security 1345

Additions and changes to console users and groups are not automatically added to the Tivoli Access

Manager object space after the Java Authorization Contract for Containers (JACC) provider for Tivoli

Access Manager is configured. Changes to console users and groups are saved in the admin-authz.xml

file and this file must be migrated before any changes take effect. The JACC provider for Tivoli Access

Manager includes the migrateEAR migration utility for incorporating console user and group changes into

the Tivoli Access Manager object space.

Note: The migrateEAR utility is used to migrate the changes made to console users and groups after the

JACC provider for Tivoli Access Manager is configured. The utility does not need to run for changes

and additions to console user and groups made prior to the configuration of the JACC provider for

Tivoli Access Manager because the changes made to the admin-authz.xml and naming-authz.xml

files are automatically migrated at configuration time. Furthermore, the migration tool does not need

to run before deploying standard Java 2 Platform, Enterprise Edition (J2EE) applications; J2EE

application policy deployment is also performed automatically.

For example, if you wanted to migrate the admin-authz.xml file, perform the following steps:

1. Set up the environment.

Before running the migrateEAR utility, set up the environment by running the setupCmdLine.bat or

setupCmdLine.sh file that is located in the app_server_root/bin directory.

Make sure that the WAS_HOME environment variable is set to the WebSphere Application Server

installation directory.

2. Change to the app_server_root/bin directory where the migrateEAR utility is located.

3. Run the migrateEAR utility to migrate the data contained in the admin-authz.xml file. Use the

parameter descriptions that are listed in “The migrateEAR utility for Tivoli Access Manager.”

For example:

migrateEAR

-j “app_server_root/profiles/profile_name/config/cells/cell_name/xml_filename”

-a sec_master

-p password

-w wsadmin

-d o=ibm,c=us

-c file:/”app_server_root/java/jre/PdPerm.properties”

where xml_filename might be admin-authz.xml or naming-authz.xml.

A status message is displayed when the migration completes. Output of the utility is logged to the

pdwas_migrate.log file, which is created in the directory where the utility is run. Check the log file after

each migration. If the log file displays errors, check the last recorded transaction, correct the source of

the error, and rerun the migration utility. If the migration is unsuccessful, verify that you supplied the

correct values for the -c and -j options.

4. WebSphere Application Server does not require a restart for the changes to take effect.

The migrateEAR utility for Tivoli Access Manager

The migrateEAR utility migrates changes made to console users and groups in the admin-authz.xml and

naming-authz.xml files into the Tivoli Access Manager object space.

Syntax

migrateEAR

-j fully_qualified_filename

-c pdPerm.properties_file_location

-a Tivoli_Access_Manager_administrator_ID

-p Tivoli_Access_Manager_administrator_password

-w WebSphere_Application_Server_administrator_user_name

-d user_registry_domain_suffix

[-r root_objectspace_name]

[-t ssl_timeout]

1346 Administering applications and their environment

Parameters

-aTivoli_Access_Manager_administrator_ID

The administrative user identifier. The administrative user must have the privileges required to create

users, objects, and access control lists (ACLs). For example, -a sec_master.

 This parameter is optional. When the parameter is not specified, you are prompted to supply it at run

time.

-c PdPerm.properties_file_location

The Uniform Resource Indicator (URI) location of the PdPerm.properties file that is configured by the

pdwascfg utility. When WebSphere Application Server is installed in the default location, the URI is:

Solaris

Linux

HP�UX

file:/opt/IBM/WebSphere/AppServer/java/jre/PdPerm.properties

AIX

file:/usr/IBM/WebSphere/AppServer/java/jre/PdPerm.properties

Windows

file:/"C:/Program Files/IBM/WebSphere/AppServer/java/jre/PdPerm.properties”

-d user_registry_domain_suffix

The domain suffix for the user registry to use. For example, for Lightweight Directory Access Protocol

(LDAP) user registries, this value is the domain suffix, such as: ″o=ibm,c=us″

Windows

Windows platforms require that the domain suffix is enclosed within quotes.

 You can use the pdadmin user show command to display the distinguished name (DN) for a user.

-j fully_qualified_pathname

The fully qualified path and file name of the Java 2 Platform, Enterprise Edition application archive file

,admin-authz.xml or the roles definitions file naming-authz.xml that is used for a naming operation

authorization. Optionally, this path can also be a directory of an expanded enterprise application. For

example, when WebSphere Application Server is installed in the default location, the path to the data

files to migrate includes:

Solaris

Linux

HP�UX

file:/opt/IBM/WebSphere/AppServer/profiles/profile_name/config/cells

/cell_name/admin-authz.xml

AIX

file:/usr/IBM/WebSphere/AppServer/profiles/profile_name/config/cells

/cell_name/admin-authz.xml

Windows

“C:/Program Files/IBM/WebSphere/AppServer/profiles/profile_name/config/cells

/cell_name/admin-authz.xml”

-p Tivoli_Access_Manager_administrator_password

The password for the Tivoli Access Manager administrative user. The administrative user must have

the privileges that are required to create users, objects, and access control lists (ACLs). For example,

you can specify the password for the -a sec_master administrative user as -p myPassword.

 When this parameter is not specified, the user is prompted to supply the password for the

administrative user name.

Chapter 16. Security 1347

-r root_objectspace_name

The space name of the root object. The value is the name of the root of the protected object

namespace hierarchy that is created for WebSphere Application Server policy data.

 The default value for the root object space is WebAppServer.

 Set the Tivoli Access Manager root object space name by modifying the

amwas.amjacc.template.properties file prior to configuring the Java Authorization Contract for

Containers (JACC) provider for Tivoli Access Manager for the first time. Use this option if the default

object space value is not used in the configuration of the Tivoli Access Manager JACC provider for

Tivoli Access Manager.

 Do not change the Tivoli Access Manager object space name after the Tivoli Access Manager JACC

provider is configured.

-t ssl_timeout

The number of minutes for the Secure Sockets Layer (SSL) timeout. This parameter is used to

disconnect and reconnect the SSL context between the Tivoli Access Manager authorization server

and the policy server before the default connection times out.

 The default is 60 minutes. The minimum value is 10 minutes. The maximum value cannot exceed the

Tivoli Access Manager ssl-v3-timeout value. The default value for ssl-v3-timeout is 120 minutes.

 If you are not familiar with the administration of this value, you can safely use the default value.

-w WebSphere_Application_Server_administrator_user_name

The user name that is configured in the WebSphere Application Server security user registry field as

the administrator. This value matches the account that you created or imported in “Creating the

security administrative user” on page 1325. Access permission for this user is needed to create or

update the Tivoli Access Manager protected object space.

 When the WebSphere Application Server administrative user does not already exist in the protected

object space, it is created or imported. In this case, a random password is generated for the user and

the account is set to not valid. Change this password to a known value and set the account to valid.

 A protected object and access control list (ACL) are created. The administrative user is added to the

pdwas-admin group with the following ACL attributes:

T Traverse permission

i Invoke permission

WebAppServer

You can overwrite the action group name. The default name is WebAppServer. This action

group name and the matching root object space can be overwritten when the migration utility

is run with the -r option.

Comments

This utility migrates security policy information from deployment descriptors or enterprise archive files to

Tivoli Access Manager for WebSphere Application Server. The script calls com.tivoli.pdwas.migrate.Migrate

the Java class.

Before invoking the script you must run the setupCmdLine.bat or the setupCmdLine.sh commands.

These files can be found in the %WAS_HOME%/bin directory.

The script is dependent on finding the correct environment variables for the location of prerequisite

software. The script calls Java code with the following options:

-Dpdwas.lang.home

The directory that contains the native language support libraries that are provided with the JACC

1348 Administering applications and their environment

provider for Tivoli Access Manager. These libraries are located in a subdirectory under the JACC

provider for Tivoli Access Manager installation directory. For example: -Dpdwas.lang.home=
%PDWAS_HOME%\java\nls

-cp %CLASSPATH% com.tivoli.pdwas.migrate.Migrate

The CLASSPATH variable must be set correctly for your Java installation.

Windows

Both the -j option and the -c option can reference the %WAS_HOME% variable to determine

where WebSphere Application Server is installed. This information is used to:

v Build the full path name of the enterprise archive file.

v Build the full URI path name to the location of the PdPerm.properties file.

To enable a new user access to the administrative group in WebSphere Application Server, it is

recommended that the user be added to the pdwas-admin group after JACC has been enabled. You can

enter the administrative primary ID (adminID) in the group. This is required when the serverID is not the

same as the adminID.

The following is an example of this command:

pdadmin> group modify pdwas-admin add adminID

Return codes

The utility can return the following exit status codes:

0 The command completed successfully.

1 The command failed.

Securing communications

WebSphere Application Server provides several methods to secure communication between a server and

a client.

The following topics are covered in this section:

v Secure communications using Secure Sockets Layer

v Creating an SSL configuration

v Creating a keystore configuration

v Creating a self-signed certificate

v Creating a certificate authority request

v Extracting a signer certificate from a personal certificate

v Retrieving signers from a remote SSL port

v Adding a signer certificate to a keystore

v Exchanging signer certificates in a keystore

v Configuring certificate expiration monitoring

v Key management for cryptographic uses

v Creating a key set configuration

v Creating a key set group configuration

Secure communications using Secure Sockets Layer

The Secure Sockets Layer (SSL) protocol provides transport layer security including authenticity, data

signing, and data encryption to ensure a secure connection between a client and server that uses

Chapter 16. Security 1349

WebSphere Application Server. The foundation technology for SSL is public key cryptography, which

guarantees that when an entity encrypts data using its private key, only entities with the corresponding

public key can decrypt that data.

WebSphere Application Server uses Java Secure Sockets Extension (JSSE) as the SSL implementation

for secure connections. JSSE is part of the Java 2 Standard Edition (J2SE) specification and is included in

the IBM implementation of the Java Runtime Extension (JRE). JSSE handles the handshake negotiation

and protection capabilities that are provided by SSL to ensure secure connectivity exists across most

protocols. JSSE relies on X.509 certificate-based asymmetric key pairs for secure connection protection

and some data encryption. Key pairs effectively encrypt session-based secret keys that encrypt larger

blocks of data. The SSL implementation manages the X.509 certificates.

Managing X.509 certificates

Secure communications for WebSphere Application Server require digitally-signed X.509 certificates. The

contents of an X.509 certificate, such as its distinguished name and expiration, are either signed by a

certificate authority (CA) or are self-signed. When a trusted CA signs an X.509 certificate, WebSphere

Application Server identifies the certificate and freely distributes it. A certificate must be signed by a CA

because the certificate represents the identity of an entity to the general public. Server-side ports that

accept connections from the general public must use CA-signed certificates. Most clients or browsers

already have the signer certificate that can validate the X.509 certificate so signer exchange is not

necessary for a successful connection.

You can trust the identity of a self-signed X.509 certificate only when a peer in a controlled environment,

such as internal network communications, accepts the signer certificate. To complete a trusted handshake,

you must first send a copy of the entity certificate to every peer that connects to the entity. Self-signed

certificates are less expensive than CA-signed certificates because they do not require signer exchange

for a secure connection.

CA and self-signed X.509 certificates reside in Java keystores. JSSE provides a reference to the keystore

in which a certificate resides. You can select from many types of keystores, including Java Cryptographic

Extension (JCE)-based and hardware-based keystores. Typically, each JSSE configuration has two Java

keystore references: a keystore and a truststore. The keystore reference represents a Java keystore object

that holds personal certificates. The truststore reference represents a Java keystore object that holds

signer certificates.

A personal certificate without a private key is an X.509 certificate that represents the entity that owns it

during a handshake. Personal certificates contain both public and private keys. A signer certificate is an

X.509 certificate that represents a peer entity or itself. Signer certificates contain just the public key and

verify the signature of the identity that is received during a peer-to-peer handshake.

For more information, see “Extracting a signer certificate from a personal certificate” on page 1441

For more information about keystores, see csec_sslkeystoreconfs.dita.

Signer exchange

When you configure an SSL connection, you can exchange signers to establish trust in a personal

certificate for a specific entity. Signer exchange enables you to extract the X.509 certificate from the peer

keystore and add it into the truststore of another entity so that the two peer entities can connect. The

signer certificate also can originate from a CA as a root signer certificate or an intermediate signer

certificate. You can also extract a signer certificate directly from a self-signed certificate, which is the X.509

certificate with the public key.

Figure 1 illustrates a hypothetical keystore and truststore configuration. An SSL configuration determines

which entities can connect to other entities, and the peer connections that are trusted by an SSL

1350 Administering applications and their environment

csec_sslkeystoreconfs.dita

handshake. If you do not have the necessary signer certificate, the handshake fails because the peer

cannot be trusted.

Entity-B Signer

C 1

C 2

Entity- Signer

Entity- Signer

trust store

Entity-A Cert

keystore

C 1Entity- Signer

trust store

Entity-B Cert

keystore

Entity- SignerA

trust store

Entity-C Cert 1

Entity-C Cert 2

keystore

Entity-A Entity-B Entity-C

Signer Exchange Example

In this example, the truststore for Entity A contains three signers. Entity A can connect to any peer as long

as one of the three signers validates its personal certificate. For example, Entity A can connect to Entity B

or Entity C because the signers can trust both signed personal certificates. The truststore for Entity-B

contains one signer. Entity B is able to connect to Entity C only, and only when the peer endpoint is using

certificate Entity-C Cert 1 as its identity. The ports that use the other personal certificate for Entity C are

not trusted by Entity B. Entity C can connect to Entity A only.

In the example, the self-signed configuration seems to represent a one-to-one relationship between the

signer and the certificate. However, when a CA signs a certificate, it typically signs many at a time. The

advantage of using a single CA signer is that it can validate personal certificates that are generated by the

CA for use by peers. However, if the signer is a public CA, you must be aware that the signed certificates

might have been generated for another company other than your target entity. For your internal

communications, private CAs and self-signed certificates are preferable to public CAs because they enable

you to isolate the connections that you want to occur and prevent those that you do not want to occur.

SSL configurations

An SSL configuration comprises a set of configuration attributes that you can associate with an endpoint or

set of endpoints in the WebSphere Application Server topology. The SSL configuration enables you to

create an SSLContext object, which is the fundamental JSSE object that the server uses to obtain SSL

socket factories. You can manage the following configuration attributes:

v An alias for the SSLContext object

v A handshake protocol version

v A keystore reference

v A truststore reference

v A key manager

v One or more trust managers

Figure 14. Signer exchange

Chapter 16. Security 1351

v A security level selection of a cipher suite grouping or a specific cipher suite list

v A certificate alias choice for client and server connections

To understand the specifics of each SSL configuration attribute, see “Secure Sockets Layer configurations”

on page 1355.

Selecting SSL configurations

In previous releases of WebSphere Application Server, you can reference an SSL configuration only by

selecting the SSL configuration alias directly. Each secure endpoint was denoted by an alias attribute that

references a valid SSL configuration within a repertoire of SSL configurations. When you made a single

configuration change, you had to re-configure many alias references across the various processes.

Although the current release still supports direct selection, this approach is no longer recommended.

The current release provides improved capabilities for managing SSL configurations and more flexibility

when you select SSL configurations. In this release, you can select from the following approaches:

Programmatic selection

You can set an SSL configuration on the running thread prior to an outbound connection.

WebSphere Application Server ensures that most system protocols, including Internet Inter-ORB

Protocol (IIOP), Java Message Service (JMS), Hyper Text Transfer Protocol (HTTP), and

Lightweight Directory Access Protocol (LDAP), accept the configuration. See “Example:

Programmatically specifying an outbound SSL configuration using JSSEHelper API” on page 1405

Dynamic selection

You can associate an SSL configuration dynamically with a specific target host, port, or outbound

protocol by using a predefined selection criteria. When it establishes the connection, WebSphere

Application Server checks to see if the target host and port match a predefined criteria that

includes the domain portion of the host. Additionally, you can predefine the protocol for a specific

outbound SSL configuration and certificate alias selection. See “Dynamic outbound selection of

Secure Sockets Layer configurations” on page 1364 for more information.

Direct selection

You can select an SSL configuration by using a specific alias, as in past releases. This method of

selection is maintained for backwards compatibility because many applications and processes rely

on alias references.

Scope selection

You can associate an SSL configuration and its certificate alias, which is located in the keystore

associated with that SSL configuration, with a WebSphere Application Server management scope.

This approach is recommended to manage SSL configurations centrally. You can manage

endpoints more efficiently because they are located in one topology view of the cell. The

inheritance relationship between scopes reduces the number of SSL configuration assignments

that you must set.

 Each time you associate an SSL configuration with a cell scope, the node scope within the cell

automatically inherits the configuration properties. However, when you assign an SSL configuration

to a node, the node configuration overrides the configuration that the node inherits from the cell.

Similarly, all of the application servers for a node automatically inherit the SSL configuration for

that node unless you override these assignments. Unless you override a specific configuration, the

topology relies on the rules of inheritance from the cell level down to the endpoint level for each

application server.

 The topology view displays an inbound tree and outbound tree. You can make different SSL

configuration selections for each side of the SSL connection based on what that server connects

to as an outbound connection and what the server connects to as an inbound connection. See

“Central management of Secure Sockets Layer configurations” on page 1365 for more information.

1352 Administering applications and their environment

The runtime uses an order of precedence for determining which SSL configuration to choose because you

have many ways to select SSL configurations. Consider the following order of precedence when you select

a configuration approach:

1. Programmatic selection. If an application sets an SSL configuration on the running thread using the

com.ibm.websphere.ssl.JSSEHelper application programming interface (API), the SSL configuration is

guaranteed the highest precedence.

2. Dynamic selection criteria for outbound host and port or protocol.

3. Direct selection.

4. Scope selection. Scope inheritance guarantees that the endpoint that you select is associated with an

SSL configuration and is inherited by every scope beneath it that does not override this selection.

Default self-signed certificate configuration

By default, WebSphere Application Server creates a unique self-signed certificate for each node.

WebSphere Application Server no longer relies on the default or dummy certificate that is shipped with the

product. The key.p12 default keystore and the trust.p12 truststore are stored in the configuration repository

within the node directory.

When you federate a base application server, the following situations occur: the keystore and truststore

are included, and the signer certificate is added to the deployment manager common truststore, which is

located in the cell directory of the configuration repository.

All of the nodes put their signer certificates in this common truststore (trust.p12). Additionally, after you

federate a node, the default SSL configuration is automatically modified to point to the common truststore,

which is located in the cell directory. The node can now communicate with all other servers in the cell.

All default SSL configurations contain a keystore with the name suffix DefaultKeyStore and a truststore

with the name suffix DefaultTrustStore. These default suffixes instruct the WebSphere Application Server

runtime to add the signer of the personal certificate to the common truststore. If a keystore name does not

end with DefaultKeyStore, the keystore signer certificates are not added to the common truststore when

you federate the server. You can change the default SSL configuration, but you must ensure that the

correct trust is established for administrative connections, among others.

For more information, see “Default self-signed certificate configuration” on page 1370 and “Web server

plug-in default configuration” on page 1378.

Certificate expiration monitoring

Certificate monitoring ensures that the self-signed certificate for each node is not allowed to expire. The

certificate expiration monitoring function issues a warning before certificates and signers are set to expire.

Those certificates and signers that are located in keystores managed by the WebSphere Application

Server configuration can be monitored. You can configure the expiration monitor to automatically replace a

self-signed certificate with a new self-signed certificate that is based upon the same data that is used for

the initial creation. The monitor also can automatically replace old signers with the signers from the new

self-signed certificates in keystores that are managed by WebSphere Application Server. The existing

signer exchanges that occurred by the runtime during federation and by administration are preserved. For

more information, see “Certificate expiration monitoring” on page 1377.

WebSphere Application Server clients: signer-exchange requirements

A new self-signed certificate is generated for each node during its initial startup. To ensure trust, clients

must be given these generated signers to establish a connection. Several enhancements in the current

release make this process simpler. You can gain access to the signer certificates of various nodes to

which the client must connect with any one of the following options (for more information, see “Secure

installation for client signer retrieval” on page 1373):

Chapter 16. Security 1353

v A signer exchange prompt enables you to import signer certificates that are not yet present in the

truststores during a connection to a server. By default, this prompt is enabled for administrative

connections and can be enabled for any client SSL configuration. When this prompt is enabled, any

connection that is made to a server where the signer is not already present offers the signer of the

server along with the certificate information and a Secure Hash Algorithm (SHA) digest of the certificate

for verification. The user is given a choice whether to accept these credentials. If the credentials are

accepted, the signer is added to the truststore of the client until the signer is explicitly removed. The

signer exchange prompt does not occur again when connecting to the same server unless the personal

certificate changes.

 Attention: It is unsafe to trust a signer exchange prompt without verifying the SHA digest. An

unverified prompt can originate from a browser when a certificate is not trusted.

v You can run a retrieveSigners administrative script from a client prior to making connections to servers.

To download signers, no administrative authority is required. To upload signers, you must have

Administrator role authority. The script downloads all of the signers from a specified server truststore

into the specified client truststore and can be called to download only a specific alias from a truststore.

You can also call the script to upload signers to server truststores. When you select the

CellDefaultTrustStore truststore as the specified server truststore and common truststore for a cell, all of

the signers for that cell are downloaded to the specified client truststore, which is typically

ClientDefaultTrustStore. For more information, see rxml_retrievesigners.dita.

v You can physically distribute to clients the trust.p12 common truststore that is located in the cell

directory of the configuration repository. When doing this distribution, however, you must ensure that the

correct password has been specified in the ssl.client.props client SSL configuration file. The default

password for this truststore is WebAS. Change the default password prior to distribution. Physical

distribution is not as effective as the previous options. When changes are made to the personal

certificates on the server, automated exchange can fail.

Dynamic SSL configuration changes

The SSL runtime for WebSphere Application Server maintains listeners for most SSL connections. A

change to the SSL configuration causes the inbound connection listeners to create a new SSLContext

object. Existing connections continue to use the current SSLContext object. Outbound connections

automatically use the new configuration properties when they are attempted.

Make dynamic changes to the SSL configuration during off-peak hours to reduce the possibility of

timing-related problems and to prevent the possibility of the server starting again. If you enable the runtime

to accept dynamic changes, then change the SSL configuration and save the security.xml file. Your

changes take effect when the new security.xml file reaches each node.

Note: If configuration changes cause SSL handshake failures, administrative connectivity failures also can

occur, which can lead to outages. In this case, you must re-configure the SSL connections then

perform manual node synchronization to correct the problem. You must carefully complete any

dynamic changes. It is highly recommended that you perform changes to SSL configurations on a

test environment prior to making the same changes to a production system. For more information,

see “Dynamic configuration updates” on page 1379.

Built-in certificate management

Certificate management that is comparable to iKeyMan functionality is now integrated into the keystore

management panels of the administrative console. Use built-in certificate management to manage personal

certificates, certificate requests, and signer certificates that are located in keystores. Additionally, you can

remotely manage keystores. For example, you can manage a file-based keystore that is located outside

the configuration repository on any node from the deployment manager. You also can remotely manage

hardware cryptographic keystores from the deployment manager.

1354 Administering applications and their environment

rxml_retrievesigners.dita

With built-in certificate management, you can replace a self-signed certificate along with all of the signer

certificates scattered across many truststores and retrieve a signer from a remote port by connecting to

the remote SSL host and port and intercepting the signer during the handshake. The certificate is first

validated according to the certificate SHA digest, then the administrator must accept the validated

certificate before it can be placed into a truststore.

When you make a certificate request, you can send it to a certificate authority (CA). When the certificate is

returned, you can accept it within the administrative console. For more information, see “Certificate

management” on page 1382.

Tip: Although iKeyMan functionality still ships with WebSphere Application Server, configure keystores

from the administrative console using the built-in certificate management functionality. iKeyMan is still

an option when it is not convenient to use the administrative console. For more information, see

csec_sslikeymancertman.dita.

AdminTask configuration management

The SSL configuration management panels in the administrative console rely primarily on administrative

tasks, which are maintained and enhanced to support the administrative console function. You can use

wsadmin commands from a Java console prompt to automate the management of keystores, SSL

configurations, certificates, and so on.

Secure Sockets Layer configurations

Secure Sockets Layer (SSL) configurations contain attributes that enable you to control the behavior of

both client and server SSL endpoints. You can identify SSL configurations by their user-assigned names or

aliases, and assign them to specific management scopes. The scope that an SSL configuration inherits

depends upon whether you create it using a cell, node, server, or endpoint link in the configuration

topology.

When you create an SSL configuration, you can set the following SSL connection attributes:

v Keystore

v Default client certificate for outbound connections

v Default server certificate for inbound connections

v Truststore

v Key manager for selecting a certificate

v Trust manager or managers for establishing trust during the handshake

v Handshaking protocol

v Ciphers for negotiating the handshake

v Client authentication support and requirements

You can manage an SSL configuration using any of the following methods:

v Central management selection

v Direct reference selection

v Dynamic outbound connection selection

v Programmatic selection

You can view an SSL configuration in the topology at the point where it was created and at all of the

scopes below that point. If you want the entire cell to view an SSL configuration, you must create the

configuration at the cell level in the topology. Using the administrative console, you can manage all of the

SSL configurations for WebSphere Application Server. From the administrative console, click Security >

SSL certificates and key management > Manage endpoint security configurations > Inbound |

Outbound > SSL_configuration. Using the ssl.client.props properties file, you can manage client SSL

Chapter 16. Security 1355

csec_sslikeymancertman.dita

configurations. The ssl.client.props file is located in the ${USER_INSTALL_ROOT}/properties directory

for each profile. For more information about configuring this file, see the “ssl.client.props client

configuration file” on page 1415.

SSL configuration in the security.xml file

In the security.xml file, you can define specific attributes to configure an SSL configuration repertoire

entry at a specific management scope. The scope determines the point at which other levels in the cell

topology can see the configuration, as shown in the following example:

<repertoire xmi:id="SSLConfig_1" alias="NodeDefaultSSLSettings"

managementScope="ManagementScope_1" type="JSSE">

<setting xmi:id="SecureSocketLayer_1" clientAuthentication="false"

clientAuthenticationSupported="false" securityLevel="HIGH" enabledCiphers=""

jsseProvider="IBMJSSE2" sslProtocol="SSL_TLS" keyStore="KeyStore_1"

trustStore="KeyStore_2" trustManager="TrustManager_1" keyManager="KeyManager_1"

clientKeyAlias="default" serverKeyAlias="default"/>

</repertoire>

The SSL configuration attributes that display in the previous code are described in Table 1.

 Table 22. security.xml Attributes

security.xml attribute Description Default Associated SSL property

xmi:id The xml:id attribute represents

the unique identifier for this XML

entry and determines how the

SSL configuration is linked to

other XML objects, such as

SSLConfigGroup. This

system-defined value must be

unique.

The administrative

configuration service

defines the default

value.

None. This value is used only for XML

associations.

alias The alias attribute defines the

name of the SSL configuration.

Direct selection uses the alias

attribute and the node is not

prefixed to the alias. Rather, the

management scope takes care

of ensuring that the name is

unique within the scope.

The default is

NodeDefaultSSLSettings.

com.ibm.ssl.alias

managementScope The managementScope attribute

defines the management scope

for the SSL configuration and

determines the visibility of the

SSL configuration at runtime.

The default scope is

the node.

The managementScope attribute is not

mapped to an SSL property. However, it

confirms whether or not the SSL configuration

is associated with a process.

type The type attribute defines the

Java Secure Socket Extension

(JSSE) or System Secure

Sockets Layer (SSSL)

configuration option. JSSE is the

SSL configuration type for most

secure communications within

WebSphere Application Server.

The default is JSSE. com.ibm.ssl.sslType

clientAuthentication The clientAuthentication attribute

determines whether SSL client

authentication is required.

The default is false. com.ibm.ssl.clientAuthentication

1356 Administering applications and their environment

Table 22. security.xml Attributes (continued)

security.xml attribute Description Default Associated SSL property

clientAuthenticationSupported The

clientAuthenticationSupported

attribute determines whether

SSL client authentication is

supported. The client does not

have to supply a client

certificate if it does not have a

client certificate.

Attention:

When you set the

clientAuthentication attribute to

true, you override the value that

is set for the

clientAuthenticationSupported

attribute.

The default is false. com.ibm.ssl.client.AuthenticationSupported

securityLevel The securityLevel attribute

determines the cipher suite

group. Valid values include

HIGH (128-bit ciphers),

MEDIUM (40-bit ciphers), LOW

(for all ciphers without

encryption), and CUSTOM (if

the cipher suite group is

customized. When you set the

enabledCiphers attribute with a

specific list of ciphers, the

system ignores this attribute.

The default is HIGH. com.ibm.ssl.securityLevel

enabledCiphers You can set the enabledCiphers

attribute to specify a unique list

of cipher suites. Separate each

cipher suite in the list with a

space.

The default is the

securityLevel

attribute for cipher

suite selection.

com.ibm.ssl.enabledCipherSuites

jsseProvider The jsseProvider attribute

defines a specific JSSE

provider.

The default is

IBMJSSE2.

com.ibm.ssl.contextProvider

sslProtocol The sslProtocol attribute defines

the SSL handshake protocol.

Valid options include: SSLv2

(client-side only), SSLv3, SSL,

SSL_TLS, TLSv1, and TLS

values. The SSL option includes

SSLv2 and SSLv3 values. The

TLS option includes the TLSv1

value. SSL_TLS, which is the

most interoperable protocol,

includes all these values and

defaults to a Transport Layer

Security (TLS) handshake.

The default is

SSL_TLS.

com.ibm.ssl.protocol

keyStore The keyStore attribute defines

the keystore and attributes of

the keyStore instance that the

SSL configuration uses for key

selection.

The default is

NodeDefaultKeyStore.

For more information, see Keystore

configurations.

trustStore The trustStore attribute defines

the key store that the SSL

configuration uses for certificate

signing verification.

The default is

NodeDefaultTrustStore.

A trustStore is a logical JSSE term. It

signifies a key store that contains signer

certificates. Signer certificates validate

certificates that are sent to WebSphere

Application Server during an SSL handshake.

Chapter 16. Security 1357

csec_sslkeystoreconfs.dita
csec_sslkeystoreconfs.dita

Table 22. security.xml Attributes (continued)

security.xml attribute Description Default Associated SSL property

keyManager The keyManager attribute

defines the key manager that

WebSphere Application Server

uses to select keys from a key

store. A JSSE key manager

controls the

javax.net.ssl.X509KeyManager

interface. A custom key

manager controls the

javax.net.ssl.X509KeyManager

and the

com.ibm.wsspi.ssl.KeyManagerExtendedInfo

interfaces. The

com.ibm.wsspi.ssl.KeyManagerExtendedInfo

interface provides more

information from WebSphere

Application Server.

The default is

IbmX509.

com.ibm.ssl.keyManager defines a

well-known key manager and accepts the

algorithm and algorithm|provider formats, for

example IbmX509 and IbmX509|IBMJSSE2.

com.ibm.ssl.customKeyManager defines a

custom key manager and takes precedence

over the other keyManager properties. This

class must implement

javax.net.ssl.X509KeyManager and can

implement

com.ibm.wsspi.ssl.KeyManagerExtendedInfo.

For more information, see

csec_sslx509certIDkeyman.dita

trustManager The trustManager determines

which trust manager or list of

trust managers to use for

determining whether to trust the

peer side of the connection. A

JSSE trust manager implements

the

javax.net.ssl.X509TrustManager

interface. A custom trust

manager might also implement

com.ibm.wsspi.ssl.TrustManagerExtendedInfo

interface to get more information

from the WebSphere Application

Server environment.

The default is

IbmX509. You can

specify the IbmPKIX

trust manager for

certificate revocation

list (CRL) verification

when the certificate

contains a CRL

distribution point.

com.ibm.ssl.trustManager defines a

well-known trust manager, which is required

for most handshake situations.

com.ibm.ssl.trustManager performs certificate

expiration checking and signature validation.

You can define

com.ibm.ssl.customTrustManagers with

additional custom trust managers that are

called during an SSL handshake. Separate

additional trust managers with the vertical bar

(|) character. For more information, see

csec_sslx509certtrustdecisions.dita

Trust manager control of X.509 certificate trust decisions:

The role of the trust manager is to validate the Secure Sockets Layer (SSL) certificate that is sent by the

peer, which includes verifying the signature and checking the expiration date of the certificate. A Java

Secure Socket Extension (JSSE) trust manager determines if the remote peer can be trusted during an

SSL handshake.

 WebSphere Application Server has the ability to call multiple trust managers during an SSL connection.

The default trust manager does the standard certificate validation; custom trust manager plug-ins run

customized validation such as host name verification. For more information, see “Example: Developing a

custom trust manager for custom SSL trust decisions” on page 1396

When a trust manager is configured in a server-side SSL configuration, the server calls the isClientTrusted

method. When a trust manager is configured in a client-side SSL configuration, the client calls the

isServerTrusted method. The peer certificate chain is passed to these methods. If the trust manager

chooses not to trust the peer information, it might produce an exception to force a handshake failure.

Optionally, WebSphere Application Server provides the com.ibm.wsspi.ssl.TrustManagerExtendedInfo

interface so that additional information can be passed to the trust manager. For more information, see the

com.ibm.wsspi.ssl.TrustManagerExtendedInfo interface.

Default IbmX509 trust manager

The default IbmX509 trust manager, which is used in the following code sample, establishes trust by

performing standard certificate validation.

1358 Administering applications and their environment

csec_sslx509certIDkeyman.dita
csec_sslx509certtrustdecisions.dita

<trustManagers xmi:id="TrustManager_1132357815717" name="IbmX509" provider="IBMJSSE2"

algorithm="IbmX509" managementScope="ManagementScope_1132357815717"/>

The trust manager provides a signer certificate to verify the peer certificate that is sent during the

handshake. The signers who are added to the truststore for the SSL configuration must be trustworthy. If

you do not trust the signers or do not want to allow others to connect to your servers, consider removing

default root certificates from certificate authorities (CA). You might also remove any self-signed certificates

if you cannot verify their origination.

Default IbmPKIX trust manager

You can use the default IbmPKIX trust manager to replace the IbmX509 trust manager, which is shown in

the following code sample:

<trustManagers xmi:id="TrustManager_1132357815719" name="IbmPKIX" provider="IBMJSSE2"

algorithm="IbmPKIX" trustManagerClass="" managementScope="ManagementScope_1132357815717">

<additionalTrustManagerAttrs xmi:id="DescriptiveProperty_1132357815717"

name="com.ibm.security.enableCRLDP" value="true" type="boolean"/>

<additionalTrustManagerAttrs xmi:id="DescriptiveProperty_1132357815718"

name="com.ibm.jsse2.checkRevocation" value="true" type="boolean"/>

 </trustManagers>

In addition to its role of standard certificate verification, the IbmPKIX trust manager checks for certificates

that contain certificate revocation list (CRL) distribution points. This process is known as extended CRL

checking. When you select a trust manager, its associated properties are automatically set as Java

System properties so that the IBMCertPath and IBMJSSE2 providers are aware that CRL checking is

enabled.

Custom trust manager

You can define a custom trust manager to perform additional trust checking, which is based upon the

needs of the environment. For example, in one environment, you might enable connections from the same

Transmission Control Protocol (TCP) subnet only. The com.ibm.wsspi.ssl.TrustManagerExtendedInfo

interface provides extended information about the connection that is not provided by the standard Java

Secure Sockets Extension (JSSE) javax.net.ssl.X509TrustManager interface. The configured

trustManagerClass attribute determines which class is instantiated by the runtime, as shown in the

following code sample:

<trustManagers xmi:id="TrustManager_1132357815718" name="CustomTrustManager"

trustManagerClass="com.ibm.ws.ssl.core.CustomTrustManager"

managementScope="ManagementScope_1132357815717"/>

The trustManagerClass attribute must implement the javax.net.ssl.X509TrustManager interface and,

optionally, can implement the com.ibm.wsspi.ssl.TrustManagerExtendedInfo interface.

Disabling the default trust manager

In some cases, you might not want to perform the standard certificate verification that is provided by the

IbmX509 and IbmPKIX default trust managers. For example, you might be working with an internal

automated test infrastructure that is not concerned with SSL client or server authentication, integrity, or

confidentiality. The following sample code shows a basic custom trust manager such as

com.ibm.ws.ssl.core.CustomTrustManager whose property is set to true.

com.ibm.ssl.skipDefaultTrustManagerWhenCustomDefined=true

You can set this property in the global properties at the top of the ssl.client.props file for clients or in the

security.xml custom properties file for servers. You must configure a custom trust manager when you

disable the default trust manager to prevent the server from calling the default trust manager even though

it is configured. Disabling the default trust manager is not a common practice. Be sure to test the system

with the disabled default trust manager in a test environment first. For more information on setting up a

Chapter 16. Security 1359

custom trust manager, see “Creating a custom trust manager configuration” on page 1392

Key manager control of X.509 certificate identities:

The role of a Java Secure Socket Extension (JSSE) key manager is to retrieve the certificate that is used

to identify the client or server during a Secure Sockets Layer (SSL) handshake.

 WebSphere Application Server provides a default key manager that can select a certificate from a keystore

when you define the following SSL configuration properties:

com.ibm.ssl.keyStoreClientAlias

Defines the alias that is chosen from the keystore for the client side of a connection. This alias

must be present in the keystore.

com.ibm.ssl.keyStoreServerAlias

Defines the alias that is chosen from the keystore for the server side of a connection. This alias

must be present in the keystore.

These two properties are set automatically when you use the administrative console because the default

key manager is already configured.

With WebSphere Application Server, you can configure only one key manager at a time for a given SSL

configuration. If you want custom certificate selection logic on the client side, you must write a new custom

key manager. The custom key manager could provide function that prompts the user to choose a

certificate dynamically. Also, you can implement an extended interface so that a key manager can provide

information during connection time. For more information on the extended interface, see the

com.ibm.wsspi.ssl.KeyManagerExtendedInfo interface. For more information on custom key manager

development, see rsec_ssldevcustomkeymgr.dita.

Default IbmX509 key manager

The default IbmX509 key manager chooses a certificate to serve as the identity for an SSL handshake.

The key manager is called to enable client authentication on either side of the SSL handshake; frequently

on the server-side, and less frequently on the client side according to client and server requirements. If a

keystore is not configured on the client-side and SSL client authentication is enabled, the key manager

cannot select a certificate to send to the server. Therefore, the handshake fails.

The following sample code shows the key manager configuration in the security.xml file for an IbmX509

key manager.

<keyManagers xmi:id="KeyManager_1" name="IbmX509"

provider="IBMJSSE2" algorithm="IbmX509" keyManagerClass=""

managementScope="ManagementScope_1"/>

You do not specify the keyManagerClass class because the key manager is provided by the IBMJSSE2

provider. However, you can specify whether the key manager is a custom class implementation, in which

case you must specify the keyManager class, or an algorithm name that WebSphere Application Server

can start from the Java security provider framework.

Custom key manager

The following sample code shows the key manger configuration in the security.xml file for a custom

class.

<keyManagers xmi:id="KeyManager_2" name="CustomKeyManager"

keyManagerClass="com.ibm.ws.ssl.core.CustomKeyManager"

managementScope="ManagementScope_1"/>

1360 Administering applications and their environment

rsec_ssldevcustomkeymgr.dita

The custom class must implement the javax.net.ssl.X509KeyManager interface and, optionally, implement

the com.ibm.wsspi.ssl.KeyManagerExtendedInfo interface to retrieve additional WebSphere Application

Server information. This interface replaces the function of the default key manager because you can

configure only one key manager at a time. Therefore, the custom key manager has sole responsibility for

selecting the alias to use from the configured keystore. The benefit of a custom key manager is its ability,

on the client side, to prompt for an alias. This process enables the user to decide which certificate to use

in situations where the user knows the client certificate identity. For more information, see

tsec_sslcreatecuskeymgr.dita.

Keystore configurations

Use keystore configurations to define how the runtime for WebSphere Application Server loads and

manages keystore types for Secure Sockets Layer (SSL) configurations.

By default, the java.security.Security.getAlgorithms(″KeyStore″) attribute does not display a predefined list

of keystore types in the administrative console. Instead, WebSphere Application Server retrieves all of the

KeyStore types that can be referenced by the java.security.KeyStore object, including hardware

cryptographic, z/OS platform, i5/OS platform, IBM Java Cryptography Extension (IBMJCE), and

Java-based content management system (CMS)-provider keystores. If you specify a keystore provider in

the java.security file or add it to the provider list programmatically, WebSphere Application Sever also

retrieves custom keystores. The retrieval list depends upon the java.security configuration for that platform

and process.

IBMJCE file-based keystores (JCEKS, JKS, and PKCS12)

A typical IBMJCE file-based keystore configuration is shown in the following sample code:

<keyStores xmi:id="KeyStore_1" name="NodeDefaultKeyStore"

password="{xor}349dkckdd=" provider="IBMJCE"

location="${USER_INSTALL_ROOT}/config/cells/myhostNode01Cell

/nodes/myhostNode01/key.p12" type="PKCS12" fileBased="true"

hostList="" initializeAtStartup="true" readOnly="false"

managementScope="ManagementScope_1"/>

For more information about default keystore configurations, see csec_ssldefselfsigncertconf.dita.

Table 1 describes the attributes that are used in the sample code.

 Table 23. keystore configurations

Attribute name Default Description

xmi:id Varies A value that issued to reference the keystore from

another area in the configuration, for example, from

an SSL configuration. Make this value unique within

the security.xml file.

name For Java Secure Socket Extension

(JSSE) keystore:

NodeDefaultKeyStore. For JSSE

truststore: NodeDefaultTrustStore.

A name that is used to identify the keystore by sight.

The name can determine if the keystore is a default

keystore based upon whether the name ends with

DefaultKeyStore or DefaultTrustStore.

password The default keystore password is

WebAS. It is recommended that this be

changed as soon as possible. See

“Updating default key store

passwords using scripting” on page

1482 for more information.

The password that is used to access the keystore

name is also the default that is used to store keys

within the keystore.

provider The default provider is IBMJCE. The Java provider that implements the type attribute

(for example, PKCS12 type). The provider can be left

unspecified and the first provider that implements the

keystore type specified is used.

Chapter 16. Security 1361

tsec_sslcreatecuskeymgr.dita
csec_ssldefselfsigncertconf.dita

Table 23. keystore configurations (continued)

Attribute name Default Description

location The default varies, but typically

references a key.p12 file or a

trust.p12 file in the node or cell

directories of the configuration

repository. These files are PKCS12

type keystores.

The keystore location reference. If the keystore is

file-based, the location can reference any path in the

file system of the node where the keystore is located.

However, if the location is outside of the configuration

repository, and you want to manage the keystore

remotely from the administrative console or from the

wsadamin utility, then specify the hostList attribute

that contains the host name of the node where it

resides.

type The default Java crypto device

keystore type is PKCS12.

This type specifies the keystore. Valid types can be

those returned by the

java.security.Security.getAlgorithms(″KeyStore″)

attribute. These types include the following keystore

types, and availability depends on the process and

platform java.security configuration:

v JKS

v JCEKS

v PKCS12

v PKCS11 (Java crypto device)

v CMSKS

v IBMi5OSKeyStore

v JCERACFKS

v JCE4758KS (z/OS crypto device)

fileBased The default is true. This option is required for default keystores. It

indicates a file-system keystore so you can use a

FileInputStream or FileOutputStream for loading and

storing the keystore.

hostList The hostList attribute is used to

specify a remote hostname so that

the keystore can be remotely

managed. There are no remotely

managed keystores by default. All

default keystores are managed locally

in the configuration repository and

synchronized out to each of the

nodes.

The option manages a keystore remotely. You can set

the host name of a valid node for a keystore. When

you use either the administrative console or the

wsadmin utility to manage certificates for this

keystore, an MBean call is made to the node where

the keystore exists for the approved operation. You

can specify multiple hosts, although synchronization

of the keystore operations are not guaranteed. For

example, one of the hosts that is listed might be down

when a specific operation is performed. Therefore,

use multiple hosts in this list.

initializeAtStartup The default is true. This option informs the runtime to initialize the

keystore during startup. This option can be important

for hardware cryptographic device acceleration.

readOnly The default is false. This option informs the configuration that you cannot

write to this keystore. That is, certain update

operations on the keystore cannot be attempted and

are not allowed. An example of a read-only keystore

type is JCERACFKS on the z/OS platform. This type

is read-only from the WebSphere certificate

management standpoint, but you can also update it

using the keystore management facility for RACF.

1362 Administering applications and their environment

Table 23. keystore configurations (continued)

Attribute name Default Description

managementScope The default scope is the node scope

for a base Application Server

environment and the cell scope for a

Network Deployment environment.

This option references a particular management

scope in which you can see this keystore. For

example, if a hardware cryptographic device is

physically located on a specific node, then create the

keystore from a link to that node in the topology view

under Security > Security Communications > SSL

configurations. You can also use management

scope to isolate a keystore reference. In some cases,

you might need to allow only a specific application

server to reference the keystore; the management

scope is for that specific server.

CMS keystores

You can set some provider-specific attributes in CMS keystores.

If the CMSKS provider supports the createStashFileForCMS attribute, and you set the attribute to true for

CMSKS keystores, WebSphere Application Server creates an .sth file in the keystore location that is

referenced by the attribute. The .sth extension is appended to the keystore name. For example, if the

CMSKS keystore is available for a plug-in configuration and you set createStashFileForCMS to true, the

stash file that is represented in the following sample code is created in the ${USER_INSTALL_ROOT}\
profiles\AppSrv01/config/cells/myhostCell01/nodes/myhostNode01/servers/webserver1/plugin-key.sth

path.

<keyStores xmi:id="KeyStore_1132071489571" name="CMSKeyStore"

password="{xor}HRYNFAtrbxEwOzpvbhw6MzM=" provider="IBMCMSProvider"

location="${USER_INSTALL_ROOT}\profiles\AppSrv01/config/cells/myhostCell01

/nodes/myhostNode01/servers/webserver1/plugin-key.kdb" type="CMSKS"

fileBased="true" createStashFileForCMS="true"

managementScope="ManagementScope_1132071489569"/>

When you create a CMS keystore, the CMS provider is IBMi5OSJSSEProvider, and the CMS type is

IBMi5OSKeyStore, as shown in the following sample code:

<keyStores xmi:id="KeyStore_1132071489571" name="CMSKeyStore"

password="{xor}HRYNFAtrbxEwOzpvbhw6MzM=" provider="IBMi5OSJSSEProvider"

location="${USER_INSTALL_ROOT}\profiles\AppSrv01/config/cells/myhostCell01

/nodes/myhostNode01/servers/webserver1/plugin-key.kdb" type="IBMi5OSKeyStore"

fileBased="true" createStashFileForCMS="true"

managementScope="ManagementScope_1132071489569"/>

Hardware cryptographic keystores

For cryptographic device configuration, see “Key management for cryptographic uses” on page 1456 and

“Configuring a hardware cryptographic keystore” on page 1423

You can add a slot either as the custom property, com.ibm.ssl.keyStoreSlot, or as the configuration

attribute, slot=″0″. The custom property is read before the attribute for backwards compatibility.

In certain environments, you can use the hardware cryptographic card for hardware acceleration. Either

set the useForAcceleration attribute to true or set the com.ibm.ssl.keyStoreUseForAcceleration custom

property. When you set the attribute to true, you are not required to configure a password. However, you

cannot use the device to store keys. For more information on configuring a hardware cryptographic

keystore, see Configuring hardware cryptographic keystore configurations.

Default key store passwords:

Chapter 16. Security 1363

When WebSphere Application Server starts for the first time as a standalone application server or as a

network deployment, each server creates a key store and trust store for the default SSL configuration.

When WebSphere Application Server creates these files, they use a default password (WebAS). Because

the default password is well known, it is important that you change the password to protect the security of

the key store files and the SSL configuration.

 You can change the keystore passwords of:

v A single keystore or multiple key stores using a command task

v Multiple keystores using a command task

v A single keystore, using the administrative console

Dynamic outbound selection of Secure Sockets Layer configurations

WebSphere Application Server provides dynamic outbound selection that enables you to choose a specific

Secure Sockets Layer (SSL) configuration and certificate alias for each outbound protocol, target host,

target port, or any combination of these attributes. You can specify the dynamic selection information for

outbound connections from a pure client or from a server that is acting as a client.

Before the SSL runtime for WebSphere Application Server starts an outbound connection, the runtime

attempts to match the outbound protocol, target host, and target port attributes with the dynamic outbound

selection information that is associated with an SSL configuration and certificate alias in the configuration.

The runtime caches both selection misses and selection hits, so the impact on performance can be

minimal. However, a relationship exists between the amount of dynamic outbound selection information

and its impact on the initial connection performance.

Target information during outbound connections

The dynamic outbound selection configurations are only effective when the outbound protocol uses the

JSSEHelper application programming interface (API) when you select an SSL configuration with a

specified connectionInfo hash map. This hash map must contain the following properties:

com.ibm.ssl.direction

The value for outbound connections is OUTBOUND.

com.ibm.ssl.remoteHost

The format should match what the protocol provides. Typically this is the canonical Domain Name

Space (DNS), but it also could be the IP address.

com.ibm.ssl.remotePort

The port is target port.

com.ibm.ssl.endPointName

The value for an outbound connection must be one of the following protocol strings:

v IIOP

v HTTP

v SIP

v LDAP

v ADMIN_SOAP

v BUS_TO_BUS

v BUS_CLIENT

v BUS_TO_WEBSPHERE_MQ

1364 Administering applications and their environment

Central management of Secure Sockets Layer configurations

By default, Secure Sockets Layer (SSL) configurations for servers are managed from a central location in

the topology view in the administrative console. You can associate an SSL configuration and certificate

alias with a management scope. This method is the most efficient method to manipulate and modify

configurations when the server topology changes.

In prior releases, SSL configurations are managed in the server.xml file for each process. You have to

edit individual server.xml documents to modify individual SSL configuration aliases in the configuration

topology. In this release of WebSphere Application Server, management control of SSL configurations

offers more flexibility and options. You can make coarse-grained changes using the cell-scope and

fine-grained changes using a particular endpoint name, as defined in the serverindex.xml file for a

specific application server process.

Because SSL configuration associations manifest inheritance behaviors, you can simplify the number of

associations by referencing only the highest level management scope that needs a unique configuration.

Obviously, the security environment influences issues such as SSL configuration uniqueness, and SSL

configuration and certificate alias placement in the topology.

To configure the inbound and outbound topologies, which must be done separately in the administrative

console, click Security > SSL certificates and key management > Manage endpoint security

configurations > Inbound | Outbound.

The topology view provides the scoping mechanism. The SSL configuration inherits its visibility, which is its

display in the topology, at the scope where you created the configuration and at all the scopes beneath

this parent scope. When you create an SSL configuration at a specific node, the configuration can be seen

by that node agent and by every application server that is part of that node. Any application server or node

that is not part of this particular node cannot see this SSL configuration. You can configure different

certificate aliases and SSL configurations for inbound versus outbound connections.

Default centrally-managed SSL configuration

The default management scope is the node scope. When a node is federated into a cell, the default SSL

configurations for the node are maintained, as shown in the following sample code for the sslConfigGroups

and management scopes attributes:

<sslConfigGroups xmi:id="SSLConfigGroup_1" name="myhostNode01"

direction="inbound" certificateAlias="default" sslConfig="SSLConfig_1"

managementScope="ManagementScope_1"/>

<sslConfigGroups xmi:id="SSLConfigGroup_2" name="myhostNode01"

direction="outbound" certificateAlias="default" sslConfig="SSLConfig_1"

managementScope="ManagementScope_1"/>

<managementScopes xmi:id="ManagementScope_1"

scopeName="(cell):myhostNode01Cell:(node):myhostNode01" scopeType="node"/>

The SSL configuration xmi:id ″SSLConfig_1″ is also federated and applicable:

<repertoire xmi:id="SSLConfig_1" alias="NodeDefaultSSLSettings"

managementScope="ManagementScope_1">

<setting xmi:id="SecureSocketLayer_1" clientAuthentication="true"

securityLevel="HIGH" enabledCiphers="" jsseProvider="IBMJSSE2"

sslProtocol="SSL_TLS" keyStore="KeyStore_1" trustStore="KeyStore_2"

trustManager="TrustManager_1" keyManager="KeyManager_1"/>

</repertoire>

The keystores that are associated with the SSLConfig_1 SSL configuration are also federated, and

key.p12 is located in the node directory of the configuration repository:

<keyStores xmi:id="KeyStore_1" name="NodeDefaultKeyStore"

password="{xor}HRYNFAtrbxEwOzpvbhw6MzM=" provider="IBMJCE"

location="${USER_INSTALL_ROOT}/config/cells/myhostNode01Cell/nodes

Chapter 16. Security 1365

/myhostNode01/key.p12" type="PKCS12" fileBased="true" hostList=""

initializeAtStartup="true" managementScope="ManagementScope_1"/>

<keyStores xmi:id="KeyStore_2" name="NodeDefaultTrustStore"

password="{xor}HRYNFAtrbxEwOzpvbhw6MzM=" provider="IBMJCE"

location="${USER_INSTALL_ROOT}/config/cells/myhostNode01Cell

/nodes/myhostNode01/trust.p12" type="PKCS12" fileBased="true"

hostList="" initializeAtStartup="true" managementScope="ManagementScope_1"/>

Secure Sockets Layer node, application server, and cluster isolation

Secure Sockets Layer (SSL) enables you to ensure that any client that attempts to connect to a server

during the handshake first performs server authentication. You can isolate communications between

servers that must not communicate with each other over secure ports using SSL configurations at the

node, application server, and cluster scopes.

Before you attempt to isolate communications controlled by WebSphere Application Server, you must have

a good understanding of the deployment topology and application environment. To isolate a node,

application server, or cluster, you must be able to control the signers that are contained in the trust stores

that are associated with the SSL configuration. When the client does not contain the server signer, it

cannot establish a connection to the server. If you use self-signed certificates, the server that created the

personal certificate controls the signer, although you do have to manage the self-signed certificates. If you

obtain certificates from a certificate authority (CA), you must obtain multiple CA signers because all of the

servers can connect to each other if they share the same signer.

Authenticating only the server-side of a connection is not adequate protection when you need to isolate a

server. Any client can obtain a signer certificate for the server and add it to its trust store. SSL client

authentication must also be enabled between servers so that the server can control its connections by

deciding which client certificates it can trust. For more information, see tsec_sslclientauthinbound.dita,

which applies as well to enabling SSL client authentication at the cell level.

Isolation also requires that you use centrally managed SSL configurations for all or most endpoints in the

cell. Centrally managed configurations can be scoped, unlike direct or end point configuration selection,

and they enable you to create SSL configurations, key stores, and trust stores at a particular scope.

Because of the inheritance hierarchy of WebSphere Application Server cells, if you select only the

properties that you need for an SSL configuration, only these properties are defined at your selected

scope or lower. For example, if you configure at the node scope, your configuration applies to the

application server and individual end point scopes below the node scope. For more information, see

tsec_sslassocconfigscope.dita, tsec_sslselconfigdirect.dita, and tsec_sslassocconfigout.dita

When you configure the key stores, which contain cryptographic keys, you must work at the same scope

at which you define the SSL configuration and not at a higher scope. For example, if you create a key

store that contains a certificate whose host name is part of the distinguished name (DN), then store that

keystore in the node directory of the configuration repository. If you decide to create a certificate for the

application server, then store that keystore on the application server in the application server directory.

When you configure the trust stores, which control trust decisions on the server, you must consider how

much you want to isolate the application servers. You cannot isolate the application servers from the node

agents or the deployment manager. However, you can configure the SOAP connector end points with the

same personal certificate or to share trust. Naming persistence requires IIOP connections when they pass

through the deployment manager. Because application servers always connect to the node agents when

the server starts, the IIOP protocol requires that WebSphere Application Server establish trust between the

application servers and the node agents.

Establishing node SSL isolation

By default, WebSphere Application Server uses a single self-signed certificate for each node so you can

isolate nodes easily. A common trust store, which is located in the cell directory of the configuration

1366 Administering applications and their environment

tsec_sslclientauthinbound.dita
tsec_sslassocconfigscope.dita
tsec_sslselconfigdirect.dita
tsec_sslassocconfigout.dita

repository, contains all of the signers for each node that is federated into the cell. After federation, each

cell process trusts all of the other cell processes because every SSL configuration references the common

trust store.

You can modify the default configuration so that each node has its own trust store, and every application

server on the node trusts only the node agent that uses the same personal certificate. You must also add

the signer to the node trust store so that WebSphere Application Server can establish trust with the

deployment manager. To isolate the node, ensure that the following conditions are met:

v The deployment manager must initiate connections to any process

v The node agent must initiate connections to the deployment manager and its own application servers

v The application servers must initiate connections to the applications servers on the same node, to its

own node agent, and the deployment manager

Figure 1 shows Node Agent A contains a key.p12 keystore and a trust.p12 trust store at the node level of

the configuration repository for node A.

server1

Dmgr

Node
Agent

(A)

Node
Agent

(B)

server2

server1

server2

key.p12

cell key

key.p12

nodeA key

key.p12

nodeB key
trust.p12

cell signer

nodeA signer

nodeB signer

trust.p12

nodeA signer
cell signer

trust.p12

nodeB signer
cell signer

server1

Dmgr

Node

Agent

(A)

server2

server1

server2

Figure 1: SSL Node Isolation

Node

Agent

(B)

When you associate an SSL configuration with this keystore and truststore, you break the link with the

cell-scoped trust store. To isolate the node completely, repeat this process for each node in the cell.

WebSphere Application Server SSL configurations override the cell scope and use the node scope instead

so that each process at this scope uses the SSL configuration and certificate alias that you selected at this

scope. You establish proper administrative trust by ensuring that nodeA signer is in the common trust store

and the cell signer is in the nodeA trust store. The same logic applies to node B as well. For more

information, see tsec_sslassocconfigscope.dita.

Figure 15.

Chapter 16. Security 1367

tsec_sslassocconfigscope.dita

Establishing application server SSL isolation

Isolating application server processes from one another is more challenging than isolating nodes. You

must consider the following application design and topology conditions:

v An application server process might need to communicate with the node agent and deployment

manager

v Isolating application server processes from each other might disable single sign-on capabilities for

horizontal propagation

If you configure outbound SSL configurations dynamically, you can accommodate these conditions. When

you define a specific outbound protocol, target host, and port for each different SSL configuration, you can

override the scoped configuration.

Figure 2 shows how you might isolate an application server completely, although in practice this approach

would be more complicated.

 key.p12

nodeAserver1 key

server1

Dmgr

Node
Agent

(A)

Node
Agent

(B)

server2

server1

server2

key.p12

cell key

key.p12

nodeA key

key.p12

nodeB key
trust.p12

cell signer

nodeA signer

nodeB signer

trust.p12

nodeA signer

nodeAserver1 signer

nodeAserver2 signer

cell signer

trust.p12

nodeB signer

nodeBserver1 signer

nodeBserver2 signer

cell signer

key.p12

nodeAserver1 signer

nodeA signer

cell signer

key.p12

nodeAserver2key

key.p12

nodeAserver2 signer

nodeA signer

cell signer

key.p12

nodeBserver1 key

key.p12

nodeBserver1 signer

nodeB signer

cell signer

key.p12

nodeBserver2 key

key.p12

nodeBserver2 signer

nodeB signer

cell signer

server1

Dmgr

Node

Agent

(A)

server2

server1

server2

Figure 2: SSL Application Server Isolation

Node

Agent

(B)

The dynamic configuration enables server1 on Node A to communicate with server 1 on Node B only over

IIOP. The dynamic outbound rule is IIOP,nodeBhostname,*. For more information, see

tsec_sslassocconfigout.dita

Establishing cluster SSL isolation

You can configure application servers into clusters instead of scoping them centrally at the node or

dynamically at the server to establish cluster SSL isolation. While clustered servers can communicate with

each other, application servers outside of the cluster cannot communicate with the cluster, thus isolating

the clustered servers. For example, you might need to separate applications from different departments

Figure 16.

1368 Administering applications and their environment

tsec_sslassocconfigout.dita

while maintaining a basic level of trust among the clustered servers. Using the dynamic outbound SSL

configuration method described for servers above, you can easily extend the isolated cluster as needed.

Figure 3 shows a sample cluster configuration where cluster 1 contains a key.p12 with its own self-signed

certificate, and a trust.p12 that is located in the config/cells/<cellname>/clusters/<clustername> directory.

server1

Dmgr

Node

Agent

(A)

server2

server1

server2

Figure 3: SSL Cluster Isolation

key.p12
cell key

key.p12
nodeA key

key.p12
nodeB key

trust.p12
cell signer
nodeA signer
nodeB signer

trust.p12
nodeA signer
cluster1 signer
cluster2 signer
cell signer

trust.p12
nodeB signer
cluster1 signer
cluster2 signer
cell signer

Cluster 1

Cluster 2

key.p12
cluster1 key

trust.p12
cluster1 key
nodeA signer
nodeB signer
cell signer

trust.p12
cluster2 key
nodeA signer
nodeB signer
cell signer

key.p12
cluster2 key

server1

Dmgr

Node

Agent

(A)

server2

server1

server2

Cluster 1

Cluster 2

Node

Agent

(B)

In the example, cluster1 might contain web applications, and cluster2 might contain EJB applications.

Considering the various protocols, you decide to enable IIOP traffic between the two clusters. Your task is

to define a dynamic outbound SSL configuration at the cluster1 scope with the following properties:

IIOP,nodeAhostname,9403|IIOP,nodeAhostname,9404|IIOP,nodeBhostname,9403|IIOP,nodeBhostname,9404

You must create another SSL configuration at the cluster1 scope that contains a new trust.p12 file with the

cluster2 signer. Consequently, outbound IIOP requests go either to nodeAhostname ports 9403 and 9404

or to nodeBhostname ports 9403 and 9404. The IIOP SSL port numbers on these two application server

processes in cluster2 identify the ports.

As you review Figure 3, notice the following features of the cluster isolation configuration:

v The trust.p12 for cluster1 contains signers that allow communications with itself (cluster1 signer),

between both node agents (nodeAsigner and nodeBsigner), and with the deployment manager (cell

signer).

v The trust.p12 for cluster2 contains signers that allow communications with itself (cluster2 signer),

between both node agents (nodeAsigner and nodeBsigner), and with the deployment manager (cell

signer).

v Node agent A and Node agent B can communicate with themselves, the deployment manager, and both

clusters.

For more information, see tsec_sslassocconfigout.dita.

Figure 17.

Chapter 16. Security 1369

tsec_sslassocconfigout.dita

Although this article presents an overview of isolation methods from an SSL perspective, you must also

ensure that non-SSL ports are closed or applications require the confidentiality constraint in the

deployment descriptor. For example, you can set the CSIv2 inbound transport panel to require SSL and

disable the channel ports that are not secure from the server ports configuration.

Also, you must enable SSL client authentication for SSL to enforce the isolation requirements on both

sides of a connection. Without mutual SSL client authentication, a client can easily obtain a signer for the

server programmatically and thus bypass the goal of isolation. With SSL client authentication, the server

would require the client’s signer for the connection to succeed. For HTTP/S protocol, the client is typically

a browser, a Web Service, or a URL connection. For the IIOP/S protocol, the client is typically another

application server or a Java client. WebSphere Application Server must know the clients to determine if

SSL client authentication enablement is possible. Any applications that are available through a public

protocol must not enable SSL client authentication because the client may fail to obtain a certificate to

authenticate to the server.

Note: It is beyond the scope of this article to describe all of the factors you must consider to achieve

complete isolation.

Default self-signed certificate configuration

When a WebSphere Application Server process starts for the first time, the Secure Sockets Layer (SSL)

runtime initializes the default keystores and truststores that are specified in the SSL configuration.

Default keystore and truststore properties

WebSphere Application Server creates the key.p12 default keystore file and the trust.p12 default truststore

file during profile creation. A default, self-signed certificate is also created in the key.p12 file at this time.

The signer or public key is extracted from the key.p12 file and added to the trust.p12 file. If the files do not

exist during process startup, they are recreated during startup.

You can easily identify keystore and truststore defaults because of their suffixes: DefaultKeyStore and

DefaultTrustStore. Also, in the SSL configuration, you must set the fileBased attribute to true so that the

runtime uses the default keystores and truststores only.

On a base application server, default key and truststores are stored in the node directory of the

configuration repository. For example, the default key.p12 and trust.p12 stores are created with the

AppSrv01 profile name, the myhostNode01Cell name, and the myhostNode01 node name. The key and

truststores are located in the following directories:

C:\WebSphere\AppServer\profiles\AppSrv01\config\cells\myhostNode01Cell

\nodes\myhostNode01\key.p12

C:\WebSphere\AppServer\profiles\AppSrv01\config\cells\myhostNode01Cell

\nodes\myhostNode01\trust.p12

The default password is WebAS for all default keystores generated by WebSphere Application Server.

Change the default password after the initial configuration for a more secure environment.

Default self-signed certificate

The default self-signed certificate is created during profile creation for both the server and client for that

profile.

You can recreate the certificates with different information simply by deleting the *.p12 files in /config and

/etc. Change the four properties below to the values you want the certificates to contain, then restart the

processes. This causes the server certificate in /config and the client certificate in /etc to differ.

If you want to set up SSL client authentication between the client and server, you must perform a signer

exchange. The certificate properties below that exist in the ssl.client.props file do not exist in the server

1370 Administering applications and their environment

configuration. However, you can use these values in the server configuration by adding them as custom

security properties in the administrative console. The certificate properties appear in the ssl.client.props

file, but do not appear in the server configuration. However, you can modify these values in the server

configuration by adding them as custom properties in the administrative console.

Click Security > Secure administration, applications, and infrastructure > Custom properties to

change the following properties:

com.ibm.ssl.defaultCertReqAlias=default_alias

com.ibm.ssl.defaultCertReqSubjectDN=cn=${hostname},o=IBM,c=US

com.ibm.ssl.defaultCertReqDays=365

com.ibm.ssl.defaultCertReqKeySize=1024

If a default_alias value already exists, the runtime appends _#, where the number sign (#) is a number that

increments until it is unique in the keystore. ${hostname} is a variable that is resolved to the host name

where it was originally created. The default expiration date of self-signed certificates is one year from their

creation date.

The runtime monitors the expiration dates of self-signed certificates using the Certificate Expiration

Monitor. These self-signed certificates are automatically replaced along with the signer certificates when

they are within the expiration threshold, which is typically 30 days before expiration. You can increase the

default key size beyond 1024 bits only when the Java Runtime Environment policy files are unrestricted,

that is, not exported. For more information, see csec_sslcertmonitoring.dita.

Default keystore and truststore configurations for new Base Application Server processes

The following sample code shows the default SSL configuration for a base application server. References

to the default keystores and truststores files are highlighted.

<repertoire xmi:id="SSLConfig_1" alias="NodeDefaultSSLSettings"

managementScope="ManagementScope_1">

<setting xmi:id="SecureSocketLayer_1" clientAuthentication="false"

securityLevel="HIGH" enabledCiphers="" jsseProvider="IBMJSSE2" sslProtocol="SSL_TLS"

keyStore="KeyStore_1" trustStore="KeyStore_2" trustManager="TrustManager_1"

keyManager="KeyManager_1"/>

</repertoire>

Default keystore

In the following sample code, the keystore object that represents the default keystore is similar to the XML

object.

<keyStores xmi:id="KeyStore_1" name="NodeDefaultKeyStore"

password="{xor}349dkckdd=" provider="IBMJCE" location="${USER_INSTALL_ROOT}/config

/cells/myhostNode01Cell/nodes/myhostNode01/key.p12" type="PKCS12" fileBased="true"

hostList="" initializeAtStartup="true" managementScope="ManagementScope_1"/>

The NodeDefaultKeyStore keystore contains the personal certificate that represents the identity of the

secure endpoint. Any keystore reference can use the ${USER_INSTALL_ROOT} variable, which is

expanded by the runtime. The PKCS12 default keystore type is in the most interoperable format, which

means that it can be imported into most browsers. The myhostNode01Cell password is encoded.

The management scope determines which server runtime loads the keystore configuration into memory, as

shown in the following code sample:

<managementScopes xmi:id="ManagementScope_1" scopeName="

(cell):myhostNode01Cell:(node):myhostNode01" scopeType="node"/>

Chapter 16. Security 1371

csec_sslcertmonitoring.dita

Any configuration objects that are stored in the security.xml file whose management scopes are outside

the current process scope are not loaded in the current process. Instead, the management scope is

loaded by servers that are contained within the myhostNode01 node. Any application server that is on the

specific node can view the keystore configuration.

When you list the contents of the key.p12 file to show the self-signed certificate, note that the common

name (CN) of the distinguished name (DN) is the host name of the resident machine. This listing enables

you to verify the host name by its URL connections. Additionally, you can verify the host name from a

custom trust manager. For more information, see csec_sslx509certtrustdecisions.dita.

Contents of default keystore

The following sample code shows the contents of the default key.p12 file in a keytool list:

keytool -list -keystore c:\WebSphere\AppServer\profile\AppSrv01\profiles\config

\cells\myhostNode01Cell\nodes\myhostNode01\key.p12 -storepass myhostNode01Cell

-storetype PKCS12 -v

Alias name: default

Entry type: keyEntry

Owner: CN=myhost.austin.ibm.com, O=IBM, C=US

Issuer: CN=myhost.austin.ibm.com, O=IBM, C=US

Valid from: 10/18/05 4:06 PM until: 10/18/06 4:06 PM

Certificate fingerprint:

 SHA1: 33:6E:9E:10:65:04:CE:7A:6C:C3:B1:79:8B:9A:05:49:AC:E5:67:F3

The default alias name and the keyEntry entry type indicate that the private key is stored with the public

key, which represents a complete personal certificate. The certificate is owned by

CN=myhost.austin.ibm.com, O=IBM, C=US and it is issued by the same entity, which is self-signed. By

default, the certificate is valid for one year from the date of creation.

Additionally, in some signer-exchange situations, the certificate fingerprint ensures that the sent certificate

has not been modified. The fingerprint, which is a hash algorithm output for the certificate, is displayed by

the WebSphere Application Server runtime during an automated signer exchange on the client side. The

client fingerprint must match the fingerprint that is displayed on the server. The runtime typically uses the

SHA1 hash algorithm to generate certificate fingerprints.

Default truststore

In the following sample code, the keystore object represents the default trust.p12 truststore. The truststore

contains signer certificates that are necessary for making trust decisions:

<keyStores xmi:id="KeyStore_2" name="NodeDefaultTrustStore"

password="{xor}349dkckdd=" provider="IBMJCE" location="${USER_INSTALL_ROOT}

/config/cells/myhostNode01Cell/nodes/myhostNode01/trust.p12" type="PKCS12"

fileBased="true" hostList="" initializeAtStartup="true" managementScope="ManagementScope_1"/>

Contents of default truststore

The following sample code shows the contents of the default trust.p12 truststore in a keytool listing. For

the sample self-signed certificate, the default_signer alias name and the trustedCertEntry entry type

indicate that the certificate is the public key. The private key is not stored in this truststore.

keytool -list -keystore c:\WebSphere\AppServer\profile\AppSrv01\profiles\config

\cells\myhostNode01Cell\nodes\myhostNode01\trust.p12 -storepass myhostNode01Cell

-storetype PKCS12 -v

Alias name: default_signer

Entry type: trustedCertEntry

Owner: CN=myhost.austin.ibm.com, O=IBM, C=US

Issuer: CN=myhost.austin.ibm.com, O=IBM, C=US

1372 Administering applications and their environment

csec_sslx509certtrustdecisions.dita

Valid from: 10/18/05 4:06 PM until: 10/18/06 4:06 PM

Certificate fingerprint:

 SHA1: 33:6E:9E:10:65:04:CE:7A:6C:C3:B1:79:8B:9A:05:49:AC:E5:67:F3

Secure installation for client signer retrieval:

Each profile in the WebSphere Application Server environment contains a unique self-signed certificate

that was created when the profile was created. This certificate replaces the default dummy certificate that

ships with WebSphere Application Server in releases prior to version 6.1. When a profile is federated to a

deployment manager, the signer for that self-signed certificate is added to the common truststore for the

cell.

 By default, clients do not trust servers from different profiles in the WebSphere Application Server

environment. That is, they do not contain the signer for these servers. There are some things that you can

do to assist in establishing this trust:

1. Enable the signer exchange prompt to except the signer during the connection attempt.

2. Run the retrieveSigners utility to download the signers from that system prior to making the

connection.

3. Copy the trust.p12 file from the /config/cells/<cell_name>/nodes/<node_name> directory of the

server profile to the /etc directory of the client. Update the SSL configuration to reflect the new file

name and password, if they are different. Copying the file provides the client with a trust.p12 that

contains all signers from servers in that cell. Also, you might need to perform this step for back-level

clients that are still using the DummyClientTrustFile.jks file. In this case, you might need to change

the sas.client.props or soap.client.props file to reflect the new truststore, truststore password, and

truststore type (PKCS12).

For clients to perform an in-band signer exchange, you must specify the ssl.client.props file as a

com.ibm.SSL.ConfigURL property in the SSL configuration. For managed clients, this is done

automatically. Signers are designated either as in-band during the connection or out-of-band during

runtime. You must also set the com.ibm.ssl.enableSignerExchangePrompt attribute to true.

Tip: You can configure a certificate expiration monitor to replace server certificates that are about to

expire. For more information about how clients can retrieve the new signer from the configuration,

see csec_sslcertmonitoring.dita.

Using the signer exchange prompt to retrieve signers from a client

When the client does not already have a signer to connect to a process, you can enable the signer

exchange prompt if you want to be able to accept the signer during the connection attempt. The prompt

displays once for each unique certificate and for each node. After the signer for the node is added, the

signer remains in the client truststore. The following sample code shows the signer exchange prompt

retrieving a signer from a client:

C:\WASX_e0540.11\AppServer\profiles\AppSrv01\bin\serverStatus -all

ADMU0116I: Tool information is being logged in file

 C:\WASX_e0540.11\AppServer\profiles\AppSrv01\logs\serverStatus.log

ADMU0128I: Starting tool with the AppSrv01 profile

ADMU0503I: Retrieving server status for all servers

ADMU0505I: Servers found in configuration:

ADMU0506I: Server name: dmgr

*** SSL SIGNER EXCHANGE PROMPT ***

SSL signer from target host 192.168.1.5 is not found in truststore

C:\WebSphere\AppServer\profiles\AppSrv01\etc\trust.p12.

Here is the signer information (verify the digest value matches what is

displayed at the server):

Subject DN: CN=myhost.austin.ibm.com, O=IBM, C=US

Chapter 16. Security 1373

csec_sslcertmonitoring.dita

Issuer DN: CN=myhost.austin.ibm.com, O=IBM, C=US

Serial number: 1128544457

Expires: Thu Oct 05 15:34:17 CDT 2006

SHA-1 Digest: 91:A1:A9:2D:F2:7D:70:0F:04:06:73:A3:B4:A4:9C:56:9D:A8:A3:BA

MD5 Digest: 88:72:C5:88:00:1C:A7:FA:D6:EB:04:88:AC:A1:C9:13

Add signer to the truststore now? (y/n) y

A retry of the request may need to occur.

ADMU0508I: The Deployment Manager "dmgr" is STARTED

To automate this process, see rxml_retrievesigners.dita.

When a prompt occurs to accept the signer, a socket timeout can occur and the connection might be

broken. For this reason, the message A retry of the request may need to occur. displays after

answering the prompt. The message informs the user to resubmit the request. This problem should not

happen frequently, and it might be more prevalent for some protocols than others.

Verify the displayed SHA-1 digest, which is the signature of the certificate that is sent by the server. If you

look at the certificate on the server, verify that the same SHA-1 digest displays.

You can disable the prompt when you do not want it to display by running the retrieveSigners utility to

retrieve all of the signers for a particular cell. You can download or upload the signers from any remote

keystore to any local keystore by referencing a common truststore with this client script. For more

information, see csec_ssldefselfsigncertconf.dita.

Using the retrieveSigners utility to download signers for a client

You can run the retrieveSigners utility to retrieve all of the signers from the remote keystore for a

specified client keystore.

The typical remote keystore to reference is NodeDefaultTrustStore.

The truststore contains the signers that enable the client to connect to its processes. The retrieveSigners

utility can point to any keystore in the target configuration, within the scope of the target process, and can

download the signers (certificate entries only) to any client keystore in the ssl.client.props file.

Obtaining signers for clients and servers from a previous release

When a client from a release prior to version 6.1 connects to the current release, the client must obtain

signers for a successful handshake. Clients using previous releases of WebSphere Application Server

cannot obtain signers as easily as in the current release. You can copy the deployment manager common

truststore to your back-level client or server, and then re-configure the SSL configuration to directly

reference that truststore. This common truststore of type PKCS12 is located in the /config/cells/
<cell_name>/nodes/<node_name> directory in the configuration repository and has a default password of

WebAS.

To collect all of the signers for the cell in a single trust.p12 keystore file, complete following steps:

1. Copy the trust.p12 keystore file on the server and replicate it on the client. The client references the

file directly from the sas.client.props and soap.client.props files that specify the SSL properties for

previous releases.

2. Change the client-side keystore password so that it matches the default cell name that is associated

with the copied keystore.

3. Change the default keystore type for the trust.p12 file to PKCS12 in the client configuration.

The following two code samples show you a before and an after view of the changes to make.

Default SSL configuration of sas.client.props for a previous release

1374 Administering applications and their environment

rxml_retrievesigners.dita
csec_ssldefselfsigncertconf.dita

com.ibm.ssl.protocol=SSL

com.ibm.ssl.keyStore=file\:///

C\:/SERV1_601_0208/AppServer/profiles/AppSrv01/etc/DummyClientKeyFile.jks

com.ibm.ssl.keyStorePassword={xor}CDo9Hgw\=

com.ibm.ssl.keyStoreType=JKS

com.ibm.ssl.trustStore=file\:///

C\:/SERV1_601_0208/AppServer/profiles/AppSrv01/etc/DummyClientTrustFile.jks

com.ibm.ssl.trustStorePassword={xor}CDo9Hgw\=

com.ibm.ssl.trustStoreType=JKS

SSL configuration changes that are required to common truststore file in the /etc directory of the

client

com.ibm.ssl.protocol=SSL

com.ibm.ssl.keyStore=file\:///

C\:/SERV1_601_0208/AppServer/profiles/AppSrv01/etc/DummyClientKeyFile.jks

com.ibm.ssl.keyStorePassword={xor}CDo9Hgw\=

com.ibm.ssl.keyStoreType=JKS

com.ibm.ssl.trustStore=file\:///

C\:/SERV1_601_0208/AppServer/profiles/AppSrv01/etc/trust.p12

com.ibm.ssl.trustStorePassword=myhostNode01Cell

com.ibm.ssl.trustStoreType=PKCS12

You can also make these changes in the soap.client.props file and specify the key.p12 file in place of

the DummyClientKeyFile.jks file. However, you must also change the keyStorePassword and

keyStoreType values to match those in the default key.p12 file.

In releases of WebSphere Application Server prior to version 6.1, you must edit the SSL configuration on

the server to replace the common truststore. The trust.p12 file, which is used by the server, also must

contain the default dummy certificate signer for connections among servers at previous release levels. You

might need to manually extract the default certificate from the DummyServerKeyFile.jks file and hen import

the certificate into the trust.p12 file that you added to the configuration.

retrieveSigners command: The retrieveSigners command creates a new client self-signed certificate,

keystore, and SSL configuration in the ssl.client.props file. Using this command you can optionally extract

the signer to a file.

For more information about where to run this command, see the Using command tools article.

Syntax

The command syntax is as follows:

retrieveSigners <remoteKeyStoreName> <localKeyStoreName> [options]

where the <remoteKeyStoreName> and <localKeyStoreName> parameters are required. The optional

parameters include the following:

[-remoteAlias aliasFromRemoteStore]

[-localAlias storeAsAlias]

[-listRemoteKeyStoreNames][-listLocalKeyStoreNames]

[-autoAcceptBootstrapSigner][-uploadSigners] [-host host]

[-port port][-conntype RMI|SOAP][-user user]

[-password password]

[-trace] [-logfile filename]

[-replacelog] [-quiet] [-help]

Parameters

The following parameters are available for the retrieveSigners command:

-remoteKeyStoreName

The name of a truststore that is located in the server configuration from which to retrieve the signers.

Chapter 16. Security 1375

This will typically be the CellDefaultTrustStore file for an managed environment or the

NodeDefaultTrustStore file for an unmanaged environment.

-localKeyStoreName

The name of the truststore that is located in the ssl.client.props file for the profile to which the

retrieved signers is added. This will typically be the ClientDefaultTrustStore file for either a managed or

unmanaged environment.

-remoteAlias <aliasFromRemoteStore>

Specifies one alias from the remote truststore that you want to retrieve. Otherwise, all signers from the

remote truststore will be retrieved.

-localAlias <storeAsAlias>

Determines the name of the alias stored in the local truststore. This option is only valid if you specify

the –remoteAlias option. If you do not specify the -localAlias option, the alias name from the remote

truststore will be used, if possible. If an alias clash occurs, the alias name will be used and it will have

an incremented number appended to the end of it until it finds a unique alias.

-listRemoteKeyStoreNames

Sends a remote request to the server to list all keystores that you can specify for the

remoteKeyStoreName parameter. Use this command when you are unsure of the name of the remote

truststore that you want to download the signers from.

-listLocalKeyStoreNames

Lists the keystores located in the ssl.client.props file that you can specify for the localKeyStoreName

parameter. This truststore will receive the signers from the server. Use this parameter when you are

unsure of the name of the local truststore that you want to retrieve the signers into. The default name

of the truststore is ClientDefaultTrustStore and is located in the ssl.client.props file.

-autoAcceptBootstrapSigner

Automatically adds a signer in order to make a secure connection to the server. The purpose of the

option is to allow automation of the command so that you do not need to accept the signer. After the

signer is added to the local truststore, a SHA hash will print so that you can verify the certificate.

-uploadSigners

Converts the signer download into a signer upload. The signers from the localKeyStoreName

parameter will be sent to the remoteKeyStoreName parameter instead.

-host <host>

Specifies the target host from which the signers will be retrieved.

-port <port>

Specifies the target administrative port to which to connect. You must specify the port based on the

-conntype parameter. If the conntype is SOAP, the default port is 8879. This can vary for different

servers. If the conntype is RMI, the default port is 2809. This can vary for different servers.

-conntype <RMI|Soap>

Determines the administrative connector type that is used for the MBean call to retrieve the signers.

-user <user>

When global security is enabled, you can specify this option to supply the user name that will be

authenticated for the MBean operation. This must be an identity with administrator authority. If you do

not specify this parameter when global security is enabled, you will be prompted for credentials by

default.

-password <password>

When global security is enabled, you can specify this option to supply the password that will be

authenticated for the MBean operation. The password goes along with the –user parameter.

-trace

When specified, this enables tracing of the trace specification necessary to debug this component. By

default, the trace will appear in the profiles/profile_name/log/retrieveSigners.log. file.

1376 Administering applications and their environment

-logfile <filename>

Overrides the default trace file. By default, the trace will appear in the profiles/profile_name/log/
retrieveSigners.log. file.

-replacelog

Causes the existing trace file to be replaced when the command is executed.

-quite

Suppresses most messages from printing out on the console.

-help

Prints a usage statement.

-? Prints a usage statement.

Usage scenario

The following examples demonstrate correct syntax:

v The following example lists remote and local keystores:

retrieveSigners.bat -listRemoteKeyStoreNames -listLocalKeyStoreNames -conntype RMI -port 2809 [Windows]

retrieveSigners.sh -listRemoteKeyStoreNames -listLocalKeyStoreNames -conntype RMI -port 2809 [Unix]

Example output

CWPKI0306I: The following remote keystores exist on the specified server:

 CMSKeyStore, NodeLTPAKeys, NodeDefaultTrustStore, NodeDefaultKeyStore

CWPKI0307I: The following local keystores exist on the client:

 ClientDefaultKeyStore, ClientDefaultTrustStore

v The following example retrieves all signers from NodeDefaultTrustStore:

retrieveSigners.bat NodeDefault TrustStore ClientDefaultTrustStore -autoAcceptBootstrapSigner

-conntype RMI -port 2809 [Windows]

retrieveSigners.sh NodeDefault TrustStore ClientDefaultTrustStore -autoAcceptBootstrapSigner

-conntype RMI -port 2809 [Unix]

Example output

CWPKI0308I: Adding signer alias "CN=BIRKT40.austin.ibm.com, O=IBM, C=US" to

 local keystore "ClientDefaultTrustStore" with the following SHA

 digest: 40:20:CF:BE:B4:B2:9C:F0:96:4D:EE:E5:14:92:9E:37:8D:51:A5:47

Certificate expiration monitoring:

The certificate expiration monitor administrative task cycles through all the keystores that are configured in

the security.xml file and reports on any certificates that expire within a specified threshold, which is

typically within 30 days.

 The default self-signed certificate on each node expires 365 days after creation. You can modify the

certificate validity period by changing the default value for the com.ibm.ssl.defaultCertReqDays=365

property in the ssl.client.props global property area for clients. You can also specify this property as a

security custom property on the administrative console. Click Security > Secure administration,

applications, and infrastructure > Custom properties.

The certificate expiration monitor task runs under a base application server process when the process is

not federated.

You can configure this monitor task to run according to a particular schedule. The schedule produces the

next start date that persists in the configuration and, when the date is reached, WebSphere Application

Server starts the monitor to check all of the keystores for certificates that meet the expiration threshold.

You can start the task manually to run at any time.

Chapter 16. Security 1377

The following security.xml configuration object specifies when the monitor task starts, determines the

certificate expiration threshold, and indicates whether you are notified in an e-mail using Simple Mail

Transfer Protocol (SMTP) or in a message log.

<wsCertificateExpirationMonitor xmi:id="WSCertificateExpirationMonitor_1"

name="Certificate Expiration Monitor" daysBeforeNotification="30"

isEnabled="true" autoReplace="true" deleteOld="true"

wsNotification="WSNotification_1" wsSchedule="WSSchedule_2"

nextStartDate="1134358204849"/>

The expiration monitor automatically replaces only self-signed certificates that meet the expiration

threshold criteria. To replace all of the signers from the old certificate with the signer that belongs to the

new certificate in all the keystores in the configuration for that cell, set the autoReplace attribute to true.

When the deleteOld attribute is true, the old personal certificate and old signers also are deleted from the

keystores. The isEnabled attribute determines whether the expiration monitor task runs based upon the

nextStartDate attribute that is derived from the schedule. The nextStartDate attribute is derived from the

schedule in milliseconds since 1970, and is identical to the System.currentTimeMillis(). If the nextStartDate

has already passed when an expiration monitor process begins, and the expiration monitor is enabled, the

task is started, but a new nextStartDate value is established based on the schedule.

The following sample code shows the frequency attribute as the number of days between each run.

<wsSchedules xmi:id="WSSchedule_2" name="ExpirationMonitorSchedule"

frequency="30" dayOfWeek="1" hour="21" minute="30"/>

The dayOfWeek attribute adjusts the schedule to run on a specified day of the week, which is always the

same day regardless of whether the frequency is set to 30 or 31 days. Based on 24-hour clock, the hour

and minute attributes determine when the expiration monitor is started on the specified day.

The following sample code shows the notification configuration, which notifies you after the expiration

monitor runs.

<>wsNotifications xmi:id="WSNotification_1" name="MessageLog" logToSystemOut="true" emailList=""/

For expiration monitor notifications, you can select message log, e-mail using SMTP server, or both

methods of notification. When you configure the e-mail option, use the format user@domain@smtpserver. If

you do not specify an SMTP server, WebSphere Application Server defaults to the same domain as the

e-mail address. For example, if you configure joeuser@ibm.com, WebSphere Application Server attempts

to call smtp-server.ibm.com. To specify multiple e-mail addresses using scripting, you must add a pipe (|)

character between entries. When you specify the logToSystemOut attribute, the expiration monitor results

are sent to the message log for the environment, which is typically the SystemOut.log file.

Web server plug-in default configuration:

When you create a new Web server definition, WebSphere Application Server associates the Web server

plug-in with a Certificate Management Services (CMS) keystore for a specific node. The keystore contains

all of the signers for the current cell with the self-signed certificate, which belongs to the node. The plug-in

can communicate securely to WebSphere Application Server, even when the plug-in is configured with

Secure Sockets Layer (SSL) client authentication enabled.

 When you set the Web server definition to webserver1 on node myhostNode01, WebSphere Application

Server creates the keystore configuration. The keystore is scoped to the webserver1 server, which makes

it visible to this server only. Other processes cannot use this keystore definition.

The following sample code from the security.xml file shows the configuration entries for the Web server

plug-in.

<keyStores xmi:id="KeyStore_1132357815719" name="CMSKeyStore"

password="{xor}HRYNFAtrbxEwOzpvbhw6MzM=" provider="IBMCMSProvider"

location="C:\WASX_e0540.11\AppServer\profiles\AppSrv01/config/cells

/myhostCell01/nodes/myhostNode01/servers/webserver1/plugin-key.kdb"

1378 Administering applications and their environment

type="CMSKS" fileBased="true" createStashFileForCMS="true"

managementScope="ManagementScope_1132357815718"/>

<managementScopes xmi:id="ManagementScope_1132357815718" scopeName="

(cell):myhostCell01:(node):myhostNode01:(server):webserver1" scopeType="server"/>

The following sample code shows how the CMS keystore and stash file are generated in the security.xml

file.

C:\WebSphere\AppServer\profiles\Dmgr01\config\cells\myhostCell01\nodes

\myhostNode01\servers\webserver1\plugin-key.kdb

C:\WebSphere\AppServer\profiles\Dmgr01\config\cells\myhostCell01

\nodes\myhostNode01\servers\webserver1\plugin-key.sth

The default password for the keystore is WebAS. You can change the default keystore password by using

either the administrative console or the appropriate AdminTask command. The following sample code

shows the AdminTask command that you can use to create this CMS keystore.

$AdminTask createCMSKeyStore /config/cells/myhostCell01/nodes/myhostNode01

/servers/webserver1/plugin-key.kdb myhost.austin.ibm.com

Note the following characteristics of the previous example:

v You can create only one CMSKeyStore entry for each management scope. If a CMS keystore already

exists for scope (cell):myhostCell01:(node):myhostNode01:(server):webserver1, then you cannot create

another CMSKeyStore entry

v The Uniform Resource Identifier (URI) for the keystore name is /config/cells/myhostCell01/nodes/
myhostNode01/servers/webserver1/plugin-key.kdb

v The host name in the plug-in location is myhost.austin.ibm.com. WebSphere Application Server uses

this name to create a self-signed certificate, if a self-signed certificate does not already exist for that

particular node. If a self-signed certificate already exists for the node, then the certificate is put into the

CMS keystore and all the signers from the cell are added, by default.

When additional nodes are federated, the signers for these nodes are not automatically added to each

Web server for the CMS keystore. For the Web server plug-in to be able to communicate with a newly

federated node, you must manually exchange signers with the CMSKeyStore keystore. Use the

administrative console keystore certificate management function to exchange signers. For more

information, see “Extracting a signer certificate from a personal certificate” on page 1441.

Dynamic configuration updates

During the Secure Sockets Layer (SSL) runtime, dynamic configuration updates affect both inbound and

outbound SSL endpoints. For inbound SSL endpoints, the changes that are implemented by the SSL

channel are only affected by dynamic changes. For outbound SSL endpoints, all outbound connections

inherit the new configuration changes.

In this release, dynamic update functionality provides you with greater flexibility and efficiency. You can

change SSL configurations without restarting WebSphere Application Server for the changes to take effect.

To make dynamic changes, in the administrative console click Security > SSL certificates and key

management, then select the Dynamically update the runtime when SSL configuration changes

occur check box. You must save your changes and then synchronize the security.xml file with remote

systems. A remote system must be able to confirm that dynamicallyUpdateSSLConfig=true is in the

security.xml file.

The SSL runtime reloads the modified SSL configuration and creates a new SSLEngine for the modified

connections that are associated with inbound endpoints. New outbound connections use the new

configuration while existing connections continue to use the old SSLEngine object and are not affected.

Tip: Make dynamic changes to the SSL configuration during off-peak hours. Synchronization delays can

negatively affect connections when you update SSL configurations during peak hours.

Chapter 16. Security 1379

You can turn on and off the dynamicallyUpdateSSLConfig attribute in the security.xml file to ensure

successful updates by doing the following actions:

1. Set dynamicallyUpdateSSLConfig=On.

2. Save the updated configuration.

3. Synchronize the security.xml file with remote systems.

4. Set the dynamicallyUpdateSSLConfig attribute to Off.

You must verify that all of the nodes receive the changes before turning off the

dynamicallyUpdateSSLConfig attribute. Test the changes in a test environment before updating the

production environment.

Tip: Some SSL changes, especially administrative SSL changes, can cause server outages if you fail to

test them first. When a change prevents trust between two endpoints, the endpoints cannot

communicate with each other. Additionally, if administrative SSL connection updates cause system

outages, you might need to disable the nodes after you make corrective changes using the

deployment manager. From the command line, you can manually synchronize the server to retrieve

the new SSL changes, then restart the nodes.

Restriction: In this release, the Object Request Broker (ORB) inbound SSL socket factory and the Admin

SOAP inbound SSL socket factory are not affected by dynamic configuration changes. SSL

socket factories cannot be bound to a port again without affecting the existing connections,

with the exception of the SSL channel. You must restart the server to make a change to the

SSL configuration for these two inbound protocols. Outbound configurations can still be

changed dynamically. These changes are affected because the sockets are created during

each new outbound connection.

Management scope configurations

Inbound and outbound management scopes represent opposing directions during the connection

handshake process. To view inbound and outbound management scopes, use the topology tree view in

the administrative console. You can define Secure Sockets Layer (SSL) configurations to distinguish the

connection requirements for each direction inbound or outbound).

When expanded, the topology tree represents inbound and outbound connections for each management

scope, cell, node group, node, server, cluster, and endpoint. Inbound endpoints require a server certificate.

The SSL configuration specifies the server certificate for server authentication. Outbound endpoints require

validated signers. Outbound endpoints connect to one or more target servers; inbound endpoints receive

requests from one or more clients. The set of peer endpoints for outbound connections is typically a

subset of the set of peer endpoints for inbound connections, which means you must define different

requirements for inbound and outbound connections.

1380 Administering applications and their environment

The following figure shows an example of two nodes: Node1 and Node2. These two nodes are isolated

from one another because their SSL configurations, turststore files, and keystore files are different.

Node1 scope

(Node1SSL Config, default)

Server1 scope

Inherits from Node1

Server2 scope

Inherits from Node1

FINDPOINTS

FINDPOINTS

Inherits from Node1

Inherits from Node1

Cell scope

(CellDefaultSSL Config, default)

Node1 scope

(Node2SSL Config, default)

Server1 scope

Inherits from Node2

Server2 scope

Inherits from Node2

ENDPOINTS

ENDPOINTS

Inherits from Node2

Inherits from Node2

DynamicOutbound. AdminSoapSSLConfig,default ->ADMIN_SOAP
(to allow admin communications to use the same SSL configuration)

In the example of two nodes, note that Node1 cannot communicate with Node2, but each of the two nodes

must be able to communicate with the deployment manager and its administrative functions. With dynamic

outbound selection, you can choose an SSL configuration and a certificate alias that reference a common

truststore. When a process requires the ADMIN_SOAP protocol for an outbound connection, the server

uses this single SSL configuration. Because all of the scopes under the cell level inherit this configuration,

all outbound connections can communicate with the deployment manager. For more information, see

“Dynamic outbound selection of Secure Sockets Layer configurations” on page 1364.

Another way to accomplish this same result is to associate the SSL configuration with the ADMIN_SOAP

endpoint for each individual process, deployment manager, Node1, Node2, Node1Server1, Node1Server2,

Node2Server1, and Node2Server2. However, it is recommended that you use dynamic outbound selection

because it is more efficient when defining a basic SSL configuration, its keystores, and its truststores at

the cell scope. The example shows how to apply the node scope association, but the same principles

apply for node groups, clusters, servers, and endpoints.

Note: If your topology includes clusters that span nodes or if your applications need to communicate

between nodes, the configuration that is shown in the example does not work.

Certificate management using iKeyman

Starting in WebSphere Application Server Version 6.1, you can manage your certificates from the

administrative console. When using versions of WebSphere Application Server prior to Version 6.1, use

iKeyman for certificate management. iKeyman is a key management utility.

WebSphere Application Server certificate management requires that you define the keystores in your

WebSphere Application Server configuration. With iKeyman, you need access to the keystore file only. You

can read a keystore file with personal certificates and signers that is created in iKeyman can be read into

the WebSphere Application Server configuration by using the createKeyStore command.

Chapter 16. Security 1381

The majority of certificate management functions are the same between WebSphere Application Server

and iKeyman, especially for personal certificates and signer certificates. However, certificate requests are

special. The underlying behavior is different in the two certificate management schemes. Because of the

different behavior, when a certificate request is generated from iKeyman, the process must be completed

in iKeyman. For example, a certificate that is generated by a certificate request that originated in iKeyman

must be received in iKeyman as well.

The same is true for WebSphere Application Server. For example, when a certificate is generated from a

certificate request that originated in WebSphere Application Server, the certificate must be received in

WebSphere Application Server.

You can perform the following certificate operations using iKeyman:

 Types of certificates Functions Description

Personal certificates Create a self-signed certificate Creates a self-signed certificate and stores it in a

keystore.

List personal certificates Lists all the personal certificates in a keystore.

Get information about a personal

certificate

Gets information about a personal certificate.

Delete a personal certificate Deletes a personal certificate from a keystore.

Import a certificate Imports a certificate from a keystore to a keystore.

Export a certificate Exports a certificate from a keystore to another

keystore.

Extract a certificate Extracts the signer part of a personal certificate to a

file.

Receive a certificate Reads a certificate that comes from a certificate

authority (CA) into a keystore.

Signer certificates Add a signer certificate Adds a signer certificate from a file to a keystore.

List signer certificates Lists all the signer certificates in a keystore.

Get information about a signer

certificate

Gets information about a signer certificate.

Delete a signer certificate Deletes a signer certificate from a keystore.

Extract a signer certificate Extracts a signer certificate from a keystore, and

stores the certificate in a file.

Certificate requests Create a certificate request Creates a certificate request that can be sent to a

CA.

List certificate requests Lists the certificate requests in a keystore.

Get information about a certificate

request

Gets information about a certificate request.

Delete a certificate request Deletes a certificate request from a keystore.

Extract a certificate request Extracts a certificate request to a file.

Certificate management

You can manage certificate operations that involve personal certificates, signer certificates, and personal

certificate requests on the administrative console.

Types of certificates

WebSphere Application Server uses the certificates that reside in keystores to establish trust for a Secure

Sockets Layer (SSL) connection. Click Security > SSL certificate and key management > Manage

1382 Administering applications and their environment

endpoint security configurations > Inbound | Outbound > SSL_configuration_name > Key stores

and certificates, then select an existing or create a new keystore. After selecting a keystore, and

depending on the type of certificate you need, choose one of the following types of certificates under

Related Items:

v Personal certificate

v Signer certificate

v Personal certificate request

The following table describes the certificate operations that you can perform on the administrative console:

 Types of certificates Functions Description

Personal certificates Create a self-signed certificate Creates a self-signed certificate and stores it in a

keystore.

List personal certificates Lists all the personal certificates in a keystore.

Get information about a personal

certificate

Gets information about a personal certificate.

Delete a personal certificate Deletes a personal certificate from a keystore.

Import a certificate Imports a certificate from a keystore to a keystore.

Export a certificate Exports a certificate from a keystore to another

keystore.

Extract a certificate Extracts the signer part of a personal certificate to

a file.

Exchange signer certificates Exchange signer part of a personal certificate

between key store.

Receive a certificate Reads a certificate that comes from a certificate

authority (CA) into a keystore.

Replace a certificate Replaces all occurrences of a personal certificate

alias in the WebSphere Application Server

configuration with another certificate. Also, replaces

all occurrences of the personal certificates signer

with the new personal certificate signer.

Signer certificates Add a signer certificate Adds a signer certificate from a file to a keystore.

List signer certificates Lists all the signer certificates in a keystore.

Get information about a signer

certificate

Gets information about a signer certificate.

Delete a signer certificate Deletes a signer certificate from a keystore.

Extract a signer certificate Extracts a signer certificate from a keystore, and

stores the certificate in a file.

Retrieve a signer from a port Retrieves a signer certificate from a port, and

stores it in a key store.

Certificate requests Create a certificate request Creates a certificate request that can be sent to a

CA.

List certificate requests Lists the certificate requests in a keystore.

Get information about a certificate

request

Gets information about a certificate request.

Delete a certificate request Deletes a certificate request from a keystore.

Extract a certificate request Extracts a certificate request to a file.

Chapter 16. Security 1383

Personal certificates

The following table lists the operations that you can perform on personal certificates, the AdminTask object

that you can use to perform that operation, and how to navigate to the certificate on the console:

 Function AdminTask object Administrative console

Create a self-signed

certificate

createSelfSigneCertificate Security > Secure Communications > Key store and

certificates > key store > Create a Self-Signed

Certificate

List personal certificates listPersonalCertificates Security > Secure Communications > Key store and

certificates > key store > personal certificates

Get information about a

personal certificate

getPersonalCertificate Security > Secure Communications > Key store and

certificates > key store > personal certificates > alias

Delete a personal certificate deletePersonalCertificate Security > Secure Communications > Key store and

certificates > key store > personal certificates >

delete

Import a certificate importCertificate Security > Secure Communications > Key store and

certificates > key store > personal certificates >

import

Export a certificate exportCertificate Security > Secure Communications > Key store and

certificates > key store > personal certificates >

export

Extract a certificate extractCertificate Security > Secure Communications > Key store and

certificates > key store > personal certificates >

extract

Exchange signer certificates exchangeSignerCertificates Security > Secure Communications > Key store and

certificates > Exchange signers

Signer certificates

The following table lists the operations that you can perform with signer certificates, the AdminTask object

that you can use to perform the operation, and how to navigate to the certificate on the console:

 Function AdminTask object Administrative console

Add a signer certificate addSignerCertificate Security > Secure communications > Key store and

certificates > key store > signer certificates > Add

List signer certificates listSignerCertificates Security > Secure communications > Key store and

certificates > key store > signer certificates

Get information about a

signer certificate

getSignerCertificate Security > Secure communications > Key store and

certificates > key store > signer certificates > alias

Delete a signer certificate deleteSignerCertificate Security > Secure communications > Key store and

certificates > key store > signer certificate >delete

Extract a signer certificate to

a file

extractSignerCertificate Security > Secure communications > Key store and

certificates > key store > signer certificates >

extract

Retrieve a signer certificate

from a port

retrieveSignerFromPort Security > Secure communications > Key store and

certificates > key store > signer certificates >

retrieve from port

1384 Administering applications and their environment

Personal certificate requests

The following table lists the operations that you can perform on personal certificate requests, the

AdminTask object that you can use to perform that operation, and how to navigate to the certificate

request on the console:

 Function AdminTask object Administrative console

Create a personal certificate

request

createCertificateRequest Security > Secure communications > Key store and

certificates > key store > Personal certificate

Requests > Add

List personal certificate

requests

listCertificateRequests Security > Secure communications > Key store and

certificates > key store > Personal certificate

requests

Get information about a

personal certificate request

getCertificateRequest Security > Secure communications > Key store and

certificates > key store > Personal certificate

requests > alias

Delete a personal certificate

request

deleteCertificateRequest Security > Secure communications > Key store and

certificates > key store > Personal certificate

requests > delete

Extract a personal certificate

request to a file

extractCertificateRequest Security > Secure communications > Key store and

certificates > key store > Personal certificate

requests > Extract

Creating a Secure Sockets Layer configuration

Secure Sockets Layer (SSL) configurations contain the attributes that you need to control the behavior of

client and server SSL endpoints. You create SSL configurations with unique names within specific

management scopes on the inbound and outbound tree in the configuration topology. This task shows you

how to define SSL configurations, including quality of protection and trust and key manager settings.

You must decide at which scope you need to define an SSL configuration, for instance, the cell, node

group, node, server, cluster, or endpoint scope, from the least specific to the most specific scope. When

you define an SSL configuration at the node scope, for example, only those processes within that node

can load the SSL configuration; however, any processes at the endpoint in the cell can use an SSL

configuration at the cell scope, which is higher in the topology.

You must also decide which scope to associate with the new SSL configuration, according to the

processes that the configuration affects. For example, an SSL configuration for a hardware cryptographic

device might require a keystore that is available only on a specific node, or you might need an SSL

configuration for a connection to a particular SSL host and port. For more information, see “Dynamic

outbound selection of Secure Sockets Layer configurations” on page 1364.

Complete the following steps in the administrative console:

 1. Click Security > SSL certificate and key management > Manage endpoint security

configurations.

 2. Select an SSL configuration link on either the Inbound or Outbound tree, depending on the process

you are configuring.

v If the scope is already associated with a configuration and alias, the SSL configuration alias and

certificate alias are noted in parentheses.

v If the parenthetical information is not included, then the scope is not associated. Instead, the scope

inherits the configuration properties of the first scope above it that is associated with an SSL

configuration and certificate alias.

Chapter 16. Security 1385

The cell scope must be associated with an SSL configuration because it is at the top of the topology

and represents the default SSL configuration for the inbound or outbound connection.

 3. Click SSL configurations under Related Items. You can view and select any of the SSL

configurations that are configured at this scope. You can also view and select these configuration at

every scope that is lower on the topology.

 4. Click New to display the SSL configuration panel. You cannot select links under Additional Properties

until you type a configuration name and click Apply.

 5. Type an SSL configuration name. This field is required. The configuration name is the SSL

configuration alias. Make the alias name unique within the list of SSL configuration aliases that are

already created at the selected scope. The new SSL configuration uses this alias for other

configuration tasks.

 6. Select a truststore name from the drop-down list. A truststore name refers to a specific truststore that

holds signer certificates that validate the trust of certificates sent by remote connections during an

SSL handshake. If there is no truststore in the list, see “Creating a keystore configuration” on page

1422 to create a new truststore, which is a keystore whose role is to establish trust during the

connection.

 7. Select a keystore name from the drop-down list. A keystore contains the personal certificates that

represent a signer identity and the private key that WebSphere Application Server uses to encrypt

and sign data.

v If you change the keystore name, click Get certificate aliases to refresh the list of certificates from

which you can choose a default alias. WebSphere Application Server uses a server alias for

inbound connections and a client alias for outbound connections.

v If there is no keystore in the list, see “Creating a keystore configuration” on page 1422 to create a

new keystore.

 8. Choose a default server certificate alias for inbound connections. Select the default only when you

have not specified an SSL configuration alias elsewhere and have not selected a certificate alias. A

centrally managed SSL configuration tree can override the default alias. For more information, see

“Central management of Secure Sockets Layer configurations” on page 1365.

 9. Choose a default client certificate alias for outbound connections. Select the default only when the

server SSL configuration specifies an SSL client authentication.

10. Review the identified management scope for the SSL configuration. Make the management scope in

this field identical to the link you selected in Step 2. If you want to change the scope, you must click a

different link in the topology tree and continue at Step 3.

11. Click Apply if you intend to configure Additional Properties. If not, go to Step 24.

12. Click Quality of protection (QoP) settings under Additional Properties. QoP settings define the

strength of the SSL encryption, the integrity of the signer, and the authenticity of the certificate.

13. Select a client authentication setting to establish an SSL configuration for inbound connections and

for clients to send their certificates, if appropriate.

v If you select None, the server does not request that a client send a certificate during the

handshake.

v If you select Supported, the server requests that a client send a certificate. However, if the client

does not have a certificate, the handshake might still succeed.

v If you select Required, the server requests that a client send a certificate. However, if the client

does not have a certificate, the handshake fails.

Important: The signer certificate that represents the client must be in the truststore that you select

for the SSL configuration. By default, servers within the same cell trust each other

because they use the common truststore, trust.p12, that is located in the cell directory

of the configuration repository. However, if you use keystores and truststores that you

create, perform a signer exchange before you select either Supported or Required.

14. Select a protocol for the SSL handshake.

1386 Administering applications and their environment

v The default protocol, SSL_TLS, supports client protocols TLSv1, SSLv3, and SSLv2.

v The TLSv1 protocol supports TLS and TLSv1. The SSL server connection must support this

protocol for the handshake to proceed.

v The SSLv3 protocol supports SSL and SSLv3. The SSL server connection must support this

protocol for the handshake to proceed.

Important: Do not use the SSLv2 protocol for the SSL server connection. Use it only when

necessary on the client side.

15. Select one of the following options:

v A predefined Java Secure Socket Extension (JSSE) provider. The IBMJSSE2 provider is

recommended for use on all platforms which support it. It is required for use by the channel

framework SSL channel. When Federal Information Processing Standard (FIPS) is enabled,

IBMJSSE2 is used in combination with the IBMJCEFIPS crypto provider.

v A custom JSSE provider. Type a provider name in the Custom provider field.

16. Select from among the following cipher suite groups:

v Strong: WebSphere Application Server can perform 128-bit confidentiality algorithms for

encryption and support integrity signing algorithms. However, a strong cipher suite can affect the

performance of the connection.

v Medium: WebSphere Application Server can perform 40-bit encryption algorithms for encryption

and support integrity signing algorithms.

v Weak: WebSphere Application Server can support integrity signing algorithms but not to perform

encryption. Select this option with care because passwords and other sensitive information that

cross the network are visible to an Internet Protocol (IP) sniffer.

v Custom: you can select specific ciphers. Any time you change the ciphers that are listed from a

specific cipher suite group, the group name changes to Custom.

17. Click Update selected ciphers to view a list of the available ciphers for each cipher strength.

18. Click OK to return to the new SSL configuration panel.

19. Click Trust and key managers under Additional Properties.

20. Select a default trust manager for the primary SSL handshake trust decision.

v Choose IbmPKIX when you require certificate revocation list (CRL) checking using CRL distribution

points in the certificates.

v Choose IbmX509 when you do not require CRL checking but do need increased performance. You

can configure a custom trust manager to perform CRL checking, if necessary.

21. Define a custom trust manager, if appropriate. You can define a custom trust manager that runs with

the default trust manager you select. The custom trust manager must implement the JSSE

javax.net.ssl.X509TrustManager interface and, optionally, the

com.ibm.wsspi.ssl.TrustManagerExtendedInfo interface to obtain product-specific information.

a. Click Security > SSL certificate and key management > Manage endpoint security

configurations > SSL_configuration > Trust and key managers > Trust managers > New.

b. Type a unique trust manager name.

c. Select the Custom option.

d. Type a class name.

e. Click OK. When you return to the Trust and key managers panel, the new custom trust manager

displays in the Additional ordered trust managers field. Use the left and right list boxes to add

and remove custom trust managers.

22. Select a key manager for the SSL configuration. By default, IbmX509 is the only key manager unless

you create a custom key manager.

Important: If you choose to implement your own key manager, you can affect the alias selection

behavior because the key manager is responsible for selecting the certificate alias from

Chapter 16. Security 1387

the keystore. The custom key manager might not interpret the SSL configuration as the

WebSphere Application Server key manager IbmX509 does. To define a custom key

manager, click Security > Secure communications > SSL configurations >

SSL_configuration > Trust and key managers > Key managers > New.

23. Click OK to save the trust and key manager settings and return to the new SSL configuration panel.

24. Click Save to save the new SSL configuration.

Important: You can override the default trust manager when you configure at least one custom trust

manager and set the com.ibm.ssl.skipDefaultTrustManagerWhenCustomDefined property to

true. Click Custom Property on the SSL configuration panel. However, if you change the

default, you leave all the trust decisions to the custom trust manager, which is not

recommended for production environments. In test environments, use a dummy trust manager

to avoid certificate validation. Remember that these environment are not secure.

In this release of WebSphere Application Server, you can associate SSL configurations with protocols

using one of the following methods:

v Set the SSL configuration on the thread programmatically

v Associate the SSL configuration with an outbound protocol, and target host and port. For more

information, see “Associating a Secure Sockets Layer configuration dynamically with an outbound

protocol and remote secure endpoint” on page 1404

v Associate the SSL configuration directly using the alias. For more information, see

tsec_sslselconfigdirect.dita

v Manage the SSL configurations centrally by associating them with SSL configuration groups or zones

that are scoped for endpoints. For more information, see “Associating Secure Sockets Layer

configurations centrally with inbound and outbound scopes” on page 1407

SSL certificate and key management

Use this page to configure security for Secure Socket Layer (SSL) and key management, certificates, and

notifications. The SSL protocol provides secure communications between remote server processes or

endpoints. SSL security can be used for establishing communications inbound to and outbound from an

endpoint. To establish secure communications, a certificate and an SSL configuration must be specified for

the endpoint.

To view this administrative console page, click Security > SSL certificate and key management.

Configuration settings:

Specifies the following administrative console tasks:

v Manage endpoint security configurations

v Manage certificate expiration

Use Federal Information Processing Standard (FIPS) algorithms:

Specifies the Federal Information Processing Standard (FIPS)-compliant Java cryptography engine is

enabled.

v Does not affect the SSL cryptography that is performed by the application server for z/OS System

Secure Sockets Layer (SSSL).

v Does not change the JSSE provider if this cell includes any Application Server versions before the

application server for z/OS Version 6.0.x.

When you select the Use the Federal Information Processing Standard (FIPS) option, the Lightweight

Third Party Authentication (LTPA) implementation uses IBMJCEFIPS. IBMJCEFIPS supports the Federal

Information Processing Standard (FIPS)-approved cryptographic algorithms for Data Encryption Standard

(DES), Triple DES, and Advanced Encryption Standard (AES). Although the LTPA keys are backwards

1388 Administering applications and their environment

tsec_sslselconfigdirect.dita

compatible with prior releases of the application server, the LTPA token is not compatible with prior

releases. In prior releases, the application server did not generate the LTPA token using a FIPS-approved

algorithm.

The IBMJSSE2 JSSE provider does not perform cryptographic functions directly, and therefore does not

need to be FIPS-approved. Instead, the IBMJSSE2 JSSE provider uses the JCE framework for

cryptographic functions and uses IBMJCEFIPS when FIPS mode is enabled.

Important:

HP�UX

The IBMJSSEFIPS provider is not supported on the HP-UX platform. However, the

IBMJSSE2 provider, which uses IBMJCEFIPS, is supported on the HP-UX platform.

 Default: Disabled

Dynamically update the runtime when SSL configuration changes occur:

Specifies that all of the SSL-related attributes that change must be read from the configuration dynamically

after they have been saved, then reused for new connections. To avoid customer impact, it is

recommended that changes to production servers be made during off-peak periods.

 Default: Disabled

When this option is selected, the configuration is updated each time you configure an SSL communication.

SSL configurations for selected scopes

Use this page to display Secure Socket Layer (SSL) configurations for selected scopes, such as a cell,

node, server, or cluster. From this page you can navigate to configuration panels for the following: SSL

configurations, dynamic inbound and outbound endpoint SSL configurations, key stores, key sets, key set

groups, key managers, and trust managers.

To view this administrative console page, click Security > SSL certificate and key management >

Manage endpoint security configurations > {Inbound | Outbound} > ssl_configuration.

Name:

Specifies the SSL configuration scope, which is derived from the selected object in the hierarchy.

 Data type: Text

Direction:

Specifies the direction for which the SSLConfig applies. Inbound refers to any listener port. Outbound

refers to outbound end point connections.

 Data type: Text

Inherited SSL configuration name:

Specifies the name of the SSL configuration that is inherited from a higher level scope

 This field displays for server and nodegroups within the object hierarchy.

 Data type: Text

Chapter 16. Security 1389

Inherited certificate alias:

Specifies the certificate alias that is inherited from a higher-level scope.

 This field displays for server and node groups within the object hierarchy.

 Data type: Text

Override inherited values:

Specifies the SSL configuration to be used for this scope and any lower scopes that have not already

designated an SSL configuration.

 This field displays for server and node groups within the object hierarchy.

 Default: Disabled

SSL configuration:

Specifies the SSL configuration that is used by requests at this scope.

 Data type: Text

Update certificate alias list:

Specifies the certificate aliases contained in the key store for this SSL configuration can be selected from

the Certificate alias in key store list. You must update the certificate list after choosing a different SSL

configuration alias. If you do not update the list, you will save a certificate alias that is not contained in the

SSL configuration.

Manage certificates:

Specifies to open the keystore panel for the key store in this SSL configuration, which enables you to

manage personal certificates, signers, and certificate requests.

Certificate alias in key store:

Specifies the certificate to use in the key store.

 If you select None, the Java Secure Sockets Extension (JSSE) key manager determines which certificate

is used. If multiple certificates exist in the key store, the key manager might not consistently select the

same certificate.

 Data type: Text

SSL configurations collection

Use this page to define a list of Secure Sockets Layer (SSL) configurations.

To view this administrative console page, click Security > SSL certificate and key management >

Manage endpoint security configurations > {Inbound | Outbound} > ssl_configuration . Under

Related items, click SSL configurations.

1390 Administering applications and their environment

Button Resulting action

New The Java Secure Socket Extension (JSSE) repertoire is for Java-based SSL

communications. You can define a new JSSE configuration that can be used

to create an SSLContext, URLStreamHandler, SSLSocketFactory,

SSLServerSocketFactory, and so on, using the

com.ibm.websphere.ssl.JSSEHelper API.

Delete Deletes an existing JSSE configuration (administrator only). Be careful that

any references to the SSL configuration have been removed prior to deleting

this SSL configuration.

Name:

Specifies the unique name of the SSL configuration in the management scope.

SSL configuration settings

Use this page to define Secure Sockets Layer (SSL) configuration properties.

To view this administrative console page, click Security > SSL certificate and key management >

Manage endpoint security configurations > {Inbound | Outbound} > SSL_configuration_name.

Under Related items click SSL configurations > New.

Name:

Specifies the unique name of the SSL configuration within the management scope in which it resides. For

ways to programmatically access the properties that are configured for this SSL configuration, see the

com.ibm.websphere.ssl.JSSEHelper application programming interface (API).

 Data type: Text

Trust store name:

Specifies a reference to a specific trust store used by Java Secure Sockets Extension (JSSE). The trust

store holds signer certificates that validate the trust of certificates sent by remote connections during an

SSL handshake.

 Data type: Text

Default: selected trust store

Key store name:

Specifies a reference to a specific key store. The key store holds personal certificates that represent the

identity of one side of a connection. The public key of this personal certificate is sent to the other side of

the connection to establish trust during the handshake. The remote side of the connection needs the root

certificate authority (CA) certificate or self-signed public key (signer) to be in the trust store to validate this

personal certificate.

 Data type: Text

Default: selected key store

Get certificate aliases:

Queries the keystore for the aliases of all the personal certificates in the keystore from which to choose.

Chapter 16. Security 1391

Default server certificate alias:

Specifies the certificate alias used as the identity for this SSL configuration if one has not been specified

elsewhere.

 If you select None, the Java Secure Sockets Extension (JSSE) key manager determines which certificate

is used. If multiple certificates exist in the key store, the key manager might not consistently select the

same certificate.

 Data type: Text

Default client certificate alias:

Specifies the description for a client certificate alias.

 If you select None, the Java Secure Sockets Extension (JSSE) key manager determines which certificate

is used. If multiple certificates exist in the key store, the key manager might not consistently select the

same certificate.

 Data type: Text

Management scope:

Specifies the scope where this SSL configuration is visible. For example, if you choose a specific node,

then the configuration is visible only on that node and on any servers that are part of that node.

 Data type: Text

Creating a custom trust manager configuration

You can create a custom trust manager configuration at any management scope and associate the new

trust manager with a Secure Sockets Layer (SSL) configuration.

You must develop, package, and locate a Java Archive JAR file for a custom key manager in the

was.install.root/lib/ext directory on WebSphere Application Server. For more information, see

“Example: Developing a custom trust manager for custom SSL trust decisions” on page 1396.

Complete the following steps in the administrative console:

 1. Decide whether you want to create the custom trust manager at the cell scope or below the cell

scope at the node, server, or cluster, for example.

Important: When you create a custom trust manager at a level below the cell scope, you can

associate it only with a Secure Sockets Layer (SSL) configuration at the same scope or

higher. An SSL configuration at a scope lower than the trust manager does not see the

trust manager configuration.

v To create a custom trust manager at the cell scope, click Security > SSL certificate and key

management > Trust managers. Every SSL configuration in the cell can select the trust manager

at the cell scope.

v To create a custom trust manager at a scope below the cell level, click Security > SSL certificate

and key management > Manage endpoint security configurations > {Inbound | Outbound} >

ssl_configuration > Trust managers.

 2. Click New to create a new custom trust manager.

 3. Type a unique trust manager name.

1392 Administering applications and their environment

4. Select the Custom implementation setting. The custom setting enables you to define a Java class

with an implementation of the javax.net.ssl.X509TrustManager Java interface and, optionally, the

com.ibm.wsspi.ssl.TrustManagerExtendedInfo WebSphere Application Server interface.

Note: The standard implementation setting applies only when the trust manager is already defined in

the Java security provider list as a provider and an algorithm, which is not the case for a

custom trust manager.

 5. Type a class name, for example, com.ibm.test.CustomTrustManager.

 6. Select one of the following actions:

v Click Apply, then click Custom properties under Additional Properties to add custom properties to

the new custom trust manager. When you are finished adding custom properties, click OK and

Save, then go to the next step.

v Click OK and Save, then go to the next step.

 7. Click SSL certificate and key management in the page navigation at the top of the panel.

 8. Select one of the following actions:

v Click SSL configurations under Related Items for a cell-scoped SSL configuration.

v Click Manage endpoint security configurations to select an SSL configuration at a lower scope.

 9. Click the link for the existing SSL configuration that you want to associate with the new custom trust

manager. You can create a new SSL configuration instead of associating the custom trust manager

with an existing configuration. For more information, see “Creating a Secure Sockets Layer

configuration” on page 1385.

10. Click Trust and Key managers under Additional Properties. If the new custom trust manager is not

listed in the Additional ordered trust managers list, verify that you selected an SSL configuration

scope that is at the same level or below the scope that you selected in Step 8.

11. Click Add. This action adds the new trust manager to the list of custom trust managers.

12. Click OK and Save.

You have created a custom trust manager configuration that references a JAR file in the install directory of

WebSphere Application Server and associates it with an SSL configuration during the connection

handshake.

You can create a custom trust manager for a pure client. For more information, see “Commands for the

TrustManagerCommands group of the AdminTask object” on page 1629.

Trust and key managers settings:

Use this page to specify trust and key managers for the selected SSL configuration.

 To view this administrative console page, click Security > SSL certificate and key management >

Manage endpoint security configurations > Inbound | Outbound > SSL_configuration_name. Under

Related items click SSL configurations > SSL_configuration_name | New. Under Additional Properties

click Trust and key managers.

Attention: The application server checks the default trust managers first before checking the additional

ordered trust managers in descending order.

Default trust manager:

Specifies the default trust manager, which is typically the IbmX509 trust manager by the IBMJSSE2

provider. The other default trust manager is IbmPKIX, which can be selected when certificate revocation

checks must be made using the X509Certificate CRL distribution list. The IbmPKIX trust manager does not

perform as well as the IbmX509 trust manager.

Chapter 16. Security 1393

Data type: Text

Default: ibmX509TrustManager

Additional ordered trust managers:

Specifies additional trust managers that are used in the order shown for this SSL configuration.

Add:

Specifies to add the selection to the Additional ordered trust managers right-hand list.

Remove:

Specifies to remove the selection from the Additional ordered trust managers right-hand list.

Key manager:

Specifies the key manager that runs for this SSL configuration.

 Data type: Text

Default: IbmX509KeyManager

Trust managers collection:

Use this page to define the implementation settings for the trust manager. A trust manager is a class that

is invoked during an Secure Sockets Layer (SSL) handshake to make trust decisions about the remote

end point. A default trust manager is used to validate the signature and expiration of the certificate.

Custom trust managers can be plugged in to perform an extended certificate and host name check.

 To view this administrative console page, click Security > SSL certificate and key management >

Manage endpoint security configurations > {Inbound | Outbound} > ssl_configuration . Under

Related items, click Trust managers.

 Button Resulting action

New Adds a new trust manager that can be selected by an SSL configuration. A

trust manager is invoked during an SSL handshake and can decide whether

the handshake should be accepted based on the information it knows about

the remote certificate and host.

Delete Deletes an existing trust manager. Make sure the trust manager is not

referenced by any SSL configuration before you delete it.

Name:

Specifies the name of the trust manager. This name is used as a selection in the SSL configuration panel.

Class name:

Specifies a class that implements the javax.net.ssl.X509TrustManager interface. Optionally, the class can

implement the com.ibm.wsspi.ssl.TrustMangerExtendedInfo interface to get extended information about the

connection. The class can use the information to verify the host name and so on.

Algorithm:

Specifies the algorithm name of the trust manager that is implemented by the selected provider.

1394 Administering applications and their environment

Trust managers settings:

This page enables you to view and set definitions for trust manager implementation settings. A trust

manager is a class that gets invoked during a Secure Sockets Layer (SSL) handshake to make trust

decisions about the remote end point. A default trust manager is used to validate the signature and

expiration of the certificate. Custom trust managers can be plugged in to perform an extended certificate

and hostname check.

 To view this administrative console page, click Security > SSL certificate and key management >

Manage endpoint security configurations > {Inbound | Outbound} > ssl_configuration . Under

Related items click Trust managers > New .

Name:

Specifies the name of the trust manager.

 Data type: Text

Default: ibmX509TrustManager

Standard:

Specifies that the trust manager selection is available from a Java provider that is installed in the

java.security file. This provider might be shipped by the Java Secure Sockets Extension (JSSE) or might

be a custom provider that implements the javax.net.ssl.X509TrustManager interface.

 Default: Enabled

Provider:

Specifies the provider name that has an implementation of the javax.net.ssl.X509TrustManager interface.

This provider is typically set to IBMJSSE2.

 Enabled when Standard is selected.

 Default IBMJCE

Algorithm:

Specifies the algorithm name of the trust manager implemented by the selected provider.

 Enabled when Standard is selected.

 Default ibmX509 or IbmPKIX

Range ibmX509, IbmPKIX

Custom:

Specifies that the trust manager selection is based on a custom implementation class that implements the

javax.net.ssl.X509TrustManager interface and optionally the com.ibm.wsspi.ssl.TrustManagerExctendedInfo

interface to obtain additional connection information that is not otherwise available.

 Default: Disabled

Class name:

Chapter 16. Security 1395

Specifies a class that implements the javax.net.ssl.X509TrustManager interface. Optionally, the class can

implement the com.ibm.wsspi.ssl.TrustMangerExtendedInfo interface to get extended information about the

connection. The class can use the information to verify the host name and so on.

 Enabled when Custom is selected.

 Data type: Text

Example: Developing a custom trust manager for custom SSL trust decisions:

The following example is of a sample custom trust manager. The custom trust manager makes no trust

decisions but instead uses the information in the X.509 certificate that it references to make decisions.

 After you build and package the custom trust manager, configure it either from the ssl.client.props file

for a pure client or the SSLConfiguration TrustManager link in the administrative console. See “Trust

manager control of X.509 certificate trust decisions” on page 1358 for more information about trust

managers.

Note: This example should only be used as a sample, and is not supported.
import java.security.cert.X509Certificate;

import javax.net.ssl.*;

import com.ibm.wsspi.ssl.TrustManagerExtendedInfo;

public final class CustomTrustManager implements X509TrustManager,

TrustManagerExtendedInfo

{

 private static ThreadLocal threadLocStorage = new ThreadLocal();

 private java.util.Properties sslConfig = null;

 private java.util.Properties props = null;

 public CustomTrustManager()

 {

 }

 /**

 * Method called by WebSphere Application Server run time to set the target

 * host information and potentially other connection info in the future.

 * This needs to be set on ThreadLocal since the same trust manager can be

 * used by multiple connections.

 *

 * @param java.util.Map - Contains information about the connection.

 */

 public void setExtendedInfo(java.util.Map info)

 {

 threadLocStorage.set(info);

 }

 /**

 * Method called internally to retrieve information about the connection.

 *

 * @return java.util.Map - Contains information about the connection.

 */

 private java.util.Map getExtendedInfo()

 {

 return (java.util.Map) threadLocStorage.get();

 }

 /**

 * Method called by WebSphere Application Server run time to set the custom

 * properties.

 *

 * @param java.util.Properties - custom props

1396 Administering applications and their environment

*/

 public void setCustomProperties(java.util.Properties customProps)

 {

 props = customProps;

 }

 /**

 * Method called internally to the custom properties set in the Trust Manager

 * configuration.

 *

 * @return java.util.Properties - information set in the configuration.

 */

 private java.util.Properties getCustomProperties()

 {

 return props;

 }

 /**

 * Method called by WebSphere Application Server runtime to set the SSL

 * configuration properties being used for this connection.

 *

 * @param java.util.Properties - contains a property for the SSL configuration.

 */

 public void setSSLConfig(java.util.Properties config)

 {

 sslConfig = config;

 }

 /**

 * Method called by TrustManager to get access to the SSL configuration for

 * this connection.

 *

 * @return java.util.Properties

 */

 public java.util.Properties getSSLConfig ()

 {

 return sslConfig;

 }

 /**

 * Method called on the server-side for establishing trust with a client.

 * See API documentation for javax.net.ssl.X509TrustManager.

 */

 public void checkClientTrusted(X509Certificate[] chain, String authType)

 throws java.security.cert.CertificateException

 {

 for (int j=0; j<chain.length; j++)

 {

 System.out.println("Client certificate information:");

 System.out.println(" Subject DN: " + chain[j].getSubjectDN());

 System.out.println(" Issuer DN: " + chain[j].getIssuerDN());

 System.out.println(" Serial number: " + chain[j].getSerialNumber());

 System.out.println("");

 }

 }

 /**

 * Method called on the client-side for establishing trust with a server.

 * See API documentation for javax.net.ssl.X509TrustManager.

 */

 public void checkServerTrusted(X509Certificate[] chain, String authType)

 throws java.security.cert.CertificateException

 {

 for (int j=0; j<chain.length; j++)

 {

 System.out.println("Server certificate information:");

Chapter 16. Security 1397

System.out.println(" Subject DN: " + chain[j].getSubjectDN());

 System.out.println(" Issuer DN: " + chain[j].getIssuerDN());

 System.out.println(" Serial number: " + chain[j].getSerialNumber());

 System.out.println("");

 }

 }

 /**

 * Return an array of certificate authority certificates which are trusted

 * for authenticating peers. You can return null here since the IbmX509

 * or IbmPKIX will provide a default set of issuers.

 *

 * See API documentation for javax.net.ssl.X509TrustManager.

 */

 public X509Certificate[] getAcceptedIssuers()

 {

 return null;

 }

}

 Related concepts

 “Trust manager control of X.509 certificate trust decisions” on page 1358
The role of the trust manager is to validate the Secure Sockets Layer (SSL) certificate that is sent by

the peer, which includes verifying the signature and checking the expiration date of the certificate. A

Java Secure Socket Extension (JSSE) trust manager determines if the remote peer can be trusted

during an SSL handshake.

Creating a custom key manager

You can create a custom key manager configuration at any management scope and associate the new

key manager with a Secure Sockets Layer (SSL) configuration.

You must develop, package, and locate a Java Archive (.JAR) file for a custom key manager in the

was.install.root/lib/ext directory on WebSphere Application Server. For more information, see

rsec_ssldevcustomkeymgr.dita.

Complete the following steps in the administrative console:

 1. Decide whether you want to create the custom key manager at the cell scope or below the cell scope

at the node, server, or cluster, for example.

Important: When you create a custom key manager at a level below the cell scope, you can

associate it only with a Secure Sockets Layer (SSL) configuration at the same scope or

higher. An SSL configuration at a scope lower than the key manager does not see the

key manager configuration.

v To create a custom key manager at the cell scope, click Security > SSL certificate and key

management > Key managers. Every SSL configuration in the cell can select the key manager at

the cell scope.

v To create a custom key manager at a scope below the cell level, click Security > SSL certificate

and key management > Manage endpoint security configurations > {Inbound | Outbound} >

SSL_configuration > Key managers.

 2. Click New to create a new key manager.

 3. Type a unique key manager name.

 4. Select the Custom implementation setting. With the custom setting, you can define a Java class that

has an implementation on the Java interface javax.net.ssl.X509KeyManager and, optionally, the

com.ibm.wsspi.ssl.KeyManagerExtendedInfo WebSphere Application Server interface. The standard

implementation setting applies only when the key manager is already defined in the Java security

provider list as a provider and an algorithm, which is not the case for a custom key manager. The

typical standard key manager is algorithm = IbmX509, provider = IBMJSSE2.

 5. Type a class name. For example, com.ibm.test.CustomKeyManager.

1398 Administering applications and their environment

rsec_ssldevcustomkeymgr.dita

6. Select one of the following actions:

v Click Apply, then click Custom properties under Additional Properties to add custom properties to

the new custom key manager. When you are finished adding custom properties, click OK and

Save, then go to the next step.

v Click OK and Save, then go to the next step.

 7. Click SSL certificate and key management in the page navigation at the top of the panel.

 8. Select one of the following actions:

v Click SSL configurations under Related Items for a cell-scoped SSL configuration.

v Click Manage endpoint security configurations to select an SSL configuration at a lower scope.

 9. Click the link for the existing SSL configuration that you want to associate with the new custom key

manager. You can create a new SSL configuration instead of associating the custom key manager

with an existing configuration. For more information, see “Creating a Secure Sockets Layer

configuration” on page 1385.

10. Click Trust and Key managers under Additional Properties.

11. Select the new custom key manager in the Key manager drop-down list. If the new custom key

manager is not listed, verify that you selected an SSL configuration scope that is at the same level or

below the scope that you selected in Step 8.

12. Click OK and Save.

You have created a custom key manager configuration that references a JAR file in the installation

directory of WebSphere Application Server and associates the custom configuration with an SSL

configuration during the connection handshake.

You can create a custom key manager for a pure client. For more information, see “Commands for the

keyManagerCommands group of the AdminTask object” on page 1633.

Example: Developing a custom key manager for custom Secure Sockets Layer key selection:

The following example is of a sample custom key manager. This simple key manager provides the alias if

it is set, and defers to the custom key manager if it is not set. Additional code can be added, for example,

to prompt for a key that is given to the issuers that are provided.

 After you build and package a custom key manager, you can configure it from either the ssl.client.props

file for a pure client or by using the SSLConfiguration KeyManager link in the administrative console. See

“Key manager control of X.509 certificate identities” on page 1360 for more information about key

managers.

Because only one key manager can be configured at a time for any given Secure Sockets Layer (SSL)

configuration, the certificate selections on the server side might not work as they would when the default

IbmX509 key manager is specified. When a custom key manager is configured, it is up to the owner of

that key manager to ensure that the selection of the alias from the SSL configuration supplied is set

properly when chooseClientAlias or chooseServerAlias are called. Look for the

com.ibm.ssl.keyStoreClientAlias and com.ibm.ssl.keyStoreServerAlias SSL properties.

Note: This example should only be used as a sample, and is not supported.

package com.ibm.test;

import java.security.cert.X509Certificate;

import com.ibm.wsspi.ssl.KeyManagerExtendedInfo;

public final class CustomKeyManager

 implements javax.net.ssl.X509KeyManager, com.ibm.wsspi.ssl.KeyManagerExtendedInfo

{

 private java.util.Properties props = null;

Chapter 16. Security 1399

private java.security.KeyStore ks = null;

 private javax.net.ssl.X509KeyManager km = null;

 private java.util.Properties sslConfig = null;

 private String clientAlias = null;

 private String serverAlias = null;

 private int clientslotnum = 0;

 private int serverslotnum = 0;

 public CustomKeyManager()

 {

 }

 /**

 * Method called by WebSphere Application Server runtime to set the custom

 * properties.

 *

 * @param java.util.Properties - custom props

 */

 public void setCustomProperties(java.util.Properties customProps)

 {

 props = customProps;

 }

 private java.util.Properties getCustomProperties()

 {

 return props;

 }

 /**

 * Method called by WebSphere Application Server runtime to set the SSL

 * configuration properties being used for this connection.

 *

 * @param java.util.Properties - contains a property for the SSL configuration.

 */

 public void setSSLConfig(java.util.Properties config)

 {

 sslConfig = config;

 }

 private java.util.Properties getSSLConfig()

 {

 return sslConfig;

 }

 /**

 * Method called by WebSphere Application Server runtime to set the default

 * X509KeyManager created by the IbmX509 KeyManagerFactory using the KeyStore

 * information present in this SSL configuration. This allows some delegation

 * to the default IbmX509 KeyManager to occur.

 *

 * @param javax.net.ssl.KeyManager defaultX509KeyManager - default key manager for IbmX509

 */

 public void setDefaultX509KeyManager(javax.net.ssl.X509KeyManager defaultX509KeyManager)

 {

 km = defaultX509KeyManager;

 }

 public javax.net.ssl.X509KeyManager getDefaultX509KeyManager()

 {

 return km;

1400 Administering applications and their environment

}

 /**

 * Method called by WebSphere Application Server runtime to set the SSL

 * KeyStore used for this connection.

 *

 * @param java.security.KeyStore - the KeyStore currently configured

 */

 public void setKeyStore(java.security.KeyStore keyStore)

 {

 ks = keyStore;

 }

 public java.security.KeyStore getKeyStore()

 {

 return ks;

 }

 /**

 * Method called by custom code to set the server alias.

 *

 * @param String - the server alias to use

 */

 public void setKeyStoreServerAlias(String alias)

 {

 serverAlias = alias;

 }

 private String getKeyStoreServerAlias()

 {

 return serverAlias;

 }

 /**

 * Method called by custom code to set the client alias.

 *

 * @param String - the client alias to use

 */

 public void setKeyStoreClientAlias(String alias)

 {

 clientAlias = alias;

 }

 private String getKeyStoreClientAlias()

 {

 return clientAlias;

 }

 /**

 * Method called by custom code to set the client alias and slot (if necessary).

 *

 * @param String - the client alias to use

 * @param int - the slot to use (for hardware)

 */

 public void setClientAlias(String alias, int slotnum) throws Exception

 {

 if (!ks.containsAlias(alias))

 {

 throw new IllegalArgumentException ("Client alias " + alias + "

 not found in keystore.");

Chapter 16. Security 1401

}

 this.clientAlias = alias;

 this.clientslotnum = slotnum;

 }

 /**

 * Method called by custom code to set the server alias and slot (if necessary).

 *

 * @param String - the server alias to use

 * @param int - the slot to use (for hardware)

 */

 public void setServerAlias(String alias, int slotnum) throws Exception

 {

 if (! ks.containsAlias(alias))

 {

 throw new IllegalArgumentException ("Server alias " + alias + "

 not found in keystore.");

 }

 this.serverAlias = alias;

 this.serverslotnum = slotnum;

 }

 /**

 * Method called by JSSE runtime to when an alias is needed for a client

 * connection where a client certificate is required.

 *

 * @param String keyType

 * @param Principal[] issuers

 * @param java.net.Socket socket (not always present)

 */

 public String chooseClientAlias(String[] keyType, java.security.Principal[] issuers, java.net.Socket socket
 {

 if (clientAlias != null && !clientAlias.equals(""))

 {

 String[] list = km.getClientAliases(keyType[0], issuers);

 String aliases = "";

 if (list != null)

 {

 boolean found=false;

 for (int i=0; i<list.length; i++)

 {

 aliases += list[i] + " ";

 if (clientAlias.equalsIgnoreCase(list[i]))

 found=true;

 }

 if (found)

 {

 return clientAlias;

 }

 }

 }

 // client alias not found, let the default key manager choose.

 String[] keyArray = new String [] {keyType[0]};

 String alias = km.chooseClientAlias(keyArray, issuers, null);

 return alias.toLowerCase();

1402 Administering applications and their environment

}

 /**

 * Method called by JSSE runtime to when an alias is needed for a server

 * connection to provide the server identity.

 *

 * @param String[] keyType

 * @param Principal[] issuers

 * @param java.net.Socket socket (not always present)

 */

 public String chooseServerAlias(String keyType, java.security.Principal[]

 issuers, java.net.Socket socket)

 {

 if (serverAlias != null && !serverAlias.equals(""))

 {

 // get the list of aliases in the keystore from the default key manager

 String[] list = km.getServerAliases(keyType, issuers);

 String aliases = "";

 if (list != null)

 {

 boolean found=false;

 for (int i=0; i<list.length; i++)

 {

 aliases += list[i] + " ";

 if (serverAlias.equalsIgnoreCase(list[i]))

 found = true;

 }

 if (found)

 {

 return serverAlias;

 }

 }

 }

 // specified alias not found, let the default key manager choose.

 String alias = km.chooseServerAlias(keyType, issuers, null);

 return alias.toLowerCase();

 }

 public String[] getClientAliases(String keyType, java.security.Principal[] issuers)

 {

 return km.getClientAliases(keyType, issuers);

 }

 public String[] getServerAliases(String keyType, java.security.Principal[] issuers)

 {

 return km.getServerAliases(keyType, issuers);

 }

 public java.security.PrivateKey getPrivateKey(String s)

 {

 return km.getPrivateKey(s);

 }

 public java.security.cert.X509Certificate[] getCertificateChain(String s)

 {

 return km.getCertificateChain(s);

 }

Chapter 16. Security 1403

public javax.net.ssl.X509KeyManager getX509KeyManager()

 {

 return km;

 }

}

Associating a Secure Sockets Layer configuration dynamically with an outbound

protocol and remote secure endpoint

After you create a Secure Sockets Layer (SSL) configuration, you must associate a secure outbound

management scope with the new configuration. In this release, you can associate one SSL configuration

with one remote secure endpoint and a different SSL configuration to another remote secure endpoint.

Both endpoints can use the same outbound protocol, if appropriate. This task describes how to create the

association dynamically.

Dynamic outbound selection requires that you provide only the outbound protocol name, the target host,

and the target port so that WebSphere Application Server can make a connection between the SSL

configuration and the outbound protocol or remote secure endpoint. The dynamic outbound selection

method takes precedence over other selection methods, such as central management and direct selection,

but is second to the programmatic method, that is, setting an SSL configuration on the running thread. For

more information about the selection types and precedence rules, see “Secure communications using

Secure Sockets Layer” on page 1349.

Complete the following steps in the administrative console:

 1. Click Security > SSL certificate and key management > Manage endpoint security

configurations > Outbound.

 2. Select the management scope that you want to associate with an SSL configuration on the topology

tree.

 3. Under Related Items, click Dynamic outbound endpoint SSL configurations. The default dynamic

outbound configuration name, the target protocol, host, and port connection information, and the SSL

configuration name display.

 4. Click New to create a new dynamic outbound configuration.

 5. Type a dynamic outbound configuration name. Use a name that is descriptive of the purpose of the

dynamic selection configuration.

 6. Optionally, type a dynamic selection configuration description.

 7. Type the connection information that you want to associate with the configuration that is displayed in

the SSL configuration drop-down list. The connection information must be in the format protocol

name, target host, target port. You can substitute an asterisk (*) for any value, as in the following

examples:

v *,*,443

v *,www.ibm.com,443

v HTTP,.austin.ibm.com,*

where 443 is a port, www.ibm.com is a host, HTTP is a protocol, and .austin.ibm.com is a target host.

You can add multiple connections, but each additional connection can affect outbound performance.

 8. Click Add to add the new connection to the set of SSL configuration connections. To remove a

connection, select it and click Remove.

 9. Select an SSL configuration from the list.

10. Click Get certificate aliases to refresh the certificate aliases that are contained in the associated key

store.

11. Choose a certificate alias from the list.

12. Click OK and Save.

1404 Administering applications and their environment

WebSphere Application Server is ready to connect one or more SSL configurations to one or more remote

secure endpoints.

You can return to the outbound tree and select another management scope to associate with the same or

a new outbound configuration.

Example: Programmatically specifying an outbound SSL configuration using JSSEHelper API:

WebSphere Application Server provides a way to specify programmatically which Secure Sockets Layer

(SSL) configurations to use prior to making an outbound connection. The

com.ibm.websphere.ssl.JSSEHelper interface provides a complete set of application programming

interfaces (APIs) for handling SSL configurations.

 You must perform the following steps for your application when using the JSSEHelper API to establish an

SSL properties object on the thread for use by the runtime. Some of these APIs have Java 2 Security

permission requirements. See the JSSEHelper API documentation for more information about the

permissions required by your application.

1. Obtain an instance of the JSSEHelper API by typing the following command:

com.ibm.websphere.ssl.JSSEHelper jsseHelper

= com.ibm.websphere.ssl.JSSEHelper.getInstance();

2. Obtain SSL properties from the WebSphere Application Server configuration or use those provided by

your application. You can obtain these properties in several ways:

v By direction selection of an alias name, within the same management scope or higher as in the

following example:

try

{

 String alias = "NodeAServer1SSLSettings";

// As specified in the WebSphere SSL configuration

 Properties sslProps = jsseHelper.getProperties(alias);

}

catch (com.ibm.websphere.ssl.SSLException e)

{

 e.printStackTrace(); // handle exception

}

v By using the getProperties API for programmatic, direction, dynamic outbound, or management

scope selection (based on precedence rules and inheritance). The SSL runtime uses the

getProperties API to determine which SSL configuration to use for a particular protocol. This

decision is based on both the input (sslAlias and connectionInfo) and the management scope from

which the property is called. The getProperties API makes decisions in the following order:

a. The API checks the thread to see if properties already exist.

b. The API checks for a dynamic outbound configuration that matches the ENDPOINT_NAME,

REMOTE_HOST, and or REMOTE_PORT.

c. The API checks to see if the optional sslAlias property is specified. You can configure any

protocol as direct or centrally managed. When a protocol is configured as direct, the sslAlias

parameter is null. When a protocol is configured as centrally managed, the sslAlias parameter

is also null.

d. If no selection has been made, the API chooses the dynamic outbound configuration based on

the management scope it was called from. If the dynamic outbound configuration is not defined

in the same scope, it then searches the hierarchy to locate one.

The last choice is the cell-scoped SSL configuration (in Network Deployment) or the node-scoped

SSL configuration (in Base Application Server). The

com.ibm.websphere.ssl.SSLConfigChangeListener parameter is notified when the SSL configuration

that is chosen by a call to the getProperties API changes. The protocol can then call the API again

to obtain the new properties as in the following example:

Chapter 16. Security 1405

try

{

 String sslAlias = null; // The sslAlias is not specified directly at this time.

 String host = "myhost.austin.ibm.com"; // the target host

 String port = "443"; // the target port

 HashMap connectionInfo = new HashMap();

 connectionInfo.put(JSSEHelper.CONNECTION_INFO_DIRECTION,

 JSSEHelper.DIRECTION_OUTBOUND);

 connectionInfo.put(JSSEHelper.CONNECTION_INFO_REMOTE_HOST, host);

 connectionInfo.put(JSSEHelper.CONNECTION_INFO_REMOTE_PORT,

 Integer.toString(port));

 connectionInfo.put(JSSEHelper.CONNECTION_INFO_ENDPOINT_NAME,

 JSSEHelper.ENDPOINT_IIOP);

 java.util.Properties props = jsseHelper.getProperties(sslAlias,

 connectionInfo, null);

}

catch (com.ibm.websphere.ssl.SSLException e)

{

 e.printStackTrace(); // handle exception

}

v By creating your own SSL properties and then passing them to the runtime, as in the following

example:

try

{

 // This is the recommended "minimum" set of SSL properties. The trustStore can

 // be the same as the keyStore.

 Properties sslProps = new Properties();

 sslProps.setProperty("com.ibm.ssl.trustStore", "some value");

 sslProps.setProperty("com.ibm.ssl.trustStorePassword", "some value");

 sslProps.setProperty("com.ibm.ssl.trustStoreType", "some value");

 sslProps.setProperty("com.ibm.ssl.keyStore", "some value");

 sslProps.setProperty("com.ibm.ssl.keyStorePassword", "some value");

 sslProps.setProperty("com.ibm.ssl.keyStoreType", "some value");

 jsseHelper.setSSLPropertiesOnThread(sslProps);

}

catch (com.ibm.websphere.ssl.SSLException e)

{

 e.printStackTrace(); // handle exception

}

3. Use the JSSEHelper.setSSLPropertiesOnThread(props) API to set the Properties object on the thread

so that the runtime picks it up and uses the same JSSEHelper.getProperties API. You can also obtain

properties from the thread after they are set with the jsseHelper.getSSLPropertiesOnThread() API, as

in the following example:

try

{

 Properties sslProps = jsseHelper.getProperties(null,

 connectionInfo, null); jsseHelper.setSSLPropertiesOnThread(sslProps);

}

catch (com.ibm.websphere.ssl.SSLException e)

{

 e.printStackTrace(); // handle exception

}

4. When the connection is completed, you must clear the SSL properties from the thread by passing the

null value to the setPropertiesOnThread API, as in the following example:

try

{

 jsseHelper.setSSLPropertiesOnThread(null);

}

1406 Administering applications and their environment

catch (com.ibm.websphere.ssl.SSLException e)

{

 e.printStackTrace(); // handle exception

}

Select the approach that best fits your connection situation when you specify programmatically which

Secure Sockets Layer (SSL) configurations to use prior to making an outbound connection.

Associating Secure Sockets Layer configurations centrally with inbound and outbound scopes:

After you create a Secure Sockets Layer (SSL) configuration, you must associate a secure inbound or

outbound management scope with the new configuration. You can manage the association centrally so

that you can easily make changes that affect all the scopes that are lower on the topology and that are

associated with the configuration. Beginning with WebSphere Application Server version 6.1, the

recommended and the default configuration method is centrally managed SSL configurations.

 You can simplify the number of associations that you need to make for an SSL configuration by

associating the configuration with the highest level management scope requiring a unique configuration.

SSL configuration associations manifest inheritance behaviors. Because of the inheritance behaviors, all of

the scopes that are lower on the topology inherit this SSL configuration. For example, an association you

make at the cell level affects nodes, servers, clusters, and endpoints. For more information, see “Central

management of Secure Sockets Layer configurations” on page 1365.

A precedence rule determines which SSL configuration association is used at a particular scope. The

highest precedence is given to endpoints on the topology. If you establish an association at the endpoint,

this association overrides any prior association that you made higher up on the management scope

topology.

Complete the following steps in the administrative console:

 1. Click Security > SSL certificate and key management.

 2. Select the Dynamically update the runtime when SSL configuration changes check box if you

want changes that you make to an existing SSL configuration to occur dynamically. All outbound SSL

communications honor the dynamic SSL changes. Protocols that do not use the channel frameworks

SSL channel for inbound communications, including Object Request Broker (ORB) and administrative

SOAP protocols, do not honor dynamic updates. For more information, see “Dynamic configuration

updates” on page 1379.

 3. Click Manage endpoint security configurations.

 4. Select either the inbound or the outbound tree. After finishing the selected tree, you can return to this

step to repeat the following steps for the other tree.

 5. Click the link for the selected cell, node, node group, server, cluster, or endpoint on the topology tree.

If the scope already has an associated SSL configuration and alias, these objects display in

parentheses immediately following the scope name, for example:

Node01(NodeDefaultSSLSettings,default). If the deployment manager has federated a node, the node

scope SSL configuration overrides the cell scope configuration above it in the topology.

 6. Decide whether to override the inherited values that display in the read-only fields. Read-only fields

include the management scope name, the direction, and the inherited SSL configuration name and

certificate alias.

v If you are satisfied with these values, do not override them.

v If you want to override the inherited values, select the Override inherited values check box.

 7. Select an SSL configuration from the list.

 8. Click Update certificate alias list. The certificate alias list comes from the key store that is

referenced by the new SSL configuration.

 9. Click Manage certificates if you want to manage the personal certificates that are contained in the

key store that is referenced in the SSL configuration.

Chapter 16. Security 1407

10. Click Update certificate alias list to refresh the list of aliases.

11. Select a certificate alias in the key store to represent the identity of the endpoint.

12. Click OK to save your changes.

13. Click Manage endpoint security configurations and trust zones to return to the topology tree.

14. Configure the opposite direction on the topology tree using the steps in this task. You can also select

additional scopes to associate with the SSL configuration, as needed.

Each SSL configuration at the selected scope and at scopes beneath it on the topology tree have the

same SSL configuration properties. The following SSL configuration methods override the centrally

managed configurations that you associate in the tree view:

v Direct selection at the endpoint

v Dynamic outbound SSL configuration associations

v Programmatic specifications

At any management scope, you can configure the following objects: dynamic outbound endpoint SSL

configurations, key stores, key sets, key set groups, key managers, and trust managers. Like SSL

configurations, these objects are scoped automatically so that they are not visible higher up in the tree nor

are they loaded during runtime by processes that are higher up in the tree.

Selecting an SSL configuration alias directly from an endpoint configuration:

You can associate a secure outbound endpoint with a new Secure Sockets Layer (SSL) configuration

directly. If you are migrating from a release prior to version 6.1, WebSphere Application Server still

supports configurations that were selected directly at an endpoint. Direct selection always overrides

centrally managed configurations and preserves migrated configurations.

 Select an SSL configuration alias directly at the following endpoints:

v Security > Secure administration, applications, and infrastructure > RMI/IIOP security > CSIv2

outbound transport

v Security > Secure administration, applications, and infrastructure > RMI/IIOP security > CSIv2

inbound transport

v System administration > Deployment manager > Transport Chain > WCInboundAdminSecure >

SSL inbound channel (SSL_1)

v System administration > Deployment manager > Administration Services > JMX connectors >

SOAPConnector > Custom Properties > sslConfig

v System administration > Node agents > nodeagent > Administration Services > JMX connectors

> SOAPConnector > Custom Properties > sslConfig

v Servers > Application servers > server1 > Messaging engine inbound transports >

InboundSecureMessaging > SSL inbound channel (SIB_SSL_JFAP)

v Servers > Application servers > server1 > WebSphere MQ link inbound transports >

InboundSecureMQLink > SSL inbound channel (SIB_SSL_MQFAP)

v Servers > Application servers > server1 > SIP Container Settings > SIP container transport

chains > SIPCInboundDefaultSecure > SSL inbound channel (SSL_5)

v Servers > Application servers > server1 > Web Container Settings > Web container transport

chains > WCInboundAdminSecure > SSL inbound channel (SSL_1)

v Servers > Application servers > server1 > Web Container Settings > Web container transport

chains > WCInboundDefaultSecure > SSL inbound channel (SSL_2)

1408 Administering applications and their environment

Attention: Keep in mind that central management of SSL configurations can be a more efficient strategy

because multiple configurations can be contained within a single SSLConfigGroup. If you need to convert

configuration references that are already directly managed to centrally managed configurations, modify

each endpoint individually. For more information on specific wsadmin commands, see “Commands for the

SSLConfigGroupCommands group of the AdminTask object” on page 1637.

Complete the following steps in the administrative console:

Note: These steps provide an example to follow when you directly select any of the endpoints listed

above.

1. Click Security > Secure administration, applications, and infrastructure > RMI/IIOP security >

CSIv2 outbound transport.

2. Click Use specific SSL alias. When you identify a specific SSL alias, you override the centrally

managed scope associations.

3. Select an SSL configuration alias from the drop-down list.

4. Click OK.

5. Repeat these steps for additional protocols or endpoints, if desired.

By associating the endpoint directly, you have overridden a centrally managed SSL configuration.

If you decide to use management scopes instead of endpoints to associate an SSL configuration, follow

the steps above, but click Centrally managed instead of Use specific SSL alias, then click Manage

endpoint security configurations. The console is redirected to Security > SSL certificate and key

management > Manage endpoint security configurations.

Enabling Secure Sockets Layer client authentication for a specific inbound endpoint:

When you establish a Secure Sockets Layer (SSL) configuration, you can enable client authentication for a

specific inbound endpoint.

 The endpoint configuration must already exist in the SSL topology.

Complete the following steps in the administrative console:

1. Click Security > SSL certificate and key management > Manage endpoint security configurations

> Inbound > SSL_configuration. If you want to enable SSL client authentication for all processes,

define an SSL configuration for the new endpoint at the node or cell level so that it is visible to all

processes on the same node or on the entire cell. For more information, see “Creating a Secure

Sockets Layer configuration” on page 1385.

2. Select Override inherited values. The SSL configuration is used for the current scope and any lower

scopes that have not already designated an SSL configuration. This field displays for server and node

groups within the object hierarchy and does not display for the top-level node or cell.

3. Select an SSL configuration from the drop-down list.

4. Click Update certificate alias list.

5. Select a Certificate alias from the drop-down list.

6. Click OK to save the configuration.

You can repeat the previous steps for each endpoint that uses the same SSL configuration to enable client

authentication for the inbound endpoints.

CSIv2 Protocol Exception:

The Common Secure Interoperability Version 2 (CSIv2) secure endpoints, used for Remote Method

Invocation over the Internet Inter-ORB Protocol (RMI/IIOP) security, cannot override inherited values. While

Chapter 16. Security 1409

the rest of the SSL properties are effective for CSIv2 when they are selected at the centrally-managed

Secure Communications panel, the client authentication selection is controlled by the CSIv2 protocol

configuration.

To enable SSL client certificate authentication for the CSIv2 protocol, you must use the CSIv2 inbound and

outbound authentication panels. For SSL client authentication to occur between two servers, you must

enable (support or require) SSL client certificate authentication for both the inbound and the outbound

policies.

WebSphere Application Server can either request (support) clients to provide signer certificates for the

SSL handshake, or the server can require clients to provide a valid signer certificates for the SSL

handshake, which is a more secure method. However, when the server requires certificates, the server

must obtain a signer for each client that connects to the server, which involves more server-side

management.

The client certificate should not be used for the identity when it is used from server-to-server. However,

when a pure client sends the client certificate it is used for the identity unless a message level identity is

specified, such as a user ID or a password.

Do the following to enable client certificate authentication for the CSIv2 protocol for server-to-server:

1. Click Security > Secure administration, applications, and infrastructure.

2. Expand the RMI/IIOP security section.

3. Click CSIv2 inbound authentication.

4. Under Client authentication, select either supported or required. When you select required, only one

SSL port is opened (CSV2_SSL_MUTUALAUTH_LISTENER_ADDRESS). When you select supported,

two SSL ports are opened (both CSIV2_SSL_MUTUALAUTH_LISTENER_ADDRESS and

CSIV2_SSL_SERVERAUTH_LISTENER_ADDRESS).

If there are two ports, the client can select either based on the security configuration policy of the port.

5. Click OK to save.

6. If you want server-to-server SSL client authentication, then complete the remaining steps. If you don’t

complete the remaining steps, only pure clients are enabled to send client certificates.

7. Expand the RMI/IIOP security section.

8. Click CSIv2 outbound authentication.

9. Under Client authentication, select either supported or required.

The SSL configuration for the inbound secure endpoints for which you enable SSL client certificate

authentication must have the signer certificate from any client that attempts to open a connection to that

inbound secure endpoint. You must collect those signers and then add them to the trust store associated

with the inbound secure endpoints SSL configuration.

Manage endpoint security configurations:

Use this page to select a Secure Socket Layer (SSL) configuration from the Local Topology hierarchy,

which includes cells, nodes, node groups, servers, and clusters.

 To view this administrative console page, click Security > SSL certificate and key management >

Manage endpoint security configurations.

Local topology:

The Local topology represents the hierarchy of nodes, node groups, clusters, servers, and end points

within the cell that comprise a centralized SSL configuration.

1410 Administering applications and their environment

The topology acts as a hierarchical tree in terms of inheritance. For example, if an SSL configuration has

been associated with a specific node, then all servers within that node will inherit that SSL configuration

selection, provided the servers are not associated with an SSL configuration at the server scope.

Centralized management of SSL is the default configuration; however, it can be overridden at various

locations to directly select a specific SSL alias as in previous releases for backwards compatibility.

 Scope Description

Inbound/Outbound Specifies the topology tree in terms of connection

direction. For example, the inbound tree represents all

server endpoints that receive connections at the various

servers within the cell. The outbound tree represents the

client side of connections from the various servers within

the cell.

Nodes Specifies the nodes that are part of the cell. The list of

nodes is updated anytime a node gets federated into the

cell.

Servers Specifies the servers that are part of a specific node. You

can enable a specific server to have an SSL configuration

associated with it so that resources within the same

server can use the associated SSL configuration.

Clusters Specifies the clusters that are part of the cell. When an

SSL configuration is associated with a cluster, all servers

within the cluster will use the same SSL configuration

unless specified at a lower level in the topology.

Nodegroups Specifies the node groups that are part of the cell. When

an SSL configuration is associated with a node group, all

nodes within that node group may use the same SSL

configuration unless one is specified at a lower scope in

the topology or the specific end point has chosen a direct

alias reference.

Secure port and transport Specifies an endpoint name to associate with an SSL

configuration when more specific SSL settings are

needed at this level. You could select an alias directly at

the endpoint panel; however, when you use Secure port

and transport, you can maintain more centralized control

of the SSL configuration and make changes more easily.

Dynamic inbound and outbound endpoint SSL configurations collection:

Use this page to manage dynamic endpoint Secure Sockets Layer (SSL) configurations, which represent

associations between Secure Socket Layer (SSL) configurations and their target protocol, host, and port.

 To view this administrative console page, click Security > SSL certificate and key management >

Manage endpoint security configurations > {Inbound | Outbound} > ssl_configuration . Under

Related items, click Dynamic [inbound | outbound] endpoint SSL configurations.

When an outbound connection is attempted, this association is checked ahead of the SSL configuration

scope association. Based on the target protocol,host,port, the outbound SSL configuration used can be

different from the default specified in the SSL scope configuration.

Chapter 16. Security 1411

Button Resulting action

New Adds a new dynamic outbound selection criteria. The outbound connection

selects an SSL configuration based upon connection information, including

DNS host name and domain, port, and protocol type. When an outbound

connection is being made, the dynamic outbound selection criteria are queried

for a match, and if found the SSL configuration associated is used.

Delete Deletes an existing dynamic outbound endpoint SSL configuration.

Name:

Specifies the unique name of the dynamic endpoint configuration.

Connection information:

Specifies the set of target protocol, host, port for the outbound request in the form protocol,host,port.

SSL Configuration:

Specifies the SSL configuration that is used by requests at this scope when a match occurs for the given

selection criteria.

Dynamic outbound endpoint SSL configuration settings:

Use this page to set properties for dynamic outbound endpoint SSL configurations, which represent

associations between SSL configurations and their target protocol, host, and port.

 To view this administrative console page, click Security > SSL certificate and key management >

Manage endpoint security configurations > {Inbound | Outbound} > ssl_configuration . Under

Related items, click Dynamic [inbound | outbound] endpoint SSL configurations > New.

When an outbound connection is attempted, this association is checked ahead of the Secure Sockets

Layer (SSL) configuration scope association. This means based on the target protocol,host,port, the

outbound SSL configuration used can be different than the default specified in the SSL scope

configuration.

Name:

Specifies the unique name of the dynamic endpoint configuration.

 Data type: Text

Description:

Specifies text that describes the purpose of this dynamic selection criteria.

 Data type: Text

Add connection information:

Specifies select information in the form protocol,host,port for the outbound connection. Multiple selection

criteria can be entered. An asterisk (*) can be used to mean all protocols, hosts, or ports. You can use an

* for any field.

 Data type: Text

1412 Administering applications and their environment

An example of selection criteria is *,www.ibm.com,*, which means that any time the target host is

www.ibm.com, you must use the SSL configuration specified here. Another example selection criteria is

IIOP,*,*, which means that any outbound IIOP request uses the SSL configuration that is specified in the

SSL configuration field. When there is a conflict between two selection criteria, the application server uses

the first match. The list of valid protocols you can use include: IIOP, HTTP, JMS, LDAP, SIP,

ADMIN_SOAP, or ADMIN_IIOP.

Add:

Specifies to add the selected information from the Add select information menu to the right-hand list.

Remove:

Specifies to remove the selection from the right-hand list.

SSL Configuration:

Specifies the SSL configuration to be used by requests at this scope when a match occurs for the given

selection criteria.

 Data type: Text

Get certificate alias:

When selected, the keystore within the selected SSL configuration is queried for a list of personal

certificates from which to choose.

Certificate alias:

Specifies the certificate alias that is used as the identity for the connection.

 If you select None, the Java Secure Sockets Extension (JSSE) key manager determines which certificate

is used. If multiple certificates exist in the keystore, the key manager might not consistently select the

same certificate.

 Data type: Text

Default: (none)

Quality of protection (QoP) settings

Use this page to specify security level, ciphers, and mutual authentication settings for the Secure Socket

Layer (SSL) configuration.

To view this administrative console page, click Security > SSL certificate and key management >

Manage endpoint security configurations > {Inbound | Outbound SSL_configuration_name}. Under

Related Items, click SSL configurations > {SSL_configuration_name | New}. Under Additional

Properties, click Quality of protection (QoP) settings.

Client authentication:

Specifies the whether SSL client authentication should be requested if the SSL connection is used for the

server side of the connection.

Chapter 16. Security 1413

If None is selected, the server does not request that a client certificate be sent during the handshake. If

Supported is selected, the server requests that a client certificate be sent. If the client does not have a

certificate, the handshake might still succeed. If Required is selected, the server requests that a client

certificate be sent. If the client does not have a certificate, the handshake fails.

 Data type: Text

Default: None

Protocol:

Specifies the Secure Sockets Layer (SSL) handshake protocol. This protocol is typically SSL_TLS, which

supports all handshake protocols except for SSLv2 on the server side. When United States Federal

Information Processing standard (FIPS) option is enabled, Transport Layer Security (TLS) is automatically

used regardless of this setting.

 Data type: text

Default: SSL_TLS

Predefined JSSE provider:

Specifies one of the predefined Java Secure Sockets Extension (JSSE) providers. The IBMJSSE2 provider

is recommended for use on all platforms which support it. It is required for use by the channel framework

SSL channel. When Federal Information Processing Standard (FIPS) is enabled, IBMJSSE2 is used in

combination with the IBMJCEFIPS crypto provider.

 Default: Enabled

Select provider:

Specifies a package that implements a subset of the cryptography aspects for the Java security application

programming interface (API). This value is a JSSE provider name that is listed in the java.security file.

Note that cipher suites and protocol values depend upon the provider.

 Data type: Text

Default: IBMJSSE2

Custom JSSE provider:

Specifies that a custom JSSE provider should be used.

 Default: Disabled

Custom provider:

Specifies a package that implements a subset of the cryptography aspects for the Java security application

programming interface (API). This value is a Java Secure Sockets Extension (JSSE) provider name that is

listed in the java.security file. Note that cipher suites and protocol values depend upon the provider.

 Data type: Text

Cipher suite groups:

1414 Administering applications and their environment

Specifies the various cipher suite groups that can be chosen depending upon your security needs. The

stronger the cipher suite strength, the better the security; however, this can result in performance

consequences.

 Data type: Text

Default: Strong

Update selected ciphers:

When selected, the cipher suites that are contained within the selected Cipher suite group are added to

the list of Selected ciphers. Any change to this list changes the Cipher suite group to custom.

Selected ciphers:

Specifies the ciphers that are effective when the configuration is saved. These ciphers are used to

negotiate with the remote side of the connection during the handshake. A common cipher needs to be

selected or the handshake fails.

 Data type: Text

Add:

Specifies to add the selected cipher to the Selected ciphers list.

 Remove:

Specifies to remove the selected cipher from the Selected ciphers list.

ssl.client.props client configuration file

Use the ssl.client.props file to configure Secure Sockets Layer (SSL) for clients. In previous releases of

WebSphere Application Server, SSL properties were specified in the sas.client.props or

soap.client.props files or as system properties. By consolidating the configurations, WebSphere

Application Server enables you to manage security in a manner that is comparable to server-side

configuration management. You can configure the ssl.client.props file with multiple SSL configurations.

Setting up the SSL configuration for clients

Client runtimes are dependent on the WebSphere Application Server ssl.client.props configurations.

Use the setupCmdLine.bat or setupCmdLine.sh script on the command line to specify the

com.ibm.SSL.ConfigURL system property.

-Dcom.ibm.SSL.ConfigURL=file:C:\WebSphere\AppServer\profiles\default

\properties\ssl.client.props

The com.ibm.SSL.ConfigURL property references a file URL that points to the ssl.client.props file. You

can reference the CLIENTSSL variable on the command line of any script that uses the setupCmdLine.bat

or setupCmdLine.sh file.

When you specify the com.ibm.SSL.ConfigURL system property, the SSL configuration is available to all

protocols that use SSL. SSL configurations, which are referenced in the ssl.client.props file, also have

aliases that you can reference. In the following sample code from the sas.client.props file, all of the SSL

properties are replaced with a property that points to an SSL configuration in the ssl.client.props file:

com.ibm.ssl.alias=default

Chapter 16. Security 1415

The following sample code shows a property in the soap.client.props file that is similar to the

com.ibm.SSL.ConfigURL property. This property references a different SSL configuration on the client side:

com.ibm.ssl.alias=ADMIN_SOAP

In the ssl.client.props file, you can change the administrative SSL configuration to avoid modifying the

soap.client.props file.

Tip: In WebSphere Application Server Version 6.1, support for SSL properties is still specified in the

sas.client.props and soap.client.props files. However, consider moving the SSL configurations to

the ssl.client.props file, because this file is the new configuration model for client SSL.

Properties of the ssl.client.props file

This section describes the default ssl.client.props file properties in detail, by sections within the file.

Global properties

Global SSL properties are process-specific properties that include Federal Information Processing

Standard (FIPS) enablement, the default SSL alias, the user.root property for specifying the root location of

the key and truststore paths, and so on.

 Property Default Description

com.ibm.ssl.defaultAlias DefaultSSLSettings Specifies the default alias that is used whenever an

alias is not specified by the protocol that calls the

JSSEHelper API to retrieve an SSL configuration. This

property is the final arbiter on the client side for

determining which SSL configuration to use.

com.ibm.ssl.validationEnabled false When set to true, this property validates each SSL

configuration as it is loaded. Use this property for

debug purposes only, to avoid unnecessary

performance overhead during production.

com.ibm.ssl.performURLHostNameVerification false When set to true, this property enforces URL host

name verification. When HTTP URL connections are

made to target servers, the common name (CN) from

the server certificate must match the target host name.

Without a match, the host name verifier rejects the

connection. The default value of false omits this

check. As a global property, it sets the default host

name verifier. Any javax.net.ssl.HttpsURLConnection

object can choose to enable host name verification for

that specific instance by calling the setHostnameVerifier

method with its own HostnameVerifier instance.

com.ibm.security.useFIPS false When set to true, FIPS-compliant algorithms are used

for SSL and other Java Cryptography Extension

(JCE)-specific applications. This property is typically not

enabled unless the property is required by the

operating environment.

user.root C:\WebSphere\
AppServer

\profiles\default

This property can be used by key and truststore

location properties as a single property for specifying

the root path to the key and truststores. Typically, this

property is the profile root. However, you can modify

this property to any root directory on the local machine

that has the proper read and potentially write authority

to that directory.

1416 Administering applications and their environment

Property Default Description

profile_root of the profile C\WebSphere\
AppServer

\profiles\default

Key and truststore location properties can use this

property as a single property for specifying the root

path to the key and truststores. You can modify this

property to any root directory on the local machine that

has the proper read (and potentially write) authority to

that directory.

Certificate creation properties

Use certificate creation properties to specify the default self-signed certificate values for the major

attributes of a certificate. You can define the distinguished name (DN), expiration date, key size, and alias

that are stored in the keystore.

 Property Default Description

com.ibm.ssl.defaultCertReqAlias default_alias This property specifies the default alias to use to

reference the self-signed certificate that is created in the

keystore. If the alias already exists with that name, the

default alias is appended with _#, where the number

sign (#) is an integer that starts with 1 and increments

until it finds a unique alias.

com.ibm.ssl.defaultCertReqSubjectDN cn=${hostname},

o=IBM,c=US

This property uses the property distinguished name

(DN) that you set for the certificate when it is created.

The ${hostname} variable is expanded to the host name

on which it resides. You can use correctly formed DNs

as specified by the X.509 certificate.

com.ibm.ssl.defaultCertReqDays 365 This property specifies the validity period for the

certificate and can be as small as 1 day and as large as

the maximum number of days that a certificate can be

set, which is approximately 20 years.

com.ibm.ssl.defaultCertReqKeySize 1024 This property is the default key size. The valid values

depend upon the Java Virtual Machine (JVM) security

policy files that are installed. By default, the product

JVMs ship with the export policy file that limits the key

size to 1024. To get a large key size such as 2048, you

can download the restricted policy files from the Web

site.

SSL configuration properties

Use the SSL configuration properties section to set multiple SSL configurations. For a new SSL

configuration specification, set the com.ibm.ssl.alias property because the parser starts a new SSL

configuration with this alias name. The SSL configuration is referenced by using the alias property from

another file, such as sas.client.props or soap.client.props, through the default alias property. The

properties that are specified in the following table enable you to create a javax.net.ssl.SSLContext, among

other SSL objects.

Chapter 16. Security 1417

Property Default Description

com.ibm.ssl.alias DefaultSSLSettings This property is the name of this SSL configuration and

must be the first property for an SSL configuration

because it references the SSL configuration. If you

change the name of this property after it is referenced

elsewhere in the configuration, the runtime defaults to

the com.ibm.ssl.defaultAlias property whenever the

reference is not found. The error trust file is null or

key file is null might display when you start an

application using an SSL reference that is no longer

valid.

com.ibm.ssl.protocol SSL_TLS This property is the SSL handshake protocol that is used

for this SSL configuration. This property attempts

Transport Layer Security (TLS) first, but accepts any

remote handshake protocol, including SSLv3 and TLS.

Valid values for this property include SSLv2 (client side

only), SSLv3, SSL, TLS, TLSv1, and SSL_TLS.

com.ibm.ssl.securityLevel HIGH This property specifies the cipher group that is used for

the SSL handshake. The typical selection is HIGH, which

specifies 128-bit or higher ciphers. The MEDIUM

selection provides 40-bit ciphers. The LOW selection

provides ciphers that do not perform encryption, but do

perform signing for data integrity. If you specify your own

cipher list selection, uncomment the property

com.ibm.ssl.enabledCipherSuites.

com.ibm.ssl.trustManager IbmX509 This property specifies the default trust manager that you

must use to validate the certificate sent by the target

server. This trust manager does not perform certificate

revocation list (CRL) checking. You can choose to

change this to IbmPKIX for CRL checking using CRL

distribution lists in the certificate, which is a standard

way to perform CRL checking. When you want to

perform custom CRL checking, you must implement a

custom trust manager and specify the trust manager in

the com.ibm.ssl.customTrustManagers property. The

IbmPKIX option might affect performance because this

option requires IBMCertPath for trust validation. Use

IbmX509 unless CRL checking is necessary.

com.ibm.ssl.keyManager IbmX509 This property specifies the default key manager to use

for choosing the client alias from the specified keystore.

This key manager uses the

com.ibm.ssl.keyStoreClientAlias property to specify the

keystore alias. If this property is not specified, the choice

is delegated to Java Secure Socket Extension (JSSE).

JSSE typically chooses the first alias that it finds.

com.ibm.ssl.contextProvider IBMJSSE2 This property is used to choose the JSSE provider for

the SSL context creation. It is recommended that you

default to IBMJSSE2 when you use a Java virtual

machine (JVM). The client plug-in can use the SunJSSE

provider when using a Sun JVM.

1418 Administering applications and their environment

Property Default Description

com.ibm.ssl.enableSignerExchangePrompt true This property determines whether to display the signer

exchange prompt when a signer is not present in the

client truststore. The prompt displays information about

the remote certificate so that WebSphere Application

Server can decide whether or not to trust the signer. It is

very important to validate the certificate signature (hash).

This signature is the only reliable information that can

guarantee that the certificate has not been modified from

the original server certificate. For automated scenarios,

disable this property to avoid SSL handshake

exceptions. Run the retrieveSigners.bat file or the

retrieveSigners.sh script, which sets up the SSL signer

exchange, to download the signers from the server prior

to running the client.

com.ibm.ssl.keyStoreClientAlias default This property is used to reference an alias from the

specified keystore when the target does not request

client authentication. When WebSphere Application

Server creates a self-signed certificate for the SSL

configuration, this property determines the alias and

overrides the global com.ibm.ssl.defaultCertReqAlias

property.

com.ibm.ssl.customTrustManagers Commented out by

default

This property enables you to specify one or more custom

trust managers, which are separated by commas. These

trust managers can be in the form of

algorithm|provider or classname. For example,

IbmX509|IBMJSSE2 is in thealgorithm|provider format,

and the com.acme.myCustomTrustManager interface is

in the classname format. The class must implement the

javax.net.ssl.X509TrustManager interface. Optionally, the

class can implement the

com.ibm.wsspi.ssl.TrustManagerExtendedInfo interface.

These trust managers run in addition to the default trust

manager that is specified by the

com.ibm.ssl.trustManager interface. These trust

managers do not replace the default trust manager.

com.ibm.ssl.customKeyManager Commented out by

default

This property enables you to have one, and only one,

custom key manager. The key manager replaces the

default key manager that is specified in the

com.ibm.ssl.keyManager property. The form of the key

manager is algorithm|provider or classname. See the

format examples for the

com.ibm.ssl.customTrustManagers property. The class

must implement the javax.net.ssl.X509KeyManager

interface. Optionally, the class can implement the

com.ibm.wsspi.ssl.KeyManagerExtendedInfo interface.

This key manager is responsible for alias selection.

Chapter 16. Security 1419

Property Default Description

com.ibm.ssl.dynamicSelectionInfo Commented out by

default

This property enables dynamic association with the SSL

configuration. The syntax for a dynamic association is

outbound_protocol, target_host, or target_port. For

multiple specifications, use the vertical bar (|) as the

delimiter. You can replace any of these values with an

asterisk (*) to indicate a wildcard value. Valid

outbound_protocol values include: IIOP, HTTP, LDAP,

SIP, BUS_CLIENT, BUS_TO_WEBSPHERE_MQ,

BUS_TO_BUS, and ADMIN_SOAP. When you want the

dynamic selection criteria to choose the SSL

configuration, uncomment the default property, and add

the connection information. For example, add the

following on one line

com.ibm.ssl.dynamicSelectionInfo=HTTP,

.ibm.com,443|HTTP,.ibm.com,9443

. ADMIN_IIOP, and ADMIN_SOAP represent

administrative uses of these protocols for the Remote

Method Invocation (RMI) and SOAP connectors,

respectively. In the SSL configuration alias

AdminSOAPSSLSettings, you can set the value to

ADMIN_SOAP,*,*, which indicates that any outbound

administrative SOAP connection can use this SSL

configuration. Dynamic selection takes precedence over

direct alias selection in the soap.client.props file.

com.ibm.ssl.enabledCipherSuites Commented out by

default

This property enables you to specify a custom cipher

suite list and override the group selection in the

com.ibm.ssl.securityLevel property. The valid list of

ciphers varies according to the provider and JVM policy

files that are applied. For cipher suites, use a space as

the delimiter.

com.ibm.ssl.keyStoreName ClientDefaultKeyStore This property references a keystore configuration name.

If you have not already defined the keystore, the rest of

the keystore properties must follow this property. After

you define the keystore, you can specify this property to

reference the previously specified keystore configuration.

New keystore configurations in the ssl.client.props file

have a unique name.

com.ibm.ssl.trustStoreName ClientDefaultTrustStore This property references a truststore configuration name.

If you have not already defined the truststore, the rest of

the truststore properties must follow this property. After

you define the truststore, you can specify this property to

reference the previously specified truststore

configuration. New truststore configurations in the

ssl.client.props file should have a unique name.

Keystore configurations

SSL configurations reference keystore configurations whose purpose is to identify the location of

certificates. Certificates represent the identity of clients that use the SSL configuration. You can specify

keystore configurations with other SSL configuration properties. However, it is recommended that you

specify the keystore configurations in this section of the ssl.client.props file after the

com.ibm.ssl.keyStoreName property identifies the start of a new keystore configuration. After you fully

define the keystore configuration, the com.ibm.ssl.keyStoreName property can reference the keystore

configuration at any other point in the file.

1420 Administering applications and their environment

Property Default Description

com.ibm.ssl.keyStoreName ClientDefaultKeyStore This property specifies the name of the keystore as it is

referenced by the runtime. Other SSL configurations can

reference this name further down in the

ssl.client.props file to avoid duplication.

com.ibm.ssl.keyStore ${user.root}/etc/
key.p12

This property specifies the location of the keystore in the

required format of the com.ibm.ssl.keyStoreType

property. Typically, this property references a keystore file

name. However, for cryptographic token types, this

property references a Dynamic Link Library (DLL) file.

com.ibm.ssl.keyStorePassword WebAS This property is the default password, which is the cell

name for the profile when it is created. The password is

typically encoded using an {xor} algorithm. You can use

iKeyman to change the password in the keystore, then

change this reference. If you do not know the password

and if the certificate is created for you, change the

password in this property, then delete the keystore from

the location where it resides. Restart the client to

recreate the keystore by using the new password, but

only if the keystore name ends with DefaultKeyStore and

if the fileBased property is true. Delete both the keystore

and truststore at the same time so that a proper signer

exchange can occur when both are recreated together.

com.ibm.ssl.keyStoreType PKCS12 This property is the keystore type. Use the default,

PKCS12, because of its interoperability with other

applications. You can specify this property as any valid

keystore type that is supported by the JVM on the

provider list.

com.ibm.ssl.keyStoreProvider IBMJCE The IBM Java Cryptography Extension property is the

keystore provider for the keystore type. The provider is

typically IBMJCE or IBMPKCS11Impl for cryptographic

devices.

com.ibm.ssl.keyStoreFileBased true This property indicates to the runtime that the keystore is

file-based, meaning it is located on the file system.

com.ibm.ssl.keyStoreReadOnly false This property indicates to the runtime whether the

keystore can be modified during the runtime.

Truststore Configurations

SSL configurations reference truststore configurations, whose purpose is to contain the signer certificates

for servers that are trusted by this client. You can specify these properties with other SSL configuration

properties. However, it is recommended that you specify truststore configurations in this section of the

ssl.client.props file after the com.ibm.ssl.trustStoreName property has identified the start of a new

truststore configuration. After you fully define the truststore configuration, the com.ibm.ssl.trustStoreName

property can reference the configuration at any other point in the file.

A truststore is a keystore that JSSE uses for trust evaluation. A truststore contains the signers that

WebSphere Application Server requires before it can trust the remote connection during the handshake. If

you configure the com.ibm.ssl.trustStoreName=ClientDefaultKeyStore property, you can reference the

keystore as the truststore. Further configuration is not required for the truststore because all of the signers

that are generated through signer exchanges are imported into the keystore where they are called by the

runtime.

Chapter 16. Security 1421

Property Default Description

com.ibm.ssl.trustStoreName ClientDefaultTrustStore This property specifies the name of the truststore as it is

referenced by the runtime. Other SSL configurations can

reference further down in the ssl.client.props file to

avoid duplication.

com.ibm.ssl.trustStore ${user.root}/etc/
trust.p12

This property specifies the location of the truststore in the

format that is required by the truststore type that is

referenced by the com.ibm.ssl.trustStoreType property.

Typically, this property references a truststore file name.

However, for cryptographic token types, this property

references a DLL file.

com.ibm.ssl.trustStorePassword WebAS This property specifies the default password, which is the

cell name for the profile when it is created. The password

is typically encoded using an {xor} algorithm. You can use

iKeyman to change the password in the keystore, then

change the reference in this property. If you do not know

the password and if the certificate was created for you,

change the password in this property, then delete the

truststore from the location where it resides. Restart the

client to recreate the truststore by using the new

password, but only if the keystore name ends with

DefaultTrustStore and the fileBased property is true. It is

recommended that you delete the keystore and the

truststore at the same time so that a proper signer

exchange can occur when both are recreated together.

com.ibm.ssl.trustStoreType PKCS12 This property is the truststore type. Use the default

PKCS12 type because of its interoperability with other

applications. You can specify this property as any valid

truststore type that is supported by the JVM functionality

on the provider list.

com.ibm.ssl.trustStoreProvider IBMJCE This property is the truststore provider for the truststore

type. The provider is typically IBMJCE or IBMPKCS11Impl

for cryptographic devices.

com.ibm.ssl.trustStoreFileBased true This property indicates to the runtime that the truststore is

file-based, meaning it is located on the file system.

com.ibm.ssl.trustStoreReadOnly false This property indicates to the runtime whether the

truststore can be modified during the runtime.

Creating a keystore configuration

A Secure Sockets Layer (SSL) configuration references keystore configurations during WebSphere

Application Server runtime. Whether a keystore file was created by another keystore tool or saved from a

previous configuration, the file must be part of a keystore configuration object. You can create a keystore

configuration for the existing keystore object.

A keystore must already exist.

Complete the following steps in the administrative console:

1. Click Security > SSL certificate and key management > Manage endpoint security configurations

> {Inbound | Outbound} > SSL_configuration > Key stores and certificates > New.

2. Type a name in the Name field. This name uniquely identifies the keystore in the configuration.

3. Type the location of the keystore file in the Path field. The location can be a file name or a file URL to

an existing keystore file.

1422 Administering applications and their environment

4. Type the keystore password in the Password field. This password is for the keystore file that you

specified in the Path field.

5. Type the keystore password again in the Confirm Password field to confirm the password.

6. Select a keystore type from the list. The type that you select is for the keystore file that you specified

in the Path field.

7. Select any of the following optional selections:

v The Read only selection creates a keystore configuration object but does not create a keystore file.

If this option is selected, the keystore file that you specified in the Path field must already exist.

v The Initialize at startup selection initializes the keystore during runtime.

8. Click Apply and Save.

You have created a keystore configuration object for the keystore file that you specified. This keystore can

now be used in an SSL configuration.

You can create additional keystore configurations, as needed.

Changing a keystore password

You can change the WebSphere Application Server password from the default password value, WebAS, in

the administrative console or at a Java command prompt. Because the default password is well known, it

is important that you change the password after you install WebSphere Application Server to protect the

security of the keystore files and the Secure Sockets Layer (SSL) configuration.

When WebSphere Application Server starts for the first time as a standalone application server or as a

Network Deployment Server, each server creates a keystore and truststore for the default SSL

configuration. WebSphere Application Server creates these files and assigns the default password, WebAS.

Complete the following steps in the administrative console:

1. Click Security > SSL certificate and key management > Key Stores and Certificates.

2. Select a keystore.

3. Type the new keystore password in the Change Password field.

4. Type the keystore password again in the Confirm Password field to confirm the password.

5. Select Apply.

WebSphere Application Server and its keystores are protected by a unique password.

Use the new password the next time you start the WebSphere Application Server.

Configuring a hardware cryptographic keystore

You can create a hardware cryptographic keystore that WebSphere Application Server can use to provide

cryptographic token support in the server configuration.

Complete the following steps in the administrative console:

1. Click Security > SSL certificate and key management > Manage endpoint security configurations

> {Inbound | Outbound} > SSL_configuration > Key stores and certificates.

2. Click New.

3. Type a name to identify the keystore. This name is used to enable hardware cryptography in the Web

services security configuration.

4. Type the path for the hardware device-specific configuration file. The configuration file is a text file that

contains entries in the following format: attribute = value. The valid values for attribute and value are

described in detail in the Software Developer Kit, Java Technology Edition documentation. The two

mandatory attributes are name and library, as shown in the following sample code:

Chapter 16. Security 1423

name = FooAccelerator

library = /opt/foo/lib/libpkcs11.so

slotListIndex = 0

5. Type a password if the token login is required. Operations that use keys on the token require a secure

login. This field is optional if the keystore is used as a cryptographic accelerator. In this case, you need

to select Enable pure acceleration for hardware cryptographic operations.

6. Select the PKCS11 type.

7. Select Read only.

8. Click OK and Save.

WebSphere Application Server can now provide cryptographic token support in the server configuration.

You can refer to this keystore in any server Secure Sockets Layer (SSL) configuration to achieve the

following results:

v Cryptographic acceleration because the cryptographic hardware device has no persistent key storage

v Secure cryptographic hardware because a cryptographic token generates and securely stores the

private key that WebSphere Application Server uses for SSL key exchange.

You can also refer to this keystore in the Web services security default bindings configuration to achieve

similar results.

Managing keystore configurations remotely

You can manage keystores remotely in a Network Deployment environment on separate machines. A node

server can hold the configuration for a keystore, while the actual keystore resides on another system. After

you set up a remotely managed configuration, you can perform all of the certificate and keystore

operations for the keystore on the remote machine from the server that contains the keystore remote

configuration.

Key stores can be remotely managed only in network deployed environments.

Complete the following steps in the administrative console:

 1. Click Security > SSL certificate and key management > Manage endpoint security

configurations > {Inbound | Outbound} > ssl_configuration > Key stores and certificates.

 2. Click New.

 3. Type a name in the Name field. This name uniquely identifies the keystore in the configuration.

 4. Type the location of the keystore file in the Path field. The location can be a file name or a file

Uniform Resource Locator (URL) to an existing keystore file.

 5. Type the keystore password in the Password field. This password is for the keystore file that you

specified in the Path field.

 6. Type the keystore password again in the Confirm Password field to confirm the password.

 7. Select a keystore type from the list. The type you select is for the keystore file that you specified in

the Path field.

 8. Select the Remotely managed check box, and then fill in one or more hosts names of the systems

where the keystore file is to be located. If you provide multiple host names, separate the host names

with a pipe (|).

 9. Select any of the following optional selections:

v The Read only selection creates a keystore configuration object but does not create a keystore

file. If this option is selected, the keystore file that you specified in the Path field must already

exist.

v The Initialize at startup selection initializes the keystore during run time.

10. Select Apply and Save.

1424 Administering applications and their environment

A keystore configuration object is created on the server from where the command was run. The keystore

file for the configuration will be created on each system that you specified in the host list.

Now, you can perform all certificate management operations on the keystore from the system where the

keystore configuration resides. For example, you can perform certificate management operations, such as:

creating a self-signed certificate, extracting a certificate, or extracting a signer certificate.

To manage a self-signed certificates by using the wsadmin tool, use the PersonalCertificateCommands

group commands of the AdminTask object. For more information, see “Commands for the

PersonalCertificateCommands group of the AdminTask object” on page 1688.

Key stores and certificates collection

Use this page to manage key store types, including cryptography, Resource Access Control Facility

(RACF) , Certificate Management Services (CMS), Java, and all trust store types.

To view this administrative console page, click Security > SSL certificate and key management >

Manage endpoint security configurations > Inbound | Outbound > SSL_configuration_name. Under

Related items, click Key stores and certificates.

 Button Resulting action

New Adds a new key store object that can be referenced by Secure Sockets Layer

(SSL) configurations or KeySets. The KeyStore management scope is based

on the part of the topology tree from which it was created.

Delete Deletes an existing key store. The key store should not be referenced by any

other parts of the configuration before you delete it.

Exchange signers Refers to exchanging signers in a key store. You can select two key stores,

along with personal certificates from a selected key store, then add them as a

signer to another selected key store.

Name:

Specifies the unique name that is used to identify the key store. This name is typically scoped by the

ManagementScope scopeName and based upon the location of the key store. The name must be unique

within the existing key store collection.

 This is a user-defined name.

Path:

Specifies the location of the key store file in the format needed by the key store type. This file can be a

card-specific configuration file for cryptographic devices or a filename or file URL for file-based key stores.

It can be a safkeyring URL for RACF keyrings.

Key store settings

Use this page to create all keystore types, including cryptographic, Resource Access Control Facility

(RACF), Certificate Management Services (CMS), Java, and all truststore types.

To view this administrative console page, click Security > SSL certificate and key management >

Manage endpoint security configurations > {Inbound | Outbound SSL_configuration_name}. Under

Related Items, click Key stores and certificates > New.

Links to Personal certificates, Signer certificates, and Personal certificate requests enable you to manage

certificates in a manner similar to iKeyman capabilities. A keystore can be file-based, such as CMS or

Java keystore types, or it can be remotely managed.

Chapter 16. Security 1425

Note: Any changes made to this panel are permanent.

Name:

Specifies the unique name to identify the keystore. The keystore is typically scoped by the

ManagementScope scopeName based on the location of the keystore. The name must be unique within

the existing keystore collection.

 Data type: Text

Path:

Specifies the location of the keystore file in the format needed by the keystore type. This file can be a

dynamic link library (DLL) for cryptographic devices or a filename or file URL for file-based keystores. It

can be a safkeyring URL for RACF keyrings.

 Data type: Text

Enable cryptographic operations on hardware device:

Specifies whether a hardware cryptographic device is used for cryptographic operations only. Operations

that require a login are not supported when using this option.

 Default: Disabled

Password [new keystore] | Change password [existing keystore]:

Specifies the password used to protect the keystore. For the default keystore (names ending in

DefaultKeyStore or DefaultTrustStore), the password is the Cell name. This default password must be

changed.

 This field can be edited.

 Data type: Text

Confirm password:

Specifies confirmation of the password to open the keystore file or device.

 Data type: Text

Type:

Specifies the implementation for keystore management. This value defines the tool that operates on this

keystore type.

 The list of options is returned by java.security.Security.getAlgorithms(″KeyStore″). Some options might be

filtered and some might be added based on the java.security configuration.

 Data type: Text

Default: PKCS12

Read only:

1426 Administering applications and their environment

Specifies whether the keystore can be written to or not. If the keystore cannot be written to, certain

operations cannot be performed, such as creating or importing certificates.

 Default: Disabled

Initialize at startup:

Specifies whether the keystore needs to be initialized before it can be used for cryptographic operations. If

enabled, the keystore is initialized at server startup.

 Default: Disabled

Key managers collection

Use this page to define the implementation settings for key managers. A key manager is invoked during a

Secure Sockets Layer (SSL) handshake to determine which certificate alias is used. The default key

manager (WSX509KeyManager) performs alias selection. If more advanced function is desired, define a

custom key manager and select it on the Manage endpoint security configurations panel.

To view this administrative console page, click Security > SSL certificate and key management >

Manage endpoint security configurations > Inbound | Outbound > SSL_configuration_name. Under

Related items, click Key managers.

 Button Resulting action

New Adds a new key manager that can be selected by an SSL configuration. A key

manager is invoked during an SSL handshake to select a specific certificate

alias to use from a key store.

Delete Deletes an existing key manager. The key manager should not be referenced

by any SSL configuration before you can delete it.

Name:

Specifies the name of the key manager, which you can select on the SSL configuration panel.

Class name:

Specifies the name of the key manager implementation class. This class implements

javax.net.ssl.X509KeyManager interface and, optionally, the com.ibm.wsspi.ssl.KeyManagerExtendedInfo

interface.

Algorithm:

Specifies the algorithm name of the key manager that is implemented by the selected provider.

Key managers settings

Use this page to define key managers implementation settings. A key manager gets invoked during an

Secure Sockets Layer (SSL) handshake to determine the certificate alias to be used. The default key

manager (WSX509KeyManager) performs alias selection. If more advanced function is desired, a custom

key manager can be specified here and selected in the SSL configuration.

To view this administrative console page, click Security > SSL certificate and key management >

Manage endpoint security configurations > Inbound | Outbound > SSL_configuration_name. Under

Related items, click Key managers > New.

Name:

Chapter 16. Security 1427

Specifies the name of the key manager, which you can select on the SSL configuration panel.

 Data type: Text

Standard:

Specifies the key manager selection that is available from a Java provider that is installed in the

java.security file. This provider might be shipped by Java Secure Sockets Extension (JSSE) or be a

custom provider that implements an X509KeyManager interface.

 Default: Enabled

Provider:

Specifies the provider name that has an implementation of an X509KeyManager interface. This provider is

typically set to IBMJSSE2.

 Data type: Text

Default: IBMJCE

Algorithm:

Specifies the algorithm name of the trust manager implemented by the selected provider.

 Data type: Text

Default: IbmX509

Custom:

Specifies that the key manager selection is based on a custom implementation class that implements the

javax.net.ssl.X509KeyManager interface and optionally the com.ibm.wsspi.ssl.KeyManagerExtendedInfo

interface to obtain additional connection information not otherwise available.

 Default: Disabled

Class name:

Specifies the name of the key manager implementation class.

 Data type: Text

Creating a self-signed certificate

You can create a self-signed certificate. WebSphere Application Server uses the certificate at runtime

during the handshake protocol. Self-signed certificates are located in the default keystore.

You must create a keystore before you can create a self-signed certificate.

Complete the following steps in the administrative console:

1. Click Security > SSL certificate and key management > Manage endpoint security configurations

> {Inbound | Outbound} > ssl_configuration > Key stores and certificates > [keystore].

2. From Additional Properties, click Personal certificates.

3. Click Create a self-signed certificate.

1428 Administering applications and their environment

4. Type a certificate alias name. The alias identifies the certificate request in the keystore.

5. Type a common name (CN) value. This value is the CN value in the certificate distinguished name

(DN).

6. Type an organization value. This value is the O value in the certificate DN.

7. You can configure one or more of the following optional values:

a. Optional: Select a key size value. The default key size value is 1024 bits.

b. Optional: Type an organizational unit value. This organizational unit value is the OU value in the

certificate DN.

c. Optional: Type a locality value. This locality value is the L value in the certificate DN.

d. Optional: Type a state or providence value. This value is the ST value in the certificate DN.

e. Optional: Type a zip code value. This zip code value is the POSTALCODE value in the certificate

DN.

f. Optional: Select a country value from the list. This country value is the C= value in the certificate

request DN.

8. Click Apply.

You have created a self-signed certificate that resides in the keystore. The SSL configuration for the

WebSphere Application Server runtime uses this certificate for SSL communication. Extract the signer of

the self-signed certificate to add the signer to another keystore.

To create a self-signed certificate by using the wsadmin tool, use the createSelfSignedCertificate

command of the AdminTask object. For more information, see “Commands for the

PersonalCertificateCommands group of the AdminTask object” on page 1688.

Replacing an existing self-signed certificate

Occasionally, you need to replace an existing or expired self-signed certificate with a new certificate.

Certificates are referenced in the runtime configuration by the Secure Sockets Layer (SSL) Configuration

object and the Dynamic SSL Configuration Selection object. You can replace a certificate with a new

certificate alias reference or with a new signer certificate.

The current certificate and the certificate replacement must exist in the same keystore before you can

replace a certificate.

Complete the following steps in the administrative console:

1. Click Security > SSL certificate and key management > Manage endpoint security configurations

> {Inbound | Outbound} > ssl_configuration > Key stores and certificates > [keystore].

2. Under Additional Properties, click Personal certificates.

3. Select a personal certificate. The alias list must include at least two certificates that reside in the

keystore.

4. Click Replace.

5. Select a replacement certificate alias from the list.

6. You can delete one of the following types of certificates:

v Select Delete old certificate to delete the existing certificate.

v Select Delete old signers to delete the existing signer certificates.

7. Click Apply.

Your results depend on what you selected:

v If you selected Delete old certificate, the new certificate alias replaces all of the references to the

certificate alias in the configuration.

v If you selected Delete old signers, the new signer certificate replaces all of the occurrences of the old

signer certificates.

Chapter 16. Security 1429

v If the new certificate alias replaces the existing alias, the WebSphere Application Server runtime checks

to make sure that:

– All of the SSL Configurations objects reference the certificate

– The Dynamic SSL Configuration Selections objects and the SSL Configuration group objects

reference the certificate.

v If you selected Delete old signers, the existing signer certificates are replaced.

v If you selected Delete old certificate, the existing certificate are deleted.

To replace a self-signed certificate by using the wsadmin tool, use the replaceCertificate command of the

AdminTask object. For more information, see rxml_atpersonalcert.dita.

Creating a certificate authority request

To ensure Secure Sockets Layer (SSL) communication, servers require a personal certificate that is either

self-signed or signed by a certificate authority (CA). You must first create a personal certificate request to

obtain a certificate that is signed by a CA.

The keystore that contains a personal certificate request must already exist.

Complete the following steps in the administrative console:

1. Click Security > SSL certificate and key management > Manage endpoint security configurations

> {Inbound | Outbound} > ssl_configuration > Key stores and certificates > keystore.

2. Click Personal certificate requests > New.

3. Type the full path of the certificate request file. The certificate request is created in this location.

4. Type an alias name in the Key label field. The alias identifies the certificate request in the keystore.

5. Type a common name (CN) value. This value is the CN value in the certificate distinguished name

(DN).

6. Type an organization value. This value is the O value in the certificate DN.

7. You can configure one or more of the following optional values:

a. Optional: Select a key size value. The default key size value is 1024 bits.

b. Optional: Type an organizational unit value. This organizational unit value is the OU value in the

certificate DN.

c. Optional: Type a locality value. This locality value is the L value in the certificate DN.

d. Optional: Type a state or providence value. This value is the ST value in the certificate DN.

e. Optional: Type a zip code value. The zip code value is the POSTALCODE value in the certificate

DN.

f. Optional: Select a country value from the list. This country value is the C= value in the certificate

request DN.

8. Click Apply.

The certificate request is created in the specified file location in the keystore. The request functions as a

temporary placeholder for the signed certificate until you manually receive the certificate in the keystore.

To create a certificate request using the wsadmin tool, use the createCertificateRequest command of the

AdminTask object. For more information, see “Commands for the PersonalCertificateCommands group of

the AdminTask object” on page 1688.

Note: Key store tools (such as iKeyman and keyTool) cannot receive signed certificates that are

generated by certificate requests from WebSphere Application Server. Similarly, WebSphere

Application Server cannot accept certificates that are generated by certificate requests from other

keystore utilities.

1430 Administering applications and their environment

rxml_atpersonalcert.dita

Now you can receive the CA-signed certificate into the keystore to complete the process of generating a

signed certificate for your server.

Certificate request settings

Use this page to verify the properties of a personal certificate request.

To view this administrative console page, click Security > SSL certificate and key management >

Manage endpoint security configurations > Inbound | Outbound > ssl_configuration. Under Related

items, click Key stores and certificates > key store. Under Additional Properties, click Personal

certificate requests > certificate request .

Key label:

Specifies the certificate alias name for the signer in the key store, which is specified in the SSL

configuration.

Key size:

Specifies the size of the keys that are generated.

Requested by:

Specifies the Subject distinguished name (DN) that represents the identity of the certificate request.

Fingerprint (SHA Digest):

Specifies the SHA hash of the personal certificate, which can be used to verify that the certificate has not

been altered when it is used in a remote connection.

Signature algorithm:

Specifies the algorithm used to sign the certificate.

Personal certificates collection

Use this page to manage personal certificates.

To view this administrative console page, click Security > SSL certificate and key management >

Manage endpoint security configurations > {Inbound | Outbound} > ssl_configuration. Under

Related items, click Key stores and certificates > key store . Under Additional Properties, click Personal

certificates.

The Personal certificates page lists all Personal certificates in the selected key store. You can do most

certificate management operations in this panel, including creating a new self-signed certificate, deleting a

certificate, receiving one generated from a CA, replacing a certificate (simultaneous delete and create,

replacing references across all key stores), extracting the signer, and importing or exporting a personal

certificate.

Personal certificate requests are temporary place holders for certificates that will be signed by a certificate

authority (CA).

The Key store collection must contain at least two key store files. You must select one file in order to

replace, extract, or export a key store,

 Button Resulting action

Create a self-signed certificate Enables the application server to create a new self-signed certificate.

Chapter 16. Security 1431

Button Resulting action

Delete Specifies to delete a certificate from the key store. Be careful that the

certificate alias is not referenced elsewhere in the Secure Sockets Layer

configuration.

Receive a certificate from a

certificate authority

Enables the application server to receive a certificate authority (CA)-generated

certificate from a file to complete a certificate request.

Replace Replaces a self-signed certificate with another self-signed certificate that

contains the same information, but with a new expiration period. The signer

from the old certificate that is contained in any managed key store in the cell is

replaced by the signer from the new certificate.

Extract Extracts a certificate from the key store that will be added to another key store

as a trusted certificate (signer).

Import Imports a certificate, including the private key, from a key store file.

Export Exports a certificate, including the private key, to a specified key store file.

Alias:

Specifies the alias by which the personal certificate is referenced in the key store.

 When you select an alias, the View Certificate panel opens.

Issued by:

Specifies the distinguished name of the entity by which the certificate was issued. This name is the same

as the issued-to distinguished name when the personal certificate is self-signed.

Issued to:

Specifies the distinguished name of the entity to which the certificate was issued.

Serial number:

Specifies the certificate serial number that is generated by the issuer of the certificate.

Expiration:

Specifies the expiration date of the signer certificate for validation purposes.

Personal certificates settings

Use this page to create new personal certificates.

To view this administrative console page, click Security > SSL certificate and key management >

Manage endpoint security configurations > Inbound | Outbound > SSL_configuration_name. Under

Related items, click Key stores and certificates > key store. Under Additional Properties, click Personal

certificates > Create a self-signed certificate.

This same help file is available when you create a new certificate or modify an existing certificate. The

fields in this file are marked according to when they show on the administrative console.

Alias:

Specifies the alias for the personal certificate in the key store.

1432 Administering applications and their environment

This field displays when you create a new certificate. This field is read-only when you view an existing

certificate.

 Data type: Text

Version:

Specifies the version of the personal certificate. Valid versions include X509 V3, X509 V2, or X509 V1. It is

recommended to use X509 V3 certificates.

 This field is read-only when you create or view a certificate.

 Data type: Text

Default: X509 V3

Range:

Key size:

Specifies the key size of the private key that is used by the personal certificate.

 This field displays when you create or view a certificate.

 Data type: Integer

Default: 1024

Common name:

Specifies the common name portion of the distinguished name (DN). It is recommended that this name be

the host name of the machine on which the certificate resides. In some cases, the common name is used

to login during Secure Socket Layer (SSL) certificate authentication; therefore, in some cases, this name

might be used as a user ID for a local operating system registry.

 This field displays when you create a new certificate, but does not display when you view an existing

certificate.

 Data type: Text

Serial number:

Specifies the certificate serial number that is generated by the issuer of the certificate.

 This field displays only when you view an existing certificate.

Validity period:

Specifies the length in days during which the certificate is valid. The default is 365 days.

 This field displays when you create or view a certificate.

 Data type: Text

Organization:

Specifies the organization portion of the distinguished name.

Chapter 16. Security 1433

This field displays only when you create a new certificate.

 Data type: Text

Organization unit:

Specifies the organization unit portion of the distinguished name. This field is optional.

 This field displays only when you create a new certificate.

 Data type: Text

Locality:

Specifies the locality portion of the distinguished name. This field is optional.

 This field displays only when you create a new certificate.

 Data type: Text

State/Province:

Specifies the state portion of the distinguished name. This field is optional.

 This field displays only when you create a new certificate.

 Data type: Text

Zip code:

Specifies the zip code portion of the distinguished name. This field is optional.

 This field displays only when you create a new certificate.

 Data type: Integer

Country or region:

Specifies the country portion of the distinguished name.

 This field displays only when you create a new certificate.

 Data type: Text

Default: (none)

Refer to http://www.iso.org/iso/en/prods-services/iso3166ma/02iso-3166-code-lists/list-en1.html for a list of

ISO 3166 country codes.

Validity period:

Specifies the length, in days, when the certificate is valid. The default is 365 days.

 This read-only field displays only when you view an existing certificate.

1434 Administering applications and their environment

http://www.iso.org/iso/en/prods-services/iso3166ma/02iso-3166-code-lists/list-en1.html

Issued to:

Specifies the distinguished name of the entity to which the certificate was issued.

 This read-only field displays only when you view an existing certificate.

Issued by:

Specifies the distinguished name of the entity that issued the certificate. When the personal certificate is

self-signed, this name is identical to the Issued to distinguished name.

 This read-only field displays only when you view an existing certificate.

Fingerprint (SHA Digest):

Specifies the Secure Hash Algorithm (SHA hash) of the certificate, which can be used to verify the

certificate’s hash at another location, such as the client side of a connection.

 This read-only field displays only when you view an existing certificate.

Signature algorithm:

Specifies the algorithm used to sign the certificate.

 This read-only field displays only when you view an existing certificate.

Personal certificate requests collection

Use this page to manage personal certificate requests. Personal certificate requests are temporary place

holders for certificates that will be signed by a certificate authority (CA).

To view this administrative console page, click Security > SSL certificate and key management >

Manage endpoint security configurations > {Inbound | Outbound} > ssl_configuration . Under

Related items, click Key stores and certificates > key store . Under Additional Properties, click Personal

certificate requests.

A private key is generated during the certificate request generation, but only the certificate is sent to the

CA. The CA generates a new certificate, signed by the CA. This can be added in the Personal Certificates

panel.

 Button Resulting action

New Creates a personal certificate request that can be given to a certificate

authority to complete.

Delete Deletes a personal certificate request.

Extract Extracts a personal certificate request. Only one certificate request can be

selected at a time.

Note: Any changes made to this panel are permanent.

Key label:

Specifies the alias that represents the personal certificate request in the key store.

Requested by:

Specifies the Subject distinguished name (DN) that represents the identity of the certificate request.

Chapter 16. Security 1435

Personal certificate requests settings

Use this page to create a new certificate request that can be extracted and sent to a certificate authority

(CA).

To view this administrative console page, click Security > SSL certificate and key management >

Manage endpoint security configurations > {Inbound | Outbound} > ssl_configuration . Under

Related items, click Key stores and certificates > key store . Under Additional Properties, click Personal

certificate requests > New.

Personal certificate requests are temporary place holders for certificates that will be signed by a certificate

authority (CA). The private key is generated during the certificate request generation, but only the

certificate is sent to the CA. The CA generates a new certificate, signed by the CA.

Note: Any changes made to this panel are permanent.

File for certificate request:

Specifies the fully qualified file name from which the certificate request is exported. This portion of the

certificate request can be given to the certificate authority to generate the real certificate. After the real

certificate is generated, you can perform an ″Receive a certificate from a certificate authority″ from the

personal certificate collection view.

 Data type: Text

Key label:

Specifies the alias that represents the personal certificate request in the key store.

 Data type: Text

Key size:

Specifies the size of the keys that are generated.

 Data type: Integer

Default: 1024

Common name:

Specifies the name of the entity that the certificate represents. This common name can represent a

person, company, or machine. For Web sites, the common name is frequently the DNS host name where

the server resides.

 Data type: Text

Organization:

Specifies the organization portion of the distinguished name.

 Data type: Text

Organizational unit:

1436 Administering applications and their environment

Specifies the organization unit portion of the distinguished name. This field is optional.

 Data type: Text

Locality:

Specifies the locality portion of the distinguished name. This field is optional.

 Data type: Text

State/Province:

Specifies the state portion of the distinguished name. This field is optional.

 Data type: Text

Zip code:

Specifies the zip code portion of the distinguished name. This field is optional.

 Data type: Integer

Country or region:

Specifies the country portion of the distinguished name.

 Data type: Text

Default: US

Refer to http://www.iso.org/iso/en/prods-services/iso3166ma/02iso-3166-code-lists/list-en1.html for a list of

ISO 3166 country codes.

Extract certificate request

Use this page to extract a certificate request and send it to a certificate authority (CA).

To view this administrative console page, click Security > SSL certificate and key management >

Manage endpoint security configurations > {Inbound | Outbound} > ssl_configuration . Under

Related items, click Key stores and certificates > key store . Under Additional Properties, click Personal

certificate requests > Extract.

Key label:

Specifies the alias that represents the personal certificate request in the key store.

File for certificate request:

Specifies the filename where the extracted certificate request is placed.

 Data type: Text

Chapter 16. Security 1437

http://www.iso.org/iso/en/prods-services/iso3166ma/02iso-3166-code-lists/list-en1.html

Receiving a certificate issued by a certificate authority

When a certificate authority (CA) receives a certificate request, it issues a new certificate that functions as

a temporary placeholder for a CA-issued certificate. A keystore receives the certificate from the CA and

generates a CA-signed personal certificate that WebSphere Application Server can use for Secure Sockets

Layer (SSL) security.

The keystore must contain the certificate request that was created and sent to the CA. Also, the keystore

must be able to access the certificate that is returned by the CA.

WebSphere Application Server can receive only those certificates that are generated by a WebSphere

Application Server certificate request. It cannot receive certificates that are created with certificate requests

from other keystore tools, such as iKeyman and keyTool.

Complete the following steps in the administrative console:

1. Click Security > SSL certificate and key management > Manage endpoint security configurations

> {Inbound | Outbound} > ssl_configuration > Key stores and certificates > [keystore].

2. Under Additional Properties, click Personal certificates.

3. Select a personal certificate.

4. Click Receive a certificate from a certificate authority.

5. Type the full path and name of the certificate file.

6. Select a data type from the list.

7. Click Apply and Save.

The keystore contains a new personal certificate that is issued by a CA. The original certificate request is

changed to a personal certificate.

The SSL configuration is ready to use the new CA-signed personal certificate.

To receive a certificate by using the wsadmin tool, use the receiveCertificate command of the AdminTask

object. For more information, see “Commands for the PersonalCertificateCommands group of the

AdminTask object” on page 1688.

Export certificate to a key file:

Use this page to specify a personal certificate to export to a key file.

 To view this administrative console page, click Security > SSL certificate and key management >

Manage endpoint security configurations > {Inbound | Outbound} > ssl_configuration . Under

Related items, click Key stores and certificates > key store . Under Additional Properties, click Personal

certificates > Export.

Certificate alias to export:

Displays the name of the certificate that you selected to export on the previous panel.

 Data type: Text

Alias:

Specifies the alias that the personal certificate is referenced by in the key store.

 Data type: Text

1438 Administering applications and their environment

Key file name:

Specifies the key store file name into which the exported certificate is added. If the key store file name

already exists, the exported certificate will be added. If the key store file name does not already exist, one

will be created, and the exported certificate will be added.

 Data type: Text

Type:

Specifies the type of key store file. The valid types are listed in the menu.

 Data type: Text

Default: JKS

Key file password:

Specifies the password that is used to access the key store file.

 Data type: Text

Confirm password:

Confirms the password entered in the previous field.

 The key file password and the new alias must be specified in case a certificate already exists with the

same name.

 Data type: Text

Import certificate from a key file:

Use this page to specify a personal certificate to import from a key file.

 To view this administrative console page, click Security > SSL certificate and key management >

Manage endpoint security configurations > Inbound | Outbound > SSL_configuration_name. Under

Related items, click Key stores and certificates > key store . Under Additional Properties, click Personal

certificates > Import certificates from a key file.

Key file name:

Specifies the fully qualified path to keystore file that contains the certificate to import.

 Data type: Text

Type:

Specifies the type of keystore file. The valid types are listed in the menu.

 Data type: Text

Key file password:

Chapter 16. Security 1439

Specifies the password that is used to access the keystore file.

 Data type: Text

Certificate alias to import:

Specifies the certificate alias identified as the Key file name that you want to import into the current key

store.

 Data type: Text

Default: (none)

Imported certificate alias:

Specifies the new alias that you want the certificate to be named in the current key store.

 Data type: Text

Receive certificate from CA:

Use this page to import your personal certificate from the certificate authority (CA). The imported certificate

replaces the temporary certificate associated with the public/private keys in the certificate request that is

stored in the key store.

 To view this administrative console page, click Security > SSL certificate and key management >

Manage endpoint security configurations > {Inbound | Outbound} > ssl_configuration . Under

Related items click Key stores and certificates > key store . Under Additional Properties, click Personal

certificates > Receive certificate from CA.

Certificate file name:

Specifies the filename that contains the certificate generated by the certificate authority (CA).

 Data type: Text

Data type:

Specifies the format of the file that is either Base64 encoded ASCII data or Binary DER data.

 Data type: Text

Default: Base64-encoded ASCII data

Replace a certificate

Use this page to specify two certificates: the first selected certificate is replaced by the second selected

certificate. The replace function replaces all the old signer certificates in key stores that are managed

throughout the cell with the new signer from the new certificate. The same level of trust that was

established with the old certificate is maintained.

To view this administrative console page, click Security > SSL certificate and key management >

Manage endpoint security configurations > Inbound | Outbound > ssl_configuration . Under Related

items, click Key stores and certificates > key store . Under Additional Properties click Personal

certificates > Replace certificate.

Old certificate:

1440 Administering applications and their environment

Specifies the certificate that you want to replace.

 Data type: Text

Replace with:

Specifies the certificate that you want to replace the old certificate.

 Data type: Text

Default: (none)

Delete old certificate after replacement:

Specifies that you want to delete the old certificate and all associated signer certificates after the new

certificate replaces it. If you do not replace the old personal certificate, it might be assigned a new alias

name.

 Default: Disabled

Delete old signers:

Specifies that you want to delete the old signer certificates that are associated with the old certificate after

the new signer certificates replace them. If you do not delete the old signer certificates, they might be

assigned new alias names.

 Default: Disabled

Extracting a signer certificate from a personal certificate

Personal certificates contain a private key and a public key. You can extract the public key, called the

signer certificate, to a file, then import the certificate into another keystore. The client requires the signer

portion of a personal certificate for Security Socket Layer (SSL) communication.

The keystore that contains a personal certificate must already exist.

Complete the following steps in the administrative console:

1. Click Security > SSL certificate and key management > Manage endpoint security configurations

> {Inbound | Outbound} > ssl_configuration > Key stores and certificates > keystore .

2. Under Additional Properties, click Personal certificates.

3. Select a personal certificate.

4. Click Extract.

5. Type the full path for the certificate file name. The signer certificate is written to this certificate file.

6. Select a data type from the list.

7. Click Apply.

The signer portion of the personal certificate is stored in the file that is provided.

This signer can now be imported into other keystores.

To extract a signer certificate from a personal certificate using the wsadmin tool, use the

extractCertificate command of the AdminTask object. For more information, see “Commands for the

PersonalCertificateCommands group of the AdminTask object” on page 1688.

Chapter 16. Security 1441

Extract certificate

Use this page to extract the signer from the personal certificate. The certificate can be imported into a trust

store for trust verification.

To view this administrative console page, click Security > SSL certificate and key management >

Manage endpoint security configurations > {Inbound | Outbound} > ssl_configuration . Under

Related items, click Key stores and certificates > key store . Under Additional Properties, click Personal

certificates > Extract.

Certificate alias to extract:

Specifies the filename that contains the extracted certificate.

 Data type: Text

Certificate file name:

Specifies the fully qualified path where the certificate file will reside.

 Data type: Text

Data type:

Specifies the format of the file, which is either Base64-encoded ASCII data or Binary DER data.

 Data type: Text

Default: Base64-encoded ASCII data

Extract signer certificate

Use this page to extract a signer certificate that can be added elsewhere.

To view this administrative console page, click Security > SSL certificate and key management >

Manage endpoint security configurations > {Inbound | Outbound} > Key stores and certificates >

key store > Signer Certificates > Extract signer certificate.

File name:

Specifies the fully qualified file name where the extracted signer certificate is placed.

 Data type: Text

Data type:

Specifies the format of the file, which is either Base64 encoded ASCII data or Binary DER data.

 Data type: Text

Retrieving signers using the retrieveSigners utility at the client

The client requires the signer certificates from the server to be able to communicate with WebSphere

Application Server. Use the retrieveSigners command to get the signer certificate from a server.

The retrieveSigners utility is located in one of the following directories, depending on your operating

system:

1442 Administering applications and their environment

v On Windows operating system: profile_root\bin . For example: C:\WebSphere\AppServer\profiles\
AppSrv01\bin

v On UNIX operating systems: ../profile_root/bin

In this release, a Java client that does not have access to a stdin console prompt should use the

retrieveSigners utility to download the signers from the remote server key store when signers are needed

for a Secure Sockets Layer (SSL) handshake. For example, you might interpret the client as failing to

respond if an applet client or Java Web Start Client application cannot access the stdin signer exchange

prompt. Thus, you must add the WebSphere Java method call

com.ibm.wsspi.ssl.RetrieveSignersHelper.callRetrieveSigners to your client application to retrieve the

signers and to avoid running the retrieveSigners utility manually.

Use the retrieveSigners utility for situations where you cannot verify whether or not the

com.ibm.ssl.enableSignerExchangePrompt= property is enabled or disabled when the application makes a

request. Set the com.ibm.ssl.enableSignerExchangePrompt= property to false in the ssl.client.props file if

you cannot see the console.

Alternatively, you can manually create the server key in the client truststore.

Complete the following steps, as required:

1. Use the retrieveSigners command to get the signer certificate from a server. You can find details

about the retrieveSigners. parameters in “Secure installation for client signer retrieval” on page 1373.

2. If the client and server are on the same machine, you will need only the remoteKeyStoreName and

localKeyStoreName parameters. The most typical key store to reference on a remote system is

CellDefaultTrustStore on a network deployed environment and NodeDefaultTrustStore on an

application server.

3. When retrieving signers from a remote server, add these required connection-related parameters:

–host host, –port port, –conntype {RMI | SOAP}.

4. If the remote server has security enabled, also supply the –user user –password password

parameters.

5. Use the –autoAcceptBootstrapSigner parameter if you want to enable automation of the signer

retrieval. This parameter automatically adds to the server all the signers that are needed to make the

connection.

After running, the command displays the SHI-1 digest of the signers added. The output looks similar to the

following output:

C:\WebSphere\AppServer\profiles\AppSrv01\bin\retrieveSigners.bat

CellDefaultTrustStore ClientDefaultTrustStore

CWPKI0308I: Adding signer alias "default_signer" to local keystore

 "ClientDefaultTrustStore" with the following SHA digest:

See the following examples of how to call the retrieveSigners.bat file on the Windows operating system:

To retrieve signers on the same system, enter:

’profile_home’\bin\retrieveSigners.bat CellDefaultTrustStore ClientDefaultTrustStore

To retrieve signers on a remote system with a SOAP connection, enter:

’profile_home’\bin\retrieveSigners.bat CellDefaulTrustStore ClientDefaultTrustStore

-host myRemoteHost -port 8879 -conntype SOAP -autoAcceptBootstrapSigner

To retrieve signers on a remote system with an RMI connection, enter:

’profile_home’\bin\retrieveSigners.bat CellDefaultTrustStore ClientDefaultTrustStore

-host myRemoteHost -port 2809 -conntype RMI -autoAcceptBootstrapSigner

Chapter 16. Security 1443

To retrieve signers on a remote system that has security enabled, enter:

’profile_home’\bin\retrieveSigners.bat CellDefaultTrustStore ClientDefaultTrustStore

-host myRemoteHost -port 8879 -conntype SOAP -user testuser -password testuserpwd

-autoAcceptBootstrapSigner

Changing the signer auto-exchange prompt at the client

For clients to communicate with WebSphere Application Server, clients must obtain a signer certificate

from the server. Clients can use the retrieveSigners command to connect to a server to obtain the

appropriate signer. A prompt displays that asks whether or not you want to add a signer to the truststore. If

the Secure Sockets Layer (SSL) configuration uses an automated script that might hang, use the prompt

to obtain the certificate.

The com.ibm.ssl.enableSignerExchangePrompt property in the profile_home/properties/
ssl.client.props file controls the signer certificate prompt. By default, this property is set to true,

meaning the prompt is enabled.

Complete the following steps to disable or enable the signer-exchange prompt at the client:

1. Open the profile_home/properties/ssl.client.props file using an editor.

2. Locate the section containing the SSL configuration information for the client that you are working with.

3. Change the value of the com.ibm.ssl.enableSignerExchangePrompt property to false if you do not

want the signer-exchange prompt, or set it to true if you want to be prompted.

4. Save and close the file.

When the com.ibm.ssl.enableSignerExchangePrompt property is set to false, no prompt displays, so you

can exchange signers while some administrative clients are running. When the

com.ibm.ssl.enableSignerExchangePrompt property is set to true, a signer-exchange prompt displays, and

you are asked to accept or reject the certificate. The prompt looks like the following example:

C:\WebSphere\AppServer\profiles\dmgr\bin>serverStatus -all

ADMU0116I: Tool information is being logged in file

 C:\WebSphere\AppServer\profiles\Dmgr\logs\serverStatus.log

ADMU0128I: Starting tool with the dmgr profile

ADMU0503I: Retrieving server status for all servers

ADMU0505I: Servers found in configuration:

ADMU0506I: Server name: dmgr

*** SSL SIGNER EXCHANGE PROMPT ***

SSL signer from target host 192.174.1.5 is not found in truststore

C:/WebSphere/AppServer/profiles/Dmgr/etc/trust.p12.

Verify that the digest value matches what is displayed at the server in the following signer information:

Subject DN: CN=hostname.austin.ibm.com, O=IBM, C=US

Issuer DN: CN=hostname.austin.ibm.com, O=IBM, C=US

Serial number: 1128544457

Expires: Thu Oct 20 15:34:17 CDT 2006

SHA-1 Digest: 91:A1:A9:2D:F2:7D:70:0F:04:06:73:A3:B4:A4:9C:56:9D:A8:A3:BA

MD5 Digest: 88:72:C5:88:00:1C:A7:FA:D6:EB:04:88:AC:A1:C9:13

Add signer to the truststore now? (y/n) y

A retry of the request might need to occur.

ADMU0508I: The Application Server "server1" is STARTED.

Clients can instigate communications for various processes using signer certificates obtained from

WebSphere Application Server.

Importing a signer certificate from a truststore to a z/OS keyring

You can import a signer certificate, which is also called a certificate authority (CA) certificate, from a

truststore on a non-z/OS platform server to a z/OS keyring.

1444 Administering applications and their environment

To import a certificate to a z/OS keyring, complete the following steps:

1. On the non-z/OS platform server, change to the install_root/bin directory and start the iKeyman

utility, which is called ikeyman.bat (Windows) or ikeyman.sh (UNIX). The install_root variable refers to

the installation path for WebSphere Application Server.

2. Within the iKeyman utility, open the server truststore. The default server truststore is called the

DummyServerTrustFile.jks file. The file is located in the $[USER_INSTALL_ROOT}/etc/ directory. The

default password is WebAS.

3. Extract the signer certificate from the truststore using the ikeyman utility. Complete the following steps

to extract the signer certificate:

a. Select Signer certificates from the menu.

b. Select new websphere dummy server alias.

c. Select Extract.

d. Select the correct data type. The signer_certificate can have either a Base64-encoded ASCII data

type or a Binary DER data type.

e. Specify the fully qualified path and the file name of the certificate.

4. From an FTP prompt on the non-z/OS platform server, type cd bin to change to binary mode.

5. From an FTP prompt on the non-z/OS platform server, type put ’signer_certificate’ mvs.dataset.

The signer_certificate variable refers to the name of the signer certificate on the non-z/OS platform

server. The mvs.dataset variable is the data set name to which the certificate was exported.

The RACDCERT CERTAUTH ADD command in the next step works with a Multiple Virtual Storage (MVS)

data set only. You can either turn the certificate file into a binary MVS data set or use the put

command with an Hierarchical File System (HFS) file, and then use the following command to copy the

file into a MVS data set:

OGET file_name mvs.dataset

6. On the z/OS platform server, go to option 6 in the Interactive System Productivity Facility (ISPF) dialog

panels and issue the following commands as a super user to add the signer certificate to the z/OS

keyring:

a. Type RACDCERT CERTAUTH ADD (’signer_certificate’) WITHLABEL(’Dummy Server CA’) TRUST The

Dummy Server CA variable refers to the label name for the certificate authority (CA) certificate that

you are importing from a non-z/OS platform server. The keyring_name variable refers to the name

of the z/OS keyring that is used by the servers in the cell.

b. Type RACDCERT ID(ASCR1) CONNECT(CERTAUTH LABEL(’Dummy Server CA’) RING(keyring_name)

c. Type RACDCERT ID(DMCR1) CONNECT(CERTAUTH LABEL(’Dummy Server CA’) RING(keyring_name)

d. Type RACDCERT ID(DMSR1) CONNECT(CERTAUTH LABEL(’Dummy Server CA’) RING(keyring_name) In

the previous commands, ASCR1, DMCR1, and DMSR1 are the RACF IDs under which the started tasks

for the cell run in WebSphere Application Server for z/OS. The ASCR1 value is the RACF ID for the

application server control region. The DMCR1 value is the RACF ID for the deployment manager

control region. The DMSR1 value is the RACF ID for the deployment manager server region.

After completing these steps, the z/OS keyring contains the signer certificates that originated on the

non-z/OS platform server.

To verify that the certificates were added, use option 6 on the ISPF dialog panel and type the following

command:

RACDCERT ID(CBSYMSR1) LISTRING(keyring_name)

The CBSYMSR1 value is the RACF ID for the application server region.

Note: Although iKeyman is supported for WebSphere Application Server Version 6.1, customers are

encouraged to use the administrative console to export signer certificates.

Chapter 16. Security 1445

Exporting a signer certificate from WebSphere Application Server for z/OS to a

truststore

You can export a signer certificate, which is also called a certificate authority (CA) certificate, from

WebSphere Application Server for z/OS to a truststore.

WebSphere Application Server, WebSphere Application Server Network Deployment, or WebSphere

Application Server - Express can use the certificate in the truststore.

To export the certificate to a truststore, complete the following steps:

 1. Export the z/OS® signer certificate to a data set by issuing the following Resource Access Control

Facility (RACF) command as a super user using Time Sharing Option (TSO) option 6:

RACDCERT CERTAUTH EXPORT(LABEL(’signer_certificate’)) DSN(’mvs.dataset’)FORMAT(CERTDER)

The signer_certificate variable is the RACF label name of the certificate that is used by the cell. The

signer_certificate can have either a Base64-encoded ASCII data type or a Binary DER data type. The

mvs.dataset variable is the data set name to which the certificate is exported. You do not need to

pre-allocate this data set because it is created by RACF.

 2. From a command line on the non-z/OS platform server, type cd and change to the following directory:

install_root/profiles/default/etc

 3. From an FTP prompt on the non-z/OS platform server, type cd bin to change to binary mode.

 4. From an FTP prompt on the non-z/OS platform server, type the following command:

get ’mvs.dataset’ signer_certificate

 5. On the non-z/OS platform server, change to the install_root/bin directory and start the iKeyman

utility, which is called ikeyman.bat for Windows or ikeyman.sh for UNIX.

 6. Within the iKeyman utility, open the server truststore. The default server truststore is called the

DummyServerTrustFile.jks file. The file is located in the ${USER_INSTALL_ROOT}/etc/ directory. The

default password is WebAS. It is recommended that you create a new key file and trust file if you plan

to use the certificate in a production environment.

 7. Add your exported signer certificate to the server truststore using the iKeyman utility. Complete the

following steps to add your exported signer certificate:

a. Select Signer certificates from the menu.

b. Select the correct data type. The signer certificate can have either a Base64-encoded ASCII data

type or a Binary DER data type.

c. Specify the fully qualified path and file name of the signer certificate.

 8. Within the iKeyman utility, open the client truststore. The default client truststore is called the

DummyClientTrustFile.jks file. The file is located in the ${USER_INSTALL_ROOT}/etc/ directory. The

default password is WebAS. It is recommended that you create a new key file and trust file if you plan

to use the certificate in a production environment.

 9. Add your exported signer certificate to the client truststore using the iKeyman utility. Complete the

following steps to add your exported signer certificate:

a. Select Signer certificates from the menu.

b. Select the correct data type. The signer certificate can have either a Base64-encoded ASCII data

type or a Binary DER data type.

c. Specify the fully qualified path and file name of the signer certificate.

10. Restart the server process to use the new signer certificates.

After completing these steps, you can use the exported signer certificates with the WebSphere Application

Server, WebSphere Application Server Network Deployment, or WebSphere Application Server - Express

products.

1446 Administering applications and their environment

Retrieving signers from a remote SSL port

To perform Secure Sockets Layer (SSL) communication with a server, WebSphere Application Server must

retrieve a signer certificate from a secure remote SSL port during the handshake. After the signer

certificate is retrieved, you can add the signer certificate to a keystore.

The keystore that is to contain the signer certificate must already exist.

Complete the following steps in the administrative console:

1. Click Security > SSL certificate and key management > Manage endpoint security configurations

> {Inbound | Outbound} > Key stores and certificates > keystore > Signer certificates > Retrieve

from port.

2. Click Retrieve from port.

3. Type the host name of the machine on which the signer resides.

4. Type the port location on the host machine on which the signer resides. The port location is not limited

to ports on WebSphere Application Server. The ports can include Lightweight Directory Access

Protocol (LDAP) ports or ports on any server on which an SSL port is already configured, such as

SIB_ENDPOINT_SECURE_ADDRESS.

5. Select an SSL configuration for the outbound connection from the list.

6. Type an alias name for the certificate.

7. Click Retrieve signer information. A message window displays information about the retrieved signer

certificate, such as: the serial number, issued-to and issued-by identities, SHA hash, and expiration

date.

8. Click Apply. This action indicates that you accept the credentials of the signer.

The signer certificate that is retrieved from the remote port is stored in the keystore.

An SSL configuration or client process that requires an SSL connection to the server can use the retrieved

and approved signer certificate.

To retrieve a signer certificate from a port using the wsadmin tool, use the retrieveSignerFromPort

command of the AdminTask object. For more information, see “Commands for the

PersonalCertificateCommands group of the AdminTask object” on page 1688.

Retrieve from port

Use this page to retrieve a signer certificate from a remote SSL port. The system connects to the specified

remote SSL host and port and receives the signer during the handshake using a trust manager. The signer

SHA hash displays for validation and, if approved by an administrator, is added to the currently selected

trust store.

To view this administrative console page, click Security > SSL certificate and key management >

Manage endpoint security configurations > {Inbound | Outbound} > ssl_configuration . Under

Related items, click Key stores and certificates > key store > Signer certificates > Retrieve from port.

Host:

Specifies the host name to which you connect when attempting to retrieve the signer certificate from the

Secure Sockets Layer (SSL) port.

 Data type: Text

Port:

Specifies the SSL port to which you connect when attempting to retrieve the signer certificate.

Chapter 16. Security 1447

Data type: Text

SSL configuration for outbound connection:

Specifies the SSL configuration that is used to connect to the previously specified SSL port. This

configuration is also the SSL configuration that contains the signer after retrieval. This SSL configuration

does not need to have the trusted certificate for the SSL port as it is retrieved during validation and

presented here.

 Data type: Text

Default: DefaultSSLConfig

Alias:

Specifies the certificate alias name that you want to reference the signer in the key store, which is

specified in the SSL configuration.

 Data type: Text

Retrieved signer information:

Specifies the signer certificate information if it is retrieved from the remote host and port.

Serial number:

Specifies the certificate serial number that is generated by the issuer of the certificate.

Issued to:

Specifies the distinguished name of the entity to which the certificate was issued.

Issued by:

Specifies the distinguished name of the entity that issued the certificate. This name is the same as the

issued-to distinguished name when the signer certificate is self-signed.

Fingerprint (SHA Digest):

Specifies the Secure Hash Algorithm (SHA hash) of the certificate, which can be used to verify the

certificate’s hash at another location, such as the client side of a connection.

Expiration:

Specifies the expiration date of the retrieved signer certificate for validation purposes.

Adding a signer certificate to a keystore

Signer certificates establish the trust relationship in SSL communication. You can extract the signer part of

a personal certificate from a keystore, and then you can add the signer certificate to other keystores.

The keystore that you want to add the signer certificate to must already exist.

Complete the following steps in the administrative console:

1. Click Security > SSL certificate and key management > Manage endpoint security configurations

> Inbound | Outbound > SSL_configuration_name > Key stores and certificates.

1448 Administering applications and their environment

2. Select a keystore from the list of keystores.

3. Click Add signers.

4. Enter an alias for the signer certificate in the Alias field

5. Enter the full path to the signer certificate file in the File name field.

6. Select a data type from the list in the Data type field.

7. Click Apply.

When these steps are completed, the signer from the certificate file is stored in the keystore. You can see

the signer in the keystore files list of signer certificates. Use the keystore to establish trust relationships for

the SSL configurations.

To add a signer certificate to a keystore by using the wsadmin tool, use the addSignerCertificate

command of the AdminTask object. For more information, see rxml_atpersonalcert.dita.

Add signer certificate

Use this page to add a signer certificate to the key store.

To view this administrative console page, click Security > SSL certificate and key management >

Manage endpoint security configurations > {Inbound | Outbound} > ssl_configuration. Under

Related items click Key stores and certificates > key store > Signer certificates > Add.

Alias:

Specifies the alias that the signer certificate is referenced by in the key store.

 Data type: Text

File name:

Specifies the filename where the encoded signer certificate is located.

 Data type: Text

Data type:

Specifies the format of the file, which is either Base64 encoded ASCII data or Binary DER data.

 Data type: Text

Signer certificates collection

Use this page to manage signer certificates in key stores. Signer certificates are used by Java Secure

Socket Extensions (JSSE) to validate certificates sent by the remote side of the connection during a

Secure Sockets Layer (SSL) handshake. If a signer does not exist in the trust store that can validate the

certificate sent, the handshake fails and generates an ″unknown certificate″ error.

To view this administrative console page, click Security > SSL certificate and key management >

Manage endpoint security configurations > {Inbound | Outbound} > ssl_configuration . Under

Related items click Key stores and certificates > key store > Signer certificates.

 Button Resulting action

Add Adds a new trusted (signer) certificate.

Delete Deletes an existing signer certificate.

Chapter 16. Security 1449

rxml_atpersonalcert.dita

Button Resulting action

Extract Extracts a signer certificate from a personal certificate to a file.

Retrieve from port Makes a test connection to an SSL port and retrieves the signer from the

server during the handshake. The information from the certificate will be

displayed so you can decide whether to trust it based upon the MD5 and/or

SHA hash.

Alias:

Specifies the alias for this signer certificate in the key store.

Issued to:

Specifies the distinguished name of the entity that requested the certificate.

Fingerprint (SHA digest):

Specifies the Secure Hash Algorithm (SHA hash) of the certificate. This can be used to verify the hash for

the certificate at another location, such as the client side of a connection.

Expiration:

Specifies the expiration date of the signer certificate for validation purposes.

Signer certificate settings

Use this page to verify the general properties of the selected signer certificate.

To view this administrative console page, click Security > SSL certificate and key management >

Manage endpoint security configurations > {Inbound | Outbound} > ssl_configuration . Under

Related items, click Key stores and certificates > key store > Signer certificates > signer certificate .

Alias:

Specifies the alias for this signer certificate in the key store.

Version:

Specifies the version of the personal certificate. Valid versions include X509 V3, X509 V2, or X509 V1.

Key size:

Specifies the key size of the public key used by the signer certificate.

Serial number:

Specifies the certificate serial number that is generated by the issuer of the certificate.

Validity period:

Specifies the begin and end dates of the certificate.

Issued to:

Specifies the distinguished name of the entity that requested the certificate.

1450 Administering applications and their environment

Issued by:

Specifies the distinguished name of the entity that issued the certificate. This name is the same as the

issued-to distinguished name when the signer certificate is self-signed.

Fingerprint (SHA Digest):

Specifies the Secure Hash Algorithm (SHA) hash of the certificate, which can be used to verify the hash

for the certificate at another location such as the client side of a connection.

Signature algorithm:

Specifies the algorithm that is used to sign the certificate.

Exchanging signer certificates

To establish trust relationships, you can exchange signer certificates between keystores. When you

exchange signer certificates, you are extracting a personal certificate from one keystore and adding it to

another keystore as a signer certificate.

To exchange signer certificates, there must be two keystores.

Complete the following steps in the administrative console:

1. Click Security > SSL certificate and key management > Manage endpoint security configurations

> {Inbound | Outbound} > ssl_configuration > Key stores and certificates.

2. Select two keystores from the list of keystores.

3. Click Exchange signers.

4. Select any of the certificates in the first personal certificates list, and click Add. After adding, the signer

part of the selected personal certificate appears in the other (second) keystore signers list.

5. Select any of the certificates in the second personal certificates list, and click Add. After adding, the

signer part of the selected personal certificate appears in the other (first) keystore signers list.

6. Optional: If you need to remove any of the certificates from either of the signers lists, highlight one or

more of the certificates, and click Remove.

7. Click Apply and Save.

The signer certificate appears in the list for each keystore.

The extracted signer certificate is available to both keystores during the connection handshake.

Key stores and certificates exchange signers

Use this page to extract a personal certificate from one keystore and add it to another keystore as a signer

certificate.

To view this administrative console page, click Security > SSL certificate and key management >

Manage endpoint security configurations > {Inbound | Outbound} > ssl_configuration. Under

Related items, click Key stores and certificates > Exchange signers.

Note: Any changes made to this panel are permanent.

[key store] personal certificates:

Specifies the personal certificates that are currently stored in the specified key store.

Chapter 16. Security 1451

Press and hold the Ctrl key to select more than one item from the list.

 Data type: Text

[key store] signers:

Specifies the trusted signer certificates that are currently stored in the specified key store and selected for

the exchange.

 Press and hold the Ctrl key to select more than one item from the list.

 Data type: Text

Add:

Specifies to extract the signer from the selected personal certificate in the key store list on the left and add

it to the signers list of the key store on the right.

 After the certificate is added, it no longer displays in the left-hand list. The personal certificate is still in the

key store, but it is no longer selectable

Remove:

Specifies to remove a selected signer from the signers list of the key store on the right. The removed

certificate displays in the key store list on the left.

Configuring certificate expiration monitoring

When certificates expire, they can no longer be used by the system. WebSphere Application Server

provides a utility to monitor certificates that are close to expiration or have already expired. You can

schedule certificate monitoring, or you can request certificate monitoring on demand. You can also

configure options for deleting expired certificates and for recreating certificates.

WebSphere Application Server notifies you when a certificate is about to expire. Complete the information

required for notification messaging in “Notifications” on page 1455.

Complete the following configuration steps in the administrative console:

1. Click Security > SSL certificate and key management > Manage certificate expiration.

2. Type a number for the number of days threshold in the Expiration notification threshold field.

WebSphere Application Server issues an expiration warning n number of days before expiration.

3. Select or check one or more of the following options:

v Expiration check notification. Select the method from the list that you want to use to receive your

notification.

v Automatically replace expiring self-signed certificates. If you do not want to recreate the

self-signed certificate, clear the check box.

v Delete expiring certificates and signers after replacement. If you do not want to delete the

expired certificates and signers, clear the check box.

v Enable checking. If you do not want to have certificate monitoring enabled, clear the check box.

4. Enter the time of day when you want certificate monitoring to take place to schedule the running of the

certificate expiration monitor.

5. Select one of the following options:

v Check by calendar. For Weekday, enter the day of week that you want to run the certificate

expiration monitor. For Repeat Interval, specify the frequency to run the certificate monitor.

1452 Administering applications and their environment

v Check by number of days. Enter a number for how frequently the monitor runs, in number of days.

6. Click Apply.

After completing the settings, a certificate expiration monitor object and a schedule are set up in the

configuration. The certificate expiration monitor runs according to the configurations options that you

configured.

You can generate reports that state which certificates have expired. The reports identify the notifications of

certificate replacements and deletions. The report is sent according to the notification option that you

specified.

Manage certificate expiration settings

Use this page to configure the certificate expiration monitor.

To view this administrative console page, click Security > SSL certificate and key management >

Manage certificate expiration.

 Attention: To see the changes to the Expiration checking fields, you must click Apply.

Expiration notification threshold:

Specifies a threshold number of days during which the application warns specified individuals that a

certificate is about to expire. For example, when the expiration monitor is run and the threshold is 30 days,

if the current date is 30 days or less from the certificate expiration date, the certificate is flagged for

notification. The application server can be configured to provide certification expiration notification through

either e-mail or the message log file.

 Data type: Integer

Default: 30 days

Expiration check notification:

Specifies the notification type (such as e-mail or System Out) when an expiration monitor runs.

 Default:

Automatically replace expiring self-signed certificates:

Specifies a new self-signed certificate be generated using the same certificate information if the expiration

notification threshold is reached. The old certificate is replaced and uses the same alias. All old signers

are managed by the key store configuration are also replaced. The system only replaces self-signed

certificates.

 Default: Enabled

Delete expiring certificates and signers after replacement:

Specifies whether to completely remove old, self-signed certificates from the key store during a replace

operation or leave them there under a renamed alias. If an old certificate is not deleted, the system

renames the alias so that the new certificate can use the old alias, which might be referenced elsewhere

in the configuration.

 Default: Enabled

Chapter 16. Security 1453

Enable checking:

Specifies the certificate monitor is active and will run as scheduled.

Scheduled time of day to check for expired certificates:

Specifies the scheduled time that the system checks for expired certificates.

 You can type the scheduled time in hours and minutes, specify either A.M. or P.M., or 24-hour.

 Data type Integer

Default: 0, 0

Range: 1–12, 0–59

Check by calendar:

Indicates that you want to schedule a specific day of the week on which the expiration monitor runs. For

example, it might run on Sunday.

 Default: Disabled

Weekday:

Specifies the day of the week on which the expiration monitor runs if Check on a specific day is

selected.

 Default: Sunday

Range: Sunday, Monday, Tuesday, Wednesday, Thursday, Friday,

Saturday

Repeat interval:

Specifies the period of time between each schedule time to check for expired certificates or the interval

between schedule checks.

 Default: Daily

Range: Daily, Weekly

Check by number of days:

Specifies that you want to schedule a specific number of days between each run of the expiration monitor.

The day of the week on which this occurs is not counted. For example, if you set the interval to check for

expired certificates every seven days, the expiration monitor runs on day eight.

 Default: Disabled

Next start date:

Specifies the date for the next scheduled check. This allows the deployment manager to be stopped and

restarted without resetting the date.

1454 Administering applications and their environment

Notifications

Use this page to specify the generic notification definitions that are used in certificate expiration monitors.

To view this administrative console page, complete the following steps:

1. Click Security > SSL certificate and key management.

2. Under Configuration settings, click Manage certificate expiration.

3. Under Related items, click Notifications.

 Button Resulting action

New Adds a notification. The notification configures how the expiration monitor

notifies the administrator of certificates that will expire within the specified

threshold.

Delete Deletes an existing notification.

Notification name:

Specifies the notification name.

Message log:

Specifies that this configuration intends to log certificate expiration information to the message log file.

List of e-mail addresses:

Specifies the e-mail addresses that are sent notifications when certificates fall within the expiration

threshold. You must specify the SMTP server for each e-mail address. If an e-mail address is not

specified, by default the application server assumes that the SMTP server is ″smtp-server.″ For example, if

you type name@domain, the SMTP server will be smtp-server.domain.

Notifications settings

Use this page to set properties for new notifications used in certificate expiration monitors.

To view this administrative console page, complete the following steps:

1. Click Security > SSL certificate and key management.

2. Under Configuration settings, click Manage certificate expiration.

3. Under Related items, click Notifications > New.

Notification name:

Specifies the name of the notification configuration.

 Data type: Text

Message log:

Specifies that this configuration will log certificate expiration information to a message log file.

 Default: Disabled

Email sent to notification list:

Specifies that this configuration intends to send certificate expiration information in an e-mail to the e-mail

list.

Chapter 16. Security 1455

Default: Disabled

Email address to add:

Specifies the e-mail addresses that are sent notifications when certificates fall within the expiration

threshold. You must specify the SMTP server for each e-mail address. If an e-mail address is not

specified, by default the application server assumes that the SMTP server is ″smtp-server.″ For example, if

you type name@domain, the SMTP server will be smtp-server.domain.

 Data type: Text (format as valid Internet mail address)

Add:

Adds the e-mail address to the right-hand list.

 Remove:

Removes the e-mail address from the right-hand list.

 Outgoing mail (SMTP) server:

Specifies the SMTP server to be used with the e-mail address. If none is specified, the e-mail realm will be

used.

Key management for cryptographic uses

WebSphere Application Server provides a framework for managing keys (secret keys or key pairs) that

applications use to perform cryptographic operations on data. The key management framework provides

an application programming interface (API) for retrieving these keys. Keys are managed in keystores so

the keystore type can be supported by WebSphere Application Server, provided that the keystores can

store the referenced key type. You can configure keys and scope keystores so that they are visible only to

particular processes, nodes, clusters, and so on.

The key management infrastructure is based on two key configuration object types: key sets and key set

groups. WebSphere Application Server uses a key set to manage instances of keys of the same type. You

can configure a key set to generate a single key or a key pair, depending on the key or key pair generator

class. A key set group manages one or more key sets and enables you to configure and generate different

key types at the same time. For example, if your application needs both a secret key and key pair for

cryptographic operations, you can configure two key sets, one for the key pair and one for the secret key

that the key set group manages. The key set group controls the auto-generation characteristics of the

keys, including the schedule. The framework can automatically generate keys on a scheduled basis, such

as on a particular day of the week and time of day, so that key generation is done during off-peak hours.

Figure 1 shows an example of a key set group that is configured to manage two key sets: key set 1 and

key set 2.

1456 Administering applications and their environment

Key set 1 generates key pairs. Key set 2 generates secret keys. The application needs both types of keys

for its cryptographic operations, signing and encryption, on data. The keys for each key set need to be

generated in tandem. The application stores the key set group name with the encrypted data. The key set

group generates a new set of keys every Sunday night at 11 P.M.. The application maintains key

generation data for two weeks.

Creating a key set configuration

You can use key sets to manage multiple instances of cryptographic keys. WebSphere Application Server

uses keys to encrypt or sign outbound data, and decrypt or verify inbound data during cryptographic

operations.

You must have write-access to the keystore that will contain the keys after you generate them from a key

set. However, if you want to generate keys outside of WebSphere Application Server, you can reference

the keys from a read-only keystore that contains a secret key that you can access when you generate the

keys. If you are creating a key pair using an X509Certificate and a PrivateKey object , see “Example:

Developing a key or key pair generation class for automated key generation” on page 1464.

Complete the following steps in the administrative console:

 1. Decide whether you want to create the key set at the cell scope or below the cell scope at the node,

server, or cluster, for example:

v To create a key set at the cell scope, click Security > SSL certificate and key management >

Key sets.

Key set group:

Auto -generate

every Sunday

at 11pm

Key set 1:

KeyPairGenerator
Key set 2:

KeyGenerator

com.ibm.websphere.crypto.KeySetHelper API

Key store Key store

Key reference
Key reference

Key reference
Key reference

Key reference
Key reference

Active key history:

Keep the 3 most recent

Actual keys

Application

getAllKeysForKeySetGroup:
used for decryption of

getLatestKeysForKeySetGroup:
used for encryption of

Active key history:

Keep the 3 most recent

Key set group:

Auto -generate

every Sunday

at 11pm

Key set 1:

KeyPairGenerator

Key set 2:

KeyGenerator

com.ibm.websphere.crypto.KeySetHelper API

Key store Key store

Key reference
Key reference

Key reference

Key reference
Key reference

Key reference

Active key history:

Keep the 3 most recent

Actual key pairs

Application

getAllKeysForKeySetGroup:
used for decryption of dataexistingused for encryption of datanew

Active key history:

Keep the 3 most recent

Figure 1: Key Management Infrastructure

Figure 18.

Chapter 16. Security 1457

v To create a key set at a scope below the cell level, click Security > SSL certificate and key

management > Manage endpoint security configurations > {Inbound | Outbound} >

ssl_configuration > Key sets.

 2. Click New to create a new key set.

 3. Type a key set name. For example, CellmyKey.

 4. Type a key alias prefix name. For example, myKey. This field specifies the prefix for the key alias

when the new key is generated and stored in the keystore. Following the prefix is the key reference

version number, for example, 2, so that the full key alias name would be myKey_2. If the key reference

already has a specified alias for a key that exists in the keystore, then WebSphere Application Server

ignores this field.

 5. Type a key password. The key password protects the key in the keystore. This password is ignored

by WebSphere Application Server if you already specified a password for the key alias reference. To

check for a key reference password, click Active key history under Additional Properties. The key

reference password protects keys that are generated by a key generator class.

 6. Type the password again to confirm it.

 7. Optional: Type the key generator class name. For example,

com.ibm.ws.security.ltpa.LTPAKeyGenerator. The class name generates keys. If the class

implements com.ibm.websphere.crypto.KeyGenerator, then a getKey method returns a

java.security.Key object that is set in the keystore using the setKey method without a certificate chain.

If the class implements com.ibm.websphere.crypto.KeyPairGenerator, then a getKeyPair method

returns a com.ibm.websphere.crypto.KeyPair object that contains either a java.security.PublicKey and

java.security.PrivateKey or a java.security.cert.Certificate and a java.security.PrivateKey object. The

key generator class and the KeySetHelper API specify the details of the keys that are generated.

 8. Optional: Select Delete key references that are beyond the maximum number of keys if you do

not want old keys saved in the keystore after WebSphere Application Server removes their references

from the Active key history listing. The Active key history lists the keys that the KeySetHelper API is

currently tracking. The number of keys in the list is equal to the number of keys that you specify in

Maximum number of keys referenced.

 9. Type a numeric value for the maximum number of keys referenced. For example, if you type 3 and

select Delete key references that are beyond the maximum number of keys, the fourth key

version generation automatically triggers WebSphere Application Server to delete the first key version

from the keystore. If you choose not to delete the old keys, they do not display in the Active key

history list but instead remain in the keystore where you can remove them manually.

10. Select a keystore from the drop-down list.

v Select a JCEKS keystore if you are storing a secret key.

v Select any keystore if you are storing a key pair with an X509Certificate and PrivateKey object.

11. Optional: Select Generates key pair if your key generator class name implements the

com.ibm.websphere.crypto.KeyPairGenerator interface instead of the

com.ibm.websphere.crypto.KeyGenerator interface. This option designates that the key references a

key pair instead of a single key. A key pair contains both a public key and a private key. The

WebSphere Application Server run time determines whether or not key pairs are stored and loaded

differently than single keys.

12. Optional: Click Apply if you want to select Active key history under Additional Properties to add

alias references or generate more keys.

a. Click Active key history.

b. Click Add key alias reference if you are not using the key generator class name to add key alias

references to the keys that already exist in the keystore. Use this option to retrieve the keys from

a read-only keystore without the key set generating them.

c. Type an alias reference.

d. Click Generate key if you want to generate a key using the class name that you defined in the

key sets panel. Each new key increments numerically, for example, myAlias_2.

1458 Administering applications and their environment

e. Click Apply.

13. Click the key set name in the navigation path at the top of the panel.

14. Click OK and Save.

You have created a key set that you can manage using the Active key history link. You can generate

keys manually to associate them with specified key sets.

After you generate new keys from a key set, you can access them programmatically using the

com.ibm.websphere.crypto.KeySetHelper API. You must have Java 2 Security permissions, if enabled, to

access keys in key sets. Specify the key set name within the fine-grained permissions, as in the following

code sample: WebSphereRuntimePermission "getKeySets.keySetName". For more information, see

“Example: Retrieving the generated keys from a key set group” on page 1463. To generate multiple key

types at the same time or to schedule the key generation on a specific schedule, see “Creating a key set

group configuration” on page 1462.

Active key history collection

Use this page to manage key alias references.

To view this administrative console page, click Security > SSL certificate and key management >

Manage endpoint security configurations > {Inbound | Outbound} > SSL_configuration_name.

Under Related items, click Key Sets > key set > Active key history.

 Button Resulting action

Add key alias reference Adds a reference to a key that already exists in a key store. If a key

generation class is configured, the references are added automatically during

generation and do not need to be added manually.

Delete Deletes an existing key reference. This action does not delete the key in the

keystore.

Generate key Generates a key. The button is displayed only if a generator class name is

specified for the key set, and the selected key store is editable.

Key alias reference:

Specifies the name of the alias as it appears in the keystore.

Add key alias reference settings

Use this page to access key alias reference information.

To view this administrative console page, click Security > SSL certificate and key management >

Manage endpoint security configurations > {Inbound | Outbound} > SSL_configuration_name.

Under Related items, click Key Sets > key set > Active key history > Add key alias reference.

Alias reference:

Specifies the name of the alias as it appears in the key store.

 Data type: Text

Password:

Specifies the key password to get access to the key. This password is enforced by the keystore for that

specific key. If the key does not have a password, this field can be left blank.

 Data type: Text

Chapter 16. Security 1459

Confirm password:

Confirms the password entered in the previous field.

 Data type: Text

Key sets collection

Use this page to manage key sets, which control a set of key instances of the same type for use in

cryptographic operations. The keys can either be generated using a custom class or reference keys that

already exist in a keystore.

To view this administrative console page, click Security > SSL certificate and key management >

Manage endpoint security configurations > {Inbound | Outbound} > ssl_configuration . Under

Related items, click Key sets.

 Button Resulting action

New Adds a new key set.

Delete Deletes an existing key set. Make sure the key set is not referenced by a key

set group before deleting it.

Key set name:

Specifies the key set name that is used to select the key set from a key set group and from runtime

application programming interfaces (API).

Key store:

Specifies the key store that contains the keys for storage, retrieval, or both.

Key alias prefix name:

Specifies the prefix for the key alias when a new key is generated and stored in a key store. The rest of

the key alias comes from the key reference version number.

 For example, if the alias prefix is mykey and the key reference version is 2, the keystore references the key

using alias mykey_2. If the key reference already has a specified alias for a key already existing in the

keystore, this field is ignored.

Key sets settings

Use this page to set the properties for a new key set.

To view this administrative console page, click Security > SSL certificate and key management >

Manage endpoint security configurations > {Inbound | Outbound} > ssl_configuration . Under

Related items, click Key sets > New.

Key set name:

Specifies the key set name that is used to select the key set from a key set group and from runtime

application programming interfaces (API).

 Data type: Text

1460 Administering applications and their environment

Key alias prefix name:

Specifies the prefix for the key alias when a new key is generated and stored in a keystore. The rest of

the key alias comes from the key reference version number. For example, if the alias prefix is mykey and

the key reference version is 2, the keystore references the key using alias mykey_2. If the key reference

already has a specified alias for a key already existing in the keystore, this field is ignored.

 Data type: Text

Key password:

Specifies the password used to protect the key in the keystore. If a password is specified in the key

reference as well, this password is ignored. This password is used for keys that get generated by a key

generator class.

 Data type: Text

Confirm password:

Specifies the same password again to confirm it was entered correctly the first time.

 Data type: Text

Key generator class name:

Specifies the class name that generates keys. If the class implements

com.ibm.websphere.crypto.KeyGenerator, then a getKey() method should return a java.security.Key object

that is set in the key store using the setKey method without a certificate chain. The key store type

associated with the key set must support storing keys without certificates, such as JCEKS.

 Data type: Text

If the class implements com.ibm.websphere.crypto.KeyPairGenerator, then a getKeyPair() method should

return a com.ibm.websphere.crypto.KeyPair object containing either a java.security.PublicKey and

java.security.PrivateKey, or a java.security.cert.Certificate[] and a java.security.PrivateKey. The key

generator class and the caller of the KeySetHelper API should know the details of the keys that are

generated. This framework does not need to understand the key algorithms and lengths.

Delete key references that are beyond the maximum number of keys:

Specifies that the keys are deleted from the keystore at the same time that the key reference is deleted.

The server deletes the older key references as the Maximum number of keys referenced value is

exceeded.

Maximum number of keys referenced:

Specifies the maximum number of key instances that are returned when keys from this key set are

requested. The oldest key reference gets removed whenever a new key reference gets generated after the

maximum has been reached.

 Data type: Integer

Default: 3

Key store:

Chapter 16. Security 1461

Specifies the key store that contains the keys for storage, retrieval, or both.

 Data type: Text

Generates key pair:

Specifies that a key references a key pair instead of a key. The key pair contains both a public key and a

private key.

Creating a key set group configuration

A key set group manages one or more key sets. WebSphere Application Server uses key set groups to

automatically generate cryptographic keys or multiple synchronized key sets.

Complete the following steps in the administrative console:

 1. Decide whether you want to create the key set group at the cell scope or below the cell scope at the

node, server, or cluster, for example.

v To create a key set group at the cell scope, click Security > SSL certificate and key

management > Key set groups.

v To create a key set group at a scope below the cell level, click Security > SSL certificate and

key management > Manage endpoint security configurations > {Inbound | Outbound} >

SSL_configuration > Key set groups.

 2. You can choose to generate a key for an existing key set group, delete an existing key set group, or

create a new key set group.

v To generate a key for an existing key set group, select a key set group from the list of existing key

set groups, and click Generate keys. You have generated a new key for each key set in the

selected group.

v To delete an existing key set group, select a key set group from the list of existing key set groups,

and click Delete. You have deleted the key set group.

v To create a new key set group, go to step 3.

 CAUTION:

Do not delete the cell or node LTPAKeySetGroup, which is used by the Lightweight Third Party

Authentication (LPTA) mechanism.

 3. Click New to create a new key set group.

 4. Type a key set group name. You can reference this name by using the

com.ibm.websphere.crypto.KeySetHelper API to retrieve the managed keys from an application.

 5. Select one or more key sets from the Key sets list.

Note: If the key set(s) you want is not listed, make sure that it was created at the same scope or a

higher scope than where you are creating the new key set group.

 6. Click Add to add the selected key set(s) to the new key set group.

 7. Select Automatically generate keys to generate the new keys on a schedule. If you decide to

generate keys automatically, then you must specify a scheduled time of day.

 8. Specify the scheduled time to generate keys automatically in hours and minutes, A.M. or P.M., or

every 24 hours.

 9. You can choose to generate new keys on a specific day or at an interval.

v Select Generate on a specific day. Select a day of the week from the drop-down list, and type a

repeat interval number for the number of days between each key generation. This choice enables

you to schedule key generation when your systems are least busy.

1462 Administering applications and their environment

v Select Generate at an interval. Type a repeat interval number for the number of days between

each key generation. This choice enables you to schedule key generation more frequently than

once a week.

Note: The Next start date is a read-only field that specifies the date for the next scheduled

generation. You can stop and restart the deployment manager or base application server

without resetting this date. If you do not see the next start date appear after changing the

configuration, click OK to save it, then check that the next start date displays.

10. Click Save.

You have created a new key set group to manage key sets and key generation on a schedule.

After you generate new keys from a key set, you can access them programmatically using the

com.ibm.websphere.crypto.KeySetHelper API. You must have Java 2 Security permissions, if enabled, to

access keys in key sets. Specify the key set name within the fine-grained permissions, as in the following

code sample: WebSphereRuntimePermission ″getKeySets.keySetName″. For more information, see

“Example: Retrieving the generated keys from a key set group.”

Example: Retrieving the generated keys from a key set group

This example shows how applications can use the com.ibm.websphere.crypto.KeySetHelper API to retrieve

managed keys from the KeySet or KeySetGroup configurations. Use the

com.ibm.websphere.crypto.KeySetHelper API to get either the latest set of keys or the all keys in the

KeySet or KeySetGroup object.

Use the latest keys when performing any new cryptographic operations. All of the other keys that are

defined in the KeySet or KeySetGroup object are for the validation of previously performed cryptographic

operations.

The following example uses a method that an application might use to initialize the keys in the associated

KeySetGroup object. The application might want to store the keys in two separate maps, one for

generation and one for validation. Refer to the API documentation for KeySetHelper API to determine

which Java 2 Security requirements are required.

/**

 * Initializes the primary and secondary Maps used for initializing the keys.

 */

 public void initializeKeySetGroupKeys() throws com.ibm.websphere.crypto.KeyException

 {

 java.util.Map generationKeys = null;

 java.util.Map validationKeys = null;

 PublicKey tempPublicKey = null;

 PrivateKey tempPrivateKey = null;

 byte[] tempSharedKey = null;

 keySetGroupName = "ApplicationKeySetGroup";

 com.ibm.websphere.crypto.KeySetHelper ksh = com.ibm.websphere.crypto.KeySetHelper.getInstance();

 generationKeys = ksh.getLatestKeysForKeySetGroup(keySetGroupName);

 /***

 * Latest keys: {

 * KeyPair_3=com.ibm.websphere.crypto.KeyPair@64ec64ec,

 * Secret_3=javax.crypto.spec.SecretKeySpec@fffe8aa7

 * }

 ***/

 if (generationKeys != null)

 {

 Iterator iKeySet = generationKeys.keySet().iterator();

Chapter 16. Security 1463

while (iKeySet.hasNext())

 {

 String keyAlias = (String)iKeySet.next();

 Object key = generationKeys.get(keyAlias);

 if (key instanceof java.security.Key)

 {

 tempSharedKey = ((java.security.Key)key).getEncoded();

 }

 else if (key instanceof com.ibm.websphere.crypto.KeyPair)

 {

 java.security.Key publicKeyAsSecret =

 ((com.ibm.websphere.crypto.KeyPair)key).getPublicKey();

 tempPublicKey = new PublicKey(publicKeyAsSecret.getEncoded());

 java.security.Key privateKeyAsSecret =

 ((com.ibm.websphere.crypto.KeyPair)key).getPrivateKey();

 tempPrivateKey = new PrivateKey(privateKeyAsSecret.getEncoded());

 }

 }

 // save these for use later, if necessary

 validationKeys = ksh.getAllKeysForKeySetGroup(keySetGroupName);

 /***

 * All keys: {

 * version_1=

 * {Secret_1=javax.crypto.spec.SecretKeySpec@178cf,

 * KeyPair_1=com.ibm.websphere.crypto.KeyPair@1c121c12},

 * version_2=

 * {Secret_2=javax.crypto.spec.SecretKeySpec@17a77,

 * KeyPair_2=com.ibm.websphere.crypto.KeyPair@182e182e},

 * version_3=

 * {Secret_3=javax.crypto.spec.SecretKeySpec@fffe8aa7,

 * KeyPair_3=com.ibm.websphere.crypto.KeyPair@4da04da0}

 * }

 ***/

 }

 else

 {

 throw new com.ibm.websphere.crypto.KeyException("Could not generateKeys.");

 }

 }

Example: Developing a key or key pair generation class for automated key

generation

A class that generates keys for cryptographic operations can be created automatically. With this capability,

the key management infrastructure can maintain a list of keys for a predefined key set, and applications

can access these keys.

You can schedule new key generation at predefined frequencies. Remember that key generation

frequency affects the security of your data. For example, for persistent data, you might schedule key

generation less frequently than for real time communications, which require that the keys be generated

more often as old keys expire.

When you develop a key generation class, decide if you are creating a shared key or a key pair because

this decision determines the interface you must use.

If you are developing shared keys, refer to the following example, which uses the KeyGenerator class to

implement the com.ibm.websphere.crypto.KeyGenerator interface. The interface returns a java.security.Key

key, which is stored as a SecretKey in a JCEKS keystore type. You can use any other keystore type that

supports storing secret keys.

1464 Administering applications and their environment

package com.ibm.test;

import java.util.*;

import com.ibm.ws.ssl.core.*;

import com.ibm.ws.ssl.config.*;

import com.ibm.websphere.crypto.KeyException;

public class KeyGenerator implements com.ibm.websphere.crypto.KeyGenerator

{

 private java.util.Properties customProperties = null;

 private java.security.Key secretKey = null;

 public KeyGenerator()

 {

 }

 /**

 * <p>

 * This method is called to pass any custom properties configured with

 * the KeySet to the implementation of this interface.

 * </p>

 *

 * @param java.util.Properties

 **/

 public void init (java.util.Properties customProps)

 {

 customProperties = customProps;

 }

 /**

 * <p>

 * This method is called whenever a key needs to be generated either

 * from the schedule or manually requested. The key is stored in the

 * KeyStore referenced by the configured KeySet that contains the

 * keyGenerationClass implementing this interface. The implementation of

 * this interface manages the key type. The user of the KeySet

 * must know the type that is returned by this keyGenerationClass.

 * </p>

 *

 * @return java.security.Key

 * @throws com.ibm.websphere.crypto.KeyException

 **/

 public java.security.Key generateKey () throws KeyException

 {

 try

 {

 // Assume generate3DESKey is there to create the key.

 byte[] tripleDESKey = generate3DESKey();

 secretKey = new javax.crypto.spec.SecretKeySpec(tripleDESKey, 0, 24, "3DES");

 if (secretKey != null)

 {

 return secretKey;

 }

 else

 {

 throw new com.ibm.websphere.crypto.KeyException ("Key could not be generated.");

 }

 }

 catch (Exception e)

 {

 e.printStackTrace(); // handle exception

 }

 }

}

If you are developing a key pair, refer to the following example, which uses the KeyPairGenerator class to

implement the com.ibm.websphere.crypto.KeyPairGenerator interface.

Chapter 16. Security 1465

package com.ibm.test;

import java.util.*;

import javax.crypto.spec.SecretKeySpec;

import com.ibm.websphere.crypto.KeyException;

/**

 * <p>

 * This implementation defines the method to generate a java.security.KeyPair.

 * When a keyGeneration class implements this method, the generateKeyPair method

 * is called and a KeyPair is stored in the keystore. The isKeyPair

 * attribute is ignored since the KeyGenerationClass is an

 * implementation of KeyPairGenerator. The isKeyPair attributes is for when

 * the keys already exist in a KeyStore, and are just read (not

 * generating them).

 * </p>

 * @author IBM Corporation

 * @version WebSphere Application Server 6.1

 * @since WebSphere Application Server 6.1

 **/

public class KeyPairGenerator implements com.ibm.websphere.crypto.KeyPairGenerator

{

 private java.util.Properties customProperties = null;

 public KeyPairGenerator()

 {

 }

 /**

 * <p>

 * This method is called to pass any custom properties configured with

 * the KeySet to the implementation of this interface.

 * </p>

 *

 * @param java.util.Properties

 **/

 public void init (java.util.Properties customProps)

 {

 customProperties = customProps;

 }

 /**

 * <p>

 * This method is called whenever a key needs to be generated either

 * from the schedule or manually requested and isKeyPair=true in the KeySet

 * configuration. The key is stored in the KeyStore referenced by

 * the configured KeySet which contains the keyGenerationClass implementing

 * this interface. The implementation of this interface manages the

 * type of the key. The user of the KeySet must know the type that

 * is returned by this keyGenerationClass.

 * </p>

 *

 * @return com.ibm.websphere.crypto.KeyPair

 * @throws com.ibm.websphere.crypto.KeyException

 **/

 public com.ibm.websphere.crypto.KeyPair generateKeyPair () throws KeyException

 {

 try

 {

 java.security.KeyPair keyPair = generateKeyPair();

 // Store as SecretKeySpec

 if (keyPair != null)

 {

 java.security.PrivateKey privKey = keyPair.getPrivate();

 java.security.PublicKey pubKey = keyPair.getPublic();

 SecretKeySpec publicKeyAsSecretKey = new SecretKeySpec

 (pubKey.getEncoded(), "RSA_PUBLIC");

 SecretKeySpec privateKeyAsSecretKey = new SecretKeySpec

 (privKey.getEncoded(), "RSA_PRIVATE");

1466 Administering applications and their environment

com.ibm.websphere.crypto.KeyPair pair = new

 com.ibm.websphere.crypto.KeyPair(publicKeyAsSecretKey, privateKeyAsSecretKey);

 return pair;

 }

 else

 {

 throw new com.ibm.websphere.crypto.KeyException ("Key pair could

 not be generated.");

 }

 }

 catch (Exception e)

 {

 e.printStackTrace(); // handle exception

 }

 }

}

This interface returns a com.ibm.websphere.crypto.KeyPair key pair, which can contain either a

X509Certificate and PrivateKey object or PublicKey and PrivateKey objects. If the

com.ibm.websphere.crypto.KeyPair interface contains aX509Certificate and PrivateKey object, the

certificate and private key are stored in the keystore. Consequently, they can use any KeyStore type.

If the com.ibm.websphere.crypto.KeyPair interface contains PublicKey and PrivateKey objects, you must

convert the encoded values to the SecretKeySpec object in order to store them. The WebSphere

Application Server runtime stores and retrieves the key pair as secret keys. The runtime converts the key

pair back to PublicKey and PrivateKey objects when the server retrieves the pair during the handshake.

Use the following constructors to develop the com.ibm.websphere.crypto.KeyPair interface:

v Public and private constructor

public KeyPair(java.security.Key publicKey, java.security.Key privateKey)

v Certificate and private constructor.

public KeyPair(java.security.cert.Certificate[] certChain,

java.security.Key privateKey)

The previous example code shows the KeyPairGenerator class using the public and private constructor.

Each call to this class generates a new and unique key pair, and this class is invoked by a KeySet to

create a new key pair when isKeyPair=true. The version number in the key set increments each time it is

called.

Key set groups collection

Use this page to manage groups of public, private, and shared keys. These key groups enable the

application server to control multiple sets of Lightweight Third Party Authentication (LTPA) keys.

To view this administrative console page, click Security > SSL certificate and key management >

Manage endpoint security configurations > {Inbound | Outbound} > ssl_configuration . Under

Related items, click Key set groups.

 Button Resulting action

New Adds a key set group. A key set group combines one or more key sets

together as a single key set group. It allows the generation of multiple different

types of keys to occur at the same time. A single key set represents one type

of key, so a key set group allows you to group the different types.

Delete Deletes an existing key set group. You must be sure that there are no other

references to this key set group before you delete it.

Chapter 16. Security 1467

Button Resulting action

Generate keys Generates keys for key set group. The system generates keys for each key set

within the key set group so that the keys remain synchronized with each other

in terms of version. You must configure a valid key generation class and a key

store that is writable. See the com.ibm.websphere.crypto.KeySetHelper

application programming interfaces (APIs) to enable the use of keys that are

managed by a KeySetGroup or KeySet.

Key set group name:

Specifies the name of the key set group used to reference it.

Automatically generate keys:

Specifies that the keys are to be generated automatically on a schedule.

Key set groups settings

Use this page to create new key set groups.

To view this administrative console page, click Security > SSL certificate and key management >

Manage endpoint security configurations > {Inbound | Outbound} > ssl_configuration . Under

Related items, click Key set groups > New.

Key set group name:

Specifies the name of key set group used. This name can be referenced using the

com.ibm.websphere.crypto.KeySetHelper API to retrieve the managed keys from an application.

 Data type: Text

Key sets:

Specifies a set of key instances of the same type for use in cryptographic operations.

Add:

Specifies to add the selected key set part of this key set group.

Remove:

Specifies to remove the selection from the Key sets list.

Automatically generate keys:

Specifies that the keys are generated automatically on a schedule. When a new key is generated, the

security.xml is updated and saved by the runtime to track the key reference version. This can cause

save conflicts when updating the same file from admin applications.

 Default: Disabled

Scheduled time for generation:

Specifies the scheduled time when the system generates selected key set group or groups. You can

specify the scheduled time in hours and minutes; specify either A.M. or P.M., or specify 24-hour. You can

1468 Administering applications and their environment

also specify the day of the week you want the scheduled event to occur. It is recommended that you set

this event to occur during a low peak time, especially for keys that are used by runtime for token

validation.

 Data type Integer

Default: 0, 0

Range: 1–12, 0–59

Generate on a specific day:

Specifies whether to have the generation occur on a specific day of the week. It is best to auto-generate

keys during a low peak day.

 Default: Enabled

Weekday:

Specifies the day of the week on which the expiration monitor will run if the Check on a specific day option

is selected.

 Default: Sunday

Range: Sunday, Monday, Tuesday, Wednesday, Thursday, Friday,

Saturday

Repeat interval:

Specifies the period of time between each schedule time to check for expired certificates or the interval

between schedule checks.

 Default: Daily

Range: Daily, Weekly

Generate at an interval:

Specifies to generate keys at the specified frequency regardless of the day of the week on which

generation occurs.

 Default: Disabled

Next start date:

Specifies the date for the next scheduled check. This allows the deployment manager to be stopped and

restarted without resetting the date.

Configuring security with scripting

You can configure security with scripting and the wsadmin tool.

Before starting this task, the wsadmin tool must be running. See the Starting the wsadmin scripting client

article for more information.

If you enable security for a WebSphere Application Server cell, supply authentication information to

communicate with servers.

Chapter 16. Security 1469

The sas.client.props and the soap.client.props files are located in the properties directory for each

WebSphere Application Server profile, profilePath/properties.

v The nature of the properties file updates required for running in secure mode depend on whether you

connect with a Remote Method Invocation (RMI) connector, or a SOAP connector:

– If you use a Remote Method Invocation (RMI) connector, set the following properties in the

sas.client.props file with the appropriate values:

com.ibm.CORBA.loginUserid=

com.ibm.CORBA.loginPassword=

Also, set the following property:

com.ibm.CORBA.loginSource=properties

The default value for this property is prompt in the sas.client.props file. If you leave the default

value, a dialog box appears with a password prompt. If the script is running unattended, it appears to

hang.

– If you use a SOAP connector, set the following properties in the soap.client.props file with the

appropriate values:

com.ibm.SOAP.securityEnabled=true

com.ibm.SOAP.loginUserid=

com.ibm.SOAP.loginPassword=

Optionally, set the following property:

com.ibm.SOAP.loginSource=none

The default value for this property is prompt in the soap.client.props file. If you leave the default

value, a dialog box appears with a password prompt. If the script is running unattended, it appears to

hang.

v To specify user and password information, choose one of the following methods:

– Specify user name and password on a command line, using the -user and -password commands.

For example:

wsadmin -conntype RMI -port 2809 -user u1 -password secret1

– Specify user name and password in the sas.client.props file for a RMI connector or the

soap.client.props file for a SOAP connector.

If you specify user and password information on a command line and in the sas.client.props file or the

soap.client.props file, the command line information overrides the information in the props file.

Note: On UNIX system, the use of -password option may result in security exposure as the password

information becomes visible to the system status program such as ps command which can be

invoked by other user to display all the running processes. Do not use this option if security

exposure is a concern. Instead, specify user and password information in the soap.client.props

file for SOAP connector or sas.client.props file for RMI connector. The soap.client.props and

sas.client.props files are located in the properties directory of your WebSphere Application Server

profile.

Enabling and disabling administrative security using scripting

You can use scripting to enable or disable administrative security.

Before starting this task, the wsadmin tool must be running. See the Starting the wsadmin scripting client

article for more information.

The default profile sets up procedures so that you can enable and disable administrative security based on

LocalOS registry.

v To determine if application security is enabled or disabled by looking at the value of the appEnabled

field in the WCCM security model, use the isAppEnabled command, for example:

– Using Jacl:

1470 Administering applications and their environment

$AdminTask isAppSecurityEnabled {-interactive}

– Using Jython:

AdminTask.isAppSecurityEnabled (’[-interactive]’)

This command returns a value of true if appEnabled is set to true. Otherwise, returns a value of false.

v To determine if administrative security is enabled or disabled by looking at the value of the enabled field

in the WCCM security model, use the isGlobalSecurity command, for example:

– Using Jacl:

$AdminTask isGlobalSecurity {-interactive}

– Using Jython:

AdminTask.isGlobalSecurity (’[-interactive]’)

Returns a value of true if enabled is set to true. Otherwise, returns a value of false.

v To set administrative security based on the passed in value, use the setGlobalSecurity command. For

example:

– Using Jacl:

$AdminTask setGlobalSecurity {-interactive}

– Using Jython:

AdminTask.setGlobalSecurity (’[-interactive]’)

Returns a value of true if the enabled field in the WCCM security model is successfully updated.

Otherwise, returns a value of false.

v You can use the help command to find out the arguments that you need to provide with this call, for

example:

– Using Jacl:

securityon help

Example output:

Syntax: securityon user password

– Using Jython:

securityon()

Example output:

Syntax: securityon(user, password)

v To enable administrative security based on the LocalOS registry, use the following procedure call and

arguments:

– Using Jacl:

securityon user1 password1

– Using Jython:

securityon(’user1’, ’password1’)

v To disable administrative security based on the LocalOS registry, use the following procedure call:

– Using Jacl:

securityoff

– Using Jython:

securityoff()

Enabling and disabling LTPA authentication

There are sample scripts located in the <WAS_ROOT>/bin directory on how to enable and disable LTPA

authentication. The scripts are:

– LTPA_LDAPSecurityProcs.py (python script)

– LTPA_LDAPSecurityProcs.jacl (jacl script)

Chapter 16. Security 1471

Note: The scripts hard code the type of LDAP server and base distinguished name (baseDN). The

LDAP server type is hardcoded as IBM_DIRECTORY_SERVER and the baseDN is hardcoded

as o=ibm,cn=us.

Enabling and disabling Java 2 security using scripting

You can enable or disable Java 2 security with scripting and the wsadmin tool.

Before starting this task, the wsadmin tool must be running. See the Starting the wsadmin scripting client

article for more information.

Perform the following steps to enable or disable Java 2 security:

1. Identify the security configuration object and assign it to the security variable:

v Using Jacl:

set security [$AdminConfig list Security]

v Using Jython:

security = AdminConfig.list(’Security’)

print security

Example output:

(cells/mycell|security.xml#Security_1)

2. Modify the enforceJava2Security attribute to enable or disable Java 2 security. For example:

v To enable Java 2 security:

– Using Jacl:

$AdminConfig modify $security {{enforceJava2Security true}}

– Using Jython:

AdminConfig.modify(security, [[’enforceJava2Security’, ’true’]])

v To disable Java 2 security:

– Using Jacl:

$AdminConfig modify $security {{enforceJava2Security false}}

– Using Jython:

AdminConfig.modify(security, [[’enforceJava2Security’, ’false’]])

3. Save the configuration changes. See the Saving configuration changes with the wsadmin tool article

for more information.

4. In a network deployment environment only, synchronize the node. See the Synchronizing nodes with

the wsadmin tool article for more information.

Enabling authentication in the file transfer service using scripting

You can enable authentication in the file transfer service using scripting and the wsadmin tool.

Before starting this task, the wsadmin tool must be running. See the Starting the wsadmin scripting client

article for more information.

In WebSphere Application Server Network Deployment, V5.0.1 or later, the file transfer service is

enhanced to provide role-based authentication. Two versions of the file transfer Web application are

provided. By default, the version that does not authenticate its caller is installed. This default supports

compatibility between the WebSphere Application Server Network Deployment, V5.0 and V5.0.1 or later.

Turning the file transfer authentication on is recommended to prevent unauthorized use of the file transfer

application; however, if you have any V5.0 clients in your Network Deployment environment, they cannot

communicate with the secured file transfer application if global security is turned on.

1472 Administering applications and their environment

In WebSphere Application Server V6.x, mixed cells are supported and file transfer has become a system

application. If all of the nodes in the cell are of V5.0.1 or later, you can activate authentication in the file

transfer service by redeploying the file transfer application at the deployment manager. The compatible

version is shipped in the app_server_root/systemApps/filetransfer.ear directory. The secured version is

provided in the app_server_root/systemApps/filetransferSecured.ear directory.

v A wsadmin Jacl script is provided to help you redeploy the file transfer. The script is called

redeployFileTransfer.jacl and is located in the app_server_root/bin directory. After the deployment

manager and all the nodes are upgraded to WebSphere Application Server Network Deployment,

version 5.0.1 or later, you can deploy the secured file transfer service by running the script. The syntax

for running the script from the bin directory is the following:

–

wsadmin -profile redeployFileTransfer.jacl -c "fileTransferAuthenticationXxx cellName nodeName serverName"

where Xxx is On or Off.

For Windows systems, use wsadmin or wsadmin.bat. For Linux and UNIX systems, use wsadmin.sh.

For OS/400 systems, use wsadmin.

– For example, when running the script to enable use of the filetransferSecured.ear file, the syntax is

similar to the following example:

wsadmin -profile redeployFileTransfer.jacl -c "fileTransferAuthenticationOn managedCell managedCellManager dmgr"

or

wsadmin -profile redeployFileTransfer.jacl -c "fileTransferAuthenticationOn baseCell base server1"

v If you want to go return to running the file transfer service without authentication, you can run the script

as shown in the following example:

wsadmin -profile redeployFileTransfer.jacl -c "fileTransferAuthenticationOff baseNodeCell baseNode server1"

or

wsadmin -profile redeployFileTransfer.jacl -c "fileTransferAuthenticationOff managedCell managedCellManager dmgr"

You must restart the server for the change to take affect.

Propagating security policy of installed applications to a JACC

provider using wsadmin scripting

It is possible that you have applications installed prior to enabling the Java Authorization Contract for

Containers (JACC)-based authorization. You can start with default authorization and then move to an

external provider-based authorization using JACC later.

Also, during application installation or modification you might have had problems propagating the security

policy information to the JACC provider. For example, network problems might occur, the JACC provider

might not be available, and so on. For these cases, the security policy of the previously installed

applications does not exist in the JACC provider to make the access decisions. One choice is to reinstall

the applications involved. However, you can avoid reinstalling by using the wsadmin scripting tool. Use this

tool to propagate information to the JACC provider independent of the application installation process. The

tool eliminates the need for reinstalling the applications.

The tool uses the SecurityAdmin MBean to propagate the policy information in the deployment descriptor

of any installed application to the JACC provider. You can invoke this tool using wsadmin at the base

application server for base and deployment manager level for Network Deployment. Note that the

SecurityAdmin MBean is available only when the server is running.

Use propagatePolicyToJACCProvider(String appNames) to propagate the policy information in the

deployment descriptor of the enterprise archive (EAR) files to the JACC provider. If the

RoleConfigurationFactory and the RoleConfiguration interfaces are implemented by the JACC provider, the

Chapter 16. Security 1473

authorization table information in the binding file of the EAR files is also propagated to the provider. See

the Securing applications and their environment PDF for more information about these interfaces.

The appNames String contains the list of application names, delimited by a colon (:), whose policy

information must be stored in the provider. If a null value is passed, the policy information of the deployed

applications is propagated to the provider.

Also, be aware of the following items:

v Before migrating applications to the Tivoli Access Manager JACC provider, create or import the users

and groups that are in the applications to Tivoli Access Manager.

v Depending on the application or the number of applications that are propagated, you might have to

increase the request time-out period either in the soap.client.props file in the directory

profile_root/properties (if using SOAP) or in the sas.client.props file (if using RMI) for the

command to complete. You can set the request time-out value to 0 to avoid the timeout problem, and

change it back to the original value after the command is run.

1. Configure your JACC provider in WebSphere Application Server.

See the Securing applications and their environment PDF for more information.

2. Restart the server.

3. Enter the following commands:

//use the SecurityAdmin MBean at the Deployment Manager or the unmanaged base

//application server connect to the appropriate process (Deployment Manager or

//base application server)

wsadmin -user serverID -password serverPWD

// To get the SecurityAdmin MBean for Deployment Manager

wsadmin> set secadm [$AdminControl queryNames type=SecurityAdmin,process=dmgr,*]

// or to get the SecurityAdmin MBean for a unmanaged base application server

//(replace the process name to match your configuration)

wsadmin> set secadm [$AdminControl queryNames

 type=SecurityAdmin,process=server1,*]

// to propagate specific applications security policy information

wsadmin>set appNames [list app1:app2]

// or to propagate all applications installed

wsadmin>set appNames [list null]

// Run the command to propagate

wsadmin>$AdminControl invoke $secadm propagatePolicyToJACCProvider $appNames

Configuring the JACC provider for Tivoli Access Manager using the

wsadmin utility

You can use the wsadmin utility to configure Tivoli Access Manager security for WebSphere Application

Server.

1. Start WebSphere Application Server.

2. Start the wsadmin command-line utility.

Run the wsadmin command from the app_server_root/bin directory.

3. At the wsadmin prompt, enter the following command:

$AdminTask configureTAM -interactive

You are prompted to enter the following information:

 Option Description

WebSphere Application Server node name Specify a single node.

1474 Administering applications and their environment

Option Description

Tivoli Access Manager Policy Server Enter the name of the Tivoli Access Manager policy

server and the connection port. Use the format,

policy_server : port. The policy server communication port

is set at the time of Tivoli Access Manager configuration.

The default port is 7135.

Tivoli Access Manager Authorization Server Enter the name of the Tivoli Access Manager

authorization server. Use the format auth_server : port :

priority. The authorization server communication port is

set at the time of Tivoli Access Manager configuration.

The default port is 7136. More than one authorization

server can be specified by separating the entries with

commas. Having more than one authorization server

configured is useful for failover and performance. The

priority value is the order of authorization server use. For

example: auth_server1:7136:1,auth_server2:7137:2. A

priority of 1 is still required when configuring against a

single authorization server.

WebSphere Application Server administrator’s

distinguished name

Enter the full distinguished name of the WebSphere

Application Server security administrator ID, as created in

the ″Creating the security administrative user″ topic in the

Securing applications and their environment PDF. For

example: cn=wasadmin,o=organization,c=country

Tivoli Access Manager user registry distinguished

name suffix

For example: o=organization,c=country

Tivoli Access Manager administrator’s user name Enter the Tivoli Access Manager administration user ID,

as created at the time of Tivoli Access Manager

configuration. This ID is usually, sec_master.

Tivoli Access Manager administrator’s user password Enter the password for the Tivoli Access Manager

administrator.

Tivoli Access Manager security domain Enter the name of the Tivoli Access Manager security

domain that is used to store users and groups. If a

security domain is not already established at the time of

Tivoli Access Manager configuration, click Return to

accept the default.

Embedded Tivoli Access Manager listening port set WebSphere Application Server needs to listen on a

TCP/IP port for authorization database updates from the

policy server. More than one process can run on a

particular node and machine so a list of ports is required

for the processes. Enter the ports that are used as

listening ports by Tivoli Access Manager clients,

separated by a comma. If you specify a range of ports,

separate the lower and higher values by a colon. For

example, 7999, 9990:9999.

Defer Set to yes, this option defers the configuration of the

management server until the next restart. Set to no,

configuration of the management server occurs

immediately. Managed servers are configured on their

next restart.

4. When all information is entered, select F to save the configuration properties or C to cancel from the

configuration process and discard entered information.

Now enable the JACC provider for Tivoli Access Manager- Enabling the JACC provider for Tivoli Access

Manager topic in the Securing applications and their environment PDF.

Chapter 16. Security 1475

Disabling embedded Tivoli Access Manager client using wsadmin

Follow these steps to unconfigure the Java Authorization Contract for Containers (JACC) provider for Tivoli

Access Manager.

1. Start the wsadmin command-line utility. The wsadmin command is found in theinstall_dir/bin

directory

2. From the wsadmin prompt, enter the following command:

WSADMIN>$AdminTask unconfigureTAM -interactive

You are prompted to enter the following information:

 Option Description

WebSphere Application Server node name Enter an asterisk (*) to select all nodes.

Tivoli Access Manager administrator user name Enter the Tivoli Access Manager administration user ID,

as created at the time of Tivoli Access Manager

configuration. This name is usually, sec_master.

Tivoli Access Manager administrator user password Enter the password for the Tivoli Access Manager

administrator.

Force Enter yes, if you want to ignore errors when unconfiguring

the JACC provider for Tivoli Access Manager. Enter this

option as yes only when the Tivoli Access Manager

domain is in an irreparable state.

Defer Enter no, to force the unconfiguration of the connected

server. Enter No for the unconfiguration to proceed

correctly.

3. When all information is entered, enter F to save the properties or C to cancel from the unconfiguration

process and discard the entered information.

4. Restart all WebSphere Application Server instances for the changes to take effect.

Creating an SSL configuration at the node scope using scripting

An Secure Socket Layer (SSL) configuration references many other configuration objects. To help you

make valid selections for the new SSL configuration before you create it, view information about existing

configuration objects. Information about existing objects is also useful when you create a node scoped

SSL configuration using the createSSLConfig command of the AdminTask object.

Before starting this task, the wsadmin tool must be running. See the Starting the wsadmin scripting client

article for more information.

To use the information in this task effectively, familiarize yourself with the instructions in the Creating a

Secure Sockets Layer configuration topic in the Securing applications and their environment PDF. Perform

the following task to create an Secure Socket Layer (SSL) configuration at the node scope:

1. List the existing configuration objects. Perform any of the following:

v List some of the configuration objects that you may need when you create a new SSL configuration.

For example, you want to see which management scopes have already been defined. If the one you

need does not exist you will need to create it.

– Using Jacl:

$AdminTask listManagementScopes {-scopeName (cell):BIRKT40Cell02:(node):BIRKT40Node02}

– Using Jython:

AdminTask.listManagementScopes (’[-scopeName (cell):BIRKT40Cell02:(node):BIRKT40Node02]’)

1476 Administering applications and their environment

This shows an existing cell scope and existing node scope that you can use. If you want to create a

different scope, use the createManagementScope command of the AdminTask object to define a

different one. The valid scope parameters are cell, nodegroup, node, server, cluster, and endpoint.

See the Central management of Secure Sockets Layer configurations topic in the Securing

applications and their environment PDF for more information on scope definitions.

v List the key stores that exist in the configuration including key stores and trust stores.

– Using Jacl:

$AdminTask listKeyStores

– Using Jython:

AdminTask.listKeyStores()

Example output:

CellDefaultKeyStore(cells/BIRKT40Cell02|security.xml#KeyStore_1)

CellDefaultTrustStore(cells/BIRKT40Cell02|security.xml#KeyStore_2)

CellLTPAKeys(cells/BIRKT40Cell02|security.xml#KeyStore_3)

The previous example only lists the key stores for the default management scope which is also

known as the cell scope. To obtain key stores for other scopes, specify the scopeName parameter, for

example:

– Using Jacl:

$AdminTask listKeyStores {-scopeName (cell):BIRKT40Cell02:(node):BIRKT40Node02 }

– Using Jython:

$AdminTask listKeyStores (’[-scopeName (cell):BIRKT40Cell02:(node):BIRKT40Node02]’)

Example output:

CellDefaultKeyStore(cells/BIRKT40Cell02|security.xml#KeyStore_1)

CellDefaultTrustStore(cells/BIRKT40Cell02|security.xml#KeyStore_2)

CellLTPAKeys(cells/BIRKT40Cell02|security.xml#KeyStore_3)

NodeDefaultKeyStore(cells/BIRKT40Cell02|security.xml#KeyStore_1134610924357)

NodeDefaultTrustStore(cells/BIRKT40Cell02|security.xml#KeyStore_1134610924377)

v List specific trust or key managers. Be sure to display the object name for the trust managers. You

will need the object name for the SSL configuration because you can specify multiple trust manager

instances.

– Using Jacl:

$AdminTask listTrustManagers {-scopeName (cell):BIRKT40Cell02:(node):BIRKT40Node02 -displayObjectName true }

– Using Jython:

AdminTask.listTrustManagers (’[-scopeName (cell):BIRKT40Cell02:(node):BIRKT40Node02 -displayObjectName true]’)

Example output:

IbmX509(cells/BIRKT40Cell02|security.xml#TrustManager_1)

IbmPKIX(cells/BIRKT40Cell02|security.xml#TrustManager_2)

IbmX509(cells/BIRKT40Cell02|security.xml#TrustManager_1134610924357)

IbmPKIX(cells/BIRKT40Cell02|security.xml#TrustManager_1134610924377)

2. Create the node-scoped SSL configuration in interactive mode. Now that we have the information we

need to choose from, we need to decide if these objects are sufficient or if we need to create new

ones. For now, we will reuse what we’ve already got in the configuration and save creating new

instances to task documents specific to those objects.

v Using Jacl:

$AdminTask createSSLConfig -interactive

v Using Jython:

AdminTask.createSSLConfig (’[-interactive]’)

Example output:

Create a SSL Configuration.

*SSL Configuration Alias (alias): BIRKT40Node02SSLConfig

Chapter 16. Security 1477

Management Scope Name (scopeName): (cell):BIRKT40Cell02:(node):BIRKT40Node02

Client Key Alias (clientKeyAlias): default

Server Key Alias (serverKeyAlias): default

SSL Type (type): [JSSE]

Client Authentication (clientAuthentication): [false]

Security Level of the SSL Configuration (securityLevel): [HIGH]

Enabled Ciphers SSL Configuration (enabledCiphers):

JSSE Provider (jsseProvider): [IBMJSSE2]

Client Authentication Support (clientAuthenticationSupported): [false]

SSL Protocol (sslProtocol): [SSL_TLS]

Trust Manager Object Names (trustManagerObjectNames): (cells/BIRKT40Cell02|security.xml#TrustManager_1)

*Trust Store Name (trustStoreName): NodeDefaultTrustStore

Trust Store Scope (trustStoreScopeName): (cell):BIRKT40Cell02:(node):BIRKT40Node02

*Key Store Name (keyStoreName): NodeDefaultKeyStore

Key Store Scope Name (keyStoreScopeName): (cell):BIRKT40Cell02:(node):BIRKT40Node02

Key Manager Name (keyManagerName): IbmX509

Key Manager Scope Name (keyManagerScopeName): (cell):BIRKT40Cell02:(node):BIRKT40Node02

Create SSL Configuration

F (Finish)

C (Cancel)

Select [F, C]: [F] F

WASX7278I: Generated command line: $AdminTask createSSLConfig {-alias BIRKT40Node02SSLConfig -scopeName

(cell):BIRKT40Cell02:(node):BIRKT40Node02 -clientKeyAlias default -serverKeyAlias default

-trustManagerObjectNames (cells/BIRKT40Cell02|security.xml#TrustManager_1) -trustStoreName

NodeDefaultTrustStore -trustStoreScopeName (cell):BIRKT40Cell02:(node):BIRKT40Node02 -keyStoreName

NodeDefaultKeyStore -keyStoreScopeName (cell):BIRKT40Cell02:(node):BIRKT40Node02 -keyManagerName

IbmX509 -keyManagerScopeName (cell):BIRKT40Cell02:(node):BIRKT40Node02 }

3. Save the configuration changes. See the Saving configuration changes with the wsadmin tool article

for more information.

4. In a network deployment environment only, synchronize the node. See the Synchronizing nodes with

the wsadmin tool article for more information.

The name of the SSL configuration object that you created, for example, (cells/
BIRKT40Cell02|security.xml#SSLConfig_1136652770753), appears in the security.xml file.

Example security.xml file output:

<repertoire xmi:id="SSLConfig_1136652770753" alias="BIRKT40Node02SSLConfig" type="JSSE"

managementScope="ManagementScope_1134610924357">

<setting xmi:id="SecureSocketLayer_1136652770924" clientKeyAlias="default" serverKeyAlias="default"

clientAuthentication="false" securityLevel="HIGH" jsseProvider="IBMJSSE2" sslProtocol="SSL_TLS"

keyStore="KeyStore_1134610924357" trustStore="KeyStore_1134610924377" trustManager="TrustManager_1"

keyManager="KeyManager_1134610924357"/>

</repertoire>

Once you create the SSL configuration object, the next step is to use it. There are several different ways

that you can associate SSL configurations with protocols, for example:

v Set the SSL configuration on the thread programmatically.

v Associate the SSL configuration with an outbound protocol or a target host and port.

v Directly associating the SSL configuration using the alias.

v Centrally managing the SSL configurations by associating them with SSL configuration groups or zones

so that they are used based upon the group from where the end point exists.

Creating self-signed certificates using scripting

Before starting this task, the wsadmin tool must be running. See the Starting the wsadmin scripting client

article for more information.

1478 Administering applications and their environment

You can create self-signed certificates using the scripting and the AdminTask object. You can run the

commands in interactive or batch mode. Interactive mode provides a way to discover the flags that you

need to run the task in batch mode.

Certificates reside inside of key stores. To run the commands, you will need the name of the key store to

be supplied. Use the listKeyStore command of the AdminTask object to get a list of key stores. If you

need a new key store, use the createKeyStore command of the AdminTask object.

To create a personal key store, use the following examples:

v Interactive mode:

– Using Jacl:

$AdminTask createSelfSignedCertificate -interactive

– Using Jython:

AdminTask.createSelfSignedCertificate (’[-interactive]’)

Example output:

*Key Store Name (keyStoreName): keyStore

Key Store Scope Name (keyStoreScope):

*Certificate Alias (certificateAlias): newCert

"Certificate Version" (certificateVersion): 3

*Key Size (certificateSize): [1024]

*Common Name (certificateCommonName): localhost

*Organization (certificateOrganization): workgroup

Organizational Unit (certificateOrganizationalUnit): testing

certLocality (certificateLocality): austin

State (certificateState): Texas

Zip (certificateZip): 78757

Country (certificateCountry): [US]

Validity Period (certificateValidDays): [365]

Create Self-Signed Certificate

F (Finish)

C (Cancel)

Select [F, C]: [F]

WASX7278I: Generated command line: $AdminTask createSelfSignedCertificate

{-keyStoreName keyStore -certificateAlias newCert -certificateVersion 3

-certificateCommonName localhost -certificateOrganization ibm

-certificateOrganizationalUnit testing -certificateLocality austin

-certificateState Texas -certificateZip 78757 }

true

At the end of the output, the batch mode parameters are provided.

v Batch mode:

– Using Jacl:

$AdminTask createSelfSignedCertificate {-keyStoreName keyStore

-certificateAlias newCert -certificateVersion 3 -certificateCommonName localhost

-certificateOrganization ibm -certificateOrganizationalUnit testing

-certificateLocality austin -certificateState Texas -certificateZip 78757 }

– Using Jython:

AdminTask.createSelfSignedCertificate (’[-keyStoreName keyStore

-certificateAlias newCert -certificateVersion 3 -certificateCommonName localhost

-certificateOrganization ibm -certificateOrganizationalUnit testing

-certificateLocality austin -certificateState Texas -certificateZip 78757]’)

Automating SSL configurations using scripting

Before starting this task, the wsadmin tool must be running. See the Starting the wsadmin scripting client

article for more information.

Chapter 16. Security 1479

SSL configuration is needed for WebSphere to perform SSL connections with other servers. A SSL

configuration can be configured through the Admin Console. But if an automated way to create a SSL

configuration is desired then AdminTask should be used.

AdminTask can be used in a interactive mode and batch mode. For automation the batch mode options

should be used. AdminTask batch mode can be called in a JACL or Python script. Interactive mode will

step through all the parameter the task needs, requires ones are marked with a ‘*’. Before the interactive

task executes the task it echoes the batch mode syntax of the task to the screen. This can be helpful

when writing batch mode scripts.

There attributes needed to create an ssl configurations:

v A key store

v Default client certificate alias

v Default server certificate alias

v Trust store

v The handshake protocol

v The ciphers needed during handshake

v Supporting client authentication or not

If automating the creation of a SSL Configuration it may be needed to create some of the attribute values

needed like the key store, trust store, key manager, and trust managers.

v To create a SSL configuration the createSSLConfig AdminTask can be used. To make changes to the

SSL configurations use the modifySSLConfig AdminTask.

– Interactive mode:

Interactive mode steps you through all attributes and tell you the default value of the attribute if there

is one. The default value is in ‘[]’ on the prompt line. The actual flag used in batch mode is in ‘()’ on

each prompt line. If you are using the default value then the flag will not show up on the batch

command line.

Using Jacl:

$AdminTask createSSLConfig -interactive

– Using Jython:

AdminTask.createSSLConfig (’[interactive]’)

Example output:

*SSL Configuration Alias (alias): testSSLConfig

Management Scope Name (scopeName): (cell):HOSTNode01Cell:(node):HOSTNode01

Client Key Alias (clientKeyAlias): clientCert

Server Key Alias (serverKeyAlias): serverCert

SSL Type (type): [JSSE]

Client Authentication (clientAuthentication): [false]

Security Level of the SSL Configuration (securityLevel): [HIGH] HIGH

Enabled Ciphers SSL Configuration (enabledCiphers):

JSSE Provider (jsseProvider): [IBMJSSE2]

Client Authentication Support (clientAuthenticationSupported): [false]

SSL Protocol (sslProtocol): [SSL_TLS] SSL_TLS

Trust Manager Object Names (trustManagerObjectNames):

*Trust Store Name (trustStoreName): testTrustStore

Trust Store Scope (trustStoreScopeName): (cell):HOSTNode01Cell:(node):HOSTNode01

*Key Store Name (keyStoreName): testKeyStore

Key Store Scope Name (keyStoreScopeName): (cell):HOSTNode01Cell:(node):HOSTNode01

Key Manager Name (keyManagerName): IbmX509

Key Manager Scope Name (keyManagerScopeName): (cell):HOSTNode01Cell:(node):HOSTNode01

Create SSL Configuration

F (Finish)

C (Cancel)

1480 Administering applications and their environment

Select [F, C]: [F]

WASX7278I: Generated command line: $AdminTask createSSLConfig {-alias testSSLConfig

-scopeName (cell):HOSTNode01Cell:(node):HOSTNode01 -clientKeyAlias clientCert

-serverKeyAlias serverCert -trustStoreName testTrustStore

-trustStoreScopeName (cell):HOSTNode01Cell:(node):HOSTNode01

-keyStoreName testKeyStore -keyStoreScopeName (cell):HOSTNode01Cell:(node):HOSTNode01

-keyManagerName IbmX509 -keyManagerScopeName (cell):HOSTNode01Cell:(node):HOSTNode01 }

(cells/HOSTNode01Cell|security.xml#SSLConfig_1137687301834)

At the end of the output, the batch mode parameters are provided.

– Batch mode:

Using Jacl:

$AdminTask createSSLConfig {-alias testSSLConfig

-scopeName (cell):HOSTNode01Cell:(node):HOSTNode01 -clientKeyAlias clientCert

-serverKeyAlias serverCert -trustStoreName testTrustStore

-trustStoreScopeName (cell):HOSTNode01Cell:(node):HOSTNode01

-keyStoreName testKeyStore -keyStoreScopeName (cell):HOSTNode01Cell:(node):HOSTNode01

-keyManagerName IbmX509 -keyManagerScopeName (cell):HOSTNode01Cell:(node):HOSTNode01}

– Using Jython:

AdminTask.createSSLConfig (’[-alias testSSLConfig

-scopeName (cell):HOSTNode01Cell:(node):HOSTNode01 -clientKeyAlias clientCert

-serverKeyAlias serverCert -trustStoreName testTrustStore

-trustStoreScopeName (cell):HOSTNode01Cell:(node):HOSTNode01

-keyStoreName testKeyStore -keyStoreScopeName (cell):HOSTNode01Cell:(node):HOSTNode01

-keyManagerName IbmX509 -keyManagerScopeName (cell):HOSTNode01Cell:(node):HOSTNode01]’)

Example output:

(cells/HOSTNode01Cell|security.xml#SSLConfig_1137687301834)

v Key Stores and Trust Stores The key store and trust store may already exist or a new one may need to

be created. To create a new key store or trust store use the createKeyStore AdminTask. It will create a

key store file and store the configuration object in the system configuration. A trust store is just a key

store that usually only has signer certificates in it. To create a key store enter:

– Using Jacl:

$AdminTask createKeyStore {-keyStoreName testKeyStore -keyStoreType PKCS12

-keyStoreLocation $(USER_INSTALL_ROOT)\testKeyStore.p12 -keyStorePassword abcd

-keyStorePasswordVerify abcd -keyStoreIsFileBased true -keyStoreReadOnly false}

– Using Jython:

AdminTask.createKeyStore (’[-keyStoreName testKeyStore -keyStoreType PKCS12

-keyStoreLocation $(USER_INSTALL_ROOT)\testKeyStore.p12 -keyStorePassword abcd

-keyStorePasswordVerify abcd -keyStoreIsFileBased true -keyStoreReadOnly false]’)

To populate the key store with certificates see “Managing Certificates using AdminConsole and Admin

Task” The key store and trust store are required to create a SSL configuration. Use the ‘-keyStoreName’

and ‘-trustStoreName’ flags on the createSSLConfig. There scopes can be added with the

‘-keyStoreScope’ flag and ‘-trustStoreScope’ flags.

v Key Manager Key manager are used to determine how a certificate is selected. The IbmX509 key

manager is in the security configuration by default. If a different key manager is needed then use

createKeyManager AdminTask to create it. To create a key manager enter:

– Using Jacl:

$AdminTask createKeyManager {-name testKeyManager

-scopeName (cell):HOSTNode01Cell:(node):HOSTNode01

-provider IBMJSSE2 -algorithm specialAlgorithm }

– Using Jython:

AdminTask.createKeyManager (’[-name testKeyManager

-scopeName (cell):HOSTNode01Cell:(node):HOSTNode01

-provider IBMJSSE2 -algorithm specialAlgorithm]’)

Chapter 16. Security 1481

To supply a key manager on the createSSLConfig AdminTask use the ‘-keyManagerName’ along with

the ‘-keyManagerScope’ flag.

v Trust Manager Trust managers are use to determine how trust is established during ssl communication.

The IbmX509 and IbmPKIX are trust managers are in the security configuration by default. If a different

or additional trust manager is needed then use the createTrustManger AdminTask to create it. To create

a trust manager enter:

– Using Jacl:

$AdminTask createTrustManager {-name testTrustManager

-scopeName (cell):HOSTNode01Cell:(node):HOSTNode01

-provider IBMJSSE2 -algorithm specialAlgorithm }

– Using Jython:

AdminTask.createTrustManager (’[-name testTrustManager

-scopeName (cell):HOSTNode01Cell:(node):HOSTNode01

-provider IBMJSSE2 -algorithm specialAlgorithm]’)

The SSL Configuration can have multiple trust managers. To supply multiple trust managers give a

comma separated list of the trust managers configuration IDs with the -trustManagerObjectNames flag.

When you create a trust manager the configuration object ID is returned. To get a list of trust managers

object IDs use the listTrustManagers command of the AdminTask object with the -displayObjectName

true flag. For example:

wsadmin>$AdminTask listTrustManagers -interactive

List Trust Managers

List trust managers.

Management Scope Name (scopeName):

Display list in ObjectName Format (displayObjectName): [false] true

List Trust Managers

F (Finish)

C (Cancel)

Select [F, C]: [F]

Inside generate script command

WASX7278I: Generated command line: $AdminTask listTrustManagers {-displayObjectName true }

IbmX509(cells/IBM-0AF8DABCF16Node01Cell|security.xml#TrustManager_IBM-0AF8DABCF16Node01_1)

IbmPKIX(cells/IBM-0AF8DABCF16Node01Cell|security.xml#TrustManager_IBM-0AF8DABCF16Node01_2)

Updating default key store passwords using scripting

Before starting this task, the wsadmin tool must be running. See the Starting the wsadmin scripting client

article for more information.

When you install WebSphere Application Server, each server creates a key store and trust store for the

default SSL configuration with the default password WebAS. To protect the security of the key store files and

the SSL configuration, you must change the password. The following examples update the default

password:

v Change multiple key stores passwords. The changeMultipleKeyStorePasswords command updates

all of the key stores that have the same password. For example:

– Using Jacl:

$AdminTask changeMultipleKeyStorePasswords {-keyStorePassword WebAS

-newKeyStorePassword secretPwd -newKeyStorePasswordVerify secretPwd}

– Using Jython:

AdminTask.changeMultipleKeyStorePasswords [’(-keyStorePassword WebAS

-newKeyStorePassword secretPwd -newKeyStorePasswordVerify secretPwd]’)

v Change the password of a single key store. The changeKeyStorePassword command updates the

password of an individual key store. For example:

1482 Administering applications and their environment

– Using Jacl:

$AdminTask changeKeyStorePassword {-keyStoreName testKS

-keyStoreScope (cell):localhost:(server):server1

-keyStorePassword WebAS -newKeyStorePassword secretPwd

-newKeyStorePasswordVerify secretPwd}

– Using Jython:

AdminTask.changeKeyStorePassword (’[-keyStoreName testKS

-keyStoreScope (cell):localhost:(server):server1

-keyStorePassword WebAS -newKeyStorePassword secretPwd

-newKeyStorePasswordVerify secretPwd]’)

Commands for the IdMgrConfig group of the AdminTask object

Use the commands in the IdMgrConfig group to configure the virtual member manager. The commands for

this group do not require a target object. To see the additional commands related to the virtual member

manager, see the Commands for the IdMgrRepositoryConfig group of the AdminTask object and the

Commands for the IdMgrRealmConfig group of the AdminTask object articles.

For more information about the AdminTask object, see the Commands for the AdminTask object article.

The following commands are available for the IdMgrConfig group of the AdminTask object:

 Table 24.

Command name: Description: Parameters and return

values:

Examples:

createIdMgr

Supported

EntityType

The createIdMgr

Supported

EntityType

command creates

a supported entity

type configuration.

To validate the

result, check for

duplicate entity

type names.

v Parameters:

- name

The name of the

supported entity

type. (String,

required)

- defaultParent

The default parent

node for the

supported entity

type. (String,

required)

- rdnProperties

The RDN attribute

name for the

supported entity

type in the entity

domain name.

Separate the RDN

properties with

semicolons (;).

(String, required)

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask createIdMgrSupported

EntityType {-name entity1

-defaultParent node1}

v Using Jython string:

AdminTask.createIdMgrSupported

EntityType (’[-name entity1

-defaultParent node1]’)

v Using Jython list:

AdminTask.createIdMgrSupported

EntityType ([’-name’, ’entity1’,

’-defaultParent’, ’node1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask createIdMgrSupported

EntityType {-interactive}

v Using Jython string:

AdminTask.createIdMgrSupported

EntityType (’[-interactive]’)

v Using Jython list:

AdminTask.createIdMgrSupported

EntityType ([’-interactive’])

Chapter 16. Security 1483

Table 24. (continued)

Command name: Description: Parameters and return

values:

Examples:

deleteIdMgr

Supported

EntityType

The deleteIdMgr

Supported

EntityType

command deletes

the supported

entity type

configuration that

you specify.

v Parameters:

- name

The name of the

supported entity

type. The value of

this parameter

must be one of

the supported

entity types.

(String, required)

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask deleteIdMgrSupported

EntityType {-name entity1}

v Using Jython string:

AdminTask.deleteIdMgrSupported

EntityType (’[-name entity1]’)

v Using Jython list:

AdminTask.deleteIdMgr

SupportedEntityType ([’

-name’, ’entity1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask deleteIdMgr

SupportedEntityType

{-interactive}

v Using Jython string:

AdminTask.deleteIdMgr

SupportedEntityType

(’[-interactive]’)

v Using Jython list:

AdminTask.deleteIdMgr

SupportedEntityType

([’-interactive’])

getIdMgr Supported

EntityType

The getIdMgr

Supported

EntityType

command returns

the configuration

of the supported

entity type that

you specify.

v Parameters:

- name

The name of the

supported entity

type. The value of

this parameter

must be one of

the supported

entity types.

(String, required)

v Returns: A hash map

that has the

parameters of the

createIdMgrSupport

edEntityType

command as keys.

Since the

rdnProperties

parameter has multiple

values, its values are

returned in a list.

Batch mode example usage:

v Using Jacl:

$AdminTask getIdMgrSupported

EntityType {-name entity1}

v Using Jython string:

AdminTask.getIdMgrSupported

EntityType (’[-name entity1]’)

v Using Jython list:

AdminTask.getIdMgrSupported

EntityType ([’-name’, ’entity1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask getIdMgrSupported

EntityType {-interactive}

v Using Jython string:

AdminTask.getIdMgrSupported

EntityType (’[-interactive]’)

v Using Jython list:

AdminTask.getIdMgrSupported

EntityType ([’-interactive’])

1484 Administering applications and their environment

Table 24. (continued)

Command name: Description: Parameters and return

values:

Examples:

listIdMgr Supported

EntityTypes

The listIdMgr

Supported

EntityTypes

command lists all

of the supported

entity types that

are configured.

v Parameters: None

v Returns: A list that

contains the names of

the supported entity

types.

Batch mode example usage:

v Using Jacl:

$AdminTask listIdMgr

SupportedEntityTypes

v Using Jython string:

AdminTask.listIdMgr

SupportedEntityTypes()

v Using Jython list:

AdminTask.listIdMgr

SupportedEntityTypes()

Interactive mode example usage:

v Using Jacl:

$AdminTask listIdMgrSupported

EntityTypes {-interactive}

v Using Jython string:

AdminTask.listIdMgrSupported

EntityTypes (’[-interactive]’)

v Using Jython list:

AdminTask.listIdMgrSupported

EntityTypes ([’-interactive’])

resetId MgrConfig The resetId

MgrConfig

command resets

the current

configuration to

the last

configuration that

was saved.

v Parameters: None

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask resetIdMgrConfig

v Using Jython string:

AdminTask.resetIdMgrConfig()

v Using Jython list:

AdminTask.resetIdMgrConfig()

Interactive mode example usage:

v Using Jacl:

$AdminTask resetIdMgrConfig

{-interactive}

v Using Jython string:

AdminTask.resetIdMgrConfig

(’[-interactive]’)

v Using Jython list:

AdminTask.resetIdMgrConfig

([’-interactive’])

Chapter 16. Security 1485

Table 24. (continued)

Command name: Description: Parameters and return

values:

Examples:

showId MgrConfig The showId

MgrConfig

command returns

the current

configuration XML

in string format.

v Parameters: None

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask showIdMgrConfig

v Using Jython string:

AdminTask.showIdMgrConfig()

v Using Jython list:

AdminTask.showIdMgrConfig()

Interactive mode example usage:

v Using Jacl:

$AdminTask showIdMgrConfig

{-interactive}

v Using Jython string:

AdminTask.showIdMgrConfig

(’[-interactive]’)

v Using Jython list:

AdminTask.showIdMgrConfig

([’-interactive’])

updateIdMgr

Supported

EntityType

The updateIdMgr

Supported

EntityType

command updates

the configuration

that you specify

for a supported

entity type.

v Parameters:

- name

The name of the

supported entity

type. The value of

this parameter

must be one of

the supported

entity types.

(String, required)

- defaultParent

The default parent

node for the

supported entity

type. (String,

optional)

- rdnProperties

The RDN attribute

name for the

supported entity

type in the entity

domain name. To

reset all the

values of the

rdnProperties

parameter, specify

a blank string (″″).

(String, optional)

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask updateIdMgrSupported

EntityType {-name entity1}

v Using Jython string:

AdminTask.updateIdMgrSupported

EntityType (’[-name entity1]’)

v Using Jython list:

AdminTask.updateIdMgrSupported

EntityType ([’-name’, ’entity1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask updateIdMgrSupported

EntityType {-interactive}

v Using Jython string:

AdminTask.updateIdMgrSupported

EntityType (’[-interactive]’)

v Using Jython list:

AdminTask.updateIdMgrSupported

EntityType ([’-interactive’])

1486 Administering applications and their environment

Commands for the IdMgrRepositoryConfig group of the AdminTask

object

Use the commands in the IdMgrRepositoryConfig to configure the virtual member manager. The

commands for this group do not require a target object. To see the additional commands related to the

virtual member manager, see the “Commands for the IdMgrConfig group of the AdminTask object” on page

1483 and the “Commands for the IdMgrRealmConfig group of the AdminTask object” on page 1576

articles.

For more information about the AdminTask object, see the Commands for the AdminTask object article.

The following commands are available for the IdMgrRepositoryConfig group of the AdminTask object:

 Table 25.

Command name: Description: Parameters and

return values:

Examples:

addIdMgrLDAP

BackupServer

The addIdMgrLDAP

BackupServer

command adds or

updates backup LDAP

servers.

v Parameters:

- id

The ID of the

repository.

(String,

required)

- primary_host

The host name

for the primary

LDAP server.

(String,

required)

- host

The host name

for the LDAP

server. (String,

required)

- port

The port

number for the

LDAP server.

(Integer,

optional)

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask addIdMgrLDAPBackup

Server {-id id1 -primary_

host myprimaryhost -host

myhost.ibm.com}

v Using Jython string:

AdminTask.addIdMgrLDAPBackup

Server (’[-id id1

-primary_host myprimaryhost

-host myhost.ibm.com]’)

v Using Jython list:

AdminTask.addIdMgrLDAPBackup

Server ([’-id’, ’id1’,

’-primary_host’, ’myprimary

host’, ’-host’, ’myhost.

ibm.com’])

Interactive mode example usage:

v Using Jacl:

$AdminTask addIdMgrLDAP

BackupServer {-interactive}

v Using Jython string:

AdminTask.addIdMgrLDAPBack

upServer (’[-interactive]’)

v Using Jython list:

AdminTask.addIdMgrLDAPBack

upServer ([’-interactive’])

Chapter 16. Security 1487

Table 25. (continued)

Command name: Description: Parameters and

return values:

Examples:

addIdMgr LDAPEntity

Type

The addIdMgr

LDAPEntity Type

command adds an

LDAP entity type

definition.

v Parameters:

- id

The ID of the

repository.

(String,

required)

- name

The name of

the entity type.

(String,

required)

- searchFilter

The search

filter that you

want to use to

search the

entity type.

(String,

optional)

- objectClasses

One or more

object classes

for the entity

type. (String,

required)

-

objectClassesForCreate

The object

class to use

when an entity

type is created.

If the value of

this parameter

is the same as

the objectClass

parameter, you

do not need to

specify this

parameter.

(String,

optional)

- searchBases

The search

base or bases

to use while

searching the

entity type.

(String,

optional)

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask addIdMgrLDAPEntity

Type {-id id1 -name

name1 -objectClasses

objectclass}

v Using Jython string:

AdminTask.addIdMgrLDAPEntity

Type (’[-id id1 -name

name1 -objectClasses

objectclass]’)

v Using Jython list:

AdminTask.addIdMgrLDAPEntity

Type ([’-id’, ’id1’,

’-name’, ’name1’, ’-obje

ctClasses’, ’objectclass’])

Interactive mode example usage:

v Using Jacl:

$AdminTask addIdMgrLDAP

EntityType {-interactive}

v Using Jython string:

AdminTask.addIdMgrLDAP

EntityType (’[-interactive]’)

v Using Jython list:

AdminTask.addIdMgrLDAP

EntityType ([’-interactive’])

1488 Administering applications and their environment

Table 25. (continued)

Command name: Description: Parameters and

return values:

Examples:

addId MgrLDAP

EntityType RDNAttr

The addId MgrLDAP

EntityType RDNAttr

command adds RDN

attribute configuration to

an LDAP entity type

definition.

v Parameters:

- id

The ID of the

repository.

(String,

required)

- entityTypeName

The name of

the entity type.

(String,

required)

- name

The attribute

name that is

used to build

the relative

distinguished

name (RDN)

for the entity

type. (String,

required)

- objectClass

The object

class to use for

the entity type

for the relative

distinguished

name (RDN)

attribute name

that you

specify. Use

this parameter

to map one

entity type to

multiple

structural

object classes.

(String,

optional)

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask addIdMgrLDAPEntity

TypeRDNAttr {-id id1

-entityTypeName entitytype

-name name1}

v Using Jython string:

AdminTask.addIdMgrLDAPEntity

TypeRDNAttr (’[-id id1

-entityTypeName entitytype

-name name1]’)

v Using Jython list:

AdminTask.addIdMgrLDAPEntity

TypeRDNAttr ([’-id’, ’id1’,

’-entityTypeName’, ’entity

type’, ’-name’, ’name1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask addIdMgrLDAPEntity

TypeRDNAttr {-interactive}

v Using Jython string:

AdminTask.addIdMgrLDAPEntity

TypeRDNAttr (’[-interactive]’)

v Using Jython list:

AdminTask.addIdMgrLDAPEntity

TypeRDNAttr ([’-interactive’])

Chapter 16. Security 1489

Table 25. (continued)

Command name: Description: Parameters and

return values:

Examples:

addIdMgr LDAPGroup

Dynamic Member Attr

The addIdMgr

LDAPGroup Dynamic

Member Attr command

adds a dynamic

member attribute

configuration to an

LDAP group

configuration.

v Parameters:

- id

The ID of the

repository.

(String,

required)

- name

The name of

the LDAP

attribute that is

used as the

group member

attribute. For

example,

member or

uniqueMember.

(String,

required)

- objectClass

The group

object class

that contains

the member

attribute. For

example,

groupOfNames

or

groupOfUnqiueNames.

If you do not

define this

parameter, the

member

attribute

applies to all

group object

classes.

(String,

optional)

Batch mode example usage:

v Using Jacl:

$AdminTask addIdMgrLDAPGroup

DynamicMemberAttr {-id id1

-name name1 -objectClass

objectclass}

v Using Jython string:

AdminTask.addIdMgrLDAPGroup

DynamicMemberAttr (’[-id

id1 -name name1

-objectClass objectclass]’)

v Using Jython list:

AdminTask.addIdMgrLDAPGroup

DynamicMemberAttr ([’-id’,

’id1’, ’-name’, ’name1’,

’-objectClass’, ’objectclass’])

Interactive mode example usage:

v Using Jacl:

$AdminTask addIdMgrLDAPGroup

DynamicMemberAttr {-interactive}

v Using Jython string:

AdminTask.addIdMgrLDAPGroup

DynamicMemberAttr (’[-interactive]’)

v Using Jython list:

AdminTask.addIdMgrLDAPGroup

DynamicMemberAttr ([’-interactive’])

1490 Administering applications and their environment

Table 25. (continued)

Command name: Description: Parameters and

return values:

Examples:

- scope

The scope of the

member attribute.

The valid values

for this parameter

include the

following:

v direct - The

member

attribute only

contains direct

members,

therefore, this

value refers to

the member

directly

contained by

the group and

not contained

through the

nested group.

For example, if

Group1

contains

Group2 and

Group2

contains

User1, then

Group2 is a

direct member

of Group1 but

User1 is not a

direct member

of Group1.

Both member

and

uniqueMember

are direct

member

attributes.

v nested - The

member

attribute that

contains the

direct members

and the nested

members.

Chapter 16. Security 1491

Table 25. (continued)

Command name: Description: Parameters and

return values:

Examples:

v all - The member

attribute that

contains the direct

members, the

nested members,

and the dynamic

members. For

example, the

ibm-allMembers

attribute which is

supported by the

IBM Tivoli Directory

Server. (String,

optional)

- dummyMember

Indicates that if

you create a

group without

specifying a

member, a

dummy member

will be filled in to

avoid creating an

exception about

missing a

mandatory

attribute. (String,

optional)

v Returns: None

1492 Administering applications and their environment

Table 25. (continued)

Command name: Description: Parameters and

return values:

Examples:

addIdMgr LDAPGroup

MemberAttr

The addIdMgr

LDAPGroup

MemberAttr command

adds a member

attribute configuration to

an LDAP group

configuration.

v Parameters:

- id

The ID of the

repository.

(String,

required)

- name

The name of

the LDAP

attribute that is

used as the

group member

attribute. For

example,

member or

uniqueMember.

(String,

required)

- objectClass

The group

object class

that contains

the member

attribute. For

example,

groupOfNames

or

groupOfUnqiueNames.

If you do not

define this

parameter, the

member

attribute

applies to all

group object

classes.

(String,

optional)

Batch mode example usage:

v Using Jacl:

$AdminTask addIdMgrLDAPGroup

MemberAttr {-id id1

-name name1}

v Using Jython string:

AdminTask.addIdMgrLDAPGroup

MemberAttr (’[-id id1

-name name1]’)

v Using Jython list:

AdminTask.addIdMgrLDAPGroup

MemberAttr ([’-id’, ’id1’,

’-name’, ’name1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask addIdMgrLDAPGroup

MemberAttr {-interactive}

v Using Jython string:

AdminTask.addIdMgrLDAPGroup

MemberAttr (’[-interactive]’)

v Using Jython list:

AdminTask.addIdMgrLDAPGroup

MemberAttr ([’-interactive’])

Chapter 16. Security 1493

Table 25. (continued)

Command name: Description: Parameters and

return values:

Examples:

- scope

The scope of the

member attribute.

The valid values

for this parameter

include the

following:

v direct - The

member

attribute only

contains direct

members,

therefore, this

value refers to

the member

directly

contained by

the group and

not contained

through the

nested group.

For example, if

Group1

contains

Group2 and

Group2

contains

User1, then

Group2 is a

direct member

of Group1 but

User1 is not a

direct member

of Group1.

Both member

and

uniqueMember

are direct

member

attributes.

v nested - The

member

attribute that

contains the

direct members

and the nested

members.

1494 Administering applications and their environment

Table 25. (continued)

Command name: Description: Parameters and

return values:

Examples:

v all - The member

attribute that

contains the direct

members, the

nested members,

and the dynamic

members. For

example, the

ibm-allMembers

attribute which is

supported by the

IBM Tivoli Directory

Server. (String,

optional)

- dummyMember

Indicates that if

you create a

group without

specifying a

member, a

dummy member

will be filled in to

avoid creating an

exception about

missing a

mandatory

attribute. (String,

optional)

v Returns: None

Chapter 16. Security 1495

Table 25. (continued)

Command name: Description: Parameters and

return values:

Examples:

addId MgrLDAP Server The addId MgrLDAP

Server command adds

an LDAP server to the

LDAP repository ID that

you specify.

v Parameters:

- id

The ID of the

repository.

(String,

required)

- host

The host name

for the primary

LDAP server.

(String,

required)

- port

The port

number for the

LDAP server.

(Integer,

optional)

- bindDN

The binding

distinguished

name for the

LDAP server.

(String,

optional)

- bindPassword

The binding

password.

(String,

optional)

- authentication

Indicates the

authentication

method to use.

The default

value is

simple. Valid

values include:

none or strong.

(String,

optional)

- referal

The LDAP

referral. The

default value is

ignore. Valid

values include:

follow, throw,

or false.

(String,

optional)

Batch mode example usage:

v Using Jacl:

$AdminTask addIdMgrLDAPServer

{-id id1 -host myhost.ibm.com}

v Using Jython string:

AdminTask.addIdMgrLDAPServer

(’[-id id1 -host myhost.ibm.com]’)

v Using Jython list:

AdminTask.addIdMgrLDAPServer

([’-id’, ’id1’, ’-host’,

’myhost.ibm.com’])

Interactive mode example usage:

v Using Jacl:

$AdminTask addIdMgrLDAP

Server {-interactive}

v Using Jython string:

AdminTask.addIdMgrLDAP

Server (’[-interactive]’)

v Using Jython list:

AdminTask.addIdMgrLDAP

Server ([’-interactive’])

1496 Administering applications and their environment

Table 25. (continued)

Command name: Description: Parameters and

return values:

Examples:

- derefAliases

Controls how

aliases are

dereferenced.

The default value

is always. Valid

values include:

v never - never

deference

aliases

v finding -

deferences

aliases only

during name

resolution

v searching -

deferences

aliases only

after name

resolution

(String, optional)

- sslEnabled

Indicates to

enable SSL or

not. The default

value is false.

(Boolean,

optional)

- connectionPool

The connection

pool. The default

value is false.

(Boolean,

optional)

- connectTimeout

The connection

timeout in

seconds. The

default value is 0.

(Integer, optional)

Chapter 16. Security 1497

Table 25. (continued)

Command name: Description: Parameters and

return values:

Examples:

- ldapServerType

The type of LDAP

server being

used. The default

value is IDS51.

(String, optional)

- sslConfiguration

The SSL

configuration.

(String, optional)

-

certificateMapMode

Specifies whether

to map X.509

certificates into a

LDAP directory by

exact

distinguished

name or by

certificate filter.

The default value

is exactdn. To use

the certificate

filter for the

mapping, specify

certificatefilter.

(String, optional)

- certificateFilter

If

certificateMapMode

has the value

certificatefilter,

then this property

specifies the

LDAP filter which

maps attributes in

the client

certificate to

entries in LDAP.

(String, optional)

v Returns: None

1498 Administering applications and their environment

Table 25. (continued)

Command name: Description: Parameters and

return values:

Examples:

addIdMgr Repository

BaseEntry

The addIdMgr

Repository

BaseEntrycommand

adds a base entry to

the specified repository.

v Parameters:

- id

The ID of the

repository.

(String,

required)

- name

The

distinguished

name of a

base entry.

(String,

required)

-

nameInRepository

The

distinguished

name in the

repository that

uniquely

identifies the

base entry

name. (String,

optional)

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask addIdMgrRepository

BaseEntry {-id id1

-name name1}

v Using Jython string:

AdminTask.addIdMgrRepository

BaseEntry (’[-id id1

-name name1]’)

v Using Jython list:

AdminTask.addIdMgrRepository

BaseEntry ([’-id’, ’id1’,

’-name’, ’name1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask addIdMgrRepository

BaseEntry {-interactive}

v Using Jython string:

AdminTask.addIdMgrRepository

BaseEntry (’[-interactive]’)

v Using Jython list:

AdminTask.addIdMgrRepository

BaseEntry ([’-interactive’])

Chapter 16. Security 1499

Table 25. (continued)

Command name: Description: Parameters and

return values:

Examples:

createId MgrDB

Repository

The createId MgrDB

Repository command

creates a database

repository configuration.

v Parameters:

- id

The ID of the

repository.

(String,

required)

-

dataSourceName

The name of

the data

source. The

default value is

jdbc/wimDS.

(String,

required)

- databaseType

The type of the

database. The

default value is

DB2. (String,

required)

- dbURL

The URL of the

database.

(String,

required)

- dbAdminId

The database

administrator

ID. (String,

required if

database type

is not

Cloudscape.)

-

dbAdminPassword

The database

administrator

password.

(String,

required if

database type

is not

Cloudscape.)

-

adapterClassName

The default

value is

com.ibm.ws.wim.adapter.db.DBAdapter.

(String,

optional)

Batch mode example usage:

v Using Jacl:

$AdminTask createIdMgrDB

Repository {-id id1

-dataSourceName datasource

name -databaseType DB2}

v Using Jython string:

AdminTask.createIdMgrDB

Repository (’[-id id1

-dataSourceName data

sourcename -databaseType

DB2]’)

v Using Jython list:

AdminTask.createIdMgrDB

Repository ([’-id’, ’id1’,

’-dataSourceName’, ’data

sourcename’, ’-databaseType’,

’DB2’])

Interactive mode example usage:

v Using Jacl:

$AdminTask createIdMgrDB

Repository {-interactive}

v Using Jython string:

AdminTask.createIdMgrDB

Repository (’[-interactive]’)

v Using Jython list:

AdminTask.createIdMgrDB

Repository ([’-interactive’])

1500 Administering applications and their environment

Table 25. (continued)

Command name: Description: Parameters and

return values:

Examples:

- JDBCDriverClass

The JDBC driver

class name.

(String, optional)

- supportSorting

Indicates if

sorting is

supported or not.

The default value

is false.

(Boolean,

optional)

-

supportTransaction

Indicates if

transactions are

supported or not.

The default value

is false.

(Boolean,

optional)

- isExtIdUnique

Specifies if the

external ID is

unique. The

default value is

true. (Boolean,

optional)

-

supportExternalName

Indicates if

external names

are supported or

not. The default

value is false.

(Boolean,

optional)

Chapter 16. Security 1501

Table 25. (continued)

Command name: Description: Parameters and

return values:

Examples:

-

entityRetrievalLimit

Indicates the

value of the

retrieval limit on

database entries.

The default value

is 200. (Integer,

optional)

- saltLength

The salt length in

bits. The default

value is 12.

(Integer, optional)

- encryptionKey

The default value

is

rZ15ws0ely9yHk3zCs3sTMv/ho8fY17s.

(String, optional)

v Returns: None

1502 Administering applications and their environment

Table 25. (continued)

Command name: Description: Parameters and

return values:

Examples:

createId MgrFile

Repository

The createId MgrFile

Repository command

creates a file repository

configuration.

v Parameters:

- id

The ID of the

repository.

(String,

required)

- messageDigest

Algorithm

The message

digest

algorithm that

will be used for

hashing the

password. The

default value is

SHA-1. Valid

values include

the following:

SHA-245,

SHA-384, or

SHA-
512.(String,

required)

-

adapterClassName

The default

value is

com.ibm.ws.

wim.adapter.

file.was.

FileAdapter.

(String,

optional)

- supportPaging

Indicates if

paging is

supported or

not. The

default value is

false.

(Boolean,

optional)

- supportSorting

Indicates if

sorting is

supported or

not. The

default value is

false.

(Boolean,

optional)

Batch mode example usage:

v Using Jacl:

$AdminTask createIdMgrFile

Repository {-id id1

-messageDigestAlgorithm

SHA-245}

v Using Jython string:

AdminTask.createIdMgrFile

Repository (’[-id id1

-messageDigestAlgorithm

SHA-245]’)

v Using Jython list:

AdminTask.createIdMgrFile

Repository ([’-id’, ’id1’,

’-messageDigestAlgorithm’,

’SHA-245’])

Interactive mode example usage:

v Using Jacl:

$AdminTask createIdMgrFile

Repository {-interactive}

v Using Jython string:

AdminTask.createIdMgrFile

Repository (’[-interactive]’)

v Using Jython list:

AdminTask.createIdMgrFile

Repository ([’-interactive’])

Chapter 16. Security 1503

Table 25. (continued)

Command name: Description: Parameters and

return values:

Examples:

-

supportTransaction

Indicates if

transaction is

supported or not.

The default value

is false.

(Boolean,

optional)

- isExtIdUnique

Specifies if the

external ID is

unique or not.

The default value

is true. (Boolean,

optional)

-

supportExternalName

Indicates if

external names

are supported or

not. The default

value is false.

(Boolean,

optional)

- baseDirectory

The base

directory where

the fill will be

created in order

to store the data.

The default is to

be dynamically

built during run

time using

user.install.root

and cell name.

(String, optional)

- fileName

The file name of

the repository.

The default value

is

fileRegistry.xml.

(String, optional)

1504 Administering applications and their environment

Table 25. (continued)

Command name: Description: Parameters and

return values:

Examples:

- saltLength

The salt length of

the randomly

generated salt for

password

hashing. The

default value is

12. (Integer,

optional)

v Returns: None

Chapter 16. Security 1505

Table 25. (continued)

Command name: Description: Parameters and

return values:

Examples:

createId MgrLDAP

Repository

The create IdMgrLDAP

Repository command

creates an LDAP

repository configuration.

v Parameters:

- id

The unique

identifier for

the repository.

(String,

required)

- ldapServerType

The type of

LDAP server

that is being

used. The

default value is

IDS51. (String,

required)

-

adapterClassName

The default

value is

com.ibm.ws.

wim.adapter.

db.DBAda pter.

(String,

optional)

- supportSorting

Indicates if

sorting is

supported or

not. The

default value is

false.

(Boolean,

optional)

- supportPaging

Indicates if

paging is

supported or

not. The

default value is

false.

(Boolean,

optional)

-

supportTransaction

Indicates if

transactions

are supported

or not. The

default value is

false.

(Boolean,

optional)

Batch mode example usage:

v Using Jacl:

$AdminTask createIdMgrLDAP

Repository {-id id1

-ldapServerType IDS51}

v Using Jython string:

AdminTask.createIdMgrLDAP

Repository (’[-id id1

-ldapServerType IDS51]’)

v Using Jython list:

AdminTask.createIdMgrLDAP

Repository ([’-id’, ’id1’,

’-ldapServerType’, ’IDS51’])

Interactive mode example usage:

v Using Jacl:

$AdminTask createIdMgrLDAP

Repository {-interactive}

v Using Jython string:

AdminTask.createIdMgrLDAP

Repository (’[-interactive]’)

v Using Jython list:

AdminTask.createIdMgrLDAP

Repository ([’-interactive’])

1506 Administering applications and their environment

Table 25. (continued)

Command name: Description: Parameters and

return values:

Examples:

- isExtIdUnique

Specifies if the

external ID is

unique. The

default value is

true. (Boolean,

optional)

-

supportExternalName

Indicates if

external names

are supported or

not. The default

value is false.

(Boolean,

optional)

- authentication

Indicates the

authentication

method to use.

The default value

is simple. Valid

values include:

none or strong.

(String, optional)

- referal

The LDAP

referral. The

default value is

ignore. Valid

values include:

follow, throw, or

false. (String,

optional)

- sslEnabled

Indicates to

enable SSL or

not. The default

value is false.

(Boolean,

optional)

- sslConfiguration

The SSL

configuration.

(String, optional)

Chapter 16. Security 1507

Table 25. (continued)

Command name: Description: Parameters and

return values:

Examples:

- connectionPool

The connection

pool. The default

value is false.

(Boolean,

optional)

- translateRDN

Indicates to

translate RDN or

not. The default

value is false.

(Boolean,

optional)

- searchTimeLimit

The value of

search time limit.

(Integer, optional)

- searchCountLimit

The value of

search count

limit. (Integer,

optional)

- searchPageSize

The value of

search page size.

(Integer, optional)

-

returnToPrimaryServer

(Integer, optional)

-

primaryServerQueryTimeInterval

(Integer, optional)

- default

If you set this

parameter to

true, the default

values will be set

for the remaining

configuration

properties of the

LDAP repository.

(Boolean,

optional)

v Returns: None

1508 Administering applications and their environment

Table 25. (continued)

Command name: Description: Parameters and

return values:

Examples:

deleteId MgrLDAP

EntityType

The deleteId MgrLDAP

EntityType command

deletes the LDAP entity

type configuration data

for a specified entity

type for a specific LDAP

repository.

v Parameters:

- id

The ID of the

repository.

(String,

required)

- name

The name of

the entity type.

(String,

required)

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask deleteIdMgrLDAP

EntityType {-id id1

-name name1}

v Using Jython string:

AdminTask.deleteIdMgrLDAP

EntityType (’[-id id1

-name name1]’)

v Using Jython list:

AdminTask.deleteIdMgrLDAP

EntityType ([’-id’, ’id1’,

’-name’, ’name1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask deleteIdMgrLDAP

EntityType {-interactive}

v Using Jython string:

AdminTask.deleteIdMgrLDAP

EntityType (’[-interactive]’)

v Using Jython list:

AdminTask.deleteIdMgrLDAP

EntityType ([’-interactive’])

Chapter 16. Security 1509

Table 25. (continued)

Command name: Description: Parameters and

return values:

Examples:

deleteId MgrLDAP

EntityType RDNAttr

The deleteId MgrLDAP

EntityType RDNAttr

command deletes the

relative distinguished

name (RDN) attribute

configuration from an

LDAP entity type

configuration.

v Parameters:

- id

The ID of the

repository.

(String,

required)

- entityTypeName

The name of

the entity type.

(String,

required)

- name

The attribute

name that is

used to build

the relative

distinguished

name (RDN)

for the entity

type. (String,

required)

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask deleteIdMgrLDAPEntity

TypeRDNAttr {-id id1

-name name1 -entityTypeName

entityType}

v Using Jython string:

AdminTask.deleteIdMgrLDAP

EntityTypeRDNAttr (’[-id id1

-name name1 -entityType

Name entityType]’)

v Using Jython list:

AdminTask.deleteIdMgrLDAPEntity

TypeRDNAttr ([’-id’, ’id1’,

’-name’, ’name1’, ’-entity

TypeName’, ’entityType’])

Interactive mode example usage:

v Using Jacl:

$AdminTask deleteIdMgrLDAPEntity

TypeRDNAttr {-interactive}

v Using Jython string:

AdminTask.deleteIdMgrLDAPEntity

TypeRDNAttr (’[-interactive]’)

v Using Jython list:

AdminTask.deleteIdMgrLDAPEntity

TypeRDNAttr ([’-interactive’])

1510 Administering applications and their environment

Table 25. (continued)

Command name: Description: Parameters and

return values:

Examples:

deleteId MgrLDAP

GroupConfig

The deleteId MgrLDAP

GroupConfig command

deletes the LDAP group

configuration.

v Parameters:

- id

The ID of the

repository.

(String,

required)

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask deleteIdMgrLDAP

GroupConfig {-id id1}

v Using Jython string:

AdminTask.deleteIdMgrLDAP

GroupConfig (’[-id id1]’)

v Using Jython list:

AdminTask.deleteIdMgrLDAP

GroupConfig ([’-id’, ’id1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask deleteIdMgrLDAP

GroupConfig {-interactive}

v Using Jython string:

AdminTask.deleteIdMgrLDAP

GroupConfig (’[-interactive]’)

v Using Jython list:

AdminTask.deleteIdMgrLDAP

GroupConfig ([’-interactive’])

deleteIdMgr LDAPGroup

MemberAttr

The deleteIdMgr

LDAPGroup

MemberAttr command

deletes a member

attribute configuration

from an LDAP group

configuration.

v Parameters:

- id

The ID of the

repository.

(String,

required)

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask deleteIdMgrLDAP

GroupMemberAttr {-id id1}

v Using Jython string:

AdminTask.deleteIdMgrLDAP

GroupMemberAttr (’[-id id1]’)

v Using Jython list:

AdminTask.deleteIdMgrLDAP

GroupMemberAttr ([’-id’, ’id1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask deleteIdMgrLDAP

GroupMemberAttr {-interactive}

v Using Jython string:

AdminTask.deleteIdMgrLDAP

GroupMemberAttr (’[-interactive]’)

v Using Jython list:

AdminTask.deleteIdMgrLDAP

GroupMemberAttr ([’-interactive’])

Chapter 16. Security 1511

Table 25. (continued)

Command name: Description: Parameters and

return values:

Examples:

deleteIdMgr LDAPGroup

Dynamic MemberAttr

The deleteIdMgr

LDAPGroup Dynamic

MemberAttr command

deletes a dynamic

member attribute

configuration from an

LDAP group

configuration.

v Parameters:

- id

The ID of the

repository.

(String,

required)

- name

The name of

the LDAP

attribute that is

used as the

group member

attribute. For

example,

memberURL.

(String,

required)

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask deleteIdMgrLDAP

GroupDynamicMemberAttr {-id

id1 -name name1}

v Using Jython string:

AdminTask.deleteIdMgrLDAP

GroupDynamicMemberAttr (’[

-id id1 -name name1]’)

v Using Jython list:

AdminTask.deleteIdMgrLDAP

GroupDynamicMemberAttr ([’

-id’, ’id1’, ’-name’,

’name1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask deleteIdMgrLDAPGroup

DynamicMemberAttr {-interactive}

v Using Jython string:

AdminTask.deleteIdMgrLDAPGroup

DynamicMemberAttr (’[-interactive]’)

v Using Jython list:

AdminTask.deleteIdMgrLDAPGroup

DynamicMemberAttr ([’-interactive’])

1512 Administering applications and their environment

Table 25. (continued)

Command name: Description: Parameters and

return values:

Examples:

deleteId MgrLDAP Server The deleteId MgrLDAP

Server command

deletes the

configuration for the

LDAP server that you

specify from the LDAP

repository ID that you

specify.

v Parameters:

- id

The ID of the

repository.

(String,

required)

- host

The host name

for the primary

LDAP server.

(String,

required)

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask deleteIdMgrLDAP

Server {-id id1 -host

myhost.ibm.com}

v Using Jython string:

AdminTask.deleteIdMgrLDAP

Server (’[-id id1 -host

myhost.ibm.com]’)

v Using Jython list:

AdminTask.deleteIdMgrLDAP

Server ([’-id’, ’id1’,

’-host’, ’myhost.ibm.com’])

Interactive mode example usage:

v Using Jacl:

$AdminTask deleteIdMgrLDAP

Server {-interactive}

v Using Jython string:

AdminTask.deleteIdMgrLDAP

Server (’[-interactive]’)

v Using Jython list:

AdminTask.deleteIdMgrLDAP

Server ([’-interactive’])

deleteIdMgr Repository The deleteIdMgr

Repository command

deletes a repository that

you specify.

v Parameters:

- id

The ID of the

repository.

Valid values

include existing

repository IDs.

(String,

required)

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask deleteIdMgr

Repository {-id id1}

v Using Jython string:

AdminTask.deleteIdMgr

Repository (’[-id id1]’)

v Using Jython list:

AdminTask.deleteIdMgr

Repository ([’-id’, ’id1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask deleteIdMgrRepos

itory {-interactive}

v Using Jython string:

AdminTask.deleteIdMgrReposi

tory (’[-interactive]’)

v Using Jython list:

AdminTask.deleteIdMgrReposi

tory ([’-interactive’])

Chapter 16. Security 1513

Table 25. (continued)

Command name: Description: Parameters and

return values:

Examples:

deleteIdMgr Repository

BaseEntry

The deleteIdMgr

Repository BaseEntry

command deletes a

base entry from the

specified repository.

v Parameters:

- id

The ID of the

repository.

(String,

required)

- name

The

distinguished

name of a

base entry.

(String,

required)

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask deleteIdMgrRepository

BaseEntry {-id id1 -name

name1}

v Using Jython string:

AdminTask.deleteIdMgrRepository

BaseEntry (’[-id id1 -name

name1]’)

v Using Jython list:

AdminTask.deleteIdMgrRepository

BaseEntry ([’-id’, ’id1’,

’-name’, ’name1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask deleteIdMgrRepository

BaseEntry {-interactive}

v Using Jython string:

AdminTask.deleteIdMgrRepository

BaseEntry (’[-interactive]’)

v Using Jython list:

AdminTask.deleteIdMgrRepository

BaseEntry ([’-interactive’])

getIdMgr LDAPAttr Cache The getIdMgr

LDAPAttr Cache

command returns the

LDAP attribute cache

configuration.

v Parameters:

- id

The ID of the

repository.

(String,

required)

v Returns: A hash

map with the

parameters of the

setIdMgr LDAPAttr

Cache command

as keys.

Batch mode example usage:

v Using Jacl:

$AdminTask getIdMgrLDAPAttr

Cache {-id id1}

v Using Jython string:

AdminTask.getIdMgrLDAPAttr

Cache (’[-id id1]’)

v Using Jython list:

AdminTask.getIdMgrLDAPAttr

Cache ([’-id’, ’id1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask getIdMgrLDAP

AttrCache {-interactive}

v Using Jython string:

AdminTask.getIdMgrLDAPAttr

Cache (’[-interactive]’)

v Using Jython list:

AdminTask.getIdMgrLDAPAttr

Cache ([’-interactive’])

1514 Administering applications and their environment

Table 25. (continued)

Command name: Description: Parameters and

return values:

Examples:

getIdMgr LDAP

ContextPool

The getIdMgr LDAP

Context Pool command

returns the LDAP

context pool

configuration.

v Parameters:

- id

The ID of the

repository.

(String,

required)

v Returns: A hash

map that includes

the parameters of

the

setIdMgrLDAPContextPool

command as the

keys.

Batch mode example usage:

v Using Jacl:

$AdminTask getIdMgrLDAPContext

Pool {-id id1}

v Using Jython string:

AdminTask.getIdMgrLDAPContext

Pool (’[-id id1]’)

v Using Jython list:

AdminTask.getIdMgrLDAPContext

Pool ([’-id’, ’id1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask getIdMgrLDAPCon

textPool {-interactive}

v Using Jython string:

AdminTask.getIdMgrLDAPCon

textPool (’[-interactive]’)

v Using Jython list:

AdminTask.getIdMgrLDAPCon

textPool ([’-interactive’])

getIdMgr LDAP

EntityType

The getIdMgr LDAP

EntityType command

returns the LDAP entity

type configuration data.

v Parameters:

- id

The ID of the

repository.

(String,

required)

- name

The name of

the entity type.

(String,

required)

v Returns: A hash

map with the keys

the same as the

property name of

the addIdMgr

LDAP EntityType

command.

Multi-valued

parameters are

returned as list.

Batch mode example usage:

v Using Jacl:

$AdminTask getIdMgrLDAPEntity

Type {-id id1 -name name1}

v Using Jython string:

AdminTask.getIdMgrLDAPEntity

Type (’[-id id1 -name

name1]’)

v Using Jython list:

AdminTask.getIdMgrLDAPEntity

Type ([’-id’, ’id1’,

’-name’, ’name1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask getIdMgrLDAPEn

tityType {-interactive}

v Using Jython string:

AdminTask.getIdMgrLDAPEn

tityType (’[-interactive]’)

v Using Jython list:

AdminTask.getIdMgrLDAPEn

tityType ([’-interactive’])

Chapter 16. Security 1515

Table 25. (continued)

Command name: Description: Parameters and

return values:

Examples:

getIdMgr LDAPEntity

TypeRDNAttr

The getIdMgr

LDAPEntity

TypeRDNAttr command

returns the relative

distinguished name

(RDN) attribute

configuration for an

LDAP entity type

definition.

v Parameters:

- id

The ID of the

repository.

(String,

required)

- entityTypeName

The name of

the entity

name. (String,

required)

v Returns: A hash

map with the RDN

attribute names as

the key. If the

object class is set,

the value of the key

will be set to the

value of the object

class. Otherwise,

the value will be

null.

Batch mode example usage:

v Using Jacl:

$AdminTask getIdMgrLDAPEntity

TypeRDNAttr {-id id1

-entityTypeName name1}

v Using Jython string:

AdminTask.getIdMgrLDAPEntity

TypeRDNAttr (’[-id id1

-entityTypeName name1]’)

v Using Jython list:

AdminTask.getIdMgrLDAPEntity

TypeRDNAttr ([’-id’, ’id1’,

’-entityTypeName’, ’name1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask getIdMgrLDAPEntity

TypeRDNAttr {-interactive}

v Using Jython string:

AdminTask.getIdMgrLDAPEntity

TypeRDNAttr (’[-interactive]’)

v Using Jython list:

AdminTask.getIdMgrLDAPEntity

TypeRDNAttr ([’-interactive’])

getIdMgr LDAPGrou

pConfig

The getIdMgr LDAPG

roupConfig command

returns the LDAP group

configuration.

v Parameters:

- id

The ID of the

repository.

(String,

required)

v Returns: A hash

map that contains

the parameters of

the setIdMgr

LDAPGroup

Config command

as the keys.

Batch mode example usage:

v Using Jacl:

$AdminTask getIdMgrLDAPGroup

Config {-id id1}

v Using Jython string:

AdminTask.getIdMgrLDAPGroup

Config (’[-id id1]’)

v Using Jython list:

AdminTask.getIdMgrLDAPGroup

Config ([’-id’, ’id1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask getIdMgrLDAPGroup

Config {-interactive}

v Using Jython string:

AdminTask.getIdMgrLDAPGroup

Config (’[-interactive]’)

v Using Jython list:

AdminTask.getIdMgrLDAPGroup

Config ([’-interactive’])

1516 Administering applications and their environment

Table 25. (continued)

Command name: Description: Parameters and

return values:

Examples:

getIdMgr LDAPGroup

Dynamic Member Attrs

The getIdMgr

LDAPGroup Dynamic

Member Attrs

command returns the

dynamic member

attribute configuration

from the LDAP group

configuration.

v Parameters:

- id

The ID of the

repository.

(String,

required)

v Returns: A hash

map list that

contains the

parameters of the

addIdMgr

LDAPGroup

Dynamic

MemberAttr

command as the

keys.

Batch mode example usage:

v Using Jacl:

$AdminTask getIdMgrLDAPGroupDynamic

MemberAttrs {-id id1}

v Using Jython string:

AdminTask.getIdMgrLDAPGroupDynamic

MemberAttrs (’[-id id1]’)

v Using Jython list:

AdminTask.getIdMgrLDAPGroupDynamic

MemberAttrs ([’-id’, ’id1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask getIdMgrLDAPGroup

DynamicMemberAttrs {-interactive}

v Using Jython string:

AdminTask.getIdMgrLDAPGroup

DynamicMemberAttrs (’[-interactive]’)

v Using Jython list:

AdminTask.getIdMgrLDAPGroup

DynamicMemberAttrs ([’-interactive’])

getIdMgr LDAPGroup

MemberAttrs

The getIdMgr

LDAPGroup

MemberAttrs command

returns the member

attribute configuration

for the LDAP group

configuration.

v Parameters:

- id

The ID of the

repository.

(String,

required)

v Returns: A hash

map list that

contains the

parameters of the

addIdMgr

LDAPGroup

MemberAttr

command as the

keys.

Batch mode example usage:

Interactive mode example usage:

v Using Jacl:

$AdminTask getIdMgrLDAPGroup

MemberAttrs {-interactive}

v Using Jython string:

AdminTask.getIdMgrLDAPGroup

MemberAttrs (’[-interactive]’)

v Using Jython list:

AdminTask.getIdMgrLDAPGroup

MemberAttrs ([’-interactive’])

Chapter 16. Security 1517

Table 25. (continued)

Command name: Description: Parameters and

return values:

Examples:

getIdMgr LDAPSearch

ResultCache

The getIdMgr

LDAPSearch

ResultCache command

returns the LDAP

search result cache

configuration.

v Parameters:

- id

The ID of the

repository.

(String,

required)

v Returns: A hash

map with the

parameters of the

setIdMgr

LDAPSearch

ResultCache

command as the

keys.

Batch mode example usage:

v Using Jacl:

$AdminTask getIdMgrLDAP

SearchResultCache {-id id1}

v Using Jython string:

AdminTask.getIdMgrLDAP

SearchResultCache (’[-id id1]’)

v Using Jython list:

AdminTask.getIdMgrLDAPSear

chResultCache ([’-id’, ’id1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask getIdMgrLDAPSea

rchResultCache {-interactive}

v Using Jython string:

AdminTask.getIdMgrLDAPSear

chResultCache (’[-interactive]’)

v Using Jython list:

AdminTask.getIdMgrLDAPSe

archResultCache ([’-interactive’])

getIdMgr LDAPServer The getIdMgr

LDAPServer command

returns the configuration

for the LDAP server that

you specify for the

LDAP repository ID that

you specify.

v Parameters:

- id

The ID of the

repository.

(String,

required)

- host

The host name

for the primary

LDAP server.

(String,

required)

v Returns: A hash

map with the keys

the same as the

parameter names

for the addIdMgr

LDAPServer

command.

Batch mode example usage:

v Using Jacl:

$AdminTask getIdMgrLDAPServer

{-id id1 -host myhost.ibm.com}

v Using Jython string:

AdminTask.getIdMgrLDAPServer

(’[-id id1 -host myhost.ibm.com]’)

v Using Jython list:

AdminTask.getIdMgrLDAPServer

([’-id’, ’id1’, ’-host’,

’myhost.ibm.com’])

Interactive mode example usage:

v Using Jacl:

$AdminTask getIdMgrLDAPServer

{-interactive}

v Using Jython string:

AdminTask.getIdMgrLDAPServer

(’[-interactive]’)

v Using Jython list:

AdminTask.getIdMgrLDAPServer

([’-interactive’])

1518 Administering applications and their environment

Table 25. (continued)

Command name: Description: Parameters and

return values:

Examples:

getIdMgr Repository The getIdMgr

Repository command

returns the configuration

of the specified

repository.

v Parameters:

- id

The ID of the

repository.

(String,

required)

v Returns: A hash

map. The keys will

vary depending on

the type of

repository.

Batch mode example usage:

v Using Jacl:

$AdminTask getIdMgrRepos

itory {-id id1}

v Using Jython string:

AdminTask.getIdMgrReposi

tory (’[-id id1]’)

v Using Jython list:

AdminTask.getIdMgrReposi

tory ([’-id’, ’id1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask getIdMgrRepos

itory {-interactive}

v Using Jython string:

AdminTask.getIdMgrReposi

tory (’[-interactive]’)

v Using Jython list:

AdminTask.getIdMgrReposi

tory ([’-interactive’])

listIdMgr Custom

Properties

The listIdMgr Custom

Propertiescommand

returns a list of custom

properties for the

repository that you

specify.

v Parameters:

- id

The ID of the

repository.

(String,

required)

v Returns: A hash

map that contains

keys as the custom

property names

and values as

custom property

values.

Batch mode example usage:

v Using Jacl:

$AdminTask listIdMgrCustomPro

perties {-id id1}

v Using Jython string:

AdminTask.listIdMgrCustom

Properties (’[-id id1]’)

v Using Jython list:

AdminTask.listIdMgrCustom

Properties ([’-id’, ’id1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask listIdMgrCustom

Properties {-interactive}

v Using Jython string:

AdminTask.listIdMgrCustom

Properties (’[-interactive]’)

v Using Jython list:

AdminTask.listIdMgrCustom

Properties ([’-interactive’])

Chapter 16. Security 1519

Table 25. (continued)

Command name: Description: Parameters and

return values:

Examples:

listIdMgr LDAPBa

ckupServers

The listIdMgr

LDAPBack

upServerscommand

returns a list of the

backup LDAP server or

servers.

v Parameters:

- id

The ID of the

repository.

(String,

required)

- primary_host

The host name

for the primary

LDAP server.

(String,

required)

v Returns: A list of

hash maps. The

hash maps

contains the names

of the backup

servers as the key

and the port

numbers as the

value. Returning all

the data in a hash

map does not

maintain the order

of backup servers.

Batch mode example usage:

v Using Jacl:

$AdminTask listIdMgrLDAP

BackupServer {-id id1

-primary_host hostname}

v Using Jython string:

AdminTask.listIdMgrLDAPBack

upServer (’[-id id1

-primary_host hostname]’)

v Using Jython list:

AdminTask.listIdMgrLDAPBack

upServer ([’-id’, ’id1’,

’-primary_host’, ’hostname’])

Interactive mode example usage:

v Using Jacl:

$AdminTask listIdMgrLDAP

BackupServer {-interactive}

v Using Jython string:

AdminTask.listIdMgrLDAP

BackupServer (’[-interactive]’)

v Using Jython list:

AdminTask.listIdMgrLDAP

BackupServer ([’-interactive’])

listIdMgr LDAPEn

tityTypes

The listIdMgr LDAPEn

tityTypes command

lists the name of all of

the configured LDAP

entity type definitions.

v Parameters:

- id

The ID of the

repository.

(String,

required)

v Returns: A list that

contains the names

of the configured

LDAP entity types.

Batch mode example usage:

v Using Jacl:

$AdminTask listIdMgrLDAP

EntityType {-id id1}

v Using Jython string:

AdminTask.listIdMgrLDAP

EntityType (’[-id id1]’)

v Using Jython list:

AdminTask.listIdMgrLDAPEntity

Type ([’-id’, ’id1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask listIdMgrLDAP

EntityType {-interactive}

v Using Jython string:

AdminTask.listIdMgrLDAP

EntityType (’[-interactive]’)

v Using Jython list:

AdminTask.listIdMgrLDAP

EntityType ([’-interactive’])

1520 Administering applications and their environment

Table 25. (continued)

Command name: Description: Parameters and

return values:

Examples:

listIdMgr LDAP Servers The listIdMgr LDAP

Servers command lists

all of the configured

primary LDAP servers.

v Parameters:

- id

The ID of the

repository.

(String,

required)

v Returns: A list that

contains the

primary LDAP

server names.

Batch mode example usage:

v Using Jacl:

$AdminTask listIdMgrLDAP

Servers {-id id1}

v Using Jython string:

AdminTask.listIdMgrLDAP

Servers (’[-id id1]’)

v Using Jython list:

AdminTask.listIdMgrLDAP

Servers ([’-id’, ’id1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask listIdMgrLDAP

Servers {-interactive}

v Using Jython string:

AdminTask.listIdMgrLDAP

Servers (’[-interactive]’)

v Using Jython list:

AdminTask.listIdMgrLDAP

Servers ([’-interactive’])

Chapter 16. Security 1521

Table 25. (continued)

Command name: Description: Parameters and

return values:

Examples:

listIdMgr Repositories The listIdMgr

Repositories command

lists names and types of

all configured

repositories.

v Parameters: None

v Returns: A hash

map with key as

the name of the

repository and

value as another

hash map that

includes the

following keys:

– repositoryType -

The type of

repository. For

example, File,

LDAP, DB, and

so on.

–

 specificRepositoryType

- The specific type

of repository. For

example, LDAP,

IDS51, NDS, and

so on.

– host - The host

name where the

repository

resides. For File,

it is LocalHost

and for DB it is

dataSourceName.

This command will

not return the

Property Extension

and Entry Mapping

repository data.

Batch mode example usage:

v Using Jacl:

$AdminTask listIdMgrRepositories

v Using Jython string:

AdminTask.listIdMgrRepositories()

v Using Jython list:

AdminTask.listIdMgrRepositories()

Interactive mode example usage:

v Using Jacl:

$AdminTask listIdMgrReposi

tories {-interactive}

v Using Jython string:

AdminTask.listIdMgrReposit

ories (’[-interactive]’)

v Using Jython list:

AdminTask.listIdMgrReposi

tories ([’-interactive’])

1522 Administering applications and their environment

Table 25. (continued)

Command name: Description: Parameters and

return values:

Examples:

listIdMgr Repository

BaseEntries

The listIdMgr

Repository

BaseEntries command

lists the base entries for

a specified repository.

v Parameters:

- id

The ID of the

repository.

(String,

required)

v Returns: A hash

map that contains

base entry name as

key and

nameInRepository

as value.

Batch mode example usage:

v Using Jacl:

$AdminTask listIdMgrRepository

BaseEntries {-id id1}

v Using Jython string:

AdminTask.listIdMgrRepository

BaseEntries (’[-id id1]’)

v Using Jython list:

AdminTask.listIdMgrRepository

BaseEntries ([’-id’, ’id1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask listIdMgrRepository

BaseEntries {-interactive}

v Using Jython string:

AdminTask.listIdMgrRepository

BaseEntries (’[-interactive]’)

v Using Jython list:

AdminTask.listIdMgrRepository

BaseEntries ([’-interactive’])

listIdMgr Supported

DBTypes

The listIdMgr

Supported DBTypes

command returns a list

of supported database

types.

v Parameters: None

v Returns: A list of

supported database

types.

Batch mode example usage:

v Using Jacl:

$AdminTask listIdMgrSupportedDBTypes

v Using Jython string:

AdminTask.listIdMgrSupportedDBTypes()

v Using Jython list:

AdminTask.listIdMgrSupportedDBTypes()

Interactive mode example usage:

v Using Jacl:

$AdminTask listIdMgrSupported

DBTypes {-interactive}

v Using Jython string:

AdminTask.listIdMgrSupported

DBTypes (’[-interactive]’)

v Using Jython list:

AdminTask.listIdMgrSupported

DBTypes ([’-interactive’])

Chapter 16. Security 1523

Table 25. (continued)

Command name: Description: Parameters and

return values:

Examples:

listIdMg rSupported

Message Digest

Algorithms

The listIdMgr

Supported Message

Digest Algorithms

command returns a list

of supported message

digest algorithms.

v Parameters: None

v Returns: A list of

supported message

digest algorithms.

Batch mode example usage:

v Using Jacl:

$AdminTask listIdMgrSupported

MessageDigestAlgorithms

v Using Jython string:

AdminTask.listIdMgrSupported

MessageDigestAlgorithms()

v Using Jython list:

AdminTask.listIdMgrSupported

MessageDigestAlgorithms()

Interactive mode example usage:

v Using Jacl:

$AdminTask listIdMgrSupportedMes

sageDigestAlgorithms {-interactive}

v Using Jython string:

AdminTask.listIdMgrSupportedMessage

DigestAlgorithms (’[-interactive]’)

v Using Jython list:

AdminTask.listIdMgrSupportedMessage

DigestAlgorithms ([’-interactive’])

listIdMgr Supported

LDAPSe rverTypes

The listIdMgr

Supported LDAP

ServerTypes command

returns a list of

supported LDAP server

types.

v Parameters: None

v Returns: A list of

supported LDAP

server types.

Batch mode example usage:

v Using Jacl:

$AdminTask listIdMgrSupported

LDAPServerTypes

v Using Jython string:

AdminTask.listIdMgrSupported

LDAPServerTypes()

v Using Jython list:

AdminTask.listIdMgrSupported

LDAPServerTypes()

Interactive mode example usage:

v Using Jacl:

$AdminTask listIdMgrSupported

LDAPServerTypes {-interactive}

v Using Jython string:

AdminTask.listIdMgrSupported

LDAPServerTypes (’[-interactive]’)

v Using Jython list:

AdminTask.listIdMgrSupported

LDAPServerTypes ([’-interactive’])

1524 Administering applications and their environment

Table 25. (continued)

Command name: Description: Parameters and

return values:

Examples:

removeIdMgr LDAPBac

kupServer

The removeIdMgr

LDAPBack

upServercommand

removes the backup

LDAP server or servers.

v Parameters:

- id

The ID of the

repository.

(String,

required)

- primary_host

The host name

for the primary

LDAP server.

(String,

required)

- host

The name of

the backup

host name.

Use a asterisk

(*) if you want

to remove all

backup

servers.

(String,

required)

- port

The port

number of the

LDAP server.

(Integer,

optional)

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask removeIdMgrLDAP

BackupServer {-id id1

-primary_host myprimaryhost.

ibm.com -host myhost.ibm.com}

v Using Jython string:

AdminTask.removeIdMgrLDAPBackup

Server (’[-id id1 -primary_host

myprimaryhost.ibm.com -host

myhost.ibm.com]’)

v Using Jython list:

AdminTask.removeIdMgrLDAPBack

upServer ([’-id’, ’id1’,

’-primary_host’, ’myprimary

host.ibm.com’, ’-host’,

’myhost.ibm.com’])

Interactive mode example usage:

v Using Jacl:

$AdminTask removeIdMgrLDAP

BackupServer {-interactive}

v Using Jython string:

AdminTask.removeIdMgrLDAP

BackupServer (’[-interactive]’)

v Using Jython list:

AdminTask.removeIdMgrLDAP

BackupServer ([’-interactive’])

Chapter 16. Security 1525

Table 25. (continued)

Command name: Description: Parameters and

return values:

Examples:

setIdMgr Custom

Property

The setIdMgr Custom

Property command

adds the custom

properties to a

repository configuration.

v Parameters:

- id

The ID of the

repository.

Valid values

include the

existing

repository IDs.

(String,

required)

- name

The name of

the additional

property for the

repository that

are not defined

OOTB.(String,

required)

- value

If this

parameter is

an empty

string, the

property will be

deleted from

the repository

configuration. If

this parameter

is not an empty

string and

name does not

exist, it will be

added. If name

is an empty

string, all the

custom

properties will

be deleted.

(String,

required)

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask setIdMgrCustomProperty

{-id id1 -name name1

-value value}

v Using Jython string:

AdminTask.setIdMgrCustomProperty

(’[-id id1 -name name1

-value value]’)

v Using Jython list:

AdminTask.setIdMgrCustomProperty

([’-id’, ’id1’, ’-name’,

’name1’, ’-value’, ’value’])

Interactive mode example usage:

v Using Jacl:

$AdminTask setIdMgrCustom

Property {-interactive}

v Using Jython string:

AdminTask.setIdMgrCustom

Property (’[-interactive]’)

v Using Jython list:

AdminTask.setIdMgrCustom

Property ([’-interactive’])

1526 Administering applications and their environment

Table 25. (continued)

Command name: Description: Parameters and

return values:

Examples:

setIdMgr LDAPA ttrCache The setIdMgr LDAPA

ttrCache command

configures the LDAP

attribute cache

configuration.

v Parameters:

- id

The ID of the

repository.

(String,

required)

-

cachesDiskOffLoad

(String,

optional)

- enabled

Indicates if you

want to enable

attribute

caching. The

default value is

true. (Boolean,

optional)

- cacheSize

The maximum

size of the

attribute cache

defined by the

number of

attribute

objects that are

permitted in

the attribute

cache. The

minimum value

of this

parameter is

100. The

default value is

4000. (Integer,

optional)

Batch mode example usage:

v Using Jacl:

$AdminTask setIdMgrLDAPAttr

Cache {-id id1}

v Using Jython string:

AdminTask.setIdMgrLDAPAttr

Cache (’[-id id1]’)

v Using Jython list:

AdminTask.setIdMgrLDAPAttr

Cache ([’-id’, ’id1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask setIdMgrLDAPAttr

Cache {-interactive}

v Using Jython string:

AdminTask.setIdMgrLDAPAttr

Cache (’[-interactive]’)

v Using Jython list:

AdminTask.setIdMgrLDAPAttr

Cache ([’-interactive’])

Chapter 16. Security 1527

Table 25. (continued)

Command name: Description: Parameters and

return values:

Examples:

- cacheTimeOut

The amount of

time in seconds

before the cached

entries that are

located in the

attributes cache

can be not valid.

The minimum

value of this

parameter is 0.

The attribute

objects that are

cached will

remain in the

attributes cache

until the virtual

member manager

changes the

attribute objects.

The default value

is 1200. (Integer,

optional)

- attributeSizeLimit

An integer that

represents the

maximum number

of attribute object

values that can

cache in the

attributes cache.

 Some attributes,

for example, the

member attribute,

contain many

values. The

attributeSizeLimit

parameter

prevents the

attributes cache

to cache large

attributes. The

default value is

2000. (Integer,

optional)

1528 Administering applications and their environment

Table 25. (continued)

Command name: Description: Parameters and

return values:

Examples:

- serverTTLAttribute

The name of the

ttl attribute that is

supported by the

LDAP server. The

attributes cache

uses the value of

this attribute to

determine when

the cached

entries in the

attributes cache

will time out.

 The ttl attribute

contains the time,

in seconds, that

any information

from the entry

should be kept by

a client before it

is considered

stale and a new

copy is fetched. A

value of 0 implies

that the object will

not be cached.

For more

information about

this attribute, go

to:

http://
www.ietf.org/
proceedings/
98aug/I-D/draft-
ietf-asid-ldap-
cache-01.txt.

 The ttl attribute is

not supported by

all LDAP servers.

If this attribute is

supported by an

LDAP server, you

can set the value

of the

serverTTLAttribute

parameter to the

name of the ttl

attribute in order

to allow the value

of the ttyl attribute

to determine

when cached

entries will time

out. The time out

value for different

entries in

attributes cache

can be different.

Chapter 16. Security 1529

http://http://www.ietf.org/proceedings/98aug/I-D/draft-ietf-asid-ldap-cache-01.txt
http://http://www.ietf.org/proceedings/98aug/I-D/draft-ietf-asid-ldap-cache-01.txt
http://http://www.ietf.org/proceedings/98aug/I-D/draft-ietf-asid-ldap-cache-01.txt
http://http://www.ietf.org/proceedings/98aug/I-D/draft-ietf-asid-ldap-cache-01.txt
http://http://www.ietf.org/proceedings/98aug/I-D/draft-ietf-asid-ldap-cache-01.txt
http://http://www.ietf.org/proceedings/98aug/I-D/draft-ietf-asid-ldap-cache-01.txt

Table 25. (continued)

Command name: Description: Parameters and

return values:

Examples:

For example, if the

value of the

serverTTLAttribute

parameter is ttl and

the attributes cache

retrieves attributes of

a user from an LDAP

server, it will also

retrieve the value of

the ttl attribute of this

user. If the value is

200, the WMM uses

this value to set the

time out for the

attributes of the user

in the attributes cache

instead of using the

value of

cacheTimeout. You

can set different ttl

attribute values for

different users.

(String, optional)

v Returns: None

1530 Administering applications and their environment

Table 25. (continued)

Command name: Description: Parameters and

return values:

Examples:

setIdMgrLDAP

ContextPool

The setIdMgr LDAPCo

ntextPoolcommand

sets up the LDAP

context pool

configuration.

v Parameters:

- id

The ID of the

repository.

(String,

required)

- enabled

By default, the

context pool is

enabled. If you

set this

parameter to

false, the

context pool is

disabled. When

the context

pool is

disabled, new

context

instances will

be created for

each request.

The default

value is true.

(Boolean,

optional)

- initPoolSize

The number of

context

instances that

the the virtual

member

manager LDAP

adapter

creates when it

creates the

pool. The valid

range for this

parameter is 1

to 50. The

default value is

1. (Integer,

optional)

Batch mode example usage:

v Using Jacl:

$AdminTask setIdMgrLDAPCon

textPool {-id id1}

v Using Jython string:

AdminTask.setIdMgrLDAPCon

textPool (’[-id id1]’)

v Using Jython list:

AdminTask.setIdMgrLDAPCon

textPool ([’-id’, ’id1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask setIdMgrLDAPCon

textPool {-interactive}

v Using Jython string:

AdminTask.setIdMgrLDAPCon

textPool (’[-interactive]’)

v Using Jython list:

AdminTask.setIdMgrLDAPCon

textPool ([’-interactive’])

Chapter 16. Security 1531

Table 25. (continued)

Command name: Description: Parameters and

return values:

Examples:

- maxPoolSize

The maximum

number of context

instances that the

context pool will

maintain. Context

instances that are

in use and those

that are idle

contribute to this

number. When

the pool size

reaches this

number, new

context instances

cannot be created

for new requests.

The new request

is blocked until a

context instance

is released by

another request

or is removed.

The request

checks

periodically if

there are context

instances

available in the

pool according to

the amount of

time that you

specify using the

poolWaitTime

parameter.

 The minimum

value for this

parameter is 0.

There is no

maximum value.

Setting the value

of this parameter

to 0 means that

there is no

maximum size

and a request for

a pooled context

instance will use

an existing

pooled idle

context instance

or a newly

created pooled

context instance.

The default value

is 20.(Integer,

optional)

1532 Administering applications and their environment

Table 25. (continued)

Command name: Description: Parameters and

return values:

Examples:

- prefPoolSize

The preferred

number of context

instances that the

context pool will

maintain. Context

instances that are

in use and those

that are idle

contribute to this

number. When

there is a request

for the use of a

pooled context

instance and the

pool size is less

than the preferred

size, the context

pool creates and

uses a new

pooled context

instance

regardless of

whether an idle

connection is

available. When a

request finishes

with a pooled

context instance

and the pool size

is greater than

the preferred

size, the context

pool closes and

removes the

pooled context

instance from the

pool.

 The valid range

for this parameter

is from 0 to 100.

Setting the value

of this parameter

to 0 means that

there is no

preferred size

and a request for

a pooled context

instance results in

a newly created

context instance

only if no idle

ones are

available. The

default value is

3.(Integer,

optional)

Chapter 16. Security 1533

Table 25. (continued)

Command name: Description: Parameters and

return values:

Examples:

- poolTimeOut

An integer that

represents the

number of

milliseconds that

an idle context

instance may

remain in the pool

without being

closed and

removed from the

pool. When a

context instance

is requested from

the pool, if this

context already

exists in the pool

for more than the

time defined by

poolTimeout, this

connection will be

closed no matter

this context

instance is stale

or active. A new

context instance

will be created

and put back to

the pool after it

has been

released from the

request.

 The minimum

value for this

parameter is 0.

There is no

maximum value.

Setting the value

of this parameter

to 0 means that

the context

instances in the

pool will remain in

the pool until they

are staled. The

context pool

catches the

communication

exception and

recreates a new

context instance.

The default value

is 0.(Integer,

optional)

1534 Administering applications and their environment

Table 25. (continued)

Command name: Description: Parameters and

return values:

Examples:

- poolWaitTime

The time interval

in milliseconds

that the request

waits until the

context pool

rechecks if there

are idle context

instances

available in the

pool when the

number of context

instances reaches

the maximum

pool size. If no

idle context

instance, the

request will

continue waiting

for the same

period of time

until next

checking.

 The minimum

value for the

poolWaitout

parameter is 0.

There is no

maximum value.

A value of 0 for

this parameter

means that the

context pool will

not check if idle

context exists.

The request will

be notified when

a context

instance releases

from other

requests. The

default value is

3000.(Integer,

optional)

v Returns: None

Chapter 16. Security 1535

Table 25. (continued)

Command name: Description: Parameters and

return values:

Examples:

setIdMgr LDAPG

roupConfig

The setIdMgr LDAPGr

oupConfig command

sets up the LDAP group

configuration.

v Parameters:

- id

The ID of the

repository.

(String,

required)

- updateGroup

Membership

Updates the

group

membership if

the member is

deleted or

renamed.

Some LDAP

servers, for

example,

Domino server,

do not clean

up the

membership of

the user when

a user is

deleted or

renamed. If

you choose

these LDAP

server types in

the

ldapServerType

property, the

value of this

parameter is

set to true.

Use this

parameter to

change the

value. The

default value is

false.

(Boolean,

optional)

- name

The name of

the

membership

attribute. For

example,

memberOf in an

active directory

server and

ibm-allGroups

in IDS. (String,

optional)

Batch mode example usage:

v Using Jacl:

$AdminTask setIdMgrLDAP

GroupConfig {-id id1}

v Using Jython string:

AdminTask.setIdMgrLDAP

GroupConfig (’[-id id1]’)

v Using Jython list:

AdminTask.setIdMgrLDAP

GroupConfig ([’-id’, ’id1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask setIdMgrLDAPGr

oupConfig {-interactive}

v Using Jython string:

AdminTask.setIdMgrLDAPGr

oupConfig (’[-interactive]’)

v Using Jython list:

AdminTask.setIdMgrLDAPGroup

Config ([’-interactive’])

1536 Administering applications and their environment

Table 25. (continued)

Command name: Description: Parameters and

return values:

Examples:

- scope

The scope of the

membership

attribute. The

following are the

possible values

for this

parameter:

v direct - The

membership

attribute only

contains direct

groups. Direct

groups contain

the member

and are not

contained

through a

nested group.

For example, if

group1

contains

group2, group2

contains user1,

then group2 is

a direct group

of user1, but

group1 is not a

direct group of

user1.

v nested - The

membership

attribute

contains both

direct groups

and nested

groups.

v all - The

membership

attribute

contains direct

groups, nested

groups, and

dynamic

members.

The default value

is direct. (String,

optional)

v Returns: None

Chapter 16. Security 1537

Table 25. (continued)

Command name: Description: Parameters and

return values:

Examples:

setIdMgr LDAPSearch

ResultCache

The setIdMgr

LDAPSearch

ResultCache command

sets up the LDAP

search result cache

configuration.

v Parameters:

- id

The ID of the

repository.

(String,

required)

-

cachesDiskOffLoad

Loads the

attributes

caches and the

search results

onto hard disk.

By default,

when the

number of

cache entries

reaches the

maximum size

of the cache,

cache entries

are evicted to

allow new

entries to enter

the caches. If

you enable this

parameter, the

evicted cache

entries will be

copied to disk

for future

access. The

default value is

false.

(Boolean,

optional)

- enabled

Enables the

search results

cache. The

default value is

true. (Boolean,

optional)

Batch mode example usage:

v Using Jacl:

$AdminTask setIdMgrLDAPSearch

ResultCache {-id id1}

v Using Jython string:

AdminTask.setIdMgrLDAPSearch

ResultCache (’[-id id1]’)

v Using Jython list:

AdminTask.setIdMgrLDAPSearch

ResultCache ([’-id’, ’id1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask setIdMgrLDAPSearch

ResultCache {-interactive}

v Using Jython string:

AdminTask.setIdMgrLDAPSearch

ResultCache (’[-interactive]’)

v Using Jython list:

AdminTask.setIdMgrLDAPSearch

ResultCache ([’-interactive’])

1538 Administering applications and their environment

Table 25. (continued)

Command name: Description: Parameters and

return values:

Examples:

- cacheSize

The maximum

size of the search

results cache.

The number of

naming

enumeration

objects that can

be put into the

search results

cache. The

minimum value of

this parameter is

100. The default

value is 2000.

(Integer, optional)

- cacheTimeOut

The amount of

time in seconds

before the cached

entries in the

search results

cache can be not

valid. The

minimum value

for this parameter

is 0. A value of 0

means that the

cached naming

enumeration

objects will stay

in the search

results cache until

there are

configuration

changes. The

default value is

600. (Integer,

optional)

Chapter 16. Security 1539

Table 25. (continued)

Command name: Description: Parameters and

return values:

Examples:

-

searchResultSizeLimit

The maximum

number of entries

contained in the

naming

enumeration

object that can be

cached in the

search results

cache.For

example, if the

results from a

search contains

2000 users, the

search results will

not cache in the

search results

cache if the value

of the of this

property is set to

1000. The default

value is 1000.

(Integer, optional)

v Returns: None

1540 Administering applications and their environment

Table 25. (continued)

Command name: Description: Parameters and

return values:

Examples:

setIdMgr Entry Mapping

Repository

The setIdMgr Entry

Mapping Repository

command sets or

updates an entry

mapping repository

configuration.

v Parameters:

-

dataSourceName

The name of

the data

source. The

default value is

jdbc/wimDS.

The parameter

is required if

the property

extension is

not set. The

parameter is

not required if

the command

is used to

update the

existing

configuration.

(String)

- databaseType

The type of the

database. The

default value is

DB2. The

parameter is

required if the

property

extension is

not set. The

parameter is

not required if

the command

is used to

update the

existing

configuration.

(String)

- dbURL

The URL of the

database. The

parameter is

required if the

property

extension is

not set. The

parameter is

not required if

the command

is used to

update the

existing

configuration.

(String)

Batch mode example usage:

v Using Jacl:

$AdminTask setIdMgrEntry

MappingRepository {-dbAdminId

dbid1 -dbAdminPassword

pw1}

v Using Jython string:

AdminTask.setIdMgrEntry

MappingRepository (’[-dbAdminId

dbid1 -dbAdminPassword

pw1]’)

v Using Jython list:

AdminTask.setIdMgrEntry

MappingRepository ([’-dbAdminId’,

’dbid1’, ’-dbAdmin

Password’, ’pw1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask setIdMgrEntryMapping

Repository {-interactive}

v Using Jython string:

AdminTask.setIdMgrEntryMapping

Repository (’[-interactive]’)

v Using Jython list:

AdminTask.setIdMgrEntryMapping

Repository ([’-interactive’])

Chapter 16. Security 1541

Table 25. (continued)

Command name: Description: Parameters and

return values:

Examples:

- dbAdminId

The database

administrator ID.

(String, required if

database type is

not Cloudscape.)

- dbAdminPassword

The database

administrator

password. (String,

required if

database type is

not Cloudscape.)

- JDBCDriverClass

The JDBC driver

class name.

(String, optional)

v Returns: None

1542 Administering applications and their environment

Table 25. (continued)

Command name: Description: Parameters and

return values:

Examples:

setIdMgr Property

Extension Repository

The setIdMgr Property

Extension Repository

command sets or

updates the property

extension repository

configuration.

v Parameters:

-

dataSourceName

The name of

the data

source. The

default value is

jdbc/wimDS.

The parameter

is required if

the property

extension is

not set. The

parameter is

not required if

the command

is used to

update the

existing

configuration.

(String)

- databaseType

The type of the

database. The

default value is

DB2. The

parameter is

required if the

property

extension is

not set. The

parameter is

not required if

the command

is used to

update the

existing

configuration.

(String)

- dbURL

The URL of the

database. The

parameter is

required if the

property

extension is

not set. The

parameter is

not required if

the command

is used to

update the

existing

configuration.

(String)

Batch mode example usage:

v Using Jacl:

$AdminTask setIdMgrProperty

ExtensionRepository {-entity

RetrievalLimit 10 -JDBC

DriverClass classname}

v Using Jython string:

AdminTask.setIdMgrProperty

ExtensionRepository (’[-entity

RetrievalLimit 10 -JDBC

DriverClass classname]’)

v Using Jython list:

AdminTask.setIdMgrProperty

ExtensionRepository ([’-entity

RetrievalLimit’, ’10’,

’-JDBCDriverClass’, ’classname’])

Interactive mode example usage:

v Using Jacl:

$AdminTask setIdMgrProperty

ExtensionRepository {-interactive}

v Using Jython string:

AdminTask.setIdMgrProperty

ExtensionRepository (’[-interactive]’)

v Using Jython list:

AdminTask.setIdMgrPropertyExt

ensionRepository ([’-interactive’])

Chapter 16. Security 1543

Table 25. (continued)

Command name: Description: Parameters and

return values:

Examples:

- dbAdminId

The database

administrator ID.

(String, required if

database type is

not Cloudscape.)

- dbAdminPassword

The database

administrator

password. (String,

required if

database type is

not Cloudscape.)

-

entityRetrievalLimit

The limit for the

retrieval of

entities. (Integer,

required)

- JDBCDriverClass

The JDBC driver

class name.

(String, required)

v Returns: None

1544 Administering applications and their environment

Table 25. (continued)

Command name: Description: Parameters and

return values:

Examples:

updateId MgrDB

Repository

The updateId MgrDB

Repository command

updates the

configuration for the

database repository that

you specify.

v Parameters:

- id

The ID of the

repository.

(String,

required)

-

dataSourceName

The name of

the data

source. The

default value is

jdbc/wimDS.

(String,

optional)

- databaseType

The type of the

database. The

default value is

DB2. (String,

optional)

- dbURL

The URL of the

database.

(String,

optional)

- dbAdminId

The database

administrator

ID. (String,

optional)

-

dbAdminPassword

The database

administrator

password.

(String,

optional)

-

entityRetrievalLimit

Indicates the

value of the

retrieval limit

on database

entries. The

default value is

200. (Integer,

optional)

Batch mode example usage:

v Using Jacl:

$AdminTask updateIdMgrDB

Repository {-id id1}

v Using Jython string:

AdminTask.updateIdMgrDB

Repository (’[-id id1]’)

v Using Jython list:

AdminTask.updateIdMgrDB

Repository ([’-id’, ’id1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask updateIdMgrDB

Repository {-interactive}

v Using Jython string:

AdminTask.updateIdMgrDB

Repository (’[-interactive]’)

v Using Jython list:

AdminTask.updateIdMgrDB

Repository ([’-interactive’])

Chapter 16. Security 1545

Table 25. (continued)

Command name: Description: Parameters and

return values:

Examples:

- JDBCDriverClass

The JDBC driver

class name.

(String, optional)

- saltLength

The salt length in

bits. The default

value is 12.

(Integer, optional)

- encryptionKey

The default value

is

rZ15ws0ely9yHk3zCs3sTMv/ho8fY17s.

(String, optional)

v Returns: None

1546 Administering applications and their environment

Table 25. (continued)

Command name: Description: Parameters and

return values:

Examples:

updateId MgrFile

Repository

The updateId MgrFile

Repository command

updates the

configuration for the file

repository that you

specify. To update other

properties of the file

repository use the

update IdMgr

Repositorycommand.

v Parameters:

- id

The ID of the

repository.

(String,

required)

- messageDigest

Algorithm

The message

digest

algorithm that

will be used for

hashing the

password. The

default value is

SHA-1. Valid

values include

the following:

SHA-245,

SHA-384, or

SHA-
512.(String,

optional)

- baseDirectory

The base

directory where

the fill will be

created in

order to store

the data. The

default is to be

dynamically

built during run

time using

user.install.root

and cell name.

(String,

optional)

- fileName

The file name

of the

repository. The

default value is

fileRegistry.xml.

(String,

optional)

- saltLength

The salt length

of the

randomly

generated salt

for password

hashing. The

default value is

12. (Integer,

optional)

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask updateIdMgrFile

Repository {-id id1}

v Using Jython string:

AdminTask.updateIdMgrFile

Repository (’[-id id1]’)

v Using Jython list:

AdminTask.updateIdMgrFile

Repository ([’-id’, ’id1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask updateIdMgrFile

Repository {-interactive}

v Using Jython string:

AdminTask.updateIdMgrFile

Repository (’[-interactive]’)

v Using Jython list:

AdminTask.updateIdMgrFile

Repository ([’-interactive’])

Chapter 16. Security 1547

Table 25. (continued)

Command name: Description: Parameters and

return values:

Examples:

updateId MgrLDAP

AttrCache

The updateId

MgrLDAP AttrCache

command updates the

LDAP attribute cache

configuration.

v Parameters:

- id

The ID of the

repository.

(String,

required)

-

cachesDiskOffLoad

(String,

optional)

- enabled

Indicates if you

want to enable

attribute

caching. The

default value is

true. (Boolean,

optional)

- cacheSize

The maximum

size of the

attribute cache

defined by the

number of

attribute

objects that are

permitted in

the attribute

cache. The

minimum value

of this

parameter is

100. The

default value is

4000. (Integer,

optional)

Batch mode example usage:

v Using Jacl:

$AdminTask updateIdMgrLDAP

AttrCache {-id id1}

v Using Jython string:

AdminTask.updateIdMgrLDAP

AttrCache (’[-id id1]’)

v Using Jython list:

AdminTask.updateIdMgrLDAP

AttrCache ([’-id’, ’id1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask updateIdMgrLDAP

AttrCache {-interactive}

v Using Jython string:

AdminTask.updateIdMgrLDAP

AttrCache (’[-interactive]’)

v Using Jython list:

AdminTask.updateIdMgrLDAP

AttrCache ([’-interactive’])

1548 Administering applications and their environment

Table 25. (continued)

Command name: Description: Parameters and

return values:

Examples:

- cacheTimeOut

The amount of

time in seconds

before the cached

entries that are

located in the

attributes cache

can be not valid.

The minimum

value of this

parameter is 0.

The attribute

objects that are

cached will

remain in the

attributes cache

until the virtual

member manager

changes the

attribute objects.

The default value

is 1200. (Integer,

optional)

- attributeSizeLimit

An integer that

represents the

maximum number

of attribute object

values that can

cache in the

attributes cache.

 Some attributes,

for example, the

member attribute,

contain many

values. The

attributeSizeLimit

parameter

prevents the

attributes cache

to cache large

attributes. The

default value is

2000. (Integer,

optional)

Chapter 16. Security 1549

Table 25. (continued)

Command name: Description: Parameters and

return values:

Examples:

- serverTTLAttribute

The name of the

ttl attribute that is

supported by the

LDAP server. The

attributes cache

uses the value of

this attribute to

determine when

the cached

entries in the

attributes cache

will time out.

 The ttl attribute

contains the time,

in seconds, that

any information

from the entry

should be kept by

a client before it

is considered

stale and a new

copy is fetched. A

value of 0 implies

that the object will

not be cached.

For more

information about

this attribute, go

to:

http://
www.ietf.org/
proceedings/
98aug/I-D/draft-
ietf-asid-ldap-
cache-01.txt.

 The ttl attribute is

not supported by

all LDAP servers.

If this attribute is

supported by an

LDAP server, you

can set the value

of the

serverTTLAttribute

parameter to the

name of the ttl

attribute in order

to allow the value

of the ttyl attribute

to determine

when cached

entries will time

out. The time out

value for different

entries in

attributes cache

can be different.

1550 Administering applications and their environment

http://http://www.ietf.org/proceedings/98aug/I-D/draft-ietf-asid-ldap-cache-01.txt
http://http://www.ietf.org/proceedings/98aug/I-D/draft-ietf-asid-ldap-cache-01.txt
http://http://www.ietf.org/proceedings/98aug/I-D/draft-ietf-asid-ldap-cache-01.txt
http://http://www.ietf.org/proceedings/98aug/I-D/draft-ietf-asid-ldap-cache-01.txt
http://http://www.ietf.org/proceedings/98aug/I-D/draft-ietf-asid-ldap-cache-01.txt
http://http://www.ietf.org/proceedings/98aug/I-D/draft-ietf-asid-ldap-cache-01.txt

Table 25. (continued)

Command name: Description: Parameters and

return values:

Examples:

For example, if the

value of the

serverTTLAttribute

parameter is ttl and

the attributes cache

retrieves attributes of

a user from an LDAP

server, it will also

retrieve the value of

the ttl attribute of this

user. If the value is

200, the WMM uses

this value to set the

time out for the

attributes of the user

in the attributes cache

instead of using the

value of

cacheTimeout. You

can set different ttl

attribute values for

different users.

(String, optional)

v Returns: None

Chapter 16. Security 1551

Table 25. (continued)

Command name: Description: Parameters and

return values:

Examples:

updateId MgrLDAP

ContextPool

The updateId

MgrLDAP ContextPool

command updates the

LDAP context pool

configuration.

v Parameters:

- id

The ID of the

repository.

(String,

required)

- enabled

By default, the

context pool is

enabled. If you

set the value of

this parameter

to false, the

context pool is

disabled which

means that a

new context

instance will be

created for

each request.

The default

value is true.

(Boolean,

optional)

- initPoolSize

The number of

context

instances that

the virtual

member

manager LDAP

adapter

creates when it

creates the

pool. The valid

range for this

parameter is 1

to 50. The

default value is

1. (Integer,

optional)

Batch mode example usage:

v Using Jacl:

$AdminTask updateIdMgrLDAP

ContextPool {-id id1}

v Using Jython string:

AdminTask.updateIdMgrLDAP

ContextPool (’[-id id1]’)

v Using Jython list:

AdminTask.updateIdMgrLDAP

ContextPool ([’-id’, ’id1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask updateIdMgrLDAP

ContextPool {-interactive}

v Using Jython string:

AdminTask.updateIdMgrLDAP

ContextPool (’[-interactive]’)

v Using Jython list:

AdminTask.updateIdMgrLDAP

ContextPool ([’-interactive’])

1552 Administering applications and their environment

Table 25. (continued)

Command name: Description: Parameters and

return values:

Examples:

- maxPoolSize

The maximum

number of context

instances that

can be

maintained

concurrently by

the context pool.

Both in-use and

idle context

instances

contribute to this

number. When

the pool size

reaches this

number, new

context instances

cannot created

for new request.

The new request

is blocked until a

context instance

is released by

another request

or is removed.

The request

checks

periodically if

there are context

instances

available in the

pool according to

the value defined

for the

poolWaitTime

parameter. The

minimum value of

the maxPoolSize

parameter is 0.

There is no

maximum value.

A maximum pool

size of 0 means

that there is no

maximum size

and that a

request for a

pooled context

instance will use

an existing

pooled idle

context instance

or a newly

created pooled

context instance.

The default value

is 20. (Integer,

optional)

Chapter 16. Security 1553

Table 25. (continued)

Command name: Description: Parameters and

return values:

Examples:

- prefPoolSize

The preferred

number of context

instances that the

Context Pool

should maintain.

Both in-use and

idle context

instances

contribute to this

number. When

there is a request

for the use of a

pooled context

instance and the

pool size is less

than the preferred

size, Context

Pool will create

and use a new

pooled context

instance

regardless of

whether an idle

connection is

available. When a

request is

finished with a

pooled context

instance and the

pool size is

greater than the

preferred size,

the Context Pool

will close and

remove the

pooled context

instance from the

pool. The valid

range of the

prefPoolSize

parameter is 0 to

100. A preferred

pool size of 0

means that there

is no preferred

size: A request for

a pooled context

instance will

result in a newly

created context

instance only if

no idle ones are

available. The

default value is 3.

(Integer, optional)

1554 Administering applications and their environment

Table 25. (continued)

Command name: Description: Parameters and

return values:

Examples:

- poolTimeOut

An integer that

represents the

number of

milliseconds that

an idle context

instance may

remain in the pool

without being

closed and

removed from the

pool. When a

context instance

is requested from

the pool, if this

context already

exists in the pool

for more than the

time defined by

poolTimeout, this

connection will be

closed no matter

this context

instance is stale

or active. A new

context instance

will be created

and put back to

the pool after it

has been

released from the

request.The

minimum value of

poolTimeout is 0.

There is no

maximum value.A

poolTimeout of 0

means that the

context instances

in the pool will

remain in the pool

until they are

staled. In this

case, Context

Pool will catch

the

communication

exception and

recreate a new

context instance.

The default value

is 0. (Integer,

optional)

Chapter 16. Security 1555

Table 25. (continued)

Command name: Description: Parameters and

return values:

Examples:

- poolWaitTime

The time interval

(in milliseconds)

that the request

will wait until the

Context Pool

checks again if

there are idle

context instance

available in the

pool when the

number of context

instances reaches

the maximum

pool size. If there

is still no idle

context instance,

the request will

continue waiting

for the same

period of time

until next

checking. The

minimum value of

poolWaitout is 0.

There is no

maximum value.

A poolWaitTime of

0 means the

Context Pool will

not check if there

are idle context.

Instead, the

request will be

notified when

there is a context

instance is

released from

other requests.

The default value

is 3000. (Integer,

optional)

v Returns: None

1556 Administering applications and their environment

Table 25. (continued)

Command name: Description: Parameters and

return values:

Examples:

updateId MgrLDAP

EntityType

The updateId

MgrLDAP EntityType

command updates an

existing LDAP entity

type definition to LDAP

repository configuration.

You can use this

command to add more

values to multi-valued

parameters. If the

property already exists,

the value of the

property will be

replaced. If the property

does not exist, it will be

added.

v Parameters:

- id

The ID of the

repository.

(String,

required)

- name

The name of

the entity type.

(String,

required)

- searchFilter

The search

filter that you

want to use to

search the

entity type.

(String,

optional)

- objectClasses

One or more

object classes

for the entity

type. (String,

optional)

-

objectClassesForCreate

The object

class that will

be when you

create an entity

type object.

You do not

have to specify

the value of

this parameter

if it is the same

as the value of

the

objectClasses

parameter.

(String,

optional)

- searchBases

The search

base or bases

to use while

searching the

entity type.

(String,

optional)

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask updateIdMgrLDAPEntity

Type {-id id1 -name name1}

v Using Jython string:

AdminTask.updateIdMgrLDAPEntity

Type (’[-id id1 -name

name1]’)

v Using Jython list:

AdminTask.updateIdMgrLDAPEntity

Type ([’-id’, ’id1’, ’-name’,

’name1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask updateIdMgrLDAP

EntityType {-interactive}

v Using Jython string:

AdminTask.updateIdMgrLDAP

EntityType (’[-interactive]’)

v Using Jython list:

AdminTask.updateIdMgrLDAP

EntityType ([’-interactive’])

Chapter 16. Security 1557

Table 25. (continued)

Command name: Description: Parameters and

return values:

Examples:

updateIdMgr LDAPGroup

Dynamic MemberAttr

The updateIdMgr

LDAPGroup Dynamic

MemberAttr command

updates a dynamic

member attribute

configuration to an

LDAP group

configuration.

v Parameters:

- id

The ID of the

repository.

(String,

required)

- name

The name of

the LDAP

attribute that is

used as the

group member

attribute. For

example,

memberURL.

(String,

required)

- objectClass

The group

object class

that contains

the dynamic

member

attribute. For

example

groupOfURLs. If

you do not

define this

parameter, the

dynamic

member

attribute will

apply to all

group object

classes.

(String,

required)

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask updateIdMgrLDAPGroup

DynamicMemberAttr {-id id1

-name name1 -objectClass

groupOfURLs}

v Using Jython string:

AdminTask.updateIdMgrLDAPGroup

DynamicMemberAttr (’[-id id1

-name name1 -objectClass

groupOfURLs]’)

v Using Jython list:

AdminTask.updateIdMgrLDAPGroup

DynamicMemberAttr ([’-id’,

’id1’, ’-name’, ’name1’,

’-objectClass’, ’groupOfURLs’])

Interactive mode example usage:

v Using Jacl:

$AdminTask updateIdMgrLDAPGroup

DynamicMemberAttr {-interactive}

v Using Jython string:

AdminTask.updateIdMgrLDAPGroup

DynamicMemberAttr (’[-interactive]’)

v Using Jython list:

AdminTask.updateIdMgrLDAPGroup

DynamicMemberAttr ([’-interactive’])

1558 Administering applications and their environment

Table 25. (continued)

Command name: Description: Parameters and

return values:

Examples:

updateIdMgr LDAPGroup

MemberAttr

The updateIdMgr

LDAPGroup

MemberAttr command

updates a member

attribute configuration of

an LDAP group

configuration.

v Parameters:

- id

The ID of the

repository.

(String,

required)

- name

The name of

the LDAP

attribute that is

used as the

group member

attribute. For

example,

member or

uniqueMember.

(String,

required)

- objectClass

The group

object class

that contains

the member

attribute. For

example,

groupOfNames

or

groupOfUnqiueNames.

If you do not

define this

parameter, the

member

attribute

applies to all

group object

classes.

(String,

optional)

Batch mode example usage:

v Using Jacl:

$AdminTask updateIdMgrLDAP

GroupMemberAttr {-id id1

-name name1}

v Using Jython string:

AdminTask.updateIdMgrLDAP

GroupMemberAttr (’[-id id1

-name name1]’)

v Using Jython list:

AdminTask.updateIdMgrLDAP

GroupMemberAttr ([’-id’,

’id1’, ’-name’, ’name1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask updateIdMgrLDAPGroup

MemberAttr {-interactive}

v Using Jython string:

AdminTask.updateIdMgrLDAPGroup

MemberAttr (’[-interactive]’)

v Using Jython list:

AdminTask.updateIdMgrLDAPGroup

MemberAttr ([’-interactive’])

Chapter 16. Security 1559

Table 25. (continued)

Command name: Description: Parameters and

return values:

Examples:

- scope

The scope of the

member attribute.

The following are

the valid values:

v direct - The

member

attribute only

contains direct

members

whereby the

member is

directly

contained by

the group and

not contained

in a nested

group. For

example, if

group1

contains

group2, group2

contains user1,

then group2 is

a direct

member of

group1 but

user1 is not a

direct member

of group1. Both

member and

uniqueMember

are direct

member

attributes.

v nested - The

member

attribute

contains both

direct members

and nested

members.

1560 Administering applications and their environment

Table 25. (continued)

Command name: Description: Parameters and

return values:

Examples:

v all - The member

attribute contains

direct members,

nested members

and dynamic

members. One

example is the

ibm-allMembers

attribute that IBM

Tivoli Directory

Server supports.

The default value is

direct. (String,

optional)

- dummyMember

When you create

a group without

specifying a

member, a

dummy member

will be filled in

automatically to

avoid receiving

an exception that

indicates that

there is a

mandatory

attribute missing.

(String, optional)

v Returns: None

Chapter 16. Security 1561

Table 25. (continued)

Command name: Description: Parameters and

return values:

Examples:

updateId MgrLDAP

Repository

The updateId

MgrLDAP Repository

command updates an

LDAP repository

configuration.

v Parameters:

- id

The ID of the

repository.

(String,

required)

- ldapServerType

The type of

LDAP server

that is being

used. The

default value is

IDS51. (String,

optional)

-

adapterClassName

The default

value is

com.ibm.ws.

wim.adapter.

ldap.LdapA

dapter. (String,

optional)

-

certificateMapMode

Specifies

whether to

map X.509

certificates into

a LDAP

directory by

exact

distinguished

name or by

certificate filter.

The default

value is

exactdn. To

use the

certificate filter

for the

mapping,

specify

certificatefilter.

(String,

optional)

Batch mode example usage:

v Using Jacl:

$AdminTask updateIdMgrLDAP

Repository {-id id1}

v Using Jython string:

AdminTask.updateIdMgrLDAP

Repository (’[-id id1]’)

v Using Jython list:

AdminTask.updateIdMgrLDAP

Repository ([’-id’, ’id1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask updateIdMgrLDAP

Repository {-interactive}

v Using Jython string:

AdminTask.updateIdMgrLDAP

Repository (’[-interactive]’)

v Using Jython list:

AdminTask.updateIdMgrLDAP

Repository ([’-interactive’])

1562 Administering applications and their environment

Table 25. (continued)

Command name: Description: Parameters and

return values:

Examples:

- certificateFilter

If

certificateMapMode

has the value

certificatefilter,

then this property

specifies the

LDAP filter which

maps attributes in

the client

certificate to

entries in LDAP.

(String, optional)

- isExtIdUnique

Specifies if the

external ID is

unique. The

default value is

true. (Boolean,

optional)

- loginProperties

Indicates the

property name

used for login.

(String , optional)

-

primaryServerQueryTimeInterval

Indicates the

polling interval for

testing the

primary server

availability. The

value of this

parameter is

specified in

minutes. The

default value is

15. (Integer,

optional)

Chapter 16. Security 1563

Table 25. (continued)

Command name: Description: Parameters and

return values:

Examples:

-

returnToPrimaryServer

Indicates to return

to the primary

LDAP server

when it is

available. The

default value is

true. (Boolean,

optional)

-

supportAsyncMode

Indicates if the

async mode is

supported or not.

The default value

is false.

(Boolean,

optional)

- supportSorting

Indicates if

sorting is

supported or not.

The default value

is false.

(Boolean,

optional)

- supportPaging

Indicates if

paging is

supported or not.

The default value

is false.

(Boolean,

optional)

-

supportTransaction

Indicates if

transactions are

supported or not.

The default value

is false.

(Boolean,

optional)

1564 Administering applications and their environment

Table 25. (continued)

Command name: Description: Parameters and

return values:

Examples:

-

supportExternalName

Indicates if

external names

are supported or

not. The default

value is false.

(Boolean,

optional)

- sslConfiguration

The SSL

configuration.

(String, optional)

- translateRDN

Indicates to

translate RDN or

not. The default

value is false.

(Boolean,

optional)

- searchTimeLimit

The value of

search time limit.

(Integer, optional)

- searchCountLimit

The value of

search count

limit. (Integer,

optional)

- searchPageSize

The value of

search page size.

(Integer, optional)

v Returns: None

Chapter 16. Security 1565

Table 25. (continued)

Command name: Description: Parameters and

return values:

Examples:

updateIdMgr LDAPSearch

ResultCache

The updateIdMgr

LDAPSearch

ResultCache command

updates the LDAP

search result cache

configuration.

v Parameters:

- id

The ID of the

repository.

(String,

required)

-

cachesDiskOffLoad

Loads the

attributes

caches and the

search results

onto hard disk.

By default,

when the

number of

cache entries

reaches the

maximum size

of the cache,

cache entries

are evicted to

allow new

entries to enter

the caches. If

you enable this

parameter, the

evicted cache

entries will be

copied to disk

for future

access. The

default value is

false.

(Boolean,

optional)

- enabled

Enables the

search results

cache. The

default value is

true. (Boolean,

optional)

Batch mode example usage:

v Using Jacl:

$AdminTask updateIdMgrLDAP

SearchResultCache {-id id1}

v Using Jython string:

AdminTask.updateIdMgrLDAPSearch

ResultCache (’[-id id1]’)

v Using Jython list:

AdminTask.updateIdMgrLDAPSearch

ResultCache ([’-id’, ’id1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask updateIdMgrLDAP

SearchResultCache {-interactive}

v Using Jython string:

AdminTask.updateIdMgrLDAPSearch

ResultCache (’[-interactive]’)

v Using Jython list:

AdminTask.updateIdMgrLDAPSearch

ResultCache ([’-interactive’])

1566 Administering applications and their environment

Table 25. (continued)

Command name: Description: Parameters and

return values:

Examples:

- cacheSize

The maximum

size of the search

results cache.

The number of

naming

enumeration

objects that can

be put into the

search results

cache. The

minimum value of

this parameter is

100. The default

value is 2000.

(Integer, optional)

- cacheTimeOut

The amount of

time in seconds

before the cached

entries in the

search results

cache can be not

valid. The

minimum value

for this parameter

is 0. A value of 0

means that the

cached naming

enumeration

objects will stay

in the search

results cache until

there are

configuration

changes. The

default value is

600. (Integer,

optional)

Chapter 16. Security 1567

Table 25. (continued)

Command name: Description: Parameters and

return values:

Examples:

-

searchResultSizeLimit

The maximum

number of entries

contained in the

naming

enumeration

object that can be

cached in the

search results

cache.For

example, if the

results from a

search contains

2000 users, the

search results will

not cache in the

search results

cache if the value

of the of this

property is set to

1000. The default

value is 1000.

(Integer, optional)

v Returns: None

1568 Administering applications and their environment

Table 25. (continued)

Command name: Description: Parameters and

return values:

Examples:

updateIdMgr LDAPServer The updateIdMgr

LDAPServercommand

updates an LDAP

server configuration for

the LDAP repository ID

that you specify.

v Parameters:

- id

The ID of the

repository.

(String,

required)

- host

The host name

for the LDAP

server that

contains the

properties that

you want to

modify. (String,

required)

- port

The port

number for the

LDAP server.

(Integer,

optional)

- authentication

Indicates the

authentication

method to use.

The default

value is

simple. Valid

values include:

none or strong.

(String,

optional)

- bindDN

The binding

domain name

for the LDAP

server. (String,

optional)

- bindPassword

The binding

password. The

password is

encrypted

before it is

stored.(String,

optional)

Batch mode example usage:

v Using Jacl:

$AdminTask updateIdMgrLDAPServer

{-id id1 -host myhost.ibm.com}

v Using Jython string:

AdminTask.updateIdMgrLDAPServer

(’[-id id1 -host

myhost.ibm.com]’)

v Using Jython list:

AdminTask.updateIdMgrLDAPServer

([’-id’, ’id1’, ’-host’,

’myhost.ibm.com’])

Interactive mode example usage:

v Using Jacl:

$AdminTask updateIdMgrLDAP

Server {-interactive}

v Using Jython string:

AdminTask.updateIdMgrLDAP

Server (’[-interactive]’)

v Using Jython list:

AdminTask.updateIdMgrLDAP

Server ([’-interactive’])

Chapter 16. Security 1569

Table 25. (continued)

Command name: Description: Parameters and

return values:

Examples:

-

certificateMapMode

Specifies whether

to map X.509

certificates into a

LDAP directory by

exact

distinguished

name or by

certificate filter.

The default value

is exactdn. To use

the certificate

filter for the

mapping, specify

certificatefilter.

(String, optional)

- certificateFilter

If

certificateMapMode

has the value

certificatefilter,

then this property

specifies the

LDAP filter which

maps attributes in

the client

certificate to

entries in LDAP.

(String, optional)

- connectTimeout

The connection

timeout measured

in seconds. The

default value is 0.

(Integer, optional)

- connectionPool

The connection

pool. The default

value is false.

(Boolean,

optional)

1570 Administering applications and their environment

Table 25. (continued)

Command name: Description: Parameters and

return values:

Examples:

- derefAliases

Controls how

aliases are

dereferenced.

The default value

is always. Valid

values include:

v never - never

deference

aliases

v finding -

deferences

aliases only

during name

resolution

v searching -

deferences

aliases only

after name

resolution

(String, optional)

- ldapServerType

The type of LDAP

server being

used. The default

value is IDS51.

(String, optional)

- primary_host

The host name

for the primary

LDAP server.

(String, optional)

- referal

The LDAP

referral. The

default value is

ignore. Valid

values include:

follow, throw, or

false. (String,

optional)

Chapter 16. Security 1571

Table 25. (continued)

Command name: Description: Parameters and

return values:

Examples:

- sslConfiguration

The SSL

configuration.

(String, optional)

- sslEnabled

Indicates to

enable SSL or

not. The default

value is false.

(Boolean,

optional)

v Returns: None

1572 Administering applications and their environment

Table 25. (continued)

Command name: Description: Parameters and

return values:

Examples:

updateIdMgr Repository The updateIdMgr

Repositorycommand

updates the common

repository configuration.

v Parameters:

- id

The ID of the

repository.

(String,

required)

-

adapterClassName

The

implementation

class name for

the repository

adapter.

(String,

optional)

- EntityTypesNot

AllowCreate

The name of

the entity type

that should not

be created in

this repository.

(String,

optional)

-

EntityTypesNotAllowUpdate

The name of

the entity type

that should not

be updated in

this repository.

(String,

optional)

-

EntityTypesNotAllowRead

The name of

the entity type

that should not

be read from

this repository.

(String,

optional)

Batch mode example usage:

v Using Jacl:

$AdminTask updateIdMgrRe

pository {-id id1}

v Using Jython string:

AdminTask.updateIdMgrRe

pository (’[-id id1]’)

v Using Jython list:

AdminTask.updateIdMgr

Repository ([’-id’, ’id1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask updateIdMgrRe

pository {-interactive}

v Using Jython string:

AdminTask.updateIdMgrRe

pository (’[-interactive]’)

v Using Jython list:

AdminTask.updateIdMgrRe

pository ([’-interactive’])

Chapter 16. Security 1573

Table 25. (continued)

Command name: Description: Parameters and

return values:

Examples:

-

EntityTypesNotAllowDelete

The name of the

entity type that

should not be

deleted from this

repository. (String,

optional)

- loginProperties

(String, optional)

- readOnly

Indicates if this is

a read only

repository. The

default value is

false. (Boolean,

optional)

-

repositoriesForGroups

The repository ID

where group data

is stored. (String,

optional)

- supportPaging

Indicates if the

repository

supports paging

or not. (Boolean,

optional)

- supportSorting

Indicates if the

repository

supports sorting

or not. (Boolean,

optional)

1574 Administering applications and their environment

Table 25. (continued)

Command name: Description: Parameters and

return values:

Examples:

-

supportTransaction

Indicates if the

repository

supports

transaction or not.

(Boolean,

optional)

- isExtIdUnique

Specifies if the

external ID is

unique or not.

(Boolean,

optional)

-

supportedExternalName

Indicates if the

repository

supports external

names or not.

(Boolean,

optional)

-

supportAsyncMode

Indicates if the

adapter supports

async mode or

not. The default

value is false.

(Boolean,

optional)

v Returns: None

Chapter 16. Security 1575

Table 25. (continued)

Command name: Description: Parameters and

return values:

Examples:

updateIdMgr Repository

BaseEntry

The updateIdMgr

Repository BaseEntry

command updates a

base entry to the

specified repository.

v Parameters:

- id

The ID of the

repository.

(String,

required)

- name

The

distinguished

name of a

base entry.

(String,

required)

-

nameInRepository

The

distinguished

name in the

repository that

uniquely

identifies the

base entry

name. (String,

optional)

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask updateIdMgrReposi

toryBaseEntry {-id id1

name name1}

v Using Jython string:

AdminTask.updateIdMgrRepository

BaseEntry (’[-id id1 name

name1]’)

v Using Jython list:

AdminTask.updateIdMgrReposi

toryBaseEntry ([’-id’, ’id1’,

’name’, ’name1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask updateIdMgrReposi

toryBaseEntry {-interactive}

v Using Jython string:

AdminTask.updateIdMgrReposi

toryBaseEntry (’[-interactive]’)

v Using Jython list:

AdminTask.updateIdMgrReposi

toryBaseEntry ([’-interactive’])

Commands for the IdMgrRealmConfig group of the AdminTask object

Use the commands in the IdMgrConfig group to configure the member manager realm and realms. The

commands for this group do not require a target object. To see the additional commands related to the

member manager, see the `Commands for the IdMgrRepositoryConfig group of the AdminTask object and

the Commands for the IdMgrConfig group of the AdminTask object articles.

For more information about the AdminTask object, see the Commands for the AdminTask object article.

The following commands are available for the IdMgrRealmConfig group of the AdminTask object:

1576 Administering applications and their environment

Table 26.

Command name: Description: Parameters and

return values:

Examples:

addIdMgrRealmBaseEntry The

addIdMgrRealmBaseEntry

command adds a base

entry to a specified

realm configuration.

v Parameters:

- name

The realm

name. (String,

required)

- baseEntry

The name of a

base entry.

(String,

required)

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask addIdMgrRealmBaseEntry

{-name realm1 -baseEntry

entry1}

v Using Jython string:

AdminTask addIdMgrRealmBaseEntry

(’[-name realm1 -baseEntry

entry1]’)

v Using Jython list:

AdminTask addIdMgrRealmBaseEntry

([’-name’, ’realm1’, ’-base

Entry’, ’entry1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask addIdMgrRealm

BaseEntry {-interactive}

v Using Jython string:

AdminTask.addIdMgrRealmBase

Entry (’[-interactive]’)

v Using Jython list:

AdminTask.addIdMgrRealmBase

Entry ([’-interactive’])

Chapter 16. Security 1577

Table 26. (continued)

Command name: Description: Parameters and

return values:

Examples:

createIdMgrRealm The

createIdMgrRealm

command creates a

realm configuration.

v Parameters:

- name

The realm

name. (String,

required)

- securityUse

A string that

indicates if this

virtual realm

will be used in

security now,

later, or never.

The default

value is

active.

Additional

values

includes:

inactive and

nonSelectable.

(String,

optional)

- delimiter

The delimiter

used for this

realm. The

default value is

@. (String,

optional)

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask createIdMgrRealm

{-name realm1}

v Using Jython string:

AdminTask.createIdMgrRealm

(’[-name realm1]’)

v Using Jython list:

AdminTask.createIdMgrRealm

([’-name’, ’realm1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask createIdMgrRealm {-interactive}

v Using Jython string:

AdminTask.createIdMgrRealm (’[-interactive]’)

v Using Jython list:

AdminTask.createIdMgrRealm ([’-interactive’])

deleteIdMgrRealm The

deleteIdMgrRealm

command deletes the

realm configuration that

you specified.

v Parameters:

- name

The realm

name. (String,

required)

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask deleteIdMgrRealm

{-name realm1}

v Using Jython string:

AdminTask.deleteIdMgrRealm

(’[-name realm1]’)

v Using Jython list:

AdminTask.deleteIdMgrRealm

([’-name’, ’realm1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask deleteIdMgrRealm {-interactive}

v Using Jython string:

AdminTask.deleteIdMgrRealm (’[-interactive]’)

v Using Jython list:

AdminTask.deleteIdMgrRealm ([’-interactive’])

1578 Administering applications and their environment

Table 26. (continued)

Command name: Description: Parameters and

return values:

Examples:

deleteIdMgr

RealmBaseEntry

The deleteIdMgr

RealmBaseEntry

command deletes a

base entry from a

realm configuration that

you specified.

The realm must always

contain at least one

base entry, thus you

cannot remove every

entry.

v Parameters:

- name

The realm

name. (String,

required)

- baseEntry

The name of a

base entry.

(String,

required)

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask deleteIdMgrRealmBaseEntry

{-name realm1 -baseEntry

entry1}

v Using Jython string:

AdminTask.deleteIdMgrRealmBaseEntry

(’[-name realm1 -baseEntry

entry1]’)

v Using Jython list:

AdminTask.deleteIdMgrRealmBaseEntry

([’-name’, ’realm1’, ’-base

Entry’, ’entry1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask deleteIdMgrRealm

BaseEntry {-interactive}

v Using Jython string:

AdminTask.deleteIdMgrRealm

BaseEntry (’[-interactive]’)

v Using Jython list:

AdminTask.deleteIdMgrRealm

BaseEntry ([’-interactive’])

getIdMgrDefaultRealm The

getIdMgrDefaultRealm

command returns the

default realm name.

v Parameters: None

v Returns: The name

of the default

realm.

Batch mode example usage:

v Using Jacl:

$AdminTask getIdMgrDefaultRealm

v Using Jython string:

AdminTask.getIdMgrDefaultRealm()

v Using Jython list:

AdminTask.getIdMgrDefaultRealm()

Interactive mode example usage:

v Using Jacl:

$AdminTask getIdMgrDefault

Realm {-interactive}

v Using Jython string:

AdminTask.getIdMgrDefault

Realm (’[-interactive]’)

v Using Jython list:

AdminTask.getIdMgrDefault

Realm ([’-interactive’])

Chapter 16. Security 1579

Table 26. (continued)

Command name: Description: Parameters and

return values:

Examples:

getIdMgrRepositories

ForRealm

The

getIdMgrRepositories

ForRealm command

returns repository

specific details for the

repositories configured

for a specified realm.

v Parameters:

- name

The realm

name. (String,

required)

v Returns: A hash

map with the

following keys:

– id - The

repository ID.

– repositoryType -

The type of

repository, for

example, File,

LDAP, DB, and

so on.

–

 specificRepositoryType

- The specific type

of repository, for

example, for

LDAP, IDS51,

NDS, and so on.

– host - The host

name where the

repository

resides. For

example, for

File, LocalHost

or for DB,

dataSourceName.

– port - The port

number. This

only applies to

LDAP.

– name - The

name of the

base entry.

–

 nameInRepository

- The name in

repository for the

base entry.

This command will

not return the

property extension

and entry mapping

repository data.

Batch mode example usage:

v Using Jacl:

$AdminTask getIdMgrRepositories

ForRealm {-name realm1}

v Using Jython string:

AdminTask.getIdMgrRepositories

ForRealm (’[-name realm1]’)

v Using Jython list:

AdminTask.getIdMgrRepositories

ForRealm ([’-name’, ’realm1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask getIdMgrRepositories

ForRealm {-interactive}

v Using Jython string:

AdminTask.getIdMgrRepositories

ForRealm (’[-interactive]’)

v Using Jython list:

AdminTask.getIdMgrRepositories

ForRealm ([’-interactive’])

1580 Administering applications and their environment

Table 26. (continued)

Command name: Description: Parameters and

return values:

Examples:

getIdMgrRealm The getIdMgrRealm

command returns the

configuration

parameters for the

realm that you

specified.

v Parameters:

- name

The realm

name. (String,

required)

v Returns: A hash

map that contains

keys as the

parameters of the

createIdMgrRealm

command.

Batch mode example usage:

v Using Jacl:

$AdminTask getIdMgrRealm {-name realm1}

v Using Jython string:

AdminTask.getIdMgrRealm (’[-name realm1]’)

v Using Jython list:

AdminTask.getIdMgrRealm ([’-name’, ’realm1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask getIdMgrRealm {-interactive}

v Using Jython string:

AdminTask.getIdMgrRealm (’[-interactive]’)

v Using Jython list:

AdminTask.getIdMgrRealm ([’-interactive’])

listIdMgrRealms The listIdMgrRealms

command returns all of

the names of the

configured realms.

v Parameters: None

v Returns: A list that

contains the name

of the configured

realms.

Batch mode example usage:

v Using Jacl:

$AdminTask listIdMgrRealms

v Using Jython string:

AdminTask.listIdMgrRealms()

v Using Jython list:

AdminTask.listIdMgrRealms()

Interactive mode example usage:

v Using Jacl:

$AdminTask listIdMgrRealms {-interactive}

v Using Jython string:

AdminTask.listIdMgrRealms (’[-interactive]’)

v Using Jython list:

AdminTask.listIdMgrRealms ([’-interactive’])

Chapter 16. Security 1581

Table 26. (continued)

Command name: Description: Parameters and

return values:

Examples:

listIdMgrRealm

BaseEntries

The listIdMgrRealm

BaseEntries command

returns all of the

names of the

configured realms.

v Parameters:

- name

The realm

name. (String,

required)

v Returns: A list of all

the base entries of

the specified realm.

Batch mode example usage:

v Using Jacl:

$AdminTask listIdMgrRealmBase

Entries {-name realm1}

v Using Jython string:

AdminTask.listIdMgrRealmBase

Entries (’[-name realm1]’)

v Using Jython list:

AdminTask.listIdMgrRealmBase

Entries ([’-name’, ’realm1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask listIdMgrRealmBase

Entries {-interactive}

v Using Jython string:

AdminTask.listIdMgrRealmBase

Entries (’[-interactive]’)

v Using Jython list:

AdminTask.listIdMgrRealmBase

Entries ([’-interactive’])

renameIdMgrRealm The

renameIdMgrRealm

command renames the

name of the realm that

you specified.

v Parameters:

- name

The realm

name. (String,

required)

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask renameIdMgrRealm

{-name realm1}

v Using Jython string:

AdminTask.renameIdMgrRealm

(’[-name realm1]’)

v Using Jython list:

AdminTask.renameIdMgrRealm

([’-name’, ’realm1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask renameIdMgrRealm

{-interactive}

v Using Jython string:

AdminTask.renameIdMgrRealm

(’[-interactive]’)

v Using Jython list:

AdminTask.renameIdMgrRealm

([’-interactive’])

1582 Administering applications and their environment

Table 26. (continued)

Command name: Description: Parameters and

return values:

Examples:

setIdMgrDefaultRealm The

setIdMgrDefaultRealm

command sets up the

default realm

configuration.

v Parameters:

- name

The name of

the realm that

is used as a

default realm

when the caller

does not

specify any in

context.

(String,

required)

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask setIdMgrDefaultRealm

{-name realm1}

v Using Jython string:

AdminTask.setIdMgrDefaultRealm

(’[-name realm1]’)

v Using Jython list:

AdminTask.setIdMgrDefaultRealm

([’-name’, ’realm1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask setIdMgrDefault

Realm {-interactive}

v Using Jython string:

AdminTask.setIdMgrDefault

Realm (’[-interactive]’)

v Using Jython list:

AdminTask.setIdMgrDefault

Realm ([’-interactive’])

Chapter 16. Security 1583

Table 26. (continued)

Command name: Description: Parameters and

return values:

Examples:

updateIdMgrRealm The

updateIdMgrRealm

command updates the

configuration for a

realm that you specify.

v Parameters:

- name

The realm

name. (String,

required)

- securityUse

A string that

indicates if this

realm will be

used in

security now,

later, or never.

The default

value is

active.

Additional

values

includes:

inactive and

nonSelectable.

(String,

optional)

- delimiter

The delimiter

used for this

realm. The

default value is

@. (String,

optional)

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask updateIdMgrRealm

{-name realm1}

v Using Jython string:

AdminTask.updateIdMgrRealm

(’[-name realm1]’)

v Using Jython list:

AdminTask.updateIdMgrRealm

([’-name’, ’realm1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask updateIdMgrRealm

{-interactive}

v Using Jython string:

AdminTask.updateIdMgrRealm

(’[-interactive]’)

v Using Jython list:

AdminTask.updateIdMgrRealm

([’-interactive’])

Commands for the WIMManagementCommands group of the

AdminTask object

Use the commands in the WIMManagementCommands group to configure the virtual member manager.

The commands for this group do not require a target object. For more information about the AdminTask

object, see the Commands for the AdminTask object article.

The following commands are available for the WIMManagementCommands group of the AdminTask object:

1584 Administering applications and their environment

Table 27.

Command name: Description: Parameters and return

values:

Examples:

addMemberToGroup The

addMemberToGroup

command adds a user

or a group to a group.

v Parameters:

- memberUniqueName

Specifies the

unique name value

for the user or

group that you want

to add to the

specified group.

This parameter

maps to the

uniqueName

property in the

virtual member

manager. (String,

required)

- groupUniqueName

Specifies the

unique name value

for the group to

which you want to

add the user or

group that you

specified in the

memberUniqueName

parameter. This

parameter maps to

the uniqueName

property in virtual

member manager.

(String, required)

v Returns: Void if the

command is successful.

Returns an exception if

the command fails.

Batch mode example usage:

v Using Jacl:

$AdminTask addMemberToGroup

{-memberUniqueName uid=

meyersd,cn=users,dc=yourco,

dc=com -groupUniqueName

cn=admins,cn=groups,

dc=yourco,dc=com}

v Using Jython string:

AdminTask.addMemberToGroup

(’[-memberUniqueName

uid=meyersd,cn=users,

dc=yourco,dc=com -group

UniqueName cn=admins,

cn=groups,dc=yourco,

dc=com]’)

v Using Jython list:

AdminTask.addMemberToGroup

([’-memberUniqueName’,

’uid=meyersd,cn=users,dc=

yourco,dc=com’, ’-group

UniqueName’, ’cn=admins,

cn=groups,dc=yourco,dc=com’])

Interactive mode example usage:

v Using Jacl:

$AdminTask addMemberToGroup

{-interactive}

v Using Jython string:

AdminTask.addMemberToGroup

(’[-interactive]’)

v Using Jython list:

AdminTask.addMemberToGroup

([’-interactive’])

Chapter 16. Security 1585

Table 27. (continued)

Command name: Description: Parameters and return

values:

Examples:

createGroup The createGroup

command creates a new

group in the virtual

member manager. After

the command

completes, the new

group will appear in the

repository. For LDAP, a

group must contain a

member. The

memberUniqueName

parameter is optional in

this case. If you set the

memberUniqueName

parameter to the unique

name of a group or a

user, the group or user

will be added as a

member of the group.

v Parameters:

- cn

Specifies the

common name for

the group that you

want to create. This

parameter maps to

the cn property in

virtual member

manager. (String,

required)

- description

Specifies additional

information about

the group that you

want to create. This

parameter maps to

the description

property in a virtual

member manager

object. (String,

optional)

- parent

Specifies the

repository in which

you want to create

the group. This

parameter maps to

the parent property

in the virtual

member manager.

(String, optional)

- memberUniqueName

Specifies the

unique name value

for the user or

group that you want

to add to the new

group. This

parameter maps to

the uniqueName

property in the

virtual member

manager. (String,

optional)

v Returns: The unique

name of the group that

you created.

Batch mode example usage:

v Using Jacl:

$AdminTask createGroup

{-cn groupA -description

a group of admins}

v Using Jython string:

AdminTask.createGroup

(’[-cn groupA -description

a group of admins]’)

v Using Jython list:

AdminTask.createGroup

([’-cn’, ’groupA’,

’-description’, ’a group

of admins’])

Interactive mode example usage:

v Using Jacl:

$AdminTask createGroup

{-interactive}

v Using Jython string:

AdminTask.createGroup

(’[-interactive]’)

v Using Jython list:

AdminTask.createGroup

([’-interactive’])

1586 Administering applications and their environment

Table 27. (continued)

Command name: Description: Parameters and return

values:

Examples:

createUser The createUser

command creates a new

user in the default

repository or a repository

that the parent

command parameter

specifies. This command

creates a person entity

and a login account

entity in the virtual

member manager.

v Parameters:

- uid

Specifies the

unique ID for the

user that you want

to create. Virtual

member manager

then creates a

uniqueId value and

a uniqueName

value for the user.

This parameter

maps to the uid

property in the

virutal member

manager. (String,

required)

- password

Specifies the

password for the

user. This

parameter maps to

the password

property in the

virtual member

manager. (String,

required)

- confirmPassword

Specifies the

password again to

validate how it was

entered for the

password

parameter. This

parameter maps to

the password

property in virtual

member manager.

(String, optional)

- cn

Specifes the first

name or given

name of the user.

This parameter

maps to the cn

property in virutal

member manager.

(String, optional)

Batch mode example usage:

v Using Jacl:

$AdminTask createUser {-uid

123 -password tempPass

-confirmPassword tempPass

-cn Jane -surname Doe

-ibm-primaryEmail janedoe@

acme.com}

v Using Jython string:

AdminTask.createUser (’[-uid

123 -password tempPass

-confirmPassword tempPass

-cn Jane -surname Doe

-ibm-primaryEmail janedoe@

acme.com]’)

v Using Jython list:

AdminTask.createUser ([’-uid’,

’123’, ’-password’,

’tempPass’, ’-confirmPassword’,

’tempPass’, ’-cn’, ’Jane’,

’-surname’, ’Doe’, ’-ibm-

primaryEmail’, ’janedoe@

acme.com’])

Interactive mode example usage:

v Using Jacl:

$AdminTask createUser

{-interactive}

v Using Jython string:

AdminTask.createUser

(’[-interactive]’)

v Using Jython list:

AdminTask.createUser

([’-interactive’])

Chapter 16. Security 1587

Table 27. (continued)

Command name: Description: Parameters and return

values:

Examples:

- surname

Specifies the last

name or family name

of the user. This

parameter maps to

the sn property in

virtual member

manager. (String,

optional)

- ibm-primaryEmail

Specifies the e-mail

address of the user.

This parameter maps

to the

ibm-PrimaryEmail

property in the virtual

member manager.

(String, optional)

- parent

Specifies the

repository in which

you want to create the

user. This parameter

maps to the parent

property in the virtual

member manager.

(String, optional)

v Returns: The unique

name of the user that

you created.

1588 Administering applications and their environment

Table 27. (continued)

Command name: Description: Parameters and return

values:

Examples:

deleteGroup The deleteGroup

command deletes a

group in the virtual

member manager. You

cannot use this

command to delete

descendants. When this

command completes,

the group will be deleted

from the repository.

v Parameters:

- uniqueName

Specifies the

unique name value

for the group that

you want to delete.

This parameter

maps to the

uniqueName

property in virtual

member manager.

(String, required)

v Returns: Void if the

command is successful.

Returns an error if the

command fails.

Batch mode example usage:

v Using Jacl:

$AdminTask deleteGroup

{-uniqueName cn=opera

tors,cn=users,dc=yourco,

dc=com}

v Using Jython string:

AdminTask.deleteGroup

(’[-uniqueName cn=ope

rators,cn=users,dc=you

rco,dc=com]’)

v Using Jython list:

AdminTask.deleteGroup

([’-uniqueName’, ’cn

=operators,cn=users,dc

=yourco,dc=com’])

Interactive mode example usage:

v Using Jacl:

$AdminTask deleteGroup

{-interactive}

v Using Jython string:

AdminTask.deleteGroup

(’[-interactive]’)

v Using Jython list:

AdminTask.deleteGroup

([’-interactive’])

Chapter 16. Security 1589

Table 27. (continued)

Command name: Description: Parameters and return

values:

Examples:

deleteUser The deleteUser

command deletes a user

from the virtual member

manager. This includes

a person object and an

account object in the

non-merged repositories.

v Parameters:

- uniqueName

Specifies the

unique name value

for the user that

you want to delete.

This parameter

maps to the

uniqueName

property in virtual

member manager.

(String, required)

v Returns: Void if the

command is successful

and an exception if the

command fails.

Batch mode example usage:

v Using Jacl:

$AdminTask deleteUser

{-uniqueName uid=dmey

ers,cn=users,dc=yourco,

dc=com}

v Using Jython string:

AdminTask.deleteUser

(’[-uniqueName uid=

dmeyers,cn=users,dc=

yourco,dc=com]’)

v Using Jython list:

AdminTask.deleteUser ([’

-uniqueName’, ’uid=dm

eyers,cn=users,dc=yourco,

dc=com’])

Interactive mode example usage:

v Using Jacl:

$AdminTask deleteUser

{-interactive}

v Using Jython string:

AdminTask.deleteUser

(’[-interactive]’)

v Using Jython list:

AdminTask.deleteUser

([’-interactive’])

1590 Administering applications and their environment

Table 27. (continued)

Command name: Description: Parameters and return

values:

Examples:

duplicate Membership

OfGroup

Use the duplicate

Membership OfGroup

command to make a one

group a member of all of

the same groups as

another group. For

example, group A is in

group B and group C. To

add group D to the

same groups as group

A, use the duplicate

Membership OfGroup

command.

v Parameters:

- copyToName

Specifies the name

of the group to

which you want to

add the

memberships of the

group specified in

the copyFromName

parameter. (String,

required)

- copyFromName

Specifies the name

of the group from

which you want to

copy the group

memberships for

another group to

use. (String,

required)

v Returns: Void if the

command is successful.

Returns an exception if

the command fails.

Batch mode example usage:

v Using Jacl:

$AdminTask duplicateMember

shipOfGroup {-copyToName

cn=operators,cn=groups,

dc=yourco,dc=com -copy

FromName cn=admins,cn=

groups,dc=yourco,dc=com}

v Using Jython string:

AdminTask.duplicateMembers

hipOfGroup (’[-copyToName

cn=operators,cn=groups,

dc=yourco,dc=com -copy

FromName cn=admins,cn=gr

oups,dc=yourco,dc=com]’)

v Using Jython list:

AdminTask.duplicateMember

shipOfGroup ([’-copyToName’,

’cn=operators,cn=groups,

dc=yourco,dc=com’, ’-copy

FromName’, ’cn=admins,cn

=groups,dc=yourco,dc=com’])

Interactive mode example usage:

v Using Jacl:

$AdminTask duplicateMember

shipOfGroup {-interactive}

v Using Jython string:

AdminTask.duplicateMember

shipOfGroup (’[-interactive]’)

v Using Jython list:

AdminTask.duplicateMember

shipOfGroup ([’-interactive’])

Chapter 16. Security 1591

Table 27. (continued)

Command name: Description: Parameters and return

values:

Examples:

duplicate Membership

OfUser

Use the duplicate

Membership OfUser

command to make a one

user a member of all of

the same groups as

another user. For

example, user 1 is in

group B and group C. To

add user 2 to the same

groups as user 1, use

the duplicate

Membership OfUser

command.

v Parameters:

- copyToName

Specifies the name

of the user to which

you want to add the

memberships of the

user specified in

the copyFromName

parameter. (String,

required)

- copyFromName

Specifies the name

of the user from

which you want to

copy the group

memberships for

another user to

use. (String,

required)

v Returns: Void if the

command is successful.

Returns an exception if

the command fails.

Batch mode example usage:

v Using Jacl:

$AdminTask duplicateMember

shipOfUser {-copyToName

uid=meyersd,cn=users,dc

=yourco,dc=com -copy

FromName uid=jhart,cn=

users,dc=yourco,dc=com}

v Using Jython string:

AdminTask.duplicateMember

shipOfUser (’[-copyToName

uid=meyersd,cn=users,d

c=yourco,dc=com -copy

FromName uid=jhart,cn

=users,dc=yourco,dc=com]’)

v Using Jython list:

AdminTask.duplicateMember

shipOfUser ([’-copyToName’,

’uid=meyersd,cn=users,

dc=yourco,dc=com’,

’-copyFromName’, ’uid=

jhart,cn=users,dc=yourco,

dc=com’])

Interactive mode example usage:

v Using Jacl:

$AdminTask duplicateMember

shipOfUser {-interactive}

v Using Jython string:

AdminTask.duplicateMember

shipOfUser (’[-interactive]’)

v Using Jython list:

AdminTask.duplicateMember

shipOfUser ([’-interactive’])

1592 Administering applications and their environment

Table 27. (continued)

Command name: Description: Parameters and return

values:

Examples:

getGroup The getGroup

command retrieves the

common name and

description of a group.

v Parameters:

- uniqueName

Specifies the

unique name value

for the group that

you want to view.

This parameter

maps to the

uniqueName

property in virtual

member manager.

(String, required)

v Returns: A map of

common name and

description properties.

Batch mode example usage:

v Using Jacl:

$AdminTask getGroup

{-uniqueName cn=operators,

cn=groups,dc=yourco,dc=com}

v Using Jython string:

AdminTask.getGroup (’[

-uniqueName cn=operators,

cn=groups,dc=yourco,

dc=com]’)

v Using Jython list:

AdminTask.getGroup ([’

-uniqueName’, ’cn=opera

tors,cn=groups,dc=your

co,dc=com’])

Interactive mode example usage:

v Using Jacl:

$AdminTask getGroup

{-interactive}

v Using Jython string:

AdminTask.getGroup

(’[-interactive]’)

v Using Jython list:

AdminTask.getGroup

([’-interactive’])

Chapter 16. Security 1593

Table 27. (continued)

Command name: Description: Parameters and return

values:

Examples:

getMembership OfGroup The getMembership

OfGroup command

retrieves the groups of

which a group is a

member.

v Parameters:

- uniqueName

Specifies the

unique name value

for the group whose

group memberships

you want to view.

This parameter

maps to the

uniqueName

property in virtual

member manager.

(String, required)

v Returns: A list of unique

names of each of the

groups of which the

group is a member.

Batch mode example usage:

v Using Jacl:

$AdminTask getMebmership

OfGroup {-uniqueName

uid=dmeyers,cn=users,

dc=yourco,dc=com}

v Using Jython string:

AdminTask.getMebmership

OfGroup (’[-uniqueName

uid=dmeyers,cn=users,

dc=yourco,dc=com]’)

v Using Jython list:

AdminTask.getMebmership

OfGroup ([’-uniqueName’,

’uid=dmeyers,cn=users,

dc=yourco,dc=com’])

Interactive mode example usage:

v Using Jacl:

$AdminTask getMembership

OfGroup {-interactive}

v Using Jython string:

AdminTask.getMembership

OfGroup (’[-interactive]’)

v Using Jython list:

AdminTask.getMembership

OfGroup ([’-interactive’])

1594 Administering applications and their environment

Table 27. (continued)

Command name: Description: Parameters and return

values:

Examples:

getMem bership OfUser The getMem bership

OfUser command

retrieves the groups of

which a user is a

member.

v Parameters:

- uniqueName

Specifies the

unique name value

for the user whose

group memberships

you want to view.

This parameter

maps to the

uniqueName

property in virtual

member manager.

(String, required)

v Returns: A list of unique

names for each group

of which the user is a

member.

Batch mode example usage:

v Using Jacl:

$AdminTask getMebmer

shipOfUser {-uniqueName

uid=dmeyers,cn=users,

dc=yourco,dc=com}

v Using Jython string:

AdminTask.getMebmership

OfUser (’[-uniqueName

uid=dmeyers,cn=users,

dc=yourco,dc=com]’)

v Using Jython list:

AdminTask.getMebmership

OfUser ([’-uniqueName’,

’uid=dmeyers,cn=users

,dc=yourco,dc=com’])

Interactive mode example usage:

v Using Jacl:

$AdminTask getMembership

OfUser {-interactive}

v Using Jython string:

AdminTask.getMembership

OfUser (’[-interactive]’)

v Using Jython list:

AdminTask.getMembership

OfUser ([’-interactive’])

Chapter 16. Security 1595

Table 27. (continued)

Command name: Description: Parameters and return

values:

Examples:

getMembers OfGroup The getMembers

OfGroup command

retrieves the members of

a group.

v Parameters:

- uniqueName

Specifies the

unique name value

for the group whose

members you want

to view. This

parameter maps to

the uniqueName

property in virtual

member manager.

(String, required)

v Returns: The unique

name of each of the

members of the group

and the type of each

member.

Batch mode example usage:

v Using Jacl:

$AdminTask getMembersOf

Group {-uniqueName

cn=operators,cn=groups

,dc=yourco,dc=com}

v Using Jython string:

AdminTask.getMembersOf

Group [’(-uniqueName

cn=operators,cn=groups

,dc=yourco,dc=com]’)

v Using Jython list:

AdminTask.getMembersOf

Group [(’-uniqueName’,

’cn=operators,cn=groups

,dc=yourco,dc=com’])

Interactive mode example usage:

v Using Jacl:

$AdminTask getMembersOfGroup

{-interactive}

v Using Jython string:

AdminTask.getMembersOfGroup

(’[-interactive]’)

v Using Jython list:

AdminTask.getMembersOfGroup

([’-interactive’])

1596 Administering applications and their environment

Table 27. (continued)

Command name: Description: Parameters and return

values:

Examples:

getUser The getUser command

retrieves information

about a user in the

virtual member manager.

v Parameters:

- uniqueName

Specifies the

unique name value

for the user that

you want to view.

This parameter

maps to the

uniqueName

property in the

virtual member

manager. (String,

required)

v Returns: A map that

contains the following

properties: uniqueName,

cn, sn, uid, and

ibm-primaryEmail.

These attributes are

fixed and you cannot

change them.

Batch mode example usage:

v Using Jacl:

$AdminTask getUser {-user

Name uid=dmeyers,cn=us

ers,dc=yourco,dc=com}

v Using Jython string:

AdminTask.getUser (’[-use

rName uid=dmeyers,cn=

users,dc=yourco,dc=com]’)

v Using Jython list:

AdminTask.getUser ([’-use

rName’, ’uid=dmeyers,c

n=users,dc=yourco,dc=com’])

Interactive mode example usage:

v Using Jacl:

$AdminTask getUser

{-interactive}

v Using Jython string:

AdminTask.getUser

(’[-interactive]’)

v Using Jython list:

AdminTask.getUser

([’-interactive’])

Chapter 16. Security 1597

Table 27. (continued)

Command name: Description: Parameters and return

values:

Examples:

removeMember

FromGroup

The removeMember

FromGroup command

removes a user or a

group from a group.

v Parameters:

- memberUniqueName

Specifies the

unique name value

for the user or

group that you want

to remove from the

specified group.

This parameter

maps to the

uniqueName

property in virtual

member manager.

(String, required)

- groupUniqueName

Specifies the

unique name value

for the group from

which you want to

remove the user or

group that you

specified with the

memberUniqueName

paramter. This

parameter maps to

the uniqueName

property in virtual

member manager.

(String, required)

v Returns: Void if the

command is successful.

Returns an exception if

the command fails.

Batch mode example usage:

v Using Jacl:

$AdminTask removeMember

FromGroup {-memberUnique

Name uid=meyersd,cn=

users,dc=yourco,dc=com

-groupUniqueName cn=

admins,cn-groups,dc=

yourco,dc=com}

v Using Jython string:

AdminTask.removeMemberF

romGroup (’[-memberUnique

Name uid=meyersd,cn=

users,dc=yourco,dc=com

-groupUniqueName cn=a

dmins,cn-groups,dc=your

co,dc=com]’)

v Using Jython list:

AdminTask.removeMemberFrom

Group ([’-memberUniqueName’,

’uid=meyersd,cn=users,

dc=yourco,dc=com’,

’-groupUniqueName’,

’cn=admins,cn-groups,dc=

yourco,dc=com’])

Interactive mode example usage:

v Using Jacl:

$AdminTask removeMember

FromGroup {-interactive}

v Using Jython string:

AdminTask.removeMemberFr

omGroup (’[-interactive]’)

v Using Jython list:

AdminTask.removeMemberFr

omGroup ([’-interactive’])

1598 Administering applications and their environment

Table 27. (continued)

Command name: Description: Parameters and return

values:

Examples:

searchGroups Use the searchGroups

command to find groups

in the virtual member

manager that match

criteria that you provide.

For example, you can

use the searchGroups

command to find all of

the groups with a

common name that

begins with IBM. You can

search for any virtual

member manager

property because the

command is generic.

v Parameters:

- cn

The first name or

given name of the

user. This

parameter maps to

the cn property in

the virtual member

manager. You must

set this parameter

or the description

parameter, but not

both. (String,

optional)

- description

Specifies

information about

the group. This

parameter maps to

the description

entity in a virtual

member manager

object. You must

set this parameter

or the cn

parameter, but not

both. (String,

optional)

- timeLimit

Specifies the

maximum amount

of time in

milliseconds that

the search can run.

The default value is

no time limit.

(String, optional)

- countLimit

Specifies the

maximum number

of results that you

want returned from

the search. By

default, all groups

found in the search

are returned.

(String, optional)

v Returns: A list of unique

names of all of the

groups that match the

search criteria that you

provided.

Batch mode example usage:

v Using Jacl:

$AdminTask searchGroups

{cn *IBM*}

v Using Jython string:

AdminTask.searchGroups

(’[cn *IBM*]’)

v Using Jython list:

AdminTask.searchGroups

([’cn’, ’*IBM*’])

Interactive mode example usage:

v Using Jacl:

$AdminTask searchGroups

{-interactive}

v Using Jython string:

AdminTask.searchGroups

(’[-interactive]’)

v Using Jython list:

AdminTask.searchGroups

([’-interactive’])

Chapter 16. Security 1599

Table 27. (continued)

Command name: Description: Parameters and return

values:

Examples:

searchUsers Use the searchUsers

command to find users

in the virtual member

manager that match

criteria that you provide.

For example, you can

use the searchUsers

command to find all of

the telephone numbers

that contain 919. You

can search for any

virtual member manager

property because the

command is generic.

v Parameters:

- principalName

Specifies the

principal name oft

he user that is used

as the logon ID for

the user in the

system. This

parameter maps to

the principalName

property in virtual

member manager.

You must specify

only one of the

following

parameters:

principalName, uid,

cn, sn, or

ibm-primaryEmail.

(String, optional)

- uid

Specifies the

unique ID value for

the user for whom

you want to search.

This parameter

maps to the uid

property in virtual

member manage.

You must specify

only one of the

following

parameters:

principalName, uid,

cn, sn, or

ibm-primaryEmail.

(String, optional)

- cn

Specifies the first

name or given

name of the user.

This parameter

maps to the cn

property in virtual

member manager.

You must specify

only one of the

following

parameters:

principalName, uid,

cn, sn, or

ibm-primaryEmail.

(String, optional)

Batch mode example usage:

v Using Jacl:

$AdminTask searchUsers

{-principalName */IBM/US*}

v Using Jython string:

AdminTask.searchUsers (’

[-principalName */IBM/US*]’)

v Using Jython list:

AdminTask.searchUsers

([’-principalName’,

’*/IBM/US*’])

Interactive mode example usage:

v Using Jacl:

$AdminTask searchUsers

{-interactive}

v Using Jython string:

AdminTask.searchUsers

(’[-interactive]’)

v Using Jython list:

AdminTask.searchUsers

([’-interactive’])

1600 Administering applications and their environment

Table 27. (continued)

Command name: Description: Parameters and return

values:

Examples:

- sn

Specifies the last

name or family name

of the user. This

parameter maps to

the sn property in

virtual member

manager. You must

specify only one of the

following parameters:

principalName, uid,

cn, sn, or

ibm-primaryEmail.

(String, optional)

- ibm-primaryEmail

Specifies the email

address of the user.

This parameter maps

to the

ibm-PrimaryEmail

property in the virtual

member manager. You

must specify only one

of the following

parameters:

principalName, uid,

cn, sn, or

ibm-primaryEmail.

(String, optional)

- timeLimit

Specifies the

maximum amount of

time in milliseconds

that the search can

run. The default is not

time limit. (String,

optional)

- countLimit

Specifies the

maximum number of

results that you want

returned from the

search. By default, all

users found int he

search are returned.

(String, optional)

v Returns: A list of unique

names of all of the

users that match the

search criteria that you

provided.

Chapter 16. Security 1601

Table 27. (continued)

Command name: Description: Parameters and return

values:

Examples:

updateGroup The updateGroup

command updates the

common name or the

description of a group.

v Parameters:

- uniqueName

Specifies the

unique name value

for the group for

which you want to

modify the

properties. This

parameter maps to

the uniqueName

property in virtual

member manager.

(String, required)

- cn

Specifies the new

common name

used for the group.

This parameter

maps to the cn

property in virtual

member manager.

(String, optional)

- description

Specifies the new

information about

the group. This

parameter maps to

the description

entity in a virtual

member manager

object. (String,

optional)

v Returns: Void if the

command is successful.

Returns an exception if

the command fails.

Batch mode example usage:

v Using Jacl:

$AdminTask updateGroup

{-uniqueName cn=opera

tors,cn=groups,dc=yourco

,dc=com -cn groupA}

v Using Jython string:

AdminTask.updateGroup

(’[-uniqueName cn=oper

ators,cn=groups,dc=your

co,dc=com -cn groupA]’)

v Using Jython list:

AdminTask.updateGroup ([’

-uniqueName’, ’cn=oper

ators,cn=groups,dc=yourco,

dc=com’, ’-cn’,

’groupA’])

Interactive mode example usage:

v Using Jacl:

$AdminTask updateGroup

{-interactive}

v Using Jython string:

AdminTask.updateGroup

(’[-interactive]’)

v Using Jython list:

AdminTask.updateGroup

([’-interactive’])

1602 Administering applications and their environment

Table 27. (continued)

Command name: Description: Parameters and return

values:

Examples:

updateUser The updateUser

command updates the

following properties:

uniqueName, uid,

password, cn, sn, or

ibm-primaryEmail.

v Parameters:

- uniqueName

Specifies the

unique name value

for the user for

which you want to

modify the

properties. This

parameter maps to

the uniqueName

property in virtual

member manager.

(String, required)

- uid

Specifies the new

unique ID value for

the user. This

parameter maps to

the uid property in

virtual member

manager. (String,

optional)

- password

Specifies the new

password for the

user. This

parameter maps to

the password

property in virtual

member manager.

(String, optional)

- confirmPassword

Specifies the

password again to

validate how it was

entered on the

password

parameter. This

parameter maps to

the password

property in virtual

member manager.

(String, optional)

- cn

Specifies the new

first name or given

name of the user.

This parameter

maps to the cn

property in virtual

member manager.

(String, optional)

Batch mode example usage:

v Using Jacl:

$AdminTask updateUser

{-uniqueName uid=dmey

ers,cn=users,dc=yourco,

dc=com -uid 123}

v Using Jython string:

AdminTask.updateUser

(’[-uniqueName uid=

dmeyers,cn=users,dc=

yourco,dc=com -uid

123]’)

v Using Jython list:

AdminTask.updateUser

([’-uniqueName’, ’uid

=dmeyers,cn=users,dc=

yourco,dc=com’, ’-uid’,

’123’])

Interactive mode example usage:

v Using Jacl:

$AdminTask updateUser

{-interactive}

v Using Jython string:

AdminTask.updateUser

(’[-interactive]’)

v Using Jython list:

AdminTask.updateUser

([’-interactive’])

Chapter 16. Security 1603

Table 27. (continued)

Command name: Description: Parameters and return

values:

Examples:

- surname

Specifies the new last

name or family name

of the user. This

parameter maps to

the sn property in

virtual member

manager. (String,

optional)

- ibm-primaryEmail

Specifies the new

e-mail address of the

user. This parameter

maps to the mail

property in virtual

member manager.

(String, optional)

v Returns: Void if the

command is successful.

Returns an exception if

the command fails.

Commands for the KeyStoreCommands group of the AdminTask object

Use the commands in the KeyStoreCommands group to create or delete key stores. The commands for

this group do not require a target object. For more information about the AdminTask object, see the

Commands for the AdminTask object article.

The following commands are available for the KeyStoreCommands group of the AdminTask object:

1604 Administering applications and their environment

Table 28.

Command name: Description: Parameters and return

values:

Examples:

changeKey Store

Password

The changeKey Store

Password command

changes the password

on the key store.

v Parameters:

- keyStoreName

The name that

uniquely identifies

the key store

configuration object.

(String, required)

- keyStoreScope

The scope name of

the key store.

(String, optional)

- keyStorePassword

The password that

protects the key

store that you want

to change. (String,

required)

-

newkeyStorePassword

The new password

that protects the

key store. (String,

required)

-

newkeyStorePassword

Verify

The new password

that protects the

key store. (String,

required)

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask changeKeyStore

Password {-keyStoreName testKS

–keyStorePassword testpwd

–newKeyStorePassword keyPWD

–newKeyStorePasswordVerify

keyPWD}

v Using Jython string:

AdminTask.changeKeyStore

Password (’[-keyStoreName

testKS –keyStorePassword

testpwd –newKeyStorePassword

keyPWD –newKeyStorePassword

Verify keyPWD]’)

v Using Jython list:

AdminTask.changeKeyStore

Password ([’-keyStoreName’,

’testKS’, ’–keyStorePassword’,

’testpwd’, ’–newKeyStore

Password’, ’keyPWD’, ’–new

KeyStorePasswordVerify’,

’keyPWD’])

Interactive mode example usage:

v Using Jacl:

$AdminTask changeKeyStore

Password {-interactive}

v Using Jython string:

AdminTask.changeKeyStore

Password (’[-interactive]’)

v Using Jython list:

AdminTask.changeKeyStore

Password ([’-interactive’])

Chapter 16. Security 1605

Table 28. (continued)

Command name: Description: Parameters and return

values:

Examples:

change Multiple

KeyStore Passwords

The change Multiple

KeyStore Passwords

command updates all of

the key stores in the

configuration that have a

give password and

changed them to a new

password. This is useful

because when you

create key store files on

the system, they will

have WebAS as a

password by default.

v Parameters:

- keyStorePassword

Specifies the name

of the password

that you want to

change. (String,

required)

-

newKeyStorePassword

Specifies the new

password that you

will use to access

the key store.

(String, required)

-

newKeyStorePassword

Verify

Confirms the new

key store password.

(String, required)

v Returns: A list of key

store aliases that where

changed

Batch mode example usage:

v Using Jacl:

$AdminTask changeMultiple

KeyStorePasswords {-key

StorePassword WebAS -new

KeyStorePassword newpwd

-newKeyStorePassword

Verify newpwd}

v Using Jython string:

AdminTask.changeMultiple

KeyStorePasswords (’[-key

StorePassword WebAS -new

KeyStorePassword newpwd

-newKeyStorePasswordVerify

newpwd]’)

v Using Jython list:

AdminTask.changeMultiple

KeyStorePasswords ([’-key

StorePassword’, ’WebAS’,

’-newKeyStorePassword’,

’newpwd’, ’-newKeyStore

PasswordVerify’, ’newpwd’])

Interactive mode example usage:

v Using Jacl:

$AdminTask changeMul

tipleKeyStorePasswords

{-interactive}

v Using Jython string:

AdminTask.changeMulti

pleKeyStorePasswords

(’[-interactive]’)

v Using Jython list:

AdminTask.changeMulti

pleKeyStorePasswords

([’-interactive’])

1606 Administering applications and their environment

Table 28. (continued)

Command name: Description: Parameters and return

values:

Examples:

createKeyStore The createKeyStore

command creates the

key store settings in the

configuration and the

key store database.

v Parameters:

- keyStoreName

The name that

uniquely identifies

the key store

configuration object.

(String, required)

- keyStoreType

The implementation

of the key store

management.

(String, required)

- keyStoreLocation

The location of the

key store. For file

based, the location

is the files system

path to the key

store database. For

hardware key store,

the location is the

path to the token

library. (String,

required)

- keyStorePassword

The password that

protects the key

store. (String,

required)

-

keyStorePasswordVerify

The password that

protects the key

store. (String,

required)

- keyStoreProvider

The provider used

to implement the

key store. (String,

optional)

- isKeyStoreFileBased

Set the value of this

parameter to true if

the key store is file

based. Set the

value of this

parameter to false

for hardware crypto

key stores.

(Boolean, optional)

Batch mode example usage:

v Using Jacl:

$AdminTask createKeyStore

{-keyStoreName testKS

–location c:\temp\test

KeyFile.p12 keyStorePass

word testpwd –keyStore

PasswordVerify testpwd

–isKeyStoreFileBased true

–keyStoreInitAtStartup

true –keyStoreReadOnly false}

v Using Jython string:

AdminTask.createKeyStore

(’[-keyStoreName testKS

–location c:\temp\testKey

File.p12 keyStorePassword

testpwd –keyStorePass

wordVerify testpwd –isKey

StoreFileBased true –key

StoreInitAtStartup true

–keyStoreReadOnly false]’)

v Using Jython list:

AdminTask.createKeyStore

([’-keyStoreName’, ’testKS’,

’–location’, ’c:\temp\test

KeyFile.p12’, ’keyStorePass

word’, ’testpwd’, ’–keySto

rePasswordVerify’, ’testpwd’,

’–isKeyStoreFileBased’,

’true’, ’–keyStoreInitAt

Startup’, ’true’, ’–key

StoreReadOnly’, ’false’])

Interactive mode example usage:

v Using Jacl:

$AdminTask createKey

Store {-interactive}

v Using Jython string:

AdminTask.createKeySt

ore (’[-interactive]’)

v Using Jython list:

AdminTask.createKeyS

tore ([’-interactive’])

Chapter 16. Security 1607

Table 28. (continued)

Command name: Description: Parameters and return

values:

Examples:

- keyStoreHostList

A list of host names

that indicate from

where the key store is

remotely managed,

separated by

commas. (String,

optional)

- keyStoreInitAtStartup

Set the value of this

parameter to true if

the key store is

initialized at startup.

Otherwise, set the

value of this

parameter to false.

(Boolean, optional)

- keyStoreReadOnly

Set the value of this

parameter to true if

you cannot write to

the key store.

Otherwise, set the

value of this

parameter to false.

(Boolean, optional)

- keyStoreStashFile

Set the value of this

parameter to true if

you want to create

stash files for CMS

type key store.

Otherwise, set the

value of this

parameter to false.

(Boolean, optional)

- scopeName

The name of the

scope. (String,

optional)

-

enableCryptoOperations

Specifies if the key

store object will be

used for hardware

cryptographic

operations or not. The

default value is false.

(Boolean, optional)

v Returns: The

configuration object

name of the key store

object that you created.

1608 Administering applications and their environment

Table 28. (continued)

Command name: Description: Parameters and return

values:

Examples:

createCMSKeyStore The

createCMSKeyStore

command creates a

CMS key store database

and the key store

settings in the

configuration.

v Parameters:

- cmsKeyStoreURI

The URI of the

CMS key store.

(String, required)

- pluginHostName

The host name of

the plug-in. (String,

required)

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask createCMSKeyStore

v Using Jython:

AdminTask.createCMSKeyStore()

Interactive mode example usage:

v Using Jacl:

$AdminTask createCMSKeyStore

{-interactive}

v Using Jython string:

AdminTask.createCMSKeyStore

(’[-interactive]’)

v Using Jython list:

AdminTask.createCMSKeyStore

([’-interactive’])

deleteKeyStore The deleteKeyStore

command deletes the

settings of a key store

from the configuration

and the key store file.

v Parameters:

- name

The name that

uniquely identifies

the key store that

you want to delete.

(String, required)

- scopeName

The name of the

scope. (String,

optional)

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask deleteKeyStore

{-name testKS}

v Using Jython string:

AdminTask.deleteKeyStore

(’[-name testKS]’)

v Using Jython list:

AdminTask.deleteKeyStore

([’-name’, ’testKS’])

Interactive mode example usage:

v Using Jacl:

$AdminTask deleteKeyStore

{-interactive}

v Using Jython string:

AdminTask.deleteKeyStore

(’[-interactive]’)

v Using Jython list:

AdminTask.deleteKeyStore

([’-interactive’])

Chapter 16. Security 1609

Table 28. (continued)

Command name: Description: Parameters and return

values:

Examples:

exchangeSigners The exchangeSigners

command exchange

signer certificate

between key stores.

v Parameters:

- keyStoreName1

The name that

uniquely identifies a

key store. You must

specify a second

key store name

using the

keyStoreName2

parameter. (String,

required)

- keyStoreScope1

The scope name of

the key store that

you specified with

the keyStoreName1

parameter. (String,

required)

- certificateAlaisList1

A list of aliases

separated by a

comma. (String,

optional)

- keyStoreName2

The name that

uniquely identifies a

key store. You must

specify a second

key store name

using the

keyStoreName1

parameter. (String,

required)

- keyStoreScope2

The scope name of

the key store that

you specified with

the keyStoreName2

parameter. (String,

required)

- certificateAliasList2

A list of aliases

separated by a

comma. (String,

optional)

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask exchangeSigners

{-keyStoreName1 testKS

–certificateAliasList1

testCert1 –keyStoreName2

secondKS –certificate

AlaisList2 certAlis}

v Using Jython string:

AdminTask.exchangeSigners

(’[-keyStoreName1 testKS

–certificateAliasList1

testCert1 –keyStoreName2

secondKS –certificateAlais

List2 certAlis]’)

v Using Jython list:

AdminTask.exchangeSigners

([’-keyStoreName1’, ’testKS’,

’–certificateAliasList1’,

’testCert1’, ’–keyStoreName

2’, ’secondKS’, ’–certifica

teAlaisList2’, ’certAlis’])

Interactive mode example usage:

v Using Jacl:

$AdminTask exchangeSigners

{-interactive}

v Using Jython string:

AdminTask.exchangeSigners

(’[-interactive]’)

v Using Jython list:

AdminTask.exchangeSigners

([’-interactive’])

1610 Administering applications and their environment

Table 28. (continued)

Command name: Description: Parameters and return

values:

Examples:

getKeyStoreInfo The getKeyStoreInfo

command displays the

settings of a particular

key store.

v Parameters:

- name

The name that

uniquely identifies

the key store.

(String, required)

- scopeName

The name of the

scope. (String,

optional)

v Returns: The settings of

the key store that you

specified.

Batch mode example usage:

v Using Jacl:

$AdminTask getKeyStore

{-name testKS}

v Using Jython string:

AdminTask.getKeyStore

(’[-name testKS]’)

v Using Jython list:

AdminTask.getKeyStore

([’-name’, ’testKS’])

Interactive mode example usage:

v Using Jacl:

$AdminTask getKeyStore

Info {-interactive}

v Using Jython string:

AdminTask.getKeyStore

Info (’[-interactive]’)

v Using Jython list:

AdminTask.getKeyStore

Info ([’-interactive’])

Chapter 16. Security 1611

Table 28. (continued)

Command name: Description: Parameters and return

values:

Examples:

listKeyFileAliases The listKeyFileAliases

command lists the

certificates in a key store

file.

v Parameters:

- keyFilePath

The path of the key

file. (String,

required)

- keyFilePassword

The password for

the key file. (String,

required)

- keyFileType

The key file type.

(String, required)

v Returns: A list of

certificate aliases.

Batch mode example usage:

v Using Jacl:

$AdminTask listKeyFile

Aliases {-keyFilePaht

c:\temp\testKeyFile.p12

–keyFilePassword testPwd

–keyFileType PKCS12}

v Using Jython string:

AdminTask.listKeyFile

Aliases (’[-keyFilePaht

c:\temp\testKeyFile.p12

–keyFilePassword testPwd

–keyFileType PKCS12]’)

v Using Jython list:

AdminTask.listKeyFile

Aliases ([’-keyFilePaht’,

’c:\temp\testKeyFile.p12’,

’–keyFilePassword’, ’test

Pwd’, ’–keyFileType’,

’PKCS12’])

Interactive mode example usage:

v Using Jacl:

$AdminTask listKeyFileA

liases {-interactive}

v Using Jython string:

AdminTask.listKeyFileA

liases (’[-interactive]’)

v Using Jython list:

AdminTask.listKeyFileA

liases ([’-interactive’])

1612 Administering applications and their environment

Table 28. (continued)

Command name: Description: Parameters and return

values:

Examples:

listKeyStores The listKeyStores

command lists the key

store for a particular

scope.

v Parameters:

- displayObjectName

Set the value of this

parameter to true

to list the key store

configuration

objects within a

scope. Set the

value of this

parameter to false

to list the strings

that contain the key

store name and

management

scope. (String,

optional)

- scopeName

The name of the

scope. (String,

optional)

v Returns: A list of key

stores.

Batch mode example usage:

v Using Jacl:

$AdminTask listKeyStores

v Using Jython:

AdminTask.listKeyStores()

Interactive mode example usage:

v Using Jacl:

$AdminTask listKeyStores

{-interactive}

v Using Jython string:

AdminTask.listKeyStores

(’[-interactive]’)

v Using Jython list:

AdminTask.listKeyStores

([’-interactive’])

listKeyStoresTypes The

listKeyStoresTypes

command lists all valid

key store types.

v Parameters: None

v Returns: A list of key

store types.

Batch mode example usage:

v Using Jacl:

$AdminTask listKeyStoreTypes

v Using Jython:

AdminTask.listKeyStoreTypes()

Interactive mode example usage:

v Using Jacl:

$AdminTask listKeyStores

Types {-interactive}

v Using Jython string:

AdminTask.listKeyStores

Types (’[-interactive]’)

v Using Jython list:

AdminTask.listKeyStores

Types ([’-interactive’])

Commands for the SSLConfigCommands group of the AdminTask

object

Use the commands in the SSLConfigCommands group to create and delete SSL configurations. For more

information about the AdminTask object, see the Commands for the AdminTask object article.

The following commands are available for the SSLConfigCommands group of the AdminTask object:

Chapter 16. Security 1613

Table 29.

Command name: Description: Target

object:

Parameters and return

values:

Examples:

createSSLConfig The

createSSLConfig

command creates an

SSL configuration that

is based on key store

and trust store

settings. You can use

the SSL configuration

settings to make the

SSL connections.

None v Parameters:

- alias

The name of the

alias. (String,

required)

- scopeName

The name of the

scope. (String,

optional)

- clientKeyAlias

The certificate

alias name for

the client.

(String, optional)

- serverKeyAlias

The certificate

alias name for

the server.

(String, optional)

- type

The type of SSL

configuration.

(String, optional)

-

clientAuthentication

Set the value of

this parameter to

true to request

client

authentication.

Otherwise, set

the value of this

parameter to

false. (Boolean,

optional)

- securityLevel

The cipher

group that you

want to use.

Valid values

include: HIGH,

MEDIUM, LOW, and

CUSTOM. (String,

optional)

- enabledCiphers

A list of ciphers

used during SSL

handshake.

(String, optional)

- jsseProvider

One of the JSSE

providers.

(String, optional)

Batch mode example usage:

v Using Jacl:

$AdminTask createSSLConfig

{-alias testSSLCfg -client

KeyAlias key1 -serverKey

Alias key2 -trustStoreName

trustKS –keyStoreName test

KS -keyManagerName testKeyMgr}

v Using Jython string:

AdminTask.createSSLConfig

(’[-alias testSSLCfg -cl

ientKeyAlias key1 -server

KeyAlias key2 -trustStore

Name trustKS –keyStoreName

testKS -keyManagerName

testKeyMgr]’)

v Using Jython list:

AdminTask.createSSLConfig

([’-alias’, ’testSSLCfg’,

’-clientKeyAlias’, ’key1’,

’-serverKeyAlias’, ’key2’,

’-trustStoreName’, ’trustKS’,

’–keyStoreName’, ’testKS’,

’-keyManagerName’,

’testKeyMgr’])

Interactive mode example

usage:

v Using Jacl:

$AdminTask createSSLConfig

{-interactive}

v Using Jython string:

AdminTask.createSSLConfig

(’[-interactive]’)

v Using Jython list:

AdminTask.createSSLConfig

([’-interactive’])

1614 Administering applications and their environment

Table 29. (continued)

Command name: Description: Target

object:

Parameters and return

values:

Examples:

-

clientAuthenticationSupported

Set the value of

this parameter to

true to support

client

authentication.

Otherwise, set the

value of this

parameter to

false. (Boolean,

optional)

- sslProtocol

The protocol type

for the SSL

handshake. Valid

values include:

SSL_TLS, SSL,

SSLv2, SSLv3, TLS,

TLSv1. (String,

optional)

-

trustManagerObjectName

A list of trust

managers

separated by

commas. (String,

optional)

- trustStoreNames

The key store that

holds trust

information used to

validate the trust

from remote

connections.

(String, required)

-

trustStoreScopeName

The management

scope name of the

trust store. (String,

optional)

Chapter 16. Security 1615

Table 29. (continued)

Command name: Description: Target

object:

Parameters and return

values:

Examples:

- keyStoreName

The key store that

holds the personal

certificates that

provide identity for

the connection.

(String, required)

-

keyStoreScopeName

The management

scope name of the

key store. (String,

optional)

- ssslKeyRingName

Specifies a system

SSL (SSSL) key

ring name. The

value for this

parameter has no

affect unless the

SSL configuration

type is SSSL.

(String, optional)

v Returns: The

configuration object

name of the SSL

configuration object

that you created.

1616 Administering applications and their environment

Table 29. (continued)

Command name: Description: Target

object:

Parameters and return

values:

Examples:

createSSL Config

Property

The createSSL

Config Property

command creates a

property for an SSL

configuration. Use

this command to set

SSL configuration

settings that are

different than the

settings in the SSL

configuration object.

None v Parameters:

-

sslConfigAliasName

The alias name

of the SSL

configuration.

(String, required)

- scopeName

The name of the

scope. (String,

optional)

- propertyName

The name of the

property. (String,

required)

- propertyValue

The value of the

property. (String,

required)

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask createSSLConfig

Property {-sslConfigAlias

Name NodeDefaultSSLSettings

-scopeName (cell):localhost

Node01Cell:(node):localhost

Node01 -propertyName test.

property -propertyValue

testValue}

v Using Jython string:

AdminTask.createSSLConfig

Property (’[-sslConfig

AliasName NodeDefaultSSL

Settings -scopeName (cell)

:localhostNode01Cell:(node)

:localhostNode01 -property

Name test.property -property

Value testValue]’)

v Using Jython list:

AdminTask.createSSLConfig

Property ([’-sslConfigAlias

Name’, ’NodeDefaultSSL

Settings’, ’-scopeName’,

’(cell):localhostNode01Cell:

(node):localhostNode01’,

’-propertyName’, ’test.

property’, ’-propertyValue’,

’testValue’])

Interactive mode example

usage:

v Using Jacl:

$AdminTask createSSLConfig

Property {-interactive}

v Using Jython string:

AdminTask.createSSLConfig

Property (’[-interactive]’)

v Using Jython list:

AdminTask.createSSLConfig

Property ([’-interactive’])

Chapter 16. Security 1617

Table 29. (continued)

Command name: Description: Target

object:

Parameters and return

values:

Examples:

deleteSSLConfig The

deleteSSLConfig

command deletes the

SSL configuration

object that you

specify from the

configuration.

None v Parameters:

- alias

The name of the

alias. (String,

required)

- scopeName

The name of the

scope. (String,

optional)

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask deleteSSLConfig

{-alias NodeDefaultSSL

Settings -scopeName (cell

):localhostNode01Cell:(

node):localhostNode01}

v Using Jython string:

AdminTask.deleteSSLConfig

(’[-alias NodeDefaultSSL

Settings -scopeName (cell)

:localhostNode01Cell:(no

de):localhostNode01]’)

v Using Jython list:

AdminTask.deleteSSLConfig

([’-alias’, ’NodeDefault

SSLSettings’, ’-scopeName’,

’(cell):localhostNode01

Cell:(node):localhost

Node01’])

Interactive mode example

usage:

v Using Jacl:

$AdminTask deleteSSLConfig

{-interactive}

v Using Jython string:

AdminTask.deleteSSLConfig

(’[-interactive]’)

v Using Jython list:

AdminTask.deleteSSLConfig

([’-interactive’])

1618 Administering applications and their environment

Table 29. (continued)

Command name: Description: Target

object:

Parameters and return

values:

Examples:

getSSLConfig The getSSLConfig

command obtains

information about an

SSL configuration and

displays the settings.

None v Parameters:

- alias

The name of the

alias. (String,

required)

- scopeName

The name of the

scope. (String,

optional)

v Returns: Information

about the SSL

configuration that

you specified.

Batch mode example usage:

v Using Jacl:

$AdminTask getSSLConfig

{-alias NodeDefaultSSL

Settings -scopeName

(cell):localhostNode01

Cell:(node):localhost

Node01 }

v Using Jython string:

AdminTask.getSSLConfig

(’[-alias NodeDefault

SSLSettings -scopeName

(cell):localhostNode01

Cell:(node):localhost

Node01]’)

v Using Jython list:

AdminTask.getSSLConfig

([’-alias’, ’Node

DefaultSSLSettings’,

’-scopeName’, ’(cell):

localhostNode01Cell:

(node):localhostNode01’])

Interactive mode example

usage:

v Using Jacl:

$AdminTask getSSLConfig

{-interactive}

v Using Jython string:

AdminTask.getSSLConfig

(’[-interactive]’)

v Using Jython list:

AdminTask.getSSLConfig

([’-interactive’])

Chapter 16. Security 1619

Table 29. (continued)

Command name: Description: Target

object:

Parameters and return

values:

Examples:

getSSLConfig

Properties

The getSSLConfig

Properties command

obtains information

about SSL

configuration

properties.

None v Parameters:

- alias

The name of the

alias. (String,

required)

- scopeName

The name of the

scope. (String,

optional)

v Returns: Information

about SSL

configuration

properties.

Batch mode example usage:

v Using Jacl:

$AdminTask getSSLConfig

Properties {-sslConfig

AliasName NodeDefault

SSLSettings -scopeName

(cell):localhostNode01

Cell:(node):localhost

Node01}

v Using Jython string:

AdminTask.getSSLConfig

Properties (’[-sslCon

figAliasName NodeDefa

ultSSLSettings -scope

Name (cell):localhost

Node01Cell:(node):loc

alhostNode01]’)

v Using Jython list:

AdminTask.getSSLConfig

Properties ([’-sslCon

figAliasName’, ’NodeDe

faultSSLSettings’,

’-scopeName’, ’(cell):

localhostNode01Cell:

(node):localhostNode01’])

Interactive mode example

usage:

v Using Jacl:

$AdminTask getSSLConfig

Properties {-interactive}

v Using Jython string:

AdminTask.getSSLConfig

Properties (’[-intera

ctive]’)

v Using Jython list:

AdminTask.getSSLConfig

Properties ([’-intera

ctive’])

1620 Administering applications and their environment

Table 29. (continued)

Command name: Description: Target

object:

Parameters and return

values:

Examples:

listSSLCiphers The listSSLCiphers

command lists the

SSL ciphers.

None v Parameters:

-

sslConfigAliasName

The alias name

of the SSL

configuration.

(String, required)

- scopeName

The name of the

scope. (String,

optional)

- securityLevel

The cipher

group that you

want to use.

Valid values

include: HIGH,

MEDIUM, LOW, and

CUSTOM. (String,

required)

- provider

(String, optional)

v Returns: A list of SSL

ciphers.

Batch mode example usage:

v Using Jacl:

$AdminTask listSSLCiphers

{-sslConfigAliasName test

SSLCfg -securityLevel HIGH}

v Using Jython string:

AdminTask.listSSLCiphers

(’[-sslConfigAliasName

testSSLCfg -security

Level HIGH]’)

v Using Jython list:

AdminTask.listSSLCiphers

([’-sslConfigAliasName’,

’testSSLCfg’, ’-security

Level’, ’HIGH’])

Interactive mode example

usage:

v Using Jacl:

$AdminTask listSSLCiphers

{-interactive}

v Using Jython string:

AdminTask.listSSLCiphers

(’[-interactive]’)

v Using Jython list:

AdminTask.listSSLCiphers

([’-interactive’])

Chapter 16. Security 1621

Table 29. (continued)

Command name: Description: Target

object:

Parameters and return

values:

Examples:

listSSLConfig The listSSLConfig

command lists the

defined SSL

configurations within

a management

scope.

None v Parameters:

- scopeName

The name of the

scope. (String,

optional)

-

displayObjectName

Set the value of

this parameter to

true to list the

SSL

configuration

objects within

the scope. Set

the value of this

parameter to

false to list the

strings that

contain the SSL

configuration

alias and

management

scope. (Boolean,

optional)

v Returns: A list of the

defined SSL

configurations.

Batch mode example usage:

v Using Jacl:

$AdminTask listSSLConfig

{-scopeName (cell): loc

alhostNode01Cell:(node):

localhostNode01 -display

ObjectName true}

v Using Jython string:

AdminTask.listSSLConfig

(’[-scopeName (cell):

localhostNode01Cell:

(node):localhostNode01

-displayObjectName true]’)

v Using Jython list:

AdminTask.listSSLConfig

([’-scopeName’, ’(cell)

:localhostNode01Cell:

(node):localhostNode01’,

’-displayObjectName’,

’true’])

Interactive mode example

usage:

v Using Jacl:

$AdminTask listSSLConfig

{-interactive}

v Using Jython string:

AdminTask.listSSLConfig

(’[-interactive]’)

v Using Jython list:

AdminTask.listSSLConfig

([’-interactive’])

1622 Administering applications and their environment

Table 29. (continued)

Command name: Description: Target

object:

Parameters and return

values:

Examples:

listSSLConfig

Properties

The listSSLConfig

Properties command

lists the properties for

a SSL configuration.

None v Parameters:

-

sslConfigAliasName

The alias name

of the SSL

configuration.

(String, required)

- scopeName

The name of the

scope. (String,

optional)

-

displayObjectName

Set the value of

this parameter to

true to list the

SSL

configuration

objects within

the scope. Set

the value of this

parameter to

false to list the

strings that

contain the SSL

configuration

alias and

management

scope. (Boolean,

optional)

v Returns: A list of

properties.

Batch mode example usage:

v Using Jacl:

$AdminTask listSSLConfig

Property {-alias No deDe

faultSSLSettings -scope

Name (cell):localhostNo

de01Cell:(node):localho

stNode01 -displayObject

Name true}

v Using Jython string:

AdminTask.listSSLConfig

Property (’[-alias No

deDefaultSSLSettings

-scopeName (cell):local

hostNode01Cell:(node):

localhostNode01 -disp

layObjectName true]’)

v Using Jython list:

AdminTask.listSSLConfi

gProperty ([’-alias’,

’No’, ’deDefaultSSLSet

tings’, ’-scopeName’,

’(cell):localhostNode

01Cell:(node):localho

stNode01’, ’-displayOb

jectName’, ’true’])

Interactive mode example

usage:

v Using Jacl:

$AdminTask listSSLConfig

Properties {-interactive}

v Using Jython string:

AdminTask.listSSLConfig

Properties (’[-intera

ctive]’)

v Using Jython list:

AdminTask.listSSLConfig

Properties ([’-intera

ctive’])

Chapter 16. Security 1623

Table 29. (continued)

Command name: Description: Target

object:

Parameters and return

values:

Examples:

modifySSLConfig The

modifySSLConfig

command modifies

the settings of an

existing SSL

configuration.

None v Parameters:

- alias

The name of the

alias. (String,

required)

- scopeName

The name of the

scope. (String,

optional)

- clientKeyAlias

The certificate

alias name for

the client.

(String, optional)

- serverKeyAlias

The certificate

alias name for

the server.

(String, optional)

- type

The type of SSL

configuration.

(String, optional)

-

clientAuthentication

Set the value of

this parameter to

true to request

client

authentication.

Otherwise, set

the value of this

parameter to

false. (Boolean,

optional)

- securityLevel

The cipher

group that you

want to use.

Valid values

include: HIGH,

MEDIUM, LOW, and

CUSTOM. (String,

optional)

- enabledCiphers

A list of ciphers

used during SSL

handshake.

(String, optional)

- jsseProvider

One of the JSSE

providers.

(String, optional)

Batch mode example usage:

v Using Jacl:

$AdminTask modifySSL

Config {-alias test

SSLCfg -clientKeyAli

as tstKey1 -serverKey

Alias tstKey2 -secur

ityLevel LOW}

v Using Jython string:

AdminTask.modifySSL

Config (’[-alias te

stSSLCfg -clientKey

Alias tstKey1 -serv

erKeyAlias tstKey2

-securityLevel LOW]’)

v Using Jython list:

AdminTask.modifySSL

Config ([’-alias’,

’testSSLCfg’, ’-cli

entKeyAlias’, ’tst

Key1’, ’-serverKey

Alias’, ’tstKey2’,

’-securityLevel’,

’LOW’])

Interactive mode example

usage:

v Using Jacl:

$AdminTask modifySSL

Config {-interactive}

v Using Jython string:

AdminTask.modifySSL

Config (’[-interact

ive]’)

v Using Jython list:

AdminTask.modifySSL

Config ([’-interact

ive’])

1624 Administering applications and their environment

Table 29. (continued)

Command name: Description: Target

object:

Parameters and return

values:

Examples:

-

clientAuthenticationSupported

Set the value of

this parameter to

true to support

client

authentication.

Otherwise, set the

value of this

parameter to

false. (Boolean,

optional)

- sslProtocol

The protocol type

for the SSL

handshake. Valid

values include:

SSL_TLS, SSL,

SSLv2, SSLv3, TLS,

TLSv1. (String,

optional)

-

trustManagerObjectNames

A list of trust

managers

separated by

commas. (String,

optional)

- trustStoreName

The key store that

holds trust

information used to

validate the trust

from remote

connections.

(String, optional)

-

trustStoreScopeName

The management

scope name of the

trust store. (String,

optional)

Chapter 16. Security 1625

Table 29. (continued)

Command name: Description: Target

object:

Parameters and return

values:

Examples:

- keyStoreName

The key store that

holds the personal

certificates that

provide identity for

the connection.

(String, optional)

-

keyStoreScopeName

The management

scope name of the

key store. (String,

optional)

- ssslKeyRingName

Specifies a system

SSL (SSSL) key

ring name. The

value for this

parameter has no

affect unless the

SSL configuration

type is SSSL.

(String, optional)

v Returns: None

Commands for the DescriptivePropCommands group of the AdminTask

object

For more information about the AdminTask object, see the Commands for the AdminTask object article.

The following commands are available for the DescriptivePropCommands group of the AdminTask object:

1626 Administering applications and their environment

Table 30.

Command name: Description: Target

object:

Parameters and return

values:

Examples:

createDescriptiveProp The

createDescriptiveProp

command creates key

manager settings in

the configuration. Use

this command during

SSL handshake to

determine which

certificate to use.

None v Parameters:

- parentDataType

(String, required)

- parentClassName

(String, required)

-

parentScopeName

(String, optional)

- name

(String, required)

- value

(String, required)

- type

(String, required)

- displayNameKey

(String, required)

- nlsRangeKey

(String, optional)

- hoverHelpKey

(String, optional)

- range

(String, optional)

- inclusive

(Boolean,

optional)

- firstClass

(Boolean,

optional)

v Returns: The

configuration object

name of the key

manager object that

you created.

Batch mode example usage:

v Using Jacl:

$AdminTask createKeyManager

{-name testKM –keyManager

Class com.ibm.ws.security.

ltpa.LTPAKeyPairGenerator}

v Using Jython string:

AdminTask.createKeyManager

(’[-name testKM –keyManag

erClass com.ibm.ws.securi

ty.ltpa.LTPAKeyPairGenera

tor]’)

v Using Jython list:

AdminTask.createKeyManager

([’-name’, ’testKM’, ’–key

ManagerClass’, ’com.ibm.ws

.security.ltpa.LTPAKeyPair

Generator’])

Interactive mode example

usage:

v Using Jacl:

$AdminTask createDescrip

tiveProp {-interactive}

v Using Jython string:

AdminTask.createDescripti

veProp (’[-interactive]’)

v Using Jython list:

AdminTask.createDescripti

veProp ([’-interactive’])

deleteDescriptiveProp The

deleteDescriptiveProp

command deletes key

manager settings

from the

configuration.

None v Parameters:

- parentDataType

(String, required)

- parentClassName

(String, required)

-

parentScopeName

(String, optional)

- name

(String, required)

v Returns: None

Interactive mode example

usage:

v Using Jacl:

$AdminTask deleteDescrip

tiveProp {-interactive}

v Using Jython string:

AdminTask.deleteDescrip

tiveProp (’[-interactive]’)

v Using Jython list:

AdminTask.deleteDescrip

tiveProp ([’-interactive’])

Chapter 16. Security 1627

Table 30. (continued)

Command name: Description: Target

object:

Parameters and return

values:

Examples:

getDescriptiveProp The

getDescriptiveProp

command obtains

information about key

manager settings.

None v Parameters:

- parentDataType

(String, required)

- parentClassName

(String, required)

-

parentScopeName

(String, optional)

- name

(String, required)

v Returns: Information

about key manager

settings.

Interactive mode example

usage:

v Using Jacl:

$AdminTask getDescripti

veProp {-interactive}

v Using Jython string:

AdminTask.getDescriptiv

eProp (’[-interactive]’)

v Using Jython list:

AdminTask.getDescriptive

Prop ([’-interactive’])

listDescriptiveProp The

listDescriptiveProp

command lists the

key managers within

a particular

management scope.

None v Parameters:

- parentDataType

(String, required)

- parentClassName

(String, required)

-

parentScopeName

(String, optional)

-

displayObjectName

Set the value of

this parameter to

true to list the

key manager

objects within

the scope. Set

the value of this

parameter to

false to list the

strings that

contain the key

manager name

and

management

scope. (Boolean,

optional)

v Returns: A list of key

managers.

Interactive mode example

usage:

v Using Jacl:

$AdminTask listDescrip

tiveProp {-interactive}

v Using Jython string:

AdminTask.listDescrip

tiveProp (’[-interact

ive]’)

v Using Jython list:

AdminTask.listDescrip

tiveProp ([’-interact

ive’])

1628 Administering applications and their environment

Table 30. (continued)

Command name: Description: Target

object:

Parameters and return

values:

Examples:

modifyDescriptiveProp The

modifyDescriptiveProp

command modifies

the settings of an

existing key manager.

None v Parameters:

- parentDataType

(String, required)

- parentClassName

(String, required)

-

parentScopeName

(String, optional)

- name

(String, required)

- value

(String, optional)

- type

(String, optional)

- displayNameKey

(String, optional)

- nlsRangeKey

(String, optional)

- hoverHelpKey

(String, optional)

- range

(String, optional)

- inclusive

(Boolean,

optional)

- firstClass

(Boolean,

optional)

v Returns: None

Interactive mode example

usage:

v Using Jacl:

$AdminTask modifyDescrip

tiveProp {-interactive}

v Using Jython string:

AdminTask.modifyDescrip

tiveProp (’[-interacti

ve]’)

v Using Jython list:

AdminTask.modifyDescrip

tiveProp ([’-interactiv

e’])

Commands for the TrustManagerCommands group of the AdminTask

object

Use the commands in the TrustManagerCommands group to create and delete a trust manager. For more

information about the AdminTask object, see the Commands for the AdminTask object article.

The following commands are available for the TrustManagerCommands group of the AdminTask object:

Chapter 16. Security 1629

Table 31.

Command name: Description: Target

object:

Parameters and return

values:

Examples:

createTrustManager The createTrust

ManagerInfo

command creates

trust manager

settings in the

configuration. Use

this command during

SSL handshake to

make trust decisions

about remote

endpoints.

None v Parameters:

- name

The name that

uniquely

identifies the

trust manager.

(String, required)

- scopeName

The name of the

scope. (String,

optional)

- provider

The provider

name of the

trust manager.

(String, optional)

- algorithm

The algorithm

name of the

trust manager.

(String, optional)

-

trustManagerClass

Specifies a class

that implements

the javax.net.

sslX509Tru

stManager

interface. You

cannot use this

parameter with

the provider or

algorithm

parameters.

(String, optional)

v Returns: The

configuration object

name of the trust

manager object that

you created.

Batch mode example usage:

v Using Jacl:

$AdminTask createTrust

Manager {-name testTM

–provider IBMJSSE2

–algorithm IbmX509}

v Using Jython string:

AdminTask.createTrust

Manager (’[-name testTM

–provider IBMJSSE2

–algorithm IbmX509]’)

v Using Jython list:

AdminTask.createTrust

Manager ([’-name’,

’testTM’, ’–provider’,

’IBMJSSE2’, ’–algorit

hm’, ’IbmX509’])

Interactive mode example

usage:

v Using Jacl:

$AdminTask createTrust

Manager {-interactive}

v Using Jython string:

AdminTask.createTrust

Manager (’[-interactive]’)

v Using Jython list:

AdminTask.createTrust

Manager ([’-interactive’])

1630 Administering applications and their environment

Table 31. (continued)

Command name: Description: Target

object:

Parameters and return

values:

Examples:

deleteTrustManager The

deleteTrustManager

command deletes the

trust manager

settings from the

configuration.

None v Parameters:

- name

The name that

uniquely

identifies the

trust manager.

(String, optional)

- scopeName

The name of the

scope. (String,

optional)

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask deleteTrust

Manager {-name testTM}

v Using Jython string:

AdminTask.deleteTrust

Manager (’[-name testTM]’)

v Using Jython list:

AdminTask.deleteTrust

Manager ([’-name’,

’testTM’])

Interactive mode example

usage:

v Using Jacl:

$AdminTask deleteTrust

Manager {-interactive}

v Using Jython string:

AdminTask.deleteTrust

Manager (’[-interactive]’)

v Using Jython list:

AdminTask.deleteTrust

Manager ([’-interactive’])

getTrustManager The

getTrustManager

command obtains the

setting of a trust

manager.

None v Parameters:

- name

The name that

uniquely

identifies the

trust manager.

(String, optional)

- scopeName

The name of the

scope. (String,

optional)

v Returns: The settings

of the trust manager

group that you

specified.

Batch mode example usage:

v Using Jacl:

$AdminTask getTrustManager

{-name testTM}

v Using Jython string:

AdminTask.getTrustManager

(’[-name testTM]’)

v Using Jython list:

AdminTask.getTrustManager

([’-name’, ’testTM’])

Interactive mode example

usage:

v Using Jacl:

$AdminTask getTrustMana

ger {-interactive}

v Using Jython string:

AdminTask.getTrustMana

ger (’[-interactive]’)

v Using Jython list:

AdminTask.getTrustMana

ger ([’-interactive’])

Chapter 16. Security 1631

Table 31. (continued)

Command name: Description: Target

object:

Parameters and return

values:

Examples:

listTrustManagers The

listTrustManagers

command lists the

trust managers within

a particular

management scope.

None v Parameters:

- scopeName

The name of the

scope. (String,

optional)

-

displayObjectName

Set the value of

this parameter to

true to list the

trust manager

objects within a

scope. Set the

value of this

parameter to

false to list the

strings that

contain the trust

manager name

and

management

scope. (Boolean,

optional)

v Returns: A list of

trust managers that

are found within the

management scope

that you specified.

Batch mode example usage:

v Using Jacl:

$AdminTask listTrustMana

gers {-displayObjectName true}

v Using Jython string:

AdminTask.listTrustMan

agers (’[-displayObje

ctName true]’)

v Using Jython list:

AdminTask.listTrustMan

agers ([’-displayObject

Name’, ’true’])

Interactive mode example

usage:

v Using Jacl:

$AdminTask listTrustMan

agers {-interactive}

v Using Jython string:

AdminTask.listTrustMana

gers (’[-interactive]’)

v Using Jython list:

AdminTask.listTrustMana

gers ([’-interactive’])

1632 Administering applications and their environment

Table 31. (continued)

Command name: Description: Target

object:

Parameters and return

values:

Examples:

modifyTrustManager The

modifyTrustManager

command changes

existing trust manager

settings.

None v Parameters:

- name

The name that

uniquely

identifies the

trust manager.

(String, required)

- scopeName

The name of the

scope. (String,

optional)

- provider

The provider

name of the

trust manager.

(String, optional)

- algorithm

The algorithm

name of the

trust manager.

(String, optional)

-

trustManagerClass

Specifies a class

that implements

the javax.net.

sslX509Tr

ustManager

interface. You

cannot use this

parameter with

the provider or

algorithm

parameters.

(String, optional)

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask modifyTrust

Manager {-name testTM

–trustManagerClass test

.trust.manager}

v Using Jython string:

AdminTask.modifyTrust

Manager (’[-name test

TM –trustManagerClass

test.trust.manager]’)

v Using Jython list:

AdminTask.modifyTrust

Manager ([’-name’,

’testTM’, ’–trustMana

gerClass’, ’test.trust

.manager’])

Interactive mode example

usage:

v Using Jacl:

$AdminTask modifyTrust

Manager {-interactive}

v Using Jython string:

AdminTask.modifyTrust

Manager (’[-interactive]’)

v Using Jython list:

AdminTask.modifyTrust

Manager ([’-interactive’])

Commands for the keyManagerCommands group of the AdminTask

object

Use the commands in the keyManagerCommands group to manage key managers. You can use these

commands to create, modify, list, or obtain information about key managers. For more information about

the AdminTask object, see the Commands for the AdminTask object article.

The following commands are available for the keyManagerCommands group of the AdminTask object:

Chapter 16. Security 1633

Table 32.

Command name: Description: Target

object:

Parameters and return

values:

Examples:

createKeyManager The

createKeyManager

command creates the

key manager settings

in the configuration.

Use this command

during SSL

handshake to

determine which

certificate alias to

use.

None v Parameters:

- name

The name that

uniquely

identifies the key

manager.

(String, required)

- scopeName

The name of the

scope. (String,

optional)

- provider

The provider

name of the key

manager.

(String, optional)

- algorithm

The algorithm

name of the key

manager.

(String, optional)

- keyManagerClass

The name of the

key manager

implementation

class. You can

not use this

parameter with

the provider or

the algorithm

parameter.

(String, optional)

v Returns: The

configuration object

name of the key

manager object that

you created.

Batch mode example usage:

v Using Jacl:

$AdminTask createKeyMa

nager {-name testKM –ke

yManagerClass com.ibm.

ws.security.ltpa.LTPA

KeyPairGenerator}

v Using Jython string:

AdminTask.createKeyMa

nager (’[-name testKM

–keyManagerClass com.

ibm.ws.security.ltpa.

LTPAKeyPairGenerator]’)

v Using Jython list:

AdminTask.createKeyM

anager ([’-name’, ’te

stKM’, ’–keyManagerCl

ass’, ’com.ibm.ws.sec

urity.ltpa.LTPAKeyPai

rGenerator’])

Interactive mode example

usage:

v Using Jacl:

$AdminTask createKeyMa

nager {-interactive}

v Using Jython string:

AdminTask.createKeyMa

nager (’[-interactive]’)

v Using Jython list:

AdminTask.createKeyMa

nager ([’-interactive’])

1634 Administering applications and their environment

Table 32. (continued)

Command name: Description: Target

object:

Parameters and return

values:

Examples:

deleteKeyManager The

deleteKeyManager

command deletes the

key manager settings

from the

configuration.

None v Parameters:

- name

The name that

uniquely

identifies the key

manager.

(String, optional)

- scopeName

The name of the

scope. (String,

optional)

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask deleteKeyMa

nager {-name testKM}

v Using Jython string:

AdminTask.deleteKeyMa

nager (’[-name testKM]’)

v Using Jython list:

AdminTask.deleteKeyMa

nager ([’-name’, ’testKM’])

Interactive mode example

usage:

v Using Jacl:

$AdminTask deleteKeyM

anager {-interactive}

v Using Jython string:

AdminTask.deleteKeyMa

nager (’[-interactive]’)

v Using Jython list:

AdminTask.deleteKeyM

anager ([’-interactive’])

getKeyManager The getKeyManager

command obtains the

settings of a key

manager.

None v Parameters:

- name

The name that

uniquely

identifies the key

manager.

(String, optional)

- scopeName

The name of the

scope. (String,

optional)

v Returns: The settings

of the key manager

that you specified.

Batch mode example usage:

v Using Jacl:

$AdminTask getKeyMana

ger {-name testKM}

v Using Jython string:

AdminTask.getKeyMana

ger (’[-name testKM]’)

v Using Jython list:

AdminTask.getKeyMana

ger ([’-name’, ’testKM’])

Interactive mode example

usage:

v Using Jacl:

$AdminTask getKeyManag

er {-interactive}

v Using Jython string:

AdminTask.getKeyManag

er (’[-interactive]’)

v Using Jython list:

AdminTask.getKeyManag

er ([’-interactive’])

Chapter 16. Security 1635

Table 32. (continued)

Command name: Description: Target

object:

Parameters and return

values:

Examples:

listKeyManagers The

listKeyManagers

command lists the

key managers within

a particular

management scope.

None v Parameters:

- scopeName

The name of the

scope. (String,

optional)

-

displayObjectName

Set the value of

this parameter to

true to list the

key manager

objects within

the scope. Set

the value of this

parameter to

false to list the

strings that

contain the key

manager name

and the

management

scope. (Boolean,

optional)

v Returns: A list of key

managers.

Batch mode example usage:

v Using Jacl:

$AdminTask listKeyManagers

v Using Jython:

AdminTask.listKeyManagers()

Interactive mode example

usage:

v Using Jacl:

$AdminTask listKeyManagers

{-interactive}

v Using Jython string:

AdminTask.listKeyManagers

(’[-interactive]’)

v Using Jython list:

AdminTask.listKeyManagers

([’-interactive’])

1636 Administering applications and their environment

Table 32. (continued)

Command name: Description: Target

object:

Parameters and return

values:

Examples:

modifyKeyManagers The

modifyKeyManagers

command changes

existing key manager

settings.

None v Parameters:

- name

The name that

uniquely

identifies the key

manager.

(String, required)

- scopeName

The name of the

scope. (String,

optional)

- provider

The provider

name of the key

manager.

(String, optional)

- algorithm

The algorithm

name of the key

manager.

(String, optional)

- keyManagerClass

The name of the

key manager

implementation

class. You can

not use this

parameter with

the provider or

the algorithm

parameter.

(String, optional)

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask modifyKeyManager

{-name testKM –provider

IBMJSSE2 –algorithm IbmX509}

v Using Jython string:

AdminTask.modifyKeyManager

(’[-name testKM –provider

IBMJSSE2 –algorithm IbmX509]’)

v Using Jython list:

AdminTask.modifyKeyManager

([’-name’, ’testKM’, ’–pro

vider’, ’IBMJSSE2’, ’–alg

orithm’, ’IbmX509’])

Interactive mode example

usage:

v Using Jacl:

$AdminTask modifyKeyManag

ers {-interactive}

v Using Jython string:

AdminTask.modifyKeyManag

ers (’[-interactive]’)

v Using Jython list:

AdminTask.modifyKeyManag

ers ([’-interactive’])

Commands for the SSLConfigGroupCommands group of the

AdminTask object

Use the commands in the SSLConfigGroupCommands group to create or delete a SSL configuration

group. For more information about the AdminTask object, see the Commands for the AdminTask object

article.

The following commands are available for the SSLConfigGroupCommands group of the AdminTask object:

Chapter 16. Security 1637

Table 33.

Command name: Description: Target

object:

Parameters and return

values:

Examples:

createSSLConfigGroup The

createSSLConfigGroup

command creates a

SSL configuration

group.

None v Parameters:

- name

The name that

uniquely

identifies the

SSL

configuration

group. (String,

required)

- direction

The direction to

which the SSL

configuration

applies. Valid

values include

inbound or

outbound.

(String, required)

- certificateAlias

(String, required)

- scopeName

The name of the

scope. (String,

optional)

-

sslConfigAliasName

The alias that

uniquely

identifies the

SSL

configurations in

the group.

(String, required)

-

sslConfigScopeName

The scope that

uniquely

identifies the

SSL

configurations in

the group.

(String, optional)

v Returns: The

configuration object

name of the SSL

configuration group

object that you

created.

Batch mode example usage:

v Using Jacl:

$AdminTask createSSLConfig

Group { -name testSSLCfgGrp

–direction inbound –certif

icateAlias alias1 –sslConf

igAliasName testSSLCfg}

v Using Jython string:

AdminTask.createSSLConfig

Group [’(-name testSSLCfg

Grp –direction inbound

–certificateAlias alias1

–sslConfigAliasName test

SSLCfg)’]

v Using Jython list:

AdminTask.createSSLConfig

Group [(’-name’, ’testSSL

CfgGrp’, ’–direction’,

’inbound’, ’–certificate

Alias’, ’alias1’, ’–ssl

ConfigAliasName’, ’test

SSLCfg’)]

Interactive mode example

usage:

v Using Jacl:

$AdminTask createSSLConf

igGroup {-interactive}

v Using Jython string:

AdminTask.createSSLConfi

gGroup (’[-interactive]’)

v Using Jython list:

AdminTask.createSSLConfi

gGroup ([’-interactive’])

1638 Administering applications and their environment

Table 33. (continued)

Command name: Description: Target

object:

Parameters and return

values:

Examples:

deleteSSLConfigGroup The

deleteSSLConfigGroup

command deletes a

SSL configuration

group from the

configuration.

None v Parameters:

- name

The name that

uniquely

identifies the

SSL

configuration

group. (String,

required)

- direction

The direction to

which the SSL

configuration

applies. Valid

values include

inbound or

outbound.

(String, required)

- scopeName

The name of the

scope. (String,

optional)

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask deleteSSLCon

figGroup {-name createS

SLCfgGrp –direction inb

ound}

v Using Jython string:

AdminTask.deleteSSLConf

igGroup [’(-name create

SSLCfgGrp –direction in

bound)’]

v Using Jython list:

AdminTask.deleteSSLConf

igGroup [(’-name’, ’cre

ateSSLCfgGrp’, ’–direct

ion’, ’inbound’)]

Interactive mode example

usage:

v Using Jacl:

$AdminTask deleteSSLCon

figGroup {-interactive}

v Using Jython string:

AdminTask.deleteSSLCon

figGroup (’[-interactive]’)

v Using Jython list:

AdminTask.deleteSSLConfi

gGroup ([’-interactive’])

Chapter 16. Security 1639

Table 33. (continued)

Command name: Description: Target

object:

Parameters and return

values:

Examples:

getSSLConfigGroup The

getSSLConfigGroup

command returns

information about a

SSL configuration

setting.

None v Parameters:

- name

The name that

uniquely

identifies the

SSL

configuration

group. (String,

required)

- direction

The direction to

which the SSL

configuration

applies. Valid

values include

inbound or

outbound.

(String, required)

- scopeName

The name of the

scope. (String,

optional)

v Returns: The settings

of the SSL

configuration group

that you specified.

Batch mode example usage:

v Using Jacl:

$AdminTask getSSLConfig

Group {-name createSSL

CfgGrp –direction inbound}

v Using Jython string:

AdminTask.getSSLConfig

Group [’(-name create

SSLCfgGrp –direction

inbound)’]

v Using Jython list:

AdminTask.getSSLConfig

Group [(’-name’, ’create

SSLCfgGrp’, ’–direction’,

’inbound’)]

Interactive mode example

usage:

v Using Jacl:

$AdminTask getSSLConfig

Group {-interactive}

v Using Jython string:

AdminTask.getSSLConfig

Group (’[-interactive]’)

v Using Jython list:

AdminTask.getSSLConfig

Group ([’-interactive’])

1640 Administering applications and their environment

Table 33. (continued)

Command name: Description: Target

object:

Parameters and return

values:

Examples:

listSSLConfigGroups The

listSSLConfigGroups

command lists the

SSL configuration

groups within a scope

and a direction.

None v Parameters:

- direction

The direction to

which the SSL

configuration

applies. Valid

values include

inbound or

outbound.

(String, optional)

- scopeName

The name of the

scope. (String,

optional)

-

displayObjectName

If you set this

parameter to

true, the

command

returns a list of

all of the SSL

configuration

group objects

within the scope.

If you set this

parameter to

false, the

command

returns a list of

strings that

contain the SSL

configuration

name and

management

scope. (Boolean,

optional)

v Returns: A list of SSL

configuration groups.

Batch mode example usage:

v Using Jacl:

$AdminTask –listSSLConfi

gGroups {-displayObject

Name true}

v Using Jython string:

AdminTask.listSSLConfig

Groups [’(-displayObject

Name true)’]

v Using Jython list:

AdminTask.listSSLConfig

Groups [(’-displayObject

Name’ ’true’)]

Interactive mode example

usage:

v Using Jacl:

$AdminTask listSSLConfig

Groups {-interactive}

v Using Jython string:

AdminTask.listSSLConfig

Groups (’[-interactive]’)

v Using Jython list:

AdminTask.listSSLConfig

Groups ([’-interactive’])

Chapter 16. Security 1641

Table 33. (continued)

Command name: Description: Target

object:

Parameters and return

values:

Examples:

modifySSLConfigGroup The

modifySSLConfigGroup

command modifies

the setting of an

existing SSL

configuration group.

None v Parameters:

- name

The name that

uniquely

identifies the

SSL

configuration

group. (String,

required)

- direction

The direction to

which the SSL

configuration

applies. Valid

values include

inbound or

outbound.

(String, required)

- certificateAlias

(String, optional)

- scopeName

The name of the

scope. (String,

optional)

-

sslConfigAliasName

The alias that

uniquely

identifies the

SSL

configurations in

the group.

(String, optional)

-

sslConfigScopeName

The scope that

uniquely

identifies the

SSL

configurations in

the group.

(String, optional)

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask modifySSLConfig

Group {-name createSSLCfg

Grp –direction inbound

–certificateAlias alias2}

v Using Jython string:

AdminTask.modifySSLConfig

Group [’(-name createSSL

CfgGrp –direction inbound

–certificateAlias alias2)’]

v Using Jython list:

AdminTask.modifySSLConfig

Group [(’-name’, ’create

SSLCfgGrp’, ’–direction’,

’inbound’, ’–certificate

Alias’, ’alias2’)]

Interactive mode example

usage:

v Using Jacl:

$AdminTask modifySSLConf

igGroup {-interactive}

v Using Jython string:

AdminTask.modifySSLConf

igGroup (’[-interactive]’)

v Using Jython list:

AdminTask.modifySSLConf

igGroup ([’-interactive’])

Commands for the DynamicSSLConfigSelections group of the

AdminTask object

Use the commands in the DynamicSSLConfigSelections group to create or delete a dynamic SSL

configuration selection. For more information about the AdminTask object, see the Commands for the

AdminTask object article.

1642 Administering applications and their environment

The following commands are available for the DynamicSSLConfigSelections group of the AdminTask

object:

Chapter 16. Security 1643

Table 34.

Command name: Description: Target

object:

Parameters and return

values:

Examples:

createDynamic

SSLConfig Selection

The createDynamic

SSLConfig Selection

command creates the

configuration settings

for the dynamic SSL

configuration

selection.

None v Parameters:

-

dynSSLConfigSelec

tionName

The name that

uniquely

identifies the

dynamic SSL

configuration

selection.

(String, required)

- scopeName

The name of the

scope. (String,

optional)

-

dynSSLConfigSelec

tionDescription

The description

of the dynamic

SSL

configuration

selection.

(String, optional)

-

dynSSLConfigSelec

tionInfo

The information

for the dynamic

SSL

configuration

selection.

(String, required)

- sslConfigName

The name of the

SSL

configuration.

(String, required)

- sslConfigScope

The scope of the

SSL

configuration.

(String, optional)

- certificateAlias

The alias name

to identify the

certificate.

(String, required)

v Returns: The

configuration object

name of the dynamic

SSL configuration

selection object that

you created.

Batch mode example usage:

v Using Jacl:

$AdminTask createDyn

amicSSLConfigSelection

v Using Jython:

AdminTask.createDynam

icSSLConfigSelection()

Interactive mode example

usage:

v Using Jacl:

$AdminTask createDy

namicSSLConfigSelection

{-interactive}

v Using Jython string:

AdminTask.createDyna

micSSLConfigSelection

(’[-interactive]’)

v Using Jython list:

AdminTask.createDyna

micSSLConfigSelection

([’-interactive’])

1644 Administering applications and their environment

Table 34. (continued)

Command name: Description: Target

object:

Parameters and return

values:

Examples:

deleteDynamic

SSLConfig Selection

The deleteDynamic

SSLConfig Selection

command deletes the

dynamic SSL

configuration

selection from the

configuration.

None v Parameters: None

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask deleteDynamic

SSLConfigSelection

v Using Jython:

AdminTask.deleteDynamic

SSLConfigSelection()

v

Interactive mode example

usage:

v Using Jacl:

$AdminTask deleteDynamic

SSLConfigSelection {-inte

ractive}

v Using Jython string:

AdminTask.deleteDynamicS

SLConfigSelection (’[-in

teractive]’)

v Using Jython list:

AdminTask.deleteDynamic

SSLConfigSelection ([’

-interactive’])

getDynamic

SSLConfig Selection

The getDynamic

SSLConfig

Selectioncommand

obtains information

about a particular

dynamic SSL

configuration

selection.

None v Parameters: None

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask getDynamicSSL

ConfigSelection

v Using Jython:

AdminTask.getDynamicSSL

ConfigSelection()

Interactive mode example

usage:

v Using Jacl:

$AdminTask getDynamicSSL

ConfigSelection {-interactive}

v Using Jython string:

AdminTask.getDynamicSSL

ConfigSelection (’[-inter

active]’)

v Using Jython list:

AdminTask.getDynamicSSL

ConfigSelection ([’-int

eractive’])

Chapter 16. Security 1645

Table 34. (continued)

Command name: Description: Target

object:

Parameters and return

values:

Examples:

listDynamic

SSLConfig Selections

The listDynamic

SSLConfig

Selectionscommand

lists the configuration

objects name for a

dynamic SSL

configuration

selection.

None v Parameters: None

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask listDynamic

SSLConfigSelection

v Using Jython:

AdminTask.listDynamic

SSLConfigSelection()

Interactive mode example

usage:

v Using Jacl:

$AdminTask listDynamicSSL

ConfigSelections {-intera

ctive}

v Using Jython string:

AdminTask.listDynamicSSL

ConfigSelections (’[-inte

ractive]’)

v Using Jython list:

AdminTask.listDynamicSSL

ConfigSelections ([’-int

eractive’])

Commands for the ManagementScopeCommands group of the

AdminTask object

Use the commands in the ManagementScopeCommands group to create or delete a management scope.

For more information about the AdminTask object, see the Commands for the AdminTask object article.

The following commands are available for the ManagementScopeCommands group of the AdminTask

object:

1646 Administering applications and their environment

Table 35.

Command name: Description: Target

object:

Parameters and return

values:

Examples:

createMana

gementScope

The createManag

ementScope

command creates a

management scope

setting in the

configuration.

None v Parameters:

- scopeName

The name that

uniquely

identifies the

management

scope. (String,

required)

- scopeType

The type of the

management

scope. Valid

types include

cell, node,

nodegroup,

cluster, server,

and endpoint.

(String, optional)

v Returns: The

configuration object

name of the

management scope

object that you

created.

Batch mode example usage:

v Using Jacl:

$AdminTask createManag

ementScope {-name (cell)

:localhostNode01Cell

–scopeType cell}

v Using Jython string:

AdminTask.createManage

mentScope [’(-name (ce

ll):localhostNode01Cell

–scopeType cell)’]

v Using Jython list:

AdminTask.createManageme

ntScope [(’-name’, ’(ce

ll):localhostNode01Cell’,

’–scopeType’, ’cell’)]

Interactive mode example

usage:

v Using Jacl:

$AdminTask createManage

mentScope {-interactive}

v Using Jython string:

AdminTask.createManagem

entScope (’[-interactive]’)

v Using Jython list:

AdminTask.createManagem

entScope ([’-interactive’])

Chapter 16. Security 1647

Table 35. (continued)

Command name: Description: Target

object:

Parameters and return

values:

Examples:

deleteManage

mentScope

The deleteManage

mentScope

command deletes a

management object

from the

configuration.

None v Parameters:

- scopeName

The name that

uniquely

identifies the

management

scope. (String,

required)

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask deleteManage

mentScope {-scopeName

(cell):localhostNode01Cell}

v Using Jython string:

AdminTask.deleteManagem

entScope (’[-scopeName

(cell):localhostNode01

Cell]’)

v Using Jython list:

AdminTask.deleteManagem

entScope ([’-scopeName’,

’(cell):localhostNode01Cell’])

Interactive mode example

usage:

v Using Jacl:

$AdminTask deleteManage

mentScope {-interactive}

v Using Jython string:

AdminTask.deleteManage

mentScope (’[-interactive]’)

v Using Jython list:

AdminTask.deleteManage

mentScope ([’-interactive’])

1648 Administering applications and their environment

Table 35. (continued)

Command name: Description: Target

object:

Parameters and return

values:

Examples:

getManagementScope The

getManagementScope

command displays

the setting of a

management scope

object.

None v Parameters:

- scopeName

The name that

uniquely

identifies the

management

scope. (String,

required)

v Returns: The settings

of the management

scope object.

Batch mode example usage:

v Using Jacl:

$AdminTask getManageme

ntScope {-scopeName (ce

ll):localhostNode01Cell}

v Using Jython string:

AdminTask.getManagement

Scope (’[-scopeName (ce

ll):localhostNode01Cell]’)

v Using Jython list:

AdminTask.getManagement

Scope ([’-scopeName’,

’(cell):localhostNode01

Cell’])

Interactive mode example

usage:

v Using Jacl:

$AdminTask getManagement

Scope {-interactive}

v Using Jython string:

AdminTask.getManagement

Scope (’[-interactive]’)

v Using Jython list:

AdminTask.getManagement

Scope ([’-interactive’])

Chapter 16. Security 1649

Table 35. (continued)

Command name: Description: Target

object:

Parameters and return

values:

Examples:

listManagementScopes The

listManagementScopes

command lists the

management scopes

in the configuration.

None v Parameters:

-

displayObjectName

Set the value to

true to display

the object

names of the

management

scope. (Boolean,

optional)

v Returns: A list that

contains all of the

management scope

names.

Batch mode example usage:

v Using Jacl:

$AdminTask listManagem

entScopes { -name testKM

–provider IBMJSSE2 –alg

orithm IbmX509}

v Using Jython string:

AdminTask.listManageme

ntScopes (’[-name test

KM –provider IBMJSSE2

–algorithm IbmX509]’)

v Using Jython list:

AdminTask.listManageme

ntScopes ([’-name’,

’testKM’, ’–provider’,

’IBMJSSE2’, ’–algorithm’,

’IbmX509’])

Interactive mode example

usage:

v Using Jacl:

$AdminTask listManagem

entScopes {-interactive}

v Using Jython string:

AdminTask.listManagem

entScopes (’[-interac

tive]’)

v Using Jython list:

AdminTask.listManagem

entScopes ([’-interac

tive’])

Commands for the WSCertExpMonitorCommands group of the

AdminTask object

Use the commands in the WSCertExpMonitorCommands group to start or update the certificate expiration

monitor. For more information about the AdminTask object, see the Commands for the AdminTask object

article.

The following commands are available for the WSCertExpMonitorCommands group of the AdminTask

object:

1650 Administering applications and their environment

Table 36.

Command name: Description: Target

object:

Parameters and return

values:

Examples:

createWSCert

ExpMonitor

The createWSCert

ExpMonitor

command creates the

certificate expiration

monitor settings in the

configuration.

None v Parameters:

- name

The name that

uniquely

identifies the

certificate

expiration

monitor. (String,

required)

- autoReplace

Set the value of

this parameter to

true if you want

to replace a

certificate within

a certificate

expiration date.

If not, set the

value of this

parameter to

false. (Boolean,

required)

- deleteOld

Set the value of

this parameter to

true if you want

to delete an old

certificate during

certificate

expiration

monitoring. If

not, set the

value of this

parameter to

false. (Boolean,

required)

-

daysBeforeNotification

The number of

days before a

certificate

expires that you

want to be

notified of the

expiration.

(Integer,

required)

- wsScheduleName

The name of the

scheduler to use

for certificate

expiration.

(String, required)

Batch mode example usage:

v Using Jacl:

$AdminTask createWSCert

ExpMonitor {-name test

CertMon –autoReplace true

–deleteOld true –days

BeforeNotification 30

–wsScheduleName testSch

edule –wsNotificationName

testNotifier –isEnabled

false}

v Using Jython string:

AdminTask.createWSCert

ExpMonitor (’[-name tes

tCertMon –autoReplace

true –deleteOld true

–daysBeforeNotification

30 –wsScheduleName test

Schedule –wsNotificati

onName testNotifier

–isEnabled false]’)

v Using Jython list:

AdminTask.createWSCert

ExpMonitor ([’-name’,

’testCertMon’, ’–autoRe

place’, ’true’, ’–delete

Old’, ’true’, ’–daysBe

foreNotification’, ’30’,

’–wsScheduleName’, ’te

stSchedule’, ’–wsNotifi

cationName’, ’testNotif

ier’, ’–isEnabled’,

’false’])

Interactive mode example

usage:

v Using Jacl:

$AdminTask createWSCert

ExpMonitor {-interactive}

v Using Jython string:

AdminTask.createWSCert

ExpMonitor (’[-interac

tive]’)

v Using Jython list:

AdminTask.createWSCert

ExpMonitor ([’-interac

tive’])

Chapter 16. Security 1651

Table 36. (continued)

Command name: Description: Target

object:

Parameters and return

values:

Examples:

- wsNotificationName

The name of the

notifier to use for

certificate

expiration. (String,

required)

- isEnabled

Set the value of

this parameter to

true if the

certificate

expiration monitor

is enabled. If not,

set the value of

this parameter to

false. (Boolean,

optional)

v Returns: The

configuration object

name of the

certificate expiration

monitor object that

you created.

deleteWSCert

ExpMonitor

The deleteWSCert

ExpMonitorcommand

deletes the settings of

a scheduler from the

configuration.

None v Parameters:

- name

The name that

uniquely

identifies the

certificate

expiration

monitor. (String,

required)

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask deleteWSCert

ExpMonitor {-name test

CertMon}

v Using Jython string:

AdminTask.deleteWSCertE

xpMonitor (’[-name test

CertMon]’)

v Using Jython list:

AdminTask.deleteWSCert

ExpMonitor ([’-name’,

’testCertMon’])

Interactive mode example

usage:

v Using Jacl:

$AdminTask deleteWSCert

ExpMonitor {-interactive}

v Using Jython string:

AdminTask.deleteWSCert

ExpMonitor (’[-interac

tive]’)

v Using Jython list:

AdminTask.deleteWSCert

ExpMonitor ([’-interac

tive’])

1652 Administering applications and their environment

Table 36. (continued)

Command name: Description: Target

object:

Parameters and return

values:

Examples:

getWSCertExpMonitor The

getWSCertExpMonitor

command displays

the settings of a

particular scheduler.

None v Parameters:

- name

The name that

uniquely

identifies the

certificate

expiration

monitor. (String,

required)

v Returns: The settings

of the scheduler that

you specified.

Batch mode example usage:

v Using Jacl:

$AdminTask getWSCertExp

Monitor {-name testCertMon}

v Using Jython string:

AdminTask getWSCertExp

Monitor (’[-name testCe

rtMon]’)

v Using Jython list:

AdminTask getWSCertExpM

onitor ([’-name’, ’test

CertMon’])

Interactive mode example

usage:

v Using Jacl:

$AdminTask getWSCertExp

Monitor {-interactive}

v Using Jython string:

AdminTask.getWSCertExp

Monitor (’[-interactive]’)

v Using Jython list:

AdminTask.getWSCertExp

Monitor ([’-interactive’])

Chapter 16. Security 1653

Table 36. (continued)

Command name: Description: Target

object:

Parameters and return

values:

Examples:

listWSCertExpMonitor The

listWSCertExpMonitor

command lists the

scheduler in the

configuration.

None v Parameters:

-

displayObjectNames

If you set the

value of this

parameter to

true, the

command

returns the

certificate

expiration

monitor

configuration

object. If you set

the value of this

parameter to

false, the

command

returns the

name of the

certificate

expiration

monitor.

(Boolean,

optional)

v Returns: The

scheduler in the

configuration.

Batch mode example usage:

v Using Jacl:

$AdminTask listWSCertExp

Monitor {-displayObject

Name false}

v Using Jython string:

AdminTask.listWSCertExp

Monitor (’[-displayObject

Name false]’)

v Using Jython list:

AdminTask.listWSCertExp

Monitor ([’-displayObject

Name’, ’false’])

Interactive mode example

usage:

v Using Jacl:

$AdminTask listWSCert

ExpMonitor {-interactive}

v Using Jython string:

AdminTask.listWSCertExp

Monitor (’[-interactive]’)

v Using Jython list:

AdminTask.listWSCertExp

Monitor ([’-interactive’])

1654 Administering applications and their environment

Table 36. (continued)

Command name: Description: Target

object:

Parameters and return

values:

Examples:

modifyWSCert

ExpMonitor

The modifyWSCert

ExpMonitorcommand

changes the setting of

an existing scheduler.

None v Parameters:

- name

The name that

uniquely

identifies the

certificate

expiration

monitor. (String,

required)

- autoReplace

Set the value of

this parameter to

true if you want

to replace a

certificate within

a certificate

expiration date.

If not, set the

value of this

parameter to

false. (Boolean,

required)

- deleteOld

Set the value of

this parameter to

true if you want

to delete an old

certificate during

certificate

expiration

monitoring. If

not, set the

value of this

parameter to

false. (Boolean,

required)

-

daysBeforeNotification

The number of

days before a

certificate

expires that you

want to be

notified of the

expiration.

(Integer,

required)

- wsScheduleName

The name of the

scheduler to use

for certificate

expiration.

(String, required)

Batch mode example usage:

v Using Jacl:

$AdminTask modifyWSCert

ExpMonitor {-name testC

ertMon –autoReplace fal

se –deleteOld false –d

aysBeforeNotification

20 –isEnabled true}

v Using Jython string:

AdminTask.modifyWSCert

ExpMonitor (’[-name t

estCertMon –autoReplac

e false –deleteOld fal

se –daysBeforeNotifica

tion 20 –isEnabled true]’)

v Using Jython list:

AdminTask.modifyWSCert

ExpMonitor ([’-name’,

’testCertMon’, ’–autoR

eplace’, ’false’, ’–de

leteOld’, ’false’, ’–d

aysBeforeNotification’,

’20’, ’–isEnabled’, ’tr

ue’])

Interactive mode example

usage:

v Using Jacl:

$AdminTask modifyWSCert

ExpMonitor {-interactive}

v Using Jython string:

AdminTask.modifyWSCert

ExpMonitor (’[-interac

tive]’)

v Using Jython list:

AdminTask.modifyWSCert

ExpMonitor ([’-intera

ctive’])

Chapter 16. Security 1655

Table 36. (continued)

Command name: Description: Target

object:

Parameters and return

values:

Examples:

- wsNotificationName

The name of the

notifier to use for

certificate

expiration. (String,

required)

- isEnabled

Set the value of

this parameter to

true if the

certificate

expiration monitor

is enabled. If not,

set the value of

this parameter to

false. (Boolean,

optional)

v Returns: None

startCertificate

ExpMonitor

The startCertificate

ExpMonitorcommand

performs certificate

monitoring. This

command visits all

key stores and

checks to see if they

are within certificate

expiration range.

None v Parameters: None

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask startCertif

icateExpMonitor

v Using Jython:

AdminTask.startCertifi

cateExpMonitor()

Interactive mode example

usage:

v Using Jacl:

$AdminTask startCertific

ateExpMonitor {-interactive}

v Using Jython string:

AdminTask.startCertific

ateExpMonitor (’[-inter

active]’)

v Using Jython list:

AdminTask.startCertific

ateExpMonitor ([’-inter

active’])

Commands for the KeySetGroupCommands group of the AdminTask

object

For more information about the AdminTask object, see the Commands for the AdminTask object article.

The following commands are available for the KeySetGroupCommands group of the AdminTask object:

1656 Administering applications and their environment

Table 37.

Command name: Description: Target

object:

Parameters and return

values:

Examples:

createKeySetGroup The

createKeySetGroup

command creates the

key set group settings

in the configuration.

Use this command to

manage groups of

public, private, and

shared keys.

None v Parameters:

- name

The name that

uniquely

identifies the key

set group.

(String, required)

- scopeName

The name of the

scope. (String,

optional)

- autoGenerate

Set the value of

this parameter to

true if you want

to automatically

generate keys. If

not, set the

value to false.

(Boolean,

optional)

- wsScheduleName

The name of the

scheduler to use

to perform key

generation.

(String, required)

-

keySetObjectNames

A list of key set

configuration

names

separated by

colons (:).

(String, required)

v Returns: The

configuration object

name of the key set

group object that you

created.

Batch mode example usage:

v Using Jacl:

$AdminTask createKeySet

Group {-name keySetGrp

–autoGenerate true –wsS

cheduleName testSchedule

–keySetObjectNames test

KeySet(cells/localhost

Node01Cell|security.xml#

KeySet_1130354347825)}

v Using Jython string:

AdminTask.createKeySetGr

oup(’[-name keySetGrp –

autoGenerate true –wsSch

eduleName testSchedule

–keySetObjectNames test

KeySet(cells/localhostN

ode01Cell|security.xml#

KeySet_1130354347825)]’)

v Using Jython list:

AdminTask.createKeySetGr

oup([’-name’, ’keySetGrp’,

 ’–autoGenerate’, ’true’,

’–wsScheduleName’, ’test

Schedule’, ’–keySetObject

Names’, ’testKeySet(cells

/localhostNode01Cell|sec

urity.xml#KeySet_1130354

347825)’])

Interactive mode example

usage:

v Using Jacl:

$AdminTask createKey

SetGroup {-interactive}

v Using Jython string:

AdminTask.createKeySet

Group (’[-interactive]’)

v Using Jython list:

AdminTask.createKeySet

Group ([’-interactive’])

Chapter 16. Security 1657

Table 37. (continued)

Command name: Description: Target

object:

Parameters and return

values:

Examples:

deleteKeySetGroup The

deleteKeySetGroup

command deletes the

settings of a key set

group from the

configuration.

None v Parameters:

- name

The name that

uniquely

identifies the key

set group.

(String, required)

- scopeName

The name of the

scope. (String,

optional)

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask deleteKeySet

Group {-name keySetGrp }

v Using Jython string:

AdminTask.deleteKeySet

Group (’[-name keySetGrp]’)

v Using Jython list:

AdminTask.deleteKeySet

Group ([’-name’, ’key

SetGrp’])

Interactive mode example

usage:

v Using Jacl:

$AdminTask deleteKey

SetGroup {-interactive}

v Using Jython string:

AdminTask.deleteKeySet

Group (’[-interactive]’)

v Using Jython list:

AdminTask.deleteKeySet

Group ([’-interactive’])

1658 Administering applications and their environment

Table 37. (continued)

Command name: Description: Target

object:

Parameters and return

values:

Examples:

generateKeys ForKey

SetGroup

The generateKeys

ForKey

SetGroupcommand

generates keys for all

of the keys in the key

sets that make up the

key set group.

None v Parameters:

-

keySetGroupName

The name of the

key set group.

(String, required)

-

keySetGroupScope

The scope of the

key set group.

(String, optional)

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask generateKey

ForKeySetGroup {-keySet

GroupName keySetGrp}

v Using Jython string:

AdminTask.generateKey

ForKeySetGroup (’[-key

SetGroupName keySetGrp]’)

v Using Jython list:

AdminTask.generateKey

ForKeySetGroup ([’-key

SetGroupName’, ’keySetGrp’])

Interactive mode example

usage:

v Using Jacl:

$AdminTask generateKeys

ForKeySetGroup {-intera

ctive}

v Using Jython string:

AdminTask.generateKeys

ForKeySetGroup (’[-int

eractive]’)

v Using Jython list:

AdminTask.generateKeys

ForKeySetGroup ([’-inte

ractive’])

Chapter 16. Security 1659

Table 37. (continued)

Command name: Description: Target

object:

Parameters and return

values:

Examples:

getKeySetGroups The

getKeySetGroups

command displays

the settings of a

particular key set

group.

None v Parameters:

- name

The name that

uniquely

identifies the key

set group.

(String, required)

- scopeName

The name of the

scope. (String,

optional)

v Returns: The settings

of the specified key

set group.

Batch mode example usage:

v Using Jacl:

$AdminTask getKeySetGr

oup { -name keySetGrp }

v Using Jython string:

AdminTask.getKeySetGro

up (’[-name keySetGrp]’)

v Using Jython list:

AdminTask.getKeySetGro

up ([’-name’, ’keySet

Grp’])

Interactive mode example

usage:

v Using Jacl:

$AdminTask getKeySetGr

oups {-interactive}

v Using Jython string:

AdminTask.getKeySetGr

oups (’[-interactive]’)

v Using Jython list:

AdminTask.getKeySetGr

oups ([’-interactive’])

1660 Administering applications and their environment

Table 37. (continued)

Command name: Description: Target

object:

Parameters and return

values:

Examples:

listKeySetGroups The

listKeySetGroups

command lists the

key set groups for a

particular scope.

None v Parameters:

- scopeName

The name of the

scope. (String,

optional)

-

displayObjectNames

If you set the

value of this

parameter to

true, the

command

returns a list of

all of the key set

group objects

within a scope. If

you set the

value of this

parameter to

false, the

command

returns a list of

strings that

contain the key

set group name

and

management

scope. (Boolean,

optional)

v Returns: A list of key

set groups.

Batch mode example usage:

v Using Jacl:

$AdminTask listKeySetGr

oup {-displayObjectName

true}

v Using Jython string:

AdminTask.listKeySetGro

up (’[-displayObjectName

true]’)

v Using Jython list:

AdminTask.listKeySetGroup

([’-displayObjectName’,

’true’])

Interactive mode example

usage:

v Using Jacl:

$AdminTask listKeySetG

roups {-interactive}

v Using Jython string:

AdminTask.listKeySetGr

oups (’[-interactive]’)

v Using Jython list:

AdminTask.listKeySetGr

oups ([’-interactive’])

Chapter 16. Security 1661

Table 37. (continued)

Command name: Description: Target

object:

Parameters and return

values:

Examples:

modifyKeySetGroup The

modifyKeySetGroup

command changes

the settings of an

existing key set

group.

None v Parameters:

- name

The name that

uniquely

identifies the key

set group.

(String, required)

- scopeName

The name of the

scope. (String,

optional)

- autoGenerate

Set the value of

this parameter to

true if you want

to automatically

generate keys. If

not, set the

value to false.

(Boolean,

optional)

- wsScheduleName

The name of the

scheduler to use

to perform key

generation.

(String, optional)

-

keySetObjectNames

A list of key set

configuration

names

separated by

colons (:).

(String, optional)

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask modifyKeySet

Group {-name keySetGrp

–autoGenetate false}

v Using Jython string:

AdminTask.modifyKeySet

Group (’[-name keySetGrp

–autoGenetate false]’)

v Using Jython list:

AdminTask.modifyKeySet

Group ([’-name’, ’key

SetGrp’, ’–autoGenetate’,

’false’])

Interactive mode example

usage:

v Using Jacl:

$AdminTask modifyKeySet

Group {-interactive}

v Using Jython string:

AdminTask.modifyKeySet

Group (’[-interactive]’)

v Using Jython list:

AdminTask.modifyKeySet

Group ([’-interactive’])

Commands for the KeySetCommands group of the AdminTask object

For more information about the AdminTask object, see the Commands for the AdminTask object article.

The following commands are available for the KeySetCommands group of the AdminTask object:

1662 Administering applications and their environment

Table 38.

Command name: Description: Target

object:

Parameters and return

values:

Examples:

createKeySet The createKeySet

command creates the

key set settings in the

configuration. Use

this command to

control key instances

that have the same

type.

None v Parameters:

- name

The name that

uniquely

identifies the key

set. (String,

required)

- scopeName

The name of the

scope. (String,

optional)

- aliasPrefix

The prefix for

the key alias

when a new key

generates.

(String, required)

- password

The password

that protects the

key in the key

store. (String,

required)

-

maxKeyReferences

The maximum

number of key

references

returned keys

from this key

set. (Integer,

required)

- deleteOldKeys

Set the value of

this parameter to

true to delete

old keys when

new keys are

generated.

Otherwise, set

the value of this

parameter to

false. (Boolean,

optional)

-

keyGenerationClass

The class that is

used to generate

new keys in the

key set. (String,

optional)

Batch mode example usage:

v Using Jacl:

$AdminTask createKeySet

{-name testKeySet –alias

Prefix test –password pwd

–maxKeyReferences 2 –del

eteOldKeys true –keyStor

eName testKeyStore –isK

eyPair false}

v Using Jython string:

AdminTask.createKeySet(’

[-name testKeySet –alias

Prefix test –password

pwd –maxKeyReferences 2

–deleteOldKeys true –key

StoreName testKeyStore

–isKeyPair false]’)

v Using Jython list:

AdminTask.createKeySet

([’-name’, ’testKeySet’,

’–aliasPrefix’, ’test’,

’–password’, ’pwd’, ’–max

KeyReferences’, ’2’,

’–deleteOldKeys’, ’true’,

’–keyStoreName’, ’test

KeyStore’, ’–isKeyPair’,

’false’])

Interactive mode example

usage:

v Using Jacl:

$AdminTask createKeySet

{-interactive}

v Using Jython string:

AdminTask.createKeySet

(’[-interactive]’)

v Using Jython list:

AdminTask.createKeySet

([’-interactive’])

Chapter 16. Security 1663

Table 38. (continued)

Command name: Description: Target

object:

Parameters and return

values:

Examples:

- keyStoreName

The key store that

contains the keys.

(String, required)

-

keyStoreScopeName

The management

scope where the

key store is

located. (String,

optional)

- isKeyPair

Set the value of

this parameter to

true if the keys in

the key set are key

pairs. Otherwise,

set the value of

this parameter to

false. (Boolean,

optional)

v Returns: The

configuration object

name of the key set

object that you

created.

deleteKeySet The deleteKeySet

command deletes the

settings of a key set

from the

configuration.

None v Parameters:

- name

The name that

uniquely

identifies the key

set. (String,

required)

- scopeName

The name of the

scope. (String,

optional)

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask deleteKeySet

{-name testKeySet}

v Using Jython string:

AdminTask.deleteKeySet

(’[-name testKeySet]’)

v Using Jython list:

AdminTask.deleteKeySet

([’-name’, ’testKeySet’])

Interactive mode example

usage:

v Using Jacl:

$AdminTask deleteKeySet

{-interactive}

v Using Jython string:

AdminTask.deleteKeySet

(’[-interactive]’)

v Using Jython list:

AdminTask.deleteKeySet

([’-interactive’])

1664 Administering applications and their environment

Table 38. (continued)

Command name: Description: Target

object:

Parameters and return

values:

Examples:

generateKey

ForKeySet

The generateKey

ForKeySet command

generates keys for

the keys in the key

set.

None v Parameters:

- keySetName

The name of the

key set. (String,

required)

- keySetScope

The scope of the

key set. (String,

optional)

-

keySetSaveConfig

Set the value of

this parameter to

true to save the

configuration of

the key set.

Otherwise, set

the value of this

parameter to

false. (Boolean,

optional)

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask generateKey

ForKeySet{ -keySetName

testKeySet }

v Using Jython string:

AdminTask.generateKeyFor

KeySet(’[-keySetName

testKeySet]’)

v Using Jython list:

AdminTask.generateKeyFor

KeySet([’-keySetName’,

’testKeySet’])

Interactive mode example

usage:

v Using Jacl:

$AdminTask generateKeyFor

KeySet {-interactive}

v Using Jython string:

AdminTask.generateKeyFo

rKeySet (’[-interactive]’)

v Using Jython list:

AdminTask.generateKeyFo

rKeySet ([’-interactive’])

getKeySet The getKeySet

command displays

the settings of a

particular key set.

None v Parameters:

- name

The name that

uniquely

identifies the key

set. (String,

required)

- scopeName

The name of the

scope. (String,

optional)

v Returns: The settings

of the specified key

set group.

Batch mode example usage:

v Using Jacl:

$AdminTask getKeySet

{-name testKeySet}

v Using Jython string:

AdminTask.getKeySet

(’[-name testKeySet]’)

v Using Jython list:

AdminTask.getKeySet

([’-name’, ’testKeySet’])

Interactive mode example

usage:

v Using Jacl:

$AdminTask getKeySet

{-interactive}

v Using Jython string:

AdminTask.getKeySet

(’[-interactive]’)

v Using Jython list:

AdminTask.getKeySet

([’-interactive’])

Chapter 16. Security 1665

Table 38. (continued)

Command name: Description: Target

object:

Parameters and return

values:

Examples:

listKeySets The listKeySets

command lists the

key sets in a

particular scope.

None v Parameters:

- scopeName

The name of the

scope. (String,

optional)

-

displayObjectNames

Set the value of

this parameter to

true to list the

key set

configuration

objects within

the scope. Set

the value of this

parameter to

false if you

want to list the

strings that

contain the key

set group name

and

management

scope. (Boolean,

optional)

v Returns: The key

sets for the scope

that you specified.

Batch mode example usage:

v Using Jacl:

$AdminTask listKeySets

{-displayObjectName true}

v Using Jython string:

AdminTask.listKeySets

(’[-displayObjectName

true]’)

v Using Jython list:

AdminTask.listKeySets

([’-displayObjectName’,

’true’])

Interactive mode example

usage:

v Using Jacl:

$AdminTask listKeySets

{-interactive}

v Using Jython string:

AdminTask.listKeySets

(’[-interactive]’)

v Using Jython list:

AdminTask.listKeySets

([’-interactive’])

1666 Administering applications and their environment

Table 38. (continued)

Command name: Description: Target

object:

Parameters and return

values:

Examples:

modifyKeySet The modifyKeySet

command changes

the settings of an

existing key set.

None v Parameters:

- name

The name that

uniquely

identifies the key

set. (String,

required)

- scopeName

The name of the

scope. (String,

optional)

- aliasPrefix

The prefix for

the key alias

when a new key

generates.

(String, optional)

- password

The password

that protects the

key in the key

store. (String,

optional)

-

maxKeyReferences

The maximum

number of key

references

returned keys

from this key

set. (Integer,

optional)

- deleteOldKeys

Set the value of

this parameter to

true to delete

old keys when

new keys are

generated.

Otherwise, set

the value of this

parameter to

false. (Boolean,

optional)

-

keyGenerationClass

The class that is

used to generate

new keys in the

key set. (String,

optional)

Batch mode example usage:

v Using Jacl:

$AdminTask modifyKeySet

{-name testKeySet -maxKey

References 3 –deleteOld

Keys false}

v Using Jython string:

AdminTask.modifyKeySet

(’[-name testKeySet -max

KeyReferences 3 –delete

OldKeys false]’)

v Using Jython list:

AdminTask.modifyKeySet

([’-name’, ’testKeySet’,

’-maxKeyReferences’,

’3’, ’–deleteOldKeys’,

’false’])

Interactive mode example

usage:

v Using Jacl:

$AdminTask modifyKeySet

{-interactive}

v Using Jython string:

AdminTask.modifyKeySet

(’[-interactive]’)

v Using Jython list:

AdminTask.modifyKeySet

([’-interactive’])

Chapter 16. Security 1667

Table 38. (continued)

Command name: Description: Target

object:

Parameters and return

values:

Examples:

- keyStoreName

The key store that

contains the keys.

(String, optional)

-

keyStoreScopeName

The management

scope where the

key store is

located. (String,

optional)

- isKeyPair

Set the value of

this parameter to

true if the keys in

the key set are key

pairs. Otherwise,

set the value of

this parameter to

false. (Boolean,

optional)

v Returns: None

Commands for the KeyReferenceCommands group of the AdminTask

object

For more information about the AdminTask object, see the Commands for the AdminTask object article.

The following commands are available for the KeyReferenceCommands group of the AdminTask object:

1668 Administering applications and their environment

Table 39.

Command name: Description: Target

object:

Parameters and return

values:

Examples:

createKeyReference The

createKeyReference

command creates the

key reference setting

in the configuration

for key set objects.

None v Parameters:

- keySetName

The name that

uniquely

identifies the key

set to which the

key reference

belongs. (String,

required)

- keySetScope

The

management

scope of the key

set. (String,

optional)

- keyAlias

The alias name

that identifies

the key for the

key set that you

specify. (String,

required)

- keyPassword

The password

used for

encrypting the

key. (String,

optional)

-

keyPasswordVerify

The password

used for

encrypting the

key. (String,

optional)

- version

The version of

the key

reference.

(String, optional)

-

keyReferenceSaveConfig

Set the value of

this parameter to

true to save the

key reference to

the

configuration.

Otherwise, set

the value to

false. (String,

optional)

Batch mode example usage:

v Using Jacl:

$AdminTask createKeyReference

{-keySetName testKeySet -key

Alias testKey –password test

PWD –passwordVerify testPWD

–keyReferenceSaveConfig true}

v Using Jython string:

AdminTask.createKeyReference

(’[-keySetName testKeySet

-keyAlias testKey –password

testPWD –passwordVerify test

PWD –keyReferenceSaveConfig

true]’)

v Using Jython list:

AdminTask.createKeyReference

([’-keySetName’, ’testKeySet’,

’-keyAlias’, ’testKey’, ’–pa

ssword’, ’testPWD’, ’–passw

ordVerify’, ’testPWD’, ’–key

ReferenceSaveConfig’, ’true’])

Interactive mode example

usage:

v Using Jacl:

$AdminTask createKeyRe

ference {-interactive}

v Using Jython string:

AdminTask.createKeyRef

erence (’[-interactive]’)

v Using Jython list:

AdminTask.createKeyRef

erence ([’-interactive’])

Chapter 16. Security 1669

Table 39. (continued)

Command name: Description: Target

object:

Parameters and return

values:

Examples:

v Returns: The

configuration object

name of the key

reference scope

object that you

created.

deleteKeyReference The

deleteKeyReference

command deletes a

key reference object

from the key set

object in the

configuration.

None v Parameters:

- keySetName

The name that

uniquely

identifies the key

set to which the

key reference

belongs. (String,

required)

- keySetScope

The

management

scope of the key

set. (String,

optional)

- keyAlias

The alias name

that identifies

the key for the

key set that you

specify. (String,

required)

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask deleteKeyRef

erence { -keySetName tes

tKeySet –keyAlias testKey }

v Using Jython string:

AdminTask.deleteKeyRefe

rence (’[-keySetName tes

tKeySet –keyAlias test

Key]’)

v Using Jython list:

AdminTask.deleteKeyRefe

rence ([’-keySetName’,

’testKeySet’, ’–keyAlias’,

’testKey’])

Interactive mode example

usage:

v Using Jacl:

$AdminTask deleteKeyRe

ference {-interactive}

v Using Jython string:

AdminTask.deleteKeyRef

erence (’[-interactive]’)

v Using Jython list:

AdminTask.deleteKeyRef

erence ([’-interactive’])

1670 Administering applications and their environment

Table 39. (continued)

Command name: Description: Target

object:

Parameters and return

values:

Examples:

getKeyReference The

getKeyReference

command displays

the setting of a key

reference object.

None v Parameters:

- keySetName

The name that

uniquely

identifies the key

set to which the

key reference

belongs. (String,

required)

- keySetScope

The

management

scope of the key

set. (String,

optional)

- keyAlias

The alias name

that identifies

the key for the

key set that you

specify. (String,

required)

v Returns: The settings

of the key reference

object.

Batch mode example usage:

v Using Jacl:

$AdminTask getKeyRefere

nce { -keySetName test

KeySet –keyAlias testKey }

v Using Jython string:

AdminTask.getKeyRefere

nce (’[-keySetName test

KeySet –keyAlias testKey]’)

v Using Jython list:

AdminTask.getKeyRefere

nce ([’-keySetName’,

’testKeySet’, ’–keyAlias’,

’testKey’])

Interactive mode example

usage:

v Using Jacl:

$AdminTask getKeyRefer

ence {-interactive}

v Using Jython string:

AdminTask.getKeyRefer

ence (’[-interactive]’)

v Using Jython list:

AdminTask.getKeyRefere

nce ([’-interactive’])

Chapter 16. Security 1671

Table 39. (continued)

Command name: Description: Target

object:

Parameters and return

values:

Examples:

listKeyReferences The

listKeyReferences

command lists the

key references for a

particular key set in

the configuration.

None v Parameters:

- keySetName

The name that

uniquely

identifies the key

set to which the

key reference

belongs. (String,

required)

- keySetScope

The

management

scope of the key

set. (String,

optional)

v Returns: The

configuration object

name of the key

reference scope

object that you

created.

Batch mode example usage:

v Using Jacl:

$AdminTask listKeyRef

ereces { -keySetName

testKeySet}

v Using Jython string:

AdminTask.listKeyRefere

ces (’[-keySetName test

KeySet]’)

v Using Jython list:

AdminTask.listKeyRefere

ces ([’-keySetName’,

’testKeySet’])

Interactive mode example

usage:

v Using Jacl:

$AdminTask listKeyRef

erences {-interactive}

v Using Jython string:

AdminTask.listKeyRefer

ences (’[-interactive]’)

v Using Jython list:

AdminTask.listKeyRefer

ences ([’-interactive’])

Commands for the securityEnablement group of the AdminTask object

For more information about the AdminTask object, see the Commands for the AdminTask object article.

The following commands are available for the securityEnablement group of the AdminTask object:

1672 Administering applications and their environment

Table 40.

Command name: Description: Target

object:

Parameters and return

values:

Examples:

GlobalSettings None v Parameters:

- secureApps

Enables

application

security. The

default value is

true. (Boolean,

required)

-

secureLocalResources

Enables Java 2

Security. The

default value is

true. (Boolean,

required)

- ltpaPassword

Defines the LTPA

password. Valid

values include the

password used by

LTPA. (String,

required)

- userRegistryType

Defines the type of

user registry to

use. Valid values

include: Embedded,

LDAP, LocalOS, or

Custom. (String,

required)

v Returns: None

Interactive mode example

usage:

v Using Jacl:

$AdminTask GlobalSettings

{-interactive}

v Using Jython string:

AdminTask.GlobalSettings

(’[-interactive]’)

v Using Jython list:

AdminTask.GlobalSettings

([’-interactive’])

Chapter 16. Security 1673

Table 40. (continued)

Command name: Description: Target

object:

Parameters and return

values:

Examples:

CustomRegistry The

CustomRegistry

command

checks that the

specified name

for the primary

administrator

does not

already exist in

the custom

registry.

None v Parameters:

- primaryAdminName

Represents a

name of the

primary

administrator. The

value must be a

valid administrator

name. (String,

required)

- serverUserName

Represents the

user name used to

connect to internal

security routines.

The value must be

a valid user name.

(String, required)

-

customRegistryClass

Represents the

class name of the

custom user

registry

implementation of

the UserRegistry.

The value must be

a valid class name

for a custom

registry. (String,

required)

- customProperties

Custom user

registry properties.

An array or

name-value

properties. (String,

required)

- customName

The custom user

registry property

name. (String,

required)

- customValue

The custom user

registry property

value that is

associated with the

property name.

(String, required)

v Returns: A value of

true if the primary

administrator does not

already exist in the

custom registry.

Otherwise, returns a

value of false.

Interactive mode example

usage:

v Using Jacl:

$AdminTask CustomRegistry

{-interactive}

v Using Jython string:

AdminTask.CustomRegistry

(’[-interactive]’)

v Using Jython list:

AdminTask.CustomRegistry

([’-interactive’])

1674 Administering applications and their environment

Table 40. (continued)

Command name: Description: Target

object:

Parameters and return

values:

Examples:

EmbeddedRegistry The

EmbeddedRegistry

command

checks that the

specified name

for the primary

administrator

does not

already exist in

the WIM

file-based

registry.

Returns true if

it does not;

false,

otherwise.

None v Parameters:

- primaryAdminName

This string

represents a name

of the primary

administrator. The

value must be a

valid administrator

name. (String,

required)

- adminPassword

The password

associated with the

primary

administrator. The

value must be a

valid administrator

password. (String,

required)

- serverUserName

This string

represents the

user name used to

connect to internal

security routines.

The value must be

a valid user name.

(String, required)

v Returns: A value of

true if the specified

name for the primary

administrator does not

already exist in the

WIM file-based registry.

Otherwise, returns a

value of false.

Interactive mode example

usage:

v Using Jacl:

$AdminTask EmbeddedRegistry

{-interactive}

v Using Jython string:

AdminTask.EmbeddedRegistry

(’[-interactive]’)

v Using Jython list:

AdminTask.EmbeddedRegistry

([’-interactive’])

Chapter 16. Security 1675

Table 40. (continued)

Command name: Description: Target

object:

Parameters and return

values:

Examples:

LDAPRegistry The

LDAPRegistry

command

checks, after all

the inputs for

the LDAP

registry have

been defined,

that a

connection can

be made

successfully to

the LDAP

server. An SSL

connection test

to LDAP is also

supported

using this

command.

None v Parameters:

- ldapServerType

The type of LDAP

user registry to be

connected to

WebSphere

Application Server.

Valid values

include: IBM

Tivoli Directory

Server, SecureWay,

Sun ONE, Domino,

Active Directory,

eDirectory,

Custom. (String,

required)

- ldapHostname

The host name for

the LDAP server.

(String, required)

- ldapPort

The port to

connect to the

LDAP server.

(Integer, required)

- ldapBaseDN

The base

distinguished

name of the

directory service,

the starting point

for searches.

(String, required)

- ldapBindDN

The bind

distinguished

name, used to

bind to the

directory server.

(String, required)

Interactive mode example

usage:

v Using Jacl:

$AdminTask LDAPRegistry

{-interactive}

v Using Jython string:

AdminTask.LDAPRegistry

(’[-interactive]’)

v Using Jython list:

AdminTask.LDAPRegistry

([’-interactive’])

1676 Administering applications and their environment

Table 40. (continued)

Command name: Description: Target

object:

Parameters and return

values:

Examples:

- ldapBindPassword

The password for the

application server,

used to bind to the

directory service

(String, required)

- ldapServerUserName

The user ID that is

used to run

WebSphere

Application Server for

security purposes.

(String, required)

v Returns: A value of

true if the connection

was successful.

Otherwise, returns a

value of false.

LocalOSRegistry The

LocalOSRegistry

command

checks that the

specified name

for the primary

administrator

does not

already exist in

the LocalOS

registry.

None v Parameters:

- primaryAdminName

This string

represents a name

of the primary

administrator. The

value must be a

valid administrator

name. (String,

required)

- serverUserName

This string

represents the

user name used to

connect to internal

security routines.

The value must be

a valid user name.

(String, required)

v Returns: A value of

true if the specified

name for the primary

administrator does not

already exist in the

LocalOS registry.

Otherwise, returns a

value of false.

Interactive mode example

usage:

v Using Jacl:

$AdminTask LocalOSRegist

ry {-interactive}

v Using Jython string:

AdminTask.LocalOSRegist

ry (’[-interactive]’)

v Using Jython list:

AdminTask.LocalOSRegist

ry ([’-interactive’])

Chapter 16. Security 1677

Table 40. (continued)

Command name: Description: Target

object:

Parameters and return

values:

Examples:

CurrentSettings The

CurrentSettings

command

returns a string

that represents

all of the

existing

settings set by

the wizard that

will be read

from the

workspace

instead of from

the

configuration

repository of

the

security.xml

file.

None v Parameters:

-

currentWizardSettings

A properties object

that contains all

the current settings

selected through

the wizard.

(Properties,

required)

v Returns: A string of

security settings as

name-value pairs.

Interactive mode example

usage:

v Using Jacl:

$AdminTask CurrentSettings

{-interactive}

v Using Jython string:

AdminTask.CurrentSettings

(’[-interactive]’)

v Using Jython list:

AdminTask.CurrentSettings

([’-interactive’])

Commands for the CertificateRequestCommands group of the

AdminTask object

For more information about the AdminTask object, see the Commands for the AdminTask object article.

The following commands are available for the CertificateRequestCommands group of the AdminTask

object:

1678 Administering applications and their environment

Table 41.

Command name: Description: Target

object:

Parameters and return

values:

Examples:

createCertificate

Request

The createCertificate

Request command

creates a certificate

request that is

associated with a

particular key store.

None v Parameters:

- keyStoreName

The name that

uniquely

identifies the key

store

configuration

object. (String,

required)

- keyStoreScope

The scope name

of the key store.

(String, optional)

- certificateAlias

The name that

uniquely

identifies the

certificate

request in a key

store. (String,

required)

- certificateVersion

The certificate

version. (String,

required)

- certificateSize

(Integer,

required)

-

certificateCommonName

(String, required)

-

certificateOrganization

(String, optional)

-

certificateOrganizationUnit

(String, optional)

- certificateLocality

(String, optional)

- certificateState

The state code

for the

certificate.

(String, optional)

- certificateZip

The zip code for

the certificate.

(String, optional)

Batch mode example usage:

v Using Jacl:

$AdminTask createCertificateRequest

{-keyStoreName testKeyStore

-certificateAlias certReq

-certificateSize 1024 -certificate

CommonName localhost -certificate

Organization testing -certificate

RequestFilePath c:\temp\testCertReq.arm}

v Using Jython string:

AdminTask.createCertificateRequest

(’[-keyStoreName testKeyStore

-certificateAlias certReq

-certificateSize 1024 -certificate

CommonName localhost -certificate

Organization testing -certificate

RequestFilePath c:\temp\testCertReq.arm]

v Using Jython list:

AdminTask.createCertificateRequest

([’-keyStoreName’, ’testKeyStore’,

’-certificateAlias’, ’certReq’,

’-certificateSize’, ’1024’,

 ’-certificateCommonName’,

 ’localhost’,

 ’-certificateOrganization’,

 ’testing’,

 ’-certificateRequestFilePath’,

 ’c:\temp\testCert

Req.arm’])

Interactive mode example

usage:

v Using Jacl:

$AdminTask createCertific

ateRequest {-interactive}

v Using Jython string:

AdminTask.createCertific

ateRequest (’[-interactive]’)

v Using Jython list:

AdminTask.createCertifica

teRequest ([’-interactive’])

Chapter 16. Security 1679

Table 41. (continued)

Command name: Description: Target

object:

Parameters and return

values:

Examples:

- certificateCountry

The country for the

certificate. (String,

optional)

- certificateValidDays

The amount of time

in days for which

the certificate is

valid. (Integer,

optional)

-

certificateRequestFilePath

The file location of

the certificate

request that can be

sent to a certificate

authority. (String,

required)

v Returns: The

configuration object

name of the key

store object that you

created.

deleteCertificate

Request

The deleteCertificate

Request command

deletes a certificate

request from a key

store.

None v Parameters:

- keyStoreName

The name that

uniquely

identifies the key

store

configuration

object. (String,

required)

- keyStoreScope

The scope name

of the key store.

(String, optional)

- certificateAlias

The name that

uniquely

identifies the

certificate

request in a key

store. (String,

required)

v Returns: None

Interactive mode example

usage:

v Using Jacl:

$AdminTask deleteCertifi

cateRequest {-interactive}

v Using Jython string:

AdminTask.deleteCertifi

cateRequest (’[-interac

tive]’)

v Using Jython list:

AdminTask.deleteCertifi

cateRequest ([’-interac

tive’])

1680 Administering applications and their environment

Table 41. (continued)

Command name: Description: Target

object:

Parameters and return

values:

Examples:

extractCertificate

Request

The

extractCertificate

Requestcommand

extracts a certificate

request to a file.

None v Parameters:

- keyStoreName

The name that

uniquely

identifies the key

store

configuration

object. (String,

required)

- keyStoreScope

The scope name

of the key store.

(String, optional)

- certificateAlias

The name that

uniquely

identifies the

certificate

request in a key

store. (String,

required)

-

certificateRequestFilePath

The file location

of the certificate

request that can

be sent to a

certificate

authority. (String,

required)

v Returns: A certificate

request file is

created that contains

the extracted

certificate.

Interactive mode example

usage:

v Using Jacl:

$AdminTask extractCertifi

cateRequest {-interactive}

v Using Jython string:

AdminTask.extractCertific

ateRequest (’[-interactive]’)

v Using Jython list:

AdminTask.extractCertific

ateRequest ([’-interactive’])

Chapter 16. Security 1681

Table 41. (continued)

Command name: Description: Target

object:

Parameters and return

values:

Examples:

getCertificateRequest The

getCertificateRequest

command obtains

information about a

particular certificate

request in a key

store.

None v Parameters:

- keyStoreName

The name that

uniquely

identifies the key

store

configuration

object. (String,

required)

- keyStoreScope

The scope name

of the key store.

(String, optional)

- certificateAlias

The name that

uniquely

identifies the

certificate

request in a key

store. (String,

required)

v Returns: Information

about the certificate

request.

Interactive mode example

usage:

v Using Jacl:

$AdminTask getCertificate

Request {-interactive}

v Using Jython string:

AdminTask.getCertificate

Request (’[-interactive]’)

v Using Jython list:

AdminTask.getCertificate

Request ([’-interactive’])

listCertificateRequest The

listCertificateRequest

command lists all the

certificate requests

associated with a

particular key store.

None v Parameters:

- keyStoreName

The name that

uniquely

identifies the key

store

configuration

object. (String,

required)

- keyStoreScope

The scope name

of the key store.

(String, optional)

v Returns: An attribute

list for each

certificate request in

a key store.

Interactive mode example

usage:

v Using Jacl:

$AdminTask listCertifica

teRequest {-interactive}

v Using Jython string:

AdminTask.listCertifica

teRequest (’[-interactive]’)

v Using Jython list:

AdminTask.listCertificat

eRequest ([’-interactive’])

Commands for the SignerCertificateCommands group of the

AdminTask object

For more information about the AdminTask object, see the Commands for the AdminTask object article.

The following commands are available for the SignerCertificateCommands group of the AdminTask object:

1682 Administering applications and their environment

Table 42.

Command name: Description: Target

object:

Parameters and return

values:

Examples:

addSignerCertificate The

addSignerCertificate

command adds a

signer certificate from

a certificate file to a

key store.

None v Parameters:

- keyStoreName

The name of the

key store where

the signer

certificate is

located. (String,

required)

- keyStoreScope

The

management

scope of the key

store. (String,

optional)

- certificateFilePath

The full path

name of the file

that contains the

signer certificate.

(String, required)

- certificateAlias

The alias name

of the signer

certificate in the

key store.

(String, required)

- base64Encoded

Set the value of

this parameter to

true if the

certificate is

ascii base 64

encoded. Set

the value of this

parameter to

false if the

certificate is

binary. (String,

required)

v Returns: The

configuration object

name of the key

store object that you

created.

Interactive mode example

usage:

v Using Jacl:

$AdminTask addSignerCert

ificate {-interactive}

v Using Jython string:

AdminTask.addSignerCert

ificate (’[-interactive]’)

v Using Jython list:

AdminTask.addSignerCert

ificate ([’-interactive’])

Chapter 16. Security 1683

Table 42. (continued)

Command name: Description: Target

object:

Parameters and return

values:

Examples:

deleteSignerCertificate The

deleteSignerCertificate

command deletes a

signer certificate from

a key store.

None v Parameters:

- keyStoreName

The name of the

key store where

the signer

certificate is

located. (String,

required)

- keyStoreScope

The

management

scope of the key

store. (String,

optional)

- certificateAlias

The alias name

of the signer

certificate in the

key store.

(String, required)

v Returns: None

Interactive mode example

usage:

v Using Jacl:

$AdminTask deleteSignerC

ertificate {-interactive}

v Using Jython string:

AdminTask.deleteSignerCe

rtificate (’[-interactive]’)

v Using Jython list:

AdminTask.deleteSignerCe

rtificate ([’-interactive’])

1684 Administering applications and their environment

Table 42. (continued)

Command name: Description: Target

object:

Parameters and return

values:

Examples:

extractSignerCertificate The

extractSignerCertificate

command extracts a

signer certificate from

a key store to a file.

None v Parameters:

- keyStoreName

The name of the

key store where

the signer

certificate is

located. (String,

required)

- keyStoreScope

The

management

scope of the key

store. (String,

optional)

- certificateAlias

The alias name

of the signer

certificate in the

key store.

(String, required)

- certificateFilePath

The full path

name of the file

that contains the

signer certificate.

(String, required)

- base64Encoded

Set the value of

this parameter to

true if the

certificate is

ascii base 64

encoded. Set

the value of this

parameter to

false if the

certificate is

binary. (String,

required)

v Returns: The

certificate file is

created and contains

the signer certificate.

Interactive mode example

usage:

v Using Jacl:

$AdminTask extractSigner

Certificate {-interactive}

v Using Jython string:

AdminTask.extractSignerC

ertificate (’[-interactive]’)

v Using Jython list:

AdminTask.extractSignerCe

rtificate ([’-interactive’])

Chapter 16. Security 1685

Table 42. (continued)

Command name: Description: Target

object:

Parameters and return

values:

Examples:

getSignerCertificate The

getSignerCertificate

command obtains

information about a

signer certificate from

a key store.

None v Parameters:

- keyStoreName

The name of the

key store where

the signer

certificate is

located. (String,

required)

- keyStoreScope

The

management

scope of the key

store. (String,

optional)

- certificateAlias

The alias name

of the signer

certificate in the

key store.

(String, required)

v Returns: Information

about a signer

certificate.

Interactive mode example

usage:

v Using Jacl:

$AdminTask getSignerCert

ificate {-interactive}

v Using Jython string:

AdminTask.getSignerCert

ificate (’[-interactive]’)

v Using Jython list:

AdminTask.getSignerCert

ificate ([’-interactive’])

listSignerCertificates The

listSignerCertificates

command lists all

signer certificates in a

particular key store.

None v Parameters:

- keyStoreName

The name of the

key store where

the signer

certificate is

located. (String,

required)

- keyStoreScope

The

management

scope of the key

store. (String,

optional)

v Returns: A list of

signer certificate

aliases.

Interactive mode example

usage:

v Using Jacl:

$AdminTask listSignerCer

tificates {-interactive}

v Using Jython string:

AdminTask.listSignerCer

tificates (’[-interactive]’)

v Using Jython list:

AdminTask.listSignerCer

tificates ([’-interactive’])

1686 Administering applications and their environment

Table 42. (continued)

Command name: Description: Target

object:

Parameters and return

values:

Examples:

retrieveSignerFromPort The

retrieveSignerFromPort

command retrieves a

signer from a remote

host and stores the

signer in a key store.

None v Parameters:

- host

The host name

of the system

from where the

signer certificate

will be retrieved.

(String, required)

- port

The port of the

remote system

from where the

signer certificate

will be retrieved.

(Integer,

required)

- keyStoreName

The name of the

key store where

the signer

certificate is

located. (String,

required)

- keyStoreScope

The

management

scope of the key

store. (String,

required)

- sslConfigName

The name of the

SSL

configuration

object. (String,

optional)

-

sslConfigScopeName

The

management

scope where the

SSL

configuration

object is located.

(String, optional)

v Returns: The signer

certificate is created

in the key store file.

Batch mode example usage:

v Using Jacl:

$AdminTask retrieveSigner

FromPort {-host serverHost

-port 443 -keyStoreName

testKeyStore -certificate

Alias serverHostSigner}

v Using Jython string:

AdminTask.retrieveSigner

FromPort (’[-host server

Host -port 443 -keyStore

Name testKeyStore -certi

ficateAlias serverHost

Signer]’)

v Using Jython list:

AdminTask.retrieveSigner

FromPort ([’-host’,

’serverHost’, ’-port’,

’443’, ’-keyStoreName’,

’testKeyStore’, ’-certi

ficateAlias’, ’serverHost

Signer’])

Interactive mode example

usage:

v Using Jacl:

$AdminTask retrieveSigner

FromPort {-interactive}

v Using Jython string:

AdminTask.retrieveSigner

FromPort (’[-interactive]’)

v Using Jython list:

AdminTask.retrieveSigner

FromPort ([’-interactive’])

Chapter 16. Security 1687

Table 42. (continued)

Command name: Description: Target

object:

Parameters and return

values:

Examples:

retrieveSigner

InfoFromPort

The retrieveSigner

InfoFromPort

command retrieves

signer information

from a port on a

remote host.

None v Parameters:

- host

The host name

of the system

from where the

signer certificate

will be retrieved.

(String, required)

- port

The port of the

remote system

from where the

signer certificate

will be retrieved.

(Integer,

required)

- sslConfigName

The name of the

SSL

configuration

object. (String,

optional)

-

sslConfigScopeName

The

management

scope where the

SSL

configuration

object is located.

(String, optional)

v Returns: Information

about the signer

certificate from the

remote host port.

Interactive mode example

usage:

v Using Jacl:

$AdminTask retrieveSigner

InfoFromPort {-interactive}

v Using Jython string:

AdminTask.retrieveSigner

InfoFromPort (’[-interactive]’)

v Using Jython list:

AdminTask.retrieveSigner

InfoFromPort ([’-interactive’])

Commands for the PersonalCertificateCommands group of the

AdminTask object

For more information about the AdminTask object, see the Commands for the AdminTask object article.

The following commands are available for the personalCertificateCommands group of the AdminTask

object:

1688 Administering applications and their environment

Table 43.

Command name: Description: Target

object:

Parameters and return

values:

Examples:

createSelfSigned

Certificate

The

createSelfSigned

Certificate command

creates a personal

certificate in a key

store.

None v Parameters:

- keyStoreName

The name that

uniquely

identifies the key

store

configuration

object. (String,

required)

- keyStoreScope

The scope name

of the key store.

(String, optional)

- certificateAlias

The name that

uniquely

identifies the

certificate

request in a key

store. (String,

required)

- certificateVersion

The version of

the certificate.

(String, required)

- certificateSize

The size of the

certificate.

(Integer,

required)

-

certificateCommonName

The common

name of the

certificate.

(String, required)

-

certificateOrganization

The organization

of the certificate.

(String, optional)

-

certificateOrganizationUnit

The

organizational

unit of the

certificate.

(String, optional)

Batch mode example usage:

v Using Jacl:

$AdminTask createSelfSignedCertificate

{-keyStoreName testKeyStore

-certificateAlias default

-certificateCommonName localhost

-certificateOrganization ibm}

v Using Jython string:

AdminTask.createSelfSignedCertificate

(’[-keyStoreName testKeyStore

-certificateAlias default

-certificateCommonName localhost

-certificateOrganization ibm]’)

v Using Jython list:

AdminTask.createSelfSignedCertificate

([’-keyStoreName’, ’testKeyStore’,

’-certificateAlias’, ’default’,

’-certificateCommonName’, ’localhost’,

’-certificateOrganization’, ’ibm’])

Interactive mode example

usage:

v Using Jacl:

$AdminTask createSelfSigned

Certificate {-interactive}

v Using Jython string:

AdminTask.createSelfSigned

Certificate (’[-interactive]’)

v Using Jython list:

AdminTask.createSelfSigned

Certificate ([’-interactive’])

Chapter 16. Security 1689

Table 43. (continued)

Command name: Description: Target

object:

Parameters and return

values:

Examples:

- certificateLocality

The locality of the

certificate. (String,

optional)

- certificateState

The state of the

certificate. (String,

optional)

- certificateZip

The zip code of the

certificate. (String,

optional)

- certificateCountry

The country of the

certificate. (String,

optional)

- certificateValidDays

The amount of time

in days for which

the certificate is

valid. (Integer,

optional)

v Returns: None

deleteCertificate The deleteCertificate

command deletes a

personal certificate

from a key store.

None v Parameters:

- keyStoreName

The name that

uniquely

identifies the key

store

configuration

object. (String,

required)

- keyStoreScope

The scope name

of the key store.

(String, optional)

- certificateAlias

The name that

uniquely

identifies the

certificate

request in a key

store. (String,

required)

v Returns: None

Interactive mode example

usage:

v Using Jacl:

$AdminTask deleteCertif

icate {-interactive}

v Using Jython string:

AdminTask.deleteCertif

icate (’[-interactive]’)

v Using Jython list:

AdminTask.deleteCertif

icate ([’-interactive’])

1690 Administering applications and their environment

Table 43. (continued)

Command name: Description: Target

object:

Parameters and return

values:

Examples:

exportCertificate The

exportCertificate

command exports a

personal certificate

from one key store to

another.

None v Parameters:

- keyStoreName

The name that

uniquely

identifies the key

store

configuration

object. (String,

required)

- keyStoreScope

The scope name

of the key store.

(String, optional)

-

keyStorePassword

The password to

the key store.

(String, required)

- keyFilePath

The full path to

a key store file

that is located in

a file system.

The store from

where a

certificate will be

imported or

exported.

(String, required)

- keyFilePassword

The password to

the key store

file. (String,

required)

- keyFileType

The type of the

key file. (String,

required)

- certificateAlias

The name that

uniquely

identifies the

certificate

request in a key

store. (String,

required)

- aliasInKeyStore

(String, optional)

v Returns: None

Interactive mode example

usage:

v Using Jacl:

$AdminTask exportCerti

ficate {-interactive}

v Using Jython string:

AdminTask.exportCerti

ficate (’[-interactive]’)

v Using Jython list:

AdminTask.exportCertif

icate ([’-interactive’])

Chapter 16. Security 1691

Table 43. (continued)

Command name: Description: Target

object:

Parameters and return

values:

Examples:

extractCertificate The

extractCertificate

command extracts the

signer part of a

personal certificate to

a file.

None v Parameters:

- keyStoreName

The name that

uniquely

identifies the key

store

configuration

object. (String,

required)

- keyStoreScope

The scope name

of the key store.

(String, optional)

- certificateAlias

The name that

uniquely

identifies the

certificate

request in a key

store. (String,

required)

- certificateRequest

FilePath

The full path of

the request file

that contains the

certificate.

(String, required)

- base64Encoded

Set the value of

this parameter to

true if the

certificate is

ascii base 64

encoded. Set

the value of this

parameter to

false if the

certificate is

binary. (Boolean,

required)

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask extractCertificate

{-keyStoreName testKeyStore

-certificateFilePath c:\temp\

CertFile.arm -certificateAlias

testCertificate}

v Using Jython string:

AdminTask.extractCertificate

(’[-keyStoreName testKeyStore

-certificateFilePath c:\temp\

CertFile.arm -certificateAlias

testCertificate]’)

v Using Jython list:

AdminTask.extractCertificate

([’-keyStoreName’, ’testKeyStore’,

’-certificateFilePath’, ’c:\temp\

CertFile.arm’, ’-certificateAlias’,

’testCertificate’])

Interactive mode example

usage:

v Using Jacl:

$AdminTask extractCertifi

cate {-interactive}

v Using Jython string:

AdminTask.extractCertifi

cate (’[-interactive]’)

v Using Jython list:

AdminTask.extractCertifi

cate ([’-interactive’])

1692 Administering applications and their environment

Table 43. (continued)

Command name: Description: Target

object:

Parameters and return

values:

Examples:

getCertificate The getCertificate

command obtains

information about a

particular personal

certificate in a key

store.

None v Parameters:

- keyStoreName

The name that

uniquely

identifies the key

store

configuration

object. (String,

required)

- keyStoreScope

The scope name

of the key store.

(String, optional)

- certificateAlias

The name that

uniquely

identifies the

certificate

request in a key

store. (String,

required)

v Returns: Information

about the certificate

request.

Interactive mode example

usage:

v Using Jacl:

$AdminTask getCertificate

{-interactive}

v Using Jython string:

AdminTask.getCertificate

(’[-interactive]’)

v Using Jython list:

AdminTask.getCertificate

([’-interactive’])

Chapter 16. Security 1693

Table 43. (continued)

Command name: Description: Target

object:

Parameters and return

values:

Examples:

importCertificate The

importCertificate

command imports a

personal certificate

from a key store.

None v Parameters:

- keyStoreName

The name that

uniquely

identifies the key

store

configuration

object. (String,

required)

- keyStoreScope

The scope name

of the key store.

(String, optional)

- keyFilePath

The full path to

a key store file

that is located in

a file system.

The store from

where a

certificate will be

imported or

exported.

(String, required)

- keyFilePassword

The password to

the key store

file. (String,

required)

- keyFileType

The type of the

key file. (String,

required)

-

certificateAliasFromKeyFile

The certificate

alias in the key

file from which

the certificate is

being imported.

(String, required)

- certificateAlias

The name that

uniquely

identifies the

certificate

request in a key

store. (String,

required)

v Returns: None

Interactive mode example

usage:

v Using Jacl:

$AdminTask importCertificate

{-interactive}

v Using Jython string:

AdminTask.importCertificate

(’[-interactive]’)

v Using Jython list:

AdminTask.importCertificate

([’-interactive’])

1694 Administering applications and their environment

Table 43. (continued)

Command name: Description: Target

object:

Parameters and return

values:

Examples:

listPersonalCertificates The

listPersonalCertificates

command lists the

personal certificates

in a particular key

store.

None v Parameters:

- keyStoreName

The name that

uniquely

identifies the key

store

configuration

object. (String,

required)

- keyStoreScope

The scope name

of the key store.

(String, optional)

v Returns: A list of

attributes for each

personal certificate in

a key store.

Interactive mode example

usage:

v Using Jacl:

$AdminTask listPersonalCer

tificates {-interactive}

v Using Jython string:

AdminTask.listPersonalCer

tificates (’[-interactive]’)

v Using Jython list:

AdminTask.listPersonalCer

tificates ([’-interactive’])

Chapter 16. Security 1695

Table 43. (continued)

Command name: Description: Target

object:

Parameters and return

values:

Examples:

receiveCertificate The

receiveCertificate

command receives a

signer certificate from

a file to a personal

certificate.

None v Parameters:

- keyStoreName

The name that

uniquely

identifies the key

store

configuration

object. (String,

required)

- keyStoreScope

The scope name

of the key store.

(String, optional)

- certificateAlias

The name that

uniquely

identifies the

certificate

request in a key

store. (String,

required)

- certificateFilePath

The full path of

the file that

contains the

certificate.

(String, required)

- base64Encoded

Set the value of

this parameter to

true if the

certificate is

ascii base 64

encoded. Set

the value of this

parameter to

false if the

certificate is

binary. (Boolean,

required)

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask receiveCertificate

{-keyStoreName testKeyStore

-certificateFilePath c:\temp\

CertFile.arm}

v Using Jython string:

AdminTask.receiveCertificate

(’[-keyStoreName testKeyStore

-certificateFilePath c:\temp\

CertFile.arm]’)

v Using Jython list:

AdminTask.receiveCertificate

([’-keyStoreName’, ’testKeyStore’,

’-certificateFilePath’, ’c:\

temp\CertFile.arm’])

Interactive mode example

usage:

v Using Jacl:

$AdminTask receiveCertif

icate {-interactive}

v Using Jython string:

AdminTask.receiveCerti

ficate (’[-interactive]’)

v Using Jython list:

AdminTask.receiveCertif

icate ([’-interactive’])

1696 Administering applications and their environment

Table 43. (continued)

Command name: Description: Target

object:

Parameters and return

values:

Examples:

replaceCertificate The

replaceCertificate

command replaces a

personal certificate

with a new one.

Replaces all signer

certificates from the

personal certificate.

None v Parameters:

- keyStoreName

The name that

uniquely

identifies the key

store

configuration

object. (String,

required)

- keyStoreScope

The scope name

of the key store.

(String, optional)

- certificateAlias

The name that

uniquely

identifies the

certificate

request in a key

store. (String,

required)

- replacementCertifi

cateAlias

The alias of the

certificate that is

used to replace

a different

certificate.

(String, required)

- deleteOldCert

Set the value of

this parameter to

true if you want

to delete the old

signer

certificates

during certificate

replacement.

Otherwise, set

the value of this

parameter to

false. (Boolean,

optional)

- deleteOldSigners

Set the value of

this parameter to

true if you want

to delete the old

certificates

during certificate

replacement.

Otherwise, set

the value of this

parameter to

false. (Boolean,

optional)

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask replaceCertificate

{-keyStoreName testKeyStore

-certificateAlias default

-replacementCertificateAlias

replaceCert -deleteOldCert

true -deleteOldSigners true}

v Using Jython string:

AdminTask.replaceCertificate

(’[-keyStoreName testKeyStore

-certificateAlias default

-replacementCertificateAlias

replaceCert -deleteOldCert

true -deleteOldSigners true]’)

v Using Jython list:

AdminTask.replaceCertificate

([’-keyStoreName’, ’testKeyStore’,

’-certificateAlias’, ’default’,

’-replacementCertificateAlias’,

’replaceCert’, ’-deleteOldCert’,

’true’, ’-deleteOldSigners’,

’true’])

Interactive mode example

usage:

v Using Jacl:

$AdminTask replaceCerti

ficate {-interactive}

v Using Jython string:

AdminTask.replaceCertif

icate (’[-interactive]’)

v Using Jython list:

AdminTask.replaceCertif

icate ([’-interactive’])

Chapter 16. Security 1697

Commands for the SPNEGO TAI group of the AdminTask object

For more information about the AdminTask object, see the Commands for the AdminTask object article.

The following commands are available for the SPNEGO TAI group of the AdminTask object:

 Command

name:

Description: Target

object:

Parameters and return

values:

Examples:

addSpnego

TAI

Properties

The

addSpnego

TAI

Properties

command

adds

properties in

the

configuration

of the Simple

and Protected

GSS-API

Negotiation

Mechanism

(SPNEGO)

trust

association

interceptor

(TAI) for

WebSphere

Application

Server.

None v Parameters:

- spnId

This is the SPN

identifier for the group

of custom properties

that are to be defined

with this command. If

you do not specify this

parameter, an unused

SPN identifier is

assigned. (String,

optional)

- host

Specifies the host

name portion in the

SPN used by the

SPNEGO TAI to

establish a Kerberos

secure context. (String,

required)

- filter

Defines the filtering

criteria used by the

class specified with the

above attribute. If no

filter is specified, all

HTTP requests are

subject to SPNEGO

authentication. (String,

optional)

- filterClass

Specifies the name of

the Java class used by

the SPNEGO TAI to

select which HTTP

requests will be subject

to SPNEGO

authentication. If no

filter class is specified,

the default filter class,

com.ibm.ws.security.spnego.HTTPHeaderFilter,

is used. (String,

optional)

Batch mode example usage:

v Using Jacl:

$AdminTask addSpnegoTAIProp

erties -host myhost.ibm.com

-filter user-agent%=IE 6

v Using Jython string:

AdminTask.addSpnegoTAIProp

erties (’[-host myhost.ibm.

com -filter user-agent%=IE 6]’)

v Using Jython list:

AdminTask.addSpnegoTAIProp

erties ([’-host’, ’myhost.

ibm.com’, ’-filter’, ’user

-agent%=IE’, ’6’])

Interactive mode example usage:

v Using Jacl:

$AdminTask addSpnegoTAI

Properties -interactive

v Using Jython string:

AdminTask.addSpnegoTAIPro

perties (’[-interactive]’)

v Using Jython list:

AdminTask.addSpnegoTAIPro

perties [’-interactive’])

1698 Administering applications and their environment

- noSpnegoPage

Specifies the URL of a

resource that contains the

content the SPNEGO TAI

will include in the HTTP

response to be displayed

by the (browser) client

application if it does not

support SPNEGO

authentication. (String,

optional).

 If you do not specify the

noSpnegoPage attribute

then the default is used:

"<html><head><title>

SPNEGO authentication

is not supported.

</title></head>" +

"<body>SPNEGO authe

ntication is not

supported on this

client.</body>

</html>";

- ntlmTokenPage

Specifies the URL of a

resource that contains the

content the SPNEGO TAI

will include in the HTTP

response to be displayed

by the (browser) client

application when the

SPNEGO token received

by the interceptor after

the challenge-response

handshake contains a NT

LAN manager (NTLM)

token instead of the

expected SPNEGO token.

(String, optional).

 If you do not specify the

ntlmTokenPage attribute

then the default is used:

"<html><head><title>

An NTLM Token was

received.</title>

</head>"

+ "<body>Your bro

wser configuration

is correct, but

you have not logged

into a supported

Windows Domain."

+ "<p>Please login

to the application

using the normal

login page.</html>";

Chapter 16. Security 1699

- trimUserName

Specifies whether (true)

or not (false) the

SPNEGO TAI is to

remove the suffix of the

principal user name,

starting from the @ that

precedes the Kerberos

realm name. If this

attribute is set to true, the

suffix of the principal user

name is removed. If this

attribute is set to false,

the suffix of the principal

name is retained. The

default value used is

true. (String, optional)

v Returns: None

1700 Administering applications and their environment

createKrb

ConfigFile

The

createKrb

ConfigFile

command

creates the

Kerberos

configuration

file for use

with the

Simple and

Protected

GSS-API

Negotiation

Mechanism

(SPNEGO)

trust

association

interceptor

(TAI) for

WebSphere

Application

Server.

None v Parameters:

- krbPath

Provides the fully

qualified file system

location of the

Kerberos configuration

(krb5.ini or krb5.conf)

file. (String, required)

- realm

Provides the Kerberos

realm name. The value

of this attribute is used

by the SPNEGO TAI to

form the Kerberos

service principal name

for each of the hosts

specified with the

property

com.ibm.ws.security.spnego.SPN<id>.hostname

(String, required)

- kdcHost

Provides the host name

of the Kerberos Key

Distribution Center

(KDC). (String,

required)

- kdcPort

Provides the port

number of the KDC.

The default value, if not

specified, is 88. (String,

optional)

- dns

Provides the default

domain name service

(DNS) that is used to

produce a fully qualified

host name. (String,

required)

- keytabPath

Provides the file

system location of the

Kerberos keytab file.

(String, required)

- encryption

Identifies the list of

supported encryption

types, separated by a

space. The specified

value is used for the

default_tkt_enctypes

and

default_tgs_enctypes.

The default encryption

types, if not specified,

are des-cbc-md5 and

rc4-hmac. (String,

optional)

v Returns: None

Interactive mode example usage:

v Using Jacl:

$AdminTask createKrbCo

nfigFile -interactive

v Using Jython string:

AdminTask.createKrbCon

figFile (’[-interactive]’)

v Using Jython list:

AdminTask.createKrbCon

figFile [’-interactive’])

Chapter 16. Security 1701

deleteSpnego

TAIProperties

The

deleteSpnego

TAIProperties

command

deletes

properties in

the

configuration

of the Simple

and Protected

GSS-API

Negotiation

Mechanism

(SPNEGO)

trust

association

interceptor

(TAI) for

WebSphere

Application

Server.

None v Parameters:

- spnId

The SPN identifier for

the group of custom

properties that are to

be deleted with this

command. If you do not

specify this parameter,

all SPNEGO TAI

custom properties are

deleted. (String,

optional)

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask deleteSpnegoT

AIProperties {-spnId 2}

v Using Jython string:

AdminTask.deleteSpnegoT

AIProperties (’[-spnId 2]’)

v Using Jython list:

AdminTask.deleteSpnegoTAI

Properties ([’-spnId’, ’2’])

Interactive mode example usage:

v Using Jacl:

$AdminTask deleteSpnegoTAI

Properties -interactive

v Using Jython string:

AdminTask.deleteSpnegoTAI

Properties (’[-interactive]’)

v Using Jython list:

AdminTask.deleteSpnegoTAI

Properties [’-interactive’])

1702 Administering applications and their environment

modifySpnego

TAIPro

perties

The

modifySpnego

TAIProperties

command

modifies the

properties in

the

configuration

of the Simple

and Protected

GSS-API

Negotiation

Mechanism

(SPNEGO)

trust

association

interceptor

(TAI) for

WebSphere

Application

Server.

None v Parameters:

- spnId

The SPN identifier for

the group of custom

properties that are to

be defined with this

command. (String,

required)

- host

Specifies the host

name portion in the

SPN used by the

SPNEGO TAI to

establish a Kerberos

secure context. (String,

optional)

- filter

Defines the filtering

criteria used by the

class specified with the

above attribute. (String,

optional)

- filterClass

Specifies the name of

the Java class used by

the SPNEGO TAI to

select which HTTP

requests will be subject

to SPNEGO

authentication. If no

class is specified, all

HTTP requests will be

subject to SPNEGO

authentication. (String,

optional)

- noSpnegoPage

Specifies the URL of a

resource that contains

the content the

SPNEGO TAI will

include in the HTTP

response to be

displayed by the

(browser) client

application if it does not

support SPNEGO

authentication. (String,

optional)

Batch mode example usage:

v Using Jacl:

$AdminTask modifySpnegoTAI

PROPERTIES -spnId 1 -filter

host==myhost.company.com

v Using Jython string:

AdminTask.modifySpnegoTAI

PROPERTIES (’[-spnId 1

-filter host==myhost.com

pany.com]’)

v Using Jython list:

AdminTask.modifySpnegoTAI

PROPERTIES ([’-spnId’,

’1’, ’-filter’, ’host==my

host.company.com’])

Interactive mode example usage:

v Using Jacl:

$AdminTask modifySpnegoTAI

Properties -interactive

v Using Jython string:

AdminTask.modifySpnegoTAI

Properties (’[-interactive]’)

v Using Jython list:

AdminTask.modifySpnegoTAI

Properties [’-interactive’])

Chapter 16. Security 1703

- ntlmTokenPage

Specifies the URL of a

resource that contains the

content the SPNEGO TAI

will include in the HTTP

response to be displayed

by the (browser) client

application when the

SPNEGO token received

by the interceptor after

the challenge-response

handshake contains a NT

LAN manager (NTLM)

token instead of the

expected SPNEGO token.

(String, optional)

- trimUserName

Specifies whether (true)

or not (false) the

SPNEGO TAI is to

remove the suffix of the

principal user name,

starting from the ″@″ that

precedes the Kerberos

realm name. If this

attribute is set to true, the

suffix of the principal user

name is removed. If this

attribute is set to false,

the suffix of the principal

name is retained. The

default value used is

true. (String, optional)

v Returns: None

1704 Administering applications and their environment

showSpnego

TAI

Properties

The

showSpnego

TAI

Properties

command

displays the

properties in

the

configuration

of the Simple

and Protected

GSS-API

Negotiation

Mechanism

(SPNEGO)

trust

association

interceptor

(TAI) for

WebSphere

Application

Server.

None v Parameters:

- spnId

The service principal

name (SPN) identifier

for the group of custom

properties that are to

be displayed with this

command. If you do not

specify this parameter,

all SPNEGO TAI

custom properties are

displayed. (String,

optional)

v Returns: A list of properties.

Batch mode example usage:

v Using Jacl:

$AdminTask showSpnegoTAI

Properties -spnId 1

v Using Jython string:

AdminTask.showSpnegoTAI

Properties (’[-spnId 1]’)

v Using Jython list:

AdminTask.showSpnegoTAI

Properties ([’-spnId’, ’1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask showSpnegoTAI

Properties -interactive

v Using Jython string:

AdminTask.showSpnegoTAI

Properties (’[-interact

ive]’)

v Using Jython list:

AdminTask.showSpnegoTAI

Properties [’-interact

ive’])

Commands for the AuthorizationGroupCommands group of the

AdminTask object

For more information about the AdminTask object, see the Commands for the AdminTask object article.

The following commands are available for the AuthorizationGroupCommands group of the AdminTask

object:

 Command

name:

Description: Target

object:

Parameters and return

values:

Examples:

Chapter 16. Security 1705

addResource

ToAuthoriza

tionGroup

The

addResource

ToAuthoriza

tionGroup

command

adds a

resource

instance to an

existing

authorization

group. A

resource

instance

cannot belong

to more than

one

authorization

group.

None v Parameters:

- authorization

GroupName

The name of the

authorization group.

(String, required)

- resourceName

The name of the

resource instance that

you want to add to an

authorization group.

(String, required)

 The resourceName

parameter should be in

the following format:

ResourceType= ResourceName

where ResourceType is

one of the following

values: Application,

Server, ServerCluster,

Node, NodeGroup

 ResourceName is the

name of the resource

instance, for example,

server1.

 The following are

example uses of the

resourceName

parameter:

–

Node=node1:Se rver=server1

This example

uniquely identifies

server1. node1 is

required if another

server1 exists on a

different node.

– Application=app1

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask addResourceToAuth

orizationGroup {-authorizati

onGroupName groupName -resou

rceName Application=app1}

v Using Jython string:

AdminTask.addResourceToAuth

orizationGroup(’[-authoriza

tionGroupName groupName

-resourceName Application

=app1]’)

v Using Jython list:

AdminTask.addResourceToAuth

orizationGroup([’-authoriza

tionGroupName’, ’groupName’,

’-resourceName’, ’Applicati

on=app1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask addResourceToAuth

orizationGroup {-interactive}

v Using Jython string:

AdminTask.addResourceToAuth

orizationGroup (’[-interac

tive]’)

v Using Jython list:

AdminTask.addResourceToAuth

orizationGroup ([’-interact

ive’])

1706 Administering applications and their environment

createAuth

orization

Group

The

createAuth

orization

Group

command

creates a new

authoirzation

group. When

you create a

new

authorization

group, no

members are

associated

with it. Also,

no user to

administrative

role mapping

for the

authorization

table is

associated

with the

authorization

group.

None v Parameters:

- authorization

GroupName

The name of the

authorization group that

you want to create.

(String, required)

v Returns: The configuration

ID of the authorization

group that you created.

Batch mode example usage:

v Using Jacl:

$AdminTask createAuthori

zationGroup {-authorizat

ionGroupName groupName}

v Using Jython string:

AdminTask.createAuthori

zationGroup(’[-authori

zationGroupName

groupName]’)

v Using Jython list:

AdminTask.createAuthor

izationGroup([’-author

izationGroupName’,

’groupName’])

Interactive mode example usage:

v Using Jacl:

$AdminTask createAuthori

zationGroup -interactive

v Using Jython string:

AdminTask.createAuthori

zationGroup (’[-interac

tive]’)

v Using Jython list:

AdminTask.createAuthori

zationGroup ([’-interac

tive’])

Chapter 16. Security 1707

deleteAuthor

izationGroup

The deletes

an existing

authorization

group. When

you delete an

authorization

group, the

authorization

table that

corresponds

is also

deleted.

None v Parameters:

- authorizationGroup

Name

The name of the

authorization group that

you want to delete.

(String, required)

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask deleteAuthori

zationGroup {-authorizat

ionGroupName groupName}

v Using Jython string:

AdminTask.deleteAuthoriz

ationGroup(’[-authorizat

ionGroupName groupName]’)

v Using Jython list:

AdminTask.deleteAuthori

zationGroup([’-authoriz

ationGroupName’, ’gr

oupName’])

Interactive mode example usage:

v Using Jacl:

$AdminTask deleteAuthori

zationGroup {-interactive}

v Using Jython string:

AdminTask.deleteAuthoriz

ationGroup (’[-interactive]’)

v Using Jython list:

AdminTask.deleteAuthoriz

ationGroup ([’-interactive’])

The

command

lists the

existing

authorization

groups.

None v Parameters: None

v Returns: A list of short

names of all existing

authorization groups. (String

[])

Batch mode example usage:

v Using Jacl:

$AdminTask listAuthorizationGroups

v Using Jython:

AdminTask.listAuthorizationGroups()

Interactive mode example usage:

v Using Jacl:

$AdminTask listAuthoriz

ationGroups {-interactive}

v Using Jython string:

AdminTask.listAuthoriza

tionGroups (’[-interactive]’)

v Using Jython list:

AdminTask.listAuthoriz

ationGroups ([’-intera

ctive’])

1708 Administering applications and their environment

listAuthoriz

ationGroups

ForGroupID

The

listAuthoriz

ationGroups

ForGroupID

command

lists all of the

authorization

groups to

which a given

user group

has access.

This

command

lists the

authorization

groups and

the granted

roles for each

authorization

group. The

group ID can

be a short

name or a

fully qualified

domain name

if the LDAP

user registry

is being used.

This

command will

list cell as a

group if the

user has cell

level access.

None v Parameters:

- groupid

The ID of the user

group. (String,

required)

v Returns: The map of the

authorization group and

granted roles.

(Map[String=String[]])

Batch mode example usage:

v Using Jacl:

$AdminTask listAuthoriza

tionGroupsForGroupID

{-groupid userGroupName}

v Using Jython string:

AdminTask.listAuthorizat

ionGroupsForGroupID(’[-

groupid userGroupName]’)

v Using Jython list:

AdminTask.listAuthorizat

ionGroupsForGroupID([’

-groupid’, ’userGroup

Name’])

Interactive mode example usage:

v Using Jacl:

$AdminTask listAuthoriza

tionGroupsForGroupID

{-interactive}

v Using Jython string:

AdminTask.listAuthorizat

ionGroupsForGroupID (’[

-interactive]’)

v Using Jython list:

AdminTask.listAuthorizat

ionGroupsForGroupID ([’

-interactive’])

Chapter 16. Security 1709

listAuthoriz

ationGroup

sForUser ID

The

listAuthoriz

ationGroup

sForUser ID

command

lists all of the

authorization

groups to

which a given

user has

access. This

command

lists the

authorization

groups and

the granted

roles for each

authorization

group. The

user ID and

the group ID

can be a

short name or

a fully

qualified

domain name

if the LDAP

user registry

is being used.

This

command will

list cell as a

group if the

user has cell

level access.

None v Parameters:

- userid

The ID of the user.

(String, required)

v Returns: The map of the

authorization group and

granted roles.

(Map[String=String[]])

Batch mode example usage:

v Using Jacl:

$AdminTask listAuthorizat

ionGroupsForUserID{-userid

userName}

v Using Jython string:

AdminTask.listAuthorizat

ionGroupsForUserID(’[-us

erid userName]’)

v Using Jython list:

AdminTask.listAuthorizat

ionGroupsForUserID([’-us

erid’, ’userName’])

Interactive mode example usage:

v Using Jacl:

$AdminTask listAuthorizat

ionGroupsForUserID {-inte

ractive}

v Using Jython string:

AdminTask.listAuthorizat

ionGroupsForUserID (’[-

interactive]’)

v Using Jython list:

AdminTask.listAuthoriza

tionGroupsForUserID ([’

-interactive’])

1710 Administering applications and their environment

listAuthori

zationGroups

OfResource

The

listAuthori

zationGroups

OfResource

command

lists

authorization

groups for a

given

resource. If

the value of

the

traverseContainedObjects

parameter is

false, only the

authorization

group of the

resource is

returned. If

the value of

the

traverseContainedObjects

parameter is

true, it returns

the

authorization

group of the

resource and

the

authorization

groups of all

the parent

resources in

the

containment

tree.

None v Parameters:

- resourceName

The name of the

resource. (String,

required)

 The resourceName

parameter must be in

the following format:

ResourceType=

ResourceName

where ResourceType

can be any one of the

following values:

Application, Server,

ServerCluster, Node, or

NodeGroup.

 ResourceName is the

name of the resource

instance, for example,

server1.

 The following are

examples of the

resourceName

parameter:

Node=node1: Server=server

This example uniquely

identifies server1. The

name of the node is

required if a server on

a different node uses

the same server name.

Application=app1

Batch mode example usage:

v Using Jacl:

$AdminTask listAuthoriz

ationGroupsOfResource

{-resourceName Applicat

ion=app1}

v Using Jython string:

AdminTask.listAuthorizat

ionGroupsOfResource(’[-

resourceName Application

=app1]’)

v Using Jython list:

AdminTask.listAuthoriza

tionGroupsOfResource([’

-resourceName’, ’Applic

ation=app1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask listAuthoriza

tionGroupsOfResource

{-interactive}

v Using Jython string:

AdminTask.listAuthoriz

ationGroupsOfResource

(’[-interactive]’)

v Using Jython list:

AdminTask.listAuthoriz

ationGroupsOfResource

([’-interactive’])

Chapter 16. Security 1711

- traverseContained

Resources

Finds the authorization

groups of all the parent

resources by traversing

the resource containment

tree upwards. The default

value is false. (Boolean,

optional)

v Returns: The short names

of all of the authorization

groups for which the

resource belongs. If the you

do not specify the

traverseContainedResources

parameter, the result of this

command will only contain

one value because a

resource instance can only

belong to one authorization

group. (String[])

listResources

OfAuthoriz

ationGroup

The

listResources

OfAuthorizat

ionGroup

command

lists all of the

resources

within the

given

authorization

group.

None v Parameters:

-

authorizationGroupName

The name of the

authorization group.

(String, required)

v Returns: The configuration

IDs of all of the resource

instances within the

authorization group.

(String[])

Batch mode example usage:

v Using Jacl:

$AdminTask listResourcesOf

AuthorizationGroup {-autho

rizationGroupName groupName}

v Using Jython string:

AdminTask.listResourcesOf

AuthorizationGroup(’[-auth

orizationGroupName groupName]’)

v Using Jython list:

AdminTask.listResourcesOfAu

thorizationGroup([’-authori

zationGroupName’, ’groupName’])

Interactive mode example usage:

v Using Jacl:

$AdminTask listResourcesOfAu

thorizationGroup {-interactive}

v Using Jython string:

AdminTask.listResourcesOfAu

thorizationGroup (’[-intera

ctive]’)

v Using Jython list:

AdminTask.listResourcesOfA

uthorizationGroup ([’-inte

ractive’])

1712 Administering applications and their environment

listResources

ForGroupID

The

listResources

ForGroupID

command

lists all the

objects that a

given group

has access

to. This

command

lists the

resources and

the granted

roles for each

resource. The

resources that

this command

returns

include the

resources

from the

authorization

groups to

which the

user group is

granted roles

and the

resources that

are

descendants

of the

resources

with in

authorization

groups to

which the

user group is

granted

access to any

role. The

group ID can

be a short

name or fully

qualified

domain name

if a LDAP

user registry

is used.

None v Parameters:

- groupid

The ID of the user

group. (String,

required)

v Returns: The map of the

granted role and resources.

(Map[String=String[]])

Batch mode example usage:

v Using Jacl:

$AdminTask listResourcesFor

GroupID {-groupid userGr

oupName}

v Using Jython string:

AdminTask.listResourcesFor

GroupID(’[-groupid userGro

upName]’)

v Using Jython list:

AdminTask.listResourcesFor

GroupID([’-groupid’, ’user

GroupName’])

Interactive mode example usage:

v Using Jacl:

$AdminTask listResourcesFor

GroupID {-interactive}

v Using Jython string:

AdminTask.listResourcesFor

GroupID (’[-interactive]’)

v Using Jython list:

AdminTask.listResourcesFor

GroupID ([’-interactive’])

Chapter 16. Security 1713

listResources

ForUserID

The

listResources

ForUserID

command

lists all the

objects that a

given user

has access

to. This

command

lists the

resources and

the granted

roles for each

resource. The

resources that

this command

returns

include the

resources

from the

authorization

groups to

which the

user is

granted roles

and the

resources that

are

descendants

of the

resources

with in

authorization

groups to

which the

user is

granted

access to any

role. The user

ID can be a

short name or

fully qualified

domain name

if a LDAP

user registry

is used.

None v Parameters:

- userid

The ID of the user.

(String, required).

v Returns: The map of

granted role and resources.

(Map[String=String[]])

Batch mode example usage:

v Using Jacl:

$AdminTask listResourcesFor

UserID {-userid userName }

v Using Jython string:

AdminTask.listResourcesFor

UserID(’[-userid userName]’)

v Using Jython list:

AdminTask.listResourcesFor

UserID([’-userid’, ’userName’])

Interactive mode example usage:

v Using Jacl:

$AdminTask listResources

ForUserID {-interactive}

v Using Jython string:

AdminTask.listResources

ForUserID (’[-interactive]’)

v Using Jython list:

AdminTask.listResources

ForUserID ([’-interactive’])

Example output:

{deployer=[], operator=[],

administrator=[cells/IBM-LP1

6L31HVE8Cell07/clusters/C1|

cluster.xml, cells/IBM-LP16L

31HVE8Cell07/nodes/IBM-LP16L

31HVE8Node05/servers/cm1|ser

ver.xml], monitor=[], confi

gurator=[]}

1714 Administering applications and their environment

mapGroupsTo

AdminRole

The

mapGroupsTo

AdminRole

command

maps group

IDs to one or

more

administrative

roles in an

authorization

group. The

name of the

authorization

group that

you provide

determines

which

authorization

table will be

used. If you

do not specify

an

authorization

group name,

the mapping

is done to the

cell level

authorization

table. The

group ID can

be a short

name or a

fully qualified

domain name

if the LDAP

user registry

is used.

None v Parameters:

- authorizationGroup

Name

The name of the

authorization group. If

you do not specify this

parameters, the cell

level authorization

group is assumed.

(String, optional)

- roleName

The name of the

administrative role.

(String, required)

- groupids

The list of group IDs

that will mapped to the

administrative role.

(String[], required)

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask mapGroupsToAdminRole

{-authorizationGroupName group

Name - roleName administrator

-groupids group1}

v Using Jython string:

AdminTask.mapGroupsToAdminRole

(’[-authorizationGroupName group

Name -roleName administrator

-groupids group1]’)

v Using Jython list:

AdminTask.mapGroupsToAdminRole

([’-authorizationGroupName’,

’groupName’, ’-roleName’,

’administrator’, ’-groupids’,

’group1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask mapGroupsToAdm

inRole {-interactive}

v Using Jython string:

AdminTask.mapGroupsToAdmin

Role (’[-interactive]’)

v Using Jython list:

AdminTask.mapGroupsToAdmin

Role ([’-interactive’])

Chapter 16. Security 1715

mapUsersTo

AdminRole

The

mapUsersTo

AdminRole

command

maps user

IDs to one or

more

administrative

roles in the

authorization

group. The

name of the

authorization

group that

you provide

determines

the

authorization

table. If you

do not specify

the name of

the

authorization

group, the

mapping is

done to the

cell level

authorization

table. The

user ID can

be a short

name or fully

qualified

domain name

in case LDAP

user registry

is used.

None v Parameters:

- authorizationGroup

Name

The name of the

authorization group. If

you do not specify this

parameter, the cell

level authorization

group is assumed.

(String, optional)

- roleName

The name of the

administrative role.

(String, required)

- userids

The list of user IDs that

will be mapped to the

administrative role

(String[], required)

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask mapUsersToAdminRole

{-authorizationGroupName group

Name - roleName administrator

-userids user1}

v Using Jython string:

AdminTask.mapUsersToAdminRole

(’[-authorizationGroupName

groupName -roleName administ

rator -userids user1]’)

v Using Jython list:

AdminTask.mapUsersToAdminRole

([’-authorizationGroupName’,

’groupName’, ’-roleName’,

’administrator’, ’-userids’,

’user1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask mapUsersToAdmin

Role {-interactive}

v Using Jython string:

AdminTask.mapUsersToAdmin

Role (’[-interactive]’)

v Using Jython list:

AdminTask.mapUsersToAdmin

Role ([’-interactive’])

1716 Administering applications and their environment

removeGrou

psFromAdm

inRole

The

removeGrou

psFromAdm

inRole

command

removes

previously

mapped

group IDs

from

administrative

roles in the

authorization

group. The

name of the

authorization

group that

you provide

determines

which

authorization

table is

involved. If

you do not

specify an

authorization

group name,

the group IDs

are removed

from the cell

level

authorization

table. The

group ID can

be a short

name or fully

qualified

domain name

if a LDAP

user registry

is used.

None v Parameters:

- authorizationGroup

Name

The name of the

authorization group. If

you do not specify this

parameter, the cell

level authorization

group is assumed.

(String, optional)

- roleName

The name of the

administrative role.

(String, required)

- userids

A list of group IDs that

you want to remove

from the administrative

role. (String[], required)

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask removeGroupsFromAdmin

Role {-authorizationGroupName

groupName - roleName administra

tor -groupids group1}

v Using Jython string:

AdminTask.removeGroupsFromAdmin

Role(’[-authorizationGroupName

groupName -roleName administrat

or -groupids group1]’)

v Using Jython list:

AdminTask.removeGroupsFromAdmin

Role([’-authorizationGroupName’,

’groupName’, ’-roleName’, ’admin

istrator’, ’-groupids’, ’group1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask removeGroupsFrom

AdminRole {-interactive}

v Using Jython string:

AdminTask.removeGroupsFrom

AdminRole (’[-interactive]’)

v Using Jython list:

AdminTask.removeGroupsFrom

AdminRole ([’-interactive’])

Chapter 16. Security 1717

remove

Resource

From

Authoriza

tionGroup

The

removeResource

FromAuthoriz

ationGroup

command

removes

resources

from an

existing

authorization

group. If you

do not specify

the

authorization

group, it will

be

determined

and the

resource will

be removed

from that

authorization

group.

None v Parameters:

- authorizationGroup

Name

The name of the

authorization group.

(String, optional)

- resourceName

The name of the

resource instance that

you want to remove

from the authorization

group. (String,

required)

 The resourceName

parameter must be in

the following format:

ResourceType=

ResourceName

where the

ResourceType can be

any of the following:

Application, Server,

ServerCluster, Node, or

NodeGroup.

 The ResourceName is

the name of the

resource instance, for

example, server1.

 The following are

examples of the

resourceName

parameter:

Node=node1:

Server=server1

This example uniquely

identifies server1.

node1 is required if the

name of the server

exists on multiple

nodes.

Application=app1

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask removeResourceFromAuth

orizationGroup {-authorizationGroup

Name groupName -resourceName App

lication=app1}

v Using Jython string:

AdminTask.removeResourceFromAuthori

zationGroup(’[-authorizationGroup

Name groupName -resourceName Appli

cation=app1]’)

v Using Jython list:

AdminTask.removeResourceFromAuth

orizationGroup([’-authorization

GroupName’, ’groupName’, ’-res

ourceName’, ’Application=app1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask removeResourceFrom

AuthorizationGroup {-interactive}

v Using Jython string:

AdminTask.removeResourceFrom

AuthorizationGroup (’[-inter

active]’)

v Using Jython list:

AdminTask.removeResourceFrom

AuthorizationGroup ([’-inter

active’])

1718 Administering applications and their environment

removeUsers

FromAdmin

Role

The

removeUsers

FromAdmin

Role

command

removes

previously

mapped user

IDs from

administrative

roles in the

authorization

group. The

name of the

authorization

group that

you provide

determines

which

authorization

table is

involved. If

you do not

specify an

authorization

group name,

the user ID

from the cell

level

authorization

table will be

used. The

user ID can

be a short

name or a

fully qualified

domain name

if a LDAP

user registry

is used.

None v Parameters:

- authorizationGroup

Name

The name of the

authorization group. If

you do not specify this

parameter, the cell

level authorization

group is assumed.

(String, optional)

- roleName

The name of the

administrative role.

(String, required)

- userids

A list of user IDs that

you want to remove

from the administrative

role. (String[], required)

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask removeUsersFromAdmin

Role {-authorizationGroupName

groupName - roleName administra

tor -userids user1}

v Using Jython string:

AdminTask.removeUsersFromAdmin

Role(’[-authorizationGroupName

groupName -roleName administra

tor -userids user1]’)

v Using Jython list:

AdminTask.removeUsersFromAdmin

Role([’-authorizationGroupName’,

’groupName’, ’-roleName’, ’adm

inistrator’, ’-userids’, ’user1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask removeUsersFrom

AdminRole {-interactive}

v Using Jython string:

AdminTask.removeUsersFrom

AdminRole (’[-interactive]’)

v Using Jython list:

AdminTask.removeUsersFrom

AdminRole ([’-interactive’])

Commands for the ChannelFrameworkManagement group of the

AdminTask object

For more information about the AdminTask object, see the Commands for the AdminTask object article.

The following commands are available for the ChannelFrameworkManagement group of the AdminTask

object:

 Command

name:

Description: Target

object:

Parameters and return

values:

Examples:

Chapter 16. Security 1719

createChain The

createChain

command

creates a new

chain of

transport

channels that

are based on

a chain

template.

The

instance

of the

transport

channel

service

under

which the

new

chain is

created.

(ObjectName,

required)

v Parameters:

- template

The chain template on

which to base the new

chain. (ObjectName,

required)

- name

The name of the new

chain. (String, required)

- endPoint

The name of the end

point to be used by the

instance of the TCP

inbound channel in the

new chain if the chain

is an inbound chain.

(ObjectName, optional)

v Returns: The object name

of the channel chain that

was created.

Batch mode example usage:

v Using Jacl:

$AdminTask createChain (cells/

rohitbuildCell01/nodes/rohit

buildCellManager01/servers/

dmgr|server.xml#TransportCha

nnelService_1) {-template

WebContainer(templates/

chains|webcontainer-chains.xml

#Chain_1) -name trialChain1}

$AdminTask createChain (cells/

rohitbuildCell01/nodes/rohitb

uildCellManager01/servers/dmgr

|server.xml#TransportChannel

Service_1) {-template

WebContainer(templates/

chains|webcontainer-chains.xml#

Chain_1) -name trialChain1

-endPoint (cells/rohitbuild

Cell01/nodes/rohitbuildCellMa

nager01|serverindex.xml#End

Point_3) }

v Using Jython string:

 AdminTask.createChain(’cells/

rohitbuildCell01/nodes/rohitbu

ildCellManager01/servers/dmgr|

server.xml#TransportChannelSer

vice_1’, ’[-template "WebConta

iner(templates/chains|webconta

iner-chains.xml#Chain_1)" -name

trialChain]’)

AdminTask.createChain(’cells/

rohitbuildCell01/nodes/rohit

buildCellManager01/servers/dmgr

|server.xml#TransportChannel

Service_1’, ’[-template "WebCo

ntainer(templates/chains|webc

ontainer-chains.xml#Chain_1)"

-name trialChain -endPoint

"(cells/rohitbuildCell01/nodes/

rohitbuildCellManager01|server

index.xml#EndPoint_3)"]’)

v Using Jython list:

AdminTask.createChain(’cells/

rohitbuildCell01/nodes/

rohitbuildCellManager01/serve

rs/dmgr|server.xml#

TransportChannelService_1’,

[’-template’, "WebContainer

(templates/chains|webcontaine

r-chains.xml#Chain_1)",

’-name’, ’trialChain’])

AdminTask.createChain(’cells/

rohitbuildCell01/nodes/rohit

buildCellManager01/servers/

dmgr|server.xml#TransportCha

nnelService_1’, [’-template’,

"WebContainer(templates/chains

|webcontainer-chains.xml#Cha

in_1)", ’-name’, ’trialChain’,

’-endPoint’, "(cells/rohitbu

ildCell01/nodes/rohitbuildCe

llManager01|serverindex.xml#

EndPoint_3)"])

1720 Administering applications and their environment

Interactive mode example usage:

v Using Jacl:

$AdminTask createChain {-interactive}

v Using Jython string:

AdminTask.createChain (’[-interactive]’)

v Using Jython list:

AdminTask.createChain ([’-interactive’])

deleteChain The

deleteChain

command

deletes an

existing chain

and,

optionally, the

transport

channels in

the chain.

The

chain to

be

deleted.

(Object

name,

required)

v Parameters:

- deleteChannels

If the value of this

attribute is true,

non-shared transport

channels used by the

specified chain will be

deleted. (Boolean,

optional)

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask deleteChain trialChain1

(cells/rohitbuildCell01/nodes/roh

itbuildCellManager01/servers/dmgr|

server.xml#Chain_1093554462922)

$AdminTask deleteChain trialChain

(cells/rohitbuildCell01/nodes/roh

itbuildCellManager01/servers/dmgr

|server.xml#Chain_1093554378078)

{-deleteChannels true}

v Using Jython string:

 AdminTask.deleteChain(’trialChain

1(cells/rohitbuildCell01/nodes/roh

itbuildCellManager01/servers/dmgr|

server.xml#TransportChannelSer

vice_1)’)

AdminTask.deleteChain(’trialChain1

(cells/rohitbuildCell01/nodes/rohi

tbuildCellManager01/servers/dmgr|

server.xml#TransportChannelService

_1)’, ’[-deleteChannels true]’)

v Using Jython list:

AdminTask.deleteChain(’trialChain1

(cells/rohitbuildCell01/nodes/roh

itbuildCellManager01/servers/dmgr|

server.xml#TransportChannelService

_1)’)

AdminTask.deleteChain(’trialChain1

(cells/rohitbuildCell01/nodes/rohi

tbuildCellManager01/servers/dmgr|

server.xml#TransportChannelServic

e_1)’, [’-deleteChannels’, ’true’])

Interactive mode example usage:

v Using Jacl:

$AdminTask deleteChain {-interactive}

v Using Jython string:

AdminTask.deleteChain (’[-interactive]’)

v Using Jython list:

AdminTask.deleteChain ([’-interactive’])

Chapter 16. Security 1721

listChain

Templates

The listChain

Templates

command

displays a list

of templates

that you can

use to create

chains in this

configuration.

All templates

have a certain

type of

transport

channel as

the last

transport

channel in the

chain.

None v Parameters:

- acceptorFilter

The templates returned

by this method all have

a transport channel

instance of the

specified type as the

last transport channel

in the chain. (String,

optional)

v Returns: A list of all the

chain template object

names. If you specify the

acceptorFilter parameter,

the list that returns is

filtered to match the filter

that you specified.

Batch mode example usage:

v Using Jacl:

$AdminTask listChainTemplates {}

$AdminTask listChainTemplates

"-acceptorFilter WebContainer

InboundChannel"

v Using Jython string:

AdminTask.listChainTemplates()

AdminTask.listChainTemplates

(’[-acceptorFilter WebCont

ainerInboundChannel]’)

v Using Jython list:

AdminTask.listChainTemplates()

AdminTask.listChainTemplates

([’-acceptorFilter’, ’WebC

ontainerInboundChannel’])

Interactive mode example usage:

v Using Jacl:

$AdminTask listChainTemplates {-interactive}

v Using Jython string:

AdminTask.listChainTemplates (’[-interactive]’)

v Using Jython list:

AdminTask.listChainTemplates ([’-interactive’])

1722 Administering applications and their environment

listChains The

listChains

command

lists all the

chains that

are

configured

under a

particular

instance of

the transport

channel

service.

The

instance

of the

transport

channel

service

under

which the

chains

are

configured.

(ObjectName,

required)

v Parameters:

- acceptorFilter

The chains that are

returned by this

parameter will have a

transport channel

instance of the type

that you specify as the

last transport channel

in the chain. (String,

optional)

- endPointFilter:

The chains returned by

this parameter will have

a TCP inbound channel

using an end point with

the name that you

specify.(String,

optional)

v Returns: A list of all the

channel chain object names

that match the specified

filters. If no you do not

specify any parameters, all

of the channel chains that

are configured under the

particular instance of

transport channel service

are returned.

Batch mode example usage:

v Using Jacl:

$AdminTask listChains (cells/

rohitbuildCell01/nodes/rohit

buildNode01/servers/server2|

server.xml#TransportChannel

Service_1093445762328)

$AdminTask listChains (cells/

rohitbuildCell01/nodes/rohit

buildNode01/servers/server2|

server.xml#TransportChannel

Service_1093445762328)

{-acceptorFilter WebConta

inerInboundChannel}

$AdminTask listChains (cells/

rohitbuildCell01/nodes/rohit

buildNode01/servers/server2|

server.xml#TransportChannel

Service_1093445762328) {-end

PointFilter WC_adminhost}

v Using Jython string:

AdminTask.listChains(’(cells/

rohitbuildCell01/nodes/rohit

buildNode01/servers/server2|

server.xml#TransportChannel

Service_1093445762328)’)

AdminTask.listChains(’(cells/

rohitbuildCell01/nodes/rohit

buildNode01/servers/server2|

server.xml#TransportChannel

Service_1093445762328)’,

’[-acceptorFilter WebContai

nerInboundChannel]’)

AdminTask.listChains(’(cells/

rohitbuildCell01/nodes/rohit

buildNode01/servers/server2|

server.xml#TransportChannel

Service_1093445762328)’,

’[-endPointFilter WC_adminhost]’)

v Using Jython list:

AdminTask.listChains(’(cells/

rohitbuildCell01/nodes/rohit

buildNode01/servers/server2|

server.xml#TransportChannel

Service_1093445762328)’)

AdminTask.listChains(’(cells

/rohitbuildCell01/nodes/roh

itbuildNode01/servers/server

2|server.xml#TransportChanne

lService_1093445762328)’,

[’-acceptorFilter’, ’WebCon

tainerInboundChannel’])

AdminTask.listChains(’(cells

/rohitbuildCell01/nodes/roh

itbuildNode01/servers/server

2|server.xml#TransportChanne

lService_1093445762328)’,

[’-endPointFilter’, ’WC_admi

nhost’])

Chapter 16. Security 1723

Interactive mode example usage:

v Using Jacl:

$AdminTask listChains {-interactive}

v Using Jython string:

AdminTask.listChains (’[-interactive]’)

v Using Jython list:

AdminTask.listChains ([’-interactive’])

1724 Administering applications and their environment

Chapter 17. Naming and directory

Using naming

Naming is used by clients of WebSphere Application Server applications most commonly to obtain

references to objects related to those applications, such as Enterprise JavaBeans (EJB) homes.

The Naming service is based on the Java Naming and Directory Interface (JNDI) 1.2.1 Specification and

the Object Management Group (OMG) Interoperable Naming (CosNaming) specifications Naming Service

Specification, Interoperable Naming Service revised chapters and Common Object Request Broker:

Architecture and Specification (CORBA).

1. Develop your application using either JNDI or CORBA CosNaming interfaces. Use these interfaces to

look up server application objects that are bound into the name space and obtain references to them.

Most Java developers use the JNDI interface. However, the CORBA CosNaming interface is also

available for performing Naming operations on WebSphere Application Server name servers or other

CosNaming name servers.

2. Assemble your application using an assembly tool. Application assembly is a packaging and

configuration step that is a prerequisite to application deployment. If the application you are assembling

is a client to an application running in another process, you should qualify the jndiName values in the

deployment descriptors for the objects related to the other application. Otherwise, you may need to

override the names with qualified names during application deployment. If the objects have fixed

qualified names configured for them, you should use them so that the jndiName values do not depend

on the other application’s location within the topology of the cell.

3. Optional: Verify that your application is assigned the appropriate security role if administrative security

is enabled. For more information on the security roles, see “Naming roles” on page 1734.

4. Deploy your application. Put your assembled application onto the application server. If the application

you are assembling is a client to an application running in another server process, be sure to qualify

the jndiName values for the other application’s server objects if they are not already qualified. For

more information on qualified names, refer to “Lookup names support in deployment descriptors and

thin clients” on page 1729.

5. Configure name space bindings. This step is necessary in these cases:

v Your deployed application is to be accessed by legacy client applications running on previous

versions of WebSphere Application Server. In this case, you must configure additional name

bindings for application objects relative to the default initial context for legacy clients. (Version 5

clients have a different initial context from legacy clients.)

v The application requires qualified name bindings for such reasons as:

– It will be accessed by J2EE client applications or server applications running in another server

process.

– It will be accessed by thin client applications.

In this case, you can configure name bindings as additional bindings for application objects. The

qualified names for the configured bindings are fixed, meaning they do not contain elements of the

cell topology that can change if the application is moved to another server. Objects as bound into

the name space by the system can always be qualified with a topology-based name. You must

explicitly configure a name binding to use as a fixed qualified name.

For more information on qualified names, refer to “Lookup names support in deployment descriptors

and thin clients” on page 1729. For more information on configured name bindings, refer to

“Configured name bindings” on page 1731.

6. Troubleshoot any problems that develop. If a Naming operation is failing and you need to verify

whether certain name bindings exist, use the dumpNameSpace tool to generate a dump of the name

space.

© Copyright IBM Corp. 2006 1725

http://java.sun.com/products/jndi/1.2/javadoc/
http://www.omg.org/cgi-bin/doc?formal/2001-02-65
http://www.omg.org/cgi-bin/doc?formal/2001-02-65
http://www.omg.org/cgi-bin/doc?ptc/00-08-07
http://www.omg.org/cgi-bin/doc?formal/00-10-33
http://www.omg.org/cgi-bin/doc?formal/00-10-33

Naming

Naming is used by clients of WebSphere Application Server applications to obtain references to objects

related to those applications, such as enterprise bean (EJB) homes.

These objects are bound into a mostly hierarchical structure, referred to as a name space. In this

structure, all non-leaf objects are called contexts. Leaf objects can be contexts and other types of objects.

Naming operations, such as lookups and binds, are performed on contexts. All naming operations begin

with obtaining an initial context. You can view the initial context as a starting point in the name space.

The name space structure consists of a set of name bindings, each consisting of a name relative to a

specific context and the object bound with that name. For example, the name myApp/myEJB consists of one

non-leaf binding with the name myApp, which is a context. The name also includes one leaf binding with the

name myEJB, relative to myApp. The object bound with the name myEJB in this example happens to be an

EJB home reference. The whole name myApp/myEJB is relative to the initial context, which you can view as

a starting place when performing naming operations.

You can access and manipulate the name space through a name server. Users of a name server are

referred to as naming clients. Naming clients typically use the Java Naming and Directory Interface (JNDI)

to perform naming operations. Naming clients can also use the Common Object Request Broker

Architecture (CORBA) CosNaming interface.

You can use security to control access to the name space. For more information, see Naming roles.

Typically, objects bound to the name space are resources and objects associated with installed

applications. These objects are bound by the system, and client applications perform lookup operations to

obtain references to them. Occasionally, server and client applications bind objects to the name space. An

application can bind objects to transient or persistent partitions, depending on requirements.

In J2EE environments, some JNDI operations are performed with java: URL names. Names bound under

these names are bound to a completely different name space which is local to the calling process.

However, some lookups on the java: name space may trigger indirect lookups to the name server.

Name space logical view

The name space for the entire cell is federated among all servers in the cell. Every server process

contains a name server. All name servers provide the same logical view of the cell name space.

The various server roots and persistent partitions of the name space are interconnected by a system name

space. You can use the system name space structure to traverse to any context in a the cell’s name

space. A logical view of the name space is shown in the following diagram.

1726 Administering applications and their environment

The bindings in the preceding diagram appear with solid arrows, labeled in bold, and dashed arrows,

labeled in gray. Solid arrows represent primary bindings. A primary binding is formed when the associated

subcontext is created. Dashed arrows show linked bindings. A linked binding is formed when an existing

context is bound under an additional name. Linked bindings are added for convenience or interoperability

with previous WebSphere Application Server versions.

A cell name space is composed of contexts which reside in servers throughout the cell. All name servers

in the cell provide the same logical view of the cell name space. A name server constructs this view at

startup by reading configuration information. Each name server has its own local in-memory copy of the

name space and does not require another running server to function. There are, however, a few

exceptions. Server roots for other servers are not replicated among all the servers. The respective server

for a server root must be running to access that server root context.

Name space partitions

There are four major partitions in a cell name space:

v System name space partition

v Server roots partition

v Cell persistent partition

v Node persistent partition

System name space partition

The system name space contains a structure of contexts based on the cell topology. The system

structure supports traversal to all parts of a cell name space and to the cell root of other cells,

which are configured as foreign cells. The root of this structure is the cell root. In addition to the

cell root, the system structure contains a node root for each node in the cell. You can access other

contexts of interest specific to a node from the node root, such as the node persistent root and

server roots for servers configured in that node.

 All contexts in the system name space are read-only. You cannot add, update, or remove any

bindings.

System Name Space

(Read Only)

Cell Persistent

(Read/Write)

Server Roots

(Read/Write Transient)

Node Persistent

(Read/Write)

X

Y

Z

X

Y

Z

L

M
N

A

B
C

A

B

C

nodes

cell root
of foreign cell

foreign cells

cell clusters

BS

user persistent
sub-ctxs & objs

user persistent
sub-ctxs & objs

node persistent
root

user transient
sub-ctxs & objs

A

B

C

system artifact
sub-ctxs & objs

BS

Server root

<user-created-bindings>

<physical-server-name>
<cluster-name>

<user-created-bindings>

<user-created-bindings> <system-artifacts>

<foreign-cell-names>

<node-name>

cell
domain nodeAgent

clusters

deploymentManager

legacyRoot

cells

domain

cell

nodes

Logical View of a Cell's Name Space

persistent

cell

X

Y
Z

node physical
servers

persistent

servers

cell

X
Y

Z

Node root
BS

cell persistent
root

BS

Cell root
BS

Chapter 17. Naming and directory 1727

Server roots partition

Each server in a cell has a server root context. A server root is specific to a particular server. You

can view the server roots for all servers in a cell as being in a transient read/write partition of the

cell name space. System artifacts, such as EJB homes for server applications and resources, are

bound under the server root context of the associated server. A server application can also add

bindings under its server root. These bindings are transient. Therefore, the server application

creates all required bindings at application startup, so they exist anytime the application is running.

 A server cluster is composed of many servers that are logically equivalent. Each member of the

cluster has its own server root. These server roots are not replicated across the cluster. In other

words, adding a binding to the server root of one member does not propagate it to the server roots

of the other cluster members. To maintain the same view across the cluster, you should create all

user bindings under the server root by the server application at application startup so that the

bindings are present under the server root of each cluster member. Because of Workload

Management (WLM) behavior, a JNDI client outside a cluster has no control over which cluster

member’s server root context becomes the target of the JNDI operation. Therefore, you should

execute bind operations to the server root of a cluster member from within that cluster member

process only.

 Server-scoped configured name bindings are relative to a server’s server root.

Cell persistent partition

The root context of the cell persistent partition is the cell persistent root. A binding created under

the cell persistent root is saved as part of the cell configuration and continues to exist until it is

explicitly removed. Applications that need to create additional persistent bindings of objects

generally associated with the cell can bind these objects under the cell persistent root.

 It is important to note that the cell persistent area is not designed for transient, rapidly changing

bindings. The bindings are more static in nature, such as part of an application setup or

configuration, and are not created at run time.

 Cell-scoped configured name bindings are relative to a cell’s cell persistent root.

Node persistent partition

The node persistent partition is similar to the cell partition except that each node has its own node

persistent root. A binding created under a node persistent root is saved as part of that node

configuration and continues to exist until it is explicitly removed.

 Applications that need to create additional persistent bindings of objects associated with a specific

node can bind those objects under that particular node’s node persistent root. As with the cell

persistent area, it is important to note that the node persistent area is not designed for transient,

rapidly changing bindings. These bindings are more static in nature, such as part of an application

setup or configuration, and are not created at run time.

 Node-scoped configured name bindings are relative to a node’s node persistent root.

Initial context support

All naming operations begin with obtaining an initial context. You can view the initial context as a starting

point in the name space. Use the initial context to perform naming operations, such as looking up and

binding objects in the name space.

Initial contexts registered with the ORB as initial references

The server root, cell persistent root, cell root, and node root are registered with the name server’s ORB

and can be used as an initial context. An initial context is used by CORBA and enterprise bean

applications as a starting point for name space lookups. The keys for these roots as recognized by the

ORB are shown in the following table:

 Root Context Initial Reference Key

1728 Administering applications and their environment

Server Root NameServiceServerRoot

Cell Persistent Root NameServiceCellPersistentRoot

Cell Root NameServiceCellRoot, NameService

Node Root NameServiceNodeRoot

A server root initial context is the server root context for the specific server you are accessing. Similarly, a

node root initial context is the node root for the server being accessed.

You can use the previously mentioned keys in CORBA INS object URLs (corbaloc and corbaname) and as

an argument to an ORB resolve_initial_references call. For examples, see CORBA and JNDI

programming examples, which show how to get an initial context.

Default initial contexts

The default initial context depends on the type of client. Different categories of clients and the

corresponding default initial context follow.

v WebSphere Application Server V5 and later JNDI interface implementation

The JNDI interface is used by EJB applications to perform name space lookups. WebSphere Application

Server clients by default use the WebSphere Application Server CosNaming JNDI plug-in

implementation. The default initial context for clients of this type is the server root of the server specified

by the provider URL. For more details, refer to the JNDI programming examples on getting initial

contexts.

v Other JNDI implementation

Some applications can perform name space lookups with a non-WebSphere Application Server

CosNaming JNDI plug-in implementation. Assuming the key NameService is used to obtain the initial

context, the default initial context for clients of this type is the cell root.

v CORBA

The standard CORBA client obtains an initial org.omg.CosNaming.NamingContext reference with the

key NameService. The initial context in this case is the cell root.

Lookup names support in deployment descriptors and thin clients

Server application objects, such as EJB homes, are bound relative to the server root context for the server

in which the application is installed. Other objects, such as resources, can also be bound to a specific

server root. The names used to look up these objects must be qualified so as to select the correct server

root. This topic discusses what relative and qualified names are, when they can be used, and how you can

construct them.

Relative names

All names are relative to a context. Therefore, a name that can be resolved from one context in the name

space cannot necessarily be resolved from another context in the name space. This point is significant

because the system binds objects with names relative to the server root context of the server in which the

application is installed. Each server has its own server root context. The initial JNDI context is by default

the server root context for the server identified by the provider URL used to obtain the initial context.

(Typically, the URL consists of a host and port.) For applications running in a server process, the default

initial JNDI context is the server root for that server. A relative name will resolve successfully when the

initial context is obtained from the server which contains the target object, but it will not resolve

successfully from an initial context obtained from another server.

If all clients of a server application run in the same server process as the application, all objects

associated with that application are bound to the same initial context as the clients’ initial context. In this

case, only names relative to the server’s server root context are required to access these server objects.

Chapter 17. Naming and directory 1729

Frequently, however, a server application has clients that run outside the application’s server process. The

initial context for these clients can be different from the server application’s initial context, and lookups on

the relative names for server objects may fail. These clients need to use the qualified name for the server

objects. This point must be considered when setting up the jndiName values in a J2EE client application

deployment descriptors and when constructing lookup names in thin clients. Qualified names resolve

successfully from any initial context in the cell.

Qualified names

All names are relative to a context. Here, the term qualified name refers to names that can be resolved

from any initial context in a cell. This action is accomplished by using names that navigate to the same

context, the cell root. The rest of the qualified name is then relative to the cell root and uniquely identifies

an object throughout the cell. All initial contexts in a server (that is, all naming contexts in a server

registered with the ORB as an initial reference) contain a binding with the name cell, which links back to

the cell root context. All qualified names begin with the string cell/ to navigate from the current initial

context back to the cell root context.

A qualified name for an object is the same throughout the cell. The name can be topology-based, or some

fixed name bound under the cell persistent root. Topology-based names, described in more detail below,

navigate through the system name space to reach the target object. A fixed name bound under the cell

persistent root has the same qualified name throughout the cell and is independent of the topology.

Creating a fixed name under the cell persistent root for a server application object requires an extra step

when the server application is installed, but this step eliminates impacts to clients when the application is

moved to a different location in the cell topology. The process for creating a fixed name is described later

in this section.

Generally, you must use qualified names for EJB jndiName values in a J2EE client application deployment

descriptors and for EJB lookup names in thin clients. The only exception is when the initial context is

obtained from the server in which the target object resides. For example, a session bean which is a client

to an entity bean can use a relative name if the two beans run in the same server. If the session bean and

entity beans run in different servers, the jndiName for the entity bean must be qualified in the session

bean’s deployment descriptors. The same requirement may be true for resources as well, depending on

the scope of the resource.

v Topology-based names

The system name space partition in a cell’s name space reflects the cell’s topology. This structure can

be navigated to reach any object bound into the cell’s name space. Topology-based qualified names

include elements from the topology which reflect the object’s location within the cell. For a

system-bound object, such as an EJB home, the form for a topology-based qualified name depends on

whether the object is bound to a single server or cluster. Both forms are described below.

Single server

An object bound in a single server has a topology-based qualified name of the following form:

cell/nodes/nodeName/servers/serverName/relativeJndiName

where nodeName and serverName are the node name and server name for the server where

the object is bound, and relativeJndiName is the unqualified name of the object; that is, the

object’s name relative to its server’s server root context.

Server cluster

An object bound in a server cluster has a topology-based qualified name of the following form:

cell/clusters/clusterName/relativeJndiName

where clusterName is the name of the server cluster where the object is bound, and

relativeJndiName is the unqualified name of the object; that is, the object’s name relative to a

cluster member’s server root context.

v Fixed names

1730 Administering applications and their environment

It is possible to create a fixed name for a server object so that the qualified name is independent of the

cell topology. This quality is desirable when clients of the application run in other server processes or as

pure clients. Fixed names have the advantage of not changing if the object is moved to another server.

The jndiName values in deployment descriptors for a J2EE client application can reference the qualified

fixed name for a server object regardless of the cell topology on which the client or server application is

being installed.

Defining a cell-wide fixed name for a server application object requires an extra step after the server

application is installed. That is, a binding for the object must be created under the cell persistent root. A

fixed name bound under the cell persistent root can be any name, but all names under the cell

persistent root must be unique within the cell because the cell persistent root is global to the entire cell.

A qualified fixed name has the form:

cell/persistent/fixedName

where fixedName is an arbitrary fixed name.

The binding can be created programmatically (for example, using JNDI). However, it is probably more

convenient to configure a cell-scoped binding for the server object.

You must keep the programmatic or configured binding up-to-date. Configured EJB bindings are based

on the location of the enterprise bean within the cell topology, and moving the EJB application to

another single server or to a server cluster, for example, requires the configured binding to be updated.

Similar changes affect an EJB home reference programmatically bound so that the fixed name would

need to be rebound with a current reference. However, for J2EE clients, the jndiName value for the

object, and for thin clients, the lookup name for the object, remains the same. In other words, clients

that access objects by fixed names are not affected by changes to the configuration of server

applications they access.

JNDI support in WebSphere Application Server

IBM WebSphere Application Server includes a name server to provide shared access to Java components,

and an implementation of the javax.naming JNDI package which supports user access to the WebSphere

Application Server name server through the JNDI naming interface.

WebSphere Application Server does not provide implementations for:

v javax.naming.directory or

v javax.naming.ldap packages

Also, WebSphere Application Server does not support interfaces defined in the javax.naming.event

package.

However, to provide access to LDAP servers, the development kit shipped with WebSphere Application

Server supports the Sun Microsystems implementation of:

v javax.naming.ldap and

v com.sun.jndi.ldap.LdapCtxFactory

WebSphere Application Server’s JNDI implementation is based on version 1.2 of the JNDI interface, and

was tested with Version 1.2.1 of the Sun Microsystems JNDI Service Provider Interface (SPI).

The default behavior of this JNDI implementation is adequate for most users. However, users with specific

requirements can control certain aspects of JNDI behavior.

Configured name bindings

Administrators can configure bindings into the name space. A configured binding is different from a

programmatic binding in that the system creates the binding every time a server is started, even if the

target context is in a transient partition.

Chapter 17. Naming and directory 1731

Administrators can add name bindings to the name space through the configuration. Name servers add

these configured bindings to the name space view, by reading the configuration data for the bindings.

Configuring bindings is an alternative to creating the bindings from a program. Configured bindings have

the advantage of being created each time a server starts, even when the binding is created in a transient

partition of the name space. Cell-scoped configured bindings provide a fixed qualified name for server

application objects.

Scope

You can configure a binding at one of the following four scopes: cell, node, server, or cluster. Cell-scoped

bindings are created under the cell persistent root context. Node-scoped bindings are created under the

node persistent root context for the specified node. Server-scoped bindings are created under the server

root context for the selected server. Cluster-scoped bindings are created under the server root context in

each member of the selected cluster.

The scope you select for new bindings depends on how the binding is to be used. For example, if the

binding is not specific to any particular node, cluster, or server, or if you do not want the binding to be

associated with any specific node, cluster, or server, a cell-scoped binding is a suitable scope. Defining

fixed names for enterprise beans to create fixed qualified names is just such an application. If a binding is

to be used only by clients of an application running on a particular server (or cluster), or if you want to

configure a binding with the same name on different servers (or clusters) which resolve to different objects,

a server-scoped (or cluster-scoped) binding would be appropriate. Note that two servers or clusters can

have configured bindings with the same name but resolve to different objects. At the cell scope, only one

binding with a given name can exist.

Intermediate contexts

Intermediate contexts created with configured bindings are read-only. For example, if an EJB home binding

is configured with the name some/compound/name/ejbHome, the intermediate contexts some, some/compound,

and some/compound/name will be created as read-only contexts. You cannot add, update, or remove any

read-only bindings.

The configured binding name cannot conflict with existing bindings. However, configured bindings can use

the same intermediate context names. Therefore, a configured binding with the name

some/compound/name2/ejbHome2 does not conflict with the previous example name.

Configured binding types

Types of objects that you can bind follow:

EJB: EJB home installed in some server in the cell

The following data is required to configure an EJB home binding:

v JNDI name of the EJB server or server cluster where the enterprise bean is deployed

v Target root for the configured binding (scope)

v The name of the configured binding, relative to the target root.

A cell-scoped EJB binding is useful for creating a fixed lookup name for an enterprise bean so that

the qualified name is not dependent on the topology.

Note: In standalone servers, an EJB binding resolving to another server cannot be configured

because the name server does not read configuration data for other servers. That data is

required to construct the binding.

CORBA: CORBA object available from some CosNaming name server

You can identify any CORBA object bound into some INS compliant CosNaming server with a

corbaname URL. The referenced object does not have to be available until the binding is actually

referenced by some application.

1732 Administering applications and their environment

The following data is required in order to configure a CORBA object binding:

v The corbaname URL of the CORBA object

v An indicator if the bound object is a context or leaf node object (to set the correct CORBA

binding type of context or object)

v Target root for the configured binding

v The name of the configured binding, relative to the target root

Indirect: Any object bound in WebSphere Application Server name space accessible with JNDI

Besides CORBA objects, this includes javax.naming.Referenceable, javax.naming.Reference, and

java.io.Serializable objects. The target object itself is not bound to the name space. Only the

information required to look up the object is bound. Therefore, the referenced name server does

not have to be running until the binding is actually referenced by some application. The following

data is required in order to configure an indirect JNDI lookup binding:

v JNDI provider URL of name server where object resides

v JNDI lookup name of object

v Target root for the configured binding (scope)

v The name of the configured binding, relative to the target root.

A cell-scoped indirect binding is useful when creating a fixed lookup name for a resource so that

the qualified name is not dependent on the topology. You can also achieve this topology by

widening the scope of the resource definition.

String: String constant

You can configure a binding of a string constant. The following data is required to configure a

string constant binding:

v String constant value

v Target root for the configured binding (scope)

v The name of the configured binding, relative to the target root

Name space federation

Federating name spaces involves binding contexts from one name space into another name space.

For example, assume that a name space, Name Space 1, contains a context under the name a/b. Also

assume that a second name space, Name Space 2, contains a context under the name x/y. (See the

following illustration.) If context x/y in Name Space 2 is bound into context a/b in Name Space 1 under

the name f2, the two name spaces are federated. Binding f2 is a federated binding because the context

associated with that binding comes from another name space. From Name Space 1, a lookup of the name

a/b/f2 returns the context bound under the name x/y in Name Space 2. Furthermore, if context x/y

contains an enterprise bean (EJB) home bound under the name ejb1, the EJB home can be looked up

from Name Space 1 with the lookup name a/b/f2/ejb1. Notice that the name crosses name spaces. This

fact is transparent to the naming client.

Chapter 17. Naming and directory 1733

In a WebSphere Application Server name space, you can create federated bindings with the following

restrictions:

v Federation is limited to CosNaming name servers. A WebSphere Application Server name server is a

Common Object Request Broker Architecture (CORBA) CosNaming implementation. You can create

federated bindings to other CosNaming contexts. You cannot, for example, bind contexts from an LDAP

name server implementation.

v If you use JNDI to federate the name space, you must use a WebSphere Application Server initial

context factory to obtain the reference to the federated context. If you use some other initial context

factory implementation, you might not be able to create the binding or the level of transparency might

be reduced.

v A federated binding to a non-WebSphere Application Server naming context has the following functional

limitations:

– JNDI operations are restricted to the use of CORBA objects. For example, you can look up EJB

homes, but you cannot look up non-CORBA objects such as data sources.

– JNDI caching is not supported for non-WebSphere Application Server name spaces. This restriction

affects the performance of lookup operations only.

– If security is enabled, WebSphere Application Server does not support federated bindings to

non-WebSphereApplication Server name spaces.

v Do not federate two WebSphere Application Server stand-alone server name spaces. Incorrect behavior

might result. If you want to federate WebSphere Application Server name spaces, use servers running

under the Network Deployment package of WebSphere Application Server.

v When federating the name spaces of two cells running a Network Deployment package of WebSphere

Application Server, the names of the cells must be different. Otherwise, incorrect behavior can result.

Naming roles

The Java 2 Platform, Enterprise Edition (J2EE) role-based authorization concept is extended to protect the

CosNaming service.

Initial Context

a

Local Context

Local Context

Federated

Context

(remote reference)

b

f2

Name Space 1

Initial Context

x

Local Context

Local Context

y

ejb1

Name Space 2

EJB

Federated Name Spaces

1734 Administering applications and their environment

CosNaming security offers increased granularity of security control over CosNaming functions. CosNaming

functions are available on CosNaming servers such as the WebSphere Application Server. They affect the

content of the name space. Generally two ways are acceptable in which client programs result in

CosNaming calls. The first is through the Java Naming and Directory Interface (JNDI) methods. The

second is CORBA clients invoking CosNaming methods directly.

The following security roles exist. However, the roles have an authority level from low to high as shown in

the following list. The list also provides the security-related interface methods for each role. The interface

methods that are not listed are either not supported or not relevant to security.

v CosNamingRead. Users who are assigned the CosNamingRead role can do queries of the name

space, such as through the JNDI lookup method. The Everyone special-subject is the default policy for

this role.

 Table 44. CosNamingRead role packages and interface methods

Package Interface methods

javax.naming v Context.list

v Context.listBindings

v Context.lookup

v NamingEnumeration.hasMore

v NamingEnumeration.next

org.omg.CosNaming v NamingContext.list

v NamingContext.resolve

v BindingIterator.next_one

v BindingIterator.next_n

v BindingIterator.destroy

v CosNamingWrite. Users who are assigned the CosNamingWrite role can do write operations (such as

JNDI bind, rebind, or unbind) plus CosNamingRead operations. As a default policy, Subjects are not

assigned this role.

 Table 45. CosNamingWrite role packages and interface methods

Package Interface methods

javax.naming v Context.bind

v Context.rebind

v Context.rename

v Context.unbind

org.omg.CosNaming v NamingContext.bind

v NamingContext.bind_context

v NamingContext.rebind

v NamingContext.rebind_context

v NamingContext.unbind

v CosNamingCreate. Users who are assigned the CosNamingCreate role are allowed to create new

objects in the name space through JNDI createSubcontext operations plus CosNamingWrite operations.

As a default policy, Subjects are not assigned this role.

 Table 46. CosNamingCreate role packages, interface methods

Package Interface methods

javax.naming Context.createSubcontext

org.omg.CosNaming NamingContext.bind_new_context

v CosNamingDelete. Users who are assigned the CosNamingDelete role can destroy objects in the

name space, for example byusing the JNDI destroySubcontext method and CosNamingCreate

operations. As a default policy, Subjects are not assigned this role.

Chapter 17. Naming and directory 1735

Table 47. CosNamingDelete role packages and interface methods

Package Interface methods

javax.naming Context.destroySubcontext

org.omg.CosNaming NamingContext.destroy

Important: The javax.naming package applies to the CosNaming JNDI service provider only. All of the

variants of a JNDI interface method have the same role mapping.

If the caller is not authorized, the packages listed in the previous tables exhibit the following behavior:

javax.naming

This package creates the javax.naming.NoPermissionException exception, which maps

NO_PERMISSION from the CosNaming method invocation to NoPermissionException.

org.omg.CosNaming

This package creates the org.omg.CORBA.NO_PERMISSION exception.

Users, groups, or the AllAuthenticated and Everyone special subjects can be added or removed to or from

the naming roles from the WebSphere Application Server administrative console at any time. However, you

must restart the server for the changes to take effect. A best practice is to map groups or one of the

special-subjects, rather than specific users, to Naming roles because it is more flexible and easier to

administer in the long run. By mapping a group to a naming role, adding or removing users to or from the

group occurs outside of WebSphere Application Server and does not require a server restart for the

change to take effect.

If a user is assigned a particular naming role and that user is a member of a group that is assigned a

different naming role, the user is granted the most permissive access between the role that is assigned

and the role the group is assigned. For example, assume that the MyUser user is assigned the

CosNamingRead role. Also, assume that the MyGroup group is assigned the CosNamingCreate role. If the

MyUser user is a member of the MyGroup group, the MyUser user is assigned the CosNamingCreate role

because the user is a member of the MyGroup group. If the MyUser user is not a member of the MyGroup

group, is assigned the CosNamingRead role.

The CosNaming authorization policy is only enforced when administrative security is enabled. When

administrative security is enabled, attempts to do CosNaming operations without the proper role

assignment result in a org.omg.CORBA.NO_PERMISSION exception from the CosNaming server.

In WebSphere Application Server, each CosNaming function is assigned to one role only. Therefore, users

who are assigned the CosNamingCreate role cannot query the name space unless they also are assigned

the CosNamingRead role. In most cases, a creator needs three roles assigned: CosNamingRead,

CosNamingWrite, and CosNamingCreate. The CosNamingRead and CosNamingWrite roles assignment for

the creator example in above have been included in CosNamingCreate role. In most cases, WebSphere

Application Server administrators do not have to change the roles assignment for every user or group

when they move to this release from a previous one.

Although the ability exists to greatly restrict access to the name space by changing the default policy,

doing so might result in unexpected org.omg.CORBA.NO_PERMISSION exceptions at runtime. Typically,

J2EE applications access the name space and the identity is that of the user that authenticated to

WebSphere Application Server when he J2EE application is accessed. Unless the J2EE application

provider clearly communicates the expected naming roles, fully consider changing the default naming

authorization policy.

Naming and directories: Resources for learning

Additional information and guidance on naming and directories is available on various Internet sites.

1736 Administering applications and their environment

Use the following links to find relevant supplemental information about naming and directories. The

information resides on IBM and non-IBM Internet sites, whose sponsors control the technical accuracy of

the information.

The naming service provided with WebSphere Application Server Version 6 is the same as that provided

for Version 5, thus information on the Version 5 naming and directories applies to Version 6.

The following links are provided for convenience. Often, the information is not specific to the IBM

WebSphere Application Server product, but is useful all or in part for understanding the product. When

possible, links are provided to technical papers and Redbooks that supplement the broad coverage of the

release documentation with in-depth examinations of particular product areas.

Refer to Web resources for learning for links to information applicable to WebSphere Application Server

generally, such as lists of IBM technical papers, Redbooks and samples.

Programming instructions and examples

v Naming in WebSphere Application Server V5: Impact on Migration and Interoperability

v WebSphere Application Server V6 System Management & Configuration Handbook

v IBM WebSphere Developer Technical Journal: Co-hosting multiple versions of J2EE applications

Programming specifications

v Java Naming and Directory InterfaceTM 1.2.1 Specification

v Object Management Group (OMG) Interoperable Naming specifications

– Naming Service Specification

– Common Object Request Broker: Architecture and Specification

– Interoperable Naming Service revised chapters, which presents a consolidated view of all of the

elements that comprise interoperable naming

Configuring name servers

Name servers add configured name space bindings to the name space view by reading the configuration

data for the bindings. If you use configured bindings, you do not need to create name space bindings from

a program.

You can configure a name server to provide a display name and initial state for an application server, as

well as specify custom properties for the name server. To configure a name server, complete the following:

1. In the administrative console, click Servers > Application Servers > Server Components > Name

Server.

2. Edit the fields as desired.

All of the fields are mandatory.

3. To make other changes, click Custom Properties and configure a custom property.

4. Click OK to register your changes.

Name server settings

Use this page to configure Naming Service Provider settings for the application server.

To view this administrative console page, click one of the following paths:

v Servers > Application Servers > server_name > Administration > Server Components > Name

Server

v Servers > JMS Servers > server_name > Administration > Server Components > Name Server

Chapter 17. Naming and directory 1737

http://www7b.software.ibm.com/webapp/dd/transform.wss?URL=/wsdd/library/techarticles/0305_weiner/weiner.xml&xslURL=/wsdd/xsl/document.xsl&format=one-column
http://publib-b.boulder.ibm.com/abstracts/sg246451.html?Open
http://www-128.ibm.com/developerworks/websphere/techjournal/0405_poddar/0405_poddar.html
http://java.sun.com/products/jndi/1.2/javadoc/
http://www.omg.org/cgi-bin/doc?formal/2001-02-65
http://www.omg.org/cgi-bin/doc?formal/00-10-33
http://www.omg.org/cgi-bin/doc?ptc/00-08-07

Name

Specifies the display name for the server.

 Data type String

Initial State

Specifies the execution state. The options are: Started and Stopped.

 Data type String

Default Started

Configuring name space bindings

Instead of creating name space bindings from a program, you can configure name space bindings using

the administrative console. Name servers add these configured bindings to the name space view by

reading the configuration data for the bindings. Configured bindings are created each time a server starts,

even when the binding is created in a transient partition of the name space. One major use of configured

bindings is to provide fixed qualified names for server application objects.

Assemble and deploy your application onto an application server. If the application is a client to an

application running in another server process, specify qualified jndiName values for the other application’s

server objects during assembly or deployment. For more information on qualified names, refer to “Lookup

names support in deployment descriptors and thin clients” on page 1729.

A deployed application requires qualified fixed names if the application is accessed by thin client

applications or by J2EE client applications or server applications running in another server process.

When you configure a name space binding, you create a qualified fixed name for a server object. A fixed

name does not change if the object is moved to another server. A qualified fixed name with a cell scope

has the form:

cell/persistent/fixedName

where fixedName is an arbitrary fixed name.

You can configure name space bindings, and thus qualified fixed names, for the following objects:

v A string constant value

v An enterprise bean (EJB) home installed on a server in the cell

v A CORBA object available from a CosNaming name server

v An object bound in a WebSphere Application Server name space that is accessible using a JNDI

indirect lookup

To view or configure a name space binding for an object of a deployed application, complete the following:

1. Go to the Name Space Bindings page.

In the administrative console, click Environment > Naming > Name Space Bindings.

2. Select the desired scope.

The scope determines where in the name space the name space binding is created. It also affects

which name servers contain the binding in the name space that they manage. Regardless of the

scope, a name space binding is accessible from all name servers in the cell. However, the scope can

affect whether the lookup can be resolved locally by a name server or whether the name server must

make a remote call to another name server to resolve the binding.

Only name space bindings created with the selected scope are visible in the collection table on the

page. By changing the scope, you can see and create bindings in other scopes.

a. Select a cell, node or server scope.

1738 Administering applications and their environment

If you are creating a new name space binding, refer to the table below as a guide in selecting a

scope:

 Scope Description

Cell Cell-scoped bindings are created under the cell persistent root context. Select Cell if the name space

binding is not specific to any particular node or server, or if you do not want the binding to be associated

with any specific node or server. For example, you can use cell-scoped bindings to create fixed qualified

names for enterprise beans. Fixed qualified names do not have any node or server names embedded

within them.

Cell-scoped bindings are created in the deployment manager process, and all node agent and application

server processes, in the cell. Therefore all name servers in the cell can resolve those bindings locally. No

remote invocations to other name servers are necessary to resolve the bindings.

Node Node-scoped bindings are created under the node persistent root context for the selected node. Select

Node if the name space binding is specific to a particular node, or if you want the binding to be

associated with a specific node.

Node-scoped bindings are created in the node agent and all application server processes in the selected

node. Therefore, all name servers in the node can resolve those bindings locally. No remote invocations

to other name servers are necessary to resolve the bindings. However, name servers in other nodes must

make remote calls to the node agent in the selected node in order to resolve the bindings. For example,

in order for a name server running in node node1 to resolve the name cell/nodes/node2/persistent/
nodeScopedConfiguredBinding, the name server must make a remote call to the node agent running in

node2. Any name server running in node2 can resolve that name without invoking any other name

servers.

Server Server-scoped bindings are created under the server root context for the selected server. Select Server if

a binding is to be used only by clients of an application running on a particular server, or if you want to

configure a binding with the same name on different servers which resolve to different objects. Note that

two servers can have configured bindings with the same name but resolve to different objects.

Server-scoped bindings are created in the process of the selected application server. Therefore, the name

server running in the selected application server can resolve those bindings locally. No remote invocations

to other name servers are necessary to resolve the bindings. However, all other name servers in the cell

must make remote calls to the selected server in order to resolve the bindings. For example, in order for

the name server running in server1 in node node1 to resolve the name cell/nodes/node1/servers/
server2/serverScopedConfiguredBinding, it must make a remote call to server2 in node1. Only the name

server in server2 in node1 can resolve that name without invoking any other name servers.

b. Click Apply.

3. Create a new name space binding.

a. Open the New Name Space Binding wizard.

On the Name Space Bindings page, click New.

b. On the Specify binding type panel, select the binding type.

The name space binding can be for a constant string value, an EJB home, a CORBA CosNaming

NamingContext or CORBA leaf node object, or an object that you can look up indirectly using

JNDI.

c. On the Specify basic properties panel, specify the binding identifier and other properties for the

binding.

For property descriptions, refer to the following:

v “String binding settings” on page 1741

v “EJB binding settings” on page 1742

v “CORBA object binding settings” on page 1743

v “Indirect lookup binding settings” on page 1744

d. On the Summary panel, verify the settings and click Finish.

The name of the new binding is displayed in the collection table on the Name Space Bindings page.

Chapter 17. Naming and directory 1739

4. Optional: Edit a previously created binding.

a. From the collection table on the Name Space Bindings page, click the name of the binding that you

want to edit.

b. Edit the binding properties as desired. Step 3(c) provides links to property descriptions.

c. Click OK.

Cell-scoped bindings are created under the cell persistent root context. Node-scoped bindings are created

under the node persistent root context for the specified node. Server-scoped bindings are created under

the server root context for the selected server. Cluster-scoped bindings are created under the server root

context for each member of the selected cluster.

Name space binding collection

Use this page to configure a name binding of an EJB, a CORBA CosNaming NamingContext, a CORBA

leaf node object, an object that you can look up using JNDI, or a constant string value.

Binding information for configured bindings is stored in the configuration and applied upon startup of the

name server for each server within the scope of the binding.

To view the Name Space Bindings page, click Environment > Naming > Name Space Bindings.

Click the check boxes to select one or more of the bindings in your collection. Use the buttons to control

the selected bindings.

When creating a new binding, select a scope before clicking New. The Scope setting filters what bindings

are listed in the collection as well as sets the scope of the new binding.

Name

Shows the names given to uniquely identify these configured bindings.

Scope

Shows the scope of the configured binding. This value indicates the configuration location for the

namebindings.xml file. This field is for information purposes only and cannot be updated.

If the configured binding is cell-scoped, the starting context is the cell persistent root context. If the

configured binding is node-scoped, the starting context is the node persistent root context. If the

configured binding is server-scoped, the starting context is the server’s server root context.

Binding type

Shows the type of binding configured. Valid values are String, EJB, CORBA, and Indirect. This field is for

information purposes only and cannot be updated.

Specify binding type settings

Use this panel to select the type of name space binding that you want.

To view this administrative console panel, click Environment > Naming > Name Space Bindings > New.

You can configure a name space binding for any of the following objects:

v A string constant value

v An enterprise bean (EJB) home installed on a server in the cell

v A CORBA object available from a CosNaming name server

v An object bound in a WebSphere Application Server name space that is accessible using a JNDI

indirect lookup

1740 Administering applications and their environment

On this panel, select a binding type and then click Next.

Binding type

Specifies the type of binding configured.

 String Select String to configure a name space binding for a string constant value.

To configure a String binding, you need the following information:

v The string constant value

v The target root context for the configured binding (scope)

v The name of the configured binding, relative to the target root context

EJB Select EJB to configure a name space binding for an EJB home installed on a server in the cell. Use a

cell-scoped EJB binding to create a fixed qualified lookup name for an enterprise bean. A fixed qualified

lookup name is not dependent on the cell topology.

To configure an EJB home binding, you need the following information:

v The JNDI name of the EJB server or server cluster where the enterprise bean is deployed

v The target root context for the configured binding (scope)

v The name of the configured binding, relative to the target root context

On standalone servers, do not configure an EJB binding that resolves to another server. The name

server cannot read configuration data for other servers. That data is required to construct the binding.

CORBA Select CORBA to configure a name space binding for a Common Object Request Broker: Architecture

and Specification (CORBA) object available from a Object Management Group (OMG) Interoperable

Naming (CosNaming) name server. Identify a CORBA object bound into an INS compliant CosNaming

server with a corbaname URL. The referenced object does not have to be available until the binding is

actually referenced by an application.

To configure a CORBA binding, you need the following information:

v The corbaname URL of the CORBA object

v An indicator if the bound object is a context or leaf node object (to set the correct CORBA binding

type of context or object)

v The target root context for the configured binding

v The name of the configured binding, relative to the target root context

Indirect Select Indirect to configure a name space binding for an object bound in a WebSphere Application

Server name space that is accessible using a Java Naming and Directory Interface (JNDI) indirect

lookup. You can select Indirect for CORBA objects as well as for javax.naming.Referenceable,

javax.naming.Reference, and java.io.Serializable objects.

The target object itself is not bound to the name space. Only the information required to look up the

object is bound. Therefore, the referenced name server does not have to be running until the binding is

actually referenced by some application.

To configure an indirect JNDI lookup binding, you need the following information:

v The JNDI provider URL of the name server where the object resides

v The JNDI lookup name of the object

v The target root context for the configured binding (scope)

v The name of the configured binding, relative to the target root context

The following information is optional:

v The JNDI initial context factory class name. The default is the WebSphere Application Server initial

context factory, com.ibm.websphere.naming.WsnInitialContextFactory.

v Additional properties to pass to the javax.naming.InitialContext constructor.

A cell-scoped indirect binding is useful when creating a fixed qualified lookup name for a bound object

so that the qualified lookup name is not dependent on the cell topology.

String binding settings

Use this page to view or configure a string binding.

Chapter 17. Naming and directory 1741

To view this console page, click Environment > Naming > Name Space Bindings >

string_namespace_binding. The settings on this page are similar to those on the Specify basic

properties panel of the New Name Space Binding wizard.

Scope

Shows the scope of the configured binding. This value indicates the configuration location for the

namebindings.xml file.

The Scope setting is shown only when you edit an existing binding on the console page, and is not shown

when you create a new binding on the wizard panel. This setting is for information purposes and cannot

be updated.

If the configured binding is cell-scoped, the starting context is the cell persistent root context. If the

configured binding is node-scoped, the starting context is the node persistent root context. If the

configured binding is server-scoped, the starting context is the server’s server root context.

Binding type

Shows the type of binding configured. Possible choices are String, EJB, CORBA, and Indirect. This setting

is for information purposes only and cannot be updated.

Binding identifier

Specifies the name that uniquely identifies this configured binding.

Name in name space

Specifies the name used for this binding in the name space. This name can be a simple or compound

name depending on the portion of the name space where this binding is configured.

String value

Specifies the string to be bound into the name space.

EJB binding settings

Use this page to configure a new EJB binding, or to view or edit an existing EJB binding.

To view this console page, click Environment > Naming > Name Space Bindings >

EJB_namespace_binding. The settings on this page are similar to those on the Specify basic properties

panel of the New Name Space Binding wizard.

Scope

Shows the scope of the configured binding. This value indicates the configuration location for the

namebindings.xml file.

The Scope setting is shown only when you edit an existing binding on the console page, and is not shown

when you create a new binding on the wizard panel. This setting is for information purposes and cannot

be updated.

If the configured binding is cell-scoped, the starting context is the cell persistent root context. If the

configured binding is node-scoped, the starting context is the node persistent root context. If the

configured binding is server-scoped, the starting context is the server’s server root context.

Binding type

Shows the type of binding configured. Possible choices are String, EJB, CORBA, and Indirect. This setting

is for information purposes only and cannot be updated.

Binding identifier

Specifies the name that uniquely identifies this configured binding.

1742 Administering applications and their environment

Name in name space

Specifies the name used for this binding in the name space. This name can be a simple or compound

name depending on the portion of the name space where this binding is configured.

Enterprise Bean Location

Specifies whether the enterprise bean is running in a server cluster or a single server. If Single server is

specified, type the node name.

Server

Specifies the name of the cluster or non-clustered server in which the enterprise bean is configured.

JNDI name

Specifies the JNDI name of the deployed enterprise bean (the bean’s JNDI name that is in the enterprise

bean bindings--not the java:comp name).

CORBA object binding settings

Use this page to configure a new name binding of a CORBA object binding, or to view or edit an existing

CORBA object binding.

To view this console page, click Environment > Naming > Name Space Bindings >

CORBA_namespace_binding. The settings on this page are similar to those on the Specify basic

properties panel of the New Name Space Binding wizard.

Scope

Shows the scope of the configured binding. This value indicates the configuration location for the

namebindings.xml file.

The Scope setting is shown only when you edit an existing binding on the console page, and is not shown

when you create a new binding on the wizard panel. This setting is for information purposes and cannot

be updated.

If the configured binding is cell-scoped, the starting context is the cell persistent root context. If the

configured binding is node-scoped, the starting context is the node persistent root context. If the

configured binding is server-scoped, the starting context is the server’s server root context.

Binding type

Shows the type of binding configured. Possible choices are String, EJB, CORBA, and Indirect. This setting

is for information purposes only and cannot be updated.

Binding identifier

Specifies the name that uniquely identifies this configured binding.

Name in name space

Specifies the name used for this binding in the name space. This name can be a simple or compound

name depending on the portion of the name space where this binding is configured.

Corbaname URL

Specifies the CORBA name URL string identifying where the object is bound in a CosNaming server.

Federated context

Specifies whether the target is a CosNaming context (true) or a leaf node object (false).

 true The target object is bound with a context CORBA binding

type. If the corbaname URL does not resolve to a

NamingContext, an error occurs when the binding is first

used (which is when the URL is first resolved).

Chapter 17. Naming and directory 1743

false The target object is bound with an object CORBA binding

type.

Indirect lookup binding settings

Use this page to configure a new indirect lookup name binding, or to view or edit an existing indirect

lookup binding.

To view this console page, click Environment > Naming > Name Space Bindings >

indirect_lookup_namespace_binding. The settings on this page are similar to those on the Specify basic

properties panel of the New Name Space Binding wizard.

Scope

Shows the scope of the configured binding. This value indicates the configuration location for the

namebindings.xml file.

The Scope setting is shown only when you edit an existing binding on the console page, and is not shown

when you create a new binding on the wizard panel. This setting is for information purposes and cannot

be updated.

If the configured binding is cell-scoped, the starting context is the cell persistent root context. If the

configured binding is node-scoped, the starting context is the node persistent root context. If the

configured binding is server-scoped, the starting context is the server’s server root context.

Binding type

Shows the type of binding configured. Possible choices are String, EJB, CORBA, and Indirect. This setting

is for information purposes only and cannot be updated.

Binding identifier

Specifies the name that uniquely identifies this configured binding.

Name in name space

Specifies the name used for this binding in the name space. This name can be a simple or compound

name depending on the portion of the name space where this binding is configured.

Provider URL

Specifies the provider URL string needed to obtain a JNDI initial context.

JNDI name

Specifies the name used to look up the target object from the initial context.

Initial context factory name

Specifies the class name of the initial context factory used to obtain a JNDI initial context.

This field is optional. If no factory is specified, the WebSphere Application Server initial context factory is

used.

If the scope of the indirect lookup binding includes servers or nodes previous to version 6.1, the initial

context factory name and other context factory properties are not shown on the console page.

Developing applications that use JNDI

References to EJB homes and other artifacts such as data sources are bound to the WebSphere

Application Server name space. These objects can be obtained through the JNDI interface. Before you

can perform any JNDI operations, you need to get an initial context. You can use the initial context to look

up objects bound to the WebSphere Application Server name space.

1744 Administering applications and their environment

The following examples describe how to get an initial context and how to perform lookup operations.

v Getting the default initial context

v Getting an initial context by setting the provider URL property

v Setting the provider URL property to select a different root context as the initial context

v Looking up an EJB home with JNDI

v Looking up a JavaMail session with JNDI

In these examples, the default behavior of features specific to the WebSphere Application Server JNDI

Context implementation is used.

The WebSphere Application Server JNDI context implementation includes special features. JNDI caching

enhances performance of repeated lookup operations on the same objects. Name syntax options offer a

choice of a name syntaxes, one optimized for typical JNDI clients, and one optimized for interoperability

with CosNaming applications. Most of the time, the default behavior of these features is the preferred

behavior. However, sometimes you should modify the behavior for specific situations.

JNDI caching and name syntax options are associated with a javax.naming.InitialContext instance. To

select options for these features, set properties that are recognized by the WebSphere Application Server

initial context factory. To set JNDI caching or name syntax properties which will be visible to WebSphere

Application Server initial context factory, do the following:

1. Optional: Configure JNDI caches

JNDI caching can greatly increase performance of JNDI lookup operations. By default, JNDI caching is

enabled. In most situations, this default is the desired behavior. However, in specific situations, use the

other JNDI cache options.

Objects are cached locally as they are looked up. Subsequent lookups on cached objects are resolved

locally. However, cache contents can become stale. This situation is not usually a problem, since most

objects you look up do not change frequently. If you need to look up objects which change relatively

frequently, change your JNDI cache options.

JNDI clients can use several properties to control cache behavior.

You can set properties:

v From the command line by entering the actual string value. For example:

java -Dcom.ibm.websphere.naming.jndicache.maxentrylife=1440

v In a jndi.properties file by creating a file named jndi.properties as a text file with the desired

properties settings. For example:

...

com.ibm.websphere.naming.jndicache.cacheobject=none

...

Include the file as the beginning of the classpath, so that the class loader loads your copy of

jndi.properties before any other copies.

v Within a Java program by using the PROPS.JNDI_CACHE* Java constants, defined in the

com.ibm.websphere.naming.PROPS file. The constant definitions follow:

public static final String JNDI_CACHE_OBJECT =

 "com.ibm.websphere.naming.jndicache.cacheobject";

public static final String JNDI_CACHE_OBJECT_NONE = "none";

public static final String JNDI_CACHE_OBJECT_POPULATED = "populated";

public static final String JNDI_CACHE_OBJECT_CLEARED = "cleared";

public static final String JNDI_CACHE_OBJECT_DEFAULT =

 JNDI_CACHE_OBJECT_POPULATED;

public static final String JNDI_CACHE_NAME =

 "com.ibm.websphere.naming.jndicache.cachename";

public static final String JNDI_CACHE_NAME_DEFAULT = "providerURL";

public static final String JNDI_CACHE_MAX_LIFE =

 "com.ibm.websphere.naming.jndicache.maxcachelife";

public static final int JNDI_CACHE_MAX_LIFE_DEFAULT = 0;

Chapter 17. Naming and directory 1745

public static final String JNDI_CACHE_MAX_ENTRY_LIFE =

 "com.ibm.websphere.naming.jndicache.maxentrylife";

public static final int JNDI_CACHE_MAX_ENTRY_LIFE_DEFAULT = 0;

To use the previous properties in a Java program, add the property setting to a hashtable and pass

it to the InitialContext constructor as follows:

java.util.Hashtable env = new java.util.Hashtable();

...

// Disable caching

env.put(PROPS.JNDI_CACHE_OBJECT, PROPS.JNDI_CACHE_OBJECT_NONE); ...

javax.naming.Context initialContext = new javax.naming.InitialContext(env);

2. Optional: Specify the name syntax

Most WebSphere applications use JNDI to look up EJB objects and do not need to look up objects

bound by CORBA applications. Therefore, the default name syntax used for JNDI names is the most

convenient. If your application needs to look up objects bound by CORBA applications, you may need

to change your name syntax so that all CORBA CosNaming names can be represented.

JNDI clients can set the name syntax by setting a property. The property setting is applied by the initial

context factory when you instantiate a new java.naming.InitialContext object. Names specified in JNDI

operations on the initial context are parsed according to the specified name syntax.

You can set the property:

v From the command line by entering the actual string value. For example:

 java -Dcom.ibm.websphere.naming.name.syntax=ins

v In a jndi.properties file by creating a file named jndi.properties as a text file with the desired

properties settings. For example:

...

com.ibm.websphere.naming.name.syntax=ins

...

Include the file at the beginning of the classpath, so that the class loader loads your copy of

jndi.properties before any other copies.

v Within a Java program by using the PROPS.NAME_SYNTAX* Java constants, defined in the

com.ibm.websphere.naming.PROPS file. The constant definitions follow:

public static final String NAME_SYNTAX =

 "com.ibm.websphere.naming.name.syntax";

public static final String NAME_SYNTAX_JNDI = "jndi";

public static final String NAME_SYNTAX_INS = "ins";

To use the previous properties in a Java program, add the property setting to a hashtable and pass

it to the InitialContext constructor as follows:

java.util.Hashtable env = new java.util.Hashtable();

...

env.put(PROPS.NAME_SYNTAX, PROPS.NAME_SYNTAX_INS); // Set name syntax to INS

...

javax.naming.Context initialContext = new javax.naming.InitialContext(env);

Example: Getting the default initial context

There are various ways for a program to get the default initial context.

The following example gets the default initial context. Note that no provider URL is passed to the

javax.naming.InitialContext constructor.

...

import javax.naming.Context;

import javax.naming.InitialContext;

...

Context initialContext = new InitialContext();

...

1746 Administering applications and their environment

The default initial context returned depends the runtime environment of the JNDI client. Following are the

initial contexts returned in the various environments:

Thin client

The initial context is the server root context of the server running on the local host at port 2809.

Pure client

The initial context is the context specified by the java.naming.provider.url property passed to

launchClient command with the -CCD command line parameter. The context usually is the server

root context of the server at the address specified in the URL, although it is possible to construct a

corbaname or corbaloc URL which resolves to some other context.

 If no provider URL is specified, it is the server root context of the server running on the host and

port specified by the -CCproviderURL, or -CCBootstrapHost and -CCBootstrapPort command line

parameters. The default host is the local host, and the default port is 2809.

Server process

The initial context is the server root context for that process.

 Even though no provider URL is explicitly specified in the above example, the InitialContext constructor

might find a provider URL defined in other places that it searches for property settings.

Users of properties which affect ORB initialization should read the rest of this section for a deeper

understanding of exactly how initial contexts are obtained.

Determining which server is used to obtain the initial context

WebSphere Application Server name servers are CORBA CosNaming name servers, and WebSphere

Application Server provides a CosNaming JNDI plug-in implementation for JNDI clients to perform naming

operations on WebSphere Application Server name spaces. The WebSphere Application Server

CosNaming plug-in implementation is selected through a JNDI property that is passed to the InitialContext

constructor. This property is java.naming.factory.initial, and it specifies the initial context factory

implementation to use to obtain an initial context. The factory returns a javax.naming.Context instance,

which is part of its implementation.

The WebSphere Application Server initial context factory,

com.ibm.websphere.naming.WsnInitialContextFactory, is typically used by WebSphere Application Server

applications to perform JNDI operations. The WebSphere Application Server runtime environment is set up

to use this WebSphere Application Server initial context factory if one is not specified explicitly by the JNDI

client. When the initial context factory is invoked, an initial context is obtained. The following paragraphs

explain how the WebSphere Application Server initial context factory obtains the initial context in client and

server environments.

v Registration of initial references in server processes

Every WebSphere Application Server has an ORB used to receive and dispatch invocations on objects

running in that server. Services running in the server process can register initial references with the

ORB. Each initial reference is registered under a key, which is a string value. An initial reference can be

any CORBA object. WebSphere Application Server name servers register several initial contexts as

initial references under predefined keys. Each name server initial reference is an instance of the

interface org.omg.CosNaming.NamingContext.

v Obtaining initial references in pure client processes

Pure JNDI clients, that is, JNDI clients which are not running in a WebSphere Application Server

process, also have an ORB instance. This client ORB instance can be passed to the InitialContext

constructor, but typically the initial context factory creates and initializes the client ORB instance

transparently. A client ORB can be initialized with initial references, but the initial references most likely

resolve to objects running in some server. The initial context factory does not define any default initial

references when it initializes an ORB. If the resolve_initial_references method is invoked on the

client ORB when no initial references have been configured, the method invocation fails. This condition

Chapter 17. Naming and directory 1747

is typical for pure client processes. To obtain an initial NamingContext reference, the initial context

factory must invoke string_to_object with an IIOP type CORBA object URL, such as

corbaloc:iiop:myhost:2809. The URL specifies the address of the server from which to obtain the initial

context. The host and port information is extracted from the provider URL passed to the InitialContext

constructor.

If no provider URL is defined, the WebSphere Application Server initial context factory uses the default

provider URL of corbaloc:iiop:localhost:2809. The string_to_object ORB method resolves the URL

and communicates with the target server ORB to obtain the initial reference.

v Obtaining initial references in server processes

If the JNDI client is running in a WebSphere Application Server process, the initial context factory

obtains a reference to the server ORB instance if the JNDI client does not provide an ORB instance.

Typically, JNDI clients running in server processes use the server ORB instance; that is, they do not

pass an ORB instance to the InitialContext constructor. The name server which is running in the server

process sets a provider URL as a java.lang.System property to serve as the default provider URL for all

JNDI clients in the process. This default provider URL is corbaloc:rir:/NameServiceServerRoot. This

URL resolves to the server root context for that server. (The URL is equivalent to invoking

resolve_initial_references on the ORB with a key of NameServiceServerRoot. The name server

registers the server root context as an initial reference under that key.)

v Understanding the legacy ORB protocol

Releases previous to WebSphere Application Server Version 5 used a different ORB implementation,

which used a legacy protocol in contrast with the Interoperable Name Service (INS) protocol now used.

This change has affected the implementation of the WebSphere Application Server initial context factory.

Certain types of pure clients can experience different behavior when getting initial JNDI contexts

as compared to previous releases of WebSphere Application Server. This behavior is discussed in

more detail below.

The following ORB properties are used with the legacy ORB protocol for ORB initialization and are now

deprecated:

– com.ibm.CORBA.BootstrapHost

– com.ibm.CORBA.BootstrapPort

The new INS ORB is different in a major respect, in that it exhibits no default behavior if no initial

references are defined.

In the legacy ORB, the bootstrap host and port values defaulted to localhost and 900.

All initial references were obtained from the server running on the bootstrap host and port. So, if the

ORB user provided no bootstrap host and port, all initial references are resolved from the server running

on the local host at port 900. The INS ORB has no concept of bootstrap host or bootstrap port. All initial

references are defined independently. That is, different initial references could resolve to different

servers. If ORB.resolve_initial_references is invoked with a key such that the ORB is not initialized

with an initial reference having that key, the call fails.

In releases of WebSphere Application Server previous to Version 5, the initial context factory invoked

resolve_initial_references on the ORB in the absence of any provider URL. This action succeeded if

a name server at the default bootstrap host and port was running. In the current release, with the INS

ORB, this would fail. (Actually, the ORB would fall back to the legacy protocol during the deprecation

period, but when the legacy protocol is no longer supported, the operation would fail.)

The initial context factory now uses a default provider URL of corbaloc:iiop:localhost:2809, and

invokes string_to_object with the provider URL.

This operation preserves the behavior that pure clients in previous releases experienced when they set

no ORB bootstrap properties or provider URL. However, this different initial context factory

implementation changes the behavior experienced by certain legacy pure clients, which do not

specify a provider URL:

– Clients which set the ORB bootstrap properties listed above when getting an initial context.

– Clients which supply their own ORB instance to the InitialContext constructor.

There are two ways to circumvent this change of behavior:

1748 Administering applications and their environment

– Always specify an IIOP type provider URL. This approach does not depend on the bootstrap host

and port properties and continues to work when support for the bootstrap host and port properties is

removed. For example, you can express bootstrap host and port property values of myHost and 2809,

respectively, as corbaloc:iiop:myHost:2809.

– Use an rir type provider URL:

- Specify corbaloc:rir:/NameServiceServerRoot if the ORB is initialized to use a WebSphere

Application Server 5 server as the bootstrap server.

- Specify corbaname:rir:/NameService#domain/legacyRoot if the ORB is initialized to use a

WebSphere Application Server 4.0.x server as the bootstrap server.

- Specify corbaloc:rir:/NameService if the ORB is initialized to use a server other than a

WebSphere Application Server 5 or 4.0.x server as the bootstrap server.

URLs of this type are equivalent to invoking resolve_initial_references on the ORB with the

specified key. If the bootstrap host and port properties are being used to initialize the ORB, this

approach will not work when the bootstrap and host properties are no longer supported.

v The InitialContext constructor search order for JNDI properties

If the code snippet shown at the beginning of this section is executed by an application, the bootstrap

server depends on the value of the property, java.naming.provider.url. If the property is not set (in server

processes the default value is set as a system property), the default host of localhost and default port

of 2809 are used as the address of the server from which to obtain the initial context. The JNDI

specification describes where the InitialContext constructor looks for java.naming.provider.url property

settings, but briefly, the property is picked up from the following places in the order shown:

InitialContext constructor

This does not apply to the above example because the example uses the empty InitalContext

constructor.

System environment

You can add JNDI properties to the system environment as an option on the Java command

invocation and by program code. The recommended way to set the provider URL in the system

environment is as an option supplied to the Java command invocation. Setting the provider URL

in this manner is not temporal, so that getting a default initial context will always yield the same

result. It is generally recommended that program code not set the provider URL property in the

system environment because as a side-effect, this could adversely affect other, possibly

unrelated, code running elsewhere in the same process.

jndi.properties file

There may be many jndi.properties files that are within the scope of the class loader in effect.

All jndi.properties files are used for setting JNDI properties, but the provider URL setting is

determined by the first jndi.properties file returned by the class loader.

Example: Getting an initial context by setting the provider URL

property

In general, JNDI clients should assume the correct environment is already configured so there is no need

to explicitly set property values and pass them to the InitialContext constructor. However, a JNDI client

might need to access a name space other than the one identified in its environment. In this case, it is

necessary to explicitly set the java.naming.provider.url (provider URL) property used by the

InitialContext constructor. A provider URL contains bootstrap server information that the initial context

factory can use to obtain an initial context. Any property values passed in directly to the InitialContext

constructor take precedence over settings of those same properties found elsewhere in the environment.

You can use two different provider URL forms with WebSphere Application Server’s initial context factory:

v A CORBA object URL (new for J2EE 1.3)

v An IIOP URL

CORBA object URLs are more flexible than IIOP URLs and are the recommended URL format to use.

CORBA object URLs are part of the OMG CosNaming Interoperable Naming Specification. A corbaname

Chapter 17. Naming and directory 1749

URL, for example, can include initial context and lookup name information and can be used as a lookup

name without the need to explicitly obtain another initial context. The IIOP URLs are the legacy JNDI

format, but are still supported by the WebSphere Application Server initial context factory.

The following examples illustrate the use of these URLs.

v “Using a CORBA object URL”

v “Using a CORBA object URL with multiple name server addresses”

v “Using a CORBA object URL from a non-WebSphere Application Server JNDI implementation”

v “Using an IIOP URL” on page 1751

Using a CORBA object URL

This example shows a CORBA object URL.

...

import java.util.Hashtable;

import javax.naming.Context;

import javax.naming.InitialContext;

...

Hashtable env = new Hashtable();

env.put(Context.INITIAL_CONTEXT_FACTORY,

 "com.ibm.websphere.naming.WsnInitialContextFactory");

env.put(Context.PROVIDER_URL, "corbaloc:iiop:myhost.mycompany.com:2809");

Context initialContext = new InitialContext(env);

...

Using a CORBA object URL with multiple name server addresses

CORBA object URLs can contain more than one bootstrap address. You can use this feature when

attempting to obtain an initial context from a server cluster. You can specify the bootstrap addresses for all

servers in the cluster in the URL. The operation succeeds if at least one of the servers is running,

eliminating a single point of failure. There is no guarantee of any particular order in which the address list

will be processed. For example, the second bootstrap address may be used to obtain the initial context

even though the server at the first bootstrap address in the list is available.

Multiple-address provider URLs resolving to servers on non-z/OS systems cannot contain bootstrap

addresses for node agent processes. The URLs should only contain the bootstrap addresses of members

of the same cluster. Otherwise, incorrect behavior might occur. When resolving to servers running on the

z/OS operating system, the URL can contain bootstrap addresses for node agent processes.

An example of a corbaloc URL with multiple addresses follows.

...

import java.util.Hashtable;

import javax.naming.Context;

import javax.naming.InitialContext;

...

Hashtable env = new Hashtable();

env.put(Context.INITIAL_CONTEXT_FACTORY,

 "com.ibm.websphere.naming.WsnInitialContextFactory");

// All of the servers in the provider URL below are members of

// the same cluster.

env.put(Context.PROVIDER_URL,

 "corbaloc::myhost1:9810,:myhost1:9811,:myhost2:9810");

Context initialContext = new InitialContext(env);

...

Using a CORBA object URL from a non-WebSphere Application Server JNDI

implementation

Initial context factories for CosNaming JNDI plug-in implementations other than the WebSphere Application

Server initial context factory most likely obtain an initial context using the object key, NameService. When

you use such a context factory to obtain an initial context from a WebSphere Application Server name

server, the initial context is the cell root context. Since system artifacts such as EJB homes associated

1750 Administering applications and their environment

with a server are bound under the server’s server root context, names used in JNDI operations must be

qualified. If you want to use relative names, ensure your initial context is the server root context under

which the target object is bound. In order to make the server root context the initial context, specify a

corbaloc provider URL with an object key of NameServiceServerRoot.

This example shows a CORBA object type URL from a non-WebSphere Application Server JNDI

implementation. This example assumes full CORBA object URL support by the non-WebSphere Application

Server JNDI implementation. The object key of NameServiceServerRoot is specified so that the initial

context will be the specified server’s server root context.

...

import java.util.Hashtable;

import javax.naming.Context;

import javax.naming.InitialContext;

...

Hashtable env = new Hashtable();

env.put(Context.INITIAL_CONTEXT_FACTORY,

 "com.somecompany.naming.TheirInitialContextFactory");

env.put(Context.PROVIDER_URL,

 "corbaname:iiop:myhost.mycompany.com:9810/NameServiceServerRoot");

Context initialContext = new InitialContext(env);

...

If qualified names are used, you can use the default key of NameService.

Using an IIOP URL

The IIOP type of URL is a legacy format which is not as flexible as CORBA object URLs. However, URLs

of this type are still supported. The following example shows an IIOP type URL as the provider URL.

...

import java.util.Hashtable;

import javax.naming.Context;

import javax.naming.InitialContext;

...

Hashtable env = new Hashtable();

env.put(Context.INITIAL_CONTEXT_FACTORY,

 "com.ibm.websphere.naming.WsnInitialContextFactory");

env.put(Context.PROVIDER_URL, "iiop://myhost.mycompany.com:2809");

Context initialContext = new InitialContext(env);

...

Example: Setting the provider URL property to select a different root

context as the initial context

Each server contains its own server root context, and, when bootstrapping to a server, the server root is

the default initial JNDI context. Most of the time, this default is the desired initial context, since system

artifacts such as EJB homes are bound there. However, other root contexts exist, which can contain

bindings of interest. It is possible to specify a provider URL to select other root contexts.

Examples for selecting other root contexts follow:

v Initial root contexts with a CORBA object URL

v Initial root contexts with the name space root property

Selecting the initial root context with a CORBA object URL

There are several object keys registered with the bootstrap server that you can use to select the root

context for the initial context. To select a particular root context with a CORBA object URL object key, set

the object key to the corresponding value. The default object key is NameService. Using JNDI yields the

server root context. A table that lists the different root contexts and their corresponding object key follows:

 Root Context CORBA Object URL Object Key

Server Root NameServiceServerRoot

Chapter 17. Naming and directory 1751

Root Context CORBA Object URL Object Key

Cell Persistent Root NameServiceCellPersistentRoot

Cell Root NameServiceCellRoot

Node Root NameServiceNodeRoot

The following example shows the use of a corbaloc URL with the object key set to select the cell

persistent root context as the initial context.

...

import java.util.Hashtable;

import javax.naming.Context;

import javax.naming.InitialContext;

...

Hashtable env = new Hashtable();

env.put(Context.INITIAL_CONTEXT_FACTORY,

 "com.ibm.websphere.naming.WsnInitialContextFactory");

env.put(Context.PROVIDER_URL,

 "corbaloc:iiop:myhost.mycompany.com:2809/NameServiceCellPersistentRoot");

Context initialContext = new InitialContext(env);

...

Selecting the initial root context with the name space root property

You can also select the initial root context by passing a name space root property setting to the

InitialContext constructor. Generally, the object key setting described above is sufficient. Sometimes a

property setting is preferable. For example, you can set the root context property on the Java invocation to

make which server root is being used as the initial context transparent to the application. The default

server root property setting is defaultroot, which yields the server root context.

 Root Context Name Space Root Property Value

Server Root bootstrapserverroot

Cell Persistent Root cellpersistentroot

Cell Root cellroot

Node Root bootstrapnoderoot

The initial context factory ignores the name space root property if the provider URL contains an object key

other than NameService.

The following example shows use of the name space root property to select the cell persistent root context

as the initial context. Note that available constants are used instead of hard-coding the property name and

value.

...

import java.util.Hashtable;

import javax.naming.Context;

import javax.naming.InitialContext;

import com.ibm.websphere.naming.PROPS;

...

Hashtable env = new Hashtable();

env.put(Context.INITIAL_CONTEXT_FACTORY,

 "com.ibm.websphere.naming.WsnInitialContextFactory");

env.put(Context.PROVIDER_URL, "corbaloc:iiop:myhost.mycompany.com:2809");

env.put(PROPS.NAME_SPACE_ROOT, PROPS.NAME_SPACE_ROOT_CELL_PERSISTENT);

Context initialContext = new InitialContext(env);

...

1752 Administering applications and their environment

Example: Looking up an EJB home with JNDI

Most applications that use JNDI run in a container. Some do not. The name used to look up an object

depends on whether or not the application is running in a container. Sometimes it is more convenient for

an application to use a corbaname URL as the lookup name. Container-based JNDI clients and thin Java

clients can use a corbaname URL.

The following examples show how to perform JNDI lookups from different types of applications.

v “JNDI lookup from an application running in a container”

v “JNDI lookup from an application that does not run in a container”

v “JNDI lookup with a corbaname URL” on page 1754

JNDI lookup from an application running in a container

Applications that run in a container can use java: lookup names. Lookup names of this form provide a

level of indirection such that the lookup name used to look up an object is not dependent on the object’s

name as it is bound in the name server’s name space. The deployment descriptors for the application

provide the mapping from the java: name and the name server lookup name. The container sets up the

java: name space based on the deployment descriptor information so that the java: name is correctly

mapped to the corresponding object.

The following example shows a lookup of an EJB home. The actual home lookup name is determined by

the application’s deployment descriptors. The enterprise bean (EJB) resides in an EJB container, which

provides an interface between the bean and the application server on which it resides.

// Get the initial context as shown in a previous example

...

// Look up the home interface using the JNDI name

try {

 java.lang.Object ejbHome =

 initialContext.lookup(

 "java:comp/env/com/mycompany/accounting/AccountEJB");

 accountHome = (AccountHome)javax.rmi.PortableRemoteObject.narrow(

 (org.omg.CORBA.Object) ejbHome, AccountHome.class);

}

 catch (NamingException e) { // Error getting the home interface

 ...

}

JNDI lookup from an application that does not run in a container

Applications that do not run in a container cannot use java: lookup names because it is the container

which sets the java: name space up for the application. Instead, an application of this type must look the

object up directly from the name server. Each application server contains a name server. System artifacts

such as EJB homes are bound relative to the server root context in that name server. The various name

servers are federated by means of a system name space structure. The recommended way to look up

objects on different servers is to qualify the name so that the name resolves from any initial context in the

cell. If a relative name is used, the initial context must be the same server root context as the one under

which the object is bound. The form of the qualified name depends on whether the qualified name is a

topology-based name or a fixed name. A topology based name depends on whether the object resides in a

single server or a server cluster. Examples of each form of qualified name follow.

v Topology-based qualified names

Topology-based qualified names traverse through the system name space to the server root context

under which the target object is bound. A topology-based qualified name resolves from any initial

context in the cell. The topology-based qualified name depends on whether the object resides on a

single server or server cluster. Examples of each lookup follow.

Chapter 17. Naming and directory 1753

Single server

The following example shows a lookup of an EJB home that is running in the single server,

MyServer, configured in the node, Node1.

// Get the initial context as shown in a previous example

// Using the form of lookup name below, it doesn’t matter which

// server in the cell is used to obtain the initial context.

...

// Look up the home interface using the JNDI name

try {

 java.lang.Object ejbHome = initialContext.lookup(

 "cell/nodes/Node1/servers/MyServer/com/mycompany/accounting/AccountEJB");

 accountHome = (AccountHome)javax.rmi.PortableRemoteObject.narrow(

 (org.omg.CORBA.Object) ejbHome, AccountHome.class);

}

catch (NamingException e) { // Error getting the home interface

 ...

}

Server cluster

The example below shows a lookup of an EJB home which is running in the cluster, MyCluster.

The name can be resolved if any of the cluster members is running.

// Get the initial context as shown in a previous example

// Using the form of lookup name below, it doesn’t matter which

// server in the cell is used to obtain the initial context.

...

 // Look up the home interface using the JNDI name

try {

 java.lang.Object ejbHome = initialContext.lookup(

 "cell/clusters/MyCluster/com/mycompany/accounting/AccountEJB");

 accountHome = (AccountHome)javax.rmi.PortableRemoteObject.narrow(

 (org.omg.CORBA.Object) ejbHome, AccountHome.class);

}

catch (NamingException e) { // Error getting the home interface

 ...

}

v Fixed qualified names

If the target object has a cell-scoped fixed name defined for it, you can use its qualified form instead of

the topology-based qualified name. Even though the topology-based name works, the fixed name does

not change with the specific cell topology or with the movement of the target object to a different server.

An example lookup with a qualified fixed name is shown below.

// Get the initial context as shown in a previous example

// Using the form of lookup name below, it doesn’t matter which

// server in the cell is used to obtain the initial context.

...

// Look up the home interface using the JNDI name

try {

 java.lang.Object ejbHome = initialContext.lookup(

 "cell/persistent/com/mycompany/accounting/AccountEJB");

 accountHome = (AccountHome)javax.rmi.PortableRemoteObject.narrow(

 (org.omg.CORBA.Object) ejbHome, AccountHome.class);

 }

catch (NamingException e) { // Error getting the home interface

...

}

JNDI lookup with a corbaname URL

A corbaname can be useful at times as a lookup name. If, for example, the target object is not a member

of the federated name space and cannot be located with a qualifiied name, a corbaname can be a

convenient way to look up the object. A lookup with a corbaname URL follows.

1754 Administering applications and their environment

// Get the initial context as shown in a previous example

...

// Look up the home interface using a corbaname URL

try {

 java.lang.Object ejbHome = initialContext.lookup(

 "corbaname:iiop:someHost:2809#com/mycompany/accounting/AccountEJB");

 accountHome = (AccountHome)javax.rmi.PortableRemoteObject.narrow(

 (org.omg.CORBA.Object) ejbHome, AccountHome.class);

}

catch (NamingException e) { // Error getting the home interface

 ...

}

Example: Looking up a JavaMail session with JNDI

A program can conduct a JNDI lookup of a JavaMail resource. Deployment descriptors of the application

determine the lookup name that you specify.

The following example shows a lookup of a JavaMail resource:

// Get the initial context as shown above

...

Session session =

 (Session) initialContext.lookup("java:comp/env/mail/MailSession");

JNDI interoperability considerations

You must take extra steps to enable your programs to interoperate with non-WebSphere Application Server

JNDI clients and to bind resources from MQSeries to a name space.

EJB clients running in an environment other than WebSphere Application Server

accessing EJB applications running on WebSphere Application Server V5 or V6

servers

When an EJB application running in WebSphere Application Server V5 or V6 is accessed by a

non-WebSphere Application Server EJB client, the JNDI initial context factory is presumed to be a

non-WebSphere Application Server implementation. In this case, the default initial context is the cell root. If

the JNDI service provider being used supports CORBA object URLs, the corbaname format can be used

to look up the EJB home. The construction of the stringified name depends on whether the object is

installed on a single server or cluster.

Single server

Following is a URL that has the bootstrap host myHost, the port 2809, and the enterprise bean

installed in the server server1 in node node1 and bound in that server under the name myEJB:

initialContext.lookup(

 "corbaname:iiop:myHost:2809#cell/nodes/node1/servers/server1/myEJB");

Server cluster

Following is a URL that has the bootstrap host myHost, the port 2809, and the enterprise bean

installed in a server cluster named myCluster and bound in that cluster under the name myEJB:

initialContext.lookup(

 "corbaname:iiop:myHost:2809#cell/clusters/myCluster/myEJB");

The lookup works with any name server bootstrap host and port configured in the same cell.

 The lookup also works if the bootstrap host and port belong to a member of the cluster itself. To

avoid a single point of failure, the bootstrap server host and port for each cluster member can be

listed in the URL as follows:

initialContext.lookup(

 "corbaname:iiop:host1:9810,:host2:9810#cell/clusters/myCluster/myEJB");

Chapter 17. Naming and directory 1755

The name prefix cell/clusters/myCluster/ is not necessary if boostrapping to the cluster itself, but

it will work. The prefix is needed, however, when looking up enterprise beans in other clusters.

Name bindings under the clusters context are implemented on the name server to resolve to the

server root of a running cluster member during a lookup; thus avoiding a single point of failure.

Without CORBA object URL support

If the JNDI initial context factory being used does not support CORBA object URLs, the initial

context can be obtained from the server, and the lookup can be performed on the initial context as

follows:

Hashtable env = new Hashtable();

env.put(CONTEXT.PROVIDER_URL, "iiop://myHost:2809");

Context ic = new InitialContext(env);

Object o = ic.lookup("cell/clusters/myCluster/myEJB");

Binding resources from MQSeries 5.2

In releases previous to WebSphere Application Server V5, the MQSeries jmsadmin tool could be used to

bind resources to the name space. When used with a WebSphere Application Server V5 or V6 name

space, the resource is bound within a transient partition in the name space and does not persist past the

life of the server process. Instead of binding the MQSeries resources with the jmsadmin tool, bind them

from the WebSphere Application Server administrative console, under Resources in the console

navigation tree.

JNDI caching

To increase the performance of JNDI operations, the WebSphere Application Server JNDI implementation

employs caching to reduce the number of remote calls to the name server for lookup operations. For most

cases, use the default cache setting.

When an InitialContext object is instantiated, an association is established between the InitialContext

instance and a cache. The initial context and any contexts returned directly or indirectly from a lookup on

the initial context are all associated with that same cache instance. By default, the association is based on

the provider URL, in particular, the host name and port. The caller can specify the cache name to override

this default behavior. A cache instance of a given name is shared by all instances of InitialContext

configured to use a cache of that name which were created with the same context class loader in effect.

Two EJB applications running in the same server will use their own cache instances, if they are using

different context class loaders, even if the cache names are the same.

After an association between an InitialContext instance and cache is established, the association does not

change. A javax.naming.Context object returned from a lookup operation inherits the cache association of

the Context object on which the lookup was performed. Changing cache property values with the

Context.addToEnvironment() or Context.removeFromEnvironment() method does not affect cache

behavior. You can change properties affecting a given cache instance with each InitialContext instantiation.

A cache is restricted to a process and does not persist past the life of that process. A cached object is

returned from lookup operations until either the maximum cache life for the cache is reached, or the

maximum entry life for the object’s cache entry is reached. After this time, a lookup on the object causes

the cache entry for the object to be refreshed. By default, caches and cache entries have unlimited

lifetimes.

Usually, cached objects are relatively static entities, and objects becoming stale is not a problem.

However, you can set timeout values on cache entries or on a cache so that cache contents are

periodically refreshed.

If a bind or rebind operation is executed on an object, the change is not reflected in any caches other than

the one associated with the context from which the bind or rebind was issued. This scenario is most likely

1756 Administering applications and their environment

to happen when multiple processes are involved, since different processes do not share the same cache,

and context objects in all threads in a process typically share the same cache instance for a given name

service provider.

JNDI cache settings

Various cache property settings follow. Ensure that all property values are string values.

com.ibm.websphere.naming.jndicache.cachename

The name of the cache to associate with an initial context instance can be specified with this property.

It is possible to create multiple InitialContext instances, each operating on the name space of a different

name server. By default, objects from each bootstrap address are cached separately, since they each

involve independent name spaces and name collisions could occur if they used the same cache. The

provider URL specified when the initial context is created by default serves as the basis for the cache

name. With this property, a JNDI client can specify a cache name. Valid options for cache names follow:

 Valid options Resulting cache behavior

providerURL (default) Use the value for java.naming.provider.url property as the basis for the cache name.

Cache names are based on the bootstrap host and port specified in the URL. The

boostrap host is normalized to a fully qualfied name, if possible. For example,

″corbaname:iiop:server1:2809#some/starting/context″ and ″corbaloc:iiop://server1″ are

normalized to the same cache name. If no provider URL is specified, a default cache

name is used.

Any string Use the specified string as the cache name. You can use any arbitrary string with a

value other than ″providerURL″ as a cache name.

com.ibm.websphere.naming.jndicache.cacheobject

Turn caching on or off and clear an existing cache with this property.

By default, when an InitialContext is instantiated, it is associated with an existing cache or, if one does not

exist, a new one is created. An existing cache is used with its existing contents. In some circumstances,

this behavior is not desirable. For example, when objects that are looked up change frequently, they can

become stale in the cache. Other options are available. The following table lists these other options along

with the corresponding property value.

 Valid values Resulting cache behavior

populated (default) Use a cache with the specified name. If the cache already exists, leave existing cache

entries in the cache; otherwise, create a new cache.

cleared Use a cache with the specified name. If the cache already exists, clear all cache

entries from the cache; otherwise, create a new cache.

none Do not cache. If this option is specified, the cache name is irrelevant. Therefore, this

option will not disable a cache that is already associated with other InitialContext

instances. The InitialContext that is instantiated is not associated with any cache.

com.ibm.websphere.naming.jndicache.maxcachelife

Impose a limit to the age of a cache with this property.

By default, cached objects remain in the cache for the life of the process or until cleared with the

com.ibm.websphere.naming.jndicache.cacheobject property set to ″cleared″. This property enables a JNDI

client to set the maximum life of a cache. This property differs from the maxentrylife property (below) in

that the entire cache is cleared when the cache lifetime is reached. The table below lists the various

maxcachelife values and their affect on cache behavior:

Chapter 17. Naming and directory 1757

Valid options Resulting cache behavior

0 (default) Make the cache lifetime unlimited.

Positive integer Set the maximum lifetime of the entire cache, in minutes, to the specified value. When

the maximum lifetime for the cache is reached, the next attempt to read any entry from

the cache causes the cache to be cleared

com.ibm.websphere.naming.jndicache.maxentrylife

Impose a limit to the age of individual cache entries with this property.

By default, cached objects remain in the cache for the life of the process or until cleared with the

com.ibm.websphere.naming.jndicache.cacheobject property set to cleared. This property enables a JNDI

client to set the maximum lifetime of individual cache entries. This property differs from the maxcachelife

property in that individual entries are refreshed individually as their maximum lifetime reached. This might

avoid any noticeable change in performance that might occur if the whole cache is cleared at once. The

table below lists the various maxentrylife values and their effect on cache behavior:

 Valid options Resulting cache behavior

0 (default) Lifetime of cache entries is unlimited.

Positive integer Set the maximum lifetime of individual cache entries, in minutes, to the specified value.

When the maximum lifetime for an entry is reached, the next attempt to read the entry

from the cache causes the individual cache entry to refresh.

Example: Controlling JNDI cache behavior from a program

You can specify JNDI cache properties in a program to control the behavior of a JNDI cache.

Following are examples that illustrate how you can use JNDI cache properties to achieve the desired

cache behavior. Cache properties take effect when an InitialContext object is constructed.

import java.util.Hashtable;

import javax.naming.InitialContext;

import javax.naming.Context;

import com.ibm.websphere.naming.PROPS;

/*****

 Caching discussed in this section pertains to the WebSphere Application

 Server initial context factory. Assume the property,

 java.naming.factory.initial, is set to

 "com.ibm.websphere.naming.WsnInitialContextFactory" as a

 java.lang.System property.

*****/

Hashtable env;

Context ctx;

// To clear a cache:

env = new Hashtable();

env.put(PROPS.JNDI_CACHE_OBJECT, PROPS.JNDI_CACHE_OBJECT_CLEARED);

ctx = new InitialContext(env);

// To set a cache’s maximum cache lifetime to 60 minutes:

env = new Hashtable();

env.put(PROPS.JNDI_CACHE_MAX_LIFE, "60");

ctx = new InitialContext(env);

// To turn caching off:

env = new Hashtable();

1758 Administering applications and their environment

env.put(PROPS.JNDI_CACHE_OBJECT, PROPS.JNDI_CACHE_OBJECT_NONE);

ctx = new InitialContext(env);

// To use caching and no caching:

env = new Hashtable();

env.put(PROPS.JNDI_CACHE_OBJECT, PROPS.JNDI_CACHE_OBJECT_POPULATED);

ctx = new InitialContext(env);

env.put(PROPS.JNDI_CACHE_OBJECT, PROPS.JNDI_CACHE_OBJECT_NONE);

Context noCacheCtx = new InitialContext(env);

Object o;

// Use caching to look up home, since the home should rarely change.

o = ctx.lookup("com/mycom/MyEJBHome");

// Narrow, etc. ...

// Do not use cache if data is volatile.

o = noCacheCtx.lookup("com/mycom/VolatileObject");

// ...

JNDI name syntax

JNDI name syntax is the default syntax and is suitable for typical JNDI clients.

This syntax includes the following special characters: forward slash (/) and backslash (\). Components in a

name are delimited by a forward slash. The backslash is used as the escape character. A forward slash is

interpreted literally if it is escaped, that is, preceded by a backslash. Similarly, a backslash is interpreted

literally if it is escaped.

INS name syntax

INS syntax is designed for JNDI clients that need to interoperate with CORBA applications.

The INS syntax allows a JNDI client to make the proper mapping to and from a CORBA name. INS syntax

is very similar to the JNDI syntax with the additional special character, dot (.). Dots are used to delimit the

id and kind fields in a name component. A dot is interpreted literally when it is escaped. Only one

unescaped dot is allowed in a name component. A name component with a non-empty id field and empty

kind field is represented with only the id field value and must not end with an unescaped dot. An empty

name component (empty id and empty kind field) is represented with a single unescaped dot. An empty

string is not a valid name component representation.

JNDI to CORBA name mapping considerations

WebSphere Application Server name servers are an implementation of the CORBA CosNaming interface.

WebSphere Application Server provides a JNDI implementation which you can use to access CosNaming

name servers through the JNDI interface. Issues can exist when mapping JNDI name strings to and from

CORBA names.

Each component in a CORBA name consists of an id and kind field, but a JNDI name component

consists of no such fields. Each component in a JNDI name is atomic. Typical JNDI clients do not need to

make a distinction between the id and kind fields of a name component, or know how JNDI name strings

map to CORBA names. JNDI clients of this sort can use the JNDI syntax described below. When a name

is parsed according to JNDI syntax, each name component is mapped to the id field of the corresponding

CORBA name component. The kind field always has an empty value. This basic syntax is the least

obtrusive to the JNDI client in that it has the fewest special characters. However, you cannot represent

with this syntax a CORBA name with a non-empty kind field. This restriction can prevent EJB applications

from interoperating with CORBA applications.

Some clients, however must interoperate with CORBA applications which use CORBA names with

non-empty kind fields. These JNDI clients must make a distinction between id and kind so that JNDI

Chapter 17. Naming and directory 1759

names are correctly mapped to CORBA names, particularly when the CORBA names contain components

with non-empty kind fields. Such JNDI clients can use the INS name syntax. With its additional special

character, you can use INS to represent any CORBA name. Use of this syntax is not recommended unless

it is necessary, because this syntax is more restrictive from the JNDI client’s perspective in that the JNDI

client must be aware that name components with multiple unescaped dots are syntactically invalid. INS

name syntax is part of the OMG CosNaming Interoperable Naming Specification.

Example: Setting the syntax used to parse name strings

JNDI clients that must interoperate with CORBA applications might need to use INS name syntax to

represent names in string format.

The name syntax property can be passed to the InitialContext constructor through its parameter, in the

System properties, or in a jndi.properties file. The initial context and any contexts looked up from that

initial context parse name strings based on the specified syntax.

The following example shows how to set the name syntax to make the initial context parse name strings

according to INS syntax.

...

import java.util.Hashtable;

import javax.naming.Context;

import javax.naming.InitialContext;

import com.ibm.websphere.naming.PROPS; // WebSphere naming constants

...

Hashtable env = new Hashtable();

env.put(Context.INITIAL_CONTEXT_FACTORY,

 "com.ibm.websphere.naming.WsnInitialContextFactory");

env.put(Context.PROVIDER_URL, ...);

env.put(PROPS.NAME_SYNTAX, PROPS.NAME_SYNTAX_INS);

Context initialContext = new InitialContext(env);

// The following name maps to a CORBA name component as follows:

// id = "a.name", kind = "in.INS.format"

// The unescaped dot is used as the delimiter.

// Escaped dots are interpreted literally.

java.lang.Object o = initialContext.lookup("a\.name.in\.INS\.format");

...

1760 Administering applications and their environment

Chapter 18. Object Request Broker

Managing Object Request Brokers

Use this task to manage Object Request Brokers (ORB). An ORB manages the interaction between clients

and servers using the Internet InterORB Protocol (IIOP).

Default property values are set when the product starts and the Java Object Request Broker (ORB)

service is initialized. These properties control the run-time behavior of the ORB and can also affect the

behavior of product components that are tightly integrated with the ORB, such as security. It might be

necessary to modify some ORB settings under certain conditions.

Every request or response exchange consists of a client-side ORB and a server-side ORB. It is important

to set the ORB properties for both sides as necessary.

After an ORB instance has been established in a process, changes to ORB properties do not affect the

behavior of the running ORB instance. The process must be stopped and restarted for the modified

properties to take effect.

A list of possible tasks for managing ORB follows. These steps can be performed in any order.

1. Adjust timeout settings to improve handling of network failures. See “Object Request Broker service

settings” on page 1762 for more information. Before making these adjustments, read Object Request

Broker tuning guidelines.

2. Adjust thread-pool settings used by the ORB for handling Internet InterORB Protocol (IIOP)

connections. See Thread pool settings for more information.

3. If problems with the ORB arise, see “Object request broker troubleshooting tips” on page 1780.

For help in troubleshooting, see “Object Request Broker communications trace” on page 1773.

Object Request Brokers

An Object Request Broker (ORB) manages the interaction between clients and servers, using the Internet

InterORB Protocol (IIOP). It enables clients to make requests and receive responses from servers in a

network-distributed environment.

The ORB provides a framework for clients to locate objects in the network and to call operations on those

objects as if the remote objects are located in the same running process as the client, providing location

transparency. The client calls an operation on a local object, known as a stub. The stub forwards the

request to the remote object, where the operation runs and the results are returned to the client.

The client-side ORB is responsible for creating an IIOP request that contains the operation and required

parameters, and for sending the request on the network. The server-side ORB receives the IIOP request,

locates the target object, invokes the requested operation, and returns the results to the client. The

client-side ORB demarshals the returned results and passes the result to the stub, which, in turn, returns

to the client application, as if the operation had been run locally.

This product uses an ORB to manage communication between client applications and server applications

as well as communication among product components. During product installation, default property values

are set when the ORB is initialized. These properties control the run-time behavior of the ORB and can

also affect the behavior of product components that are tightly integrated with the ORB, such as security.

This product does not support the use of multiple ORB instances.

© Copyright IBM Corp. 2006 1761

Logical pool distribution

The Logical pool distribution (LPD) thread pool mechanism implements a strategy for improving the

performance of requests that have shorter run times. Do not configure LPD unless you have already

configured it in a previous release of WebSphere Application Server. LPD is a deprecated function and will

be removed in a future version of the product.

The need for LPD is indicated by a mixture of Enterprise JavaBeans (EJB) requests where the run times

vary across the request types, and the ORB thread pool must be constrained for performance reasons. In

this case, longer run time requests might tend to prolong the response times for shorter requests by

denying them adequate access to threads in the thread pool. LPD provides a mechanism that allows

shorter requests greater access to the threads.

LPD divides the Object Request Broker (ORB) thread pool into logical pools, as configured by the

administrator using ORB custom properties starting that start with the following:

com.ibm.websphere.threadpool.strategy.*

The size of each pool is a percentage of the maximum number of ORB threads. The sum of the logical

pool percentages must equal 100.

When LPD is active, incoming ORB requests are vectored, or pointed, to a pool based on historical run

time history for the request type. The request type is determined by the method, which is qualified

internally as unique across components. The LPD mechanism adjusts pool targets at runtime to optimize

the distribution of requests across logical pools.

The LPD mechanism can be tuned after it is enabled. Response time, throughput measurements, and

statistics produced by the LPD mechanism drive the tuning process.

Object Request Broker service settings

Use this page to configure the Java Object Request Broker (ORB) service.

To view this administrative console page, click Servers > Application servers > server_name >

Container services > ORB service .

Several settings are available for controlling internal Object Request Broker (ORB) processing. You can

use these settings to improve application performance in the case of applications that contain enterprise

beans. You can make changes to these settings for the default server or any application server that is

configured in the administrative domain.

Request timeout

Specifies the number of seconds to wait before timing out on a request message.

If you use command-line scripting, the full name of this system property is

com.ibm.CORBA.RequestTimeout.

 Data type int

Units Seconds

Default 180

Range 0 - largest integer recognized by Java

Request retries count

Specifies the number of times that the ORB attempts to send a request if a server fails. Retrying

sometimes enables recovery from transient network failures. This field is ignored on the z/OS platform.

1762 Administering applications and their environment

If you use command-line scripting, the full name of this system property is

com.ibm.CORBA.requestRetriesCount.

 Data type int

Default 1

Range 1 to 10

Request retries delay

Specifies the number of milliseconds between request retries. This field is ignored on the z/OS platform.

If you use command-line scripting, the full name of this system property is

com.ibm.CORBA.requestRetriesDelay.

 Data type int

Units Milliseconds

Default 0

Range 0 to 60,000

Connection cache maximum

Specifies the maximum number of entries that can occupy the ORB connection cache before the ORB

starts to remove inactive connections from the cache. This field is ignored on the z/OS platform.

It is possible that the number of active connections in the cache will temporarily exceed this threshold

value. If necessary, the ORB will continue to add connections as long as resources are available.

For use in command-line scripting, the full name of this system property is

com.ibm.CORBA.MaxOpenConnections.

 Data type Integer

Units Connections

Default 240

Range 10 - largest integer recognized by Java

Connection cache minimum

Specifies the minimum number of entries in the ORB connection cache. This field is ignored on the z/OS

platform.

The ORB will not remove inactive connections when the number of entries is below this value.

For use in command-line scripting, the full name of this system property is

com.ibm.CORBA.MinOpenConnections.

 Data type Integer

Units Connections

Default 100

Range Any integer that is at least 5 less than the value specified

for the Connection cache maximum property.

ORB tracing

Enables the tracing of ORB General Inter-ORB Protocol (GIOP) messages.

This setting affects two system properties: com.ibm.CORBA.Debug and com.ibm.CORBA.CommTrace. If

you set these properties through command-line scripting, you must set both properties to true to enable

the tracing of GIOP messages.

Chapter 18. Object Request Broker 1763

Data type Boolean

Default Not enabled (false)

Locate request timeout

Specifies the number of seconds to wait before timing out on a LocateRequest message. This field is

ignored on the z/OS platform.

If you use command-line scripting, the full name of this system property is

com.ibm.CORBA.LocateRequestTimeout.

 Data type int

Units Seconds

Default 180

Range 0 to 300

Force tunneling

Controls how the client ORB attempts to use HTTP tunneling. This field is ignored on the z/OS platform.

If you use command-line scripting, the full name of this system property is com.ibm.CORBA.ForceTunnel.

 Data type String

Default NEVER

Range Valid values are ALWAYS, NEVER, or WHENREQUIRED.

Considering the following information when choosing the valid value:

ALWAYS

Use HTTP tunneling immediately, without trying TCP connections first.

NEVER

Disable HTTP tunneling. If a TCP connection fails, a CORBA system exception (COMM_FAILURE)

occurs.

WHENREQUIRED

Use HTTP tunneling if TCP connections fail.

Tunnel agent URL

Specifies the Web address of the servlet to use in support of HTTP tunneling. This field is ignored on the

z/OS platform.

This Web address must be a proper format:

http://w3.mycorp.com:81/servlet/com.ibm.CORBA.services.IIOPTunnelServlet

For applets: http://applethost:port/servlet/com.ibm.CORBA.services.IIOPTunnelServlet.

This field is required if HTTP tunneling is set. If you use command-line scripting, the full name of this

system property is com.ibm.CORBA.TunnelAgentURL.

Pass by reference

Specifies how the ORB passes parameters. If enabled, the ORB passes parameters by reference instead

of by value, to avoid making an object copy. If you do not enable the pass by reference option, a copy of

the parameter passes rather than the parameter object itself. This can be expensive because the ORB

must first make a copy of each parameter object.

1764 Administering applications and their environment

You can use this option only when the Enterprise JavaBeans (EJB) client and the EJB are on the same

classloader. This requirement means that the EJB client and the EJB must be deployed in the same EAR

file.

If the Enterprise JavaBeans (EJB) client and server are installed in the same WebSphere Application

Server instance, and the client and server use remote interfaces, enabling the pass by reference option

can improve performance up to 50%. The pass by reference option helps performance only where

non-primitive object types are passed as parameters. Therefore, int and floats are always copied,

regardless of the call model.

Important: Enable this property with caution because unexpected behavior can occur. If an object

reference is modified by the callee, the caller’s object is modified as well, since they are the

same object.

If you use command-line scripting, the full name of this system property is

com.ibm.CORBA.iiop.noLocalCopies.

 Data type Boolean

Default Not enabled (false)

The use of this option for enterprise beans with remote interfaces violates Enterprise JavaBeans (EJB)

Specification, Version 2.0 (see section 5.4). Object references passed to Enterprise JavaBeans (EJB)

methods or to EJB home methods are not copied and can be subject to corruption.

Consider the following example:

Iterator iterator = collection.iterator();

MyPrimaryKey pk = new MyPrimaryKey();

while (iterator.hasNext()) {

 pk.id = (String) iterator.next();

 MyEJB myEJB = myEJBHome.findByPrimaryKey(pk);

}

In this example, a reference to the same MyPrimaryKey object passes into WebSphere Application Server

with a different ID value each time. Running this code with pass by reference enabled causes a problem

within the application server because multiple enterprise beans are referencing the same MyPrimaryKey

object. To avoid this problem, set the com.ibm.websphere.ejbcontainer.allowPrimaryKeyMutation system

property to true when the pass by reference option is enabled. Setting the pass by reference option to

true causes the EJB container to make a local copy of the PrimaryKey object. As a result, however, a

small portion of the performance advantage of setting the pass by reference option is lost.

As a general rule, any application code that passes an object reference as a parameter to an enterprise

bean method or to an EJB home method must be scrutinized to determine if passing that object reference

results in loss of data integrity or in other problems.

After examining your code, you can enable the pass by reference option by setting the

com.ibm.CORBA.iiop.noLocalCopies system property to true. You can also enable the pass by reference

option in the administrative console. Click Servers > Application servers > server_name > Container

services > ORB Service and select Pass by reference.

Object Request Broker custom properties

There are several ways to configure an ORB. For example, you can use ORB custom property settings, or

system property settings to configure an ORB, or you can provide objects during ORB initialization.

If you use ORB custom properties to configure an ORB, you must understand that there are two types of

default values for some of these properties: JDK default values and WebSphere Application Server default

Chapter 18. Object Request Broker 1765

values. The JDK default is the value that the ORB uses for a property if the property is not specified in any

way. The WebSphere Application Server default is the value that WebSphere Application Server sets for a

property in one of the following files:

v The orb.properties file when an application server is installed.

v The server.xml when an application server is configured.

Because WebSphere Application Server explicitly sets its default value, if both a WebSphere Application

Server and a JDK default value is defined for a property, the WebSphere Application Server default takes

precedence over the JDK default.

For more information about the different ways to specify ORB properties and the precedence order, see

the JDK Diagnostic Guide for the version of the JDK that you are using. These guides are available at

http://www-128.ibm.com/developerworks/java/jdk/diagnosis/.

The WebSphere Application Server orb.properties file, that is located in the WebSphere Application Server

was_home/java/jre/lib directory, contains WebSphere Application server ORB custom properties that are

initially set to WebSphere Application Server default values during the WebSphere Application Server

installation process.

You can specify new values for the ORB custom properties in the administrative console. Any value you

specify takes precedence over any JDK or WebSphere Application Server default values for these

properties. The ORB custom properties settings that you specify in the administrative console are stored in

the WebSphere Application Server server.xml system file and are passed to an ORB in a properties object

whenever an ORB is initialized.

To use the administrative console to set ORB custom properties, in the administrative console, click

Servers >Application servers > server_name >Container services > ORB service >Custom

properties. You can then change the setting of one of the listed custom properties or click New to add a

new property to the list. Then click Apply to save your change. When you finish making changes, click OK

and then click Save to save your changes.

To use the java command on a command line, use the -D option. For example:

java -Dcom.ibm.CORBA.propname1=value1 -Dcom.ibm.CORBA.propname2=value2 ... application name

To use the launchclient command on a command line, prefix the property with -CC. For example:

launchclient yourapp.ear -CCDcom.ibm.CORBA.propname1=value1 -CCDcom.ibm.CORBA.propname2=value2

 ... optional application arguments

The Custom properties page might already include Secure Sockets Layer (SSL) properties that were

added during WebSphere Application Server installation. A list of additional properties associated with the

Java ORB service follows. Unless otherwise indicated, the default values provided in the descriptions of

these properties are the JDK default values.

com.ibm.CORBA.BootstrapHost

Specifies the domain name service (DNS) host name or IP address of the machine on which initial server

contact for this client resides. This setting is deprecated and is scheduled for removal in a future release.

For a command-line or programmatic alternative, see “Client-side programming tips for the Java Object

Request Broker service” on page 1776.

com.ibm.CORBA.BootstrapPort

Specifies the port to which the ORB connects for bootstrapping, the port of the machine on which the

initial server contact for this client listens. This setting is deprecated and is scheduled for removal in a

future release.

1766 Administering applications and their environment

http://www-128.ibm.com/developerworks/java/jdk/diagnosis/

For a command-line or programmatic alternative, see “Client-side programming tips for the Java Object

Request Broker service” on page 1776.

 Default 2809

com.ibm.CORBA.ConnectTimeout

The com.ibm.CORBA.ConnectTimeout property specifies the maximum time in seconds that the client

ORB waits before timing out when attempting to establish an IIOP connection with a remote server ORB.

Generally, client applications use this property. The property is not used by the application server by

default. However, if necessary, you can specify the property for each individual application server through

the administrative console.

Client applications can specify the com.ibm.CORBA.ConnectTimeout property in one of two ways:

v By including it in the orb.properties file.

v By using the -CCD option to set the property with the launchclient script. This example specifies a

maximum timeout value of ten seconds:

launchclient clientapp.ear -CCDcom.ibm.com.CORBA.ConnectTimeout=10...

Begin by setting your timeout value to 20-30 seconds, but consider factors such as network congestion

and application server load and capacity. Lower values can provide better failover performance, but can

result in exceptions if the remote server does not have enough time to complete the connection.

 Valid Range 0-300 (seconds)

Default 0 (the client ORB waits indefinitely)

com.ibm.CORBA.ConnectionInterceptorName

Specifies the connection interceptor class that is used to determine the type of outbound IIOP connection

to use for a request, and if secure, the quality of protection characteristics associated with the request.

 WebSphere Application Server

default

com.ibm.ISecurityLocalObjectBaseL13Impl. SecurityConnectionInterceptor

JDK default None.

com.ibm.CORBA.enableLocateRequest

Specifies whether the ORB uses the locate request mechanism to find objects in a WebSphere Application

Server cell. Use this property for performance tuning.

When this property is set to true, the ORB first sends a short message to the server to find the object that

it needs to access. This first contact is called the locate request. If most of your initial method invocations

are very small, setting this property to false might improve performance because this setting change can

reduce the GIOP traffic by as much as half. If most of your initial method invocations are large, you should

set this property to true so that the small locate request message is sent instead of the large message.

The large message is then sent to the proper target after the desired object is found.

 WebSphere Application Server default true

JDK default false

com.ibm.CORBA.FragmentSize

Specifies the size of General Inter-ORB Protocol (GIOP) fragments used by the ORB. If the total size of a

request exceeds the set value, the ORB breaks up and sends multiple fragments until the entire request is

sent. Set this property on the client side with a -D system property if you use a stand-alone Java

application.

Chapter 18. Object Request Broker 1767

Adjust the com.ibm.CORBA.FragmentSize property if the amount of data that is sent over Internet Inter-ORB

Protocol (IIOP) in most General Inter-ORB Protocol (GIOP) requests exceeds one kilobyte or if thread

dumps show that most client-side threads seem to be waiting while sending or receiving data. Adjust this

property so that most messages have few or no fragments.

If you want to instruct the ORB not to break up any of the requests or replies it sends, set this property to

0 (zero). However, setting the value to zero does not prevent the ORB from receiving GIOP fragments in

requests or replies sent by another existing ORB.

 Units Bytes.

Default 1024

Range From 64 to the largest value of a Java integer type that is

divisible by 8

com.ibm.CORBA.ListenerPort

Specifies the port on which this server listens for incoming requests. The setting of this property is valid for

client-side ORBs only.

 Default Next available system-assigned port number

Range 0 to 2147483647

com.ibm.CORBA.LocalHost

Specifies the host name or IP address of the system on which the server ORB is running. If you do not

specify a value for this property, during ORB initialization WebSphere Application Server sets this property

to the host name or IP address specified for the BOOTSTRAP_ADDRESS end point in serverindex.xml.

For client applications, if no value is specified for this property, the ORB obtains a value at run time by

calling InetAddress.getLocalHost().getHostAddress() method.

com.ibm.CORBA.numJNIReaders

Specifies the number of JNI reader threads to be allocated in the ORB’s JNI reader thread pool. Each

thread can handle up to 1024 connections.

 Attention: Before setting this property, make sure that a JSSE provider has been selected as the

provider for the SSL repertoire associated with the port on which the ORB service listens for incoming

requests. IBMJSSE2 is the default provider setting for SSL repertoires and does not provide the file

descriptor that JNIReader Threads require.

 Valid Range 1-2147483647

Default 4

com.ibm.CORBA.ORBPluginClass.com.ibm.ws.orbimpl.transport.JNIReaderPoolImpl

Specifies that JNI reader threads will be used. The property name specifies the class name of the ORB

component that manages the pool of JNI reader threads and interacts with the native OS library used to

process multiple connections simultaneously.

1768 Administering applications and their environment

Attention:

v Make sure the library is in the WebSphere Application Server bin directory.

For an Intel platform, the library is Selector.dll and for a UNIX platform, it is libSelector.a or

libSelector.so.

For the UNIX platform, if the prefix ″lib″ is missing, the file should be renamed.

v When specifying this property using the administrative console, enter

com.ibm.CORBA.ORBPluginClass.com.ibm.ws.orbimpl.transport.JNIReaderPoolImpl for the property

name and an empty string (″″) for the value.

When specifying this property on the java command, do not include a value:

-Dcom.ibm.CORBA.ORBPluginClass.com.ibm.ws.orbimpl.transport.JNIReaderPoolImpl

 Valid Range not applicable

Default none

com.ibm.CORBA.RasManager

Specifies an alternative to the default RAS manager of the ORB. This property must be set to

com.ibm.websphere.ras.WsOrbRasManager before the ORB can be integrated with the rest of WebSphere

Application Server RAS processing.

 WebSphere Application Server default com.ibm.websphere.ras.WsOrbRasManager

JDK default None.

com.ibm.CORBA.ServerSocketQueueDepth

Specifies the maximum number of connection requests that can remain unhandled by the WebSphere

Application Server ORB before the Application Server starts to reject new incoming connection requests.

This property corresponds to the backlog argument to a ServerSocket constructor and is handled directly

by TCP/IP.

If you see a ″connection refused″ message in a trace log, usually either the port on the target machine

isn’t open, or the server is overloaded with queued-up connection requests. Increasing the value specified

for this property can help alleviate this problem if there does not appear to be any other problem in the

system.

 Default 50

Range From 50 to the largest value of the Java int type

com.ibm.CORBA.ShortExceptionDetails

Specifies that the exception detail message that is returned whenever the server ORB encounters a

CORBA system exception contains a short description of the exception as returned by the toString method

of java.lang.Throwable class. Otherwise, the message contains the complete stack trace as returned by

the printStackTrace method of java.lang.Throwable class.

com.ibm.CORBA.WSSSLClientSocketFactoryName

Specifies the class that the ORB uses to create SSL sockets for secure outbound IIOP connections.

 WebSphere Application Server dfault com.ibm.ws.security.orbssl.WSSSLClientSocketFactoryImpl

JDK default None.

com.ibm.CORBA.WSSSLServerSocketFactoryName

Specifies the class that the ORB uses to create SSL sockets for inbound IIOP connections.

 WebSphere Application Server default com.ibm.ws.security.orbssl.WSSSLServerSocketFactoryImpl

JDK default None.

Chapter 18. Object Request Broker 1769

com.ibm.websphere.ObjectIDVersionCompatibility

This property applies when you have a mixed release cluster for which you are performing an incremental

cell upgrade, and at least one of the releases is earlier than V5.1.1.

In an environment that includes mixed release cells, the migration program automatically sets this property

to 1.

After you upgrade all of the cluster members to the same release, you can removing this property from the

list of ORB custom properties or you can change the value that is specified for the property to 2. Either

action improves performance.

When this property is set to 1, the ORB runs using version 1 object identities, which are required for mixed

cells that contain application servers with releases prior to V5.1.1. If you do not specify a value for this

property or if you set this property to 2, the ORB runs using version 2 object identities, which cannot be

used with pre-V5.1.1 application servers.

See the Migrating, coexisting, and interoperating PDF for instructions on how to perform an incremental

cell upgrade.

com.ibm.websphere.threadpool.strategy.implementation

Specifies the logical pool distribution (LPD) thread pool strategy the next time you start the application

server, and is enabled if set to com.ibm.ws.threadpool.strategy.LogicalPoolDistribution.

 Attention: This is a deprecated function and will be removed in a future version of the product. Do not

configure logical pool distribution unless you have already configured it for a previous release of

WebSphere Application Server.

Some requests have shorter start times than others. LPD is a mechanism for providing these shorter

requests greater access to start threads. For more information, see the information center.

com.ibm.websphere.threadpool.strategy.LogicalPoolDistribution.calcinterval

Specifies how often the logical pool distribution (LPD) mechanism readjusts the pool start target times.

This property cannot be turned off after this support is installed.

 Attention: Do not configure logical pool distribution unless you have already configured it with a

previous release of WebSphere Application Server. This function is deprecated and will be removed in a

future version of the product.

LPD must be enabled (see com.ibm.websphere.threadpool.strategy.implementation).

 Data type Integer

Units Milliseconds

Default 30

Range 20,000 milliseconds minimum

com.ibm.websphere.threadpool.strategy.LogicalPoolDistribution.lruinterval

Specifies how long the logical pool distribution internal data is kept for inactive requests. The mechanism

tracks several statistics for each request type that is received. Consider removing requests that have been

inactive for awhile.

 Attention: Do not configure logical pool distribution unless you have already configured it with a

previous release of WebSphere Application Server. This function is deprecated and will be removed in a

future version of the product.

1770 Administering applications and their environment

LPD must be enabled (see com.ibm.websphere.threadpool.strategy.implementation).

 Data type Integer

Units Milliseconds

Default 300,000 (5 minutes)

Range 60,000 (1 minute) minimum

com.ibm.websphere.threadpool.strategy.LogicalPoolDistribution.outqueues

Specifies how many pools are created and how many threads are allocated to each pool in the logical pool

distribution mechanism.

 Attention: Do not configure logical pool distribution unless you have already configured it with a

previous release of WebSphere Application Server. This function is deprecated and will be removed in a

future version of the product.

The ORB parameter for max threads controls the total number of threads. The outqueues parameter is

specified as a comma separated list of percentages that add up to 100. For example, the list 25,25,25,25

sets up 4 pools, each allocated 25% of the available ORB thread pool. The pools are indexed left to right

from 0 to n-1. Each outqueue is dynamically assigned a target start time by the calculation mechanism.

Target start times are assigned to outqueues in increasing order so pool 0 gets the requests with the least

start time and pool n-1 gets requests with the highest start times.

LPD must be enabled (see com.ibm.websphere.threadpool.strategy.implementation).

 Data type Integers in comma separated list

Default 25,25,25,25

Range Percentages in list must total 100 percent

com.ibm.websphere.threadpool.strategy.LogicalPoolDistribution.statsinterval

Specifies that statistics are dumped to stdout after this interval expires, but only if requests are processed.

This process keeps the mechanism from filling the log files with redundant information. These statistics are

beneficial for tuning the logical pool distribution mechanism.

 Attention: Do not configure logical pool distribution unless you have already configured it with a

previous release of WebSphere Application Server. This function is deprecated and will be removed in a

future version of the product.

LPD must be enabled (see com.ibm.websphere.threadpool.strategy.implementation).

 Data type Integer

Units Milliseconds

Default 0 (off)

Range 30,000 (30 seconds) minimum

com.ibm.websphere.threadpool.strategy.LogicalPoolDistribution.workqueue

Specifies the size of a new queue where incoming requests wait for dispatch. Pertains to the logical pool

distribution mechanism.

 Attention: Do not configure logical pool distribution unless you have already configured it with a

previous release of WebSphere Application Server. This function is deprecated and will be removed in a

future version of the product.

Chapter 18. Object Request Broker 1771

LPD must be enabled (see com.ibm.websphere.threadpool.strategy.implementation).

 Data type Integer

Default 96

Range 10 minimum

com.ibm.ws.orb.services.redirector.MaxOpenSocketsPerEndpoint

Specifies the maximum number of connections that the IIOP Tunnel Servlet should maintain in its

connection cache for each target host or port. If the number of concurrent client requests to a single host

or port exceeds the setting for this property, the IIOP Tunnel Servlet opens a temporary connection to the

target server for each extra client request, and then closes the connection after it receives the reply.

Connections that are opened but not used within five minutes are removed from the cache for the IIOP

Tunnel Servlet.

 WebSphere Application Server default 3

JDK default Not applicable

Range 0 - largest integer recognized by Java

com.ibm.ws.orb.services.redirector.RequestTimeout

Specifies the number of seconds that the IIOP Tunnel Servlet waits for a reply from the target server on

behalf of a client before timing out. If a value is not specified for this property, or is improperly specified,

the com.ibm.CORBA.RequestTimeout property setting for the application server on which the IIOP Tunnel

Servlet is installed is used as the setting for the com.ibm.ws.orb.services.redirector.RequestTimeout

property.

The value you specify for this property should be at least as high as the highest client setting for the

com.ibm.CORBA.RequestTimeout property, otherwise the IIOP Tunnel Servlet might timeout more quickly

than the client would normally timeout while waiting for a reply. If this property is set to zero, the IIOP

Tunnel Servlet does not time out.

 WebSphere Application Server default com.ibm.CORBA.RequestTimeout property setting for the

application server on which the IIOP Tunnel Servlet is

installed.

JDK default Not applicable

Range 0 - largest integer recognized by Java

com.ibm.ws.orb.transport.useMultiHome

Specifies whether the WebSphere Application Server ORB binds to all network interfaces in the system. If

true is specified, the ORB binds to all network interfaces that are available to it. If false is specified, the

ORB only binds to the network interface specified for the com.ibm.CORBA.LocalHost system property.

 WebSphere Application Server default true

JDK default true

javax.rmi.CORBA.UtilClass

Specifies the name of the Java class that WebSphere Application Server uses to implement the

javax.rmi.CORBA.UtilDelegate interface.

This property supports delegation for method implementations in the javax.rmi.CORBA.Util class. The

javax.rmi.CORBA.Util class provides utility methods that can be used by stubs and ties to perform

common operations. The delegate is a singleton instance of a class that implements this interface and

provides a replacement implementation for all of the methods of javax.rmi.CORBA.Util. To enable a

delegate, provide the class name of the delegate as the value of the javax.rmi.CORBA.UtilClass system

property. The default value provides support for the com.ibm.CORBA.iiop.noLocalCopies property.

1772 Administering applications and their environment

WebSphere Application Server default com.ibm.ws.orb.WSUtilDelegateImpl

JDK default None.

Object Request Broker communications trace

The Object Request Broker (ORB) communications trace, typically referred to as CommTrace, contains the

sequence of General InterORB Protocol (GIOP) messages sent and received by the ORB when the

application is running.

It might be necessary to understand the low-level sequence of client-to-server or server-to-server

interactions during problem determination. This topic uses trace entries from log examples to explain the

contents of the log and help you understand the interaction sequence. It focuses only in the GIOP

messages and does not discuss in detail additional trace information that displays when intervening with

the GIOP-message boundaries.

Location

When ORB tracing is enabled, this information is placed in the app_server_root/profiles/profile_name/logs/
server_name/trace.log directory.

About the ORB trace file

The following are properties of the file that is created when ORB tracing is enabled.

v Read-only

v Updated by the administrative function

v Use this file to localize and resolve ORB-related problems.

How to interpret the output

The following sections refer to sample log output found later in this topic.

Identifying information

The start of a GIOP message is identified by a line that contains either OUT GOING: or IN

COMING: depending on whether the message is sent or received by the process.

 Following the identifying line entry is a series of items, formatted for convenience, with information

extracted from the raw message that identifies the endpoints in this particular message interaction.

See lines 3-13 in both examples. The formatted items include the following:

v GIOP message type (line 3)

v Date and time that the message was recorded (line 4)

v Information that is useful to identify the thread that is running when the message records, and

other thread-specific information (line 5)

v Local and remote TCP/IP ports used for the interaction (lines 6 through 9)

v GIOP version, byte order, an indication of whether the message is a fragment, and message

size (lines 10 through 13)
Request ID, response expected and reply status

Following the introductory message information, the request ID is an integer generated by the

ORB. It is used to identify and associate each request with its corresponding reply. This

association is necessary because the ORB can receive requests from multiple clients and must be

able to associate each reply with the corresponding originating request.

v Lines 15-17 in the request example show the request ID, followed by an indication to the

receiving endpoint that a response is expected (CORBA supports sending one-way requests for

which a response is not expected.)

v Line 15 in the Sample Log Entry - GIOP Reply shows the request ID; line 33 shows the reply

status received after completing the previously sent request.

Chapter 18. Object Request Broker 1773

Object Key

Lines 18-20 in the request example show the object key, the internal representation used by the

ORB to identify and locate the target object intended to receive the request message. Object keys

are not standardized.

Operation

Line 21 in the request example shows the name of the operation that the target object starts in the

receiving endpoint. In this example, the specific operation requested is named _get_value.

Service context information

The service contexts in the message are also formatted for convenience. Each GIOP message

might contain a sequence of service contexts sent and received by each endpoint. Service

contexts, identified uniquely with an ID, contain data used in the specific interaction, such as

security, character code set conversion, and ORB version information. The content of some of the

service contexts is standardized and specified by OMG, while other service contexts are

proprietary and specified by each vendor. IBM-specific service contexts are identified with IDs that

begin with 0x4942.

 Lines 22-41 in the request example illustrate typical service context entries. Three service contexts

are in the request message, as shown in line 22. The ID, length of data, and raw data for each

service context is printed next. Lines 23-25 show an IBM-proprietary context, as indicated by the

0x49424D12 ID. Lines 26-41 show two standard service contexts, identified by 0x6 ID (line 26)

and the 0x1 ID (line 39).

 Lines 16-32 in the Sample Log Entry - GIOP Reply illustrate two service contexts, one

IBM-proprietary (line 17) and one standardized (line 20).

 For the definition of the standardized service contexts, see the CORBA specification. Service

context 0x1 (CORBA::IOP::CodeSets) is used to publish the character code sets supported by the

ORB in order to negotiate and determine the code set used to transmit character data. Service

context 0x6 (CORBA::IOP::SendingContextRunTime) is used by Remote Method Invocation over

the Internet Inter-ORB Protocol (RMI-IIOP) to provide the receiving endpoint with the IOR for the

SendingContextRuntime object. IBM service context 0x49424D12 is used to publish ORB

PartnerVersion information to support release-to-release interoperability between sending and

receiving ORBs.

Data offset

Line 42 in the request example shows the offset, relative to the beginning of the GIOP message,

where the remainder body of the request or reply message is located. This portion of the message

is specific to each operation and varies from operation to operation. Therefore, it is not formatted,

as the specific contents are not known by the ORB. The offset is printed as an aid to quickly

locating the operation-specific data in the raw GIOP message dump, which follows the data offset.

Raw GIOP message dump

Starting at line 45 in the request example and line 36 in the Sample Log Entry - GIOP Reply, a

raw dump of the entire GIOP message is printed in hexadecimal format. Request messages

contain the parameters required by the given operation and reply messages contain the return

values and content of output parameters as required by the given operation. For brevity, not all of

the raw data is in the figures.

Sample Log Entry - GIOP Request

1. OUT GOING:

3. Request Message

4. Date: April 17, 2002 10:00:43 PM CDT

5. Thread Info: P=842115:O=1:CT

6. Local Port: 1243 (0x4DB)

7. Local IP: jdoe.austin.ibm.com/192.168.1.101

8. Remote Port: 1242 (0x4DA)

9. Remote IP: jdoe.austin.ibm.com/192.168.1.101

10. GIOP Version: 1.2

11. Byte order: big endian

12. Fragment to follow: No

1774 Administering applications and their environment

13. Message size: 268 (0x10C)

--

15. Request ID: 5

16. Response Flag: WITH_TARGET

17. Target Address: 0

18. Object Key: length = 24 (0x18)

 4B4D4249 00000010 BA4D6D34 000E0008

 00000000 00000000

21. Operation: _get_value

22. Service Context: length = 3 (0x3)

23. Context ID: 1229081874 (0x49424D12)

24. Context data: length = 8 (0x8)

 00000000 13100003

26. Context ID: 6 (0x6)

27. Context data: length = 164 (0xA4)

 00000000 00000028 49444C3A 6F6D672E

 6F72672F 53656E64 696E6743 6F6E7465

 78742F43 6F646542 6173653A 312E3000

 00000001 00000000 00000068 00010200

 0000000E 3139322E 3136382E 312E3130

 310004DC 00000018 4B4D4249 00000010

 BA4D6D69 000E0008 00000000 00000000

 00000002 00000001 00000018 00000000

 00010001 00000001 00010020 00010100

 00000000 49424D0A 00000008 00000000

 13100003

39. Context ID: 1 (0x1)

40. Context data: length = 12 (0xC)

 00000000 00010001 00010100

42. Data Offset: 118

45. 0000: 47494F50 01020000 0000010C 00000005 GIOP............

46. 0010: 03000000 00000000 00000018 4B4D4249 KMBI

47. 0020: [remainder of message body deleted for brevity]

Sample Log Entry - GIOP Reply

1. IN COMING:

3. Reply Message

4. Date: April 17, 2002 10:00:47 PM CDT

5. Thread Info: RT=0:P=842115:O=1:com.ibm.rmi.transport.TCPTransportConnection

5a (line 5 broken for publication). remoteHost=192.168.1.101 remotePort=1242 localPort=1243

6. Local Port: 1243 (0x4DB)

7. Local IP: jdoe.austin.ibm.com/192.168.1.101

8. Remote Port: 1242 (0x4DA)

9. Remote IP: jdoe.austin.ibm.com/192.168.1.101

10. GIOP Version: 1.2

11. Byte order: big endian

12. Fragment to follow: No

13. Message size: 208 (0xD0)

--

15. Request ID: 5

16. Service Context: length = 2 (0x2)

17. Context ID: 1229081874 (0x49424D12)

18. Context data: length = 8 (0x8)

 00000000 13100003

20. Context ID: 6 (0x6)

21. Context data: length = 164 (0xA4)

 00000000 00000028 49444C3A 6F6D672E

 6F72672F 53656E64 696E6743 6F6E7465

 78742F43 6F646542 6173653A 312E3000

 00000001 00000000 00000068 00010200

 0000000E 3139322E 3136382E 312E3130

 310004DA 00000018 4B4D4249 00000010

 BA4D6D34 000E0008 00000001 00000000

Chapter 18. Object Request Broker 1775

00000002 00000001 00000018 00000000

 00010001 00000001 00010020 00010100

 00000000 49424D0A 00000008 00000000

 13100003

33. Reply Status: NO_EXCEPTION

36. 0000: 47494F50 01020001 000000D0 00000005 GIOP............

37. 0010: 00000000 00000002 49424D12 00000008 IBM.....

38. 0020: [remainder of message body deleted for brevity]

Client-side programming tips for the Java Object Request Broker

service

This topic includes programming tips for applications that communicate with the client-side Object Request

Broker (ORB) that is part of the Java ORB service.

Resolution of initial references to services

Client applications can use the ORBInitRef and ORBDefaultInitRef properties to configure the network

location that the Java ORB service uses to find a service such as naming. When set, these properties are

included in the parameters that are used to initialize the ORB, as illustrated in the following example:

org.omg.CORBA.ORB.init(java.lang.String[] args,

 java.util.Properties props)

You can set these properties in client code or by command-line argument. It is possible to specify more

than one service location by using multiple ORBInitRef property settings (one for each service), but only a

single ORBDefaultInitRef value can be specified.

For setting in client code, these properties are com.ibm.CORBA.ORBInitRef.service_name and

com.ibm.CORBA.ORBDefaultInitRef, respectively. For example, to specify that the naming service

(NameService) is located in sample.server.com at port 2809, set the

com.ibm.CORBA.ORBInitRef.NameService property to corbaloc::sample.server.com:2809/NameService.

For setting by command-line argument, these properties are -ORBInitRef and -ORBDefaultInitRef,

respectively. To locate the same naming service specified previously, use the following Java command:

After these properties are set for services that the ORB supports, Java 2 Platform, Enterprise Edition

(J2EE) applications can call the resolve_initial_references function on the ORB, as defined in the

CORBA/IIOP specification, to obtain the initial reference to a given service.

Preferred API for obtaining an ORB instance

For J2EE applications, you can use either of the following approaches. However, it is strongly

recommended that you use the Java Naming and Directory Interface (JNDI) approach to ensure that the

same ORB instance is used throughout the client application; you avoid the unintended inconsistencies

that might occur when different ORB instances are used.

JNDI approach: For J2EE applications (including enterprise beans, J2EE clients and servlets), you can

obtain an ORB instance by creating a JNDI InitialContext object and looking up the ORB under the

java:comp/ORB name , as illustrated in the following example:

javax.naming.Context ctx = new javax.naming.InitialContext();

org.omg.CORBA.ORB orb =

 (org.omg.CORBA.ORB)javax.rmi.PortableRemoteObject.narrow(ctx.lookup("java:comp/ORB"),

 org.omg.CORBA.ORB.class);

The ORB instance obtained using JNDI is a singleton object, shared by all the J2EE components that are

running in the same Java virtual machine process.

1776 Administering applications and their environment

CORBA approach: Because thin-client applications do not run in a J2EE container, they cannot use JNDI

interfaces to look up the ORB. In this case, you can obtain an ORB instance by using CORBA

programming interfaces, as follows:

java.util.Properties props = new java.util.Properties();

java.lang.String[] args = new java.lang.String[0];

org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init(args, props);

In contrast to the JNDI approach, the CORBA specification requires that a new ORB instance be created

each time the ORB.init method is called. If necessary to change the ORB default settings, you can add

ORB property settings to the Properties object that is passed in the ORB.init method call.

The use of the com.ibm.ejs.oa.EJSORB.getORBinstance method, supported in previous releases of this

product is deprecated.

API restrictions with sharing an ORB instance among J2EE application

components

For performance reasons, it often makes sense to share a single ORB instance among components in a

J2EE application. As required by the J2EE Specification, Version 1.3, all Web and EJB containers provide

an ORB instance in the JNDI namespace as java:comp/ORB. Each container can share this instance

among application components but is not required to. For proper isolation between application

components, application code must comply with the following restrictions:

v Do not call the ORB shutdown or destroy methods

v Do not call org.omg.CORBA_2_3.ORB methods register_value_factory, or unregister_value_factory

In addition, do not share an ORB instance among application components in different J2EE applications.

Required use of rmic and idlj that ship with the IBM Developer Kit

The Java Runtime Environment (JRE) used by this product includes the rmic and idlj tools. You use the

tools to generate Java language bindings for the CORBA/IIOP protocol.

During product installation, the tools are installed in the app_server_root/java/ibm_bin directory. Versions of

these tools included with Java development kits in the $JAVA_HOME/bin directory other than the IBM

Developer Kit installed with this product are incompatible with this product.

When you install this product, the app_server_root/java/ibm_bin directory is included in the $PATH search

order to enable use of the rmic and idlj scripts provided by IBM. Because the scripts are in the

app_server_root/java/ibm_bin directory instead of the JRE standard app_server_root/java/bin directory, it is

unlikely that you can overwrite them when applying maintenance to a JRE not provided by IBM.

In addition to the rmic and idlj tools, the JRE also includes Interface Definition Language (IDL) files. The

files are based on those defined by the Object Management Group (OMG) and can be used by

applications that need an IDL definition of selected ORB interfaces. The files are placed in the

app_server_root/java/ibm_lib directory.

Before using either the rmic or idlj tool, ensure that the app_server_root/java/ibm_bin directory is included

in the proper PATH variable search order in the environment. If your application uses IDL files in the

app_server_root/java/ibm_lib directory, also ensure that the directory is included in the PATH variable.

Character code set conversion support for the Java Object Request

Broker service

The CORBA/IIOP specification defines a framework for negotiation and conversion of character code sets

used by the Java Object Request Broker (ORB) service.

Chapter 18. Object Request Broker 1777

This product supports the framework and provides the following system properties for modifying the default

settings:

com.ibm.CORBA.ORBCharEncoding

Specifies the name of the native code set that the ORB uses for character data (referred to as

NCS-C in the CORBA/IIOP specification). By default, the ORB uses UTF8. Valid code set values

for this property are shown in the table that follows this list; values that are valid only for

ORBWCharDefault are indicated.

com.ibm.CORBA.ORBWCharDefault

Specifies the default code set that the ORB uses for transmission of wide character data when no

code set for wide character data is found in the tagged component in the Interoperable Object

Reference (IOR) or in the GIOP service context. If no code set for wide character data is found

and this property is not set, the ORB raises an exception, as specified in the CORBA specification.

No default value is set for this property. The only valid code set values for this property are UCS2

or UTF16.

The CORBA code set negotiation and conversion framework specifies the use of code set registry IDs as

defined in the Open Software Foundation (OSF) code set registry. The ORB translates the Java

file.encoding names shown in the following table to the corresponding OSF registry IDs. These IDs are

then used by the ORB in the IOR Code set tagged component and GIOP code set service context as

specified in the CORBA and IIOP specification.

 Java name OSF registry ID Comments

ASCII 0x00010020

ISO8859_1 0x00010001

ISO8859_2 0x00010002

ISO8859_3 0x00010003

ISO8859_4 0x00010004

ISO8859_5 0x00010005

ISO8859_6 0x00010006

ISO8859_7 0x00010007

ISO8859_8 0x00010008

ISO8859_9 0x00010009

ISO8859_15_FDIS 0x0001000F

Cp1250 0x100204E2

Cp1251 0x100204E3

Cp1252 0x100204E4

Cp1253 0x100204E5

Cp1254 0x100204E6

Cp1255 0x100204E7

Cp1256 0x100204E8

Cp1257 0x100204E9

Cp943C 0x100203AF

Cp943 0x100203AF

Cp949C 0x100203B5

Cp949 0x100203B5

Cp1363C 0x10020553

Cp1363 0x10020553

1778 Administering applications and their environment

Java name OSF registry ID Comments

Cp950 0x100203B6

Cp1381 0x10020565

Cp1386 0x1002056A

EUC_JP 0x00030010

EUC_KR 0x0004000A

EUC_TW 0x00050010

Cp964 0x100203C4

Cp970 0x100203CA

Cp1383 0x10020567

Cp33722C 0x100283BA

Cp33722 0x100283BA

Cp930 0x100203A2

Cp1047 0x10020417

UCS2 0x00010100 Valid only for the ORBWCharDefault

UTF8 0x05010001

UTF16 0x00010109 Valid only for the ORBWCharDefault

Object Request Brokers: Resources for learning

Use the following links to find relevant supplemental information about Object Request Brokers (ORBs).

The information resides on IBM and non-IBM Internet sites, whose sponsors control the technical accuracy

of the information.

These links are provided for convenience. Often, the information is not specific to this product but is useful

all or in part for understanding the product. When possible, links are provided to technical papers and

Redbooks that supplement the broad coverage of the release documentation with in-depth examinations of

particular product areas.

View links to additional information about:

v “Planning, business scenarios, and IT architecture”

v “Administration”

v “Programming specifications” on page 1780

Planning, business scenarios, and IT architecture

v CORBA FAQ

Getting started with Object Request Brokers and CORBA.

v WebSphere Application Server CORBA Interoperability

This document describes WebSphere CORBA interoperability for WebSphere Application Server

products.

v CORBA Interoperability Samples

These samples demonstrate the general principles by which WebSphere Application Server applications

can interoperate with CORBA applications.

Administration

v IANA Character Set Registry

This document contains a list of all valid character encoding schemes.

v developerWorks WebSphere

Chapter 18. Object Request Broker 1779

http://www.omg.org/gettingstarted/corbafaq.htm
http://www-1.ibm.com/support/docview.wss?rs=180&uid=swg27005708
http://www-106.ibm.com/developerworks/websphere/library/samples/WASV501/corba.html
http://www.iana.org/assignments/character-sets
http://www.ibm.com/developer/websphere

Programming specifications

v Catalog Of OMG CORBA/IIOP Specifications

This document provides a catalog of OMG CORBA/IIOP specifications.

Object request broker troubleshooting tips

Use these tips to diagnose problems related to the WebSphere Application Server Object Request Broker

(ORB).

v “Enabling tracing for the Object Request Broker component”

v “Log files and messages associated with Object Request Broker” on page 1781

v “Adjusting object request broker timeout values” on page 1781

v “Java packages containing the Object Request Broker service” on page 1782

v “Tools used with Object Request Broker” on page 1782

v “Object Request Broker properties” on page 1782

v “CORBA minor codes” on page 1782

Enabling tracing for the Object Request Broker component

The object request broker (ORB) service is one of the WebSphere Application Server run time services.

Tracing messages sent and received by the ORB is a useful starting point for troubleshooting the ORB

service. You can selectively enable or disable tracing of ORB messages for each server in a WebSphere

Application Server installation, and for each application client.

This tracing is referred to by WebSphere Application Server support as a comm trace, and is different from

the general purpose trace facility. The trace facility, which shows the detailed run-time behavior of product

components, may be used alongside comm trace for other product components, or for the ORB

component. The trace string associated with the ORB service is ORBRas=all=enabled.

You can enable and disable comm tracing using the administrative console or by manually editing the

server.xml file for the server be trace. You must stop and restart the server for the configuration change to

take effect.

For example, using the administrative console:

v Click Servers > Application servers > server_name > Container services > ORB service, and select

the ORB tracing. Click OK, and then click Save to save your settings. Restart the server for the new

settings to take effect. Or,

v Locate the server.xml file for the selected server, for example: profile_root/config/cells/node_name/
nodes/node_name/servers/server_name/server.xml.

v Locate the services entry for the ORB service, xmi:type=orb:ObjectRequestBroker, and set

commTraceEnabled=true.

ORB tracing for client applications requires that both the ORBRas component trace and the ORB comm

trace are enabled. If only the ORB comm trace is enabled, no trace output is generated for client-side

ORB traces. You can use one of the following options to enable both traces in the command line used to

launch the client application:

v If you are using the WebSphere Application Server launcher, launchClient, use the -CCD option.

If you are using launchClient, specify these parameters on the launchClient command line after the ear

file name but before the parameters for the application.:

 -CCtrace=ORBRas=all=enabled

 -CCtracefile=filename

 -CCDcom.ibm.CORBA.Debug=true

 -CCDcom.ibm.CORBA.CommTrace=true

v If you are using the java command specify these parameters:

-trace=ORBRas=all=enabled

-tracefile=filename

-Dcom.ibm.CORBA.Debug=true

-Dcom.ibm.CORBA.CommTrace=true

1780 Administering applications and their environment

http://www.omg.org/technology/documents/corba_spec_catalog.htm

ORB tracing output for thin clients can be directed by setting the com.ibm.CORBA.Debug.Output =

debugOutputFilename parameter in the command line.

Important: When using launchClient on operating systems like AIX or Linux, because ORB tracing is

integrated with the WebSphere Application Server general component trace, both the

component and comm ORB traces are written to the same file as the rest of the WebSphere

Application Server traces. The name of this file is specified on the -CCtracefile=filename

parameter.

When using launchClient on a Windows operating systems, you get a separate ORB trace file,

called orbtrc.timestamp.txt. This file is located in the current directory.

Log files and messages associated with Object Request Broker

Messages and trace information for the ORB are saved in the following logs:

v The profile_root/logs/server_name/trace.log file for output from communications tracing and tracing the

behavior of the ORBRas component

v The JVM logs for each application server, for WebSphere Application Server error and warning

messages

The following message in the SystemOut.log file indicates the successful start of the application server

and its ORB service:

WSVR0001I: Server server1 open for e-business

When communications tracing is enabled, a message similar to the following example in the

profile_root/logs/server_name/trace.log file, indicates that the ORB service has started successfully. The

message also shows the start of a listener thread, which is waiting for requests on the specified local port.

com.ibm.ws.orbimpl.transport.WSTransport startListening(ServerConnectionData connectionData)

P=693799:O=0:CT a new ListenerThread has been started for ServerSocket[addr=0.0.0.0/
0.0.0.0,port=0,localport=1360]

When the com.ibm.ejs.oa.*=all=enabled parameter is specified, tracing of the Object Adapter is enabled.

The following message in the trace.log indicates that the ORB service started successfully:

EJSORBImpl < initializeORB

The ORB service is one of the first services started during the WebSphere Application Server initialization

process. If it is not properly configured, other components such as naming, and security are not likely to

start successfully. This is obvious in the JVM logs or trace.log of the affected application server.

Adjusting object request broker timeout values

If Web clients that access Java applications running in the product environment are consistently

experiencing problems with their requests, and the problem cannot be traced to other sources and

addressed through other solutions, consider setting an ORB timeout value and adjusting it for your

environment. A list of timeout scenarios follows:

v Web browsers vary in their language for indicating that they have timed out. Usually, the problem is

announced as a connection failure or a no-path-to-server message.

v Set an ORB timeout value to less than the time after which a Web client eventually times out. Because

it can be difficult to tell how long Web clients wait before timing out, setting an ORB timeout value

requires experimentation. The ideal testing environment features some simulated network failures for

testing the proposed setting value.

Chapter 18. Object Request Broker 1781

v Empirical results from limited testing indicate that 30 seconds is a reasonable starting value. Ensure that

this setting is not too low. To fine tune the setting, find a value that is not too low. Gradually decrease

the setting until reaching the threshold at which the value becomes too low. Set the value a little higher

than the threshold.

v When an ORB timeout value is set too low, the symptom is numerous CORBA NO_RESPONSE

exceptions, which occur even for some valid requests. The value is likely to be too low if requests that

should have been successful, for example, the server is not down, are being lost or refused.

Timeout adjustments: Do not adjust an ORB timeout value unless you have a problem. Configuring a

value that is inappropriate for the environment can create a problem. An incorrect value can produce

results worse than the original problem.

You can adjust timeout intervals for the product Java ORB through the following administrative settings:

v Request timeout, the number of seconds to wait before timing out on most pending ORB requests if

the network fails

v Locate request timeout, the number of seconds to wait before timing out on a locate-request message

Read the information about Object Request Broker service settings in the Setting up the application

serving environment PDF book.

Java packages containing the Object Request Broker service

The ORB service resides in the following Java packages:

v com.ibm.com.CORBA.*

v com.ibm.rmi.*

v com.ibm.ws.orb.*

v com.ibm.ws.orbimpl.*

v org.omg.CORBA.*

v javax.rmi.CORBA.*

JAR files that contain the previously mentioned packages include:

v app_server_root/java/jre/lib/ext/ibmorb.jar

v app_server_root/java/jre/lib/ext/iwsorbutil.jar

v app_server_root/lib/iwsorb.jar

Tools used with Object Request Broker

The tools used to compile Java remote interfaces to generate language bindings used by the ORB at

runtime reside in the following Java packages:

v com.ibm.tools.rmic.*

v com.ibm.idl.*

The JAR file that contains the packages is app_server_root/java/lib/ibmtools.jar.

Object Request Broker properties

The ORB service requires a number of ORB properties for correct operation. It is not necessary for most

users to modify these properties, and it is recommended that only your system administrator modify them

when required.. Consult IBM Support personnel for assistance. The properties reside in the orb.properties

file, located in app_server_root/java/jre/lib/orb.properties.

CORBA minor codes

The CORBA specification defines standard minor exception codes for use by the ORB when a system

exception is thrown. In addition, the object management group (OMG) assigns each vendor a unique prefix

value for use in vendor-proprietary minor exception codes. Minor code values assigned to IBM and used

1782 Administering applications and their environment

by the ORB in the WebSphere Application Server follow. The minor code value is in decimal and

hexadecimal formats. The column labeled minor code reason gives a short description of the condition

causing the exception. Currently there is no documentation for these errors beyond the minor code reason.

If you require technical support from IBM, the minor code helps support engineers determine the source of

the problem.

 Table 48. Decimal minor exception codes 1229066320 to 1229066364

Decimal Hexadecimal Minor code reason

1229066320 0x49421050 HTTP_READER_FAILURE

1229066321 0x49421051 COULD_NOT_INSTANTIATE_CLIENT_SSL_SOCKET_FACTORY

1229066322 0x49421052 COULD_NOT_INSTANTIATE_SERVER_SSL_SOCKET_FACTORY

1229066323 0x49421053 CREATE_LISTENER_FAILED_1

1229066324 0x49421054 CREATE_LISTENER_FAILED_2

1229066325 0x49421055 CREATE_LISTENER_FAILED_3

1229066326 0x49421056 CREATE_LISTENER_FAILED_4

1229066327 0x49421057 CREATE_LISTENER_FAILED_5

1229066328 0x49421058 INVALID_CONNECTION_TYPE

1229066329 0x49421059 HTTPINPUTSTREAM_NO_ACTIVEINPUTSTREAM

1229066330 0x4942105a HTTPOUTPUTSTREAM_NO_OUTPUTSTREAM

1229066331 0x4942105b CONNECTIONINTERCEPTOR_INVALID_CLASSNAME

1229066332 0x4942105c NO_CONNECTIONDATA_IN_CONNECTIONDATACARRIER

1229066333 0x4942105d CLIENT_CONNECTIONDATA_IS_INVALID_TYPE

1229066334 0x4942105e SERVER_CONNECTIONDATA_IS_INVALID_TYPE

1229066335 0x4942105f NO_OVERLAP_OF_ENABLED_AND_DESIRED_CIPHER_SUITES

1229066352 0x49421070 CAUGHT_EXCEPTION_WHILE_CONFIGURING_SSL_CLIENT_SOCKET

1229066353 0x49421071 GETCONNECTION_KEY_RETURNED_FALSE

1229066354 0x49421072 UNABLE_TO_CREATE_SSL_SOCKET

1229066355 0x49421073 SSLSERVERSOCKET_TARGET_SUPPORTS_LESS_THAN_1

1229066356 0x49421074 SSLSERVERSOCKET_TARGET_REQUIRES_LESS_THAN_1

1229066357 0x49421075 SSLSERVERSOCKET_TARGET_LESS_THAN_TARGET_REQUIRES

1229066358 0x49421076 UNABLE_TO_CREATE_SSL_SERVER_SOCKET

1229066359 0x49421077 CAUGHT_EXCEPTION_WHILE_CONFIGURING_SSL_SERVER_SOCKET

1229066360 0x49421078 INVALID_SERVER_CONNECTION_DATA_TYPE

1229066361 0x49421079 GETSERVERCONNECTIONDATA_RETURNED_NULL

1229066362 0x4942107a GET_SSL_SESSION_RETURNED_NULL

1229066363 0x4942107b GLOBAL_ORB_EXISTS

1229066364 0x4942107c CONNECT_TIME_OUT

 Table 49. Decimal minor exception codes 1229123841 to 1229124249

Decimal Hexadecimal Minor code reason

1229123841 0x4942f101 DSIMETHOD_NOTCALLED

1229123842 0x4942f102 BAD_INV_PARAMS

1229123843 0x4942f103 BAD_INV_RESULT

1229123844 0x4942f104 BAD_INV_CTX

1229123845 0x4942f105 ORB_NOTREADY

1229123879 0x4942f127 PI_NOT_POST_INIT

1229123880 0x4942f128 INVALID_EXTENDED_PI_CALL

1229123969 0x4942f181 BAD_OPERATION_EXTRACT_SHORT

1229123970 0x4942f182 BAD_OPERATION_EXTRACT_LONG

1229123971 0x4942f183 BAD_OPERATION_EXTRACT_USHORT

1229123972 0x4942f184 BAD_OPERATION_EXTRACT_ULONG

1229123973 0x4942f185 BAD_OPERATION_EXTRACT_FLOAT

1229123974 0x4942f186 BAD_OPERATION_EXTRACT_DOUBLE

Chapter 18. Object Request Broker 1783

Table 49. Decimal minor exception codes 1229123841 to 1229124249 (continued)

1229123975 0x4942f187 BAD_OPERATION_EXTRACT_LONGLONG

1229123976 0x4942f188 BAD_OPERATION_EXTRACT_ULONGLONG

1229123977 0x4942f189 BAD_OPERATION_EXTRACT_BOOLEAN

1229123978 0x4942f18a BAD_OPERATION_EXTRACT_CHAR

1229123979 0x4942f18b BAD_OPERATION_EXTRACT_OCTET

1229123980 0x4942f18c BAD_OPERATION_EXTRACT_WCHAR

1229123981 0x4942f18d BAD_OPERATION_EXTRACT_STRING

1229123982 0x4942f18e BAD_OPERATION_EXTRACT_WSTRING

1229123983 0x4942f18f BAD_OPERATION_EXTRACT_ANY

1229123984 0x4942f190 BAD_OPERATION_INSERT_OBJECT_1

1229123985 0x4942f191 BAD_OPERATION_INSERT_OBJECT_2

1229123986 0x4942f192 BAD_OPERATION_EXTRACT_OBJECT_1

1229123987 0x4942f193 BAD_OPERATION_EXTRACT_OBJECT_2

1229123988 0x4942f194 BAD_OPERATION_EXTRACT_TYPECODE

1229123989 0x4942f195 BAD_OPERATION_EXTRACT_PRINCIPAL

1229123990 0x4942f196 BAD_OPERATION_EXTRACT_VALUE

1229123991 0x4942f197 BAD_OPERATION_GET_PRIMITIVE_TC_1

1229123992 0x4942f198 BAD_OPERATION_GET_PRIMITIVE_TC_2

1229123993 0x4942f199 BAD_OPERATION_INVOKE_NULL_PARAM_1

1229123994 0x4942f19a BAD_OPERATION_INVOKE_NULL_PARAM_2

1229123995 0x4942f19b BAD_OPERATION_INVOKE_DEFAULT_1

1229123996 0x4942f19c BAD_OPERATION_INVOKE_DEFAULT_2

1229123997 0x4942f19d BAD_OPERATION_UNKNOWN_BOOTSTRAP_METHOD

1229123998 0x4942f19e BAD_OPERATION_EMPTY_ANY

1229123999 0x4942f19f BAD_OPERATION_STUB_DISCONNECTED

1229124000 0x4942f1a0 BAD_OPERATION_TIE_DISCONNECTED

1229124001 0x4942f1a1 BAD_OPERATION_DELEGATE_DISCONNECTED

1229124097 0x4942f201 NULL_PARAM_1

1229124098 0x4942f202 NULL_PARAM_2

1229124099 0x4942f203 NULL_PARAM_3

1229124100 0x4942f204 NULL_PARAM_4

1229124101 0x4942f205 NULL_PARAM_5

1229124102 0x4942f206 NULL_PARAM_6

1229124103 0x4942f207 NULL_PARAM_7

1229124104 0x4942f208 NULL_PARAM_8

1229124105 0x4942f209 NULL_PARAM_9

1229124106 0x4942f20a NULL_PARAM_10

1229124107 0x4942f20b NULL_PARAM_11

1229124108 0x4942f20c NULL_PARAM_12

1229124109 0x4942f20d NULL_PARAM_13

1229124110 0x4942f20e NULL_PARAM_14

1229124111 0x4942f20f NULL_PARAM_15

1229124112 0x4942f210 NULL_PARAM_16

1229124113 0x4942f211 NULL_PARAM_17

1229124114 0x4942f212 NULL_PARAM_18

1229124115 0x4942f213 NULL_PARAM_19

1229124116 0x4942f214 NULL_PARAM_20

1229124117 0x4942f215 NULL_IOR_OBJECT

1229124118 0x4942f216 NULL_PI_NAME

1229124119 0x4942f217 NULL_SC_DATA

1229124126 0x4942f21e BAD_SERVANT_TYPE

1784 Administering applications and their environment

Table 49. Decimal minor exception codes 1229123841 to 1229124249 (continued)

1229124127 0x4942f21f BAD_EXCEPTION

1229124128 0x4942f220 BAD_MODIFIER_LIST

1229124129 0x4942f221 NULL_PROP_MGR

1229124130 0x4942f222 INVALID_PROPERTY

1229124131 0x4942f223 ORBINITREF_FORMAT

1229124132 0x4942f224 ORBINITREF_MISSING_OBJECTURL

1229124133 0x4942f225 ORBDEFAULTINITREF_FORMAT

1229124134 0x4942f226 ORBDEFAULTINITREF_VALUE

1229124135 0x4942f227 OBJECTKEY_SERVERUUID_LENGTH

1229124136 0x4942f228 OBJECTKEY_SERVERUUID_NULL

1229124137 0x4942f229 BAD_REPOSITORY_ID

1229124138 0x4942f22a BAD_PARAM_LOCAL_OBJECT

1229124139 0x4942f22b NULL_OBJECT_IOR

1229124140 0x4942f22c WRONG_ORB

1229124141 0x4942f22d NULL_OBJECT_KEY

1229124142 0x4942f22e NULL_OBJECT_URL

1229124143 0x4942f22f NOT_A_NAMING_CONTEXT

1229124225 0x4942f281 TYPECODEIMPL_CTOR_MISUSE_1

1229124226 0x4942f282 TYPECODEIMPL_CTOR_MISUSE_2

1229124227 0x4942f283 TYPECODEIMPL_NULL_INDIRECTTYPE

1229124228 0x4942f284 TYPECODEIMPL_RECURSIVE_TYPECODES

1229124235 0x4942f28b TYPECODEIMPL_KIND_INVALID_1

1229124236 0x4942f28c TYPECODEIMPL_KIND_INVALID_2

1229124237 0x4942f28d TYPECODEIMPL_NATIVE_1

1229124238 0x4942f28e TYPECODEIMPL_NATIVE_2

1229124239 0x4942f28f TYPECODEIMPL_NATIVE_3

1229124240 0x4942f290 TYPECODEIMPL_KIND_INDIRECT_1

1229124241 0x4942f291 TYPECODEIMPL_KIND_INDIRECT_2

1229124242 0x4942f292 TYPECODEIMPL_NULL_TYPECODE

1229124243 0x4942f293 TYPECODEIMPL_BODY_OF_TYPECODE

1229124244 0x4942f294 TYPECODEIMPL_KIND_RECURSIVE_1

1229124245 0x4942f295 TYPECODEIMPL_COMPLEX_DEFAULT_1

1229124246 0x4942f296 TYPECODEIMPL_COMPLEX_DEFAULT_2

1229124247 0x4942f297 TYPECODEIMPL_INDIRECTION

1229124248 0x4942f298 TYPECODEIMPL_SIMPLE_DEFAULT

1229124249 0x4942f299 TYPECODEIMPL_NOT_CDROS

 Table 50. Decimal minor exception codes 1229124250 to 1229125764

Decimal Hexadecimal Minor code reason

1229124250 0x4942f29a TYPECODEIMPL_NO_IMPLEMENT_1

1229124251 0x4942f29b TYPECODEIMPL_NO_IMPLEMENT_2

1229124357 0x4942f305 CONN_PURGE_REBIND

1229124358 0x4942f306 CONN_PURGE_ABORT

1229124359 0x4942f307 CONN_NOT_ESTABLISH

1229124360 0x4942f308 CONN_CLOSE_REBIND

1229124368 0x4942f310 WRITE_ERROR_SEND

1229124376 0x4942f318 GET_PROPERTIES_ERROR

1229124384 0x4942f320 BOOTSTRAP_SERVER_NOT_AVAIL

1229124392 0x4942f328 INVOKE_ERROR

1229124481 0x4942f381 BAD_HEX_DIGIT

1229124482 0x4942f382 BAD_STRINGIFIED_IOR_LEN

Chapter 18. Object Request Broker 1785

Table 50. Decimal minor exception codes 1229124250 to 1229125764 (continued)

1229124483 0x4942f383 BAD_STRINGIFIED_IOR

1229124485 0x4942f385 BAD_MODIFIER_1

1229124486 0x4942f386 BAD_MODIFIER_2

1229124488 0x4942f388 CODESET_INCOMPATIBLE

1229124490 0x4942f38a LONG_DOUBLE_NOT_IMPLEMENTED_1

1229124491 0x4942f38b LONG_DOUBLE_NOT_IMPLEMENTED_2

1229124492 0x4942f38c LONG_DOUBLE_NOT_IMPLEMENTED_3

1229124496 0x4942f390 COMPLEX_TYPES_NOT_IMPLEMENTED

1229124497 0x4942f391 VALUE_BOX_NOT_IMPLEMENTED

1229124498 0x4942f392 NULL_STRINGIFIED_IOR

1229124865 0x4942f501 TRANS_NS_CANNOT_CREATE_INITIAL_NC_SYS

1229124866 0x4942f502 TRANS_NS_CANNOT_CREATE_INITIAL_NC

1229124867 0x4942f503 GLOBAL_ORB_EXISTS

1229124868 0x4942f504 PLUGINS_ERROR

1229124869 0x4942f505 INCOMPATIBLE_JDK_VERSION

1229124993 0x4942f581 BAD_REPLYSTATUS

1229124994 0x4942f582 PEEKSTRING_FAILED

1229124995 0x4942f583 GET_LOCAL_HOST_FAILED

1229124996 0x4942f584 CREATE_LISTENER_FAILED

1229124997 0x4942f585 BAD_LOCATE_REQUEST_STATUS

1229124998 0x4942f586 STRINGIFY_WRITE_ERROR

1229125000 0x4942f588 BAD_GIOP_REQUEST_TYPE_1

1229125001 0x4942f589 BAD_GIOP_REQUEST_TYPE_2

1229125002 0x4942f58a BAD_GIOP_REQUEST_TYPE_3

1229125003 0x4942f58b BAD_GIOP_REQUEST_TYPE_4

1229125005 0x4942f58d NULL_ORB_REFERENCE

1229125006 0x4942f58e NULL_NAME_REFERENCE

1229125008 0x4942f590 ERROR_UNMARSHALING_USEREXC

1229125009 0x4942f591 SUBCONTRACTREGISTRY_ERROR

1229125010 0x4942f592 LOCATIONFORWARD_ERROR

1229125011 0x4942f593 BAD_READER_THREAD

1229125013 0x4942f595 BAD_REQUEST_ID

1229125014 0x4942f596 BAD_SYSTEMEXCEPTION

1229125015 0x4942f597 BAD_COMPLETION_STATUS

1229125016 0x4942f598 INITIAL_REF_ERROR

1229125017 0x4942f599 NO_CODEC_FACTORY

1229125018 0x4942f59a BAD_SUBCONTRACT_ID

1229125019 0x4942f59b BAD_SYSTEMEXCEPTION_2

1229125020 0x4942f59c NOT_PRIMITIVE_TYPECODE

1229125021 0x4942f59d BAD_SUBCONTRACT_ID_2

1229125022 0x4942f59e BAD_SUBCONTRACT_TYPE

1229125023 0x4942f59f NAMING_CTX_REBIND_ALREADY_BOUND

1229125024 0x4942f5a0 NAMING_CTX_REBINDCTX_ALREADY_BOUND

1229125025 0x4942f5a1 NAMING_CTX_BAD_BINDINGTYPE

1229125026 0x4942f5a2 NAMING_CTX_RESOLVE_CANNOT_NARROW_TO_CTX

1229125032 0x4942f5a8 TRANS_NC_BIND_ALREADY_BOUND

1229125033 0x4942f5a9 TRANS_NC_LIST_GOT_EXC

1229125034 0x4942f5aa TRANS_NC_NEWCTX_GOT_EXC

1229125035 0x4942f5ab TRANS_NC_DESTROY_GOT_EXC

1229125036 0x4942f5ac TRANS_BI_DESTROY_GOT_EXC

1229125042 0x4942f5b2 INVALID_CHAR_CODESET_1

1786 Administering applications and their environment

Table 50. Decimal minor exception codes 1229124250 to 1229125764 (continued)

1229125043 0x4942f5b3 INVALID_CHAR_CODESET_2

1229125044 0x4942f5b4 INVALID_WCHAR_CODESET_1

1229125045 0x4942f5b5 INVALID_WCHAR_CODESET_2

1229125046 0x4942f5b6 GET_HOST_ADDR_FAILED

1229125047 0x4942f5b7 REACHED_UNREACHABLE_PATH

1229125048 0x4942f5b8 PROFILE_CLONE_FAILED

1229125049 0x4942f5b9 INVALID_LOCATE_REQUEST_STATUS

1229125050 0x4942f5ba NO_UNSAFE_CLASS

1229125051 0x4942f5bb REQUEST_WITHOUT_CONNECTION_1

1229125052 0x4942f5bc REQUEST_WITHOUT_CONNECTION_2

1229125053 0x4942f5bd REQUEST_WITHOUT_CONNECTION_3

1229125054 0x4942f5be REQUEST_WITHOUT_CONNECTION_4

1229125055 0x4942f5bf REQUEST_WITHOUT_CONNECTION_5

1229125056 0x4942f5c0 NOT_USED_1

1229125057 0x4942f5c1 NOT_USED_2

1229125058 0x4942f5c2 NOT_USED_3

1229125059 0x4942f5c3 NOT_USED_4

1229125512 0x4942f788 BAD_CODE_SET

1229125520 0x4942f790 INV_RMI_STUB

1229125521 0x4942f791 INV_LOAD_STUB

1229125522 0x4942f792 INV_OBJ_IMPLEMENTATION

1229125523 0x4942f793 OBJECTKEY_NOMAGIC

1229125524 0x4942f794 OBJECTKEY_NOSCID

1229125525 0x4942f795 OBJECTKEY_NOSERVERID

1229125526 0x4942f796 OBJECTKEY_NOSERVERUUID

1229125527 0x4942f797 OBJECTKEY_SERVERUUIDKEY

1229125528 0x4942f798 OBJECTKEY_NOPOANAME

1229125529 0x4942f799 OBJECTKEY_SETSCID

1229125530 0x4942f79a OBJECTKEY_SETSERVERID

1229125531 0x4942f79b OBJECTKEY_NOUSERKEY

1229125532 0x4942f79c OBJECTKEY_SETUSERKEY

1229125533 0x4942f79d INVALID_INDEXED_PROFILE_1

1229125534 0x4942f79e INVALID_INDEXED_PROFILE_2

1229125762 0x4942f882 UNSPECIFIED_MARSHAL_1

1229125763 0x4942f883 UNSPECIFIED_MARSHAL_2

1229125764 0x4942f884 UNSPECIFIED_MARSHAL_3

 Table 51. Decimal minor exception codes 1299125765 to 1229125906

Decimal Hexadecimal Minor code reason

1229125765 0x4942f885 UNSPECIFIED_MARSHAL_4

1229125766 0x4942f886 UNSPECIFIED_MARSHAL_5

1229125767 0x4942f887 UNSPECIFIED_MARSHAL_6

1229125768 0x4942f888 UNSPECIFIED_MARSHAL_7

1229125769 0x4942f889 UNSPECIFIED_MARSHAL_8

1229125770 0x4942f88a UNSPECIFIED_MARSHAL_9

1229125771 0x4942f88b UNSPECIFIED_MARSHAL_10

1229125772 0x4942f88c UNSPECIFIED_MARSHAL_11

1229125773 0x4942f88d UNSPECIFIED_MARSHAL_12

1229125774 0x4942f88e UNSPECIFIED_MARSHAL_13

1229125775 0x4942f88f UNSPECIFIED_MARSHAL_14

1229125776 0x4942f890 UNSPECIFIED_MARSHAL_15

Chapter 18. Object Request Broker 1787

Table 51. Decimal minor exception codes 1299125765 to 1229125906 (continued)

1229125777 0x4942f891 UNSPECIFIED_MARSHAL_16

1229125778 0x4942f892 UNSPECIFIED_MARSHAL_17

1229125779 0x4942f893 UNSPECIFIED_MARSHAL_18

1229125780 0x4942f894 UNSPECIFIED_MARSHAL_19

1229125781 0x4942f895 UNSPECIFIED_MARSHAL_20

1229125782 0x4942f896 UNSPECIFIED_MARSHAL_21

1229125783 0x4942f897 UNSPECIFIED_MARSHAL_22

1229125784 0x4942f898 UNSPECIFIED_MARSHAL_23

1229125785 0x4942f899 UNSPECIFIED_MARSHAL_24

1229125786 0x4942f89a UNSPECIFIED_MARSHAL_25

1229125787 0x4942f89b UNSPECIFIED_MARSHAL_26

1229125788 0x4942f89c UNSPECIFIED_MARSHAL_27

1229125789 0x4942f89d UNSPECIFIED_MARSHAL_28

1229125790 0x4942f89e UNSPECIFIED_MARSHAL_29

1229125791 0x4942f89f UNSPECIFIED_MARSHAL_30

1229125792 0x4942f8a0 UNSPECIFIED_MARSHAL_31

1229125793 0x4942f8a1 UNSPECIFIED_MARSHAL_32

1229125794 0x4942f8a2 UNSPECIFIED_MARSHAL_33

1229125795 0x4942f8a3 UNSPECIFIED_MARSHAL_34

1229125796 0x4942f8a4 UNSPECIFIED_MARSHAL_35

1229125797 0x4942f8a5 UNSPECIFIED_MARSHAL_36

1229125798 0x4942f8a6 UNSPECIFIED_MARSHAL_37

1229125799 0x4942f8a7 UNSPECIFIED_MARSHAL_38

1229125800 0x4942f8a8 UNSPECIFIED_MARSHAL_39

1229125801 0x4942f8a9 UNSPECIFIED_MARSHAL_40

1229125802 0x4942f8aa UNSPECIFIED_MARSHAL_41

1229125803 0x4942f8ab UNSPECIFIED_MARSHAL_42

1229125804 0x4942f8ac UNSPECIFIED_MARSHAL_43

1229125805 0x4942f8ad UNSPECIFIED_MARSHAL_44

1229125806 0x4942f8ae UNSPECIFIED_MARSHAL_45

1229125807 0x4942f8af UNSPECIFIED_MARSHAL_46

1229125808 0x4942f8b0 UNSPECIFIED_MARSHAL_47

1229125809 0x4942f8b1 UNSPECIFIED_MARSHAL_48

1229125810 0x4942f8b2 UNSPECIFIED_MARSHAL_49

1229125811 0x4942f8b3 UNSPECIFIED_MARSHAL_50

1229125812 0x4942f8b4 UNSPECIFIED_MARSHAL_51

1229125813 0x4942f8b5 UNSPECIFIED_MARSHAL_52

1229125814 0x4942f8b6 UNSPECIFIED_MARSHAL_53

1229125815 0x4942f8b7 UNSPECIFIED_MARSHAL_54

1229125816 0x4942f8b8 UNSPECIFIED_MARSHAL_55

1229125817 0x4942f8b9 UNSPECIFIED_MARSHAL_56

1229125818 0x4942f8ba UNSPECIFIED_MARSHAL_57

1229125819 0x4942f8bb UNSPECIFIED_MARSHAL_58

1229125820 0x4942f8bc UNSPECIFIED_MARSHAL_59

1229125821 0x4942f8bd UNSPECIFIED_MARSHAL_60

1229125822 0x4942f8be UNSPECIFIED_MARSHAL_61

1229125823 0x4942f8bf UNSPECIFIED_MARSHAL_62

1229125824 0x4942f8c0 UNSPECIFIED_MARSHAL_63

1229125825 0x4942f8c1 UNSPECIFIED_MARSHAL_64

1229125826 0x4942f8c2 UNSPECIFIED_MARSHAL_65

1229125827 0x4942f8c3 UNSPECIFIED_MARSHAL_66

1788 Administering applications and their environment

Table 51. Decimal minor exception codes 1299125765 to 1229125906 (continued)

1229125828 0x4942f8c4 READ_OBJECT_EXCEPTION_2

1229125841 0x4942f8d1 UNSUPPORTED_IDLTYPE

1229125842 0x4942f8d2 DSI_RESULT_EXCEPTION

1229125844 0x4942f8d4 IIOPINPUTSTREAM_GROW

1229125847 0x4942f8d7 NO_CHAR_CONVERTER_1

1229125848 0x4942f8d8 NO_CHAR_CONVERTER_2

1229125849 0x4942f8d9 CHARACTER_MALFORMED_1

1229125850 0x4942f8da CHARACTER_MALFORMED_2

1229125851 0x4942f8db CHARACTER_MALFORMED_3

1229125852 0x4942f8dc CHARACTER_MALFORMED_4

1229125854 0x4942f8de INCORRECT_CHUNK_LENGTH

1229125856 0x4942f8e0 CHUNK_OVERFLOW

1229125858 0x4942f8e2 CANNOT_GROW

1229125859 0x4942f8e3 CODESET_ALREADY_SET

1229125860 0x4942f8e4 REQUEST_CANCELLED

1229125861 0x4942f8e5 WRITE_TO_STREAM_1

1229125862 0x4942f8e6 WRITE_TO_STREAM_2

1229125863 0x4942f8e7 WRITE_TO_STREAM_3

1229125864 0x4942f8e8 WRITE_TO_STREAM_4

1229125865 0x4942f8e9 PROXY_MARSHAL_FAILURE

1229125866 0x4942f8ea PROXY_UNMARSHAL_FAILURE

1229125867 0x4942f8eb INVALID_START_VALUE

1229125868 0x4942f8ec INVALID_CHUNK_STATE

1229125869 0x4942f8ed NULL_CODEBASE_IOR

1229125889 0x4942f901 DSI_NOT_IMPLEMENTED

1229125890 0x4942f902 GETINTERFACE_NOT_IMPLEMENTED

1229125891 0x4942f903 SEND_DEFERRED_NOTIMPLEMENTED

1229125893 0x4942f905 ARGUMENTS_NOTIMPLEMENTED

1229125894 0x4942f906 RESULT_NOTIMPLEMENTED

1229125895 0x4942f907 EXCEPTIONS_NOTIMPLEMENTED

1229125896 0x4942f908 CONTEXTLIST_NOTIMPLEMENTED

1229125902 0x4942f90e CREATE_OBJ_REF_BYTE_NOTIMPLEMENTED

1229125903 0x4942f90f CREATE_OBJ_REF_IOR_NOTIMPLEMENTED

1229125904 0x4942f910 GET_KEY_NOTIMPLEMENTED

1229125905 0x4942f911 GET_IMPL_ID_NOTIMPLEMENTED

1229125906 0x4942f912 GET_SERVANT_NOTIMPLEMENTED

 Table 52. Decimal minor exception codes 1229125907 to 1229126567

Decimal Hexadecimal Minor code reason

1229125907 0x4942f913 SET_ORB_NOTIMPLEMENTED

1229125908 0x4942f914 SET_ID_NOTIMPLEMENTED

1229125909 0x4942f915 GET_CLIENT_SUBCONTRACT_NOTIMPLEMENTED

1229125913 0x4942f919 CONTEXTIMPL_NOTIMPLEMENTED

1229125914 0x4942f91a CONTEXT_NAME_NOTIMPLEMENTED

1229125915 0x4942f91b PARENT_NOTIMPLEMENTED

1229125916 0x4942f91c CREATE_CHILD_NOTIMPLEMENTED

1229125917 0x4942f91d SET_ONE_VALUE_NOTIMPLEMENTED

1229125918 0x4942f91e SET_VALUES_NOTIMPLEMENTED

1229125919 0x4942f91f DELETE_VALUES_NOTIMPLEMENTED

1229125920 0x4942f920 GET_VALUES_NOTIMPLEMENTED

1229125922 0x4942f922 GET_CURRENT_NOTIMPLEMENTED_1

Chapter 18. Object Request Broker 1789

Table 52. Decimal minor exception codes 1229125907 to 1229126567 (continued)

1229125923 0x4942f923 GET_CURRENT_NOTIMPLEMENTED_2

1229125924 0x4942f924 CREATE_OPERATION_LIST_NOTIMPLEMENTED_1

1229125925 0x4942f925 CREATE_OPERATION_LIST_NOTIMPLEMENTED_2

1229125926 0x4942f926 GET_DEFAULT_CONTEXT_NOTIMPLEMENTED_1

1229125927 0x4942f927 GET_DEFAULT_CONTEXT_NOTIMPLEMENTED_2

1229125928 0x4942f928 SHUTDOWN_NOTIMPLEMENTED

1229125929 0x4942f929 WORK_PENDING_NOTIMPLEMENTED

1229125930 0x4942f92a PERFORM_WORK_NOTIMPLEMENTED

1229125931 0x4942f92b COPY_TK_ABSTRACT_NOTIMPLEMENTED

1229125932 0x4942f92c PI_CLIENT_GET_POLICY_NOTIMPLEMENTED

1229125933 0x4942f92d PI_SERVER_GET_POLICY_NOTIMPLEMENTED

1229125934 0x4942f92e ADDRESSING_MODE_NOTIMPLEMENTED_1

1229125935 0x4942f92f ADDRESSING_MODE_NOTIMPLEMENTED_2

1229125936 0x4942f930 SET_OBJECT_RESOLVER_NOTIMPLEMENTED

1229125937 0x4942f931 DISCONNECTED_SERVANT_1

1229125938 0x4942f932 DISCONNECTED_SERVANT_2

1229125939 0x4942f933 DISCONNECTED_SERVANT_3

1229125940 0x4942f934 DISCONNECTED_SERVANT_4

1229125941 0x4942f935 DISCONNECTED_SERVANT_5

1229125942 0x4942f936 DISCONNECTED_SERVANT_6

1229125943 0x4942f937 DISCONNECTED_SERVANT_7

1229125944 0x4942f938 GET_INTERFACE_DEF_NOT_IMPLEMENTED

1229126017 0x4942f981 MARSHAL_NO_MEMORY_1

1229126018 0x4942f982 MARSHAL_NO_MEMORY_2

1229126019 0x4942f983 MARSHAL_NO_MEMORY_3

1229126020 0x4942f984 MARSHAL_NO_MEMORY_4

1229126021 0x4942f985 MARSHAL_NO_MEMORY_5

1229126022 0x4942f986 MARSHAL_NO_MEMORY_6

1229126023 0x4942f987 MARSHAL_NO_MEMORY_7

1229126024 0x4942f988 MARSHAL_NO_MEMORY_8

1229126025 0x4942f989 MARSHAL_NO_MEMORY_9

1229126026 0x4942f98a MARSHAL_NO_MEMORY_10

1229126027 0x4942f98b MARSHAL_NO_MEMORY_11

1229126028 0x4942f98c MARSHAL_NO_MEMORY_12

1229126029 0x4942f98d MARSHAL_NO_MEMORY_13

1229126030 0x4942f98e MARSHAL_NO_MEMORY_14

1229126031 0x4942f98f MARSHAL_NO_MEMORY_15

1229126032 0x4942f990 MARSHAL_NO_MEMORY_16

1229126033 0x4942f991 MARSHAL_NO_MEMORY_17

1229126034 0x4942f992 MARSHAL_NO_MEMORY_18

1229126035 0x4942f993 MARSHAL_NO_MEMORY_19

1229126036 0x4942f994 MARSHAL_NO_MEMORY_20

1229126037 0x4942f995 MARSHAL_NO_MEMORY_21

1229126038 0x4942f996 MARSHAL_NO_MEMORY_22

1229126039 0x4942f997 MARSHAL_NO_MEMORY_23

1229126040 0x4942f998 MARSHAL_NO_MEMORY_24

1229126041 0x4942f999 MARSHAL_NO_MEMORY_25

1229126042 0x4942f99a MARSHAL_NO_MEMORY_26

1229126043 0x4942f99b MARSHAL_NO_MEMORY_27

1229126044 0x4942f99c MARSHAL_NO_MEMORY_28

1229126045 0x4942f99d MARSHAL_NO_MEMORY_29

1790 Administering applications and their environment

Table 52. Decimal minor exception codes 1229125907 to 1229126567 (continued)

1229126046 0x4942f99e MARSHAL_NO_MEMORY_30

1229126047 0x4942f99f MARSHAL_NO_MEMORY_31

1229126401 0x4942fb01 RESPONSE_TIMED_OUT

1229126402 0x4942fb02 FRAGMENT_TIMED_OUT

1229126529 0x4942fb81 NO_SERVER_SC_IN_DISPATCH

1229126530 0x4942fb82 NO_SERVER_SC_IN_LOOKUP

1229126531 0x4942fb83 NO_SERVER_SC_IN_CREATE_DEFAULT_SERVER

1229126532 0x4942fb84 NO_SERVER_SC_IN_SETUP

1229126533 0x4942fb85 NO_SERVER_SC_IN_LOCATE

1229126534 0x4942fb86 NO_SERVER_SC_IN_DISCONNECT

1229126539 0x4942fb8b ORB_CONNECT_ERROR_1

1229126540 0x4942fb8c ORB_CONNECT_ERROR_2

1229126541 0x4942fb8d ORB_CONNECT_ERROR_3

1229126542 0x4942fb8e ORB_CONNECT_ERROR_4

1229126543 0x4942fb8f ORB_CONNECT_ERROR_5

1229126544 0x4942fb90 ORB_CONNECT_ERROR_6

1229126545 0x4942fb91 ORB_CONNECT_ERROR_7

1229126546 0x4942fb92 ORB_CONNECT_ERROR_8

1229126547 0x4942fb93 ORB_CONNECT_ERROR_9

1229126548 0x4942fb94 ORB_REGISTER_1

1229126549 0x4942fb95 ORB_REGISTER_2

1229126553 0x4942fb99 ORB_REGISTER_LOCAL_1

1229126554 0x4942fb9a ORB_REGISTER_LOCAL_2

1229126555 0x4942fb9b LOCAL_SERVANT_LOOKUP

1229126556 0x4942fb9c POA_LOOKUP_ERROR

1229126557 0x4942fb9d POA_INACTIVE

1229126558 0x4942fb9e POA_NO_SERVANT_MANAGER

1229126559 0x4942fb9f POA_NO_DEFAULT_SERVANT

1229126560 0x4942fba0 POA_WRONG_POLICY

1229126561 0x4942fba1 FINDPOA_ERROR

1229126562 0x4942fba2 ADAPTER_ACTIVATOR_EXCEPTION

1229126563 0x4942fba3 POA_SERVANT_ACTIVATOR_LOOKUP_FAILED

1229126564 0x4942fba4 POA_BAD_SERVANT_MANAGER

1229126565 0x4942fba5 POA_SERVANT_LOCATOR_LOOKUP_FAILED

1229126566 0x4942fba6 POA_UNKNOWN_POLICY

1229126567 0x4942fba7 POA_NOT_FOUND

 Table 53. Decimal minor exception codes 1229126568 to 1330446377

Decimal Hexadecimal Minor code reason

1229126568 0x4942fba8 SERVANT_LOOKUP

1229126569 0x4942fba9 SERVANT_IS_ACTIVE

1229126570 0x4942fbaa SERVANT_DISPATCH

1229126571 0x4942fbab WRONG_CLIENTSC

1229126572 0x4942fbac WRONG_SERVERSC

1229126573 0x4942fbad SERVANT_IS_NOT_ACTIVE

1229126574 0x4942fbae POA_WRONG_POLICY_1

1229126575 0x4942fbaf POA_NOCONTEXT_1

1229126576 0x4942fbb0 POA_NOCONTEXT_2

1229126577 0x4942fbb1 POA_INVALID_NAME_1

1229126578 0x4942fbb2 POA_INVALID_NAME_2

1229126579 0x4942fbb3 POA_INVALID_NAME_3

Chapter 18. Object Request Broker 1791

Table 53. Decimal minor exception codes 1229126568 to 1330446377 (continued)

1229126580 0x4942fbb4 POA_NOCONTEXT_FOR_PREINVOKE

1229126581 0x4942fbb5 POA_NOCONTEXT_FOR_CHECKING_PREINVOKE

1229126582 0x4942fbb6 POA_NOCONTEXT_FOR_POSTINVOKE

1229126657 0x4942fc01 LOCATE_UNKNOWN_OBJECT

1229126658 0x4942fc02 BAD_SERVER_ID_1

1229126659 0x4942fc03 BAD_SERVER_ID_2

1229126660 0x4942fc04 BAD_IMPLID

1229126665 0x4942fc09 BAD_SKELETON_1

1229126666 0x4942fc0a BAD_SKELETON_2

1229126673 0x4942fc11 SERVANT_NOT_FOUND_1

1229126674 0x4942fc12 SERVANT_NOT_FOUND_2

1229126675 0x4942fc13 SERVANT_NOT_FOUND_3

1229126676 0x4942fc14 SERVANT_NOT_FOUND_4

1229126677 0x4942fc15 SERVANT_NOT_FOUND_5

1229126678 0x4942fc16 SERVANT_NOT_FOUND_6

1229126679 0x4942fc17 SERVANT_NOT_FOUND_7

1229126687 0x4942fc1f SERVANT_DISCONNECTED_1

1229126688 0x4942fc20 SERVANT_DISCONNECTED_2

1229126689 0x4942fc21 NULL_SERVANT

1229126690 0x4942fc22 ADAPTER_ACTIVATOR_FAILED

1229126692 0x4942fc24 ORB_DESTROYED

1229126693 0x4942fc25 DYNANY_DESTROYED

1229127170 0x4942fe02 CONNECT_FAILURE_1

1229127171 0x4942fe03 CONNECT_FAILURE_2

1229127172 0x4942fe04 CONNECT_FAILURE_3

1229127173 0x4942fe05 CONNECT_FAILURE_4

1229127297 0x4942fe81 UNKNOWN_CORBA_EXC

1229127298 0x4942fe82 RUNTIMEEXCEPTION

1229127299 0x4942fe83 UNKNOWN_SERVER_ERROR

1229127300 0x4942fe84 UNKNOWN_DSI_SYSEX

1229127301 0x4942fe85 UNEXPECTED_CHECKED_EXCEPTION

1229127302 0x4942fe86 UNKNOWN_CREATE_EXCEPTION_RESPONSE

1229127312 0x4942fe90 UNKNOWN_PI_EXC

1229127313 0x4942fe91 UNKNOWN_PI_EXC_2

1229127314 0x4942fe92 PI_ARGS_FAILURE

1229127315 0x4942fe93 PI_EXCEPTS_FAILURE

1229127316 0x4942fe94 PI_CONTEXTS_FAILURE

1229127317 0x4942fe95 PI_OP_CONTEXT_FAILURE

1229127326 0x4942fe9e USER_DEFINED_ERROR

1229127327 0x4942fe9f UNKNOWN_RUNTIME_IN_BOOTSTRAP

1229127328 0x4942fea0 UNKNOWN_THROWABLE_IN_BOOTSTRAP

1229127329 0x4942fea1 UNKNOWN_RUNTIME_IN_INSAGENT

1229127330 0x4942fea2 UNKNOWN_THROWABLE_IN_INSAGENT

1229127331 0x4942fea3 UNEXPECTED_IN_PROCESSING_CLIENTSIDE_INTERCEPTOR

1229127332 0x4942fea4 UNEXPECTED_IN_PROCESSING_SERVERSIDE_INTERCEPTOR

1229127333 0x4942fea5 UNEXPECTED_PI_LOCAL_REQUEST

1229127334 0x4942fea6 UNEXPECTED_PI_LOCAL_RESPONSE

1330446336 0x4f4d0000 OMGVMCID

1330446337 0x4f4d0001 FAILURE_TO_REGISTER_OR_LOOKUP_VALUE_FACTORY

1330446338 0x4f4d0002 RID_ALREADY_DEFINED_IN_IFR

1330446339 0x4f4d0003 IN_INVOCATION_CONTEXT

1792 Administering applications and their environment

Table 53. Decimal minor exception codes 1229126568 to 1330446377 (continued)

1330446340 0x4f4d0004 ORB_SHUTDOWN

1330446341 0x4f4d0005 NAME_CLASH_IN_INHERITED_CONTEXT

1330446342 0x4f4d0006 SERVANT_MANAGER_EXISTS

1330446343 0x4f4d0007 INS_BAD_SCHEME_NAME

1330446344 0x4f4d0008 INS_BAD_ADDRESS

1330446345 0x4f4d0009 INS_BAD_SCHEME_SPECIFIC_PART

1330446346 0x4f4d000a INS_OTHER

1330446348 0x4f4d000c POLICY_FACTORY_EXISTS

1330446350 0x4f4d000e INVALID_PI_CALL

1330446351 0x4f4d000f SERVICE_CONTEXT_ID_EXISTS

1330446353 0x4f4d0011 POA_DESTROYED

1330446359 0x4f4d0017 NO_TRANSMISSION_CODE

1330446362 0x4f4d001a INVALID_SERVICE_CONTEXT

1330446363 0x4f4d001b NULL_OBJECT_ON_REGISTER

1330446364 0x4f4d001c INVALID_COMPONENT_ID

1330446365 0x4f4d001d INVALID_IOR_PROFILE

1330446375 0x4f4d0027 INVALID_STREAM_FORMAT_1

1330446376 0x4f4d0028 NOT_VALUE_OUTPUT_STREAM

1330446377 0x4f4d0029 NOT_VALUE_INPUT_STREAM

If none of these steps fixes your problem, check to see if the problem has been identified and documented

by looking at the available online support (hints and tips, technotes, and fixes).

If you do not find your problem listed there, contact IBM Support.

For current information available from IBM Support on known problems and their resolution, see the IBM

Support page. You should also refer to this page before opening a PMR because it contains documents

that can save you time gathering information needed to resolve a problem.

Chapter 18. Object Request Broker 1793

http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCMPCT
http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCMPCT

1794 Administering applications and their environment

Chapter 19. Transactions

Using the transaction service

These topics provide information about using transactions with WebSphere applications

WebSphere applications can use transactions to coordinate multiple updates to resources as atomic units

(as indivisible units of work) such that all or none of the updates are made permanent.

In WebSphere Application Server, transactions are handled by three main components:

v A transaction manager. The transaction manager supports the enlistment of recoverable XAResources

and ensures that each such resource is driven to a consistent outcome either at the end of a

transaction or after a failure and restart of the application server.

v A container in which the J2EE application runs. The container manages the enlistment of XAResources

on behalf of the application when the application performs updates to transactional resource managers

(for example, databases). Optionally, the container can control the demarcation of transactions for

enterprise beans configured for container-managed transactions.

v An application programming interface (UserTransaction) that is available to bean-managed enterprise

beans and servlets. This allows such application components to control the demarcation of their own

transactions.

For more information about using transactions with WebSphere applications, see the following topics:

v “Transaction support in WebSphere Application Server”

v Developing components to use transactions

v “Configuring transaction properties for an application server” on page 1813

v “Use of local transactions” on page 1808

v “Managing active and prepared transactions” on page 1823

v “Managing transaction logging for optimum server availability” on page 1824

v “Interoperating transactionally between application servers” on page 1828

v “Configuring an intermediary node for Web services transactions” on page 1828

v “Enabling WebSphere Application Server to use an intermediary node for Web services transactions” on

page 1829

v “Configuring a server to use business activity support” on page 1829

v Creating an application that exploits the business activity support

v “The business activity API” on page 1810

v Troubleshooting transactions

v “Transaction service exceptions” on page 1812

v “UserTransaction interface - methods available” on page 1813

v Using one-phase and two-phase commit resources in the same transaction

v

v

v Using the ActivitySession service

Transaction support in WebSphere Application Server

This topic provides conceptual information about the support for transactions provided by the Transaction

Service of WebSphere Application Server.

A transaction is unit of activity within which multiple updates to resources can be made atomic (as an

indivisible unit of work) such that all or none of the updates are made permanent. For example, multiple

SQL statements to a relational database are committed atomically by the database during the processing

of an SQL COMMIT statement. In this case, the transaction is contained entirely within the database

manager and can be thought of as a resource manager local transaction (RMLT). In some contexts, a

transaction is referred to as a logical unit of work (LUW). If a transaction involves multiple resource

managers, for example multiple database managers, then an external transaction manager is required to

© Copyright IBM Corp. 2006 1795

coordinate the individual resource managers. A transaction that spans multiple resource managers are

referred to as a global transaction. WebSphere Application Server is a transaction manager that can

coordinate global transactions, be a participant in a received global transaction and also provides an

environment in which resource manager local transactions can run.

The way that applications use transactions depends on the type of application component, as follows:

v A session bean can either use container-managed transactions (where the bean delegates management

of transactions to the container) or bean-managed transactions (component-managed transactions

where the bean manages transactions itself).

v Entity beans use container-managed transactions.

v Web components (servlets) and application client components use component-managed transactions.

WebSphere Application Server is a transaction manager that supports the coordination of resource

managers through their XAResource interface and participates in distributed global transactions with

transaction managers that support the CORBA Object Transaction Service (OTS) protocol or Web Service

Atomic Transaction (WS-AtomicTransaction) protocol. WebSphere Application Server also participates in

transactions imported through J2EE Connector 1.5 resource adapters. You can also configure WebSphere

applications to interact with databases, JMS queues, and JCA connectors through their local transaction

support, when you do not require distributed transaction coordination.

Resource managers that offer transaction support can be categorized into those that support two-phase

coordination (by offering an XAResource interface) and those that support only one-phase coordination (for

example through a LocalTransaction interface). The WebSphere Application Server transaction support

provides coordination, within a transaction, for any number of two-phase capable resource managers. It

also enables a single one-phase capable resource manager to be used within a transaction in the absence

of any other resource managers, although a WebSphere transaction is not necessary in this case.

Under normal circumstances you cannot mix one-phase commit capable resources and two-phase commit

capable resources in the same global transaction, because one-phase commit resources cannot support

the prepare phase of two-phase commit. There are some special circumstances where it is possible to

include mixed-capability resources in the same global transaction:

v In scenarios where there is only a single one-phase commit resource provider that participates in the

transaction and where all the two-phase commit resource-providers that participate in the transaction

are used in a read-only fashion. In this case, the two-phase commit resources all vote read-only during

the prepare phase of two-phase commit. Because the one-phase commit resource provider is the only

provider to actually perform any updates, the one-phase commit resource does not need to be

prepared.

v In scenarios where there is only a single one-phase commit resource provider that participates in the

transaction with one of more two-phase commit resource providers and where last participant support is

enabled. Last participant support enables the use of a single one-phase commit capable resource with

any number of two-phase commit capable resources in the same global transaction. For more

information about last participant support, see Using one-phase and two-phase commit resources in the

same transaction.

The ActivitySession service provides an alternative unit-of-work (UOW) scope to that provided by global

transaction contexts. It is a distributed context that can be used to coordinate multiple one-phase resource

managers. The WebSphere EJB container and deployment tooling support ActivitySessions as an

extension to the J2EE programming model. EJBs can be deployed with lifecycles that are influenced by

ActivitySession context, as an alternative to transaction context. An application can then interact with a

resource manager for the period of a client-scoped ActivitySession, rather than only the duration of an EJB

method, and have the resource manager’s local transaction outcome directed by the ActivitySession. For

more information about ActivitySessions, see Using the ActivitySession service.

Resource manager local transaction (RMLT)

A resource manager local transaction (RMLT) is a resource manager’s view of a local transaction; that is, it

represents a unit of recovery on a single connection that is managed by the resource manager.

1796 Administering applications and their environment

http://www.omg.org/cgi-bin/doc?formal/2003-09-02
http://www.ibm.com/developerworks/webservices/library/ws-atomtran/
http://www.ibm.com/developerworks/webservices/library/ws-atomtran/
http://java.sun.com/j2ee/connector/

Resource managers include:

v Enterprise Information Systems that are accessed through a resource adapter, as described in the J2EE

Connector Architecture 1.0.

v Relational databases that are accessed through a JDBC datasource.

v JMS queue and topic destinations.

Resource managers offer specific interfaces to enable control of their RMLTs. J2EE connector resource

adapters that include support for local transactions provide a LocalTransaction interface to enable

applications to request that the resource adapter commit or rollback RMLTs. JDBC datasources provide a

Connection interface for the same purpose.

The boundary at which all RMLTs must be complete is defined in WebSphere Application Server by a local

transaction containment (LTC).

Global transactions

If an application uses two or more resources, then an external transaction manager is needed to

coordinate the updates to both resource managers in a global tansaction.

Global transaction support is available to web and enterprise bean J2EE components and, with some

limitation, to application client components. Enterprise bean components can be subdivided into beans that

exploit container-managed transactions (CMT) or bean-managed transactions (BMT).

BMT enterprise beans, application client components, and web components can use the Java Transaction

API (JTA) UserTransaction interface to define the demarcation of a global transaction. The

UserTransaction interface can be obtained by a JNDI lookup of java:comp/UserTransaction or from the

SessionContext object using the getUserTransaction method..

The UserTransaction is not available to the following components:

v CMT enterprise beans. Any attempt by such beans to obtain the interface results in an exception in

accordance with the EJB specification.

Ensure that programs that perform a JNDI lookup of the UserTransaction interface, use an InitialContext

that resolves to a local implementation of the interface. Also ensure that such programs use a JNDI

location appropriate for the EJB version.

Before the EJB 1.1 specification, the JNDI location of the UserTransaction interface was not specified.

Each EJB container implementor defined it in an implementation-specific manner. Earlier versions of

WebSphere Application Server, up to and including Version 3.5.x (without EJB 1.1), bind the

UserTransaction interface to a JNDI location of jta/usertransaction. WebSphere Application Server Version

4, and later releases, bind the UserTransaction interface at the location defined by EJB 1.1, which is

java:comp/UserTransaction. WebSphere Application Server, from Version 5 no longer provides the

jta/usertransaction binding within Web and EJB containers to applications at a J2EE level of 1.3 or later.

For example, from EJB 2.0 applications can use only the java:comp/UserTransaction location.

A web component or enterprise bean (CMT or BMT) can get the ExtendedJTATransaction interface

through a lookup of java:comp/websphere/ExtendedJTATransaction. This interface provides access to the

transaction identity and a mechanism to receive notification of transaction completion.

Local transaction containment (LTC)

A local transaction containment (LTC) is used to define the application server behavior in an unspecified

transaction context.

(Unspecified transaction context is defined in the Enterprise JavaBeans 2.0 (or later) specification; for

example, at http://java.sun.com/products/ejb/2.0.html.)

Chapter 19. Transactions 1797

http://java.sun.com/j2ee/connector/index.html
http://java.sun.com/j2ee/connector/index.html
http://java.sun.com/products/ejb/2.0.html

A LTC is a bounded unit-of-work scope within which zero, one, or more resource manager local

transactions (RMLTs) can be accessed. The LTC defines the boundary at which all RMLTs must be

complete; any incomplete RMLTs are resolved, according to policy, by the container. An LTC is local to a

bean instance; it is not shared across beans even if those beans are managed by the same container.

LTCs are started by the container before dispatching a method on a J2EE component (such as an

enterprise bean or servlet) whenever the dispatch occurs in the absence of a global transaction context.

LTCs are completed by the container depending on the application-configured LTC boundary; for example

at the end of the method dispatch. There is no programmatic interface to the LTC support; rather LTCs are

managed exclusively by the container and configured by the application deployer through transaction

attributes in the application deployment descriptor.

A local transaction containment cannot exist concurrently with a global transaction. If application

component dispatch occurs in the absence of a global transaction, the container always establishes an

LTC for J2EE components at J2EE 1.3 or later. The only exceptions to this are as follows:

v Where application component dispatch occurs without container interposition; for example, for a

stateless session bean create or a servlet-initiated thread.

v J2EE 1.2 web components.

v J2EE 1.2 BMT enterprise beans.

A local transaction containment can be scoped to an ActivitySession context that lives longer than the

enterprise bean method in which it is started, as described in ActivitySessions and transaction contexts.

Local and global transaction considerations

Applications use resources, such as JDBC data sources or connection factories, that are configured

through the Resources view of the WebSphere Application Server Administrative Console. How these

resources participate in a global transaction depends on the underlying transaction support of the resource

provider. For example, most JDBC providers can provide either XA or non-XA versions of a data source. A

non-XA data source can support only resource manager local transactions (RMLTs), but an XA data source

can support two-phase commit coordination, as well as local transactions.

If an application uses two or more resource providers that support only RMLTs, then atomicity cannot be

assured because of the one-phase nature of these resources. To ensure atomic behavior, the application

should use resources that support XA coordination and should access them within a global transaction.

If an application uses only one RMLT, the atomic behavior can be guaranteed by the resource manager,

which can be accessed under a local transaction containment context.

An application can also access a single resource manager under a global transaction context, even if that

resource manager does not support the XA coordination. An application can do this, because WebSphere

Application Server performs an “only resource optimization” and interacts with the resource manager under

a RMLT. Within a global transaction context, any attempt to use more than one resource provider that

supports only RMLTs causes the global transaction to be rolled back.

At any moment, an instance of an enterprise bean can have work outstanding in either a global transaction

context or a local transaction containment context, but never both. An instance of an enterprise bean can

change from running under one type of context to the other (in either direction), if all outstanding work in

the original context is complete. Any violation of this principle causes an exception to be thrown when the

enterprise bean tries to start the new context.

Client support for transactions

This topic describes the support of application clients for the use of transactions.

Application clients running in a J2EE client container can explicitly demarcate transaction boundaries as

described in Using component-managed transactions. Application clients cannot perform, directly within the

client container, transactional work in the context of any global transaction that they start, because the

client container is not a recoverable process.

1798 Administering applications and their environment

Application clients can make requests to remote objects, such as enterprise beans, within the context of a

client-initiated transaction. Any transactional work performed in a remote, recoverable server process is

coordinated as part of the client-initiated transaction. The transaction coordinator is created on the first

server process to which the client-initiated transaction is propagated.

A client can begin a transaction then, for example, access a JDBC data source directly in the client

process. In such cases, any work performed through the JDBC provider is not coordinated as part of the

global transaction. Instead, the work runs under a resource manager local transaction. The client container

process is non-recoverable and contains no transaction coordinator with which a resource manager can be

enlisted.

A client can begin a transaction then call a remote application component, such as an enterprise bean. In

such cases, the client-initiated transaction context is implicitly propagated to the remote application server

where a transaction coordinator is created. Any resource managers accessed on the recoverable

application server (or any other application server hosting application components invoked by the client)

are enlisted in the global transaction.

Client application components need to be aware that locally-accessed resource managers are not

coordinated by client-initiated transactions. Client applications acknowledge this through a deployment

option that enables access to the UserTransaction interface in the client container. By default, access to

the UserTransaction interface in the client container is not enabled. To enable UserTransaction

demarcation for an application client component, set the Allow JTA Demarcation extension property in

the client deployment descriptor. For information about editing the client deployment descriptor, refer to the

Application Server Toolkit information, in the navigation pane of this infocenter.

Transaction compensation and business activity support

A business activity is a collection of tasks that are linked together so that they have an agreed outcome.

Unlike atomic transactions, activities such as sending an e-mail can be difficult or impossible to roll back

atomically, and therefore require a compensation process in the event of an error. The WebSphere

Application Server business activity support provides this compensation ability through business activity

scopes.

When to use business activity support

Use the business activity support when you have an application that requires compensation. An application

requires compensation if its operations cannot be atomically rolled back. Typically, this scenario is due to

one of the following reasons:

v The application uses multiple non-extended-architecture (XA) resources.

v The application uses more than one atomic transaction, for example, enterprise beans that have

Requires new as the setting for the Transaction field in the container transaction deployment

descriptor.

v The application does not run under a global transaction.

The following diagram shows a simple Web service application that uses the business activity support. The

Retailer, Warehouse and Manufacturing services are running in non-WebSphere Application Server

environments. The Retailer service calls the Supplier service, running on WebSphere Application Server,

which delegates tasks to the Warehouse and Manufacturing services. The implementation of the Supplier

service contains a stateless session bean, which calls other stateless session beans that are associated

with the Warehouse and Manufacturing services, and that perform compensatable work. These other

session beans each have a compensation handler; a piece of logic that is associated with an application

component at run time, and performs compensation activity such as resending an e-mail.

Chapter 19. Transactions 1799

Application design considerations

Business activity contexts are propagated with application messages, and can therefore be distributed

between application components that are not co-located in the same server. Unlike atomic transaction

contexts, business activity contexts are propagated on both synchronous (blocking) call-response

messages and asynchronous one-way messages. An application component that runs under a business

activity scope is responsible for ensuring that any asynchronous work it initiates is complete before the

component’s own processing is complete. An application that initiates asynchronous work using a

fire-and-forget message pattern must not use business activity scopes, because such applications have no

means of detecting whether this asynchronous processing has completed.

Only enterprise beans that have container-managed transactions can use the business activity

functionality. Enterprise beans that exploit business activity scopes can offer Web service interfaces, but

can also offer standard enterprise bean local or remote Java interfaces. Business activity context is

propagated in Web service messages using a standard, interoperable Web Services Business Activity

CoordinationContext element. WebSphere Application Server can also propagate business activity context

on RMI calls to enterprise beans when Web services are not being used, but this form of the context is not

interoperable with non-WebSphere Application Server environments. You might want to use this

homogeneous scenario if you require compensation for an application that is internal to your business. If

you want to use business activity compensation in a heterogeneous environment, expose your application

components as Web services.

Supplier
Web service

Warehouse
service

Retailer
service

Manufacturing
service

WebSphere Application
Server

TX_Required

TX_Required

TX_NotSupported

Stateless
session bean

Stateless
session bean

Stateless
session bean

Business
activity scope Compensation

handler

Compensation
handler

1800 Administering applications and their environment

Business activity contexts can be propagated across firewalls and outside the WebSphere Application

Server domain. The topology that you use to achieve this propagation can affect the high availability and

affinity behavior of the business activity transaction.

Application development and deployment considerations

WebSphere Application Server provides a programming model for creating business activity scopes, and

for associating compensation handlers with those business activity scopes. WebSphere Application Server

also provides an application programming interface to specify compensation data, and check or alter the

status of a business activity. To use the business activity support you must set certain application

deployment descriptors appropriately, provide a compensation handler class if required, and enable

business activity support on any servers that run the application.

Note: Applications can exploit the business activity support only if you deploy them to a WebSphere

Application Server Version 6.1 server. Applications cannot use the business activity support if you

deploy them to a cluster that includes WebSphere Application Server Version 6.0.x servers.

Business activity scopes

The scope of a business activity is that of a core WebSphere Application Server unit of work: a global

transaction, an activity session, or local transaction containment (LTC). A business activity scope is not a

new unit of work (UOW); it is an attribute of an existing core UOW. Therefore, a one-to-one relationship

exists between a business activity scope and a UOW.

Any core UOW can have a business activity scope associated with it. If a component running under a

UOW that is associated with a business activity scope calls another component, that request propagates

the business activity scope; any work done by the new component is associated with the same business

activity scope as the calling component. The called component can create a new UOW, for example if an

enterprise bean has a Transaction setting of Requires new, or runs under the same UOW as the calling

component. If a new UOW is started then a new business activity scope is created and associated with

the new UOW. The newly created business activity scope is a child of the business activity scope

associated with the calling UOW. In the following diagram, EJB1a running under UOW1 calls two

components: EJB1b that also runs under UOW1, and EJB2 that creates a new UOW, UOW2. The

enterprise bean EJB1b, calls another enterprise bean, EJB3, which creates another new UOW, UOW3.

Because each new UOW is created by a calling component whose UOW already has an association with

business activity scope BAScope1, the newly created UOWs are associated with new inner business

activity scopes, BAScope2 and BAScope3.

Chapter 19. Transactions 1801

Inner business activity scopes must complete before the outer business activity scope completes. Inner

business activity scopes, for example BAScope2, have an association with the outer business activity

scope, in this case BAScope1. Each business activity scope is directed to close if its associated UOW

completes successfully, or to compensate if its associated UOW fails. If BAScope2 completes successfully,

any active compensation handlers that are owned by BAScope2 are moved to BAScope1, and are

directed in the same way as the completion direction of BAScope1: either compensate or close. If

BAScope2 fails, the active compensation handlers are compensated automatically, and nothing is moved

to the outer BAScope1. When an inner business activity scope fails, as a result of its associated UOW

failing, an application server exception is thrown to the to calling application component, running in the

outer UOW.

For example, if the inner UOW fails it might throw a TransactionRolledBackException exception. If the

calling application can handle the exception, for example by retrying the called component or by calling

another component, then the calling UOW, and its associated business activity scope, can complete

successfully even though the inner business activity scope failed. If the application design requires the

calling UOW to fail, and for its associated business activity scope to be compensated, then the calling

application component must cause its UOW to fail, for example by allowing any system exception from the

UOW that failed to be handled by its container.

When the outer business activity scope completes, its success or failure determines the completion

direction (close or compensate) of any active compensation handlers that are owned by the outer business

activity scope, including those promoted by the successful completion of inner business activity scopes. If

the outer business activity scope completes successfully, it drives all active compensation handlers to

close. If the outer business activity scope fails, it drives all active compensation handlers to compensate.

BAScope1

BAScope2 BAScope3

UOW2 UOW3

EJB2
Transaction=
Requires new

EJB3
LTC

UOW1

EJB1a
Transaction=
Requires new

EJB1b
Transaction=

Supports

1802 Administering applications and their environment

This compensation behavior is summarized in the following table.

 Table 54. Compensation behavior for a single business activity scope

Inner

business

activity

scope

Outer

business

activity

scope Compensation behavior

Succeeds Succeeds Any compensation handlers that are owned by the inner business activity scope wait

for the outer UOW to complete. When the outer UOW succeeds, the outer business

activity scope drives all compensation handlers to close.

Fails Succeeds Any active compensation handlers that are owned by the inner business activity scope

are compensated. An exception is thrown to the outer UOW; if this exception is

caught, when the outer UOW succeeds, the outer business activity scope drives all

remaining active compensation handlers to close.

Fails Fails Any active compensation handlers that are owned by the inner business activity scope

are compensated. An exception is thrown to the outer UOW; if this exception is not

caught, the outer business activity scope fails. When the outer business activity scope

fails, either because of the unhandled exception or for some other reason, all

remaining active compensation handlers are compensated.

Succeeds Fails Any compensation handlers that are owned by the inner business activity scope wait

for the outer UOW to complete. When the outer UOW fails, the outer business activity

scope drives all compensation handlers to compensate.

When a UOW with an associated business activity scope completes, the business activity scope always

completes in the same direction as the UOW that it is associated with. The only way that you can

influence the direction of the business activity scope is to influence the UOW that it is associated with,

which you can do by using the setCompensateOnly method of the business activity API.

A compensation handler that is registered within a transactional UOW might be inactive initially, depending

on the method invoked from the business activity API. Inactive handlers in this situation become active

when the UOW in which that handler is declared completes successfully. A compensation handler that is

registered outside a transactional UOW always becomes active immediately. For more information, see

“The business activity API” on page 1810.

Each business activity scope in the diagram represents a business activity. For example, the outer

business activity running under BAScope1 can be a holiday booking scenario, with BAScope2 being a

flight booking activity and BAScope3 a hotel booking. If either the flight or hotel bookings fail, the overall

holiday booking by default also fails. Alternatively if, for example, the flight booking fails, you might want

your application to try booking a flight using another component that represents a different airline. If the

overall holiday booking fails, the application can use compensation handlers to cancel any flights or hotels

that are already successfully booked.

Use of business activity scopes by application components

Application components do not use business activity scopes by default. You use the WebSphere

Application Server assembly tools to specify the use of a business activity scope and to identify any

compensation handler class for the component:

Default configuration

If a business activity context is present on a request received by a component with no business

activity scope configuration, the context is stored by the container but never used during the

method scope of the target component. A new business activity scope is not created. If the target

component invokes another component, the stored business activity context is propagated and can

be used by other compensating components.

Chapter 19. Transactions 1803

Run enterprise bean methods under a business activity scope

Any business activity context present on the incoming request is received by the container and

made available to the target component. If a new UOW is created for the target method, for

example because the enterprise bean method has a Transaction setting of Requires new, the

received business activity scope becomes an outer business activity scope to a newly created

business activity. If the UOW is propagated from the calling component and used by the method,

then the received business activity scope is used by the method. If a business activity scope does

not exist on the invocation, a new business activity scope is created and used by the method.

To create a business activity scope when an enterprise bean is invoked, you must configure the enterprise

bean to run enterprise bean methods under a business activity scope. You must also configure the

deployment descriptors for the method being invoked, to specify the creation of a new UOW upon

invocation. For instructions on how to perform these actions, see Creating an application that exploits the

business activity support.

The effect of application server shutdown on active transactions and later

recovery

When an application server shuts down, any active transactions are rolled back. If all transactions are

successfully completed in this way, message WTRN0105I is logged, and on the next server restart no

recovery activity is needed. If message CWWTR0105I is not logged for an application server shutdown,

this does not indicate that there has been a failure, only that recovery activity is required when the server

restarts.

A clean shutdown of all application servers should be achieved before the product is uninstalled, to avoid

data integrity problems.

Extended JTA support

Extended JTA support provides application programming interfaces additional to the UserTransaction

interface that is defined in the JTA as part of the J2EE specification. Specifically, the API extensions

provide the following functionality:

v Access to global and local transaction identifiers associated with the thread.

The global id is based on the tid in CosTransactions::PropagationContext: and the local id identifies the

transaction uniquely within the local JVM.

v A transaction synchronization callback that enables any J2EE component to register an interest in

transaction completion.

This can be used by advanced applications to flush updates before transaction completion and clear up

state after transaction completion. J2EE (and related) specifications position this function generally as

the domain of the J2EE containers.

An application uses a JNDI lookup of java:comp/websphere/ExtendedJTATransaction to get an

ExtendedJTATransaction object, which it then uses as follows:

ExtendedJTATransaction exJTA = (ExtendedJTATransaction)ctx.lookup("

 java:comp/websphere/ExtendedJTATransaction");

SynchronizationCallback sync = new SynchronizationCallback();

exJTA.registerSynchronizationCallback(sync);

The ExtendedJTATransaction object supports the registration of one or more application-provided

SynchronizationCallbacks. Depending on how the callback is registered, each registered callback is called

at one of the following points:

v At the end of every transaction that runs on the application server (whether the transaction is started

locally or imported).

v At the end of the transaction for which the callback was registered.

The following information provides an overview of the interfaces provided by the Extended JTA support.

For more detailed information, see the Javadoc.

1804 Administering applications and their environment

SynchronizationCallback interface

An object implementing this interface is enlisted once through the ExtendedJTATransaction interface, and

receives notification of transaction completion.

Although an object implementing this interface can run in a J2EE server, there is no specific J2EE

component active when this object is called. So, the object has limited direct access to any J2EE

resources. Specifically, it has no access to the java: namespace or to any container-mediated resource.

Such an object can cache a reference to a J2EE component (for example, a stateless session bean) that it

delegates to. The object would then have all the normal access to J2EE resources and could be used, for

example, to acquire a JDBC connection and flush updates to a database during beforeCompletion.

ExtendedJTATransaction interface

A WebSphere programming model extension to the J2EE JTA support. An object implementing this

interface is bound, by WebSphere J2EE containers that support this interface, at java:comp/websphere/
ExtendedJTATransaction. Access to this object, when called from an EJB container, is not restricted to

component-managed transactions.

Support for Web Services protocols

WebSphere Application Server supports a number of Web Services protocols. These protocols provide

standard ways of defining Web service applications, allowing the applications to operate independently of

the product, platform or programming language used.

Web Services protocols are defined by the Oasis group. Refer to the Oasis Web site,

http://www.oasis-open.org, for specifications and further information on each protocol. Use the sub-topics

below to find out more information about the support for each protocol in WebSphere Application Server.

v “Web Services Atomic Transaction support in WebSphere Application Server”

v “Web Services Business Activity support in WebSphere Application Server” on page 1807

v “Web Services transactions, firewalls and intermediary nodes” on page 1807

Web Services Atomic Transaction support in WebSphere Application Server:

The Web Services Atomic Transaction support in WebSphere Application Server provides transactional

quality of service to the Web services environment. This enables distributed Web service applications, and

the resources they use, to take part in distributed global transactions.

 The Web Services Atomic Transaction (WS-AT) support is an implementation of the following specifications

on WebSphere Application Server. These specifications define a set of Web services that enable Web

service applications to participate in global transactions distributed across the heterogeneous Web service

environment.

v Web Services Atomic Transaction (WS-AT), at http://www-106.ibm.com/developerworks/webservices/
library/ws-atomtran/

WS-AT is a specific coordination type that defines protocols for atomic transactions.

v Web Service Coordination (WS-COOR), at http://www-106.ibm.com/developerworks/webservices/library/
ws-coor/

WS-COOR specifies a CoordinationContext and a Registration service with which Participant web

services may enlist to take part in the protocols offered by specific coordination types.

The WS-AT support is an interoperability protocol that introduces no new programming interfaces for

transactional support. Global transaction demarcation is provided by standard J2EE use of the JTA

UserTransaction interface. If a Web service request is made by an application component running under a

global transaction, then a WS-AT CoordinationContext is implicitly propagated to the target Web service,

but only if the appropriate application deployment descriptors have been set as described in Configuring

transactional deployment attributes.

Chapter 19. Transactions 1805

http://www.oasis-open.org
http://www-106.ibm.com/developerworks/webservices/library/ws-atomtran/
http://www-106.ibm.com/developerworks/webservices/library/ws-atomtran/
http://www-106.ibm.com/developerworks/webservices/library/ws-coor/
http://www-106.ibm.com/developerworks/webservices/library/ws-coor/

If WebSphere Application Server is the system hosting the target endpoint for a Web service request that

contains a WS-AT CoordinationContext, then WebSphere automatically establishes a subordinate JTA

transaction in the target runtime environment that becomes the transactional context under which the

target Web service application executes.

The following figure, Figure 19, shows a transaction context shared between two WebSphere application

servers for a Web service request that contains a WS-AT CoordinationContext.

 WS-AT support restrictions

In this version of WebSphere Application Server, WS-AT contexts cannot be started from a

non-recoverable client process.

Application design considerations

WS-AT is a two-phase commit transaction protocol and is suitable for short duration transactions only.

Because the purpose of an atomic transaction is to coordinate resource managers that isolate

transactional updates by holding transactional locks on resources, it is generally not recommended that

WS-AT transactions be distributed across enterprise domains. Inter-enterprise transactions typically require

a looser semantic than two-phase commit and, in such scenarios, it can be more appropriate to use a

compensating business transaction, for example a Web Services Business Activity or as part of a BPEL

process.

WS-AT is most appropriate for distributing transaction context across Web services deployed within a

single enterprise. Only request-response message exchange patterns carry transaction context since the

originator (application or container) of a transaction needs to be sure that all business tasks executed

under that transaction have finished before requesting the completion of a transaction. Web services

invoked by a one-way request never run under the transaction of the requesting client.

Application development considerations

There are no specific development tasks required for Web service applications to take advantage of

WS-AT. There are some application deployment descriptors that need to be set appropriately, as described

in Configuring transactional deployment attributes.

Application developers do not need to explicitly register WS-AT participants. The WebSphere Application

Server runtime takes responsibility for the registration of WS-AT participants, in the same way as the

Web service
client

application server
server1

XA
Resources

Web service
application

application server
server2

XA
Resources

Atomic transaction

Figure 19. Transaction context shared between two WebSphere application servers.

1806 Administering applications and their environment

registration of XAResources in the JTA transaction to which the WS-AT transaction is federated. At

transaction completion time, all XAResources and WS-AT participants are atomically coordinated by the

WebSphere Application Server transaction service.

If a JTA transaction is active on the thread when a Web service Application request is made, the

transaction is propagated across on the Web service request and established in the target environment.

This is analogous to the distribution of transaction context over IIOP as described in the EJB specification.

Any transactional work performed in the target environment becomes part of the same global transaction.

Web Services Business Activity support in WebSphere Application Server:

With Web Services Business Activity (WS-BA) support in WebSphere Application Server, Web services on

disparate systems can coordinate activities that are more loosely coupled than atomic transactions. Such

activities can be difficult or impossible to roll back atomically, and therefore require a compensation

process in the event of an error.

 The Web Services Business Activity (WS-BA) support is an implementation of the following specifications

in WebSphere Application Server. These specifications define a set of protocols that enable Web service

applications to participate in loosely coupled business processes that are distributed across the

heterogeneous Web service environment, with the ability to compensate actions if an error occurs. For

example, an application that sends an e-mail cannot unsend it following a failure. The application can,

however, provide a business-level compensation handler that sends another e-mail advising of the new

circumstances. A business activity is a group of general tasks that you want to link together so that the

tasks have an agreed outcome.

v Web Services Business Activity (WS-BA), at http://www-106.ibm.com/developerworks/library/
specification/ws-tx/#ba

WS-BA is a specific coordination type that defines protocols for business activities.

v Web Service Coordination (WS-COOR), at http://www-106.ibm.com/developerworks/webservices/library/
ws-coor/

WS-COOR specifies a CoordinationContext and a registration service with which participant Web

services can enlist to take part in the protocols that are offered by specific coordination types.

In addition to supporting the WS-BA interoperability protocol, WebSphere Application Server provides a

programming interface for creating business activities and compensation handlers. With this programming

interface, you can specify compensation data and check or alter the status of a business activity.

You can also use this compensation ability with applications that are not Web services, as long as these

applications involve communication between WebSphere Application Servers only. See the related topics

for more information.

Web Services transactions, firewalls and intermediary nodes:

You can configure your system to enable propagation of Web Services Atomic Transactions (WS-AT)

message contexts and Web Service Business Activities (WS-BA) message contexts across firewalls or

outside the WebSphere Application Server domain. With this configuration you can distribute Web service

applications that use WS-AT or WS-BA across disparate systems. The topology that you use can have an

effect on the high availability and affinity behavior of the transactions.

 The topologies that are available to you are as follows:

Direct connection

 No intermediary node exists in this topology. The client communicates directly with a specific

WebSphere Application Server. This topology supports high availability for transactions on

requests made within a cluster, and affinity of transactions.

HTTP server, such as IBM HTTP Server

Chapter 19. Transactions 1807

http://www-106.ibm.com/developerworks/library/specification/ws-tx/#ba
http://www-106.ibm.com/developerworks/library/specification/ws-tx/#ba
http://www-106.ibm.com/developerworks/webservices/library/ws-coor/
http://www-106.ibm.com/developerworks/webservices/library/ws-coor/

In this topology, the client communicates with an HTTP server, which always routes the client

requests to a specific server. You configure the HTTP server to specify the WebSphere Application

Server to route requests to.

 The HTTP server cannot provide either affinity or high availability for transactions. However,

transactional integrity is assured because recovery processing occurs after the failed server

restarts.

Note: You can still enable high availability on the WebSphere Application Server. Clients

accessing this server through an HTTP server cannot have high availability of transactions,

however other clients accessing the same server can.

Use of local transactions

Local transaction containment (LTC) support, and its configuration through local transaction extended

deployment descriptors, gives IBM WebSphere Application Server application programmers a number of

advantages. This topic describes those advantages and how they relate to the settings of the local

transaction extended deployment descriptors. This topic also describes points to consider to help you best

configure transaction support for some example scenarios that use local transactions.

Develop an enterprise bean or servlet that accesses one or more databases that are independent

and require no coordination.

If an enterprise bean does not need to use global transactions, it is often more efficient to deploy

the bean with the Container Transaction deployment descriptor Transaction attribute set to Not

supported instead of Required.

 With the extended local transaction support of IBM WebSphere Application Server, applications

can perform the same business logic in an unspecific transaction context as they can under a

global transaction. An enterprise bean, for example, runs under an unspecified transaction context

if it is deployed with a Transaction attribute of Not supported or Never.

 The extended local transaction support provides a container-managed, implicit local transaction

boundary within which application updates can be committed and their connections cleaned up by

the container. Applications can then be designed with a greater degree of independence from

deployment concerns. This makes using a Transaction attribute of Supports much simpler, for

example, when the business logic may be called either with or without a global transaction context.

 An application can follow a get-use-close pattern of connection usage regardless of whether or not

the application runs under a transaction. The application can depend on the close behaving in the

same way and not causing a rollback to occur on the connection if there is no global transaction.

 There are many scenarios where ACID coordination of multiple resource managers is not needed.

In such scenarios running business logic under a Transaction policy of Not supported performs

better than if it had been run under a Required policy. This benefit is exploited through the Local

HTTP serverWeb service
client

message
to vhost2

WebSphere Application
Server

cluster1

server1

server2

server3

vhost1=server1
vhost2=server2
vhost3=server3

firewallfirewall

1808 Administering applications and their environment

Transactions - Resolution-control extended deployment setting of ContainerAtBoundary. With

this setting, application interactions with resource providers (such as databases) are managed

within implicit RMLTs that are both started and ended by the container. The RMLTs are committed

by the container at the configured Local Transactions - Boundary; for example at the end of a

method. If the application returns control to the container by an exception, the container rolls back

any RMLTs that it has started.

 This usage applies to both servlets and enterprise beans.

Use local transactions in a managed environment that guarantees clean-up.

Applications that want to control RMLTs, by starting and ending them explicitly, can use the default

Local Transactions - Resolution-control extended deployment setting of Application. In this

case, the container ensures connection cleanup at the boundary of the local transaction context.

 J2EE specifications that describe application use of local transactions do so in the manner

provided by the default setting of Local Transactions - Resolution-control=Application and

Local Transactions - Unresolved-action=Rollback. By configuring the Local Transactions -

Unresolved-action extended deployment setting to Commit, then any RMLTs started by the

application but not completed when the local transaction containment ends (for example, when the

method ends) are committed by the container. This usage applies to both servlets and enterprise

beans.

Extend the duration of a local transaction beyond the duration of an EJB component method.

The J2EE specifications restrict the use of RMLTs to single EJB methods. This restriction is

because the specifications have no scoping device, beyond a container-imposed method

boundary, to which an RMLT can be extended. You can exploit the Local Transactions -

Boundary extended deployment setting to give the following advantages:

v Significantly extend the use-cases of RMLTs

v Make conversational interactions with one-phase resource managers possible through

ActivitySession support.

You can use an ActivitySession to provide a distributed context with a boundary that is longer than

a single method. You can extend the use of RMLTs over the longer ActivitySession boundary,

which can be controlled by a client. The ActivitySession boundary reduces the need to use

distributed transactions where ACID operations on multiple resources are not needed. This benefit

is exploited through the Local Transactions - Boundary extended deployment setting of

ActivitySession. Such extended RMLTs can remain under the control of the application or be

managed by the container depending on the use of the Local Transactions - Resolution-control

deployment descriptor setting.

Coordinate multiple one-phase resource managers.

For resource managers that do not support XA transaction coordination, a client can exploit

ActivitySession-bounded local transaction contexts. Such contexts give a client the same ability to

control the completion direction of the resource updates by the resource managers as the client

has for transactional resource managers. A client can start an ActivitySession and call its entity

beans under that context. Those beans can perform their RMLTs within the scope of that

ActivitySession and return without completing the RMLTs. The client can later complete the

ActivitySession in a commit or rollback direction and cause the container to drive the

ActivitySession-bounded RMLTs in that coordinated direction.

 To determine how best to configure the transaction support for an application, depending on what you

want to do with transactions, consider the following points.

General points

v You want to start and end global transactions explicitly in the application (BMT session beans

and servlets only).

For a session bean, set the Transaction type to Bean (to use bean-managed transactions) in

the component’s deployment descriptor. (You do not need to do this for servlets.)

v You want to access only one XA or non-XA resource in a method.

Chapter 19. Transactions 1809

In the component’s deployment descriptor, set Local Transactions - Resolution-control to

ContainerAtBoundary. In the Container transaction deployment descriptor, set Transaction to

Supports.

v You want to access several XA resources atomically across one or more bean methods.

In the Container transaction deployment descriptor, set Transaction to Required, Requires new,

or Mandatory.

v You want to access several non-XA resource in a method without having to worry about

managing your own local transactions.

In the component’s deployment descriptor, set Local Transactions - Resolution-control to

ContainerAtBoundary. In the Container transaction deployment descriptor, set Transaction to

Not supported.

v You want to access several non-XA resources in a method and want to manage them

independently.

In the component’s deployment descriptor, set Local Transactions - Resolution-control to

Application and set Local Transactions - Unresolved-action to Rollback. In the Container

transaction deployment descriptor, set Transaction to Not supported.

v You want to access one of more non-XA resources across multiple EJB method calls without

having to worry about managing your own local transactions.

In the component’s deployment descriptor, set Local Transactions - Resolution-control to

ContainerAtBoundary, Local Transactions - Boundary to ActivitySession, and Bean Cache -

Activate at to ActivitySession. In the Container transaction deployment descriptor, set

Transaction to Not supported and set ActivitySession attribute to Required, Requires new, or

Mandatory.

v You want to access several non-XA resources across multiple EJB method calls and want to

manage them independently.

In the component’s deployment descriptor, set Local Transactions - Resolution-control to

Application, Local Transactions - Boundary to ActivitySession, and Bean Cache - Activate

at to ActivitySession. In the Container Transaction deployment descriptor, set Transaction to

Not supported and set ActivitySession attribute to Required, Requires new, or Mandatory.

v You want to use a single non-XA resource and one or more XAResources.

Use the Last Participant Support.

The business activity API

Use the business activity API to create business activities and compensation handlers for an application

component, and to log data that is required for compensating an activity in the event of a failure.

Overview

The business activity support provides a UserBusinessActivity API, a CompensationHandler interface and

two exceptions: RetryCompensationHandlerException and CompensationHandlerFailedException. You can

look up the UserBusinessActivity interface from the application server Java Naming and Directory Interface

(JNDI) at java:comp/websphere/UserBusinessActivity. For example:

InitialContext ctx = new InitialContext();

UserBusinessActivity uba = (UserBusinessActivity) ctx.lookup(“java:comp/websphere/UserBusinessActivity”);

If an application component is running work that might require compensating upon failure, you must

provide a compensation handler class that is assembled as part of the deployed application. This new

Java class must implement the com.ibm.websphere.wsba.CompensationHandler interface, which supports

the close and compensate methods, which take a parameter of a Service Data Object (SDO). During

normal application processing, the application can make one or more invocations to the

setCompensationDataImmediate or setCompensationDataAtCommit methods, passing in an SDO

representing the current state of the work performed.

1810 Administering applications and their environment

When the underlying unit of work (UOW) that the root business activity is associated with completes, all

registered compensators are coordinated to complete. During completion, either the compensate or the

close method is called on the compensation handler, passing in the most recent compensation data logged

by the application component as a parameter. Your compensation handler implementation must be able to

understand the data that is stored in the SDO DataObject; using this data, the compensation handler must

be able to determine the nature of the work performed by the enterprise bean and compensate or close in

an appropriate manner, for example by undoing changes made to database rows in the event of a failure.

You associate the compensation handler with an application component by using the assembly tooling,

such as Rational Application Developer.

Active and inactive compensation handlers

You implement the CompensationHandler interface for any application component that executes code that

might need to be compensated within a business activity scope. CompensationHandler objects are

registered implicitly with the business activity scope under which the application runs, whenever the

application calls the UserBusinessActivity API to specify compensation data. Compensation handlers can

be in one of two states, active or inactive, depending on any transactional UOW under which they are

registered. A compensation handler registered within a transactional UOW might be initially inactive until

the transaction commits, at which point it becomes active (see below). A compensation handler registered

outside a transactional UOW always becomes active immediately.

When a business activity completes, it drives active compensation handlers only. Any inactive

compensation handlers that are associated with the business activity are discarded and never driven.

Logging compensation data

The business activity API specifies two methods that allow the application to log compensation data. This

data is made available to the compensation handlers during their processing upon completion of the

business activity. The application calls one of these methods, depending on whether it expects

transactions to be part of the business activity.

setCompensationDataAtCommit()

 Call this method if the application expects a global transaction on the thread.

v If a global transaction is present on the thread, the CompensationHandler object is initially

inactive. If the global transaction fails, it rolls back any transactional work done within its

transaction context in an atomic manner, and drives the business activity to compensate other

completed UOWs. The compensation handler does not need to be involved. If the global

transaction commits successfully, the compensation handler becomes active because it is

required to compensate the durable work that is completed by the global transaction, if the

overall business activity fails. The setCompensationDataAtCommit method configures the

CompensationHandler instance to perform this compensation function.

v If a global transaction is not present when this method is called, the compensation handler

becomes active immediately.

For example, using the same business activity instance as in the previous example:

DataObject compensationData = doWorkWhichWouldNeedCompensating();

uba.setCompensationDataAtCommit(compensationData);

setCompensationDataImmediate()

 Call this method if the application does not expect a global transaction on the thread.

 The setCompensationDataImmediate method makes a CompensationHandler instance active

immediately, regardless of the current UOW context at the time that the method is invoked. The

compensation handler is always able to participate during completion of the business activity.

 The role of the setCompensationDataImmediate method is to compensate any non-transactional

work, in other words, work that can be performed either inside or outside a global transaction, but

Chapter 19. Transactions 1811

is not governed by the transaction. For example, sending an e-mail. The compensation handler

must be active immediately so if a failure occurs within a business activity, this non-transactional

work is always compensated.

Although these two compensation data logging methods, if called within the same enterprise bean, use the

same CompensationHandler class, they create two separate instances of the CompensationHandler class

at run time. Therefore, the actions of the methods are mutually exclusive; calling one of the methods does

not overwrite any work carried out by the other method.

A CompensationHandler instance is not added to a business activity automatically when a

business-activity-enabled enterprise bean is invoked. The association is done explicitly through the

business activity API, using one of the compensation data logging methods described previously. If such a

method is called passing in null as a parameter, the CompensationHandler instance is added to the

current business activity, and null is passed later to either the compensate or the close method upon

completion of the business activity scope. With this process, you can add the compensation handler to the

business activity, and code default behavior within the compensation handler. It is your responsibility to

handle the case of nulls that pass back to your CompensationHandler instance. This scenario happens

only if you call a compensation data logging method with null as a parameter.

As described previously, the business activity support adds a CompensationHandler instance to the

business activity when a compensation data logging method is called for the first time by the enterprise

bean using that business activity. At the same time, a snapshot of the J2EE context is taken and logged

with the compensation data. Upon completion of the business activity, all the compensation handlers that

were added to the business activity are driven to compensate or close. The code that you create within the

CompensationHandler class is guaranteed to run wiithin the same J2EE context that was captured in the

earlier snapshot.

For details about the methods available in the business activity API, see the WebSphere Application

Server application programming interface reference information.

Transaction service exceptions

This topic lists the exceptions that can be thrown by the WebSphere Application Server transaction

service. The exceptions are listed in the following groups:

v Standard exceptions

v Heuristic exceptions

If the EJB container catches a system exception from the business method of an enterprise bean, and the

method is running within a container-managed transaction, the container rolls back the transaction before

passing the exception on to the client. For more information about how the container handles the

exceptions thrown by the business methods for beans with container-managed transaction demarcation,

see the section Exception handling in the Enterprise JavaBeans 2.0 specification. That section specifies

the container’s action as a function of the condition under which the business method executes and the

exception thrown by the business method. It also illustrates the exception that the client receives and how

the client can recover from the exception.

Standard exceptions

The standard exceptions such as TransactionRequiredException, TransactionRolledbackException, and

InvalidTransactionException are defined in the Java Transaction API (JTA) 1.0.1 Specification.

InvalidTransactionException

This exception indicates that the request carried an invalid transaction context.

TransactionRequiredException exception

This exception indicates that a request carried a null transaction context, but the target object

requires an active transaction.

1812 Administering applications and their environment

http://java.sun.com/products/ejb/docs.html
http://java.sun.com/products/jta/

TransactionRolledbackException exception

This exception indicates that the transaction associated with processing of the request has been

rolled back, or marked for roll back. Thus the requested operation either could not be performed or

was not performed because further computation on behalf of the transaction would be fruitless.

Heuristic exceptions

A heuristic decision is a unilateral decision made by one or more participants in a transaction to commit or

rollback updates without first obtaining the consensus outcome determined by the Transaction Service.

Heuristic decisions are an issue only after the participant has been prepared and the second phase of

commit processing is underway. Heuristic decisions are normally made only in unusual circumstances,

such as repeated failures by the transaction manager to communicate with a resource manage during

two-phase commit. If a heuristic decision is taken, there is a risk that the decision differs from the

consensus outcome, resulting in a loss of data integrity.

The following list provides a summary of the heuristic exceptions. For more detail, see the Java

Transaction API (JTA) 1.0.1 Specification.

HeuristicRollback exception

This exception is raised on the commit operation to report that a heuristic decision was made and

that all relevant updates have been rolled back.

HeuristicMixed exception

This exception is raised on the commit operation to report that a heuristic decision was made and

that some relevant updates have been committed and others have been rolled back.

UserTransaction interface - methods available

For details about the methods available with the UserTransaction interface, see the WebSphere

Application Server application programming interface reference information (Javadoc) or the Java

Transaction API (JTA) 1.0.1 Specification.

Configuring transaction properties for an application server

Use this task to change the transaction log properties, to move your transaction logs to a new location, or

to update the parameters for the server’s transaction logs.

You might want to move to your logs to a different storage device. Perform this task when you are ready to

move your transaction logs or when you need to make a change to the parameters. You must restart the

application server to make configuration changes take effect.

To configure the transaction properties for an application server, complete the following steps:

 1. Start the administrative console.

 2. In the navigation pane, select Servers-> Manage Application Servers-> your_app_server This

displays the properties of the application server, your_app_server, in the content pane.

 3. Under Container Settings, expand Container Services, then click Transaction Service to display the

properties page for the transaction service, as two notebook pages:

Configuration

The values of properties defined in the configuration file. If you change these properties, the

new values are applied when the application server next starts.

Runtime

The runtime values of properties. If you change these properties, the new values are applied

immediately, but are overwritten with the Configuration values when the application server

next starts.

 4. To review transaction-related configuration properties, ensure that the Configuration page is

displayed.

Chapter 19. Transactions 1813

http://java.sun.com/products/jta/
http://java.sun.com/products/jta/
http://java.sun.com/products/jta/
http://java.sun.com/products/jta/

5. Optional: If you want to change the directory in which transaction logs are written, type the full

pathname of the directory in the Transaction log directory field. You can check the current runtime

value of Transaction log directory, by clicking the Runtime tab.

When using WebSphere Application Server without High Availability support, you can leave the

recovery log configuration for persistent services (such as the transactions service) unset. The

application server assumes a default location within the appropriate profile directory. When High

Availability support is enabled, this default may not be visible from all servers in the cluster (for

example, if they are in different profiles or physical nodes.) As a result, it is recommended that the

recovery log location be configured for each server in the cluster before enabling High Availability.

You can also specify a size for the transaction logs, as described in the following step.

Note: If you change the transaction log directory, you should apply the change and restart the

application server as soon as possible, to minimize the risk of problems occurring before the

application server is restarted. For example, if a problem causes the server to fail (with in-flight

transactions), the server next starts with the new log directory and is unable to automatically

resolve in-flight transactions that were recorded in the old log directory.

 6. Optional: If you want to change the default file size of transaction log files, modify the Transaction

log directory field to include a file size setting, in the following format:

directory_name;file_size

Where

v directory_name is the name of the transaction log directory

v file_size is the new default size specified in bytes. The nK or nM suffix can be used to indicate

kilobytes or megabytes. If you do not specify a file size value, the default value of 1M is used.

For example (Windows systems), c:\tranlogs;2M indicates the files are to be created with 2M bytes

size and stored in the directory c:\tranlogs.

In a non-production environment, you can use the transaction log directory value of ;0 to disable

transaction logging. (There must be no directory name element before the size element of 0.) You

should not disable transaction logging in a production environment because this prevents recovery

after a system failure, and therefore data integrity cannot be guaranteed.

 7. Optional: Review or change the value of transaction timeout properties:

Total transaction lifetime timeout

Type the number of seconds a transaction can remain inactive before it is ended by the

transaction service. A value of 0 (zero) indicates that there is no timeout limit.

Client inactivity timeout

Type the number of seconds after which a client is considered inactive and the transaction

service ends any transactions associated with that client. A value of 0 (zero) indicates that

there is no timeout limit.

 8. Optional: Review or change heuristic-related properties:

Heuristic retry limit

The number of times that the application server retries a completion signal, such as commit

or rollback, after a transient exception from a resource manager or remote partner.

Heuristic retry wait

The number of seconds that the application server waits before retrying a completion signal,

such as commit or rollback, after a transient exception from a resource manager or remote

partner.

Enable logging for heuristic reporting

Select this property to enable the application server to log ″about to commit one-phase

resource″ events from transactions that involve a one-phase commit resource and two-phase

commit resources.

1814 Administering applications and their environment

Heuristic completion direction

Select the direction used to complete a transaction that has a heuristic outcome; either the

application server commits or rolls back the transaction, or depends on manual completion by

the administrator.

 9. Review or change other configuration properties, to suit your requirements. For more information

about the properties of the transaction service, see “Transaction service settings.”

10. Click OK and save.

11. Stop then restart the application server.

If you change the transaction log directory configuration property to an incorrect directory name, the

application server will restart but be unable to open the transaction logs. You should change the

configuration property to a valid directory name, then restart the application server.

If you are running the application server as non-root, modify the permissions on the new transaction

log location. If you want to use peer recovery of transactions on a shared device with non-root users,

make sure that your non-root users and groups have matching identification numbers across

machines

Transaction service settings

Use this page to specify settings for the transaction service. The transaction service is a server runtime

component that can coordinate updates to multiple resource managers to ensure atomic updates of data.

Transactions are started and ended by applications or the container in which the applications are

deployed.

To view this administrative console page, click Servers > Application Servers > server_name >

Container Services > Transaction Service.

 Related concepts

 “Web Services transactions, firewalls and intermediary nodes” on page 1807
You can configure your system to enable propagation of Web Services Atomic Transactions (WS-AT)

message contexts and Web Service Business Activities (WS-BA) message contexts across firewalls or

outside the WebSphere Application Server domain. With this configuration you can distribute Web

service applications that use WS-AT or WS-BA across disparate systems. The topology that you use

can have an effect on the high availability and affinity behavior of the transactions.

Transaction log directory

Specifies the name of a directory for this server where the transaction service stores log files for recovery.

If you do not specify this directory during server configuration, the transaction log uses a default that is

based on your installation directory: app_server_root)/ tranlog/cell_ name/node_ name/server_ name.

When an application running on WebSphere Application Server accesses more than one resource,

Application Server stores transaction information within the product directory to properly coordinate and

manage the distributed transaction. In a higher transaction load, this persistence slows down performance

of the application server due to its dependency on the operating system and the underlying storage

systems. To achieve better performance, designate a new directory for the log files on a separate,

physically larger storage system.

Set this property to change the log file directory for an application server only if the applications use

distributed resources or XA transactions; for example, multiple databases and resources are accessed

within a single transaction.

If your application server demonstrates one or more of the following symptoms, change log file directories.

v CPU utilization remains low despite an increase in transactions

v Transactions fail with several timeouts

v Transaction rollbacks occur with unable to enlist transaction exception

v The application server hangs in the middle of a run and requires the server to be restarted

Chapter 19. Transactions 1815

v The disk on which an application server is running shows higher utilization

File system recommendations:

v Store log files on a redundant array of independent disks (RAID)

In RAID configurations, the task of writing data to the physical media is shared across the multiple

drives. This technique yields more concurrent access to storage for persisting transaction information,

and faster access to that data from the logs. Depending upon the design of the application and storage

subsystem, performance gains can range from 10% to 100%, or even more in some cases.

v Do not store log files with the operation system I/O mode set to concurrent I/O (CIO)

When you designate a transaction log directory, ensure that the file system uses only synchronous

write-through and write serialization operations. Some operating systems, such as AIX JFS2, support an

optional concurrent I/O (CIO) mode whereby the file system does not enforce serialization of write

operations. On these systems, do not use CIO mode for Application Server transaction recovery log

files.

 Data type String

Default Initial value is the app_server_root/tranlog/cell_name/
node_name/server_name directory and a default size of

1MB.

Recommended Create a file system with at least 3-4 disk drives raided

together in a RAID-0 configuration. Then, create the

transaction log on this file system with the default size.

When the server is running under load, check the disk

input and output. If disk input and output time is more then

5%, consider adding more physical disks to lower the

value.

If you migrate a WebSphere Application Server Version 5 node to Version 6, the stored location of this

configuration property is moved from the server level to the node (server index) level. If you have specified

a non-default log directory for a Version 5 application server, you are prompted to save the transaction

service settings again, to confirm that you want the log directory saved to the node level.

Total transaction lifetime timeout

Specifies the default maximum time, in seconds, allowed for transactions started on this server to

complete. Any such transactions that do not complete before this timeout occurs are rolled back.

If you set this value to 0, only the maximum transaction timeout configuration value applies.

 Data type Integer

Units Seconds

Default 120

Range 0 to 2 147 483 647

Asynchronous response timeout

Specifies the amount of time, in seconds, that the server waits for responses to WS-AT protocol

messages.

 Data type Integer

Units Seconds

Default 30

Range 0 to 2 147 483 647

1816 Administering applications and their environment

Client inactivity timeout

Specifies the maximum duration, in seconds, between transactional requests from a remote client. Any

period of client inactivity that exceeds this timeout results in the transaction being rolled back in this

application server.

If you set this value to 0, there is no timeout limit.

 Data type Integer

Units Seconds

Default 60

Range 0 to 2 147 483 647

Maximum transaction timeout

Specifies the maximum time to complete, in seconds, for transactions that run in this server. This value

should be greater than or equal to the total transaction timeout.

This limit constrains transaction timeout set programmatically by BMT beans and values imported with

contexts received from foreign servers.

This value limits the upper bound of all other transaction related timeouts. For example, if a component

attempts to set a transaction timeout of 360 seconds, and the Maximum Transaction Timeout setting is 300

seconds, the Maximum Transaction Timeout setting of 300 seconds is used.

If set to 0, there is no limit and therefore the timeout specified by the Total transaction lifetime timeout

property or component timeout is used.

 Data type Integer

Units Seconds

Default 300

Range 0 to 2 147 483 647

Heuristic retry limit

Specifies the number of times that the application server retries a completion signal, such as commit or

rollback, after a transient exception from a resource manager or remote partner.

If the application server abandons the retries, then the resource manager or remote partner is responsible

for ensuring that the resource or partner’s branch of the transaction is completed appropriately. The

application server raises (on behalf of the resource or partner) an exception that indicates a heuristic

hazard. If a commit was requested, the transaction originator receives an exception on the commit

operation; if the transaction is container-initiated, then the container returns a remote exception or EJB

exception to the EJB client.

 Data type Integer

Default 0

Range 0 to 2 147 483 647

A value of 0 (the default) means retry forever.

Heuristic retry wait

Specifies the number of seconds that the application server waits before retrying a completion signal, such

as commit or rollback, after a transient exception from a resource manager or remote partner.

 Data type Integer

Default 0

Chapter 19. Transactions 1817

Range 0 to 2 147 483 647

A value of 0 means that the application server determines

the retry wait; the server doubles the retry wait after every

10 failed retries.

Enable logging for heuristic reporting

Specifies whether the application server logs about-to-commit-one-phase-resource events from

transactions that involve both a one-phase commit resource and two-phase commit resources.

This property enables logging for heuristic reporting. If applications are configured to allow one-phase

commit resources to participate in two-phase commit transactions, reporting of heuristic outcomes that

occur at application server failure requires extra information to be written to the transaction log. If enabled,

one additional log write is performed for any transaction that involves both one-phase and two-phase

commit resources. No additional records are written for transactions that do not involve a one-phase

commit resource.

 Data type Check box

Default Cleared

Range

Cleared

The application server does not log ″about to

commit one-phase resource″ events from

transactions that involve a one-phase commit

resource and two-phase commit resources.

Selected

The application server does log ″about to commit

one-phase resource″ events from transactions

that involve a one-phase commit resource and

two-phase commit resources.

Heuristic completion direction

Specifies the direction that is used to complete a transaction that has a heuristic outcome; either the

application server commits or rolls back the transaction, or depends on manual completion by the

administrator.

 Data type Drop-down list

Default ROLLBACK

Range

COMMIT

The Application server heuristically commits the

transaction.

ROLLBACK

The Application server heuristically rolls back the

transaction.

MANUAL

The application server depends on an

administrator to manually complete or roll back

transactions with heuristic outcomes.

Enable file locking

Specifies whether the use of file locks is enabled when opening the transaction service recovery log.

If you enable this setting, a file lock will be obtained before accessing the transaction service recovery log

files. File locking is used to ensure that, in a highly available WebSphere Application Server deployment,

1818 Administering applications and their environment

only one application server can access a particular transaction service recovery log at any one time. This

setting has no effect in a standard deployment where you have not configured high availability support.

Attention: This setting requires a compatible network file system, such as network file system version 4,

to operate correctly.

 Data type Check box

Default Selected

Enable protocol security

Specifies whether the secure exchange of transaction service protocol messages is enabled.

This setting has no effect unless you enable WebSphere Application Server security on the server.

 Data type Check box

Default Selected

HTTP proxy prefix

Specifies the prefix used by WS-AtomicTransaction and WS-BusinessActivity requests that are sent

through an intermediary node using the HTTP protocol.

Set this field if you are using an intermediary node, such as an HTTP server or Proxy Server for

WebSphere, to send requests that comply with the Web Services Atomic Transaction or Web Services

Business Activity protocols. The format for the prefix is as follows:

http://host_name:port

where

v host_name is the host name used by clients to contact the Web service

v port is the port for which the service is configured to accept client requests

If the intermediary node is not a Proxy Server, the prefix must be unique for each server. If you are using

a Proxy Server, prefixes can be the same for each server in a cluster, because the Proxy Server

determines dynamically which server to forward the request to.

The HTTPS prefix will be used if WebSphere Application Server security is enabled and protocol security

is enabled for the transaction service, otherwise the HTTP prefix will be used.

 Data type String

Default None

HTTPS proxy prefix

Specifies the prefix used by WS-AtomicTransaction and WS-BusinessActivity requests that are sent

through an intermediary node using the HTTPS protocol.

Set this field if you are using an intermediary node, such as an HTTP server or Proxy Server for

WebSphere, to send requests that comply with the Web Services Atomic Transaction or Web Services

Business Activity protocols. The format for the prefix is as follows:

https://host_name:port

where

v host_name is the host name used by clients to contact the Web service

v port is the port for which the service is configured to accept client requests

Chapter 19. Transactions 1819

If the intermediary node is not a Proxy Server, the prefix must be unique for each server. If you are using

a Proxy Server, prefixes can be the same for each server in a cluster, because the Proxy Server

determines dynamically which server to forward the request to.

The HTTPS prefix will be used if WebSphere Application Server security is enabled and protocol security

is enabled for the transaction service, otherwise the HTTP prefix will be used.

 Data type String

Default None

Manual transactions

Specifies the number of transactions that await manual completion by an administrator.

If there are transactions awaiting manual completion, you can click the Review link to display a list of

those transactions on the Transactions needing manual completion panel.

 Data type Integer

Default 0

Retry transactions

Specifies the number of transactions with some resources being retried.

If there are transactions with resources being retried, you can click the Review link to display a list of

those transactions on the Transactions retrying resources panel.

 Data type Integer

Default 0

Heuristic transactions

Specifies the number of transactions that have completed heuristically.

If there are transactions that have completed heuristically, you can click the Review link to display a list of

those transactions on the Transactions with heuristic outcome panel.

 Data type Integer

Default 0

Imported prepared transactions

Specifies the number of transactions that are imported and prepared but not yet committed.

If there are transactions that have been imported and prepared but not yet committed, you can click the

Review link to display a list of those transactions on the Transactions imported and prepared panel.

 Data type Integer

Default 0

Transactions needing manual completion

Use this page to review transactions that need manual completion.

It is unusual for transactions to require manual completion. A transaction needs manual completion in the

following circumstances:

1. An application was exploiting the last participant support to coordinate a single one-phase capable

resource and one or more two-phase capable resources.

1820 Administering applications and their environment

2. A failure occurred during the commit of the one-phase capable resource.

3. The transaction service heuristic completion direction is set to Manual, in the transaction service

settings.

An administrator reviewing transactions in this state can review the actual outcome of any one-phase

resources, using facilities provided by the specific resource manager, then use this page to complete the

transaction accordingly.

To view this administrative console page, click Servers → Application Servers → [Content pane]

server_name → [Container Settings] Container Services → Transaction Service → Runtime → Manual

transactions - Review.

To list the resources used by a transaction, click the transaction local ID in the list displayed.

To act on one or more of the transactions listed, click the check boxes next to the transactions that you

want to act on, then use the buttons provided.

Local ID

The local identifier of the transaction.

Global ID

The global identifier of the transaction.

Buttons

Commit

Heuristically commit the selected transactions.

Rollback

Heuristically roll back the selected transactions.

Transactions retrying resources

Use this page to review transactions with resources being retried.

If the transaction manager has prepared resources, but has lost contact with the resource managers

before committing them or aborting them, then the transaction manager retries the commit or rollback

requests to the affected resource managers. The number of times and frequency that the transaction

manager retries such commit or rollback requests is configured on the Heuristic retry limit and Heuristic

retry wait properties of the transaction service settings.

An administrator can use this page to make the transaction service abandon the retries of one or more

transactions. If a resource manager cannot be contacted, WebSphere Application Server relegates that

resource manager to an in-doubt (prepared) state. The administrator then needs to use mechanisms

specific to the resource manager to resolve the in-doubt status.

To view this administrative console page, click Servers → Application Servers > [Content pane]

server_name > [Container Settings] Container Services → Transaction Service → Runtime → Retry

transactions - Review.

To list the resources used by a transaction, click the transaction local ID in the list displayed.

To act on one or more of the transactions listed, click the check boxes next to the transactions that you

want to act on, then use the buttons provided.

Local ID

The local identifier of the transaction.

Chapter 19. Transactions 1821

Status

The status of the transaction, shown as an integer value. The values correspond to the following

status:

0 - active

1 - marked for rollback

2 - prepared

3 - committed

4 - rolled back

5 - unknown

6 - none

7 - preparing

8 - committing

9 - rolling back

Global ID

The global identifier of the transaction.

Buttons

Finish Abandon retrying resources for the selected transactions.

Transactions with heuristic outcome

Use this page to review transactions that completed with a heuristic outcome.

The page is provided for information purposes only. After you have reviewed the information in this page,

then the only action required is to remove the transactions from the list. If you do not remove a transaction

from the list, it is kept in the list for three days or until the server is shut down, whichever occurs first.

To view this administrative console page, click Servers → Application Servers [Content pane]

server_name [Container Settings] Container Services → Transaction Service → Runtime → Heuristic

transactions - Review.

To list the resources used by a transaction, click the transaction local ID in the list displayed.

To act on one or more of the transactions listed, click the check boxes next to the transactions that you

want to act on, then use the buttons provided.

Local ID

The local identifier of the transaction.

Heuristic outcome

The outcome of the transaction.

Global ID

The global identifier of the transaction.

Buttons

Clear Remove the selected transactions from the list.

Transactions imported and prepared

Use this page to review transactions that have been imported and prepared but not yet committed.

Under normal circumstances no administrative action is required for any of the transactions listed on this

page. This page lists those transactions that are in a prepared state, but are being directed by an external

transaction manager (for example, another WebSphere application server) from a transaction context that

has been propagated.

1822 Administering applications and their environment

Under aberrant circumstances, however, an administrator can configure WebSphere Application Server to

resolve the transactions listed on this page independent of the external transaction manager. (This step

might be necessary if, for example, the external transaction manager has become unavailable for an

unacceptable period of time.)

Note: If the completion direction (commit or rollback) chosen administratively differs from the eventual

direction of the external transaction manager, then the overall outcome of the transaction is not

atomic and data corruption can result.

To view this administrative console page, click Servers → Application Servers [Content pane]

server_name → [Container Settings] Container Services → Transaction Service → Runtime → Imported

prepared transactions - Review.

To list the resources used by a transaction, click the transaction local ID in the list displayed.

To act on one or more of the transactions listed, click the check boxes next to the transactions that you

want to act on, then use the buttons provided.

Local ID

The local identifier of the transaction.

Global ID

The global identifier of the transaction.

Buttons

Commit

Heuristically commit the selected transactions.

Rollback

Heuristically roll back the selected transactions.

Transaction resources

Use this page to review resources used by a transaction.

To view this administrative console page, click Servers → Application Servers [Content pane]

server_name → [Container Settings] Container Services → Transaction Service → Runtime →

transaction_type local_ID.

Where:

v transaction_type is one of:

– Manual transactions - Review

– Retry transactions - Review

– Heuristic transactions - Review

– Imported prepared transactions - Review

v local_ID is the local ID of the transaction (as an active link in the list of transactions).

The details displayed depend on the resource provider.

Managing active and prepared transactions

Use this task to manage active and prepared transactions that might need administrator action.

Under normal circumstances, transactions should run and complete (commit or rollback) automatically,

without the need for intervention. However, in some circumstances, you may need to resolve a transaction

manually. For example, you may want to rollback a transaction that has become stuck polling a resource

manager that you know will not become available again within the desired timeframe.

Chapter 19. Transactions 1823

Note: If you choose to complete a transaction on an application server, it is recorded as having completed

in the transaction service logs for that server, so will not be eligible for recovery during server start

up. If you complete a transaction, you are responsible for cleaning up any in-doubt transactions on

the resource managers affected.

You can use the administrative console to display a snapshot of all the transactions in an application

server that are in the following states:

Manual transactions

Transactions awaiting administrative completion. For each transaction, the local id or global id is

displayed. You can choose to display information on each resource (specifically, which resource

manager it is associated with) associated with the transaction. You can also choose to commit or

rollback transactions in this state.

Retry transactions

Transactions with some resources being retried. For each transaction, the local id or global id is

displayed, and whether the transaction is committing or rolling back. You can choose to display

information on each resource (specifically, which resource manager it is associated with)

associated with the transaction. You can also choose to finish (abandon retrying) transactions in

this state.

Heuristic transactions

Transactions that have completed heuristically. For each transaction, the local id or global id and

the heuristic outcome is displayed. You can choose to display information on each resource

(specifically, which resource manager it is associated with) associated with the transaction. You

can also choose to clear the transaction from the list.

Imported prepared transactions

Transactions that have been imported and prepared but not yet committed. For each transaction,

the local id or global id is displayed. You can choose to display information on each resource

(specifically, which resource manager it is associated with) associated with the transaction. You

can also choose to commit or rollback transactions in this state.

To manage the active and prepared transactions for an application server, use the administrative console

to complete the following steps:

1. Display the Transaction Service runtime page for application server:

a. In the navigation pane, click Servers-> Application Servers

b. In the content pane, click the name of the application server

c. In the content pane, click the Runtime tab.

d. Under Additional Properties, click Transaction Service

This displays values for the runtime properties of the transaction service, including the number of

transactions in the active and prepared states.

2. To display a snapshot of the transactions in a specific state, click Review in the field label.

3. Optional: If you want to display information about the resources associated with a transaction, click

the name of the transaction.

4. Optional: If you want to act on a transaction, select the check box provided on the entry for the

transaction, then click one of the buttons provided. Alternatively, to act on all transactions, select the

check box in the header of the transactions table, then click a button.

Managing transaction logging for optimum server availability

This topic describes some considerations and actions that you can use to manage transaction logging to

help ensure that the availability of your application servers is optimized.

1824 Administering applications and their environment

The transaction service writes information to the transaction log for every global transaction which involves

two or more resources or is distributed across multiple servers. The transaction log is stored on disk and is

used by the transaction service for recovery after a system or server crash. The transaction log for each

application server consists of multiple subdirectories and files held in a single directory. You can change

the directory that an application server uses to store the transaction log, as described in Configuring

transaction properties for an application server.

When a global transaction is completed, the information in the transaction log is not needed anymore so is

marked for deletion. Periodically, this redundant information is garbage collected and the space reused by

new transactions. The log files are created of fixed size at server startup, thus no further disk space

allocation is required during the lifetime of the server. The default allocation is suitable for around 4000

concurrent transactions.

If all the log space is in use when a transaction needs to save information, the transaction is rolled back

and the message CWWTR0083W: The transaction log is full. Transaction rolled back. is reported to

the system error log. No more transactions can commit until more log space is made available when

existing active transactions complete.

You can monitor the number of concurrent global transactions by using the performance monitoring

counters for transactions. The “Global transaction commit time” counter is a measure of how long a

transaction takes to complete and, therefore, how long the log is in use by a transaction. If this value is

high, then transactions are taking a long time to complete, which can be due to resource manager or

network failures. If you ensure that this value is low, the log is more efficiently used and unlikely to

become full.

You can change the default size of log files by updating the transaction log settings as described in

Configuring transaction properties for an application server.

Configuring transaction aspects of servers for optimum availability

This topic describes some considerations and actions that you can take to configure transaction-related

aspects of application servers, to optimize the availability of those servers.

This helps your transactions to complete or recover more quickly. After changing transaction-related

properties of an application server, you must restart the server.

To configure transaction-related aspects of application servers for optimum availability, complete the

following steps:

1. Store the transaction log files on a fast disk in a highly-available file system, such as a RAID device.

The transaction log may need to be accessed by every global transaction and be used for transaction

recovery after a crash. Therefore, the disk the log files are being written to should be on a

highly-available file system, such as a RAID device.

The performance of the disk also directly affects the transaction performance. In general, a global

transaction makes two disk writes, one after the prepare phase when the outcome of the transaction is

known (this information is forced to disk) and a further disk write at transaction completion. Therefore,

the transaction logs should be placed on the fastest disks available and not make use of network

mounted devices.

2. Mirror the transaction log files by using hardware disk mirroring or dual-ported disks. If log files have

been mirrored or can be recovered, they can be used when restarting a failed server or moved to an

another machine and another server started there to perform recovery.

Hardware disk mirroring or dual-ported disks can be used by specifying the appropriate file system

directory for the transaction logs using the WebSphere Administrative Console.

3. Specify the optimum location of the transaction log directory for application servers.

By default, an application server places transaction log files in a subdirectory of the installed

WebSphere Application Server, where the subdirectory name is the same as the server name.

Chapter 19. Transactions 1825

For example, the default directory for an application server named server1 is /IBM/WebSphere/
AppServer/profiles/profile_name/tranlog/server1.

You can define a specific location for the transaction log directory for an application server by setting

the Transaction Log Directory property for the server. If the directory for the transaction logs has not

been created at application server start up, the directory structure is created for you.

Note: If you change the transaction log directory, you should apply the change and restart the

application server as soon as possible, to minimize the risk of problems occurring before the

application server is restarted. For example, if a problem causes the server to fail (with in-flight

transactions), the server next starts with the new log directory and is unable to automatically

resolve in-flight transactions that were recorded in the old log directory.

4. Never allow more than one application server to concurrently use the same set of log files. Because

the transaction logs record the state of global transactions within a server, if the logs become lost or

corrupt, then transactions that are in the prepared state before failure can leave resources in an

in-doubt state and prevent further updates or access to the resources by other users or servers. These

transactions may need to be manually resolved by either committing or rolling back the transactions at

the affected resource managers. The failed server can then be cold-started, which creates new empty

transaction logs.

If log files have been mirrored or can be recovered, they can be used when restarting the failed server

or moved to an alternate server or machine and another server restarted to perform recovery, as

described in the related tasks.

Never allow more than one application server to concurrently use the same set of log files, because

each server will destroy the information recorded by the other, resulting in corrupt log files that are

unusable for future recovery purposes.

5. Configure application servers to always use the same listening port address at each startup. If you are

running distributed transactions between multiple application servers, the remote object references

saved in the transaction log need to be redirected to the originating server on recovery.

On WebSphere Application Server Network Deployment, the node agents automatically redirect such

remote object references to the appropriate application servers on recovery. However, if the distributed

transaction is between application servers that are not on WebSphere Application Server Network

Deployment, then you must handle the redirection of remote object references for transaction recovery

to complete. For example, you must do this if an application server is deployed on WebSphere

Application Server (not the Network Deployment edition) and runs distributed transactions with

non-WebSphere EJB or Corba servers.

In particular, the default restart action of an application server not on Application Server Network

Deployment is to use a different listening port address to the port when the server shut down. This

prevents transaction recovery completing. To overcome this, you should always configure application

servers to always use the same listening port address at each startup (see the ORB property

com.ibm.CORBA.ListenerPort in ORB service settings that can be added to the administrative

console). You may need to make similar configuration changes to other application servers involved in

transactions, to be able to access those servers during recovery.

Moving a transaction log from one server to another

This topic describes some considerations and actions that you can take to move the transaction logs for

an application server to another server.

To move transaction logs from one application server to another, consider the following steps:

1. Move all the transaction log files for the application server. The transaction log directory for each

server contains a number of files and subdirectories. When moving transaction logs from one server to

another you must move all of the files and subdirectories together as a single unit; otherwise recovery

may not complete resulting in data inconsistency.

2. For a server configuration where there are no distributed transactions, move the transaction logs to

any server that has access to the same resource managers. For a single server or network-deployed

1826 Administering applications and their environment

server configuration where it is known there are no distributed transactions present in the logs, the

transaction logs can be moved to any server (on any node) that has access to the same resource

managers as the original server. For example, the server needs communication and valid security

access to databases or message queues.

If the server is in a different cell from the original server, you need to ensure that there is a JAAS alias

available to the server that was used by the original server for accessing XA resources. In this case

you should use wsadmin to construct the aliases, because if you use the administrative console to

create the alias, then the node name gets prefixed to the alias.

All the transaction log files for the original server need to be moved to a directory accessible by the

new server. This can be accomplished by either renaming the transaction log directory or copying all

the contents to the new server’s transaction log directory before starting the new server.

Note: To complete transaction recovery, the application server uses the resource manager

configuration information in the transaction logs. However, for the application server to continue

to do new work with the same resource managers, the server must have an appropriate

resource manager configuration (as for the original server).

3. For a network-deployed server configuration where there are distributed transactions, move the

transaction logs to a server that has the same name and host IP address, and access to the same

resource managers. For a network-deployed server configuration, when it is known there are

distributed transactions present in the logs, there are more restrictions. Distributed transactions that

access multiple servers log information about each server involved in the transaction. This information

includes the server name and the IP address of the machine on which the server is running. When

recovery is taking place on server restart, the server uses this information to contact the distributed

servers and similarly, the distributed servers try to contact the server with the same original name. So,

if a server fails and the logs need to the recovered on an alternative server, that alternative server

needs to have the same name and host IP address as the original server. The alternative server also

needs to have access to the same resource managers as the original server. For example, the server

needs communication and valid security access to databases or message queues.

Note: All servers within a cell must have unique names.

Note: To complete transaction recovery, the application server uses the resource manager

configuration information in the transaction logs. However, for the application server to continue

to do new work with the same resource managers, the server must have an appropriate

resource manager configuration (as for the original server).

Restarting an application server on a different host

This topic describes some considerations and actions that you can take with transaction logs to restart an

application server on a different host.

Moving transactions logs to a different host is similar to moving logs from one server to another, as

described in Moving transaction logs from one server to another.

This involves moving an original application server on one host to an alternative server, which has access

to the same resource managers, on another host. For a network-deployed server configuration, the

alternative server must have the same name and host IP address as the original server.

Note: To complete transaction recovery, the application server uses the resource manager configuration

information in the transaction logs. However, for the application server to continue to do new work

with the same resource managers, the server must have an appropriate resource manager

configuration (as for the original server).

To restart an application server on a different host, complete the following steps:

1. Ensure that the alternative application server is stopped.

Chapter 19. Transactions 1827

2. Move all the transaction logs for the original server to the alternative application server, according to

the considerations described in Moving transaction logs from one server to another.

3. Restart the alternative application server.

Interoperating transactionally between application servers

This topic describes some considerations and actions that you can take to interoperate transactionally

between different types of application servers.

WebSphere Application Server is a transaction manager that supports transactional interoperation with

other transaction managers through either the CORBA Object Transaction Service (OTS) protocol or, for

JSR-109 compliant requests, Web Service Atomic Transaction (WS-AtomicTransaction) protocol. This is in

addition to its ability to coordinate XA resource managers and to be coordinated by J2EE Connector 1.5

resource adapters.

v To interoperate transactionally, using the OTS protocol, between WebSphere Application Server Version

6 or later, and versions of the WebSphere Application Server before Version 5.0, you need to set the

following system properties on application servers that are before Version 5.0:

com.ibm.ejs.jts.jts.ControlSet.nativeOnly=false

com.ibm.ejs.jts.jts.ControlSet.interoperabilityOnly=true

For example, if you want to interoperate between application servers at WebSphere Application Server

Version 6 and WebSphere Application Server Version 4.0.n, you need to set the system properties on

the Version 4.0.n application servers.

v If you have enabled WebSphere Application Server security, you need to disable protocol security on

servers at version 6.0.2 or later to be able to interoperate transactionally with servers at earlier versions.

To disable protocol security on a server, complete the following steps:

1. In the administrative console, click Servers → Application Servers → server_name[Container

Settings] Container Services → Transaction Service

2. Clear the Enable protocol security check box.

3. Click Apply or OK.

4. Save your changes to the master configuration.

5. Restart the server.

Configuring an intermediary node for Web services transactions

Intermediary nodes allow the exchange of Web Services Atomic Transaction and Web Services Business

Activity protocol messages across firewalls and outside the WebSphere Application Server domain. You

configure an intermediary node to specify which WebSphere Application servers the node routes requests

to.

1.

2.

You configured the intermediary node ready for use by WebSphere Application Server.

Configure WebSphere Application Server to use the intermediary node by specifying, for each server, the

appropriate virtual host of the intermediary node. See “Enabling WebSphere Application Server to use an

intermediary node for Web services transactions” on page 1829.

1828 Administering applications and their environment

http://www.omg.org/cgi-bin/doc?formal/2003-09-02
http://www.ibm.com/developerworks/webservices/library/ws-atomtran/
http://java.sun.com/j2ee/connector/
http://java.sun.com/j2ee/connector/

Enabling WebSphere Application Server to use an intermediary node

for Web services transactions

You can use intermediary nodes with Web Services Atomic Transactions or Web Services Business

Activities to support the exchange of associated requests across firewalls and outside the WebSphere

Application Server domain. You configure WebSphere Application Server to use an intermediary node by

specifying the HTTP or HTTPS protocol prefix for the node, in each server that is accessed through the

intermediary.

Configure the intermediary node that you want to use, and ensure that you know the address or addresses

of the intermediary node that you want to map to servers in your WebSphere Application Server

configuration.

1. In the administrative console, click Servers → Application Servers > server_name > [Container

Services] Transaction Service.

2. Type the prefix for the intermediary node in the HTTP proxy prefix or HTTPS proxy prefix field. This

prefix is the intermediary node address that maps to this server. The HTTPS prefix is used if

WebSphere Application Server security is enabled and protocol security is enabled for the transaction

service; otherwise the HTTP prefix is used.

3. Save your changes to the master configuration.

4. Repeat the previous steps for each server that is accessed through the intermediary node.

5. Restart the servers.

You configured your system to use an intermediary node. Test your configuration to ensure that messages

are routed as you expect.

Configuring a server to use business activity support

Business activity support provides compensation for activities such as sending an e-mail, which can be

difficult or impossible to roll back atomically. With this compensation, applications on disparate systems

can coordinate activities that are more loosely coupled than atomic transactions. To use the business

activity support you must first enable it on each server that you plan to use.

If you have an application component that uses the business activity support, you must enable the support

on each server that runs the application.

1. In the administrative console, click Servers → Application servers > server_name > [Container

Settings] Container Services → Compensation Service.

2. Select the Enable service at server startup check box.

3. If required, modify the compensation handler retry interval and limit. These values control the

frequency with which the CompensationHandler handler compensate and close methods are retried,

when either throw a RetryCompensationHandlerException exception, and the number of times that

these methods are retried.

4. Save your changes to the master configuration.

5. Repeat the previous steps for each server that you plan to use.

6. Restart all the servers for the changes to take effect.

The business activity support is enabled for the application server. Verify a successful enablement by

checking for the message, CWSCP0005I: The Compensation service started successfully. in the

SystemOut.log file for the relevant server.

Deploy the business-activity-enabled application to the server.

Chapter 19. Transactions 1829

Note: Applications can exploit the business activity support only if you deploy them to a WebSphere

Application Server Version 6.1 server. Applications cannot use the business activity support if you

deploy them to a cluster that includes WebSphere Application Server Version 6.0.x servers.

Compensation service settings

Use this page to manage the compensation service. The compensation service supports server-level

configuration for compensation enablement and logging.

To view this administrative console page, click Servers → Application servers → server_name →

[Container Settings] Container services → Compensation service.

Enable service at server startup

Specifies whether the application server attempts to start the compensation service when the server next

starts up.

 Default Selected

Range Selected

When the application server starts, it attempts to

start the compensation service automatically.

Cleared

The server does not try to start the compensation

service. If compensation is used in applications

that run on this server, the system administrator

must start the service manually or select this

property and then restart the server.

Recovery log directory

Specifies a directory path that, if set, overrides the location where the compensation service stores log

files for recovery of this server.

A blank value in the server configuration is expanded by the compensation service at startup as the

directory profile_root/recoveryLogs/cell_name/node_name/server_name/compensation. The variable

profile_root is the home directory for the WebSphere Application Server profile used for the server.

When compensation is used, the WebSphere product stores information that is needed to perform

compensation after a system failure on a physical storage device. In a higher application load, this

persistence slows down performance of the application server due to its dependency on the operating

system and the underlying storage systems.

To achieve better performance, move the compensation log files to a storage device with more physical

disk drives, or preferably RAID disk drives. When the log files are moved to the file systems on the raided

disks, the task of writing data to the physical media is shared across the multiple disk drives. This sharing

provides more concurrent access to persist compensation information and faster access to that data from

the logs. Depending upon the design of the application and storage subsystem, performance gains can

range from 10% to 100%, or even more in some cases.

This change is applicable only to the configuration where the application has compensation configured.

Consider setting this property when the application server shows one or more of following signs:

v CPU utilization remains low despite an increase in compensatable requests

v Transactions fail with several timeouts

v The server stops and needs to be restarted

v The disk on which the server is running shows higher use

 Data type String

1830 Administering applications and their environment

Default profile_root/recoveryLogs/cell_name/node_name/
server_name/compensation

Where profile_root is the home directory for the

WebSphere Application Server profile used for the server.

Recommended Create a file system with at least 3 to 4 disk drives raided

together in a RAID-0 configuration. Create the

compensation log on this file system with the default size.

When the server is running under load, check the disk

input and output. If the disk input and output time is more

then 5%, consider adding more physical disks to lower the

value. If the disk input and output is low, but the server

load is still high, consider increasing the size of the log

files.

Recovery Log File Size

Specifies the maximum megabyte size of the recovery log file that the compensation service uses for

recovery data. The default value is 5 megabytes.

The amount of data logged by the compensation service is influenced by the number of concurrently-active

applications that use compensation, and the size of the application data that is provided as input to the

compensation logic.

The compensation service reserves space on a physical storage device at server start for compensation

recovery data. If this size is not sufficient for active compensation data, then the log files grow dynamically

until they reach the maximum size specified by this value.

 Data type Integer

Units Megabytes

Default 5

Range 1 through 2147483647 megabytes

Although the allowed range for Recovery Log File Size is 1 through 2147483647, the maximum size that is

actually possible depends on the maximum size allowed by the operating system for a mapped file.

Compensation handler retry limit

Specifies the maximum number of times that the compensation service retries a compensation handler.

This value specifies the number of times that the compensation service calls the CompensationHandler

methods compensate() and close().

Set this value to -1 to retry the compensate() and close() methods indefinitely. Set the value to 0 to never

retry either method.

 Data type Integer

Default -1

Range -1 or above

Compensation handler retry interval

Specifies the time interval, in seconds, that the compensation service waits before retrying a compensation

handler.

The compensation service retries a compensation handler by recalling the CompensationHandler methods

compensate() and close() if either throws a RetryCompensationHanderException.

Chapter 19. Transactions 1831

Data type Integer

Units Seconds

Default 30

Range 0 or above

1832 Administering applications and their environment

Chapter 20. Learn about WebSphere programming extensions

Use this section as a starting point to investigate the WebSphere programming model extensions for

enhancing your application development and deployment.

See Learn about WebSphere applications: Overview and new features for a brief description of each

WebSphere extension.

See the Developing and deploying applications PDF book for a brief description of each WebSphere

extension.

In addition, now your applications can use the Eclipse extension framework. Your applications are

extensible as soon as you define an extension point and provide the extension processing code for the

extensible area of the application. You can also plug an application into another extensible application by

defining an extension that adheres to the target extension point requirements. The extension point can find

the newly added extension dynamically and the new function is seamlessly integrated in the existing

application. It works on a cross Java 2 Platform, Enterprise Edition (J2EE) module basis.

The application extension registry uses the Eclipse plug-in descriptor format and application programming

interfaces (APIs) as the standard extensibility mechanism for WebSphere applications. Developers that

build WebSphere application modules can use WebSphere Application Server extensions to implement

Eclipse tools and to provide plug-in modules to contribute functionality such as actions, tasks, menu items,

and links at predefined extension points in the WebSphere application. Read the information about

Application extension registry in the Developing and deploying applications PDF book.

ActivitySessions

Configuring the default ActivitySession timeout for an application

server

Use this task to configure the default ActivitySession timeout for an application server, after which any

started ActivitySessions are completed automatically by the ActivitySession service.

The ActivitySession timeout is used to reset any ActivitySession whose remote client has failed to

complete the ActivitySession in a timely fashion. The initial default timeout can be configured separately for

each application server, and can be overridden programmatically by the setSessionTimeout method of the

UserActivitySession interface. If an ActivitySession that contains a transaction reaches the timeout, the

transaction’s timeout is accelerated so that it is timed out (and rolled back) immediately before the

ActivitySession is reset.

To configure the default ActivitySession timeout for an application server, use the WebSphere

Administrative console to complete the following steps:

1. Start the WebSphere Administrative console.

2. In the navigation pane, click Servers → Application Servers This displays a list of the application

servers in the content pane.

3. In the Content pane, click the name of the application server that you want to configure. This displays

the properties for the application server in the content pane.

4. Under Container Settings, click Business Process Services → ActivitySession Service This displays

the ActivitySession service properties in the content pane.

5. Ensure that the Enable service at server startup check box is selected. You must enable the service

for the timeout to have an effect.

6. Set the ActivitySession timeout property to the default timeout as an integer number of seconds.

v -1 indicates that ActivitySessions never timeout

© Copyright IBM Corp. 2006 1833

v 0 indicates that the default timeout, 300 seconds, applies

v Other values are an integer number of seconds

7. Click OK.

8. Save your changes to the master configuration.

9. To have the changed configuration take effect, stop then restart the application server.

 Related concepts

 The ActivitySession service
The ActivitySession service provides an alternative unit-of-work (UOW) scope to that provided by global

transaction contexts. An ActivitySession context can be longer-lived than a global transaction context

and can encapsulate global transactions.

ActivitySession service settings

Use this page to configure the properties of the ActivitySession service. The ActivitySession service is a

unit-of-work service to coordinate one-phase resources or to extend the activation and passivation of an

enterprise bean.

To view this administrative console page, click Servers → Application servers → server_name →

[Container Settings] Business Process Services → ActivitySession service.

Enable service at server startup:

Specifies whether the application server attempts to start the ActivitySession service when the server next

starts up.

 Default Cleared

Range Cleared

The server does not try to start the

ActivitySession service. If ActivitySessions are to

be used in applications that run on this server,

the system administrator must select this property

then restart the server.

Selected

When the application server starts, it attempts to

start the ActivitySession service automatically.

Default timeout:

Specifies the default timeout for an activity session. A server automatically completes an activity session if

a remote client has failed to complete the activity session within this time period.

 The initial default timeout can be configured separately for each application server, and can be overridden

programmatically by the UserActivitySession interface (setSessionTimeout).

 Data type Integer

Units Seconds

Default 300 (5 minutes)

Range -1 through 1000000000 seconds

v -1 indicates that ActivitySessions never timeout

v 0 indicates that the default timeout applies

v Other values are an integer number of seconds

Disabling or enabling the ActivitySession service

Use this task to disable or enable the ActivitySession service for an application server.

1834 Administering applications and their environment

You can use the ActivitySession Startup property to specify whether or not the ActivitySession service is

started automatically for an application server.

To disable or enable the ActivitySession service for an application server, use the Administrative console to

configure the ActivitySession Startup property:

1. Start the Administrative console.

2. In the navigation pane, click Servers → Application Servers This displays a list of the application

servers in the content pane.

3. In the Content pane, click the name of the application server that you want to configure. This displays

the properties for the application server in the content pane.

4. Under Container Settings, click Business Process Services → ActivitySession Service This displays

the ActivitySession service properties in the content pane.

5. Select or clear the Startup property as needed:

Selected

The ActivitySession service is started when the application server is started. This enables

applications that specify use of ActivitySessions in their deployment descriptors to run on such

an application server.

Cleared

[Default] The ActivitySession service is not started when the application server is started.

Applications that specify use of ActivitySessions in their deployment descriptors cannot start on

such an application server.

 Any attempt to start an application that uses ActivitySessions is rejected and a message

issued:

WACS0043E: Error found starting an application. application_name specified an ActivitySession

attribute that is not allowed when the ActivitySession service is not enabled

If this happens during server startup, the server continues to start without the application.

6. Click OK.

7. Save your changes to the master configuration.

8. To have the changed configuration take effect, stop then restart the application server.

 Related concepts

 The ActivitySession service
The ActivitySession service provides an alternative unit-of-work (UOW) scope to that provided by global

transaction contexts. An ActivitySession context can be longer-lived than a global transaction context

and can encapsulate global transactions.

 Related reference

 “ActivitySession service settings” on page 1834
Use this page to configure the properties of the ActivitySession service. The ActivitySession service is

a unit-of-work service to coordinate one-phase resources or to extend the activation and passivation of

an enterprise bean.

Application profiling

Task overview: Application profiling

You can use application profiling to configure multiple access intent policies on the same entity bean.

Application profiling reflects the fact that different units of work have different use patterns for enlisted

entities and can require different kinds of support from the server runtime environment. For more

information, see Application Profiling.

1. Assembling applications for application profiles. This topic describes how to configure tasks, create

application profiles, and configure tasks on profiles.

Chapter 20. Learn about WebSphere programming extensions 1835

2. Managing application profiles. This topic describes how to add and remove tasks from application

profiles using the administrative console.

3. Using the TaskNameManager API. This topic describes how to programmatically set the current task

name, but you should use this technique sparingly. Wherever possible, use the declarative method

instead, which results in more portable function.

Application profiling

You can use application profiling to identify particular units of work to the WebSphere Application Server

runtime environment. The run time can tailor its support to the exact requirements of that unit of work.

Access intent is currently the only runtime component that makes use of the application profiling

functionality. For example, you can configure one transaction to load an entity bean with strong update

locks and configure another transaction to load the same entity bean without locks.

Application profiling introduces two new concepts in order to achieve this function: tasks and profiles.

Tasks A task is a configurable name for a unit of work. Unit of work in this case means either a

transaction or an ActivitySession. The task name is typically assigned declaratively on a J2EE

component that can initiate a unit of work. Most commonly, the task is configured on a method of

an Enterprise JavaBeans file that is declared either for container-managed transactions or

bean-managed transactions. Any unit of work that begins in the scope of a configured task is

associated with that task name. A unit of work can only be named when it is initiated, and the

name cannot change for the lifetime of that unit of work. A unit of work ignores any subsequent

task name configurations at any point after it has begun. The task is used for the duration of its

unit of work to identify configured policies specific to that unit of work.

Note: If you select the 5.x Compatibility Mode attribute on the Application Profile Service’s

console page, then tasks configured on J2EE 1.3 applications are not necessarily

associated with units of work and can arbitrarily be applied and overridden. This is not a

recommended mode of operation and can lead to unexpected deadlocks during database

access. Tasks are not communicated on requests between applications that are running

under the Application Profiling 5.x Compatibility Mode and applications that are not running

under the compatibility mode.

For a Version 6.x client to interact with applications run under the Application Profiling 5.x

Compatibility Mode, you must set the appprofileCompatibility system property to true in the

client process. You can do this by specifying the -CCDappprofileCompatibility=true option

when invoking the launchClient command.

Profiles

A profile is simply a mapping of a task to a set of access intent policies that are configured on

entity beans. When an invocation on a bean (whether by a finder method, a CMR getter, or a

dynamic query) requires data to be retrieved from the back end system, the current task

associated with the request is used to determine the exact requirement of the transaction. The

same bean loads and behaves differently in the context of the task-to-profile mapping. Each profile

provides the developer an opportunity to reconfigure the application’s access intent. If a request is

operating in the absence of a task, the runtime environment uses either a method-level access

intent (if any) or a bean-level default access intent.

Note: The application profile configuration is application scope configuration data. If any

Enterprise JavaBean (EJB) module contains an application profile configuration, all other

EJB modules are implicitly regulated by the Application Profiling service even if they do not

contain application profile configuration data.

For example, an application has two EJB modules: EJBModule1 and EJBModule2.

The EJBModule1 has an application profile named AppProfile1. This AppProfile1 is

registered by a task named task1. This task1 becomes a known-to-application task and is

1836 Administering applications and their environment

honored when associated with a unit of work within this application. With the presence of

any known-to-application task, method level access intent configurations are ignored and

only bean level access intent configurations are applied.

The EJBModule2 contains no application profile configuration data. All entity beans are not

configured with bean level access intent explicitly, but some methods have method level

access intent configurations. If an entity bean in the EJBModule2 is loaded in a unit of work

that is associated with task1, the bean-level access intent configuration is applied and

method level access intent configuration is ignored. Because the bean level access intent is

not set explicitly, the default bean level access intent, which is wsPessimisticUpdate-
WeakestLockAtLoad, is applied.

Tasks and units of work considerations:

The application profiling function works under the unit of work (UOW) concept. UOW in this case means

either a transaction or an ActivitySession.

 The task name on a method is used only when a UOW is begun, because of that method being invoked.

This gives it a more predictable data access pattern based on the active unit of work. To be more specific,

this approach ensures that a bean type with only one configured access intent is loaded within a UOW,

because a bean is configured with only one access intent within an application profile. This configured

access intent for a bean type is determined at assembly time and is enforced by the Application Profile

service.

A task name is always associated with a unit of work, and that task name does not change for the duration

of that UOW. When a UOW associated with a method is begun because of that method being invoked, if a

task name is associated with the method then that task name is used to name the UOW. A task assigned

to a unit of work is considered a named UOW.

If a task name is not associated with the method that began the UOW, then a default access intent is used

and the UOW is unnamed. A unit of work can only be named when the UOW is begun and that task name

remains for the life of the UOW. Furthermore, the task assigned to a UOW can never be changed for the

life of that UOW. Any task names associated with a method are ignored if that method does not begin a

UOW (either container managed or component managed).

It is not possible to change the task name assigned to a unit of work. However, it is possible that in a call

sequence consisting of many different application calls a different task name might need to be used for

different calls. In this case it is important for the deployer to begin a new UOW and associate with the

UOW the necessary task name. For example, assume you have the following beans: sb1 is a session

bean, eb2 and eb3 are container managed persistence (CMP) entity beans. When sb1 is called, a

transaction is begun and task ’t1’ is associated with it. Further assume that sb1 then calls eb2 and eb3. If

neither eb2 or eb3 create a unit of work, then these beans execute within the UOW context from sb1 and

as such its task name (t1). If eb2 or eb3 need to execute within a task name other than t1, then these

beans must define a unit of work and associate with it the appropriate task name.

Note that if an application deployer does not specifically configure a transaction on a method, WebSphere

Application Server creates a global transaction by default. This is important because if a task is defined on

a method, but a UOW is not specifically configured on that method, the EJB container automatically

creates a global transaction on behalf of that method. As such, this task name is associated with the UOW

and any application profiles mapped to this task are used.

Note: If you select the 5.x Compatibility Mode attribute on the Application Profile Service’s console page,

then tasks configured on J2EE 1.3 applications are not necessarily associated with units of work

and can arbitrarily be applied and overridden. This is not a recommended mode of operation and

can lead to unexpected deadlocks during database access. Tasks are not communicated on

Chapter 20. Learn about WebSphere programming extensions 1837

requests between applications that are running under the Application Profiling 5.x Compatibility

Mode and applications that are not running under the compatibility mode.

Application profiles:

An application profile is the set of access intent policies that should be selectively applied for a particular

unit of work (a transaction or ActivitySession).

 Application profiling enables applications to run under different sets of policies depending on the active

task under which the application is operating.

The active task depends upon the current unit of work mechanism. If the current unit of work is a global

transaction, then the task is the name associated with that transaction. If the global transaction was not

named when it was initiated, then there is no active task anywhere in the scope of that transaction.

If the current unit of work is a local transaction associated with an ActivitySession, then the task is the

name associated with that ActivitySession. If the ActivitySession was not named when it was initiated, then

there is no active task for any local transaction bound to that ActivitySession. If the current unit of work is

a local transaction that is not associated with an ActivitySession, then the task is the name associated with

that local transaction. If the local transaction was not associated with a task when the local transaction

was initiated, then there is no active task for the duration of that local transaction. In other words, the

active task is the task associated with the unit of work on the thread that is coordinating database

resources. If the controlling unit of work was not associated with a task when that unit of work was

initiated, then there is no active task in the scope of that unit of work.

Note: If you select the 5.x Compatibility Mode attribute on the Application Profile Service’s console page,

then tasks configured on J2EE 1.3 applications are not necessarily associated with units of work

and can arbitrarily be applied and overridden. This is not a recommended mode of operation and

can lead to unexpected deadlocks during database access. Tasks are not communicated on

requests between applications that are running under the Application Profiling 5.x Compatibility

Mode and applications that are not running under the compatibility mode.

For a Version 6.x client to interact with applications run under the Application Profiling 5.x

Compatibility Mode, you must set the appprofileCompatibility system property to true in the client

process. You can do this by specifying the -CCDappprofileCompatibility=true option when invoking

the launchClient command.

Consider an application that centralizes the student records for a school district. These records are

frequently accessed by the school district’s central office in order to generate reports. The report

generation process would be optimized if it held no locks with the back end system, and if the records

could be read into memory with as few back end operations as possible. Occasionally, however, the

records are updated by the students’ instructors. Without the ability to distinguish between transactions,

the developer is forced to assume a worst-case scenario and, wishing to use pessimistic concurrency, lock

the records for all transactions.

Using the application profiling service, the developer can configure in as many ways as necessary the

access intent under which the students’ records are loaded. Under one profile, the records can be

configured with an exclusive pessimistic update intent, not only locking-out competing transactions but

ensuring that the student is not removed from the system before the transaction completes. Under another

profile, the records can be configured with an optimistic intent as part of an object graph that is read from

the back end system in a single database operation. The task represented by the pessimistic profile

receives the strong-locking semantics required for certain transactions, while the task represented by the

optimistic profile receives the performance benefits appropriate for other transactions.

Application profiling performance considerations:

1838 Administering applications and their environment

Application profiling enables assembly configuration techniques that improve your application run time,

performance and scalability. You can configure tasks that identify incoming requests, identify access

intents determining concurrency and other data access characteristics, and profiles that map the tasks to

the access intents.

 The capability to configure the application server can improve performance, efficiency and scalability, while

reducing development and maintenance costs. The application profiling service has no tuning parameters,

other than a checkbox for disabling the service if the service is not necessary. However, the overhead for

the application profile service is small and should not be disabled, or unpredictable results can occur.

Access intents enable you to specify data access characteristics. The WebSphere runtime environment

uses these hints to optimize the access to the data, by setting the appropriate isolation level and

concurrency. Various access intent hints can be grouped together in an access intent policy.

In WebSphere Application Server, it is recommended that you configure bean level access intent for

loading a given bean. Application profiling enables you to configure multiple access intent policies on the

entity bean, if desired. Some callers can load a bean with the intent to read data, while others can load the

bean for update. The capability to configure the application server can improve performance, efficiency,

and scalability, while reducing development and maintenance costs.

Access intents enable the EJB container to be configured providing optimal performance based on the

specific type of enterprise bean used. Various access intent hints can be specified declaratively at

deployment time to indicate to WebSphere resources, such as the container and persistence manager, to

provide the appropriate access intent services for every EJB request.

The application profiling service improves overall entity bean performance and throughput by fine tuning

the run time behavior. The application profiling service enables EJB optimizations to be customized for

multiple user access patterns without resorting to ″worst case″ choices, such as pessimistic update on a

bean accessed with the findByPrimaryKey method, regardless of whether the client needs it for read or for

an update.

Application profiling provides the capability to define the following hierarchy: Container-Managed Tasks >

Application Profiles > Access Intent Policies > Access Intent Overrides. Container-managed tasks

identify units of work (UOW) and are associated with a method or a set of methods. When a method

associated with the task is invoked, the task name is propagated with the request. For example, a UOW

refers to a unique path within the application that can correspond to a transaction or ActivitySession. The

name of the task is assigned declaratively to a J2EE client or servlet, or to the method of an enterprise

bean. The task name identifies the starting point of a call graph or subgraph; the task name flows from the

starting point of the graph downstream on all subsequent IIOP requests, identifying each subsequent

invocation along the graph as belonging to the configured task. As a best practice, wherever a UOW

starts, for example, a transaction or an ActivitySession, assign a task to that starting point.

The application profile service associates the propagated tasks with access intent policies. When a bean is

loaded and data is retrieved, the characteristics used for the retrieval of the data are dictated by the

application profile. The application profile configures the access intent policy and the overrides that should

be used to access data for a specific task.

Access intent policies determine how beans are loaded for specific tasks and how data is accessed during

the transaction. The access intent policy is a named group of access intent hints. The hints can be used,

depending on the characteristics of the database and resource manager. Various access intent hints

applied to the data access operation govern data integrity. The general rule is, the more data integrity, the

more overhead. More overhead causes lower throughput and the opportunity for simultaneous data access

from multiple clients.

If specified, access intent overrides provide further configuration for the access intent policy.

Chapter 20. Learn about WebSphere programming extensions 1839

Best practices

Application profiling is effective in a variety of different scenarios. The following are example situations

where application profiling is useful

v The same bean is loaded with different data access patterns

The same bean or set of beans can be reused across applications, but each of those applications has

differing requirements for the bean or for beans within the invocation graph. One application can require

that beans be loaded for update, while another application requires beans be loaded for read only.

Application profiling enables deploy time configuration for beans to distinguish between EJB loading

requirements.

v Different clients have different data access requirements

The same bean or set of beans can be used for different types of client requests. When those clients

have different requirements for the bean, or for beans within the invocation graph, application profiling

can be used to tailor the bean loading characteristics to the requirements of the client. One client can

require beans be loaded for update, while another client requires beans be loaded for read only.

Application profiling enables deploy time configuration for beans to distinguish between EJB loading

requirements.

Monitoring tools

You can use the Tivoli Performance Viewer, database and logs as monitoring tools.

You can use the Tivoli Performance Viewer to monitor various metrics associated with beans in an

application profiling configuration. The following sections describe at a high level the Tivoli Performance

Viewer metrics that reflect changes when access intents and application profiling are used:

v Collection scope

The enterprise beans group contains EJB life cycle information, either a cumulative value for a group of

beans, or for specific beans. You can monitor this information to determine the difference between using

the ActivitySession scope versus the transaction scope. For the transaction scope, depending on how

the container transactions are defined, activates and passivates can be associated with method

invocations. The application could use the ActivitySession scope to reduce the frequency of activates

and passivates. For more information, see ″Using the ActivitySession service.″

v Collection increment

The enterprise beans group contains EJB life cycle information, either a cumulative value for a group of

beans, or for specific beans. You can monitor Num Activates to watch the number of enterprise beans

activated for a particular findByPrimaryKey operation. For example, if the collection increment is set to

10, rather than the default 25, the Num Activates value shows 25 for the initial findByPrimaryKey, before

any result set iterator runs. If the number of activates rarely exceeds the collection increment, consider

reducing the collection increment setting.

v Resource manager prefetch increment

The resource manager prefetch increment is a hint acted upon by the database engine to depend upon

the database. The Tivoli Performance Viewer does not have a metric available to show the effect of the

resource manager prefetch increment setting.

v Read ahead hint

The enterprise beans group contains EJB life cycle information, either a cumulative value for a group of

beans, or for specific beans. You can monitor Num Activates to watch the number of enterprise beans

activated for a particular request. If a read ahead association is not in use, the Num Activates value

shows a lower initial number. If a read ahead association is in use, the Num Activates value represents

the number of activates for the entire call graph.

Database tools are helpful in monitoring the different bean loading characteristics that introduce

contention and concurrency issues. These issues can be solved by application profiling, or can be made

worse by the misapplication of access intent policies.

1840 Administering applications and their environment

Database tools are useful for monitoring locking and contention characteristics, such as locks, deadlocks

and connections open. For example, for locks the DB2 Snapshot Monitor can show statistics for lock waits,

lock time-outs and lock escalations. If excessive lock waits and time-outs are occurring, application

profiling can define specific client tasks that require a more string level of locking, and other client tasks

that do not require locking. Or, a different access intent policy with less restrictive locking could be applied.

After applying this configuration change, the snapshot monitor shows less locking behavior. Refer to

information about the database you are using on how to monitor for locking and contention.

The application server logs can be monitored for information about rollbacks, deadlocks, and other data

access or transaction characteristics that can degrade performance or cause the application to fail.

Application profiling tasks

Tasks are named units of work. They are the mechanism by which the runtime environment determines

which access intent policies to apply when an entity bean’s data is loaded from the back end system.

Application profiles enable developers to configure an entity bean with multiple access intent policies; if

there are n instances of profiles in a given application, each bean can be configured with as many as n

access intent policies.

A task is associated with a transaction or an ActivitySession at the initiation of the unit of work. The task,

which cannot change for the lifetime of the unit of work, is always available anywhere within the scope of

that unit of work to apply the access intent policy configured for that particular unit of work.

If an enterprise application is configured to use application profiling in any part of the application, then

application profiling is active and method-level access intent configurations are ignored when units of

works are associated with known-to-application tasks.

If an entity bean is loaded in a unit of work that is not associated with a task, or is associated with a task

that is unassociated with an application profile, the default bean-level access intent or the method-level

access intent configuration is applied. If a unit of work is associated with a task that is configured with an

application profile, the bean-level access intent configuration within the appropriate application profile is

applied.

Note: The application profile configuration is application scope configuration data. If any enterprise

Javabean (EJB) module contains an application profile configuration, all other EJB modules are

implicitly regulated by the Application Profiling service even if they do not contain application profile

configuration data.

For example, an application has two EJB modules: EJBModule1 and EJBModule2.

The EJBModule1 has an application profile named AppProfile1. This AppProfile1 is registered by a

task named task1. This task1 becomes a known-to-application task and is honored when

associated with a unit of work within this application. With the presence of any known-to-application

task, method level access intent configurations are ignored and only bean level access intent

configurations are applied.

The EJBModule2 contains no application profile configuration data. All entity beans are not

configured with bean level access intent explicitly, but some methods have method level access

intent configurations. If an entity bean in the EJBModule2 is loaded in a unit of work that is

associated with task1, the bean-level access intent configuration is applied and method level

access intent configuration is ignored. Because the bean level access intent is not set explicitly, the

default bean level access intent, which is wsPessimisticUpdate-WeakestLockAtLoad, is applied.

The active task depends upon the current unit of work mechanism. If the current unit of work is a global

transaction, then the task is the name associated with that transaction. If the global transaction was not

named when it was initiated, then there is no active task anywhere in the scope of that transaction.

Chapter 20. Learn about WebSphere programming extensions 1841

If the current unit of work is a local transaction associated with an ActivitySession, then the task is the

name associated with that ActivitySession. If the ActivitySession was not named when it was initiated, then

there is no active task for any local transaction bound to that ActivitySession. If the current unit of work is

a local transaction that is not associated with an ActivitySession, then the task is the name associated with

that local transaction. If the local transaction was not associated with a task when the local transaction

was initiated, then there is no active task for the duration of that local transaction. In other words, the

active task is the task associated with the unit of work on the thread that is coordinating database

resources. If the controlling unit of work was not associated with a task when that unit of work was

initiated, then there is no active task in the scope of that unit of work.

For example, consider a school district application that calls through a session bean in order to interact

with student records. One method on the session bean allows administrators to modify the students’

records; another method supports student requests to view their own records. Without application profiling,

the two tasks would operate anonymously and the runtime environment would be unable to distinguish

work operating on behalf of one task or the other. To optimize the application, a developer can configure

one of the methods on the session bean with the task ″updateRecords″ and the other method on the

session bean with the task ″readRecords″. When registered with an application profile that has the student

bean configured with the appropriate locking access intent, the ″updateRecords″ task is assured that it is

not unnecessarily blocking transactions that need to only read the records. For more information about the

relationships between tasks and units of work, see “Tasks and units of work considerations” on page 1837.

Tasks can be configured to be managed by the container or to be programmatically established by the

application. Container managed tasks can be configured on servlets, JavaServer Pages (JSP) files,

application clients, and the methods of Enterprise JavaBeans (EJB). Configured container-managed tasks

are only associated with units of work that the container initiates after the task name is set. Application

managed tasks can be configured on all J2EE components. In the case of enterprise beans they must be

bean managed transactions.″

best-practices: If you select the 5.x Compatibility Mode attribute on the Application Profile Service’s

console page, then tasks configured on J2EE 1.3 applications are not necessarily

associated with units of work and can arbitrarily be applied and overridden. This is not a

recommended mode of operation and can lead to unexpected deadlocks during database

access. Tasks are not communicated on requests between applications that are running

under the Application Profiling 5.x Compatibility Mode and applications that are not

running under the compatibility mode.

For a Version 6.x client to interact with applications run under the Application Profiling 5.x

Compatibility Mode, you must set the appprofileCompatibility system property to true in

the client process. You can do this by specifying the -CCDappprofileCompatibility=true

option when invoking the launchClient command.

Application profiling interoperability

Using application profiling with 5.x compatibility mode or in a clustered environment with mixed

WebSphere Application Server product versions and mixed platforms can affect its behavior in different

ways.

The effect of 5.x Compatibility Mode

Application profiling supports forward compatibility. Application profiles created in previous versions of

WebSphere Application Server (Enterprise Edition 5.0 or WebSphere Business Integration Server

Foundation 5.1) can only run in WebSphere Application Server Version 6 or later if the Application Profiling

5.x Compatibility Mode attribute is turned on. If the 5.x Compatibility Mode attribute is off, Version 5

application profiles might display unexpected behavior.

Similarly, application profiles that you create using the latest version of WebSphere Application Server are

not compatible with Version 5 or earlier versions. Even applications configured with application profiles run

1842 Administering applications and their environment

on Version 6.x servers with the Application Profiling 5.x Compatibility Mode attribute turned on cannot

interact with applications configured with profiles run on Version 5 servers.

Note: If you select the 5.x Compatibility Mode attribute on the Application Profile Service’s console page,

then tasks configured on J2EE 1.3 applications are not necessarily associated with units of work

and can arbitrarily be applied and overridden. This is not a recommended mode of operation and

can lead to unexpected deadlocks during database access. Tasks are not communicated on

requests between applications that are running under the Application Profiling 5.x Compatibility

Mode and applications that are not running under the compatibility mode.

For a Version 6.x client to interact with applications run under the Application Profiling 5.x Compatibility

Mode, you must set the appprofileCompatibility system property to true in the client process. You can do

this by specifying the -CCDappprofileCompatibility=true option when invoking the launchClient command.

Considerations for a clustered environment

In a clustered environment with mixed WebSphere Application Server product versions and mixed

platforms, applications configured with application profiles might exhibit unexpected behavior because

previous versions of server members cannot support the application profiling of Version 6.x.

If a clustered environment contains both Version 5.x and 6.x server members, and if any applications are

configured with application profiles, the Application Profiling 5.x Compatibility Mode attribute must be

turned on in Version 6 server members. Still, this cluster can only support Version 5 application profiling

behavior. To support applications configured with Version 6 application profiles in a cluster environment, all

server members in the cluster must be at the Version 6.x level.

WebSphere Application Server Enterprise Edition Version 5.0.2

If you use WebSphere Application Server Enterprise Edition 5.0.2, you must apply WebSphere Application

Server Version 5 service pack 7 or later service pack to enable Application Profiling interoperability.

Managing application profiles

Using the administrative console, you can add tasks to or remove tasks from application profiles.

1. Start the administrative console.

2. Select Applications > Enterprise Applications > application_name > Application Profiles >

profile_name > Tasks.

3. On the Tasks collection page, you can add new tasks to the profile, delete tasks, edit current task

settings, and so on.

Note that, within the scope of an application, no task can be configured on more than one application

profile. In such a situation, your application cannot be restarted until you correct the configuration.

4. Save your configuration.

5. Restart the application in order for your changes to take effect.

Using the TaskNameManager interface

Using the TaskNameManager interface, you can programmatically set the current task name. It enables

both overriding of the current task associated with the thread of execution and resetting of the current task

with the original task.

Except for J2EE 1.3 applications that are running on a server where the 5.x Compatibility Mode attribute is

selected, this interface cannot be used within Enterprise JavaBeans that are configured for

container-managed transactions or container-managed ActivitySessions because units of work can only be

associated with a task at the exact time that the unit of work is initiated. The call to set the task name

must therefore be invoked before the unit of work is begun. Units of work cannot be named after they are

begun. Calls on this interface during the execution of a container-managed unit of work are simply ignored.

Chapter 20. Learn about WebSphere programming extensions 1843

Application profiling does not support queries of the task that is in operation at run time. Instead,

applications interact with logical task names that are declaratively configured as application managed

tasks. Logical references enable the actual task name to be changed without having to recompile

applications.

Wherever possible, avoid setting tasks programmatically. The declarative method results in more portable

function that can be easily adjusted without requiring redevelopment and recompilation.

Note: If you select the 5.x Compatibility Mode attribute on the Application Profile Service’s console page,

then tasks configured on J2EE 1.3 applications are not necessarily associated with units of work

and can arbitrarily be applied and overridden. This is not a recommended mode of operation and

can lead to unexpected deadlocks during database access. Tasks are not communicated on

requests between applications that are running under the Application Profiling 5.x Compatibility

Mode and applications that are not running under the compatibility mode.

For a Version 6.0 client to interact with applications run under the Application Profiling 5.x

Compatibility Mode, you must set the appprofileCompatibility system property to true in the client

process. You can do this by specifying the -CCDappprofileCompatibility=true option when invoking

the launchClient command.

1. Configure application-managed tasks. Application profiling requires that a task name reference be

declared for any task that is to be set programmatically. Task name references introduce a level of

indirection so that the actual task set at run time can be adjusted by reassembly without requiring

recoding or recompilation. Any attempt to set a task name that is undeclared as a task reference

results in the raising of an exception. If a unit of work has already begun when a task name is set,

then that existing unit of work is not associated with the task name. Only units of work that are begun

after the task name is set are associated with the task.

Configure application-managed tasks as described in the following topics:

v Configuring application managed tasks for web components.

v Configuring application managed tasks for application clients.

v Configuring application managed tasks for Enterprise JavaBeans.

2. Perform a Java Naming and Directory Interface (JNDI) lookup on the TaskNameManager interface:

InitialContext ic = new InitialContext();

TaskNameManager tnManager = ic.lookup

("java:comp/websphere/AppProfile/TaskNameManager");

The TaskNameManager interface is not bound into the namespace if the application profiling service is

disabled.

3. Set the task name:

try {

tnManager.setTaskName("updateAccount");

}

catch (IllegalTaskNameException e) {

// task name reference not configured. Handle error.

}

// . . .

//

The name passed to the setTaskName() method (″updateAccount″ in this example) is actually a task

name reference that you configured in step one.

4. Begin a UserTransaction

Note: If you are using a J2EE 1.3 application with the 5.x Compatibility mode set, the task name set

in step 3 is now the active task name and you can disregard this step.

If you are using a J2EE application and the compatibility mode is not set, or if you are using a J2EE

1.4 application, you must begin a transaction for the task name to become active. A task name can

1844 Administering applications and their environment

only be associated with a transaction. Furthermore, it is associated with a transaction when that

transaction is begun, and that task name is associated with the transaction for the life of the

transaction. Therefore, the task name set above is not active at this point. You must begin a

UserTransaction as the following code snippet illustrates:

try{

 InitialContext initCtx = new InitialContext();

 userTran = (UserTransaction) initCtx.lookup("java:comp/UserTransaction");

 userTran.begin();

}

catch(Exception e){

}

// . . .

//

Notice the resetTaskName() method on the TaskNameManager interface. Resetting the task name has

no effect unless called by a J2EE 1.3 application running on a server for which the 5.x Compatibility

Mode attribute is selected on the Application Profile Service’s console page. This is not a

recommended mode of operation and can lead to unexpected deadlocks during database access. A

call to resetTask() should only be used by J2EE 1.3 applications when the 5.x Compatibility mode is

set to undo the effects of any setTaskName() method operations and reestablish whatever task name

was current when the component began execution. If the setTaskName() method has not been called,

the resetTaskName() method has no effect.

TaskNameManager interface:

The TaskNameManager is the programmatic interface to the application profiling function. Because on rare

occasions it may be necessary to programmatically set the current task name, the TaskNameManager

interface enables both overriding of the current task associated with the thread of execution and resetting

of the current task with the original task.

 Application profiling enables you to identify particular units of work to the WebSphere Application Server

runtime environment. The run time can tailor its support to the exact requirements of that unit of work.

Access intent is currently the only runtime component that makes use of the application profiling

functionality. For example, you can configure one transaction to load an entity bean with strong update

locks and configure another transaction to load the same entity bean without locks.

Application profiling introduces two concepts in order to achieve this function: tasks and profiles.

A task is a configurable name for a unit of work. Unit of work in this case means either a transaction or an

ActivitySession.

A profile is simply a mapping of a task to a set of access intent policies that are configured on entity

beans. When an invocation on a bean (whether by a finder method, a container managed relationship

(CMR) getter, or a dynamic query) requires data to be retrieved from the back end system, the task of the

active unit of work associated with the request is used to determine the exact requirement of the

transaction. The same bean loads and behaves differently in the context of the task-to-profile mapping.

Each profile provides the developer an opportunity to reconfigure the application’s access intent.

Except for J2EE 1.3 applications that are executing on a server where the 5.x Compatibility Mode attribute

is selected, this interface cannot be used within Enterprise JavaBeans that are configured for

container-managed transactions or container-managed ActivitySessions because units of work can only be

associated with a task at the exact time that the unit of work is initiated. The call to set the task name

must therefore be started before the unit of work is begun. Units of work cannot be named after they are

begun. Calls on this interface during the execution of a container-managed unit of work are simply ignored.

The TaskNameManager interface is available to all J2EE components using the following Java Naming

and Directory Interface (JNDI) lookup:

Chapter 20. Learn about WebSphere programming extensions 1845

java:comp/websphere/AppProfile/TaskNameManager

package com.ibm.websphere.appprofile;

/**

* The TaskNameManager is the programmatic interface

* to the application profiling function. Using this interface,

* programmers can set the current task name on the

* thread of execution. The task name must have been

* configured in the deployment descriptors as a task

* reference associated with a task. The set task

* name’s scope is the duration of the method

* invocation in the EJB and Web components and for

* the duration of the client process, or until the

* resetTaskName() method is invoked.

*/

public interface TaskNameManager {

/**

* Set the thread’s current task name to the specified

* parameter. The task name must have been configured as

* a task reference with a corresponding task or the

* IllegalTaskName exception is thrown.

*/

public void setTaskName(String taskName) throws IllegalTaskNameException;

/**

* Sets the thread’s task name to the value that was set

* at, or imported into, the beginning of the method

* invocation (for EJB and Web components) or process

* (for J2EE clients).

*/

public void resetTaskName();

}

Application profiling exceptions

The following exceptions are thrown in response to various illegal actions related to application profiling.

com.ibm.ws.exception.RuntimeWarning

This exception is thrown when the application is started, if the application is configured incorrectly.

The startup is consequently terminated. Some examples of bad configurations include:

v A task configured on two different application profiles.

v A method configured with two different task run-as policies .
com.ibm.websphere.appprofile.IllegalTaskNameException

This exception is raised if an application attempts to programmatically set a task when that task

has not been configured as a task name reference.

Application profiling service settings

Use this page to enable or disable the application profiling service.

Applications that are configured to use the application profiling service do not start successfully unless the

application profiling service is enabled.

To view this administrative console page, click Servers > Application Servers > server_name >

Container Services> Application Profiling Service.

Enable service at server startup:

Specifies whether the server attempts to start the application profiling service.

 Default Selected

1846 Administering applications and their environment

Range Selected

When the application server starts, it attempts to

start the application profiling service

automatically.

Cleared

The application profiling service is not enabled

when an application server starts. Applications

configured with application profiling cannot be

started on servers that do not enable the

application profiling service.

5.x Compatibility Mode:

When selected, J2EE 1.3 applications that use application profiling execute exactly as they did in the 5.x

releases of WebSphere Application Server.

 For a Version 6.x client to interact with applications run under the Application Profiling 5.x Compatibility

Mode, you must set the appprofileCompatibility system property to true in the client process. You can do

this by specifying the -CCDappprofileCompatibility=true option when invoking the launchClient command.

Operation in this mode can lead to unexpected deadlocks during database access. Also, tasks do not

propagate on remote invocations between J2EE 1.3 and J2EE 1.4 applications, possibly resulting in the

use of unexpected access intent policies. This mode also results in performance degradation if

applications configured with application profiling are installed on the server.

Support for J2EE 1.3 applications operating with 5.x Compatibility Mode = true is deprecated as of

WebSphere Application Server Version 6.x. When cleared, J2EE 1.3 applications that use application

profiling execute with the same constraints as J2EE 1.4 applications. In this mode, tasks are established

only when a new unit of work begins. This means the complete unit of work executes under at most one

task.

 Default Selected

Range Selected

J2EE 1.3 applications that are dependent on the

behavior of application profiling service for

Version 5.x can run with the same behavior in

Version 6.0.

Cleared

Tasks are established only when a new global

unit of work begins.

Application profile collection

Use this page to view application profiles and manage tasks associated with application profiles.

An application profile is a set of policies that are to be applied during the execution of an enterprise bean

and a set of tasks that are associated with that profile. Mapping tasks to application profiles will control

which access intent policies are applied at run time for the units of work that correspond to a particular

task.

You can use an assembly tool such as Application Server Toolkit (AST) or Rational Application Developer

to add or delete application profiles. The AST is shipped with WebSphere Application Server version 6.x.

To view this administrative console page, click Applications > Enterprise Applications >

application_name > Application Profiles.

Name:

Chapter 20. Learn about WebSphere programming extensions 1847

The name of the application profile.

 The name must be unique; multiple profiles cannot share the same name.

 Data type String

Description:

A description of the application profile.

 Data type String

Application profile settings:

Use this page to modify application profile settings.

 To view this administrative console page, click Applications > Enterprise Applications >

application_name > Application Profiles > application_profile_name.

Name:

The name of the application profile.

 The name must be unique; multiple profiles cannot share the same name.

 Data type String

Description:

A description of the application profile.

 Data type String

Task collection:

Use this page to manage tasks.

 Requests associated with any of the configured tasks operate under the access-intent policies that are

configured with the profile. A task can be configured on only one application profile.

To view this administrative console page, click Applications > Enterprise Applications >

application_name > Application Profiles > application_profile_name > Tasks.

Name:

The name of the task.

 The task name must be unique among the set of application profiles.

 Data type String

Description:

A description of the task.

1848 Administering applications and their environment

Data type String

Task settings:

Use this page to modify task settings.

 To view this administrative console page, click Applications > Enterprise Applications >

application_name > Application Profiles > application_profile_name > Tasks > task_name.

Name:

The name of the task.

 The task name must be unique among the set of application profiles.

 Data type String

Description:

A description of the task.

 Data type String

Asynchronous beans

Using asynchronous beans

The asynchronous beans feature adds a new set of APIs that enable Java 2 Platform Enterprise Edition

J2EE applications to run asynchronously inside an Integration Server.

This topic provides a brief overview of the tasks involved in using asynchronous beans. For a more

detailed description of the asynchronous beans model, review the conceptual topic Asynchronous beans.

For detailed information on the programming model for supported asynchronous beans interfaces, see the

topic Work managers.

1. Configure work managers.

2. Configure timer managers.

3. Assemble applications that use asynchronous beans work managers.

4. Develop work objects to run code in parallel.

5. Develop event listeners.

6. Develop asynchronous scopes.

Asynchronous beans

An asynchronous bean is a Java object or enterprise bean that can run asynchronously by a Java 2

Platform Enterprise Edition (J2EE) application, using the J2EE context of the asynchronous bean creator.

Asynchronous beans can improve performance by enabling a J2EE program to decompose operations into

parallel tasks. Asynchronous beans support the construction of stateful, active J2EE applications. These

applications address a segment of the application space that J2EE has not previously addressed (that is,

advanced applications that require application threading, active agents within a server application, or

distributed monitoring capabilities).

Chapter 20. Learn about WebSphere programming extensions 1849

Asynchronous beans can run using the J2EE security context of the creator J2EE component. These

beans also can run with copies of other J2EE contexts, such as:

v Internationalization context

v Application profiles, which are not supported for J2EE 1.4 applications and deprecated for J2EE 1.3

applications

v Work areas

Asynchronous bean interfaces

Four types of asynchronous beans exist:

Work object

There are two work interfaces that essentially accomplish the same goal. The legacy

Asynchronous Beans work interface is com.ibm.websphere.asynchbeans.Work, and the CommonJ

work interface is commonj.work.Work. A work object runs parallel to its caller using the work

manager startWork or schedule method (startWork for legacy Asynchronous Beans and schedule

for CommonJ). Applications implement work objects to run code blocks asynchronously. For more

information on the Work interface, see the API documentation.

Timer listener

This interface is an object that implements the commonj\timers\TimerListener interface. Timer

listeners are called when a high-speed transient timer expires. For more information on the

TimerListener interface, see the API documentation.

Alarm listener

An alarm listener is an object that implements the com.ibm.websphere.asynchbeans.AlarmListener

interface. Alarm listeners are called when a high-speed transient alarm expires. For more

information on the AlarmListener interface, see the API documentation.

Event listener

An event listener can implement any interface. An event listener is a lightweight, asynchronous

notification mechanism for asynchronous events within a single Java virtual machine (JVM). An

event listener typically enables J2EE components within a single application to notify each other

about various asynchronous events.

Supporting interfaces

Work manager

Work managers are thread pools that administrators create for J2EE applications. The

administrator specifies the properties of the thread pool and a policy that determines which J2EE

contexts the asynchronous bean inherits.

CommonJ Work manager

The CommonJ work manager is similar to the work manager. The difference between the two is

that the CommonJ work manager contains a subset of the asynchronous beans work manager

methods. Although CommonJ work manager functions in a J2EE 1.4 environment, each JNDI

lookup of a work manager does not return a new instance of the WorkManager. All the JNDI

lookup of work managers within a scope have the same instance.

Timer manager

Timer managers implement the commonj.timers.TimerManager interface, which enables J2EE

applications, including servlets, EJB applications, and JCA Resource Adapters, to schedule future

timer notifications and receive timer notifications. The timer manager for Application Servers

specification provides an application-server supported alternative to using the J2SE

java.util.Timer class, which is inappropriate for managed environments.

Event source

An event source implements the com.ibm.websphere.asynchbeans.EventSource interface. An

event source is a system-provided object that supports a generic, type-safe asynchronous

notification server within a single JVM. The event source enables event listener objects, which

implement any interface to be registered. For more information on the EventSource interface, see

the API documentation.

Event source events

Every event source can generate its own events, such as listener count changed. An application

1850 Administering applications and their environment

can register an event listener object that implements the class

com.ibm.websphere.asynchbeans.EventSourceEvents. This action enables the application to catch

events such as listeners being added or removed, or a listener throwing an unexpected exception.

For more information on the EventSourceEvents class, see the API documentation.

Additional interfaces, including alarms and subsystem monitors, are introduced in the topic Developing

Asynchronous scopes, which discusses some of the advanced applications of asynchronous beans.

Transactions

Every asynchronous bean method is called using its own transaction, much like container-managed

transactions in typical enterprise beans. It is very similar to the situation when an Enterprise Java Beans

(EJB) method is called with TX_NOT_SUPPORTED. The runtime starts a local transaction before invoking

the method. The asynchronous bean method is free to start its own global transaction if this transaction is

possible for the calling J2EE component. For example, if an enterprise bean creates the component, the

method that creates the asynchronous bean must be TX_BEAN_MANAGED.

When you call an entity bean from within an asynchronous bean, for example, you must have a global

transactional context available on the current thread. Because asynchronous bean objects start local

transactional contexts, you can encapsulate all entity bean logic in a session bean that has a method

marked as TX_REQUIRES or equivalent. This process establishes a global transactional context from

which you can access one or more entity bean methods.

If the asynchronous bean method throws an exception, any local transactions are rolled back. If the

method returns normally, any incomplete local transactions are completed according to the unresolved

action policy configured for the bean. EJB methods can configure this policy using their deployment

descriptor. If the asynchronous bean method starts its own global transaction and does not commit this

global transaction, the transaction is rolled back when the method returns.

Access to J2EE component metadata

If an asynchronous bean is a J2EE component, such as a session bean, its own metadata is active when

a method is called. If an asynchronous bean is a simple Java object, the J2EE component metadata of the

creating component is available to the bean. Like its creator, the asynchronous bean can look up the

java:comp namespace. This look up enables the bean to access connection factories and enterprise

beans, just as it would if it were any other J2EE component. The environment properties of the creating

component also are available to the asynchronous bean.

The java:comp namespace is identical to the one available for the creating component; the same

restrictions apply. For example, if the enterprise bean or servlet has an EJB reference of

java:comp/env/ejb/MyEJB, this EJB reference is available to the asynchronous bean. In addition, all of the

connection factories use the same resource-sharing scope as the creating component.

Connection management

An asynchronous bean method can use the connections that its creating J2EE component obtained using

java:comp resource references. (For more information on resource references, see References). However,

the bean method must access those connections using a get, use or close pattern. There is no connection

caching between method calls on an asynchronous bean. The connection factories or datasources can be

cached, but the connections must be retrieved on every method call, used, and then closed. While the

asynchronous bean method can look up connection factories using a global Java Naming and Directory

Interface (JNDI) name, this is not recommended for the following reasons:

v The JNDI name is hard coded in the application (for example, as a property or string literal).

v The connection factories are not shared because there is no way to specify a sharing scope.

Chapter 20. Learn about WebSphere programming extensions 1851

For code examples that demonstrate both the correct and the incorrect ways to access connections from

asynchronous bean methods, see the topic Example: Asynchronous bean connection management.

Deferred start of Asynchronous Beans

Asynchronous beans support deferred start by allowing serialization of J2EE service context information.

The WorkWithExecutionContext createWorkWithExecutionContext(Work r) method on the WorkManager

interface will create a snapshot of the J2EE service contexts enabled on the WorkManager. The resulting

WorkWithExecutionContext object can then be serialized and stored in a database or file. This is useful

when it is necessary to store J2EE service contexts such as the current security identity or Locale and

later inflate them and run some work within this context. The WorkWithExecutionContext object can run

using the startWork() and doWork() methods on the WorkManager interface.

All WorkWithExecutionContext objects must be deserialized by the same application that serialized it. All

EJBs and classes must be present in order for Java to successfully inflate the objects contained within.

Deferred start and security

The asynchronous beans security service context might require Common Secure Interoperability Version 2

(CSIv2) identity assertion to be enabled. Identity assertion is required when a WorkWithExecutionContext

object is deserialized and run to Java Authentication and Authorization Service (JAAS) subject identity

credential assignment. Review the following topics to better understand if you need to enable identity

assertion, when using a WorkWithExecutionContext object:

v Configuring Common Secure Interoperability Version 2 and Security Authentication Service

authentication protocol

v Identity Assertion

There are also issues with interoperating with WorkWithExecutionContext objects from different versions of

the product. See Interoperating with asynchronous beans .

Work managers:

A work manager is a thread pool created for J2EE applications that use asynchronous beans.

 Using the administrative console, an administrator can configure any number of work managers. The

administrator specifies the properties of the work manager, including the J2EE context inheritance policy

for any asynchronous beans that use the work manager. The administrator binds each work manager to a

unique place in Java Naming and Directory Interface (JNDI). You can use work manager objects in any

one of the following interfaces:

v Asynchronous beans

v CommonJ work manager (For details, see the CommonJ work manager section in this article.)

The selected type of interface is resolved during the JNDI lookup time. The interface type is the value that

you specify in the ResourceRef, rather than the interface type specified in the configuration object. For

example, you can have one ResourceRef for each interface per configuration object, and each

ResourceRef lookup returns that appropriate type of instance.

The work managers provide a programming model for the J2EE 1.4 applications. For more information,

see the Programming model section in this article.

When writing a Web or EJB component that uses asynchronous beans, the developer should include a

resource reference in each component that needs access to a work manager. For more information on

resource references, see the article References. The component looks up a work manager using a logical

name in the component, java:comp namespace, just as it looks up a data source, enterprise bean or

connection factory.

1852 Administering applications and their environment

The deployer binds physical work managers to logical work managers when the application is deployed.

For example, if a developer needs three thread pools to partition work between bronze, silver, and gold

levels, the developer writes the component to pick a logical pool based on an attribute in the client

application profile. The deployer has the flexibility to decide how to map this request for three thread pools.

The deployer might decide to use a single thread pool on a small machine. In this case, the deployer

binds all three resource references to the same work manager instance (that is, the same JNDI name). A

larger machine might support three thread pools, so the deployer binds each resource reference to a

different work manager. Work managers can be shared between multiple J2EE applications installed on

the same server.

An application developer can use as many logical work managers as necessary. The deployer chooses

whether to map one physical work manager or several to the logical work manager defined in the

application.

All J2EE components that need to share asynchronous scope objects must use the same work manager.

These scope objects have an affinity with a single work manager. An application that uses asynchronous

scopes should verify that all of the components using scope objects use the same work manager.

When multiple work managers are defined, the underlying thread pools are created in a Java virtual

machine (JVM) only if an application within that JVM looks up the work manager. For example, there might

be ten thread pools (work managers) defined, but none are actually created until an application looks

these pools up.

Note: Asynchronous beans do not support submitting work to remote JVMs.

CommonJ Work Manager

The CommonJ work manager is similar to the work manager. The difference between the two is that the

CommonJ work manager contains a subset of the asynchronous beans work manager methods. Although

CommonJ work manager functions in a J2EE 1.4 environment, the interface does not return a new

instance for each JNDI naming lookup, since this specification is not included in the J2EE specification.

Remote start of work. The CommonJ Work specification optional feature for work running remotely is not

supported. Even if a unit of work implements the java.io.Serializable interface, the unit of work does

not run remotely.

How to look up a work manager

An application can look up a work manager as follows. Here, the component contains a resource

reference named wm/myWorkManager, which was bound to a physical work manager when the component

was deployed:

InitialContext ic = new InitialContext();

WorkManager wm = (WorkManager)ic.lookup("java:comp/env/wm/myWorkManager");

Inheritance J2EE contexts

Asynchronous beans can inherit the following J2EE contexts.

Internationalization context

When this option is selected and the internationalization service is enabled, and the

internationalization context that exists on the scheduling thread is available on the target thread.

Work area

When this option is selected, the work area context for every work area partition that exists on the

scheduling thread is available on the target thread.

Application profile (deprecated)

Application profile context is not supported and not available for J2EE 1.4 applications. For J2EE

Chapter 20. Learn about WebSphere programming extensions 1853

1.3 applications, when this option is selected, the application profile service is enabled, and the

application profile service property, 5.x compatibility mode, is selected. The application profile

task that is associated with the scheduling thread is available on the target thread for J2EE 1.3

applications. For J2EE 1.4 applications, the application profile task is a property of its associated

unit of work, rather than a thread. This option has no effect on the behavior of the task in J2EE

1.4 applications. The scheduled work that runs in a J2EE 1.4 application does not receive the

application profiling task of the scheduling thread.

Security

The asynchronous bean can be run as anonymous or as the client authenticated on the thread

that created it. This behavior is useful because the asynchronous bean can do only what the caller

can do. This action is more useful than a RUN_AS mechanism, for example, which prevents this

kind of behavior. When you select the Security option, the JAAS subject that exists on the

scheduling thread is available on the target thread. If not selected, the thread runs anonymously.

Component metadata

Component metadata is relevant only when the asynchronous bean is a simple Java object. If the

bean is a J2EE component, such as an enterprise bean, the component metadata is active.

The contexts that can be inherited depend on the work manager used by the application that creates the

asynchronous bean. Using the administrative console, the administrator defines the sticky context policy of

a work manager by selecting the services on which the work manager is to be made available.

Programming model

Work managers support the following programming models.

v CommonJ Specification. The Application Server Version 6.0 CommonJ programming model uses the

WorkManager and TimerManager to manage threads and timers asynchronously in the J2EE 1.4

environment.

v Asynchronous beans and CommonJ specification extensions. The current asynchronous beans

Event Source, asynchronous scopes, subsystem monitors and J2EEContext interfaces are a part of the

CommonJ extension.

The following table describes the method mapping between the CommonJ and Asynchronous beans APIs.

You can change the current asynchronous beans interfaces to use the CommonJ interface, while

maintaining the same functions.

 CommonJ package API Asynchronous beans

package

API

Work manager Work manager

Asynchronous beans Field - IMMEDIATE (long) Field - IMMEDIATE (int)

Field - INDEFINITE Field - INDEFINITE

schedule(Work) throws

WorkException,

IllegalArgumentException

startWork(Work) throws

WorkException,

IllegalArgumentException

schedule(Work,

WorkListener) throws

WorkException,

IllegalArgumentException

Note: Configure the work

manager work timeout

property to the value you

previously specified as

timeout_ms on startWork.

The default timeout value is

INDEFINITE.

startWork(Work, timeout_ms,

WorkListener) throws

WorkException,

IllegalArgumentException

1854 Administering applications and their environment

waitForAll(workItems,

timeout_ms)

join(workItems, JOIN_AND,

timeout_ms)

waitForAny(workItems,

timeout_ms)

join(workItems, JOIN_OR,

timeout_ms)

WorkItem WorkItem

getResult getResult

getStatus getStatus

WorkListener WorkListener

workAccepted(WorkEvent) workAccepted(WorkEvent)

workCompleted(WorkEvent) workCompleted(WorkEvent)

workRejected(WorkEvent) workRejected(WorkEvent)

workStarted(WorkEvent) workStarted(WorkEvent)

WorkEvent WorkEvent

Field - WORK_ACCEPTED Field - WORK_ACCEPTED

Field -

WORK_COMPLETED

Field - WORK_COMPLETED

Field - WORK_REJECTED Field - WORK_REJECTED

Field - WORK_STARTED Field - WORK_STARTED

getException getException

getType getType

getWorkItem().getResult()

Note: This API is valid only

after the work is complete.

getWork

Work (extends Runnable) Work (Extends Runnable)

isDaemon *

release release

RemoteWorkItem Not in this release. Use

Distributed WorkManager in

Extended Deployment or

future release

NA

TimerManager AlarmManager

resume *

schedule(Listener, Date) create(Listener, context, time) **

need to convert the parameters

schedule(Listener, Date,

period)

schedule(Listener, delay,

period)

scheduleAtFixedRate(Listener,

Date, period)

scheduleAtFixedRate(Listener,

delay, period)

stop

suspend

Timer Alarm

cancel cancel

Chapter 20. Learn about WebSphere programming extensions 1855

getPeriod

getTimerListener getAlarmListener

scheduledExecutionTime

TimerListener AlarmListener

timerExpired(timer) fired(alarm)

StopTimerListener Not applicable

timerStop(timer)

CancelTimerListener Not applicable

timerCancel(timer)

WorkException (Extends Exception) WorkException (Extends WsException)

WorkCompletedException (Extends WorkException) WorkCompletedException (Extends WorkException)

WorkRejectedException (Extends WorkException) WorkRejectedException (Extends WorkException)

For more information on work manager APIs, refer to the Javadoc.

Work manager examples

 Table 55. Look up work manager

Asynchronous beans CommonJ

InitialContext ctx = new InitialContext();

com.ibm.websphere.asynchbeans.WorkManager wm =

(com.ibm.websphere.asynchbeans.WorkManager)

 ctx.lookup(“java:comp/env/wm/MyWorkMgr”);

InitialContext ctx = new InitialContext();

commonj.work.WorkManager wm =

 (commonj.work.WorkManager)

 ctx.lookup(“java:comp/env/wm/MyWorkMgr”);

 Table 56. Create your work using MyWork

Asynchronous beans CommonJ

public class MyWork implements

com.ibm.websphere.asynchbeans.Work {

public void release() {

 }

 public void run() {

 System.out.println(“Running.....”);

 }

public class MyWork implements

commonj.work.Work{

 public boolean isDaemon() {

 return false;

 }

 public void release () {

 }

 public void run () {

 System.out.println(“Running.....”);

 }

 Table 57. Submit the work

Asynchronous beans CommonJ

1856 Administering applications and their environment

Table 57. Submit the work (continued)

 MyWork work1 = new MyWork(new URI =

“http://www.example./com/1”);

 MyWork work2 = new MyWork(new URI =

“http://www.example./com/2”);

 WorkItem item1;

 WorkItem item2;

 Item1=wm.startWork(work1);

 Item2=wm.startWork(work2);

 // case 1: block until all items are done

 ArrayList col1 = new ArrayList();

 Col1.add(item1);

 Col1.add(item2);

 wm.join(col1, WorkManager.JOIN_AND,

 (long)WorkManager.IMMEDIATE);

 // when the works are done

 System.out.println(“work1 data=”+work1.getData());

 System.out.println(“work2 data=”+work2.getData());

 // case 2: wait for any of the items to complete.

 Boolean ret = wm.join(col1,

 WorkManager.JOIN_OR, 1000);

 MyWork work1 = new MyWork(new URI =

“http://www.example./com/1”);

 MyWork work2 = new MyWork(new URI =

“http://www.example./com/2”);

 WorkItem item1;

 WorkItem item2;

 Item1=wm.schedule(work1);

 Item2=wm.schedule(work2);

 // case 1: block until all items are done

 Collection col1 = new ArrayList();

 col1.add(item1);

 col1.add(item2);

 wm.waitForAll(col1, WorkManager.IMMEDIATE);

 // when the works are done

 System.out.println(“work1 data=”+work1.getData());

 System.out.println(“work2 data=”+work2.getData());

 // case 2: wait for any of the items to complete.

 Collection finished = wm.waitForAny(col1,

 // check the workItems status

 if (finished != null) {

 Iterator I = finished.iterator();

 if (i.hasNext()) {

 WorkItem wi = (WorkItem) i.next();

 if (wi.equals(item1)) {

 System.out.println(“work1 =

 “+ work1.getData());

 } else if (wi.equals(item2)) {

 System.out.println(“work1 =

 “+ work1.getData());

 }

 }

 }

 Table 58. Create a timer manager

Asynchronous beans CommonJ

 InitialContext ctx = new InitialContext();

 com.ibm.websphere.asynchbeans.WorkManager wm =

 (com.ibm.websphere.asynchbeans.WorkManager)

 ctx.lookup(“java:comp/env/wm/MyWorkMgr”);

 AsynchScope ascope;

 Try {

 Ascope = wm.createAsynchScope(“ABScope”);

 } Catch (DuplicateKeyException ex)

 {

 Ascope = wm.findAsynchScope(“ABScope”);

 ex.printStackTrace();

 }

 // get an AlarmManager

 AlarmManager aMgr= ascope.getAlarmManager();

 InitialContext ctx = new InitialContext();

 Commonj.timers.TimerManager tm =

 (commonj.timers.TimerManager)

 ctx.lookup(“java:comp/env/tm/MyTimerManager”);

 Table 59. Fire the timer

Asynchronous beans CommonJ

Chapter 20. Learn about WebSphere programming extensions 1857

Table 59. Fire the timer (continued)

 // create alarm

 ABAlarmListener listener = new ABAlarmListener();

 Alarm am =

 aMgr.create(listener, “SomeContext”, 1000*60);

 // create Timer

 TimerListener listener =

 new StockQuoteTimerListener(“qqq”,

 “johndoe@example.com”);

 Timer timer = tm.schedule(listener, 1000*60);

 // Fixed-delay: schedule timer to expire in

 // 60 seconds from now and repeat every

 // hour thereafter.

 Timer timer = tm.schedule(listener, 1000*60,

 1000*30);

 // Fixed-rate: schedule timer to expire in

 // 60 seconds from now and repeat every

 // hour thereafter

 Timer timer = tm.scheduleAtFixedRate(listener,

 1000*60, 1000*30);

Timer managers:

The timer manager combines the functions of the asynchronous beans alarm manager and asynchronous

scope. So, when a timer manager is created, it internally uses an asynchronous scope to provide the timer

manager life cycle functions.

 You can look up the timer manager in the JNDI name space. This capability is different from the alarm

manager that is retrieved through the asynchronous beans scope. Each lookup of the timer manager

returns a new logical timer manager that can be destroyed independently of all other timer managers.

A timer manager can be configured with a number of thread pools through the administrative console. For

deployment you can bind this timer manager to a resource reference at assembly time, so the resource

reference can be used by the application to look up the timer manager.

The Java code to look up the timer manager is:

 InitialContext ic = new InitialContext();

 TimerManager tm = (TimerManager)ic.lookup(“java:comp/env/tm/TimerManager”);

The programming model for setting up the alarm listener and the timer listener is different. The following

code example shows that difference.

 Table 60. Set up the timer listener

Asynchronous beans CommonJ

1858 Administering applications and their environment

Table 60. Set up the timer listener (continued)

 public class ABAlarmListener implements

AlarmListener {

 public void fired(Alarm alarm) {

 System.out.println(“Alarm fired.

Context =” + alarm.getContext());

 }

 public class StockQuoteTimerListener implements

 TimerListener {

 String context;

 String url;

 public StockQuoteTimerListener(String context,

 String url){

 this.context = context;

 This.url = url;

 }

 public void timerExpired(Timer timer) {

 System.out.println(“Timer fired. Context =”+

((StockQuoteTimerListener)timer.getTimerListener())

.getContext());

 }

 public String getContext() {

 return context;

 }

 }

Example: Using connections with asynchronous beans:

An asynchronous bean method can use the connections that its creating Java 2 Platform Enterprise

Edition (J2EE) component obtained using java:comp resource references.

 For more information on resource references, see the topic References. The following is an example of an

asynchronous bean that uses connections correctly:

class GoodAsynchBean

{

 DataSource ds;

 public GoodAsynchBean()

 throws NamingException

 {

 // ok to cache a connection factory or datasource

 // as class instance data.

 InitialContext ic = new InitialContext();

 // it is assumed that the created J2EE component has this

 // resource reference defined in its deployment descriptor.

 ds = (DataSource)ic.lookup("java:comp/env/jdbc/myDataSource");

 }

 // When the asynchronous bean method is called, get a connection,

 // use it, then close it.

 void anEventListener()

 {

 Connection c = null;

 try

 {

 c = ds.getConnection();

 // use the connection now...

 }

 finally

 {

 if(c != null) c.close();

 }

 }

}

The following example of an asynchronous bean that uses connections incorrectly:

class BadAsynchBean

{

 DataSource ds;

 // Do not do this. You cannot cache connections across asynch method calls.

Chapter 20. Learn about WebSphere programming extensions 1859

Connection c;

 public BadAsynchBean()

 throws NamingException

 {

 // ok to cache a connection factory or datasource as

 // class instance data.

 InitialContext ic = new InitialContext();

 ds = (DataSource)ic.lookup("java:comp/env/jdbc/myDataSource");

 // here, you broke the rules...

 c = ds.getConnection();

 }

 // Now when the asynch method is called, illegally use the cached connection

 // and you likely see J2C related exceptions at run time.

 // close it.

 void someAsynchMethod()

 {

 // use the connection now...

 }

}

Work manager service settings

Use this page to enable or disable the work manager service that manages work manager resources used

by the server.

To view this administrative console page, click Servers > Application Servers > server_name > Work

Manager Service .

Startup:

Specifies whether the server attempts to start the work manager service.

 Default Selected

Range Selected

When the application server starts, it attempts to

start the work manager service automatically.

Cleared

The server does not try to start the work

manager service. If work manager resources are

to be used on this server, the system

administrator must start the work manager

service manually or select this property then

restart the server.

Configuring timer managers

A timer manager acts as a thread pool for application components that use asynchronous beans. Use the

administrative console to configure timer managers. The timer manager service is enabled by default.

If you are not familiar with timer managers, review the conceptual section, Timer managers, in the

Asynchronous beans topic.

You can define multiple timer managers for each cell. Each timer manager is bound to a unique place in

Java Naming and Directory Interface (JNDI).

Note: The timer manager service is only supported from within the Enterprise Java Beans (EJB) container

or Web container. Looking up and using a configured timer manager from a J2EE application client

container is not supported.

1. Start the administrative console.

2. Select Resources > Asynchronous beans > Timer managers.

1860 Administering applications and their environment

3. Specify a Scope value and click New.

4. Specify the following required properties:

Scope The scope of the configured resource. This value indicates the location for the configuration

file.

Name The display name for the timer manager.

JNDI Name

The Java Naming and Directory Interface (JNDI) name for the timer manager. This name is

used by asynchronous beans that need to look up the timer manager. Each timer manager

must have a unique JNDI name within the cell.

Number of Timer Threads

The maximum number of threads that are used for timers.

5. [Optional] Specify a Description and a Category for the timer manager.

6. [Optional] Select the Service Names (J2EE contexts) on which you want this timer manager to be

made available. Any asynchronous beans that use this timer manager then inherit the selected J2EE

contexts from the component that creates the bean. The list of selected services also is known as the

″sticky″ context policy for the timer manager. Selecting more services than are actually required might

impede performance.

7. Save your configuration.

The timer manager is now configured and ready for access by application components that need to

manage the start of asynchronous code.

Timer manager collection

Use this page to view the configuration properties of timer managers, which enable applications to

schedule future timer notifications and to receive timer notification callbacks to application-specified

listeners within a Java 2 Platform, Enterprise Edition (J2EE) environment. The timer manager binds to the

Java Naming and Directory Interface (JNDI) name space.

A timer manager contains a pool of threads bound into JNDI.

To view this administrative console page, click Resources > Asynchronous beans < Timer managers.

Name:

Specifies the name by which the timer manager is known for administrative purposes.

 Data type String

JNDI Name:

Specifies the JNDI name used to look up the timer manager in the name space.

 Data type String

Scope:

Specifies the scope of the configured resource. This value indicates the location for the configuration file.

Description:

Specifies a description of this timer manager for administrative purposes.

 Data type String

Chapter 20. Learn about WebSphere programming extensions 1861

Category:

Specifies a string that can be used to classify or group this timer manager.

 Data type String

Timer manager settings:

Use this page to modify timer manager settings. Timer managers enable applications to schedule future

timer notifications and to receive timer notification callbacks to application-specified listeners within a Java

2 Platform, Enterprise Edition (J2EE) environment. The timer manager binds to the Java Naming and

Directory Interface (JNDI) name space.

 A timer manager contains a pool of threads bound into JNDI.

To view this administrative console page, click Resources > Asynchronous beans > Timer managers

timermanager_name.

Scope:

Specifies the scope of the configured resource. This value indicates the location for the configuration file.

Name:

Specifies the name by which the timer manager is known for administrative purposes.

 Data type String

JNDI Name:

Specifies the JNDI name used to look up the timer manager in the namespace.

 Data type String

Description:

Specifies adescription of this timer manager for administrative purposes.

 Data type String

Category:

Specifies a string that can be used to classify or group this timer manager.

 Data type String

Service Names:

Specifies a list of services to make available to this timer manager.

 Asynchronous beans can inherit J2EE context information by enabling one or more J2EE service contexts

on the timer manager resource in the WebSphere administrative console or by setting the serviceNames

attribute of the TimerManagerInfo configuration object. When specifying the serviceNames attribute each

enabled service should be separated by a semicolon. For example:

1862 Administering applications and their environment

security;UserWorkArea;com.ibm.ws.i18n. When a J2EE service context is enabled, it propagates the

context from the scheduling thread to the target thread. If not enabled, the target thread does not inherit

the context of the scheduling thread and a default context is applied. Any related J2EE context that is

already present on the thread is suspended before any new J2EE context is applied.

The context information of each selected service is propagated to each timer that is created using this

timer manager. Selecting services that are not needed can negatively impact performance.

 Work area Use the administrative console or the UserWorkArea

service name to enable work area partitions. When

enabled, the work area context for every work area

partition that exists on the scheduling thread is available

on the target thread. This feature is optional.

Security Use the administrative console or the security service

name to enable the Java Authentication and Authorization

Service (JAAS) subject. When this feature and

administrative security are enabled, the JAAS subject that

is present on the scheduling thread is applied to the target

thread. If not enabled, the target thread is run

anonymously without a JAAS subject on the thread. This

feature is optional.

Internationalization Use the administrative console or the com.ibm.ws.i18n

service name to enable the internationalization context

information. When the internationalization context and the

Internationalization service is enabled, the

internationalization context that exists on the scheduling

thread is available on the target thread. This feature is

optional.

Number of Timer Threads:

Specifies the maximum number of threads that are used for timers.

 Data type Integer

Configuring work managers

A work manager acts as a thread pool for application components that use asynchronous beans. Use the

administrative console to configure work managers.

If you are not familiar with work managers, review the conceptual topic, Work managers.

The work manager service is always enabled. In previous versions of the product, the work manager

service could be disabled using the administration console or configuration service. The work manager

service configuration objects are still present in the configuration service, but the enabled attribute is

ignored.

You can define multiple work managers for each cell. Each work manager is bound to a unique place in

Java Naming and Directory Interface (JNDI).

Note: The work manager service is only supported from within the Enterprise Java Beans (EJB) Container

or Web Container. Looking up and using a configured work manager from a J2EE application client

container is not supported.

1. Start the administrative console.

2. Select Resources > Asynchronous beans > Work managers.

3. Specify a Scope value and click New.

Chapter 20. Learn about WebSphere programming extensions 1863

4. Specify the required properties for work manager settings.

Scope The scope of the configured resource. This value indicates the location for the configuration

file.

Name The display name for the work manager.

JNDI Name

The Java Naming and Directory Interface (JNDI) name for the work manager. This name is

used by asynchronous beans that need to look up the work manager. Each work manager

must have a unique JNDI name within the cell.

Number of Alarm Threads

The maximum number of threads to use for processing alarms. A single thread is used to

monitor pending alarms and dispatch them. An additional pool of threads is used for

dispatching the threads. All alarm managers on the asynchronous beans associated with this

work manager share this set of threads. A single alarm thread pool exists for each work

manager, and all of the asynchronous beans associated with the work manager share this pool

of threads.

Minimum Number Of Threads

The initial number of threads to be created in the thread pool.

Maximum Number Of Threads

The maximum number of threads to be created in the thread pool. The maximum number of

threads can be exceeded temporarily if the Growable check box is selected. These additional

threads are discarded when the work on the thread completes.

Thread Priority

The priority to assign to all threads in the thread pool.

 Every thread has a priority. Threads with higher priority are run before threads with lower

priority. For more information about how thread priorities are used, see the javadoc for the

setPriority method of the java.lang.Thread class in the Java Standard Edition specification.

5. [Optional] Specify a Description and a Category for the work manager.

6. [Optional] Select the Service Names (J2EE contexts) on which you want this work manager to be

made available. Any asynchronous beans that use this work manager then inherit the selected J2EE

contexts from the component that creates the bean. The list of selected services also is known as the

″sticky″ context policy for the work manager. Selecting more services than are actually required might

impede performance.

Other optional fields include:

Work timeout

Specifies the number of milliseconds to wait before a scheduled work object is released. If a

value is not specified, then the timeout is disabled.

Work request queue size

Specifies the size of the work request queue. The work request queue is a buffer that holds

scheduled work objects and may be any value 1 or greater. The thread pool pulls work from

this queue. If you do not specify a value or the value is 0, the queue size is managed

automatically. Large values can consume significant system resources.

Work request queue full action

Specifies the action taken when the thread pool is exhausted, and the work request queue is

full. This action starts when you submit non-daemon work to the work manager. If set to FAIL,

the work manager API methods creates an exception instead of blocking.

7. Save your configuration.

The work manager is now configured and ready for access by application components that need to

manage the start of asynchronous code.

Work manager collection

Use this page to view the collection properties of work managers, which contain a pool of threads bound

into the Java Naming and Directory Interface.

1864 Administering applications and their environment

To view this administrative console page, click Resources > Asynchronous beans > Work managers.

Name:

Specifies the name by which the work manager is known for administrative purposes.

JNDI name:

Specifies the Java Naming and Directory Interface (JNDI) name used to look up the work manager in the

namespace.

 Data type String

Scope:

Specifies the scope of the configured resource. This value indicates the location for the configuration file.

Description:

Specifies the description of this work manager for administrative purposes.

Category:

Specifies a category name that is used to classify or group this work manager.

Work manager settings:

Use this page to modify work manager settings. Work managers contain a pool of threads bound into Java

Naming and Directory Interface.

 To view this administrative console page, click Resources > Asynchronous beans > Work managers >

workmanager_name.

Scope:

Specifies the scope of the configured resource. This value indicates the location for the configuration file.

Name:

Specifies the name by which the work manager is known for administrative purposes.

JNDI Name:

Specifies the Java Naming and Directory Interface (JNDI) name used to look up the work manager in the

namespace.

Description:

Specifies the description of this work manager for administrative purposes.

Category:

Specifies a string that you can use to classify or group this work manager.

Work timeout:

Chapter 20. Learn about WebSphere programming extensions 1865

Specifies the number of milliseconds to wait before a scheduled work object is released. If not specified,

the timeout is disabled.

 Default 0

Work request queue size:

Specifies the size of the work request queue. The work request queue is a buffer that holds scheduled

work objects and may be any value 1 or greater. The thread pool pulls work from this queue. If you do not

specify a value or the value is 0, the queue size is managed automatically. Large values can consume

significant system resources.

 Default 0

Work request queue full action:

Specifies the action taken when the thread pool is exhausted, and the work request queue is full. This

action starts when you submit non-daemon work to the work manager.

 If set to FAIL, the work manager API methods creates an exception instead of blocking.

 Default BLOCK

Range FAIL

Service names:

Specifies a list of services to make available to this work manager.

 Asynchronous beans can inherit J2EE context information by enabling one or more J2EE service contexts

on the work manager resource in the WebSphere administrative console or by setting the serviceNames

attribute of the WorkManagerInfo configuration object. When specifying the serviceNames attribute each

enabled service should be separated by a semicolon. For example:

security;UserWorkArea;com.ibm.ws.i18n. When a J2EE service context is enabled, it propagates the

context from the scheduling thread to the target thread. If not enabled, the target thread does not inherit

the context of the scheduling thread and a default context is applied. Any related J2EE context that is

already present on the thread is suspended before any new J2EE context is applied.

The context information of each selected service is propagated to each work or alarm that is created using

this work manager. Selecting services that are not needed can negatively impact performance.

 Application profile (deprecated) Use the administrative console or the AppProfileService

service name to enable the application profile tasks.

Application profile context is not supported and not

available for J2EE 1.4 applications. For J2EE 1.3

applications, the application profile context is deprecated

and is only available when Application Profile Service

5.x Compatibility Mode is enabled and both the

scheduling thread and target thread are J2EE 1.3

applications. When enabled, all application profile tasks

that are available on the scheduling thread are available

on the target thread. The scheduled work that runs in a

J2EE 1.4 application does not get the application profiling

task of the scheduling thread. This feature is optional.

1866 Administering applications and their environment

Work area Use the administrative console or the UserWorkArea

service name to enable work area partitions. When

enabled, the work area context for every work area

partition that exists on the scheduling thread is available

on the target thread. This feature is optional.

Security Use the administrative console or the security service

name to enable the Java Authentication and Authorization

Service (JAAS) subject. When this feature and

administrative security are enabled, the JAAS subject that

is present on the scheduling thread is applied to the target

thread. If not enabled, the target thread is run

anonymously without a JAAS subject on the thread. This

feature is optional.

Internationalization Use the administrative console or the com.ibm.ws.i18n

service name to enable the internationalization context

information. When the internationalization context and the

Internationalization service is enabled, the

internationalization context that exists on the scheduling

thread is available on the target thread. This feature is

optional.

Thread pool properties:

Specifies the priority of the threads available in this work manager.

 Number of alarm threads Specifies the desired maximum number of threads used

for alarms. The default value is 2.

Minimum number of threads Specifies the minimum number of threads available in this

work manager.

Maximum number of threads Specifies the maximum number of threads available in this

work manager.

Thread priority Specifies the priority of the threads available in this work

manager.

Growable Specifies whether the number of threads in this work

manager can be increased.

Dynamic cache

Task overview: Using the dynamic cache service to improve

performance

Use the dynamic cache service to improve application performance by caching the output of servlets,

commands, and JavaServer Pages (JSP) files.

The dynamic cache service works within an application server Java virtual machine (JVM), intercepting

calls to cacheable objects. For example, it intercepts calls through a servlet service method or a command

execute method, and either stores the output of the object to the cache or serves the content of the object

from the dynamic cache.

1. Enable the dynamic cache service globally. To use the features associated with dynamic caching, you

must enable the service in the administrative console. See “Enabling the dynamic cache service” on

page 1883 for more information.

2. Configure the type of caching that you are using:

v “Configuring servlet caching” on page 1887.

v “Configuring portlet fragment caching” on page 1887.

Chapter 20. Learn about WebSphere programming extensions 1867

v “Configuring Edge Side Include caching” on page 1894.

v “Configuring command caching” on page 1914.

v “Example: Caching Web services” on page 1869.

v “Configuring the Web services client cache” on page 1916.

3. Monitor the results of your configuration using the dynamic cache monitor. For more information, see

“Displaying cache information” on page 1931.

4. If you have any problems with your configuration, see the Troubleshooting and support PDF.

To use the DistributedMap and DistributedObjectCache interfaces for the dynamic cache, see “Using the

DistributedMap and DistributedObjectCache interfaces for the dynamic cache” on page 1922.

Dynamic cache

Caching the output of servlets, commands, and JavaServer Pages (JSP) improves application

performance. WebSphere Application Server consolidates several caching activities including servlets,

Web services, and WebSphere commands into one service called the dynamic cache. These caching

activities work together to improve application performance, and share many configuration parameters that

are set in the dynamic cache service of an application server.

You can use the dynamic cache to improve the performance of servlet and JSP files by serving requests

from an in-memory cache. Cache entries contain servlet output, the results of a servlet after it runs, and

metadata.

Eviction policies using the disk cache garbage collector

The disk cache garbage collector is responsible for evicting objects out of the disk cache, based on a

specified eviction policy.

The garbage collector keeps a certain amount of space on disk available, which is governed by the

configuration attribute that limits the amount of disk space that is used for caching objects. To enable the

eviction policy, enable the Limit disk cache size in GB and/or Limit disk cache size in entries options in the

administrative console.

The garbage collector is triggered when the disk space reaches a specified high threshold (a percentage

of the Limit disk cache size in entries or in GB) and evicts objects, based on the eviction policy, from the

disk in the background until the disk cache size reaches a specified low threshold (a percentage of the

Limit disk cache size in entries or in GB). Eviction triggers when one or both of the high thresholds is

reached for Limit disk cache size in GB and Limit disk cache size in entries. The supported policies are:

v None: This is the default policy. Objects are evicted only when they expire, or if they are invalidated.

v Random: The expired objects are removed first. If the disk size still has not reached the low threshold

limit, objects are picked from the disk cache in random order and removed until the disk size reaches a

low threshold limit.

v Size: The expired objects are removed first. If the disk size still has not reached the low threshold limit,

then largest-sized objects are removed until the disk size reaches a low threshold limit.

Limit disk cache size in GB and High Threshold determines when to trigger eviction and when the disk

cache is considered near full. It is computed as a function of the user-specified limit. If the specified limit is

10 GB (3 GB is the minimum), the cache subsystem initially creates three files that can grow to 1 GB in

size for cache data, dependency ID information, and template information. Each time more space is

needed to contain cache data, dependency ID information, or template information, a new file is created.

Each of these files grow in 1 GB increments until the total number of files that are created is equal to disk

cache in size in GB (in this case ten). Although the initial size of the new file may be much smaller than 1

GB, the dynamic cache service always rounds up to the next GB.

1868 Administering applications and their environment

Eviction triggers when the cache data size reaches the high threshold and continues until the cache data

size reaches the low threshold. Calculation of cache data size is dynamic. The following formula describes

how to calculate the actual cache data size limit:

cache data size limit = disk cache size (in GB) - number of dependency files per GB - number of template files

When the cache data size limit is defined, the trigger point is calculated as follows:

eviction trigger point = cache data size limit * high threshold

size of evicted entries = cache data size * (high threshold - low threshold)

Consider the following scenarios:

v Scenario 1

– Disk cache size in GB = 10 GB

– High threshold = 90%

– Low Threshold = 80%

Initially, there is one file for dependency ID and template ID.

cache data size limit = 10-(1+1) = 8 GB

eviction trigger point = 8 * 90% = 7.2 GB

size of evicted entries = 8 * (90% - 80%) = 0.8 GB

In the above scenario, eviction starts when the data cache size reaches 7.2 GB and continues until the

cache size is 6.4 GB (7.2 - 0.8).

v Scenario 2

In scenario 1, if the dependency files grow to more than 1 GB, an additional dependency file generates.

The eviction trigger point launches dynamically as follows:

cache data size limit = 10 - (2+1) = 7GB

eviction trigger point = 7 * 90% = 6.3GB

size of evicted entries = 7 * (90% - 80%) = 0.7GB

In the above scenario, eviction starts when the data cache size reaches 6.3 GB, and continues until the

cache size in 5.6 GB (6.3 - 0.7).

Disk cache eviction for limit disk cache size in entries. Consider the following scenario:

v Disk cache size in entries = 100000

v High threshold = 90%

v Low threshold = 80%
eviction trigger point = 100000 * 90% = 90000

number of entries evicted = 100000 * (90% - 80%) = 10000

In this scenario, eviction starts when the number of cache entries reaches 90000 and 10000 entries are

evicted from the cache.

Example: Caching Web services

This topic includes examples of building a set of cache policies and SOAP messages for a Web services

application.

The following is a example of building a set of cache policies for a simple Web services application. The

application in this example stores stock quotes and has operations to read, update the price of, and buy a

given stock symbol.

Following are two SOAP message examples that the application can receive, with accompanying HTTP

Request headers.

Chapter 20. Learn about WebSphere programming extensions 1869

The first message sample contains a SOAP message for a GetQuote operation, requesting a quote for

IBM. This is a read-only operation that gets its data from the back end, and is a good candidate for

caching. In this example the SOAP message is cached and a timeout is placed on its entries to guarantee

the quotes it returns are current.

Message example 1

POST /soap/servlet/soaprouter

HTTP/1.1

Host: www.myhost.com

Content-Type: text/xml; charset="utf-8"

SOAPAction: urn:stockquote-lookup

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

<SOAP-ENV:Body>

<m:getQuote xmlns:m="urn:stockquote">

<symbol>IBM</symbol>

</m:getQuote>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

The SOAPAction HTTP header in the request is defined in the SOAP specification and is used by HTTP

proxy servers to dispatch requests to particular HTTP servers. WebSphere Application Server dynamic

cache can use this header in its cache policies to build IDs without having to parse the SOAP message.

Message example 2 illustrates a SOAP message for a BuyQuote operation. While message 1 is

cacheable, this message is not, because it updates the back end database.

Message example 2

POST /soap/servlet/soaprouter

HTTP/1.1

Host: www.myhost.com

Content-Type: text/xml; charset="utf-8"

SOAPAction: urn:stockquote-update

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

<SOAP-ENV:Body>

<m:buyStock xmlns:m="urn:stockquote">

<symbol>IBM</symbol>

</m:buyStock>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

The following graphic illustrates how to invoke methods with the SOAP messages. In Web services terms,

especially Web Service Definition Language (WSDL), a service is a collection of operations such as

getQuote and buyStock. A body element namespace (urn:stockquote in the example) defines a service,

and the name of the first body element indicates the operation.

buyStock

getQuote

SOAP Router

Servlet

Another

Service

StockQuote

Service

SOAP/HTTP

1870 Administering applications and their environment

The following is an example of WSDL for the getQuote operation:

<?xml version="1.0"?>

<definitions name="StockQuoteService-interface"

targetNamespace="http://www.getquote.com/StockQuoteService-interface"

xmlns:tns="http://www.getquote.com/StockQuoteService-interface"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns=soap="http://schemas.xmlsoap.org/wsdl/soap/"

xmlns="http://schemas.xmlsoap.org/wsdl/"

<message name="SymbolRequest">

<part name="return" type="xsd:string"/>

</message>

<portType name="StockQuoteService">

<operation name="getQuote">

<input message="tns:SymbolRequest"/>

<output message="tns:QuoteResponse"/>

</operation>

</portType>

<binding name="StockQuoteServiceBinding"

type="tns:StockQuoteService">

<soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>

<operation name="getQuote">

<soap:operation soapAction="urn:stockquote-lookup"/>

<input>

<soap:body use="encoded" namespace="urn:stockquote"

encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

</input>

<output>

<soap:body use="encoded" namespace="urn:stockquotes"

encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

</output>

</operation>

</binding>

</definition>

To build a set of cache policies for a Web services application, configure WebSphere Application Server

dynamic cache to recognize cacheable service operation of the operation.

WebSphere Application Server inspects the HTTP request to determine whether or not an incoming

message can be cached based on the cache policies defined for an application. In this example, buyStock

and stock-update are not cached, but stockquote-lookup is cached. In the cachespec.xml file for this Web

application, the cache policies need defining for these services so that the dynamic cache can handle both

SOAPAction and service operation.

WebSphere Application Server uses the operation and the message body in Web services cache IDs,

each of which has a component associated with them. Therefore, each Web services <cache-id> rule

contains only two components. The first is for the operation. Because you can perform the

stockquote-lookup operation by either using a SOAPAction header or a service operation in the body, you

must define two different <cache-id> elements, one for each method. The second component is of type

″body″, and defines how WebSphere Application Server should incorporate the message body into the

cache ID. You can use a hash of the body, although it is legal to use the literal incoming message in the

ID.

The incoming HTTP request is analyzed by WebSphere Application Server to determine which of the

<cache-id> rules match. Then, the rules are applied to form cache or invalidation IDs.

The following is sample code of a cachespec.xml file defining SOAPAction and servicesOperation rules:

<cache>

<cache-entry>

 <class>webservice</class>

 <name>/soap/servlet/soaprouter</name>

 <sharing-policy>not-shared</sharing-policy>

 <cache-id>

Chapter 20. Learn about WebSphere programming extensions 1871

<component id="" type="SOAPAction">

 <value>urn:stockquote-lookup</value>

 </component>

 <component id="Hash" type="SOAPEnvelope"/>

 <timeout>3600</timeout>

 <priority>1<priority>

 </component>

 </cache-id>

 <cache-id>

 <component id="" type="serviceOperation">

 <value>urn:stockquote:getQuote</value>

 </component>

 <component id="Hash" type="SOAPEnvelope"/>

 <timeout>3600</timeout>

 <priority>1</priority>

 </component>

 </cache-id>

</cache-entry>

</cache>

Dynamic cache MBean statistics

The dynamic cache service provides an MBean interface to access cache statistics.

Access cache statistics with the MBean interface, using JACL

v Obtain the MBean identifier with the queryNames command, for example:

$AdminControl queryNames type=DynaCache,* // Returns a list of the available dynamic cache MBeans

Select your dynamic cache MBean and run the following command:

set mbean <dynamic_cache_mbean>

v Retrieve the names of the available cache statistics:

$AdminControl invoke $mbean getCacheStatisticNames

v Retrieve the names of the available cache instances:

$AdminControl invoke $mbean getCacheInstanceNames

v Retrieve all of the available cache statistics for the base cache instance:

$AdminControl invoke $mbean getAllCacheStatistics

v Retrieve all of the available cache statistics for the named cache instance:

$AdminControl invoke $mbean getAllCacheStatistics "services/cache/servletInstance_4"

v Retrieve cache statistics that are specified by the names array for the base cache instance:

$AdminControl invoke $mbean getCacheStatistics

 {"DiskCacheSizeInMB ObjectsReadFromDisk4000K RemoteObjectMisses"}

Note: This command should all be entered on one line. It is broken here for printing purposes.

v Retrieve cache statistics that are specified by the names array for the named cache instance:

$AdminControl invoke $mbean getCacheStatistics

 {services/cache/servletInstance_4 "ExplicitInvalidationsLocal CacheHits"}

Note: This command should all be entered on one line. It is broken here for printing purposes.

Example: Configuring the dynamic cache

This example puts all the steps together for configuring the dynamic cache with the cachespec.xml file,

showing the use of the cache ID generation rules, dependency IDs, and invalidation rules.

Suppose that a servlet is used to manage a simple news site. This servlet uses the query parameter

″action″ to determine if the request is being used to ″view″ news or ″update″ news (used by the

administrator). Another query parameter ″category″ is used to select the news category. Suppose that this

site supports an optional customized layout that is stored in the user’s session using the attribute name

″layout″. Here are example URL requests to this servlet:

1872 Administering applications and their environment

http://yourhost/yourwebapp/newscontroller?action=view&category=sports (Returns a news page for the

sports category)

http://yourhost/yourwebapp/newscontroller?action=view&category=money (Returns a news page for the

money category)

http://yourhost/yourwebapp/newscontroller?action=update&category=fashion (Allows the administrator to

update news in the fashion category)

Here are the steps for configuring dynamic cache for this example with the cachespec.xml file:

1. Define the <cache-entry> elements necessary to identify the servlet. In this case, the servlet’s URI is

″newscontroller″ so this is the cache-entry’s <name> element. Because this example caches a servlet

or JavaServer Pages (JSP) file, the cache entry class is ″servlet″.

<cache-entry>

<name> /newscontroller </name>

<class>servlet </class>

 </cache-entry>

2. Define cache ID generation rules. This servlet is cached only when action=view, so one component of

the cache ID is the parameter ″action″ when the value equals ″view″. The news category is also an

essential part of the cache ID. Finally, the optional session attribute for the user’s layout is included in

the cache ID. The cache entry now is :

<cache-entry>

 <name> /newscontroller </name>

 <class>servlet </class>

 <cache-id>

 <component id="action" type="parameter">

 <value>view</value>

 <required>true</required>

 </component>

 <component id="category" type="parameter">

 <required>true</required>

 </component>

 <component id="layout" type="session">

 <required>false</required>

 </component>

 </cache-id>

</cache-entry>

3. Define dependency ID rules. For this servlet, a dependency ID is added for the category. Later, when

the category is invalidated due to an update event, all views of that news category are invalidated.

Following is an example of the cache entry after adding the dependency-id:

<cache-entry>

 <name>newscontroller </name>

 <class>servlet </class>

 <cache-id>

 <component id="action" type="parameter">

 <value>view</value>

 <required>true</required>

 </component>

 <component id="category" type="parameter">

 <required>true</required>

 </component>

 <component id="layout" type="session">

 <required>false</required>

 </component>

 </cache-id>

 <dependency-id>category

 <component id="category" type="parameter">

 <required>true</required>

 </component>

 </dependency-id>

</cache-entry>

Chapter 20. Learn about WebSphere programming extensions 1873

4. Define invalidation rules. Since a category dependency ID is already defined, define an invalidation

rule to invalidate the category when action=update. To incorporate the conditional logic, we will add

″ignore-value″ components into the invalidation rule. These components do not add to the output of the

invalidation ID, but only determine whether or not the invalidation ID is created and run. The final

cache-entry now looks like this:

<cache-entry>

 <name>newscontroller </name>

 <class>servlet </class>

 <cache-id>

 <component id="action" type="parameter">

 <value>view</value>

 <required>true</required>

 </component>

 <component id="category" type="parameter">

 <required>true</required>

 </component>

 <component id="layout" type="session">

 <required>false</required>

 </component>

 </cache-id>

 <dependency-id>category

 <component id="category" type="parameter">

 <required>true</required>

 </component>

 </dependency-id>

 <invalidation>category

 <component id="action" type="parameter" ignore-value="true">

 <value>update</value>

 <required>true</required>

 </component>

 <component id="category" type="parameter">

 <required>true</required>

 </component>

 </invalidation>

</cache-entry>

Accessing dynamic cache PMI counters

The dynamic cache statistics interface is defined as WSDynamicCacheStats under the

com\ibm\websphere\pmi\stat package.

Dynamic cache statistics are structured as follows in the Performance Monitoring Infrastructure (PMI) tree:

__Dynamic Caching+

 |

 |__<Servlet: instance_1>

 |__Templates+

 |__<template_1>

 |__<template_2>

 |__Disk+

 |__<Disk Offload Enabled>

 |

 |__<Object: instance_2>

 |__Object Cache+

 |__<Counters>

+ indicates logical group

StatDescriptor locates and accesses particular statistics in the PMI tree. For example:

1. StatDescriptor to represent statistics for cache servlet: instance_1 templates group template_1: new

StatDescriptor (new String[] {WSDynamicCacheStats.NAME, ″Servlet: instance1″,

WSDynamicCacheStats.TEMPLATE_GROUP, ″template_1″});

2. StatDescriptor to represent statistics for cache servlet: instance_1 disk group Disk Offload Enabled:

new StatDescriptor (new String[] {WSDynamicCacheStats.NAME, ″Servlet: instance_1″,

WSDynamicCacheStats.DISK_GROUP, WSDynamicCacheStats.DISK_OFFLOAD_ENABLED});

1874 Administering applications and their environment

3. StatDescriptor to represent statistics for cache object: instance2 object cache group Counters: new

StatDescriptor (new String[] {WSDynamicCacheStats.NAME, ″Object: instance_2″,

WSDynamicCacheStats.OBJECT_GROUP, WSDynamicCacheStats.OBJECT_COUNTERS});

Important: Cache instance names are prepended with cache type (″Servlet: ″ or ″Object: ″).

Counter definitions for Servlet Cache

 Name of PMI statistics Path Description Version

WSDynamicCacheStats.

MaxInMemoryCache

EntryCount

WSDynamicCacheStats.NAME

- “Servlet: instance_1“

The maximum number of

in-memory cache entries.

5.0 and later

WSDynamicCacheStats.

InMemoryCache EntryCount

WSDynamicCacheStats.NAME

- “Servlet: instance_1“

The current number of

in-memory cache entries

5.0 and later

WSDynamicCacheStats.

HitsIn MemoryCount

WSDynamicCacheStats.NAME

- “Servlet:

cache_instance_1“ -

WSDynamicCacheStats.

TEMPLATE_GROUP

-“Template_1”

The number of requests for

cacheable objects that are

served from memory.

5.0 and later

WSDynamicCacheStats.

HitsOnDiskCount

WSDynamicCacheStats.NAME

- “Servlet:

cache_instance_1“ -

WSDynamicCacheStats.

TEMPLATE_GROUP

-“Template_1”

The number of requests for

cacheable objects that are

served from disk.

5.0 and later

WSDynamicCacheStats.

ExplicitInvalidationCount

WSDynamicCacheStats.NAME

- “Servlet:

cache_instance_1“ -

WSDynamicCacheStats.

TEMPLATE_GROUP

-“Template_1”

The number of explicit

invalidations.

5.0 and later

WSDynamicCacheStats.

LruInvalidationCount

WSDynamicCacheStats.NAME

- “Servlet:

cache_instance_1“ -

WSDynamicCacheStats.

TEMPLATE_GROUP

-“Template_1

The number of cache

entries that are removed

from memory by a Least

Recently Used (LRU)

algorithm. instance.

5.0 and later

WSDynamicCacheStats.

TimeoutInvalidationCount

WSDynamicCacheStats.NAME

- “Servlet:

cache_instance_1“ -

WSDynamicCacheStats.

TEMPLATE_GROUP

-“Template_1”

The number of cache

entries that are removed

from memory and disk

because their timeout has

expired.

5.0 and later

WSDynamicCacheStats.

InMemoryAndDisk

CacheEntryCount

WSDynamicCacheStats.NAME

- “Servlet:

cache_instance_1“ -

WSDynamicCacheStats.

TEMPLATE_GROUP

-“Template_1”

The current number of used

cache entries in memory

and disk.

5.0 and later

WSDynamicCacheStats.

RemoteHitCount

WSDynamicCacheStats.NAME

- “Servlet:

cache_instance_1“ -

WSDynamicCacheStats.

TEMPLATE_GROUP

-“Template_1”

The number of requests for

cacheable objects that are

served from other Java

virtual machines within the

replication domain.

5.0 and later

Chapter 20. Learn about WebSphere programming extensions 1875

Name of PMI statistics Path Description Version

WSDynamicCacheStats.

MissCount

WSDynamicCacheStats.NAME

- “Servlet:

cache_instance_1“ -

WSDynamicCacheStats.

TEMPLATE_GROUP

-“Template_1”

The number of requests for

cacheable objects that were

not found in the cache.

5.0 and later

WSDynamicCacheStats.

ClientRequestCount

WSDynamicCacheStats.NAME

- “Servlet:

cache_instance_1“ -

WSDynamicCacheStats.

TEMPLATE_GROUP

-“Template_1”

The number of requests for

cacheable objects that are

generated by applications

running on this application

server.

5.0 and later

WSDynamicCacheStats.

DistributedRequestCount

WSDynamicCacheStats.NAME

- “Servlet:

cache_instance_1“ -

WSDynamicCacheStats.

TEMPLATE_GROUP

-“Template_1”

The number of requests for

cacheable objects that are

generated by cooperating

caches in this replication

domain.

5.0 and later

WSDynamicCacheStats.

ExplicitMemory

InvalidationCount

WSDynamicCacheStats.NAME

- “Servlet:

cache_instance_1“ -

WSDynamicCacheStats.

TEMPLATE_GROUP

-“Template_1”

The number of explicit

invalidations resulting in the

removal of an entry from

memory.

5.0 and later

WSDynamicCacheStats.

ExplicitDisk

InvalidationCount

WSDynamicCacheStats.NAME

- “Servlet:

cache_instance_1“ -

WSDynamicCacheStats.

TEMPLATE_GROUP

-“Template_1”

The number of explicit

invalidations resulting in the

removal of an entry from

disk.

5.0 and later

WSDynamicCacheStats.

LocalExplicit

InvalidationCount

WSDynamicCacheStats.NAME

- “Servlet:

cache_instance_1“ -

WSDynamicCacheStats.

TEMPLATE_GROUP

-“Template_1”

The number of explicit

invalidations generated

locally, either

programmatically or by a

cache policy.

5.0 and later

WSDynamicCacheStats.

RemoteExplicit

InvalidationCount

WSDynamicCacheStats.NAME

- “Servlet:

cache_instance_1“ -

WSDynamicCacheStats.

TEMPLATE_GROUP

-“Template_1”

The number of explicit

invalidations received from

a cooperating Java virtual

machine in this replication

domain.

5.0 and later

WSDynamicCacheStats.

RemoteCreationCount

WSDynamicCacheStats.NAME

- “Servlet:

cache_instance_1“ -

WSDynamicCacheStats.

TEMPLATE_GROUP

-“Template_1”

The number of cache

entries that are received

from cooperating dynamic

caches.

5.0 and later

1876 Administering applications and their environment

Name of PMI statistics Path Description Version

WSDynamicCacheStats.

ObjectsOnDisk

WSDynamicCacheStats.NAME

- “Servlet:

cache_instance_1“ -

WSDynamicCacheStats.

DISK_GROUP -“

WSDynamicCacheStats.

DISK_OFFLOAD_ENABLED

The current number of

cache entries on disk.

6.1

WSDynamicCacheStats.

HitsOnDisk

WSDynamicCacheStats.NAME

- “Servlet:

cache_instance_1“ -

WSDynamicCacheStats.

DISK_GROUP -“

WSDynamicCacheStats.

DISK_OFFLOAD_ENABLED

The number of requests for

cacheable objects that are

served from disk.

6.1

WSDynamicCacheStats.

ExplicitInvalidations

FromDisk

WSDynamicCacheStats.NAME

- “Servlet:

cache_instance_1“ -

WSDynamicCacheStats.

DISK_GROUP -“

WSDynamicCacheStats.

DISK_OFFLOAD_ENABLED

The number of explicit

invalidations resulting in the

removal of entries from

disk.

6.1

WSDynamicCacheStats.

TimeoutInvalidations

FromDisk

WSDynamicCacheStats.NAME

- “Servlet:

cache_instance_1“ -

WSDynamicCacheStats.

DISK_GROUP -“

WSDynamicCacheStats.

DISK_OFFLOAD_ENABLED

The number of disk

timeouts.

6.1

WSDynamicCacheStats

PendingRemoval FromDisk

WSDynamicCacheStats.NAME

- “Servlet:

cache_instance_1“ -

WSDynamicCacheStats.

DISK_GROUP -“

WSDynamicCacheStats.

DISK_OFFLOAD_ENABLED

The current number of

pending entries that are to

be removed from disk.

6.1

WSDynamicCacheStats.

DependencyIdsOnDisk

WSDynamicCacheStats.NAME

- “Servlet:

cache_instance_1“ -

WSDynamicCacheStats.

DISK_GROUP -“

WSDynamicCacheStats.

DISK_OFFLOAD_ENABLED

The current number of

dependency ID that are on

disk.

6.1

WSDynamicCacheStats.

DependencyIdsBuffered

ForDisk

WSDynamicCacheStats.NAME

- “Servlet:

cache_instance_1“ -

WSDynamicCacheStats.

DISK_GROUP -“

WSDynamicCacheStats.

DISK_OFFLOAD_ENABLED

The current number of

dependency IDs that are

buffered for the disk.

6.1

Chapter 20. Learn about WebSphere programming extensions 1877

Name of PMI statistics Path Description Version

WSDynamicCacheStats.

DependencyIds

OffloadedToDisk

WSDynamicCacheStats.NAME

- “Servlet:

cache_instance_1“ -

WSDynamicCacheStats.

DISK_GROUP -“

WSDynamicCacheStats.

DISK_OFFLOAD_ENABLED

The number of dependency

IDs that are offloaded to

disk.

6.1

WSDynamicCacheStats.

DependencyIdBased

InvalidationsFromDisk

WSDynamicCacheStats.NAME

- “Servlet:

cache_instance_1“ -

WSDynamicCacheStats.

DISK_GROUP -“

WSDynamicCacheStats.

DISK_OFFLOAD_ENABLED

The number of dependency

ID-based invalidations.

6.1

WSDynamicCacheStats.

TemplatesOnDisk

WSDynamicCacheStats.NAME

- “Servlet:

cache_instance_1“ -

WSDynamicCacheStats.

DISK_GROUP -“

WSDynamicCacheStats.

DISK_OFFLOAD_ENABLED

The current number of

templates that are on disk.

6.1

WSDynamicCacheStats.

TemplatesBuffered ForDisk

WSDynamicCacheStats.NAME

- “Servlet:

cache_instance_1“ -

WSDynamicCacheStats.

DISK_GROUP -“

WSDynamicCacheStats.

DISK_OFFLOAD_ENABLED

The current number of

templates that are buffered

for the disk.

6.1

WSDynamicCacheStats.

TemplatesOffloaded ToDisk

WSDynamicCacheStats.NAME

- “Servlet:

cache_instance_1“ -

WSDynamicCacheStats.

DISK_GROUP -“

WSDynamicCacheStats.

DISK_OFFLOAD_ENABLED

The number of templates

that are offloaded to disk.

6.1

WSDynamicCacheStats.

TemplateBased

InvalidationsFromDisk

WSDynamicCacheStats.NAME

- “Servlet:

cache_instance_1“ -

WSDynamicCacheStats.

DISK_GROUP -“

WSDynamicCacheStats.

DISK_OFFLOAD_ENABLED

The number of

template-based

invalidations.

6.1

WSDynamicCacheStats.

GarbageCollector

InvalidationsFromDisk

WSDynamicCacheStats.NAME

- “Servlet:

cache_instance_1“ -

WSDynamicCacheStats.

DISK_GROUP -“

WSDynamicCacheStats.

DISK_OFFLOAD_ENABLED

The number of garbage

collector invalidations

resulting in the removal of

entries from disk cache due

to high threshold has been

reached.

6.1

WSDynamicCacheStats.

OverflowInvalidations

FromDisk

WSDynamicCacheStats.NAME

- “Servlet:

cache_instance_1 “ -

WSDynamicCacheStats.

DISK_GROUP -“

WSDynamicCacheStats.

DISK_OFFLOAD_ENABLED

The number of invalidations

resulting in the removal of

entries from disk due to

exceeding the disk cache

size or disk cache size in

GB limit.

6.1

1878 Administering applications and their environment

Counter definitions for Object Cache

 Name of PMI Statistics Path Description Version

WSDynamicCacheStats.

MaxInMemoryCache

EntryCount

WSDynamicCacheStats.NAME

- “Object: instance_2“

The maximum number of

in-memory cache entries.

5.0 and later

WSDynamicCacheStats.

InMemoryCache EntryCount

WSDynamicCacheStats.NAME

- “Object: instance_2“

The current number of

in-memory cache entries

5.0 and later

WSDynamicCacheStats.

HitsInMemoryCount

WSDynamicCacheStats.NAME

- “Object:

cache_instance_2“ -

WSDynamicCacheStats.OBJECT_GROUP

- WSDynamicCacheStats

OBJECT_COUNTERS

The number of requests for

cacheable objects that are

served from memory.

5.0 and later

WSDynamicCacheStats.

HitsOnDiskCount

WSDynamicCacheStats.NAME

- “Object:

cache_instance_2“ -

WSDynamicCacheStats.

OBJECT_GROUP -

WSDynamicCacheStats

OBJECT_COUNTERS

The number of requests for

cacheable objects that are

served from disk.

5.0 and later

WSDynamicCacheStats.

ExplicitInvalidationCount

WSDynamicCacheStats.NAME

- “Object:

cache_instance_2“ -

WSDynamicCacheStats.

OBJECT_GROUP -

WSDynamicCacheStats

OBJECT_COUNTERS

The number of explicit

invalidations.

5.0 and later

WSDynamicCacheStats.

LruInvalidationCount

WSDynamicCacheStats.NAME

- “Object:

cache_instance_2“ -

WSDynamicCacheStats.

OBJECT_GROUP -

WSDynamicCacheStats

OBJECT_COUNTERS

The number of cache

entries that are removed

from memory by a Least

Recently Used (LRU)

algorithm. instance.

5.0 and later

WSDynamicCacheStats.

TimeoutInvalidation Count

WSDynamicCacheStats.NAME

- “Object:

cache_instance_2“ -

WSDynamicCacheStats.

OBJECT_GROUP -

WSDynamicCacheStats

OBJECT_COUNTERS

The number of cache

entries that are removed

from memory and disk

because their timeout has

expired.

5.0 and later

WSDynamicCacheStats.

InMemoryAndDisk

CacheEntryCount

WSDynamicCacheStats.NAME

- “Object:

cache_instance_2“ -

WSDynamicCacheStats.

OBJECT_GROUP -

WSDynamicCacheStats

OBJECT_COUNTERS

The current number of used

cache entries in memory

and disk.

5.0 and later

Chapter 20. Learn about WebSphere programming extensions 1879

Name of PMI Statistics Path Description Version

WSDynamicCacheStats.

RemoteHitCount

WSDynamicCacheStats.NAME

- “Object:

cache_instance_2“ -

WSDynamicCacheStats.

OBJECT_GROUP -

WSDynamicCacheStats

OBJECT_COUNTERS

The number of requests for

cacheable objects that are

served from other Java

virtual machines within the

replication domain.

5.0 and later

WSDynamicCacheStats.

MissCount

WSDynamicCacheStats.NAME

- “Object:

cache_instance_2“ -

WSDynamicCacheStats.

OBJECT_GROUP -

WSDynamicCacheStats

OBJECT_COUNTERS

The number of requests for

cacheable objects that were

not found in the cache.

5.0 and later

WSDynamicCacheStats.

ClientRequestCount

WSDynamicCacheStats.NAME

- “Object:

cache_instance_2“ -

WSDynamicCacheStats.

OBJECT_GROUP -

WSDynamicCacheStats

OBJECT_COUNTERS

The number of requests for

cacheable objects that are

generated by applications

running on this application

server.

5.0 and later

WSDynamicCacheStats.

DistributedRequest Count

WSDynamicCacheStats.NAME

- “Object:

cache_instance_2“ -

WSDynamicCacheStats.

OBJECT_GROUP -

WSDynamicCacheStats

OBJECT_COUNTERS

The number of requests for

cacheable objects that are

generated by cooperating

caches in this replication

domain.

5.0 and later

WSDynamicCacheStats.

ExplicitMemory

InvalidationCount

WSDynamicCacheStats.NAME

- “Object:

cache_instance_2“ -

WSDynamicCacheStats.

OBJECT_GROUP -

WSDynamicCacheStats

OBJECT_COUNTERS

The number of explicit

invalidations resulting in the

removal of an entry from

memory.

5.0 and later

WSDynamicCacheStats.

ExplicitDisk

InvalidationCount

WSDynamicCacheStats.NAME

- “Object:

cache_instance_2“ -

WSDynamicCacheStats.

OBJECT_GROUP -

WSDynamicCacheStats

OBJECT_COUNTERS

The number of explicit

invalidations resulting in the

removal of an entry from

disk.

5.0 and later

WSDynamicCacheStats.

LocalExplicit

InvalidationCount

WSDynamicCacheStats.NAME

- “Object:

cache_instance_2“ -

WSDynamicCacheStats.

OBJECT_GROUP -

WSDynamicCacheStats

OBJECT_COUNTERS

The number of explicit

invalidations generated

locally, either

programmatically or by a

cache policy.

5.0 and later

WSDynamicCacheStats.

RemoteExplicit

InvalidationCount

WSDynamicCacheStats.NAME

- “Object:

cache_instance_2“ -

WSDynamicCacheStats.

OBJECT_GROUP -

WSDynamicCacheStats

OBJECT_COUNTERS

The number of explicit

invalidations received from

a cooperating Java virtual

machine in this replication

domain.

5.0 and later

1880 Administering applications and their environment

Name of PMI Statistics Path Description Version

WSDynamicCacheStats.

RemoteCreationCount

WSDynamicCacheStats.NAME

- “Object:

cache_instance_2“ -

WSDynamicCacheStats.

OBJECT_GROUP -

WSDynamicCacheStats

OBJECT_COUNTERS

The number of cache

entries that are received

from cooperating dynamic

caches.

5.0 and later

 Name of PMI statistics Path Description Version

WSDynamicCacheStats.

ObjectsOnDisk

WSDynamicCacheStats.NAME

- “Object:

cache_instance_2“ -

WSDynamicCacheStats.

DISK_GROUP -“

WSDynamicCacheStats.

DISK_OFFLOAD_ENABLED

The current number of

cache entries on disk.

6.1

WSDynamicCacheStats.

HitsOnDisk

WSDynamicCacheStats.NAME

- “Object:

cache_instance_2“ -

WSDynamicCacheStats.

DISK_GROUP -“

WSDynamicCacheStats.

DISK_OFFLOAD_ENABLED

The number of requests for

cacheable objects that are

served from disk.

6.1

WSDynamicCacheStats.

ExplicitInvalidations

FromDisk

WSDynamicCacheStats.NAME

- “Object:

cache_instance_2“ -

WSDynamicCacheStats.

DISK_GROUP -“

WSDynamicCacheStats.

DISK_OFFLOAD_ENABLED

The number of explicit

invalidations resulting in the

removal of entries from

disk.

6.1

WSDynamicCacheStats.

TimeoutInvalidations

FromDisk

WSDynamicCacheStats.NAME

- “Object:

cache_instance_2“ -

WSDynamicCacheStats.

DISK_GROUP -“

WSDynamicCacheStats.

DISK_OFFLOAD_ENABLED

The number of disk

timeouts.

6.1

WSDynamicCacheStats

PendingRemoval FromDisk

WSDynamicCacheStats.NAME

- “Object:

cache_instance_2“ -

WSDynamicCacheStats.

DISK_GROUP -“

WSDynamicCacheStats.

DISK_OFFLOAD_ENABLED

The current number of

pending entries that are to

be removed from disk.

6.1

WSDynamicCacheStats.

DependencyIdsOnDisk

WSDynamicCacheStats.NAME

- “Object:

cache_instance_2“ -

WSDynamicCacheStats.

DISK_GROUP -“

WSDynamicCacheStats.

DISK_OFFLOAD_ENABLED

The current number of

dependency ID that are on

disk.

6.1

Chapter 20. Learn about WebSphere programming extensions 1881

Name of PMI statistics Path Description Version

WSDynamicCacheStats.

DependencyIds

BufferedForDisk

WSDynamicCacheStats.NAME

- “Object:

cache_instance_2“ -

WSDynamicCacheStats.

DISK_GROUP -“

WSDynamicCacheStats.

DISK_OFFLOAD_ENABLED

The current number of

dependency IDs that are

buffered for the disk.

6.1

WSDynamicCacheStats.

DependencyIds

OffloadedToDisk

WSDynamicCacheStats.NAME

- “Object:

cache_instance_2“ -

WSDynamicCacheStats.

DISK_GROUP -“

WSDynamicCacheStats.

DISK_OFFLOAD_ENABLED

The number of dependency

IDs that are offloaded to

disk.

6.1

WSDynamicCacheStats.

DependencyIdBased

InvalidationsFromDisk

WSDynamicCacheStats.NAME

- “Object:

cache_instance_2“ -

WSDynamicCacheStats.

DISK_GROUP -“

WSDynamicCacheStats.DISK_

OFFLOAD_ENABLED

The number of dependency

ID-based invalidations.

6.1

WSDynamicCacheStats.

TemplatesOnDisk

WSDynamicCacheStats.NAME

- “Object:

cache_instance_2“ -

WSDynamicCacheStats.

DISK_GROUP -“

WSDynamicCacheStats.

DISK_OFFLOAD_ENABLED

The current number of

templates that are on disk.

6.1

WSDynamicCacheStats.

TemplatesBuffered ForDisk

WSDynamicCacheStats.NAME

- “Object:

cache_instance_2“ -

WSDynamicCacheStats.

DISK_GROUP / -“

WSDynamicCacheStats.

DISK_OFFLOAD_ENABLED

The current number of

templates that are buffered

for the disk.

6.1

WSDynamicCacheStats.

TemplatesOffloaded ToDisk

WSDynamicCacheStats.NAME

- “Object:

cache_instance_2“ -

WSDynamicCacheStats.

DISK_GROUP -“

WSDynamicCacheStats.

DISK_OFFLOAD_ENABLED

The number of templates

that are offloaded to disk.

6.1

WSDynamicCacheStats.

TemplateBasedInvalidations

FromDisk

WSDynamicCacheStats.NAME

- “Object:

cache_instance_2“ -

WSDynamicCacheStats.

DISK_GROUP -“

WSDynamicCacheStats.

DISK_OFFLOAD_ENABLED

The number of

template-based

invalidations.

6.1

WSDynamicCacheStats.

GarbageCollector

InvalidationsFromDisk

WSDynamicCacheStats.NAME

- “Object:

cache_instance_2“ -

WSDynamicCacheStats.

DISK_GROUP -“

WSDynamicCacheStats.

DISK_OFFLOAD_ENABLED

The number of garbage

collector invalidations

resulting in the removal of

entries from disk cache due

to high threshold has been

reached.

6.1

1882 Administering applications and their environment

Name of PMI statistics Path Description Version

WSDynamicCacheStats.

OverflowInvalidations

FromDisk

WSDynamicCacheStats.NAME

- “Object:

cache_instance_2“ -

WSDynamicCacheStats.

DISK_GROUP -“

WSDynamicCacheStats.

DISK_OFFLOAD_ENABLED

The number of invalidations

resulting in the removal of

entries from disk due to

exceeding the disk cache

size or disk cache size in

GB limit.

6.1

Enabling the dynamic cache service

Enable the dynamic cache service to improve application performance by caching the output of servlets,

Web services, and WebSphere Application Server commands into memory.

Develop a cache policy for your application. The cache policy defines rules for what responses to cache

and the amount of time the responses should be held in the cache. See “Configuring cacheable objects

with the cachespec.xml file” on page 1900 for more information.

The dynamic cache service is enabled by default. However, you can enable or disable the service through

the administrative console.

1. Open the administrative console.

2. In the administrative console, click Servers > Application servers > server_name > Container

services > Dynamic cache service.

3. Select Enable service at server startup .

4. Click Apply or OK.

5. Restart WebSphere Application Server. You might want to enable servlet caching before restarting

WebSphere Application Server. See “Configuring servlet caching” on page 1887 for more information.

The dynamic cache service caches content for requests that have cache policies configured.

You might want to enable dynamic cache disk offload. This option moves cache entries that are expired

from memory to disk for potential future access. See “Configuring dynamic cache disk offload” on page

1891 for more information.

Dynamic cache service settings

Use this page to configure and manage the dynamic cache service settings.

To view this administrative console page, click Servers > Application servers > server_name >

Container services > Dynamic cache service.

Enable service at server startup:

Specifies whether the dynamic cache is enabled when the server starts.

Cache size:

Specifies a positive integer as the value for the maximum number of entries the cache holds.

 Enter the cache size value in this field between the range of 100 through 200,000.

Default priority:

Specifies the default priority for cache entries, determining how long an entry stays in a full cache.

Chapter 20. Learn about WebSphere programming extensions 1883

Default 1

Range 1 to 255

Enable disk offload:

Specifies whether disk offload is enabled.

 By default, the dynamic cache maintains the number of entries configured in memory. If new entries are

created while the cache is full, the priorities that are configured for each cache entry and a least recently

used algorithm are used to remove entries from the cache. In addition to having a cache entry removed

from memory when the cache is full, you can enable disk offload to have a cache entry copied to the file

system (the location is configurable). Later, if that cache entry is needed, it is moved back to memory from

the file system.

Before you enable disk offload, consider the following:

v You cannot specify the number of cache entries that are offloaded to disk.

v You cannot specify the amount of disk space to use.

Offload location:

Specifies the location on the disk to save cache entries when disk offload is enabled.

 If disk offload location is not specified, the default location, ${WAS_TEMP_DIR}/node/server

name/_dynacache/cache JNDI name will be used. If disk offload location is specified, the node, server name,

and cache instance name are appended. For example, ${USER_INSTALL_ROOT}/diskoffload generates the

location as ${USER_INSTALL_ROOT}/diskoffload/node/server name/cache JNDI name. This value is ignored

if disk offload is not enabled.

The default value of the ${WAS_TEMP_DIR} property is ${USER_INSTALL_ROOT}/temp. If you change the

value of the ${WAS_TEMP_DIR} property after starting WebSphere Application Server, but do not move

the disk cache contents to the new location:

v The application server creates a new disk cache file at the new disk offload location.

v If the Flush to disk setting is enabled, all the disk cache content at the old location is lost when you

restart the Application Server

When you are specifying a directory, consider the following:

v If you expect to cache a large number of objects or large objects that will be around for some time,

consider using a separate disk drive if you are using Windows operating systems, or a separate file

system if you are using UNIX platforms.

v If you use the default directory and the disk fills up, WebSphere Application Server could possibly stall if

it needs to write messages to log files, and there is no more space.

v If you specify a directory such as /tmp on UNIX platforms and that directory fills up, you may have

trouble logging onto the system.

v Depending on the operating system, you may see disk full messages on the console.

Flush to disk:

Specifies if in-memory cached objects are saved to disk when the server is stopped. This value is ignored

if Enable disk offload is not selected.

 Default false

1884 Administering applications and their environment

Limit disk cache size in GB:

Specifies a value for the maximum disk cache size in GB. When you select this option, you can specify a

positive integer value. Leaving this option blank indicates an unlimited size. This setting applies only if

enable disk offload is specified for the cache.

 Value 3 and above.

Limit disk cache size in entries:

Specifies a value for the maximum disk cache size in number of entries. When you select this option, you

can specify a positive integer value. Leaving this option blank indicates an unlimited size. This setting

applies only if enable disk offload is specified for the cache.

 Value 0 to MAXINT. A value of 0 indicates unlimited size.

Limit disk cache entry size:

Specifies a value for the maximum size of an individual cache entry in MB. Any cache entry larger than

this, when evicted from memory, will not be offloaded to disk. When you select this option, you can specify

a positive integer value. Leaving this option blank indicates an unlimited size. This setting applies only if

enable disk offload is specified for the cache.

 Value 0 to MAXINT. A value of 0 indicates unlimited size.

Disk cache performance settings:

Specifies the level of performance that is required by the disk cache. This setting applies only if

enableDiskOffload is specified for the cache. Performance levels determine how memory resources

should be used on background activity such as cache cleanup, expiration, garbage collection, and so on.

This setting applies only if enable disk offload is specified for the cache.

 High performance and high memory usage Indicates that all metadata will be kept in memory.

Balanced performance and balanced memory usage Indicates some metadata will be kept in memory. This is

the default performance setting and will provide an

optimal balance of performance and memory usage for

most users.

Low performance and low memory usage Indicates that limited metadata will be kept in memory.

Custom performance Indicates that the administrator will explicitly configure the

memory settings that will be used to support the above

background activity. The administrator sets these values

using the DiskCacheCustomPerformanceSettings

object.

Disk cache cleanup frequency:

Specifies a value for the disk cache cleanup frequency, in minutes. If this value is set to 0, the cleanup

runs only at midnight. This setting applies only when the Disk Offload Performance Level is low, balanced,

or custom. The high performance level does not require disk cleanup, and this value is ignored.

 Value 0 to 1440

Maximum buffer for cache identifiers per metaentry:

Chapter 20. Learn about WebSphere programming extensions 1885

Specifies a value for the maximum number of cache identifiers that are stored for an individual

dependency ID or template in the disk cache metadata in memory. If this limit is exceeded the information

is offloaded to the disk. This setting applies only when the disk offload performance level is CUSTOM.

 Value 100 to MAXINT

Maximum buffer for dependency identifiers:

Specifies a value for the maximum number of dependency identifier buckets in the disk cache metadata in

memory. If this limit is exceeded the information is offloaded to the disk. This setting applies only when the

disk cache performance level is custom.

 Value 100 to MAXINT

Maximum buffer for templates:

Specifies a value for the maximum number of template buckets that are in the disk cache metadata in

memory. If this limit is exceeded the information is offloaded to the disk. This setting applies only when the

disk cache performance level is custom.

 Value 10 to MAXINT

Disk cache eviction algorithm:

Specifies the eviction algorithm that the disk cache will use to evict entries once the high threshold is

reached. This setting applies only if enable disk offload is specified for the cache. This setting does not

apply when the disk cache eviction policy is set to none.

 None No eviction policy, so the disk cache can grow until it

reaches its limit at which time the dynamic cache service

stops writing to disk

Random When the disk size reaches a high threshold limit, the

disk cache garbage collector wakes up and randomly

picks entries on the disk and evicts them until the size

reaches a low threshold limit.

Size When the disk size reaches a high threshold limit, the

disk cache garbge collector wakes up and picks the

largest entries on the disk and evicts them until the disk

size reaches a low threshold limit.

High threshold:

Specifies when the eviction policy runs. The threshold is expressed in terms of the percentage of the disk

cache size in GB or entries. The lower value is used when limit disk cache size in GB and limit disk cache

size in entries are specified. This setting does not apply when the disk cache eviction policy is set to none.

 Values 1 to 100

Low threshold:

Specifies when the eviction policy will end. The threshold is expressed in terms of the percentage of the

disk cache size in GB or entries. The lower value is used limit disk cache size in GB and limit disk cache

size in entries are specified. This setting does not apply when the disk cache eviction policy is set to none.

1886 Administering applications and their environment

Values 1 to 100

Configuring servlet caching

Configure servlet caching to save the output of servlets and JavaServer Pages (JSP) files to the dynamic

cache.

To enable servlet caching, you must complete “Enabling the dynamic cache service” on page 1883.

1. In the administrative console, click Servers > Application servers > server_name > Web container

settings > Web container in the console navigation tree.

2. Select Enable servlet caching under the Configuration tab.

3. Click Apply or OK.

4. Restart WebSphere Application Server. See Managing application servers for more information.

Define the cache policy for your servlets by “Configuring cacheable objects with the cachespec.xml file” on

page 1900.

Servlet caching:

After a servlet is invoked and completes generating the output to cache, a cache entry is created

containing the output and the side effects of the servlet. These side effects can include calls to other

servlets or JavaServer Pages (JSP) files or metadata about the entry, including timeout and entry priority

information.

 Unique entries are distinguished by an ID string that is generated from the HttpServletRequest object each

time the servlet runs. You can then base servlet caching on:

v Request parameters and attributes of the Universal Resource Identifier (URI) that was used to invoke

the servlet

v Session information

v Other options, including cookies

Because JavaServer Pages files are compiled into servlets, the dynamic cache function treats JavaServer

Pages files the same as servlets, except in specifically documented situations.

To enable servlet caching see “Configuring servlet caching.” To configure cache policies for your servlets,

see “Configuring cacheable objects with the cachespec.xml file” on page 1900.

Configuring portlet fragment caching

Configure portlet fragment caching with the WebSphere Application Sever administrative console to save

the output of portlets to the dynamic cache.

To enable portlet fragment caching, you must complete “Enabling the dynamic cache service” on page

1883.

1. In the administrative console, click Servers > Application servers > server_name > Portlet container

settings > Portlet container in the administrative console navigation tree.

2. Select Enable portlet fragment cache under the Configuration tab.

3. Click Apply or OK.

4. Restart WebSphere Application Server.

See the Setting up the application serving environment PDF for more information.

Define the cache policy for your portlets by “Configuring cacheable objects with the cachespec.xml file” on

page 1900.

Portlet fragment caching:

Chapter 20. Learn about WebSphere programming extensions 1887

After a portlet is invoked and completes generating the output to cache, a cache entry is created,

containing the output and the side effects of the portlet. These side effects can include calls to other

portlets or metadata about the entry, including timeout and entry priority information.

 Unique entries are distinguished by an ID string that generated from the PortletRequest object each time

the portlet runs. You can then base portlet fragment caching on:

v Request parameters and attributes

v Session information

v Portlet-specific information, portlet session, portlet window ID, portlet mode, and portlet window state

To enable portlet fragment caching see “Configuring portlet fragment caching” on page 1887. To configure

cache policies for your portlets, see “Configuring cacheable objects with the cachespec.xml file” on page

1900.

Configuring portlet fragment caching with the wsadmin tool

You can configure portlet fragment caching with scripting and the wsadmin tool.

Before starting this task, the wsadmin tool must be running. See the Using the administrative clients PDF

for more information.

Important: If you use the wsadmin tool to enable portlet fragment caching, you must make sure that

servlet caching is also enabled. Similarly if you use the wsadmin tool to disable portlet

fragment caching, you must make sure that servlet caching is also disabled. The settings for

these two caching functions must stay synchronized. If you enable or disable portlet fragment

caching using the administrative console, synchronization is automatically taken care of for

you.

1. Locate the server object. The following example selects the first server found:

Using Jacl:

set s1 [$AdminConfig getid /Server:server1/]

Using Jython:

s1 = AdminConfig.getid(’/Server:server1/’)

2. List the Web containers and assign them to the wc variable, for example:

Using Jacl:

set wc [$AdminConfig list PortletContainer $s1]

Using Jython:

wc = AdminConfig.list(’PortletContainer’, s1)

3. Set the enablePortletCaching attribute to true and assign it to the serEnable variable, for example:

Using Jacl:

set serEnable "{enablePortletCaching true}"

Using Jython:

serEnable = [[’enablePortletCaching’, ’true’]]

4. Enable caching, for example:

Using Jacl:

$AdminConfig modify $wc $serEnable

Using Jython:

AdminConfig.modify(wc, serEnable)

Configuring caching for Struts and Tiles applications

Use this task to cache Struts and Tiles applications.

1888 Administering applications and their environment

Before you configure Struts and Tiles caching, you should have a developed application. For more

information about developing Struts and Tiles applications, see The Apache Struts Web Application

Framework on the Apache Web site at http://struts.apache.org/.

Use this task when you want to cache data in Struts and Tiles applications.

Struts is an open source framework for building Web applications using the Model-View-Controller (MVC)

architecture. The Struts framework has a controller component and integrates with other technologies to

provide the model and the view. Struts provide a control layer for the Web application, which reduces

construction time and maintenance costs.

The Tiles framework builds on the jsp:include feature and is bundled with the Struts Web application

framework. The Tiles framework reduces the duplication between JavaServer Pages (JSP) files and makes

Web site layouts flexible and easy to maintain by assembling presentation pages from component parts.

Struts and Tiles caching is an extension of servlet and JSP caching, so the actions performed for each

type of caching are very similar. See “Servlet caching” on page 1887 for more information.

1. Enable servlet and JSP caching. Enabling servlet caching automatically enables Struts and Tiles

caching. See “Configuring servlet caching” on page 1887 for more information.

2. Develop the cache policy. A cache policy is required to cache a struts or tiles response.

To develop a Struts cache policy:

 The Struts framework provides the controller component in the MVC-style application. The

controller is a servlet called org.apache.struts.action.ActionServlet.class. In the web.xml

file of the application, a servlet mapping of *.do is added for this Struts ActionServlet servlet so

that every request for a Web address that ends with .do is processed. The ActionServlet

servlet uses the information in the struts-config.xml file to decide which Struts action class

runs the request for the specified resource.

 Cache policy using a previous version of WebSphere Application Server

 In the previous version of WebSphere Application Server, only one cache policy per servlet

was supported. However, when you are using Struts, every request that ends in .do maps to

the same ActionServlet servlet. To cache Struts responses, write a cache policy for the

ActionServlet servlet based on its servlet path.

 For example, consider two Struts actions: /HelloParam.do and /HelloAttr.do. To cache the

responses based on the id request parameter and the arg request attribute respectively, use

the following cache policy:

<cache-entry>

 <class>servlet</class>

 <name>org.apache.struts.action.ActionServlet.class</name>

 <cache-id>

 <component id="" type="servletpath">

 <value>/HelloParm.do</value>

 </component>

 </cache-id>

 <cache-id>

 <component id="" type="servletpath">

 <value>/HelloAttr.do</value>

 </component>

 <component id="arg" type="attribute">

 <required>true</required>

 </component>

 </cache-id>

</cache-entry>

Cache policy using WebSphere Application Server, Version 6.0 or later

Chapter 20. Learn about WebSphere programming extensions 1889

With the current version of WebSphere Application Server, you can map multiple cache

policies for a single servlet. You can rewrite the previous cache policy as in the following

example:

<cache-entry>

 <class>servlet>

 <name>/HelloParam.do</name>

 <cache-id>

 <component id="id" type="parameter">

 <required>true</required>

 </component>

</cache-entry>

<cache-entry>

 <class>servlet</class>

 <name>/HelloAttr.do</name>

 <cache-id>

 <component id="arg" type="attribute">

 <required>true</required>

 </component>

 </cache-id>

</cache-entry>

To develop a Tiles cache policy:

The Tiles framework is built on the jsp:include tag, so everything that applies to JSP caching

also applies to Tiles. You must set the flush attribute to true in any fragments that are included

using the tiles:insert tag for the fragments to be cached correctly. The extra feature in tiles

caching over JSP caching is based on the tiles attribute. For example, you might develop the

following layout.jsp template:

<html>

 <%String categoryId = request.getParameter("categoryId")+"test"; %>

 <tiles:insert attribute="header">

 <tiles:put name="categoryId" value="<%= categoryId %>" />

 </tile:insert>

 <table>

 <tr>

 <td width="70%" valign="top"><tiles:insert attribute="body" /> </td>

 </tr>

 <tr>

 <td colspan="2"><tiles:insert attribute="footer" /></td>

 </tr>

 </table>

</body>

</html>

The nested tiles:put tag specifies the attribute of the inserted tile. In the layout.jsp template,

the categoryId attribute is defined and passed on to the tile that is inserted into the placeholder

for the header. In the following example, the layout.jsp file is inserted into another JSP file:

<html>

<body>

<tiles:insert page="layout.jsp?categoryId=1002" flush="true">

 <tiles:put name="header" value="/header.jsp" />

 <tiles:put name="body" value="/body.jsp" />

 <tiles:put name="footer" value="/footer.jsp" />

</tiles:insert>

</body>

</html>

The categoryId tile attribute is passed on to the header.jsp file. The header.jsp file can use

the <tiles:useAttribute> tag to retrieve the value of categoryId. To cache the header.jsp file

based on the value of the categoryId attribute, you can use the following cache policy:

<cache-entry>

 <class>servlet</class>

 <name>/header.jsp</name>

 <cache-id>

1890 Administering applications and their environment

<component id="categoryId" type="tiles_attribute">

 <required>true</required>

 </component>

 </cache-id>

</cache-entry>

3. Ensure your cache policy is working correctly. You can modify the policies within the cachespec.xml file

while your application is running. See “Configuring cacheable objects with the cachespec.xml file” on

page 1900 for more information about cache policies.

See “Task overview: Using the dynamic cache service to improve performance” on page 1867 for more

information about the dynamic cache.

Configuring dynamic cache disk offload

Use this task to configure dynamic cache disk offload, which saves cache entries that are deleted from the

memory cache to disk.

By default, when the number of cache entries reaches the configured limit for a given application server,

cache entries are removed from the memory cache, allowing newer entries to be stored in the cache. Use

disk offload to copy the cache entries that are being removed from the memory cache to disk for potential

future access.

1. In the administrative console, click Servers > Application servers > server_name > Container

services > Dynamic cache service.

2. Select Enable disk offload.

3. After you enable the disk offload, you can set the Disk offload location. The disk offload location

specifies where to save the cache entries on the disk. The disk offload location must be unique for any

application servers that are defined on the same node. If you have multiple servers defined on the

same node, make sure the disk offload location is different for each server.

4. Enable Flush to disk if you want cache objects that are in memory to be saved to disk when the

server is stopped. Disk offload must be enabled if you choose this option. If you do not enable flush to

disk, all the cache objects are deleted when the server stops.

5. Click Apply or OK.

6. Restart WebSphere Application Server.

You enabled disk offload. Memory cache entries are moved to disk for potential future access.

When you have two or more application servers with servlet caching enabled and the application servers

specify the same disk offload location for their caches through the dynamic cache service, the following

exceptions might occur:

java.lang.NullPointerException

 at com.ibm.ws.cache.CacheOnDisk.readTemplate(CacheOnDisk.java:686)

 at com.ibm.ws.cache.Cache.internalInvalidateByTemplate(Cache.java:828)

or:

java.lang.NullPointerException

 at com.ibm.ws.cache.CacheOnDisk.readCacheEntry(CacheOnDisk.java:600)

 at com.ibm.ws.cache.Cache.getCacheEntry(Cache.java:341)

If one server is run as root and the other servers are run as non-root, this problem could occur. For

example, if server1 runs as root and server2 runs as wasuser or wasgroup, the cache files in the disk

offload location might be created with root permissions. This situation causes the applications running on

the non-root servers to crash when they try to read or write to the cache.

Managing cache entries stored on a disk:

Chapter 20. Learn about WebSphere programming extensions 1891

Use this page to set Java virtual machine (JVM) custom properties to maintain cache entries that are

saved to disk.

 Steps for this task

You can set the custom properties globally to affect all cache instances, or you can set the custom

property on a single cache instance. In most cases, set the properties on the individual cache instances.

To set the custom properties on the default cache instance, use the global option. If you set the same

property both globally and on a cache instance, the value that is set on the cache instance overrides the

global value.

To configure the custom properties on a single object cache instance or servlet cache instance, perform

the following steps:

1. In the administrative console, click one of the following paths:

v To configure a servlet cache instance, click Resources > Cache instances > Servlet cache

instances > servlet_cache_instance_name > Custom properties > New.

v To configure an object cache instance, click Resources > Cache instances > Object cache

instances > object_cache_instance_name > Custom properties > New.

2. Type the name of the custom property. When configuring these custom properties on a single cache

instance, you do not use the full property path. For example, type explictBufferLimitOnStop to

configure the com.ibm.ws.cache.CacheConfig.explictBufferLimitOnStop custom property.

3. Type a valid value for the property in the Value field.

4. Save the property and restart WebSphere Application Server.

To configure the custom property globally across all configured cache instances, perform the following

steps:

1. In the administrative console, click Servers > Application servers > server_name > Java and

process management > Process definition > Java virtual machine > Custom properties > New.

2. Type the name of the custom property (for example,

com.ibm.ws.cache.CacheConfig.explictBufferLimitOnStop) in the Name field.

3. Type a valid value for the property in the Value field.

4. Save the property and restart WebSphere Application Server.

com.ibm.ws.cache.CacheConfig.htodCleanupFrequency

Use this property to change the amount of time between disk cache cleanup.

Important: Setting this custom property manually is deprecated for V6.1. Therefore, you should use the

administrative console to set this property. To set this property in the administrative console,

click one of the following paths:

v To configure a servlet cache instance, click Resources > Cache instances > Servlet

cache instances > servlet_cache_instance_name.

v To configure an object cache instance, click Resources > Cache instances > Object

cache instances > object_cache_instance_name.

Then:

1. Under Disk Cache setting, select the Enable disk offload field if it is not already selected.

2. Under Performance Settings, select Balanced performance and balanced memory usage

or Custom.

3. In the Disk cache cleanup frequency field, specify an appropriate length of time, in

minutes.

1892 Administering applications and their environment

By default, the disk cache cleanup is scheduled to run at midnight to remove expired cache entries and

cache entries that have not been accessed in the past 24 hours. However, if you have thousands of cache

entries that might expire within one or two hours, the files that are in the disk cache can grow large and

become unmanageable. Use the com.ibm.ws.cache.CacheConfig.htodCleanupFrequency custom property

to change the time interval between disk cache cleanup.

 Units minutes

For example, a value of 60 means 60 minutes between

each disk cache cleanup.

Default 0

The disk cache cleanup occurs at midnight every 24

hours.

com.ibm.ws.cache.CacheConfig.htodDelayOffloadEntriesLimit

Use this property to specify the number of different cache IDs that can be saved in memory for the

dependency ID and template buffers. Consider increasing this value if you have a lot of memory in your

server and you want to increase the performance of your disk cache.

Important: Setting this custom property manually is deprecated for V6.1. Therefore, you should use the

administrative console to set this property. To set this property in the administrative console,

click one of the following paths:

v To configure a servlet cache instance, click Resources > Cache instances > Servlet

cache instances > servlet_cache_instance_name.

v To configure an object cache instance, click Resources > Cache instances > Object

cache instances > object_cache_instance_name.

Then:

1. Under Disk Cache setting, select the Enable disk offload field, if it is not already selected.

2. Under Disk Cache settings, select Limit disk cache size in entries, if it is not already

selected.

3. In the Disk cache size field, specify the number of cache IDs that can be saved in memory

for the dependency ID and template buffers.

 Units number of cache IDs

For example, a value of 1000 means that each

dependency ID or template ID can have up to 1000

different cache IDs in memory.

Default 1000

Minimum 100

Tune the delay offload function

Use these properties to tune the delay offload function for the disk cache.

Important: Setting these custom properties manually is deprecated for V6.1. You should use the

administrative console to set these properties. The individual property descriptions include

information on how to use the administrative console to set these properties.

Chapter 20. Learn about WebSphere programming extensions 1893

The delay offload function uses extra memory buffers for dependency IDs and templates to delay the disk

offload and minimize the input and output operations. However, if most of your cache IDs are longer than

100 bytes, the delay offload function might use too much memory. Use any combination of the following

properties to tune your configuration:

v To increase or decrease the in-memory limit of cache IDs for dependency ID and template buffers, use

the com.ibm.ws.cache.CacheConfig.htodDelayOffloadEntriesLimit custom property.

v To disable the disk cache delay offload function, use the

com.ibm.ws.cache.CacheConfig.htodDelayOffload custom property. Disabling this property saves all

cache entries to disk immediately after removing them from the memory cache.

com.ibm.ws.cache.CacheConfig.explictBufferLimitOnStop

Use this custom property when the flush-to-disk-on-stop feature is enabled. When the server is stopping,

offloads are limited to the value specified for this property, pending removal of entries in the explicit

invalidation buffer. If this property is set to 0, there is no limit to the number of offloads that can occur.

Only positive integers are accepted as values for this property. If the number of entries in the explicit

invalidation buffer is greater then the specified limit, all of the disk files for this specified cache instance

are deleted after the server stops.

Important: You cannot use the administrative console to set this property.

Configuring Edge Side Include caching

The Web server plug-in contains a built-in ESI processor. The ESI processor can cache whole pages, as

well as fragments, providing a higher cache hit ratio. The cache implemented by the ESI processor is an

in-memory cache, not a disk cache, therefore, the cache entries are not saved when the Web server is

restarted.

Edge Side Include (ESI) is configured through the plugin-cfg.xml file.

When a request is received by the Web server plug-in, it is sent to the ESI processor, unless the ESI

processor is disabled. It is enabled by default. If a cache miss occurs, a Surrogate-Capabilities header is

added to the request and the request is forwarded to the WebSphere Application Server. If servlet caching

is enabled in the application server, and the response is edge cacheable, the application server returns a

Surrogate-Control header in response to the WebSphere Application Server plug-in.

The value of the Surrogate-Control response header contains the list of rules that are used by the ESI

processor to generate the cache ID. The response is then stored in the ESI cache, using the cache ID as

the key. For each ESI include tag in the body of the response, a new request is processed so that each

nested include results in either a cache hit or another request that forwards to the application server.

When all nested includes have been processed, the page is assembled and returned to the client.

The ESI processor is configurable through the WebSphere Web server plug-in configuration file

plugin-cfg.xml. The following is an example of the beginning of this file, which illustrates the ESI

configuration options.

<?xml version-"1.0"?>

<Config>

 <Property Name="esiEnable" Value="true"/>

 <Property Name="esiMaxCacheSize" Value="1024"/>

 <Property Name="esiInvalidationMonitor" Value="false"/>

v The first option, esiEnable, can be used to disable the ESI processor by setting the value to false. ESI

is enabled by default. If ESI is disabled, then the other ESI options are ignored.

v The second option, esiMaxCacheSize, is the maximum size of the cache in 1K byte units. The default

maximum size of the cache is 1 megabyte. If the cache is full, the first entry to be evicted from the

cache is the entry that is closest to expiration.

1894 Administering applications and their environment

v The third option, esiInvalidationMonitor, specifies if the ESI processor should receive invalidations from

the application server. ESI works well when the Web servers following a threading model are used, and

only one process is started. When multiple processes are started, each process caches the responses

independently and the cache is not shared. This could lead to a situation where, the system’s memory

is fully used up by ESI processor. There are three methods by which entries are removed from the ESI

cache: first, an entry expiration timeout occurs; second, an entry is purged to make room for newer

entries; or third, the application server sends an explicit invalidation for a group of entries. For the third

mechanism to be enabled, the esiInvalidationMonitor property must be set to true and the

DynaCacheEsi application must be installed on the application server. The DynaCacheEsi application is

located in the installableApps directory and is named DynaCacheEsi.ear. If the ESIInvalidationMonitor

property is set to true but the DynaCacheEsi application is not installed, then errors occur in the Web

server plug-in and the request fails.

v On distributed platforms, the cache for the ESI processor is monitored through the CacheMonitor

application. In order for ESI processor cache to be visible in the CacheMonitor, the DynaCacheEsi

application must be installed as described above, and the ESIInvalidationMonitor property must be set

to true in the plugin-cfg.xml file.

v When WebSphere Application Server is used to serve static data, such as images and HTML on the

application server, the URLs are also cached in the ESI processor. This data has a default timeout of

300 seconds. You can change the timeout value by adding the property com.ibm.servlet.file.esi.timeOut

to the Java virtual machine (JVM) command line parameters. The following example shows how to set a

one minute timeout on static data cached in the plug-in:

-Dcom.ibm.servlet.file.esi.timeOut=60

For information about configuring alternate URL, see the Tuning guide PDF.

Configuring alternate URL:

Alternate URL is a method for edge caching JavaServer Pages (JSP) files and servlet responses that you

can not request externally. Dynamic cache provides support to recognize the presence of an Edge Side

Include (ESI) processor and to generate ESI include tags and appropriate cache policies for edge

fragments that can be cached. However, you must be able to externally request an edge fragment from

the application server before it can be cached. In other words, if a user types the URL in their browser

with the appropriate parameters and cookies for the fragment, WebSphere Application Server must be able

to return the content for that fragment.

 One of the standard Java 2 Platform, Enterprise Edition (J2EE) programming architectures is the

model-view-controller (MVC) architecture, where a call to a controller servlet might include one or more

child JSP files to construct the view. When using the MVC programming model, the child JSP files are

edge cached only if you can request these JSP files externally, which is not usually the case. For example,

if a child JSP file uses one or more request attributes that are determined and set by the controller servlet,

you cannot cache that JSP file on the edge. You can use alternate URL support to overcome this limitation

by providing an alternate controller servlet URL used to invoke the JSP file.

The alternate URL for a JSP file or a servlet is set in the cachespec.xml file as a property with the name

alternate_url. You can set the alternate URL either on a per cache-entry basis or on a per cache-id

basis. It is valid only if the EdgeCacheable property is also set for that entry. If the EdgeCacheable property

is not set, the alternate_url property is ignored. The following is a sample cache policy using the

alternate_url property:

<cache-entry>

 <class>servlet</class>

 <name>/AltUrlTest2.jsp</name>

 <property name=″EdgeCacheable″>true</property>

 <property name=″alternate_url″>/alturlcontroller2</property>

 <cache-id>

 <timeout>600</timeout>

Chapter 20. Learn about WebSphere programming extensions 1895

<priority>2</priority>

 </cache-id>

</cache-entry>

For more information on the cachespec.xml file, see “Cachespec.xml file” on page 1901.

Configuring external cache groups

The dynamic cache can control caches outside of the application server, such as the Edge server, an IBM

HTTP Server, or an HTTP Server ESI Fragment Processor plug-in.

When external cache groups are defined, the dynamic cache matches externally cacheable cache entries

with those groups, and pushes cache entries and invalidations out to those groups. This allows

WebSphere Application Server to manage dynamic content beyond the application server. The content can

then be served from the external cache, instead of the application server, improving savings in

performance.

1. Open the administrative console.

2. Enable the dynamic cache.

a. In the administrative console, click Servers > Application servers > server_name > Container

services > Dynamic cache service.

b. Select Enable service at server startup to enable the dynamic cache each time the application

server starts.

3. Define the external cache group that WebSphere Application Server should control.

a. In the administrative console, click Servers > Application servers > server_name > Container

services > Dynamic cache service > External cache groups.

b. Click New or choose an external cache group from the list.

4. Configure cache group members.

a. Click External cache groups from the dynamic cache administrative console page. Then click

New or choose an external cache group from the list.

b. Click External cache group members > New or choose an external cache group member from

the list.

c. Type the configuration string in the Address field.

d. Type the adapter bean name in the Adapter Bean Name field.

e. Save the configuration.

f. Click Apply or OK.

External cache group collection:

Use this page to define sets of external caches controlled by WebSphere Application Server on Web

servers such as IBM Edge Server and IBM HTTP Server.

 To view this administrative console page, click Servers > Application servers > server_name >

Container services > Dynamic cache service > External cache groups.

Name:

Specifies the external cache group name.

 The external cache group name needs to match the ExternalCache property as defined in the servlet or

JavaServer Pages file cachespec.xml file.

When external caching is enabled, the cache matches pages with its Universal Resource Identifiers (URI)

and pushes matching pages to the external cache. The entries can then be served from the external

cache, instead of from the application server.

1896 Administering applications and their environment

Type:

Specifies the external cache group type.

External cache group settings:

Use this page to configure sets of external caches controlled by WebSphere Application Server on Web

servers, such as IBM Edge Server and IBM HTTP Server.

 To view this administrative console page, click Servers > Application servers > server_name >

Container services > Dynamic cache service > External cache groups > external_cache_group.

Name:

Specifies the external cache group name.

 The external cache group name must match the ExternalCache property as defined in the servlet or

JavaServer Pages (JSPs) cachespec.xml file.

When external caching is enabled, the cache matches pages with its Universal Resource Identifiers (URIs)

and pushes matching pages to the external cache. The entries can then be served from the external

cache, instead of the application server. This ability creates a significant savings in performance.

External cache group member collection:

Use this page to define specific caches that are members of a cache group.

 To view this administrative console page, click Servers > Application servers > server_name >

Container services > Dynamic cache service > External cache groups > external_cache_group >

External cache group members.

Address:

Specifies a configuration string used by external cache adapter bean to connect to the external cache.

AdapterBeanName:

Specifies the adapter bean name.

 Example adapter bean names supported in WebSphere Application Server are:

 AFPA

AdapterBeanName: com.ibm.ws.cache.servlet.Afpa

Address: Port on which afpa listens

ESI

AdapterBeanName: com.ibm.websphere.servlet.cache.ESIInvalidatorServlet

Address: local host

IBM Web Traffic Express (WTE) (IBM Edge Server)

AdapterBeanName: com.ibm.websphere.edge.dynacache.WteAdapter

Address: hostname:port (host name and port on which WTE is listening)

External cache group member settings:

Chapter 20. Learn about WebSphere programming extensions 1897

Use this page to configure specific caches that are members of a cache group.

 To view this administrative console page, click Servers > Application servers > server_name >

Container services > Dynamic cache service > External cache groups > external_cache_group >

External cache group members > external_cache_group_member.

Address:

Specifies a configuration string used by external cache adapter bean to connect to the external cache.

Adapter bean name:

Specifies the adapter bean name.

 Example adapter bean names supported in WebSphere Application Server are:

 AFPA

AdapterBeanName: com.ibm.ws.cache.servlet.Afpa

Address: Port on which afpa listens

ESI

AdapterBeanName: com.ibm.websphere.servlet.cache.ESIInvalidatorServlet

Address: local host

IBM Web Traffic Express (WTE) (IBM Edge Server)

AdapterBeanName: com.ibm.websphere.edge.dynacache.WteAdapter

Address: hostname:port (host name and port on which WTE is listening)

Configuring high-speed external caching through the Web server:

IBM HTTP Server for Windows NT and Windows 2000 operating systems contains a high-speed cache

referred to as the Fast Response Cache Accelerator, or cache accelerator. The Fast Response Cache

Accelerator is available on Windows NT and Windows 2000 operating systems and AIX platforms.

However, support to cache dynamic content is only available on Windows NT and Windows 2000

operating systems. You can enable cache accelerator to cache static and dynamic content.

 To enable cache accelerator for caching static content, add the following directives to the http.conf

configuration file, in the IBM HTTP Server conf directory:

v AfpaEnable

v AfpaCache on

v AfpaLogFile ″app_server_root\IBMHttpServer\logs\afpalog″ V-ECLF

To enable cache accelerator for caching dynamic content, such as servlets and JavaServer Pages (JSP)

files, configure the WebSphere Application Server and the IBM HTTP Server for distributed platforms:

1. Configure WebSphere Application Server to enable Fast Response Cache Accelerator. It is important

to follow all the steps for every application server in the cluster.

a. Turn on servlet caching for each application server that uses the cache accelerator.

b. Configure an external cache group on the application server:

1) Click Servers > Application servers > server_name > Container services > Dynamic cache

service > External cache groups.

2) Click New on the External cache group administrative console page to define an external

cache group named afpa for each application server that uses the cache accelerator.

3) In the External cache group field, type afpa and apply the changes.

c. Add a member to the group with an adapter bean name of com.ibm.ws.cache.servlet.Afpa.

1898 Administering applications and their environment

1) Click Afpa > External cache group members.

2) Click New on the External cache group members administrative console page.

3) In the AdapterBean name field, type com.ibm.ws.cache.servlet.Afpa.

4) In the Address field, enter an unused port number.

d. Add a cache policy in the cachespec.xml file for the servlet or JSP file you want to cache. Add the

following property to the cache policy:

<property name="ExternalCache">afpa</property>

2. Enable cache accelerator on the IBM HTTP Server for distributed platforms:

a. Add the following directives to the end of the httpd.conf file:

v AfpaEnable

v AfpaCache on

v AfpaLogFile ″app_server_root\IBMHttpServer\logs\afpalog″ V-ECLF

v LoadModule afpaplugin_module app_server_root/bin/afpaplugin.dll

v AfpaPluginHost WAS_Hostname:port, where WAS_Hostname is the host name of the application

server and port is the port you specified in the Address field while configuring the external

cache group member

The LoadModule directive loads the IBM HTTP Server plug-in that connects the Fast Response Cache

Accelerator to the WebSphere Application Server fragment cache. If multiple IBM HTTP Servers are

routing requests to a single application server, add the directives above to the http.conf file of each of

these IBM HTTP Servers for distributed platforms. If one IBM HTTP Server is routing requests to a

cluster of application servers, add the AfpaPluginHost WAS_Hostname:port directive to the http.conf

file for each application server in the cluster. For example, if there are three application servers in the

cluster, add the following directives to the http.conf file:

v LoadModule afpaplugin_module app_server_root/bin/afpaplugin.dll

v AfpaPluginHost WAS1_Hostname:port1

v AfpaPluginHost WAS2_Hostname:port2

v AfpaPluginHost WAS3_Hostname:port3

Configuring fast response cache accelerator cache size through a distributed platforms Web server:

In the default IBM HTTP Server for distributed platforms configuration, the maximum fast cache

accelerator dynamic cache size is calculated as 1/8 of physical pin-able memory.

 On a machine with 384 megabytes of RAM, it allows a maximum of approximately 50 megabytes for the

Fast Cache Accelerator dynamic cache. When this limit is reached, the cache accelerator deletes older

entries to cache new entries.

Using the IBM HTTP Server for distributed platforms AfpaDynaCacheMax directive, tune the maximum

allowed cache size:

1. Place the directive in the global server configuration scope, along with the other default Fast Cache

Accelerator directives.

2. Enable fast cache accelerator. To enable the fast cache accelerator, update the following directives in

this IBM HTTP Server’s http.conf file:

AfpaEnable

AfpaCache on

AfpaLogFile "c:/Program Files/IBM HTTP Server/logs/afpalog" V-ECLF

AfpaDynaCacheMax 10

These settings limit the dynamic cache size to 10 megabytes. If you use these directives to increase

cache size, do not make the cache so large that all the physical memory is consumed. Determine how

much memory is available when all applications are running, by using the Windows Task Manager.

Assign no more than 50% of available physical memory to the dynamic cache. Specifying too large a

cache not only decreases the performance of other applications, but also puts you at a risk for

completely running out of memory.

Chapter 20. Learn about WebSphere programming extensions 1899

The default configuration does not include the AfpaDynaCacheMax directive where the cache size is

automatically calculated as 1/8 of physical memory.

Configuring cacheable objects with the cachespec.xml file

Use this task to define cacheable objects inside the cachespec.xml, found inside the Web module WEB-INF

or enterprise bean META-INF directory.

Enable the dynamic cache. See “Enabling the dynamic cache service” on page 1883 for more information.

You can save a global cachespec.xml in the application server properties directory, but the recommended

method is to place the cache configuration file with the deployment module. The root element of the

cachespec.xml file is <cache>, which contains <cache-entry> elements.

The <cache-entry> element can be nested within the <cache> element or a <cache-instance> element.

The <cache-entry> elements that are nested within the <cache> element are cached in the default cache

instance. Any <cache-entry> elements that are in the <cache-instance> element are cached in the

instance that is specified in the name attribute on the <cache-instance> element.

Within a <cache-entry> element are parameters that allow you to complete the following tasks to enable

the dynamic cache with the cachespec.xml file:

1. Develop a cachespec.xml file.

a. Create a caching configuration file.

In the <app_server_root>/properties directory, locate the cachespec.sample.xml file.

b. Copy the cachespec.sample.xml file to cachespec.xml in Web module WEB-INF or enterprise bean

META-INF directory.

2. Define the cache-entry elements necessary to identify the cacheable objects. See the topic

“Cachespec.xml file” on page 1901 for a list of elements.

3. Develop cache ID rules.

To cache an object, WebSphere Application Server must know how to generate unique IDs for different

invocations of that object. The <cache-id> element performs that task. Each cache entry can have

multiple cache-ID rules that run in order until either a rule returns cache-ID that is not empty or no

more rules remain to run. If no cache-ID generation rules produce a valid cache ID, then the object is

not cached. Develop the cache IDs in one of two ways:

v Use the <component> element defined in the cache policy of a cache entry (recommended). See

“Cachespec.xml file” on page 1901 for more information about the <component> element.

v Write custom Java code to build the ID from input variables and system state. To configure the

cache entry to use the ID generator, specify your IdGenerator in the XML file by using the

<idgenerator> tag, for example:
<cache-entry>

 <class>servlet</class>

 <name>/servlet/CommandProcessor</name>

 <cache-id>

 <idgenerator>com.mycompany.SampleIdGeneratorImpl</idgenerator>

 <timeout>60</timeout>

 </cache-id>

</cache-entry>

4. Specify dependency ID rules. Use dependency ID elements to specify additional cache group

identifiers that associate multiple cache entries to the same group identifier.

The dependency ID is generated by concatenating the dependency ID base string with the values

returned by its component elements. If a required component returns a null value, then the entire

dependency ID does not generate and is not used. You can validate the dependency IDs explicitly

through the dynamic cache API, or use another cache-entry <invalidation> element. Multiple

dependency ID rules can exist per cache entry. All dependency ID rules run separately. See

“Cachespec.xml file” on page 1901 for a list of <component> elements.

1900 Administering applications and their environment

5. Invalidate other cache entries as a side effect of this object start, if relevant. You can define

invalidation rules in exactly the same manner as dependency IDs. However, the IDs that are generated

by invalidation rules are used to invalidate cache entries that have those same dependency IDs.

The invalidation ID is generated by concatenating the invalidation ID base string with the values

returned by its component element. If a required component returns a null value, then the entire

invalidation ID is not generated and no invalidation occurs. Multiple invalidation rules can exist per

cache-entry. All invalidation rules run separately.

6. Ensure your cache policy is working correctly. You can modify the policies within the cachespec.xml file

while your application is running. The dynamic cache reloads the updated file automatically. If you are

caching static content and you are adding the cache policy to an application for the first time, you must

restart the application. You do not need to restart the application server to activate the new cache

policy. See “Verifying the cacheable page” for more information.

Typically you declare several <cache-entry> elements inside a cachespec.xml file.

When new versions of the cachespec.xml are detected, the old policies are replaced. Objects that cached

through the old policy file are not automatically invalidated from the cache; they are either reused with the

new policy or eliminated from the cache through its replacement algorithm.

For each of the three IDs (cache, dependency, invalidation) generated by cache entries, a <cache-entry>

can contain multiple elements. The dynamic cache runs the <cache-id> rules in order, and the first one

that successfully generates an ID is used to cache that output. If the object is to be cached, each one of

the <dependency-id> elements is run to build a set of dependency IDs for that cache entry. Finally, each of

the <invalidation> elements are run, building a list of IDs that the dynamic cache invalidates, whether or

not this object is cached.

Verifying the cacheable page

Use this task to verify that the dynamic cache service has its cache policies configured correctly and is

serving cached content.

The dynamic cache service should be enabled. You should have a cache policy developed for your

application. See “Configuring cacheable objects with the cachespec.xml file” on page 1900 for more

information. You must have servlet caching enabled in the web container. See “Configuring servlet

caching” on page 1887 for more information.

You can verify the cacheable page by invoking the snoop servlet in the default application. If the dynamic

cache is working correctly, refreshing the servlet repeatedly results in viewing cached content.

1. View the Snoop servlet in the default application by accessing the URI: /snoop The Snoop servlet is a

part of the default application. See “Default Application” on page 103 for more information.

2. Invoke and reload the URI several times using a different Web browser or using different parameters.

This action returns the same output for the snoop servlet. The snoop servlet is now operating

incorrectly, because it displays the request information from its first invocation rather than from the

current request.

3. Inspect the entry in the cache with the dynamic cache monitor. See “Displaying cache information” on

page 1931 for more information.

Cachespec.xml file

The cache parses the cachespec.xml file when the server starts, and extracts a set of configuration

parameters from each cache-entry element. Every time a new servlet or other cacheable object initializes,

the cache attempts to match each of the cache-entry elements to find the configuration information for that

object.

The cache-entry elements can be inside the root cache element or inside a cache-instance element.

Cache entries that are in the root element are cached with the default cache instance. Cache entries that

Chapter 20. Learn about WebSphere programming extensions 1901

are in the <cache-instance> element are cached in that particular cache instance. Different cacheable

objects have different class elements. You can define the specific object that a cache policy refers to using

the name element.

Location

Place the cachespec.xml file with the deployment module. Use an assembly tool to define the cacheable

objects. See Assembling applications for more information about assembling applications. You can also

place a global cachespec.xml file in the application server properties directory.

The cachespec.dtd file is available in the application server properties directory. The cachespec.dtd file

defines the legal structure and the elements that can be in your cachespec.xml file.

Usage notes

Cachespec.xml elements

The root element of the cachespec.xml file is cache and contains cache-instance and cache-entry

elements. The cache-entry elements can also be placed inside of cache-instance elements to make that

cache entry part of a cache instance that is different from the default.

cache-instance

<cache-instance name=″cache_instance_name″></cache-instance>

The name attribute is the Java Naming and Directory Interface (JNDI) name of the cache instance that is

set in the administrative console.

Each cache-instance element must contain at least one cache-entry element. A cache entry that is

matched within a cache-instance element is cached in the servlet cache instance that is specified by the

name attribute. If identical cache-entry elements exist across cache-instance elements, the first

cache-entry element that is matched is used.

cache-entry

Each cache entry must specify certain basic information that the dynamic cache uses to process that

entry. This section explains the function of each cache entry element of the cachespec.xml file including:

v class

v name

v sharing-policy

v skip-cache

v property

v cache-id

With the current version of WebSphere Application Server, you can define multiple cache policies for a

single servlet. For example, if you define multiple mappings for a servlet in the web.xml file, you can create

a cache entry for each one of the mappings.

class

<class>command | servlet | webservice | JAXRPCClient | static | portlet </class>

This element is required and specifies how the application server interprets the remaining cache policy

definition. The value servlet refers to servlets and JavaServer Pages (JSP) files that are deployed in the

WebSphere Application Server servlet engine. The webservice class extends the servlet with special

component types for Web services requests. The JAXRPCClient is used to define a cache entry for the

1902 Administering applications and their environment

Web services client cache. The value, command, refers to classes using the WebSphere Application Server

command programming model. The value, static, refers to files that contain static content. The following

examples illustrate the class element:

<class>command</class>

<class>servlet</class>

<class>webservice</class>

<class>JAXRPCClient</class>

<class>static</class>

<class>portlet</class>

name

<name>name</name>

Use the following guidelines for the name element to specify a cacheable object:

v For commands, this required element must include the package name, if any, and class name, including

a trailing .class, of the configured object.

v For servlets and JSP files, if the cachespec.xml file is in the WebSphere Application Server properties

directory, this required element must include the full URI of the JSP file or servlet to cache. For servlets

and JSP files, if the cachespec.xml file is in the Web application, this required element can be relative to

the specific Web application context root.

v For Web services, include the Universal Resource Identifier (URI) of the Simple Object Access Protocol

(SOAP) router that is associated with the Web service that you want to cache.

v For Web services client cache, the name is the target end point of the cacheable Web service or the

URI of the SOAP router that is associated with the cacheable Web service. You can use the SOAP

address location in the Web Services Description Language (WSDL) file to define the name for the Web

services client cache.

v For static files, if the cachespec.xml file is in the WebSphere Application Server properties directory, this

required element must include the full URI of the file to cache. If the cachespec.xml file is in the Web

application, this required element can be relative to the specific Web application context root. For a Web

application with a context root, the cache policy for files using the static class must be specified in the

Web application, and not in the properties directory.

v For portlets, if the cachespec.xml file is in the WebSphere Application Server properties directory, this

required element must include the full context path and name of the portlet to cache. If the

cachespec.xml file is in the Web application, this required element is the portlet name that is relative to

the specific Web application context root.

Tip: The preferred location of the cachespec.xml file is in the Web application, not the properties directory.

You can specify multiple name elements within a cache-entry if you have different mappings that refer to

the same servlet.

The following examples illustrate the name element:

<name>com.mycompany.MyCommand.class</name>

<name>default_host:/servlet/snoop</name>

<name>com.mycompany.beans.MyJavaBean</name>

<name>mywebapp/myjsp.jsp</name>

<name>/soap/servlet/soaprouter</name>

<name>http://remotecompany.com:9080/service/getquote</name>

<name>mywebapp/myLogo.gif</name>

sharing-policy

<sharing-policy> not-shared | shared-push | shared-pull | shared-push-pull</sharing-policy>

When working within a cluster with a distributed cache, these values determine the sharing characteristics

of entries that are created from this object. If this element is not present, a not-shared value is assumed.

Chapter 20. Learn about WebSphere programming extensions 1903

In single server environments, not-shared is the only valid value. When enabling a replication, the default

value is not-shared . This property does not affect distribution to Edge Side Include processors through

the Edge fragment caching property. See for more information.

 Value Description

not-shared Cache entries for this object are not shared among

different application servers. These entries can contain

non-serializable data. For example, a cached servlet can

place non-serializable objects into the request attributes,

if the <class> type supports it.

shared-push Cache entries for this object are automatically distributed

to the dynamic caches in other application servers or

cooperating Java virtual machines (JVMs). Each cache

has a copy of the entry at the time it is created. These

entries cannot store non-serializable data.

shared-pull Cache entries for this object are shared between

application servers on demand. If an application server

gets a cache miss for this object, it queries the

cooperating application servers to see if they have the

object. If no application server has a cached copy of the

object, the original application server runs the request

and generates the object. These entries cannot store

non-serializable data. This mode of sharing is not

recommended.

shared-push-pull Cache entries for this object are shared between

application servers on demand. When an application

server generates a cache entry, it broadcasts the cache

ID of the created entry to all cooperating application

servers. Each server then knows whether an entry exists

for any given cache ID. On a given request for that entry,

the application server knows whether to generate the

entry or pull it from somewhere else. These entries

cannot store non-serializable data.

The following example shows a sharing policy:

<sharing-policy>not-shared</sharing-policy>

skip-cache

Takes the name of a request attribute, which if present in the request context, dictates that the response

cannot be retrieved from the cache instance that is specified. This property is useful for previewing content

in production systems and verifying that the application is working and performing as expected.

<cache>

 <skip-cache-attribute>att1</skip-cache-attribute> <!–Applies only to the base cache- ->

...

<cache-instance name="instance1">

<skip-cache-attribute>att2</skip-cache-attribute> <!-Applies only to this instance- ->

...

</cache-instance>

</cache>

property

<property name=″key″>value</property>

where key is the name of the property for this cache entry element, and value is the corresponding value.

1904 Administering applications and their environment

You can set optional properties on a cacheable object, such as a description of the configured servlet. The

class determines valid properties of the cache entry. At this time, the following properties are defined:

 Property Valid classes Value

ApplicationName All Overrides the J2EEName application

ID so that multiple applications can

share a common cache ID

namespace.

EdgeCacheable Servlet True or false. The default is false. If

the property is true, then the given

servlet or JSP file is externally

requested from an Edge Side Include

processor. Whether or not the servlet

or JSP file is cacheable depends on

the rest of the cache specification.

ExternalCache Servlet and portlet Specifies the external cache name.

The external cache name needs to

match the external cache group

name.

consume-subfragments Servlet, Web service, or portlet True or false. The default is false.

When a servlet is cached, only the

content of that servlet is stored, and

includes placeholders for any other

fragments to which it includes or

forwards. Consume-subfragments

(CSF) tells the cache not to stop

saving content when it includes a

child servlet. The parent entry, the

one marked CSF, includes all the

content from all fragments in its

cache entry, resulting in one big

cache entry that has no includes or

forwards, but the content from the

whole tree of entries.

Consume-subfragments can save a

significant amount of application

server processing, but is typically only

useful when the external HTTP

request contains all the information

needed to determine the entire tree of

included fragments.

Use the <exclude> element to tell the

cache to stop consuming for the

excluded fragment and instead,

create a placeholder for the include or

forward. For example, exclude A.jsp

from the consume-subfragment, as

follows:

<property name=

 "consume-sbufragments">true

<exclude>/A.jsp<exclude>

</property>

Chapter 20. Learn about WebSphere programming extensions 1905

do-not-consume Servlet, Web service, or portlet True or false. The default is false.

When a fragment parent has the

consume-subfragment property set to

true the child fragment content is

saved in the cache entry of the

parent. Do-not-consume (DNC) tells

the cache to stop saving the content

for this fragment in the parent

cache-entry and create a placeholder

instead for the include or forward.

alternate_url Servlet Specifies the alternate URL that is

used to invoke the servlet or JSP file.

The property is valid only if the

EdgeCacheable property also is set

for the cache entry.

persist-to-disk All True or false. The default is true.

When this property is set to false,

the cache entry is not written to the

disk when overflow or server stopping

occurs.

save-attributes Servlet and portlet True or false. The default is true.

When this property is set to false,

the request attributes are not saved

with the cache entry.

Use the <exclude> element to specify

the request attributes that do not

apply to the save-attributes property.

For example, to save only the attr1

attribute with the cache entry:

<property name="save-attributes">false

<exclude>attr1</exclude>

</property>

To save all attributes except the attr1

attribute in the cache entry, set the

property to true in the preceding

sample. If you do not use the

<exclude> element, either all or no

request attributes are saved with the

cache entry.

delay-invalidations Command True or false. When this property is

set to true, the commands that are

invalidating cached objects based on

the invalidation rules in this cache

entry invalidate the cache entries

after running. By default, the

invalidation occurs before the

command runs.

1906 Administering applications and their environment

store-cookies Servlet and portlet Takes one or more cookie name as

its argument which is saved along

with the cache object and restored by

the servlet cache in the response with

a set-cookie header.

Save all cookies except cookie1 as

part of the cache-entry as follows:

<property name=

 "store-cookies">true

<exclude>cookie</exclude>

</property>

Save only cookie1 as part of the

cache-entry, as follows:

<property name=

 "store-cookies">false

<exclude><cookie1</exclude>

</property>

ignore-get-post Servlet and portlet True or false. The default is false.

When the property is set to true the

request type is not appended to the

cache-id for GET and POST requests

unless the requestType component

requestType component subelement

is defined. By default the request type

is automatically appended to the

cache-id for GET and POST requests.

do-not-cache Servlet and portlet Defines a fragment that is neither

cached nor consumed by its parent.

<cache-entry>

...

<property name="do-not-cache">

 true</property>

or

<cache-id>

<property name="do-not-cache">

 true</property>

</cache-id>

</cache-entry>

cache-id

To cache an object, the application server must know how to generate a unique ID for different invocations

of that object. These IDs are built either from user-written custom Java code or from rules that are defined

in the cache policy of each cache entry. Each cache entry can have multiple cache ID rules that run in

order until either:

v A rule returns a non-empty cache ID, or

v No more rules are left to run.

If none of the cache ID generation rules produce a valid cache ID, the object is not cached.

Each cache-id element defines a rule for caching an object and is composed of the sub-elements

component, timeout, inactivity, priority, property, idgenerator, and metadatagenerator. The following

example illustrates a cache-id element:

Chapter 20. Learn about WebSphere programming extensions 1907

<cache-id>

 component*| timeout? | inactivity? | priority? | property* | idgenerator? | metadatagenerator?

</cache-id>

component subelement

Use the component subelement to generate a portion of the cache ID. The component subelement

consists of the attributes id, type, and ignore-value, and the elements index, method, field, required, value,

and not-value.

v Use the id attribute to identify the component.

v Use the type attribute to identify the type of component. The following table lists the values for the type.

 Type Valid classes Meaning

method Command Calls the indicated method on the

command or object

field Command Retrieves the named field in the

command or object

parameter Servlet and portlet Retrieves the named parameter value

from the request object

parameter-list Servlet and portlet Retrieves a list of values for the

named parameter

session Servlet and portlet Retrieves the named value from the

HTTP session

cookie Servlet Retrieves the named cookie value

attribute Servlet Retrieves the named request attribute

header Servlet, Web service, and portlet Retrieves the named request header

pathInfo Servlet Retrieves the pathInfo element from

the request

servletpath Servlet Retrieves the servlet path

locale Servlet and portlet Retrieves the request locale

requestType Servlet and portlet Retrieves the HTTP request method

from the request.

tiles_attribute Servlet and portlet Retrieves the value of an attribute

from a tile.

SOAPEnvelope Web service and Web services client

cache

Retrieves the SOAPEnvelope element

from a Web services request. An ID

attribute of Hash uses a Hash of the

SOAPEnvelope element, while Literal

uses the SOAPEnvelope element as

received.

SOAPAction Web service Retrieves the SOAPAction header, if

available, for a Web services request.

serviceOperation Web service Retrieves the service operation for a

Web services request

serviceOperationParameter Web service Retrieves the specified parameter

from a Web services request

1908 Administering applications and their environment

Type Valid classes Meaning

operation Web services client cache Indicates an operation type in the

Web Services Description Language

(WSDL) file. The id attribute is

ignored and the value is the operation

or method name. If the namespace of

the operation is specified, format the

value as

namespaceOfOperation:nameOfOperation

part Web services client cache Indicates an input message part in

the WSDL file or a request parameter.

Its id attribute is the part or parameter

name, and the value is the part or

parameter value.

SOAPHeaderEntry Web services client cache Retrieves special information in the

Simple Object Access Protocol

(SOAP) header of the Web services

request. The id attribute specifies the

name of the entry. In addition, the

entry of the SOAP header in the

SOAP request must have the actor

attribute, which contains

com.ibm.websphere.cache. For

example:

<soapenv:Header>

 <getQuote soapenv:actor=

 "com.ibm.websphere.cache">IBM

 </getQuote>

</soapenv:Header>

portletSession Portlet Retrieves the named value from the

portlet session

portletWindowId Portlet Retrieves the portlet window ID from

the portlet request object

portletMode Portlet Retrieves the portlet mode from the

portlet request object

portletWindowsState Portlet Retrieves the portlet window state

from the portlet request object

sessionID Servlet and portlet Retrieves the HTTP session ID

v Use the ignore-value attribute to specify whether or not to use the value that is returned by this

component in cache ID formation. This attribute is optional with a default value of false. If the value is

true, only the ID of the component is used when creating a cache ID, or no output is used when

creating a dependency or invalidation ID.

v Use the method element to call a void method on a returned object. You can infinitely nest method and

field objects in any combination. The method must be public and is not valid for edge-cacheable

components. For example:

<component id="getUser" type="method"><method>getUserInfo

<method>getName</method></method></component>

This method is equivalent to getUser().getUserInfo().getName()

For component types attribute, method, or field that can return an object, when the object returned is a

collection or array, the ID is created with a comma separated list of the elements in the collection or

array. For example, if the request attribute users returns an array [a, b] and the cache entry is defined

like the following example:

Chapter 20. Learn about WebSphere programming extensions 1909

<cache-entry>

 <class>servlet</class>

 <name>xxx.jsp</name>

 <cache-id>

 .

 .

 <component id="users" type="attribute">

 <required>true</required>

 </component>

 .

 .

 </cache-id>

 <dependency-id>dep

 <component id="users" type="attribute">

 <required>true</required>

 </component>

 </dependency-id>

</cache-entry>

The cache id contains the string users: a,b. The dependency id is dep: a,b.

Use the multipleIDs attribute with the component types to specify and generate multiple dependency IDs

(or invalidation IDs), based on the items in the collection or array. For example:

<cache-entry>

 <class>servlet</class>

 <name>xxx.jsp</name>

 <cache-id>

 .

 .

 <component id="users" type="attribute">

 <required>true</required>

 </component>

 .

 .

 </cache-id>

 <dependency-id>dep

 <component id="users" type="attribute" multipleIDs="true">

 <required>true</required>

 </component>

 </dependency-id>

</cache-entry>

The cache policy will generates the following dependency IDs:

– dep:a,b

– dep:a

– dep:b

Use the index element with the prvious component type to add only the value of the element at the

specified index position in the collection or array, to the ID that is being created.

<cache-entry>

 <class>servlet</class>

 <name>xxx.jsp</name>

 <cache-id>

 .

 .

 <component id="users" type="attribute">

 <required>true</required>

 <index>1</index>

 </component>

 .

 .

 </cache-id>

 <dependency-id>dep

 <component id="users" type="attribute" multipleIDs="true">

1910 Administering applications and their environment

<required>true</required>

 </component>

 </dependency-id>

</cache-entry>

The previous cache policy generates the following component to use in the cache ID: users: b. Use the

<method> element to call a void method on a returned object.

v Use the field element to access a field in a returned object. You can infinitely nest method and field

objects in any combination. The field must be public. This field is not valid for edge-cacheable

components. For example:

<component id="getUser" type="method"><method>getUserInfo

<field>name</field></method></component>

This method is equivalent to the getUser().getUserInfo().name method.

v Use the required element to specify whether or not this component must return a non-null value for this

cache ID to represent a valid cache. If set to true, this component must return a non-null value for this

cache ID to represent a valid cache ID. If set to false, the default, a non-null value is used in the

formation of the cache ID and a null value means that this component is not used at all in the ID

formation. For example:

<required>true</required>

v Use the value element to specify values that must match to use this component in cache ID formation.

For example:

<component id="getUser" type="method"><value>blue</value>

<value>red</value> </component>

v Use the not-value element to specify values that must not match to use this component in cache ID

formation. This method is similar to value element, but instead prescribes the defined values from

caching. You can use multiple not-value elements when more than one value that is not valid exists. For

example:

<component id="getUser" type="method">

<required>true</required>

<not-value>blue</not-value>

<not-value>red</not-value></component>

The component subelement can have either a method and a field element, a value element, or a not-value

element. The method and field elements apply to commands only. The following example illustrates the

attributes of a component sub-element:

<component id="isValid" type="method" ignore-value="true"><component>

timeout subelement

The timeout subelement is used to specify an absolute time-to-live (TTL) value for the cache entry. For

example,

<timeout>value</timeout>

where value is the amount of time, in seconds, to keep the cache entry. Cache entries that are in memory

are kept indefinitely, as long as the entries remain in memory. Cache entries that are stored on disk are

evicted if they are not accessed for 24 hours.

inactivity subelement

The inactivity subelement is used to specify a time-to-live (TTL) value for the cache entry based on the

last time that the cache entry was accessed. It is a subelement of the cache-id element.

<inactivity>value</inactivity>

where value is the amount of time, in seconds, to keep the cache entry in the cache after the last cache

hit.

Chapter 20. Learn about WebSphere programming extensions 1911

priority subelement

Use the priority subelement to specify the priority of a cache entry in a cache. The priority weighting is

used by the least recently used (LRU) algorithm of the cache to decide which entries to remove from the

cache if the cache runs out of storage space. For example,

<priority>value</priority>

where value is a positive integer between 1 and 255 inclusive.

Samples

The following sample keeps the cache entry in the cache for a minimum of 35 seconds and a maximum of

180 seconds. If the cache entry is accessed within each 35 second inactivity period, the inactivity period is

extended for another 35 seconds. However, because the timeout element is also configured, the cache

entry is always invalidated after 180 seconds. If the cache entry is not accessed within the 35 second

period, the entry is removed from the cache.

<cache-id>

 <component id="timeout" type="parameter">

 <required>true</required>

 </component>

 <timeout>180</timeout>

 <inactivity>35</inactivity>

 <priority>1</priority>

</cache-id>

The following sample keeps the cache entry in the cache for a minimum of 600 seconds. If the cache

entry is accessed within each 600 second period, the inactivity period is extended for another 600

seconds. If the cache entry is not accessed within the 600 second period, the cache entry is removed from

the cache.

<cache-id>

 <component id="timeout" type="parameter">

 <required>true</required>

 </component>

 <inactivity>600</inactivity>

 <priority>1</priority>

</cache-id>

In the following sample, the value for inactivity has no meaning because the timeout period is less than the

inactivity period. The cache entry is always invalidated after 180 seconds, no matter how often the cache

entry is accessed.

<cache-id>

 <component id="timeout" type="parameter">

 <required>true</required>

 </component>

 <timeout>180</timeout>

 <inactivity>600</inactivity>

 <priority>1</priority>

</cache-id>

property subelement

Use the property subelement to specify generic properties for the cache entry. For example,

<property name="key">value</property>

where key is the name of the property to define, and value is the corresponding value.

For example:

<property name="description">The Snoop Servlet</property>

1912 Administering applications and their environment

Property Valid classes Meaning

sharing-policy/timeout/priority All Overrides the settings for the

containing cache entry when the

request matches this cache ID.

EdgeCacheable Servlet Overrides the settings for the

containing cache entry when the

request matches this cache ID.

idgenerator and metadatagenerator sub-elements

Use the idgenerator element to specify the class name that is loaded for the generation of the cache ID.

The IdGenerator element must implement the com.ibm.websphere.servlet.cache.IdGenerator interface for

a servlet or the com.ibm.websphere.webservices.IdGenerator interface for the Web services client cache.

An example of the idgenerator element follows:

<idgenerator> class name </idgenerator>

Where class name is the fully-qualified name of the class to use. Define this generator class in a shared

library.

Use the metadatagenerator element inside the cache-id element to specify the class name loaded for the

metadata generation. The MetadataGenerator class must implement the

com.ibm.websphere.servlet.cache.MetaDataGenerator interface for a servlet or the

com.ibm.websphere.cache.webservices.MetaDataGenerator interface for Web services client cache. The

MetadataGenerator class defines properties like timeout, inactivity, external caching properties or

dependencies. An example of the metadatagenerator element follows:

<metadatagenerator> classname </metadatagenerator>

In this example, class name is the fully-qualified name of the class to use. Define this generator class in a

shared library.

dependency-id element

Use the dependency-id element to specify additional cache identifiers that associate multiple cache entries

to the same group identifier.

The value of the dependency-id element is generated by concatenating the dependency ID base string

with the values that are returned by its component elements. If a required component returns a null value,

the entire dependency does not generate and is not used. Validate the dependency IDs explicitly through

the dynamic cache API, or use the invalidation element. Multiple dependency ID rules can exist in one

cache-entry element. All dependency rules run separately.

invalidation element

To invalidate cached objects, the application server must generate unique invalidation IDs. Build

invalidation IDs by writing custom Java code or through rules that are defined in the cache policy of each

cache entry. The following example illustrates an invalidation in the cache policy:

<invalidation>component* | invalidationgenerator? </invalidation>

invalidationgenerator subelement

The invalidationgenerator element is used with the Web Services client cache only. Use the

invalidationgenerator element to specify the class name to load for generating invalidation IDs. The

Chapter 20. Learn about WebSphere programming extensions 1913

InvalidationGenerator class must implement the

com.ibm.websphere.cache.webservices.InvalidationGenerator interface. An example of the

invalidationgenerator element follows:

<invalidationgenerator>class name</invalidationgenerator>

In this example, classname is the fully qualified name of the class that implements the

com.ibm.websphere.cache.webservices.InvalidationGenerator interface. Define this generator class in a

shared library.

Configuring command caching

Cacheable commands are stored in the cache for reuse with a similar mechanism for servlets and

JavaServer Pages (JSP) files.

In this case, however, the unique cache IDs are generated based on methods and fields present in the

command as input parameters. For example, a GetStockQuote command can have a symbol as its input

parameter.

A unique cache ID can generate from the name of the command, plus the value of the symbol.

To use command caching you must:

Create a command.

1. Define an interface. The Command interface specifies the most basic aspects of a command.

You must define the interface that extends one or more of the interfaces in the command package. The

command package consists of three interfaces:

v TargetableCommand

v CompensableCommand

v CacheableCommand

In practice, most commands implement the TargetableCommand interface, which allows the command

to run remotely. The code structure of a command interface for a targetable command follows:

...

import com.ibm.websphere.command.*;

public interface MyCommand extends TargetableCommand {

 // Declare application methods here

}

2. Provide an implementation class for the interface. Write an interface that extends the

CacheableCommandImpl class and implements your command interface. This class contains the code

for the methods in your interface, the methods inherited from extended interfaces like the

CacheableCommand interface, and the required or abstract methods in the CacheableCommandImpl

class.

You can also override the default implementations of other methods provided in the

CacheableCommandImpl class.

Command class

Extend one or more of the three interfaces included in the command package to write a command

interface. The base interface for all commands is the Command interface.

The Command interface provides only the client-side interface for generic commands and declares three

basic methods:

v isReadyToCallExecute. This method is called on the client side before the command runs on server.

v execute. This method passes the command to the target and returns any data.

v reset. This method reverts any output properties to the values they had before the execute method was

called so that you can reuse the object.

1914 Administering applications and their environment

The implementation class for your interface must contain implementations for the isReadyToCallExecute

and reset methods.

CacheableCommandImpl class

Commands are implemented by extending the class CacheableCommandImpl, which implements the

CacheableCommand interface.

The CacheableCommandImpl class is an abstract class that provides implementations for some of the

methods in the CacheableCommand interface, for example, setting return values. This class declares

additional methods that the application must implement, for example, how to run the command.

The code structure of an implementation class for the CacheableCommand interface follows:

...

import com.ibm.websphere.command.*;

public class MyCommandImpl extends CacheableCommandImpl

implements MyCommand {

// Set instance variables here ...

// Implement methods in the MyCommand interface ...

// Implement abstract methods in the CacheableCommandImpl class

...

}

Example: Caching a command object

Cacheable commands are stored in the cache for reuse with a similar mechanism for servlets and

JavaServer Pages (JSP) files.

This example of command caching is a simple stock quote command.

The following is a stock quote command bean. It accepts a ticker as an input parameter and produces a

price as its output parameter.

public class QuoteCommand extends CacheableCommandImpl

{

 private String ticker;

 private double price;

 // called to validate that command input parameters have been set

 public boolean isReadyToCallExecute() {

 return (ticker!=null);

 }

 // called by a cache-hit to copy output properties to this object

 public void setOutputProperties(TargetableCommand fromCommand) {

 QuoteCommand f = (QuoteCommand)fromCommand;

 this.price = f.price;

 }

 // business logic method called when the stock price must be retrieved

 public void performExecute()throws Exception {...}

 //input parameters for the command

 public void setTicker(String ticker) { this.ticker=ticker;}

 public String getTicker() { return ticker;}

 //output parameters for the command

 public double getPrice() { return price;};

}

To cache the above command object using the stock ticker as the cache key and using a 60 second

time-to-live, use the following cache policy:

<cache>

 <cache-entry>

 <class>command</class>

 <sharing-policy>not-shared</sharing-policy>

Chapter 20. Learn about WebSphere programming extensions 1915

<name>QuoteCommand</name>

 <cache-id>

 <component type="method" id="getTicker">

 <required>true</required>

 </component>

 <priority>3</priority>

 <timeout>60</timeout>

 </cache-id>

 </cache-entry>

</cache>

Configuring the Web services client cache

Configuring the Web services client cache can improve the performance of your application server by

caching the responses from remote Web services for a specified amount of time.

You should have the dynamic cache service enabled. To enable the dynamic cache service, see “Task

overview: Using the dynamic cache service to improve performance” on page 1867. Before attempting to

configure the Web services client cache, you should understand how to create basic cache policies. See

“Configuring cacheable objects with the cachespec.xml file” on page 1900 for more information.

Enabling the Web services client cache is an option to improve the performance of your system by using

the dynamic cache service to save responses from remote Web services for a specified amount of time.

For more information about the Web Services client cache, see “Web services client cache” on page 1921.

1. Locate the Web Services Description Language (WSDL) file for the remote service. Portions of the

WSDL file contain information that you will use in writing your cache policy. For more information about

WSDL files, see “WSDL” on page 421. Following is an example of portions of a WSDL file that

contains values that are used for the purpose of demonstration.

<definitions targetNamespace="http://TradeSample.com/"

 xmlns:tns="http://TradeSample.com/"

 xmlns="http://schemas.xmlsoap.org/wsdl/"

 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <message name="getQuoteRequest">

 <part name="symbol" type="xsd:string"/>

 </message>

.....

.....

<binding name="SoapBinding" type="tns:GetQuote">

 <soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>

 <operation name="getQuote">

 <soap:operation soapAction=""/>

 <input name="getQuoteRequest">

 <soap:body namespace="http://TradeSample.com/"

 use="encoded"

 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

 </input>

 </operation>

</binding>

<service name="GetQuoteService">

 <port binding="tns:SoapBinding" name="SoapPort">

 <soap:address location="http://TradeSample.com:9080/service/getquote"/>

 </port>

</service>

</definitions>

The highlighted text indicates values that are used in writing your cache policy.

2. Choose how you plan to generate the cache id for your Web services client caching. You can build

your cache id rules by using one of four options:

v By calculating a hash of the SOAPEnvelope

1916 Administering applications and their environment

v By using SOAPHeader entries

v By using operation and part parameters

v By using custom Java code to build the cache id from input SOAP message content

Using SOAPHeader entries is the best option if you can include information for building cache keys as

part of the SOAP header. This method creates easy to read cache keys and can be built without

parsing the SOAP body. Use custom Java code to generate a specific cache id based on the SOAP

message. If you cannot include the header information, you can calculate the hash of the

SOAPEnvelope for performance or parse the SOAP Body for user-friendly cache keys.

3. Develop your cache policy.

All Web services client cache policies must have the class JAXRPCClient. The name element in each

cache entry is the target endpoint location that is defined in the WSDL file. You can find this address in

the WSDL file by finding the <soap:address location=″..″/> tag located in the port element. In the

WSDL file for this sample, the address is http://TradeSample.com:9080/service/getquote. Develop

the rest of your cache policy by using one of the following options:

v Calculate a hash of the SOAPEnvelope to identify the request

<cache>

 <cache-entry>

 <class>JAXRPCClient</class>

 <name>http://TradeSample.com:9080/service/getquote</name>

 <cache-id>

 <component id="hash" type="SOAPEnvelope"/>

 <timeout>60</timeout>

 </cache-id>

 </cache-entry>

</cache>

Note the component attributes to create a cache id based on a hash calculation of the

SOAPEnvelope. The cache id for this sample is generated as http://TradeSample.com:9080/
service/getquote:Hash=xxxHashSoapEnvelope.

v Use the SoapHeader to identify the request

<cache>

 <cache-entry>

 <class>JAXRPCClient</class>

 <name>http://TradeSample.com:9080/service/getquote</name>

 <cache-id>

 <component id="urn:stock:getQuote" type="SOAPHeaderEntry"/>

 </cache-id>

 </cache-entry>

</cache>

This cache id is built by using special information in the SOAP header to identify requests for entries

in the cache. Specify the type as SOAPHeaderEntry and the id as the operation name located in the

binding element in the WSDL file. The cache id for this sample is generated as

http://TradeSample.com:9080/service/getquote:urn:stock:getQuote=IBM.

An example of a SOAP request generated by the client using SOAP Header:

Note that the soapenv:actor attribute must contain com.ibm.websphere.cache.

POST /wsgwsoap1/soaprpcrouther HTTP/1.1

SOAPAction: ""

Context-Type: text/xml; charset=utf-8

User-Agent: Java/1.4.1

Host: localhost

Accept: text/html, image/gif, image/jpeg, *; q=.2, */*; q=.2

Connection: keep-alive

Content-Length: 645

<?xml version="1.0" encoding="UTF-8"?>

<soapenv:Envelope

xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

 xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"

Chapter 20. Learn about WebSphere programming extensions 1917

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<soapenv:Header>

 <getQuote soapenv:actor="com.ibm.websphere.cache" xmlns="urn:stock">IBM</getQuote>

</soapenv:Header>

<soapenv:Body

soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding">

 <getQuote xmlns="urn:ibmwsgw#GetQuoteSample">

 <symbol xsi:type="xsd:string">IBM</symbol>

 </getQuote>

</soapenv:Body>

</soapenv:Envelope>

v Use operation and part to identify the request

<cache>

 <cache-entry>

 <class>JAXRPCClient</class>

 <name>http://TradeSample.com:9080/service/getquote</name>

 <cache-id>

 <component id="" type="operation">

 <value>http://TradeSample.com/:getQuote</value>

 </component>

 <component id="symbol" type="part"/>

 </cache-id>

 </cache-entry>

</cache>

This example uses operation and request parameters. The operation can be a method name in the

WSDL file located in the binding element or a method name in the Document/Literal Invocation

(DII). If the namespace of the operation is defined, the value should be formatted as

namespaceOfOperation:nameOfOperation. The part type can be defined in the message element of

the WSDL file, as a request parameter, or as a request parameter of the DII invocation. Its id

attribute is the part or parameter name, and the value is the part or parameter value. The cache id

generated from using operation and request parameters is http://TradeSample.com:9080/service/
getquote:operation=http://TradeSample.com/:getQuote/symbol=IBM.

An example of the SOAP request generated by the client using operation and part:

POST /wsgwsoap1/soaprpcrouter HTTP/1.1

SOAPAction:""

Content-Type: text/xml/charset=utf-8

User-Agent: Java/1.4.1

Host: localhost

Accept: text/html, image/gif, image/jpeg, *; q=.2, */*; q=.2

Connection: keep-alive

Current-Length: 645

<?xml version="1.0" encoding="UTF-8"?>

<soapenv:Envelope

xmlns: soapenv="http://schemas.xmlsoap.org/soap/envelope/"

 xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<soapenv:Body

 soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

 <getQuote xmlns="urn:ibmwsgw#GetQuoteSample">

 <symbol xsi:type="xsd:string">IBM</symbol>

 </getQuote>

</soapenv:Body>

</soapenv:Envelope>

v Use custom Java code to build the cache id from input SOAP message content

If you use custom Java code to build the cache id, create an ID generator Java class that

implements the IdGenerator interface defined in the

com.ibm.websphere.cache.webservices.IdGenerator package and add a reference to the class you

create in the cachespec.xml file by using the idgenerator tag.

1918 Administering applications and their environment

You can also implement the com.ibm.websphere.cache.webservices.MetaDataGenerator package to

assign cache metadata such as timeout, priority, and dependency ids to cache entries using the

metadatagenerator tag.

Implement the com.ibm.websphere.cache.webservices.InvalidationGenerator interface and use the

invalidationgenerator tag in the cachespec.xml file to generate cache ids and to invalidate entries

in the cache. The id generated by the invalidation generator can be a cache id or a dependency id.

For example, if you develop an ID generator class named SampleIdGeneratorImpl, a metadata

generator class named SampleMetaDataGeneratorImpl, and an invalidation generator class named

SampleInvalidationGeneratorImpl, your cachespec.xml file might contain the following:

<cache-entry>

 <class>JAXRPCClient</class>

 <name>http://TradeSample.com:9080/service/getquote</name>

 <cache-id>

 <idgenerator>com.mycompany.SampleIdGeneratorImpl</idgenerator>

 <metadatagenerator>

 com.mycompany.SampleMetaDataAndInvalidationGeneratorImpl

 </metadatagenerator>

 <timeout>60</timeout>

 </cache-id>

 <invalidation>http://TradeSample.com:9080/service/GetQuote

 <invalidationgenerator>

 com.mycompany.SampleMetaDataAndInvalidationGeneratorImpl

 </invalidationgenerator>

 </invalidation>

</cache-entry>

The SampleIdGeneratorImpl class is a custom Java class that implements the

com.websphere.cache.webservices.IdGenerator interface. The SampleIdGeneratorImpl class

contains the getID method:

String getId(javax.xml.rpc.handler.soap.SOAPMessageContext messageContext)

The following is an example of the SampleIdGeneratorImpl.java class.

public class SampleIdGeneratorImpl implements IdGenerator {

//The SampleIdGenerator class builds cache keys using SOAP header entries

 public String getId(javax.xml.rpc.handler.soap.SOAPMessageContext

 messageContext) {

 // retrieve SOAP header entries from SOAPMessage

 SOAPHeader sh = soapEnvelope.getHeader();

 if (sh != null) {

 Iterator it = sh.examineHeaderElements("com.mycompany.actor");

 while (it.hasNext()) {

 SOAPHeaderElement element =

 (SOAPHeaderElement)it.next();

 Name name = element.getElementName();

 String headerEntryName = name.getLocalName();

 if (headerEntryName.equals("getQuote")){

 String sNamespace = element.getNamespaceURI("");

 if (sNamespace != null && !sNamespace.equals("")) {

 headerEntryName = sNamespace + ":" + headerEntryName;

 String quotes = element.getValue();

 }

 ...

 ...

 // create a method "parseAndSort" to parse and sort quotes

 // By parsing and sorting quotes, you avoid duplicate cache

 // entries.

 // quotes e.g. IBM,CSCO,MSFT,INTC

 // to return a cache key "urn:stock:getQuote=CSCO,IBM,INTC,MSFT"

 String sortQuotes = parseAndSort(quotes);

 cacheKey = headerEntryName + "=" + sortQuotes;

 }

Chapter 20. Learn about WebSphere programming extensions 1919

}

 return cacheKey;

 }

 }

The cache id for this sample is generated as http://TradeSample.com:9080/service/
getquote:urn:stock:symbol=CSCO,IBM,INTC,MSFT.

The SampleMetaDataAndInvalidationGeneratorImpl class is a custom Java class that implements

the com.websphere.cache.webservices.MetaDataGenerator interface and the

com.websphere.cache.webservices.InvalidationGenerator interface. The

SampleMetaDataAndInvalidationGeneratorImpl class contains the setMetaData method and the

getInvalidationIds method. You can also set up two smaller classes instead of this one large class.

For example, create one class for the metadata generator and a different class for the invalidation

generator. The following are method prototypes for the setMetaData method and the

getInvalidationIds method:

void setMetaData (javax.xml.rpc.handler.soap.SOAPMessageContext messageContext,

 com.ibm.websphere.cache.webservices.JAXRPCEntryInfo entryInfo)

String[] getInvalidationIds (javax.xml.rpc.handler.soap.SOAPMessageContext messageContext)

An example of the SampleMetaDataAndInvalidationGeneratorImpl.java class follows:

public class SampleMetaDataAndInvalidationGeneratorImpl implements

 MetaDataGenerator, InvalidationGenerator {

 //assigns time limit, and priority metadata

 public void setMetadata(javax.xml.rpc.handler.soap.SOAPMessageContext messageContext,

 com.ibm.websphere.cache.webservices.JAXRPCEntryInfo entryInfo) {

 // retrieve SOAP header entries from SOAPMessage

 SOAPHeader sh = soapEnvelope.getHeader();

 if (sh != null) {

 Iterator it = sh.examineHeaderElements("com.mycompany.actor");

 while (it.hasNext()) {

 SOAPHeaderElement element =

 (SOAPHeaderElement)it.next();

 Name name = element.getElementName();

 String headerEntryName = name.getLocalName();

 if (headerEntryName.equals(“metadata”)) {

 // retrieve each metadata element and set metadata

 entryInfo.setTimeLimit(timeLimit);

 entryInfo.setPriority(priority);

 }

 }

 }

 //builds invalidation ids using SOAP header.

 public String[] getInvalidationIds(javax.xml.rpc.handler.soap.SOAPMessageContext

 messageContext) {

 // retrieve SOAP header entries from SOAPMessage

 String[] invalidationIds = new String[1];

 SOAPHeader sh = soapEnvelope.getHeader();

 if (sh != null) {

 Iterator it = sh.examineHeaderElements("com.mycompany.actor");

 while (it.hasNext()) {

 SOAPHeaderElement element =

 (SOAPHeaderElement)it.next();

 Name name = element.getElementName();

 String headerEntryName = name.getLocalName();

 if (headerEntryName.equals("invalidation")) {

 String sNamespace = element.getNamespaceURI("");

 if (sNamespace != null && !sNamespace.equals("")) {

 headerEntryName = sNamespace + ":symbol";

 String quotes = element.getValue();

 }

 ...

 ...

1920 Administering applications and their environment

// create a method "parseAndSort" to parse and sort quotes

 // By parsing and sorting quotes, you avoid duplicate cache

 // entries.

 // quotes e.g. SUNW,NT

 // to return a cache key "urn:stock:symbol=NT,SUNW"

 String sortQuotes = parseAndSort(quotes);

 invalidationIds[0] = headerEntryName + "=" sortQuotes;

 }

 }

 return invalidationIds;

 }

}

The invalidation id for this sample is generated as:

http://TradeSample.com:9080/service/getquote:urn:stock:symbol=NT,SUNW

An example of the SOAP request generated by the client when using custom Java code follows:

POST /wsgwsoap1/soaprpcrouter HTTP/1.1

SOAPAction: ""

Context-type: text/xml, charset=utf-8

User-Agent: Java/1.4.1

Host: localhost

Accept: text/html, image/gif, image/jpeg, *; q=.2, */*; q=.2

Connection: keep-alive

Content-Length:645

<?xml version="1.0" encoding="UTF-8"?>

<soapenv:Envelope

xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

 xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<soapenv:Header>

 <getQuote soapenv:actor="com.mycompany.actor"

 xmlns="urn:stock">IBM,CSCO,MSFT,INTC</getQuote>

 <metaData soapenv:actor="com.mycompany.actor" xmlns="urn:stock">

 <priority>10</priority>

 <timeLimit>30000</timeLimit>

 </metaData>

 <invalidation soapenv:actor="com.mycompany.actor"

 xmlns="urn:stock">SUNW, NT</invalidation>

</soapenv:Header>

<soapenv:Body

soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding">

<getQuote xmlns="urn:ibmwsgw#GetQuoteSample">

 <symbol xsi:type="xsd:string">IBM,CSCO,MSFT,INTC</symbol>

</getQuote>

</soapenv:Body>

</soapenv:Envelope>

4. Save the cache policy to the appropriate directory.

v If you are using the Web Services Gateway on SOAP channel 1, the directory is:

<app_server_root>\installedApps\wsgwsoap1.servername.nodename.ear/wsgwsoap.war/WEB-INF

v If you are using a simple JAX-RPC client in your application to invoke remote Web services, save

your cache policy in the Web module WEB-INF of your JAX-RPC application.

You can monitor the results of your Web services client cache policy by using the dynamic cache monitor.

See “Displaying cache information” on page 1931 for more information.

Web services client cache

The Web services client cache is a part of the dynamic cache service that is used to increase the

performance of Web services clients by caching responses from remote Web services.

After a response is returned from a remote Web service, the response is saved in the client cache on the

application server. Any identical requests that are made to the same remote Web service are then

Chapter 20. Learn about WebSphere programming extensions 1921

responded to from the cache for a specified period of time. The Web services client cache relies primarily

on time-based invalidations because the target web service can be outside of your enterprise network and

unaware of your client caching. Therefore, you can specify the amount of time in the cache and the rules

to build cache entry IDs in the cache in your client application.

The Web services client cache is provided as a JAX-RPC handler on your application server. This

JAX-RPC cache handler intercepts the SOAP requests that flow through it from application clients. It then

identifies a cache policy based on the target Web service. After a policy is found, all the cache ID rules are

evaluated one by one until a valid rule is detected.

You can build cache id rules for Web services in three ways:

v By calculating a hash of the SOAPEnvelope

v By using SOAP header entries

v By using operation and part parameters

v By using custom Java code to build the cache id from an input SOAP message

Building the cache id rules using the SOAP header is faster because it does not have to parse the entire

body of the SOAP document. For more information about building the cache policies for the Web services

client cache, see “Configuring the Web services client cache” on page 1916.

Using the DistributedMap and DistributedObjectCache interfaces for

the dynamic cache

By using the DistributedMap or DistributedObjectCache interfaces, Java 2 platform, Enterprise Edition

(J2EE) applications and system components can cache and share Java objects by storing a reference to

the object in the cache.

Enable the dynamic cache service. See “Enabling the dynamic cache service” on page 1883 for more

information.

The DistributedMap and DistributedObjectCache interfaces are simple interfaces for the dynamic cache.

Using these interfaces, J2EE applications and system components can cache and share Java objects by

storing a reference to the object in the cache. The default dynamic cache instance is created if the

dynamic cache service is enabled in the administrative console. This default instance is bound to the

global Java Naming and Directory Interface (JNDI) namespace using the name services/cache/
distributedmap.

Multiple instances of the DistributedMap and DistributedObjectCache interfaces on the same Java virtual

machine (JVM) enable applications to separately configure cache instances as needed. Each instance of

the DistributedMap interface has its own properties that can be set using “Object cache instance settings”

on page 1925.

Tip: For more information about the DistributedMap and DistributedObjectCache interfaces, see the API

documentation for the com.ibm.websphere.cache package. See Reference: Generated API

documentation for more information.

Important: If you are using custom object keys, you must place your classes in a shared library. You can

define the shared library at cell, node, or server level. Then, in each server create a class

loader and associate it with the shared library that you defined. See the Setting up the

application serving environment PDF for more information.

There are three methods for configuring and using cache instances.

v Method 1 - Administrative console You can create additional cache instances using the administrative

console.

1922 Administering applications and their environment

1. In the administrative console, select Resources > Object cache instances and create a new object

cache instance.

If you defined two object cache instances in the administrative console with JNDI names of

services/cache/instance_one and services/cache/instance_two, you can use the following code to

look up the cache instances:

 InitialContext ic = new InitialContext();

DistributedMap dm1 = (DistributedMap)ic.lookup("services/cache/instance_one");

DistributedMap dm2 = (DistributedMap)ic.lookup("services/cache/instance_two");

// or

InitialContext ic = new InitialContext();

DistributedObjectCache dm1 = (DistributedObjectCache)ic.lookup("services/cache/instance_one");

DistributedObjectCache dm2 = (DistributedObjectCache)ic.lookup("services/cache/instance_two");

v Method 2 - Properties file You can create cache instances using the cacheinstances.properties file

and package the file in your Enterprise Archive (EAR) file.

Following is an example of how you can create additional cache instances using the

cacheinstances.properties file:

cache.instance.0=/services/cache/instance_one

cache.instance.0.cacheSize=1000

cache.instance.0.enableDiskOffload=true

cache.instance.0.diskOffloadLocation=${app_server_root}/diskOffload

cache.instance.0.flushToDiskOnStop=true

cache.instance.0.useListenerContext=true

cache.instance.0.enableCacheReplication=false

cache.instance.0.disableDependencyId=false

cache.instance.0.htodCleanupFrequency=60

cache.instance.1=/services/cache/instance_two

cache.instance.1.cacheSize=1500

cache.instance.1.enableDiskOffload=false

cache.instance.1.flushToDiskOnStop=false

cache.instance.1.useListenerContext=false

cache.instance.1.enableCacheReplication=true

cache.instance.1.replicationDomain=DynaCacheCluster

cache.instance.1.disableDependencyId=true

The preceding example creates two cache instances named instance_one and instance_two.

instance_one has a cache entry size of 1,000 and instance_two has a cache entry size of 1,500. Disk

offload is enabled in instance_one and disabled in instance_two. Use listener context is enabled in

instance_one and disabled in instance_two. Flush to disk on stop is enabled in instance_one and

disabled in instance_two. Cache replication is enabled in instance_two and disabled in instance_one.

The name of the data replication domain for instance_two is DynaCacheCluster. Dependency ID

support is disabled in instance_two.

Chapter 20. Learn about WebSphere programming extensions 1923

You must place the cacheinstances.properties file in either your application server or application class

path. For example, you can use your application WAR file, WEB-INF\classes directory, or

was_root\classes directory. The first entry in the properties file (cache.instance.0) specifies the JNDI

name for the cache instance in the global namespace. You can use the following code to look up the

cache instance:

 InitialContext ic = new InitialContext();

 DistributedMap dm1 = (DistributedMap)ic.lookup("services/cache/instance_one");

 DistributedMap dm2 = (DistributedMap)ic.lookup("services/cache/instance_two");

For more information about the DistributedMap and DistributedObjectCache interfaces, see the API

documentation for the com.ibm.websphere.cache package.

v Method 3 - Resource references

Note: Method three is an extension to method one or method two, listed above. First use either method

one or method two.

Define a resource-ref in your module deployment descriptor (web.xml and ibm-web-bnd.xmi files) and

look up the cache using the java:comp namespace.

Resource-ref example:

File: web.xml

<resource-ref id="ResourceRef_1">

 <res-ref-name>dmap/LayoutCache</res-ref-name>

 <res-type>com.ibm.websphere.cache.DistributedMap</res-type>

 <res-auth>Container</res-auth>

 <res-sharing-scope>Shareable</res-sharing-scope>

</resource-ref>

<resource-ref id="ResourceRef_2">

 <res-ref-name>dmap/UserCache</res-ref-name>

 <res-type>com.ibm.websphere.cache.DistributedMap</res-type>

 <res-auth>Container</res-auth>

 <res-sharing-scope>Shareable</res-sharing-scope>

</resource-ref>

File: ibm-web-bnd.xmi

<?xml version="1.0" encoding="UTF-8"?>

<webappbnd:WebAppBinding xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"

xmlns:webappbnd="webappbnd.xmi"

xmlns:webapplication="webapplication.xmi" xmlns:commonbnd="commonbnd.xmi"

xmlns:common="common.xmi"

xmi:id="WebApp_ID_Bnd" virtualHostName="default_host">

 <webapp href="WEB-INF/web.xml#WebApp_ID"/>

 <resRefBindings xmi:id="ResourceRefBinding_1" jndiName="services/cache/instance_one">

 <bindingResourceRef href="WEB-INF/web.xml#ResourceRef_1"/>

 </resRefBindings>

 <resRefBindings xmi:id="ResourceRefBinding_2" jndiName="services/cache/instance_two">

 <bindingResourceRef href="WEB-INF/web.xml#ResourceRef_2"/>

 </resRefBindings>

</webappbnd:WebAppBinding>

The following example shows how to look up the resource-ref:

InitialContext ic = new InitialContext();

 DistributedMap dm1a =(DistributedMap)ic.lookup("java:comp/env/dmap/LayoutCache");

 DistributedMap dm2a =(DistributedMap)ic.lookup("java:comp/env/dmap/UserCache");

// or

 DistributedObjectCache dm1a =(DistributedObjectCache)ic.lookup("java:comp/env/dmap/LayoutCache");

 DistributedObjectCache dm2a =(DistributedObjectCache)ic.lookup("java:comp/env/dmap/UserCache");

The previous resource-ref example maps java:comp/env/dmap/LayoutCache to /services/cache/
instance_one and java:comp/env/dmap/UserCache to /services/cache/instance_two. In the examples,

DistributedMap dm1 and dm1a are the same object. DistributedMap dm2 and dm2a are the same object.

1924 Administering applications and their environment

Restriction: DistributedMap and DistributedObjectCache do not have authorization or access control

associated with the cache entries.

Object cache instance settings

An object cache instance is a location, in addition to the default shared dynamic cache, where any Java 2

Platform, Enterprise Edition (J2EE) application can store, distribute, and share data. This gives

applications greater flexibility and better tuning of the cache resources. Use the DistributedMap

programming interface to access this cache instance. See the API documentation for more information.

To view this administrative console page, click Resources > Cache instances > Object cache instances

> cache_instance_name.

Name:

Specifies the required display name for the resource.

JNDI name:

Specifies the Java Naming and Directory Interface (JNDI) name for the resource. Use this name when

looking up a reference to this cache instance. The results return a DistributedMap object.

Description:

Specifies a description for the resource. This field is optional.

Category:

Specifies a category string to classify or group the resource. This field is optional.

Cache size:

Specifies a positive integer for the maximum number of entries the cache holds. The cache size is usually

in the thousands.

 Default 2000

Range 100 - 200,000

Default priority:

Specifies the default priority for servlets that can be cached. This value determines how long an entry

stays in a full cache.

 The recommended value is one. The range is one through 255.

Enable disk offload:

Specifies if disk offloading is enabled.

 If you have disk offload disabled, when a new entry is created while the cache is full, the priorities are

configured for each entry and the least recently used algorithm are used to remove the entry from the

cache in memory. If you enable disk offload, the entry that would be removed from the cache is copied to

the local file system. The location of the file is specified by the disk offload location.

 Default false

Chapter 20. Learn about WebSphere programming extensions 1925

Offload location:

Specifies the directory that is used for disk offload.

 If disk offload location is not specified, the default location, ${WAS_TEMP_DIR}/node/server

name/_dynacache/cache JNDI name will be used. If disk offload location is specified, the node, server name,

and cache instance name are appended. For example, ${USER_INSTALL_ROOT}/diskoffload generates the

location as ${USER_INSTALL_ROOT}/diskoffload/node/server name/cache JNDI name. This value is ignored

if disk offload is not enabled.

The default value of the ${WAS_TEMP_DIR} property is ${USER_INSTALL_ROOT}/temp. If you change the

value of the ${WAS_TEMP_DIR} property after starting WebSphere Application Server, but do not move

the disk cache contents to the new location:

v The Application Server creates a new disk cache file at the new disk offload location.

v If the Flush to disk setting is enabled, all the disk cache content at the old location is lost when you

restart the Application Server

Flush to disk:

Specifies if in-memory cached objects are saved to disk when the server is stopped. This value is ignored

if Enable Disk Offload is not selected.

 Default false

Limit disk cache size in GB:

Specifies a value for the maximum disk cache size in GB. When you select this option, you can specify a

positive integer value. Leaving this option blank indicates an unlimited size. This setting applies only if

enable disk offload is specified for the cache.

 Value 0 to MAXINT. A value of 0 indicates unlimited size.

Limit disk cache size in entries:

Specifies a value for the maximum disk cache size in number of entries. When you select this option, you

can specify a positive integer value. Leaving this option blank indicates an unlimited size. This setting

applies only if enable disk offload is specified for the cache.

 Value 0 to MAXINT. A value of 0 indicates unlimited size.

Limit disk cache entry size:

Specifies a value for the maximum size of an individual cache entry in MB. Any cache entry larger than

this, when evicted from memory, will not be offloaded to disk. When you select this option, you can specify

a positive integer value. Leaving this option blank indicates an unlimited size. This setting applies only if

enable disk offload is specified for the cache.

 Value 0 to MAXINT. A value of 0 indicates unlimited size.

Performance settings:

Specifies the level of performance that is required by the disk cache. This setting applies only if

enableDiskOffload is specified for the cache. Performance levels determine how memory resources

1926 Administering applications and their environment

should be used on background activity such as cache cleanup, expiration, garbage collection, and so on.

This setting applies only if enable disk offload is specified for the cache.

 High performance and high memory usage Indicates that all metadata will be kept in memory.

Balanced performance and balanced memory usage Indicates some metadata will be kept in memory. This is

the default performance setting and will provide an

optimal balance of performance and memory usage for

most users.

Low performance and low memory usage Indicates that limited metadata will be kept in memory.

Custom performance Indicates that the administrator will explicitly configure the

memory settings that will be used to support the above

background activity. The administrator sets these values

using the DiskCacheCustomPerformanceSettings

object.

Disk cache cleanup frequency:

Specifies a value for the disk cache cleanup frequency, in minutes. If this value is set to 0, the cleanup

runs only at midnight. This setting applies only when the Disk Offload Performance Level is low, balanced,

or custom. The high performance level does not require disk cleanup, and this value is ignored.

 Value 0 to 1440

Maximum buffer for cache identifiers per metaentry:

Specifies a value for the maximum number of cache identifiers that are stored for an individual

dependency ID or template in the disk cache metadata in memory. If this limit is exceeded the information

is offloaded to the disk. This setting applies only when the disk offload performance level is custom.

 Value 100 to MAXINT

Maximum buffer for dependency identifiers:

Specifies a value for the maximum number of dependency identifier buckets in the disk cache metadata in

memory. If this limit is exceeded the information is offloaded to the disk. This setting applies only when the

disk cache performance level is custom.

 Value 100 to MAXINT

Maximum buffer for templates:

Specifies a value for the maximum number of template buckets that are in the disk cache metadata in

memory. If this limit is exceeded the information is offloaded to the disk. This setting applies only when the

disk cache performance level is custom.

 Value 10 to MAXINT

Eviction policy algorithm:

Specifies the eviction algorithm that the disk cache will use to evict entries once the high threshold is

reached. This setting applies only if enable disk offload is specified for the cache.

Chapter 20. Learn about WebSphere programming extensions 1927

None No eviction policy, so the disk cache can grow until it

reaches its limit at which time the dynamic cache service

stops writing to disk

Random When the disk size reaches a high threshold limit, the

disk cache garbage collector wakes up and randomly

picks entries on the disk and evicts them until the size

reaches a low threshold limit.

Size When the disk size reaches a high threshold limit, the

disk cache garbge collector wakes up and picks the

largest entries on the disk and evicts them until the disk

size reaches a low threshold limit.

High threshold:

Specifies when the eviction policy runs. The threshold is expressed in terms of the percentage of the disk

cache size in GB or entries. The disk cache garbage collector is awaken when the disk size exceeds high

threshold limit. The lower value limits disk cache size in GB and disk cache size in entries. This setting

does not apply when the disk cache eviction policy is set to none.

 Values 1 to 100

Low threshold:

Specifies when the eviction policy ends. The threshold is expressed in terms of the percentage of the disk

cache size in GB or entries. The lower value limits disk cache size in GB and disk cache size in entries.

The disk cache garbage collector, when awaken, evicts entries until the disk size reaches the low

threshold limit. This setting does not apply when the disk cache eviction policy is set to none.

 Values 1 to 100

Use listener context:

Set this value to true to have invalidation events sent to registered invalidation listeners using the Java 2

Platform, Enterprise Edition (J2EE) context of the listener. If you want to use listener J2EE context for

callback, set this value to true. If you want to use the caller thread context for callback, set this to false.

Dependency ID support:

Specifies that the dynamic cache service, supports cache entry dependency IDs. Disable this option if you

do not need to use dependency IDs. Dependency IDs specify additional cache group identifiers that

associate multiple cache entries to the same group identifier in your cache policy.

 This option might not be available for cache instances that were created with a previous version of

WebSphere Application Server.

 Default true

Enable cache replication:

Use cache replication to enable sharing of cache IDs, cache entries, and cache invalidations with other

servers in the same replication domain.

1928 Administering applications and their environment

This option might be unavailable for cache instances created with a previous version of WebSphere

Application Server.

Full group replication domain:

Specifies a replication domain from which your data is replicated.

 Specifies a replication domain from which your data is replicated. Choose from any replication domains

that have been defined. If there are no replication domains listed, you must create one during cluster

creation or manually in the administrative console by clicking Environment > Internal replication

domains > New. The replication domain you choose to use with the dynamic cache service must be using

a Full group replica. Do not share replication domains between replication consumers. Dynamic cache

should use a different replication domain from session manager or stateful session beans.

Replication type:

Specifies the global sharing policy for this cache instance.

 The following settings are available:

v Both push and pull sends the cache ID of newly updated content to other servers in the replication

domain. Then, if one of the other servers requests the content, and that server has the ID of the cache

entry for the previously updated content, it will retrieve the content from the publishing server. If a

request is made for an ID which has not been previously published, the server assumes it does not

exist in the cluster and creates a new entry.

v Pull only shares cache entries for this object between application servers on demand. If an application

server gets a cache miss for this object, it queries the cooperating application servers to see if they

have the object. If no application server has a cached copy of the object, the original application server

runs the request and generates the object. These entries cannot store non-serializable data. This mode

of sharing is not recommended.

v Push only sends the cache ID and cache content of new content to all other servers in the replication

domain.

v The sharing policy of Not Shared results in the cache ID and cache content not being shared with other

servers in the replication domain.

The default setting for a an environment without clustering is Not Shared. When enabling replication, the

default value is Not Shared.

Push frequency:

Specifies the time, in seconds, to wait before pushing new or modified cache entries to other servers.

 A value of 0 (zero) sends the cache entries immediately. Setting this property to a value greater than 0

(zero) results in a ″batch″ push of all cache entries that are created or modified during the time period.

The default is 1 (one).

Object cache instance collection

Use this page to configure and manage object cache instances, which in addition to the default shared

dynamic cache, can store, distribute, and share data for Java 2 Platform, Enterprise Edition (J2EE)

applications. Use cache instances to give applications better flexibility and tuning of the cache resources.

To view this administrative console page, click Resources > Cache instances > Object cache

instances.

Use the DistributedObjectCache programming interface to access the cache instances. For more

information about the DistributedObjectCache application programming interface, see the API

documentation.

Chapter 20. Learn about WebSphere programming extensions 1929

Scope:

Specify CELL SCOPE to view and configure cache instances that are available to all servers within the

cell. Specify NODE SCOPE to view and configure cache instances that are available to all servers with the

particular node. Specify SERVER SCOPE to view and configure cache instances that are available only on

the specific server.

Name:

Specifies the required display name for the resource.

JNDI name:

Specifies the Java Naming and Directory Interface (JNDI) name for the resource. Use this name when

looking up a reference to this cache instance. The results return a DistributedMap object.

Cache size:

Specifies a positive integer for the maximum number of entries the cache holds. The cache size is usually

in the thousands. The default is 2000.

 The minimum value is 100, with no set maximum value.

Invalidation listeners

Invalidation listener mechanism uses Java events for alerting applications when contents are removed

from the cache.

Applications implement the InvalidationListener interface (defined in the com.ibm.websphere.cache

package) and register it to the cache using the DistributedMap interface. Listeners receive

InvalidationEvents (defined in the com.ibm.websphere.cache package) when entries from the cache are

removed, due to an explicit user invalidation, timeout, least recently used (LRU) eviction, cache clear, or

disk timeout. Applications can immediately recalculate the invalidated data and prime the cache before the

next user request.

Enable listener support in DistributedMap before registering listeners. DistributedMap can also be

configured to use the invalidation listener Java 2 Platform, Enterprise Edition (J2EE) context from

registration time during callbacks. Setting the value of the custom property useListenerContext to true

enables the invalidation listener J2EE context for callbacks. See Cache instance settings for more

information.

The following example shows how to set up an invalidation listener:

dmap.enableListener(true); // Enable cache invalidation listener.

InvalidationListener listener = new MyListenerImpl(); //Create invalidation listener object.

dmap.addInvalidationListener(listener); //Add invalidation listener.

 :

 :

 :

dmap.removeInvalidationListener(listener); //Remove the invalidation listener.

//This increases performance.

dmap.enableListener(false); // Disable cache invalidation listener.

//This increases performance.

For more information about invalidation listeners, see Reference: Generated API documentation for the

com.ibm.websphere.cache package.

1930 Administering applications and their environment

Disabling template-based invalidations during JSP reloads

By setting the Java virtual machine (JVM) com.ibm.ws.cache.CacheConfig.disableTemplateInvalidation

custom property to true, the template-based invalidations are disabled during JSP reloads.

To set any of these JVM custom properties, complete the following steps:

1. In the administrative console, click Servers > Application servers > server_name > Process

definition > Java virtual machine > Custom properties > New.

2. Enter com.ibm.ws.cache.CacheConfig.disableTemplateInvalidation in the Name field.

3. Enter true in the Value field.

4. Save the property and restart WebSphere Application Server.

Using object cache instances

Perform this task so that your application can access dynamic cache object cache instances with the

DistributedMap or DistributedObjectCache interfaces.

Before you begin, enable the dynamic cache service. See “Enabling the dynamic cache service” on page

1883 for more information.

Using object cache instances can improve the performance of your application because you can

programmatically store and share frequently used objects. By using object cache instances, you also have

the necessary control over the dynamic cache when you are running multiple applications in an application

server. See “Cache instances” on page 535 for more information.

1. Configure one or more cache instances.

a. In the administrative console, click Resources > Cache instances > Object cache instances.

b. Specify the scope for the cache instance.

Cell scope makes the cache instance available to all servers within the cell. Node scope makes the

cache instance available to all servers on the particular node. Cluster scope makes the cache

instance available to all members in a specified cluster. Server scope makes the cache instance

available to only the selected server. You can mix scopes if necessary.

c. Click Apply after changing the scope.

d. Click New.

e. Enter the Java Naming and Directory Interface (JNDI) name for this cache instance.

This is name that you pass to the InitialContext lookup() method from within your application. For

example, services/cache/instance_one.

f. Enter or modify other properties as needed.

2. Update your application. To store and retrieve objects in an object cache instance, you need a

DistributedMap or DistributedObjectCache reference for the named object cache instance. See “Using

the DistributedMap and DistributedObjectCache interfaces for the dynamic cache” on page 1922 for

more information.

You configured object cache instances that you can access programmatically with the DistributedMap and

DistributedObjectCache interfaces.

Displaying cache information

Use this task to monitor the activity of the dynamic cache service.

The dynamic cache monitor is an installable Web application that displays simple cache statistics, cache

entries, and cache policy information for servlet cache instances.

1. Use the administrative console to install the cache monitor application from the app_server_root/
installableApps directory. The name of the application is CacheMonitor.ear. For more information

Chapter 20. Learn about WebSphere programming extensions 1931

about installing applications, see “Installing application files with the console” on page 32. Install the

cache monitor onto the application server you are want to monitor.

Installing the cache monitor on the admin_host (port 906x) is more secure than installing it on the

default_host (908x), and so it is preferable to install it onto the admin_host.

2. Configure the Web container transport chain and host alias for the server with cache monitor installed.

a. If you installed the cache monitor on the admin_host (port 906x), check if a Web container

transport chain has been created. Click Application servers > server_name > Web container

settings > Web container transport chains. If a Web container transport chain (port 906x) does

not exist you must create a Web container transport chain in the admin_host for this server. If you

are using server1, a Web container transport chain is installed by default for admin port 9060.

b. Add a host alias for the port your server is using. Click Environment > Virtual hosts > host_type

> Host aliases and create a new Host name and Port to add to the list.

c. You can then access the cache monitor using http://your_host_name:your_port_number/
cachemonitor.

Tip: You can find the port number in the SystemOut.log file. Look for message TCPC0001I or

SRVE0171I.

3. Access the cache monitor using a Web browser and the URL http://your host_name:your

port_number/cachemonitor, where your port_number is the port associated with the host on which you

installed the cache monitor application.

4. Verify the list of cache instances that are shown. For each cache instance, you can perform the

following actions:

Tip: You must select the servlet cache instance that you want to monitor. If you do not use servlet

cache instances by using <cache-instance> tags in your cachespec.xml file, all the content is in

the baseCache instance.

v View the Statistics page and verify the cache configuration and cache data. Click Reset Statistics

to reset the counters.

v View the Cache Policies page to see which cache policies are currently loaded in the dynamic

cache. Click on a template to view the cache ID rules for the template.

v View the Cache Contents page to examine the contents that are currently cached in memory.

v View the Edge Statistics page to view data about the current ESI processors configured for caching.

Click Refresh Statistics to see the latest statistics or content from the ESI processors. Click Reset

Statistics to reset the counters.

v View the Disk Offload page to view the disk configuration, statistics, and the content that is currently

off-loaded from memory to disk.

When you are viewing contents on memory or disk, click on a template to view all entries for that

template, click on a dependency ID to view all entries for the ID, or click on the cache ID to view all

the data that is cached for that entry.

5. Use the cache monitor to perform basic operations on data in a cache instance.

Remove an entry from cache

Click Invalidate when viewing a cache entry.

Remove all entries for a certain dependency ID

Click Invalidate when viewing entries for a dependency ID.

Remove all entries for a certain template

Click Invalidate when viewing entries for a template.

Move an entry to the front of the Least Recently Used queue to avoid eviction

Click Refresh when viewing a cache entry.

Move an entry from disk to cache

Click Send to Memory when viewing a cache entry on disk.

Clear the entire contents of the cache

Click Clear Cache while viewing statistics or contents.

1932 Administering applications and their environment

Clear the contents on the ESI processors

Click Clear Cache while viewing ESI statistics or contents.

Clear the contents of the disk cache

Click Clear Disk while viewing disk contents.

Cache monitor

Cache monitor is an installable Web application that provides a real-time view of the current state of

dynamic cache. You use it to help verify that dynamic cache is operating as expected. The only way to

manipulate the data in the cache is by using the cache monitor. It provides a GUI interface to manually

change data.

Cache monitor provides a way to:

v Verify the configuration of dynamic cache

After you create multiple servlet cache instances in the administrative console, you can configure

properties, including the maximum size of the cache and disk offload location on each cache instance,

as well as advanced features such as controlling external caches. You can verify the configuration of the

dynamic cache by viewing of the configured features and properties in the cache monitor.

v Verify the cache policies

To cache an object, unique IDs must be generated for different invocations of that object. To create

unique IDs for each object, provide rules for each cacheable object in the cachespec.xml file, found

inside the Web module WEB-INF or enterprise bean META-INF directory. See “Cachespec.xml file” on

page 1901 for more information. Each cacheable object can have multiple cache ID rules that run in

sequence until either a rule returns a cache ID or no more rules remain. If none of the cache ID

generation rules produce a valid cache ID, then the object is not cached. There can be multiple

cachespec.xml files with multiple cache ID rules. With cache monitor, you can verify the policies of each

object. You can also view all of the cache polices for each cache instance that is currently loaded in

dynamic cache. This view is also convenient to verify that the cachespec.xml file was read by the

dynamic cache without errors.

v Monitor cache statistics

You can view the essential cache data, such as number of cache hits, cache misses, and number of

entries in each cache instance. With this data, you can tune the cache configuration to improve the

dynamic cache performance. For example, if the number of used entries is often high, and entries are

being removed and recreated, consider increasing the maximum size of the cache or enabling disk

offload.

v Monitor the data flowing through the cache

Once a cacheable object is invoked, dynamic cache creates a cache entry for it that contains the output

of the actions that are performed and metadata, such as time to live, sharing policy, and so on. Entries

are distinguished by a unique ID string that is based on the rules specified in the cachespec.xml file for

the particular object name. Objects with the same name might generate multiple cache IDs for different

invocations, based on request parameters and attributes for each invocation. You can view of all the

cache entries that are in the cache instance, based on the unique ID. You can also view the group of

cache entries that share a common name (also known as template). Cache entries can also be grouped

together by a dependency ID, which is used to invalidate the entire group of entries dependent on a

common entity. Therefore, cache monitor also provides a view of the group of cache entries that share

a common dependency ID.

For each entry, cache monitor also displays metadata, such as time to live, priority and sharing-policy,

and provides a view of the output that has been cached. This helps the customer to verify which pages

have been cached, that the pages have been cached in the correct cache instance with the right

attributes such as time to live, priority, and that the pages have the right content.

v Monitor the data in the edge cache

Dynamic cache provides support to recognize the presence of an Edge Side Include (ESI) processor

and to generate ESI include tags and appropriate cache policies for edge cacheable fragments. With

the ESI processor, you can cache whole pages, as well as fragments, providing a higher cache hit ratio.

There can be multiple ESI processors running on multiple hosts configured for caching.

Chapter 20. Learn about WebSphere programming extensions 1933

You can view a list of all ESI processes and their hosts that are enabled for caching. Select a host or a

processor, and view its edge cache statistics and the current cache entries.

v View the data offloaded to the disk

By default, when the number of cache entries reaches the configured limit for a given server, cache

entries are removed, enabling new entries to enter the cache service. With disk offload, the removed

cache entries are copied to disk for future access. You can view the content that is copied to disk that

corresponds to the view of the contents cached in memory for each cache instance.

v Manage the data in the cache

You can perform the following basic operations on the data in the cache:

– Remove an entry from a cache instance

– Remove all entries for a certain dependency ID

– Remove all entries for a certain name (template)

– Move an entry to the front of the least recently used queue to avoid removal of the cache entry

– Move an entry from the disk to the memory within a cache instance

– Clear the entire contents of the cache instance

– Clear the contents of the disk for the cache instance

With these operations, you can manually change the state of the cache without having to restart the

server.

Edge cache statistics:

Cache monitor provides a view of the edge cache statistics.

 The following statistics are available:

v ESI Processors. The number of processes that are configured as edge caches.

v Number of Edge Cached Entries. The number of entries that are currently cached on all edge servers

and processes.

v Cache Hits. The number of requests that match entries on edge servers.

v Cache Misses By URL. A cache policy does not exist on the edge server for the requested template.

Note:

– The initial ESI request for a template that has a cache policy on WebSphere Application

Server results in a miss.

– Every request for a template that does not have a cache policy on WebSphere Application

Server results in a miss by URL on the edge server.
v Cache Misses By Cache ID. The policy for the requested template exists on the edge server, and a

cache ID is created, based on the ID rules and the request attributes, but the cache entry for this ID

does not exist.

Note: If the policy exists on the edge server for the requested template, but a cache ID match is not

found, based on the ID rules and the request attributes, it is not treated as a cache miss.

v Cache Timeouts. The number of entries that are removed from the edge cache based on the timeout

value.

v Evictions. The number of entries that are removed from the edge cache due to invalidations received

from WebSphere Application Server.

Tuning dynamic cache with the cache monitor

Use this task to interpret cache monitor statistics to improve the performance of the dynamic cache

service.

Verify that dynamic cache is enabled and that the cache monitor application is installed on your application

server.

See the Displaying cache information topic in the Administering applications and their environment PDF to

configure the cache monitor application.

1934 Administering applications and their environment

Use the cache monitor to watch cache hits versus misses. By comparing these two values, you can

determine how much dynamic cache is helping your application, and if you can take any additional steps

to further improve performance and decrease the cost of processing for your application server.

1. Start cache monitor and click on Cache Statistics. You can view the following cache statistics:

 Cache statistic Description

Cache Size The maximum number of entries that the cache can hold.

Used Entries The number of cache entries used.

Cache Hits The number of request responses that are served from

the cache.

Cache Misses The number of request responses that are cacheable but

cannot be served from the cache.

LRU Evictions The number of cache entries removed to make room for

new cache entries.

Explicit Removals The number of cache entries removed or invalidated from

the cache based on cache policies or were deleted from

the cache through the cache monitor.

2. You can also view the following cache configuration values:

 Cache configuration value Description

Default priority Specifies the default priority for all cache entries. Lower

priority entries are moved from the cache before higher

priority entries when the cache is full. You can specify the

priority for individual cache entries in the cache policy.

Servlet Caching Enabled If servlet caching is enabled, results from servlets and

JavaServer Pages (JSP) files are cached. See the

Administering applications and their environment PDF for

more information.

Disk Offload Enabled Specifies if entries that are being removed from the cache

are saved to disk. See the Administering applications and

their environment PDF for more information.

3. Wait for the application server to add data to the cache. You want the number of used cache entries in

the cache monitor to be as high as it can go. When the number of used entries is at its highest, the

cache can serve responses to as many requests as possible.

4. When the cache has a high number of used entries, reset the statistics. Watch the number of cache

hits versus cache misses. If the number of hits is far greater than the number of misses, your cache

configuration is optimal. You do not need to take any further actions. If you find a higher number of

misses with a lower number of hits, the application server is working hard to generate responses

instead of serving the request using a cached value. The application server might be making database

queries, or running logic to respond to the requests.

5. If you have a large number of cache misses, increase the number of cache hits by improving the

probability that a request can be served from the cache.

To improve the number of cache hits, you can increase the cache size or configure additional cache

policies. See the Administering applications and their environment PDF for more information to

increase the cache size and to configure cache policies.

By using the cache monitor application, you optimized the performance of the dynamic cache service.

See the Administering applications and their environment PDF for more information about the dynamic

cache.

Chapter 20. Learn about WebSphere programming extensions 1935

Using servlet cache instances

Use this task to configure servlet cache instances.

Before you begin, enable the dynamic cache service. See “Enabling the dynamic cache service” on page

1883 for more information.

Perform this task so that your application can access dynamic cache servlet cache instances. Using

servlet cache instances can improve the performance of your application because you can store the output

and the side effects of an invoked servlet. Servlet cache instances also give you the necessary control

over the cache for multiple applications that are running in an application server. See “Cache instances” on

page 535 for more information.

1. Enable servlet caching. See “Configuring servlet caching” on page 1887 for more information.

2. Configure one or more cache instances.

a. In the administrative console, click Resources > Cache instances > Servlet cache instances.

b. Specify the scope of the cache instance. Specify a scope of cell to make the cache instance

available to all the servers that are in the cell. Node scope makes the cache instance available to

all servers in a node. Server scope makes the cache instance available to the selected server only.

If necessary, you can mix the scopes.

c. Click Apply to save the scope.

d. Specify the settings for the cache instance. The Name and Java Naming and Directory interface

(JNDI) name fields are required. The JNDI name is the name attribute that is specified in the

<cache-instance> element in the cachepec.xml file. An example of a JNDI name that is specified in

the cachespec.xml file follows:

<cache-instance name="services/cache/instance_one">

In this example, specify services/cache/instance_one as the JNDI name.

3. Update your application. To use a servlet cache instance, you must specify a <cache-instance>

element that has a name that is equal to the JNDI Name for this cache instance.

Servlet cache instance collection

A servlet cache instance is a location, in addition to the default shared dynamic cache, where dynamic

cache can store, distribute, and share data. By using servlet cache instances, your applications have

greater flexibility and better tuning of the cache resources. The Java Naming and Directory Interface

(JNDI) name specified for the cache instance is mapped to the name attribute in the <cache-instance> tag

in the cachespec.xml configuration file.

To view this administrative console page, click Resources > Cache instances > Servlet cache

instances.

Scope:

Specify CELL SCOPE to view and configure cache instances that are available to all servers within the

cell. Specify NODE SCOPE to view and configure cache instances that are available to all servers with the

particular node. Specify SERVER SCOPE to view and configure cache instances that are available only on

the specific server.

Name:

Specifies the required display name for the resource.

JNDI name:

1936 Administering applications and their environment

Specifies the Java Naming and Directory Interface (JNDI) name for the resource. Specify this name in the

name attribute field in the <cache-instance> tag in the cachespec.xml configuration file. This tag is used to

find the particular cache instance in which to store cache entries.

Cache size:

Specifies a positive integer for the maximum number of entries the cache holds. The cache size is usually

in the thousands. The default is 2000.

 The minimum value is 100, with no set maximum value.

Servlet cache instance settings

A servlet cache instance is a location, in addition to the default shared dynamic cache, where dynamic

cache can store, distribute, and share data. By using servlet cache instances, your applications have

greater flexibility and better tuning of the cache resources. The Java Naming and Directory Interface

(JNDI) name specified for the cache instance is mapped to the name attribute in the <cache-instance> tag

in the cachespec.xml configuration file.

To view this administrative console page, click Resources > Cache instances > Servlet cache instances

> cache_instance_name.

Name:

Specifies the required display name for the resource.

JNDI name:

Specifies the Java Naming and Directory Interface (JNDI) name for the resource. Specify this name in the

name attribute field in the <cache-instance> tag in the cachespec.xml configuration file. This tag is used to

find the particular cache instance in which to store cache entries.

Description:

Specifies a description for the resource. This field is optional.

Category:

Specifies a category string to classify or group the resource. This field is optional.

Cache size:

Specifies a positive integer for the maximum number of entries the cache holds. The cache size is usually

in the thousands.

 Default 2000

Range 100 - no set maximum value

Default priority:

Specifies the default priority for servlets that can be cached. This value determines how long an entry

stays in a full cache.

 The recommended value is one.

Enable disk offload:

Chapter 20. Learn about WebSphere programming extensions 1937

Specifies if disk offloading is enabled.

 If you have disk offload disabled, when a new entry is created while the cache is full, the priorities are

configured for each entry and the least recently used algorithm are used to remove the entry from the

cache in memory. If you enable disk offload, the entry that would be removed from the cache is copied to

the local file system. The location of the file is specified by the disk offload location.

 Default false

Offload location:

Specifies the directory used for disk offload.

 If disk offload location is not specified, the default location, ${WAS_TEMP_DIR}/node/server

name/_dynacache/cache JNDI name will be used. If disk offload location is specified, the node, server name,

and cache instance name are appended. For example, ${USER_INSTALL_ROOT}/diskoffload generates the

location as ${USER_INSTALL_ROOT}/diskoffload/node/server name/cache JNDI name. This value is ignored

if disk offload is not enabled.

The default value of the ${WAS_TEMP_DIR} property is ${USER_INSTALL_ROOT}/temp. If you change the

value of the ${WAS_TEMP_DIR} property after starting WebSphere Application Server, but do not move

the disk cache contents to the new location:

v The Application Server creates a new disk cache file at the new disk offload location.

v If the Flush to disk setting is enabled, all the disk cache content at the old location is lost when you

restart the Application Server

Flush to disk:

Specifies if in-memory cached objects are saved to disk when the server is stopped. This value is ignored

if Enable Disk Offload is not selected.

 Default false

Limit disk cache size in GB:

Specifies a value for the maximum disk cache size in GB. When you select this option, you can specify a

positive integer value. Leaving this option blank indicates an unlimited size. This setting applies only if

enable disk offload is specified for the cache.

 Value 0 to MAXINT. A value of 0 indicates unlimited size.

Limit disk cache size in entries:

Specifies a value for the maximum disk cache size in number of entries. When you select this option, you

can specify a positive integer value. Leaving this option blank indicates an unlimited size. This setting

applies only if enable disk offload is specified for the cache.

 Value 0 to MAXINT. A value of 0 indicates unlimited size.

Limit disk cache entry size:

1938 Administering applications and their environment

Specifies a value for the maximum size of an individual cache entry in MB. Any cache entry larger than

this, when evicted from memory, will not be offloaded to disk. When you select this option, you can specify

a positive integer value. Leaving this option blank indicates an unlimited size. This setting applies only if

enable disk offload is specified for the cache.

 Value 0 to MAXINT. A value of 0 indicates unlimited size.

Performance settings:

Specifies the level of performance that is required by the disk cache. This setting applies only if

enableDiskOffload is specified for the cache. Performance levels determine how memory resources

should be used on background activity such as cache cleanup, expiration, garbage collection, and so on.

This setting applies only if enable disk offload is specified for the cache.

 High performance and high memory usage Indicates that all metadata will be kept in memory.

Balanced performance and balanced memory usage Indicates some metadata will be kept in memory. This is

the default performance setting and will provide an

optimal balance of performance and memory usage for

most users.

Low performance and low memory usage Indicates that limited metadata will be kept in memory.

Custom Indicates that the administrator will explicitly configure the

memory settings that will be used to support the above

background activity. The administrator sets these values

using the DiskCacheCustomPerformanceSettings

object.

Disk cache cleanup frequency:

Specifies a value for the disk cache cleanup frequency, in minutes. If this value is set to 0, the cleanup

runs only at midnight. This setting applies only when the Disk Offload Performance Level is low, balanced,

or custom. The high performance level does not require disk cleanup, and this value is ignored.

 Value 0 to 1440

Maximum buffer for cache identifiers per metaentry:

Specifies a value for the maximum number of cache identifiers that are stored for an individual

dependency ID or template in the disk cache metadata in memory. If this limit is exceeded the information

is offloaded to the disk. This setting applies only when the disk offload performance level is CUSTOM.

 Value 100 to MAXINT

Maximum buffer for dependency identifiers:

Specifies a value for the maximum number of dependency identifier buckets in the disk cache metadata in

memory. If this limit is exceeded the information is offloaded to the disk. This setting applies only when the

disk cache performance level is custom.

 Value 100 to MAXINT

Maximum buffer for templates:

Chapter 20. Learn about WebSphere programming extensions 1939

Specifies a value for the maximum number of template buckets that are in the disk cache metadata in

memory. If this limit is exceeded the information is offloaded to the disk. This setting applies only when the

disk cache performance level is cusotm.

 Value 10 to MAXINT

Eviction policy algorithm:

Specifies the eviction algorithm that the disk cache will use to evict entries once the high threshold is

reached. This setting applies only if enable disk offload is specified for the cache.

 None No eviction policy, so the disk cache can grow until it

reaches its limit at which time the dynamic cache service

stops writing to disk

Random When the disk size reaches a high threshold limit, the

disk cache garbage collector wakes up and randomly

picks entries on the disk and evicts them until the size

reaches a low threshold limit.

Size When the disk size reaches a high threshold limit, the

disk cache garbge collector wakes up and picks the

largest entries on the disk and evicts them until the disk

size reaches a low threshold limit.

High threshold:

Specifies when the eviction policy starts. The threshold is expressed in terms of the percentage of the disk

cache size in GB or entries. The disk cache garbage collector is awaken when the disk size exceeds high

threshold limit. The lower value limits disk cache size in GB and disk cache size in entries. This setting

does not apply when the disk cache eviction policy is set to none.

 Values 1 to 100

Low threshold:

Specifies when the eviction policy ends. The threshold is expressed in terms of the percentage of the disk

cache size in GB or entries. The lower value limits disk cache size in GB and disk cache size in entries.

The disk cache garbage collector, when awaken, evicts entries until the disk size reaches the low

threshold limit. This setting does not apply when the disk cache eviction policy is set to none.

 Values 1 to 100

Enable cache replication:

Use cache replication to enable sharing of cache IDs, cache entries, and cache invalidations with other

servers in the same replication domain.

 This option might be unavailable for cache instances created with a previous version of WebSphere

Application Server.

Full group replication domain:

Specifies a replication domain from which your data is replicated.

1940 Administering applications and their environment

Specifies a replication domain from which your data is replicated. Choose from any replication domains

that have been defined. If there are no replication domains listed, you must create one during cluster

creation or manually in the administrative console by clicking Environment > Internal replication

domains > New. The replication domain you choose to use with the dynamic cache service must be using

a Full group replica. Do not share replication domains between replication consumers. Dynamic cache

should use a different replication domain from session manager or stateful session beans.

Replication type:

Specifies the global sharing policy for this cache instance.

 The following settings are available:

v Both push and pull sends the cache ID of newly updated content to other servers in the replication

domain. Then, if one of the other servers requests the content, and that server has the ID of the cache

entry for the previously updated content, it will retrieve the content from the publishing server. If a

request is made for an ID which has not been previously published, the server assumes it does not

exist in the cluster and creates a new entry.

v Pull only shares cache entries for this object between application servers on demand. If an application

server gets a cache miss for this object, it queries the cooperating application servers to see if they

have the object. If no application server has a cached copy of the object, the original application server

runs the request and generates the object. These entries cannot store non-serializable data. This mode

of sharing is not recommended.

v Push only sends the cache ID and cache content of new content to all other servers in the replication

domain.

v The sharing policy of Not Shared results in the cache ID and cache content not being shared with other

servers in the replication domain.

The default setting for a an environment without clustering is Not Shared. When enabling replication, the

default value is Not Shared.

Push frequency:

Specifies the time, in seconds, to wait before pushing new or modified cache entries to other servers.

 A value of 0 (zero) sends the cache entries immediately. Setting this property to a value greater than 0

(zero) results in a ″batch″ push of all cache entries that are created or modified during the time period.

The default is 1 (one).

Using the DynamicContentProvider interface for dynamic cache

Use this task to configure the DynamicContentProvider interface for cached servlets and JavaServer

Pages (JSP) files.

The dynamic cache service should be enabled and you should be using servlet caching. See “Enabling the

dynamic cache service” on page 1883 and “Configuring servlet caching” on page 1887 for more

information.

A cacheable servlet or JavaServer Pages (JSP) file might contain a state in the response that does not

belong to the fragment for that servlet or JSP. When the state changes, the cached servlet or JSP is not

valid for caching. Use the com.ibm.websphere.servlet.cache.DynamicContentProvider interface to make

the fragment cacheable.

Servlets or JSP files that implement the DynamicContentProvider interface can add user exits in fragments

that are cacheable by calling the addDynamicContentProvider(DCP) method on the wrapper response

object. When the dynamic cache renders the page, it identifies the user exit and calls the dynamic content

provider to add the dynamic content to the rendered page.

Chapter 20. Learn about WebSphere programming extensions 1941

1. Provide an implementation class of the com.ibm.websphere.servlet.cache.DynamicContentProvider

interface. An example of an implementation follows:

class DynamicContentProviderImpl implements com.ibm.websphere.servlet.cache.

 DynamicContentProvider {

 DynamicContentProviderImpl() {}

 public void provideDynamicContent(HttpServletRequest request, OutputStream streamWriter)

 throws IOException {

 String dynamicContent = System.currentTimeMillis();

 streamWriter.write(dynamicContent.getBytes());

 }

 public void provideDynamicContent(HttpServletRequest request, Writer streamWriter)

 throws IOException {

 String dynamicContent = System.currentTimeMillis();

 streamWriter.write(dynamicContent.toCharArray());

 }

 }

2. Add user exits to your servlet or JSP file by calling the addDynamicContentProvider(DCP) method on

the wrapper response object. An example follows:

public class DCPServlet extends CacheTestCase {

 public void performTest(HttpServletRequest request, HttpServletResponse response)

 throws IOException, ServletException {

 out.println(“Testing the DCP feature begin ”+System.currentTimeMillis());

 DynamicContentProvider dcp = new DynamicContentProviderImpl();

 ServletCacheResponse scr = (ServletCacheResponse)(response);

 scr.addDynamicContentProvider(dcp);

 out.println("Testing the DCP feature end”+System.currentTimeMillis());

 }

 }

See “Task overview: Using the dynamic cache service to improve performance” on page 1867 for more

information about the other tasks that you can perform with the dynamic cache.

Dynamic query

Using EJB query

The EJB query language is used to specify a query over container-managed entity beans. The language is

similar to SQL. An EJB query is independent of the bean’s mapping to a persistent store.

An EJB query can be used in three situations:

v To define a finder method of an EJB entity bean.

v To define a select method of an EJB entity bean.

v To dynamically specify a query using the executeQuery() dynamic API.

Finder and select queries are specified in the bean’s deployment descriptor using the <ejb-ql> tag; they

are compiled into SQL during deployment. Dynamic queries are included within the application code itself.

WebSphere’s EJB query language is compliant with the EJB QL defined in Sun’s EJB 2.1 specification and

has additional capabilities as listed in the topic Comparison of EJB 2.x specification and WebSphere

Query Language.

v Before using EJB query, familiarize yourself with query language concepts, starting with the topic, EJB

Query Language.

v Define an EJB query in one of the following ways:

– Application Server Toolkit. When defining an EJB 2.1 entity bean in an EJB deployment descriptor

editor, on the Beans page click Add under Queries and, in the Add Finder Descriptor wizard, define

a find or ejbSelect method. See the online Application Server Toolkit information for

documentation on wizard options.

1942 Administering applications and their environment

– Rational Application Developer. When defining an entity bean, specify the <ejb-ql> tag for the

finder or select method.

– Dynamic query service. Add the executeQuery() method to your application.

See the topic Example: EJB queries.

EJB query language

An EJB query is a string that contains the following elements:

v a SELECT clause that specifies the enterprise beans or values to return;

v a FROM clause that names the bean collections;

v an optional WHERE clause that contains search predicates over the collections;

v an optional GROUP BY and HAVING clause (see Aggregation functions);

v an optional ORDER BY clause that specifies the ordering of the result collection.

Collections of entity beans are identified in EJB queries through the use of their abstract schema name in

the query FROM clause.

The elements of EJB query language are discussed in more detail in the following related topics.

Example: EJB queries:

Here is an example EJB schema, followed by a set of example queries:

 Table 61. DeptBean schema

Entity bean name (EJB name) DeptEJB (not used in query)

Abstract schema name DeptBean

Implementation class com.acme.hr.deptBean (not used in query)

Persistent attributes (cmp fields) v deptno - Integer (key)

v name - String

v budget - BigDecimal

Relationships v emps - 1:Many with EmpEJB

v mgr - Many:1 with EmpEJB

 Table 62. EmpBean schema

Entity bean name (EJB name) EmpEJB (not used in query)

Abstract schema name EmpBean

Implementation class com.acme.hr.empBean (not used in query)

Persistent attributes (cmp fields) v empid - Integer (key)

v name - String

v salary - BigDecimal

v bonus - BigDecimal

v hireDate - java.sql.Date

v birthDate - java.util.Calendar

v address - com.acme.hr.Address

Relationships v dept - Many:1 with DeptEJB

v manages - 1:Many with DeptEJB

Address is a serializable object used as cmp field in EmpBean. The definition of address is as follows:

 public class com.acme.hr.Address extends Object implements Serializable {

 public String street;

 public String state;

 public String city;

Chapter 20. Learn about WebSphere programming extensions 1943

public Integer zip;

 public double distance (String start_location) { ... } ;

 public String format () { ... } ;

 }

The following query returns all departments:

SELECT OBJECT(d) FROM DeptBean d

The following query returns departments whose name begins with the letters ″Web″. Sort the result by

name:

SELECT OBJECT(d) FROM DeptBean d WHERE d.name LIKE ’Web%’ ORDER BY d.name

The keywords SELECT and FROM are shown in uppercase in the examples but are case insensitive. If a

name used in a query is a reserved word, the name must be enclosed in double quotes to be used in the

query. You can find a list of reserved words in “EJB query: Reserved words” on page 1964. Identifiers

enclosed in double quotes are case sensitive. This example shows how to use a cmp field that is a

reserved word:

SELECT OBJECT(d) FROM DeptBean d WHERE d."select" > 5

The following query returns all employees who are managed by Bob. This example shows how to navigate

relationships using a path expression:

SELECT OBJECT (e) FROM EmpBean e WHERE e.dept.mgr.name=’Bob’

A query can contain a parameter which refers to the corresponding value of the finder or select method.

Query parameters are numbered starting with 1:

SELECT OBJECT (e) FROM EmpBean e WHERE e.dept.mgr.name= ?1

This query shows navigation of a multivalued relationship and returns all departments that have an

employee that earns at least 50000 but not more than 90000:

SELECT OBJECT(d) FROM DeptBean d, IN (d.emps) AS e

WHERE e.salary BETWEEN 50000 and 90000

There is a join operation implied in this query between each department object and its related collection of

employees. If a department has no employees, the department does not appear in the result. If a

department has more than one employee that earns more than 50000, that department appears multiple

times in the result.

The following query eliminates the duplicate departments:

SELECT DISTINCT OBJECT(d) from DeptBean d, IN (d.emps) AS e WHERE e.salary > 50000

Find employees whose bonus is more than 40% of their salary:

SELECT OBJECT(e) FROM EmpBean e where e.bonus > 0.40 * e.salary

Find departments where the sum of salary and bonus of employees in the department exceeds the

department budget:

SELECT OBJECT(d) FROM DeptBean d where d.budget <

(SELECT SUM(e.salary+e.bonus) FROM IN(d.emps) AS e)

A query can contain DB2 style date-time arithmetic expressions if you use java.sql.* datatypes as CMP

fields and your datastore is DB2. Find all employees who have worked at least 20 years as of January 1st,

2000:

SELECT OBJECT(e) FROM EmpBean e where year(’2000-01-01’ - e.hireDate) >= 20

If the datastore is not DB2 or if you prefer to use java.util.Calendar as the CMP field, then you can use the

java millsecond value in queries. The following query finds all employees born before Jan 1, 1990:

1944 Administering applications and their environment

SELECT OBJECT(e) FROM EmpBean e WHERE e.birthDate < 631180800232

Find departments with no employees:

SELECT OBJECT(d) from DeptBean d where d.emps IS EMPTY

Find all employees whose earn more than Bob:

SELECT OBJECT(e) FROM EmpBean e, EmpBean b

WHERE b.name = ’Bob’ AND e.salary + e.bonus > b.salary + b.bonus

Find the employee with the largest bonus:

SELECT OBJECT(e) from EmpBean e WHERE e.bonus =

(SELECT MAX(e1.bonus) from EmpBean e1)

The above queries all return EJB objects. A finder method query must always return an EJB Object for the

home. A select method query can in addition return CMP fields or other EJB Objects not belonging to the

home.

The following would be valid select method queries for EmpBean. Return the manager for each

department:

SELECT d.mgr FROM DeptBean d

Return department 42 manager’s name:

SELECT d.mgr.name FROM DeptBean d WHERE d.deptno = 42

Return the names of employees in department 42:

SELECT e.name FROM EmpBean e WHERE e.dept.deptno=42

Another way to write the same query is:

SELECT e.name from DeptBean d, IN (d.emps) AS e WHERE d.deptno=42

Finder and select queries allow only a single CMP field or EJBObject in the SELECT clause. A select

query can return aggregate values in Enterprise JavaBeans 2.1 using SUM, MIN, MAX, AVG and COUNT.

SELECT max(e.salary) FROM EmpBean e WHERE e.dept.deptno=42

The dynamic query API allows multiple expressions in the SELECT clause. The following query would be a

valid dynamic query, but not a valid select or finder query:

SELECT e.name, e.salary+e.bonus as total_pay , object(e), e.dept.mgr

FROM EmpBean e

ORDER BY 2

The following dynamic query returns the number of employees in each department:

SELECT e.dept.deptno as department_number , count(*) as employee_count

FROM EmpBean e

GROUP BY by e.dept.deptno

ORDER BY 1

The dynamic query API allows queries that contain bean or value object methods:

SELECT object(e), e.address.format()

FROM EmpBean e EmpBean e

FROM clause: The FROM clause specifies the collections of objects to which the query is to be applied.

Each collection is specified either by an abstract schema name (ASN) or by a path expression identifying

a relationship. An identification variable is defined for each collection.

Chapter 20. Learn about WebSphere programming extensions 1945

Conceptually, the semantics of the query is to form a temporary collection of tuples, R, with elements

consisting of all possible combinations of objects from the collections. This collection is subject to the

constraints imposed by any path relationships and by the JOIN operation. The JOIN can be either an inner

or outer join.

The identification variables are bound to elements of the tuple. After forming the temporary collection, the

search conditions of the WHERE clause are applied to R, and yield a new temporary collection, R1. The

ORDER BY, GROUP BY, HAVING, and SELECT clauses are applied to R1 to yield the final result.

from_clause::=FROM identification_variable_declaration [, {identification_variable_declaration |

 collection_member_declaration }]*

identification_variable_declaration::= range_variable_declaration [join]*

join := [{ LEFT [OUTER] | INNER }] JOIN {collection_valued_path_expression | single_valued_path_expression}

 [AS] identifier

Examples: Joining collections

DeptBean contains records 10, 20, and 30. EmpBean contains records 1, 2, and 3 that are related to

department 10, and records 4 and 5 that are related to department 20. Department 30 has no employees.

SELECT d FROM DeptBean AS d, EmpBean AS e

WHERE d.name = e.name

The comma syntax performs an inner join resulting in all possible combinations. In this example, R would

consist of 15 tuples (3 departments x 5 employees). If any collection is empty, then R is also empty. The

keyword AS is optional.

This example shows that a collection can be joined with itself.

SELECT d FROM DeptBean AS d, DeptBean AS d1

R would consist of 9 tuples (3 departments x 3 departments).

Examples: Relationship joins

A collection can be a relationship based on a previously declared identifier as in

SELECT e FROM DeptBean AS d , IN (d.emps) AS e

R would contain 5 tuples. Department 30 would not appear in R because it contains no employees.

Department 10 would appear in 3 tuples and department 20 would appear in 2 tuples. IN can only refer to

multi-valued relationships. The following is not valid

SELECT m FROM EmpBean e, IN(e.dept.mgr) as m INVALID

When joining with a relationship the alternate syntax INNER JOIN (keyword INNER is optional) can also

be used, as shown here.

SELECT e FROM DeptBean AS d INNER JOIN d.emps AS e

An ASN declaration (d in the above query) can be followed by one or more join clauses. The relationship

following the JOIN keyword must be related (directly or indirectly) to the ASN declaration. Unlike the case

with the IN clause, relationships used in a join clause can be single- or multi-valued. This query has the

same semantics as the query

SELECT e FROM DeptBean AS d , IN (d.emps) AS e

You can use multiple joins together.

SELECT m FROM EmpBean e JOIN e.dept d JOIN d.mgr m

This is equivalent to

1946 Administering applications and their environment

SELECT m FROM EmpBean e JOIN e.dept.mgr m

Examples: OUTER JOIN

An OUTER JOIN results in a temporary collection that contains combinations of the left and right

operands, subject to the relationship constraints and such that the left operand always appears in R. In the

example an outer join results in a temporary collection R that contains department 30, even though the

collection d.emps is empty. The tuple contains Department 30 along with a NULL value. References to e

in the query yields a null value.

SELECT e FROM DeptBean AS d LEFT OUTER JOIN d.emps AS e

The keyword OUTER is optional, as shown here..

SELECT e FROM DeptBean AS d LEFT JOIN d.emps AS e

You can also use combinations of INNER and OUTER JOIN.

SELECT m FROM EmpBean e JOIN e.dept d LEFT JOIN d.mgr m

Inheritance in EJB query: If an EJB inheritance hierarchy has been defined for an abstract schema,

using the abstract schema name in a query statement implies the collection of objects for that abstract

schema as well as all subtypes.

Example: Inheritance

Suppose that bean ManagerBean is defined as a subtype of EmpBean and ExecutiveBean is a subtype of

ManagerBean in an EJB inheritance hierarchy. The following query returns employees as well as managers

and executives:

SELECT OBJECT(e) FROM EmpBean e

Path expressions: An identification variable followed by the navigation operator (.) and a cmp or

relationship name is a path expression.

A path expression that leads to a cmr field can be further navigated if the cmr field is single-valued. If the

path expression leads to a multi-valued relationship, then the path expression is terminal and cannot be

further navigated. If the path expression leads to a cmp field whose type is a value object, it is possible to

navigate to attributes of the value object.

Example: Value object

Assume that address is a cmp field for EmpBean, which is a value object.

SELECT object(e) FROM EmpBean e

WHERE e.address.distance(’San Jose’) < 10 and e.address.zip = 95037

It is best to use the composer pattern to map value object attributes to relational columns if you intend to

search on value attributes. If you store value objects in serialized format, then each value object must be

retrieved from the database and deserialized. Value object methods can only be done in dynamic queries.

A path expression can also navigate to a bean method. The method must be defined on either the remote

or local bean interface. Methods can only be used in dynamic queries. You cannot mix both remote and

local methods in a single query statement.

If the query contains remote methods, the dynamic query must be executed using the query remote

interface. Using the query remote interface causes the query service to activate beans and create

instances of the remote bean interface

Likewise, a query statement with local bean methods must be executed with the query local interface. This

causes the query service to activate beans and local interface instances.

Chapter 20. Learn about WebSphere programming extensions 1947

Do not use get methods to access cmp and cmr fields of a bean.

If a method has overloaded definitions, the overloaded methods must have different number of

parameters.

Methods must have non-void return types and method arguments and return types must be either primitive

types byte, short, int, long, float, double, boolean, char or wrapper types from the following list:

Byte, Short, Integer, Long, Float, Double, BigDecimal, String, Boolean, Character, java.util.Calendar,

java.sql.Date, java.sql.Time, java.sql.Timestamp, java.util.Date

If any input argument to a method is NULL, it is assumed the method returns a NULL value and the

method is not invoked.

A collection valued path expression can be used in the FROM clause as a collection member declaration,

and with the IS EMPTY, MEMBER OF, and EXISTS predicates in the WHERE clause.

 FROM EmpBean e WHERE e.dept.mgr.name=’Bob’ OK

FROM EmpBean e WHERE e.dept.emps.name=’BOB’ INVALID -- cannot navigate through emps because it is

multivalued

FROM EmpBean e, IN (e.dept.emps) e1

WHERE e1.name=’BOB’

OK

FROM EmpBean e WHERE e.dept.emps IS EMPTY OK

WHERE clause: The WHERE clause contains search conditions composed of the following:

v literal values

v input parameters

v expressions

v basic predicates

v quantified predicates

v BETWEEN predicate

v IN predicate

v LIKE predicate

v NULL predicate

v EMPTY collection predicate

v MEMBER OF predicate

v EXISTS predicate

v IS OF TYPE predicate

If the search condition evaluates to TRUE, the tuple is added to the result set.

Literals: A string literal is enclosed in single quotes. A single quote that occurs within a string literal is

represented by two single quotes; For example: ’Tom’’s’. A string literal cannot exceed the maximum length

that is supported by the underlying persistent datastore.

A numeric literal can be any of the following:

v an exact value such as 57, -957, +66

v any value supported by Java long

v a decimal literal such as 57.5, -47.02

v an approximate numeric value such as 7E3, -57.4E-2

A decimal or approximate numeric value must be in the range supported by the underlying persistent

datastore.

A boolean literal can be the keyword TRUE or FALSE and is case insensitive.

1948 Administering applications and their environment

Input parameters: Input parameters are designated by the question mark followed by a number; For

example: ?2

Input parameters are numbered starting at 1 and correspond to the arguments of the finder or select

method; therefore, a query must not contain an input parameter that exceeds the number of input

arguments.

An input parameter can be a primitive type of byte, short, int, long, float, double, boolean, char or wrapper

types of Byte, Short, Integer, Long, Float, Double, BigDecimal, String, Boolean, Char, java.util.Calendar,

java.util.Date, java.sql.Date, java.sql.Time, java.sql.Timestamp, an EJBObject, or a binary data string in the

form of Java byte[].

An input parameter must not have a NULL value. To search for the occurrence of a NULL value the NULL

predicate should be used.

Expressions: Conditional expressions can consist of comparison operators and logical operators (AND,

OR, NOT).

Arithmetic expressions can be used in comparison expressions and can be composed of arithmetic

operations and functions, path expressions that evaluate to a numeric value and numeric literals and

numeric input parameters.

String expressions can be used in comparison expressions and can be composed of string functions, path

expressions that evaluate to a string value and string literals and string input parameters. A cmp field of

type char is handled as if it were a string of length 1.

Binary expressions can be used in comparison expressions and can be composed of path expressions

that evaluate to the Java byte[] type as well as input parameters of type byte[].

Boolean expressions can be used with = and <> comparison and can be composed of path expressions

that evaluate to a boolean value and TRUE and FALSE keywords and boolean input parameters.

Reference expressions can be used with = and <> comparison and can be composed of path expressions

that evaluate to a cmr field, an identification variable and an input parameter whose type is an EJB

reference

Four different expression types are supported for working with date-time types. For portability the

java.util.Calendar type should be used. DB2 style date, time and timestamp expressions are supported if

the datastore is DB2 and the CMP field is of type java.util.Date, java.sql.Date, java.sql.Time or

java.sql.Timestamp. If you use DB2 UDB, you might obtain a syntax error when using the

java.sql.Timestamp.ojbect. You must use the syntax TIMESTAMP ’yyyy-mm-dd hh:mm:ss.nnnn’.

A Calendar type can be compared to another Calendar type, an exact numeric literal or input parameter of

type long whose value is the standard Java long millisecond value.

The following query finds all employees born before Jan 1, 1990:

SELECT OBJECT(e) FROM EmpBean e WHERE e.birthDate < 631180800232

Date expressions can be used in comparison expressions and can be composed of operators + - , date

duration expressions and date functions, path expressions that evaluate to a date value, string

representation of a date and date input parameters.

Time expressions can be used in comparison expressions and can be composed of operators + - , time

duration expressions and time functions, path expressions that evaluate to a time value, string

representation of time and time input parameters.

Chapter 20. Learn about WebSphere programming extensions 1949

Timestamp expressions can be used in comparison expressions and can be composed of operators + - ,

timestamp duration expressions and timestamp functions, path expressions that evaluate to a timestamp

value, string representation of a timestamp and timestamp input parameters.

Standard bracketing () for ordering expression evaluation is supported.

The operators and their precedence order from highest to lowest are:

v Navigation operator (.)

v Arithmetic operators in precedence order:

– + - unary

– * / multiply, divide

– + - add, subtract
v Comparison operators: =, >, <, >=, <=, <>(not equal)

v Logical operator NOT

v Logical operator AND

v Logical operator OR

Null value semantics: The following describe the semantics of NULL values:

v Comparison or arithmetic operations with an unknown (NULL) value yield an unknown value

v In a Java 2 platform, Enterprise Edition (J2EE) version 1.3 application, a path expression uses an

outer-join semantic where a NULL field or cmr value evaluates to NULL. In J2EE version 1.4, the path

expression uses an inner-join semantic.

v The IS NULL and IS NOT NULL operators can be applied to path expressions and return TRUE or

FALSE. Boolean operators AND, OR and NOT use three valued logic.

 AND True False Unknown

True True False Unknown

False False False False

Unknown Unknown False Unknown

 OR True False Unknown

True True True True

False True False Unknown

Unknown True Unknown Unknown

 NOT

True False

False True

Unknown Unknown

Example: Null value semantics

select object(e) from EmpBean where e.salary > 10 and e.dept.budget > 100

If salary is NULL the evaluation of e.salary > 10 returns unknown and the employee object is not

returned. If the cmr field dept or budget is NULL evaluation of e.dept.budget > 100 returns unknown and

the employee object is not returned.

select object(e) from EmpBean where e.dept.budget is null

In J2EE 1.3 if dept or budget is NULL evaluation of e.dept.budget is null returns TRUE and the employee

object is returned. In J2EE 1.4 the employee object is returned only if budget is NULL.

select object(e) from EmpBean e , in (e.dept.emps) e1 where e1.salary > 10

1950 Administering applications and their environment

If dept is NULL, then the multivalued path expression e.dept.emps results in an empty collection (not a

collection that contains a NULL value). An employee with a null dept value will not be returned.

select object(e) from EmpBean e where e.dept.emps is empty

If dept is NULL the evaluation of the predicate in unknown and the employee object is not returned.

select object(e) from EmpBean e , EmpBean e1 where e member of e1.dept.emps

If dept is NULL evaluation of the member of predicate returns unknown and the employee is not returned.

Date time arithmetic and comparisons: DATE, TIME and TIMESTAMP values may be compared with

another value of the same type. Comparisons are chronological. Date time values can also be

incremented, decremented, and subtracted.

If the datastore is DB2, then DB2 string representation of DATE, TIME and TIMESTAMP types can also be

used. A string representation of a date or time can use ISO, USA, EUR or JIS format. A string

representation of a timestamp uses ISO format.

 Format Date format Date examples Time format Time examples

ISO yyyy-mm-dd 1987-02-24 1987-2-24 hh.mm.ss 13.50.00 13.50

USA mm/dd/yyyy 2/24/1987 hh:mm AM or PM 1:50 pm 02:10 AM

EUR dd.mm.yyyy 24.02.1987 24.2.1987 hh.mm.ss 13.50.00 13.55

JIS yyyy-mm-dd 1987-02-24 hh:mm:ss 13:50 13:50:05

Example 1: Date time arithmetic comparisons

e.hiredate > ’1990-02-24’

The timestamp of February 24th, 1990 1:50 pm can be represented as follows:

’1990-02-24-13.50.00.000000’ or

’1990-02-24-13.50.00’

If the datastore is DB2, DB2 decimal durations can be used in expressions and comparisons. A date

duration is a decimal(8,0) number that represents the difference between two dates in the format

YYYYMMDD. A time duration is a decimal(6,0) number that represents the difference between two time

values as HHMMSS. A timestamp duration is a decimal(20,6) number representing the differences

between two timestamp values as YYYYMMDDHHMMSS.ZZZZZZ (ZZZZZZ is the number of

microseconds and is to the right of the decimal point) .

Two date values (or time values or timestamp values) can be subtracted to yield a duration. If the second

operand is greater than the first the duration is a negative decimal number. A duration can be added or

subtracted from a datetime value to yield a new datetime value.

Example 2: Date time arithmetic comparisons

DATE(’3/15/2000’) - ’12/31/1999’ results in a decimal number 215 which is a duration of 0 years, 2

months and 15 days.

Durations are really decimal numbers and can be used in arithmetic expressions and comparisons.

(DATE(’3/15/2000’) - ’12/31/1999’) + 14 > 215 evaluates to TRUE.

DATE(’12/31/1999’) + DECIMAL(215,8,0) results in a date value 3/15/2000.

TIME(’11:02:26’) - ’00:32:56’ results in a decimal number 102930 which is a time duration of 10 hours,

29 minutes and 30 seconds.

Chapter 20. Learn about WebSphere programming extensions 1951

TIME(’00:32:56’) + DECIMAL(102930,6,0) results in a time value of 11:02:26.

TIME(’00:00:59’) + DECIMAL(240000,6,0) results in a time value of 00:00:59.

e.hiredate + DECIMAL(500,8,0) > ’2000-10-01’ means compare the hiredate plus 5 months to the date

10/01/2000.

Basic predicates: Basic predicates can be of two forms

expression-1 comparison-operator expression-2

expression-3 comparison-operator (subselect)

The subselect must not return more than one value and the subselect can not return a type of an EJB

reference. Boolean types and reference types only support = and <> comparisons.

Example: Basic predicates

d.name=’Java Development’

e.salary > 20000

e.salary > (select avg(e.salary) from EmpBean e)

Quantified predicates: A quantified predicate compares a value with a set of values produced by a

subselect.

expression comparison-operator SOME | ANY | ALL (subselect)

The expression must not evaluate to a reference type.

When SOME or ANY is specified the result of the predicate is as follows:

v TRUE if the comparison is true for at least one value returned by the subselect.

v FALSE if the subselect is empty or if the comparison is false for every value returned by the subselect.

v UNKNOWN if the comparison is not true for all of the values returned by the subselect and at least one

of the comparisons is unknown because of a null value.

When ALL is specified the result of the predicate is as follows:

v TRUE if the subselect returns empty or if the comparison is true to every value returned by the

subselect.

v FALSE if the comparison is false for at least one value returned by the subselect.

v UNKNOWN if the comparison is not false for all values returned by the subselect and at least one

comparison is unknown because of a null value.

BETWEEN predicate: The BETWEEN predicate determines whether a given value lies between two other

given values.

expression [NOT] BETWEEN expression-2 AND expression-3

The expression must not evaluate to a boolean or reference type.

Example: BETWEEN predicate

e.salary BETWEEN 50000 AND 60000

is equivalent to:

e.salary >= 50000 AND e.salary <= 60000

e.name NOT BETWEEN ’A’ AND ’B’

is equivalent to:

e.name < ’A’ OR e.name > ’B’

IN predicate: The IN predicate compares a value to a set of values and can have one of two forms:

1952 Administering applications and their environment

expression [NOT] IN (subselect)

expression [NOT] IN (value1, value2, )

ValueN can either be a literal value or an input parameter. The expression can not evaluate to a reference

type.

Example: IN predicate

e.salary IN (10000, 15000)

is equivalent to

(e.salary = 10000 OR e.salary = 15000)

e.salary IN (select e1.salary from EmpBean e1 where e1.dept.deptno = 10)

is equivalent to

e.salary = ANY (select e1.salary from EmpBean e1 where e1.dept.deptno = 10)

e.salary NOT IN (select e1.salary from EmpBean e1 where e1.dept.deptno = 10)

is equivalent to

e.salary <> ALL (select e1.salary from EmpBean e1 where e1.dept.deptno = 10)

LIKE predicate: The LIKE predicate searches a string value for a certain pattern.

string-expression [NOT] LIKE pattern [ESCAPE escape-character]

The pattern value is a string literal or parameter marker of type string in which the underscore (_) stands

for any single character and percent (%) stands for any sequence of characters (including empty

sequence). Any other character stands for itself. The escape character can be used to search for

character _ and %. The escape character can be specified as a string literal or an input parameter.

If the string-expression is null, then the result is unknown.

If both string-expression and pattern are empty, then the result is true.

Example: LIKE predicate

v ’’ LIKE ’’ is true

v ’’ LIKE ’%’ is true

v e.name LIKE ’12%3’ is true for ’123’ ’12993’ and false for ’1234’

v e.name LIKE ’s_me’ is true for ’some’ and ’same’, false for ’soome’

v e.name LIKE ’/_foo’ escape ’/’ is true for ’_foo’, false for ’afoo’

v e.name LIKE ’//_foo’ escape ’/’ is true for ’/afoo’ and for ’/bfoo’

v e.name LIKE ’///_foo’ escape ’/’ is true for ’/_foo’ but false for ’/afoo’

NULL predicate: The NULL predicate tests for null values.

single-valued-path-expression IS [NOT] NULL

Example: NULL predicate

e.name IS NULL

e.dept.name IS NOT NULL

e.dept IS NOT NULL

EMPTY collection predicate: To test if a multivalued relationship is empty, use the following syntax:

collection-valued-path-expression IS [NOT] EMPTY

Chapter 20. Learn about WebSphere programming extensions 1953

Example: Empty collection predicate

To find all departments with no employees:

SELECT OBJECT(d) FROM DeptBean d WHERE d.emps IS EMPTY

MEMBER OF predicate: This expression tests whether the object reference specified by the single valued

path expression or input parameter is a member of the designated collection. If the collection valued path

expression designates an empty collection the value of the MEMBER OF expression is FALSE.

{ single-valued-path-expression | input_parameter } [NOT] MEMBER [OF] collection-valued-path-expression

Example: MEMBER OF predicate

Find employees that are not members of a given department number:

SELECT OBJECT(e) FROM EmpBean e , DeptBean d

WHERE e NOT MEMBER OF d.emps AND d.deptno = ?1

Find employees whose manager is a member of a given department number:

SELECT OBJECT(e) FROM EmpBean e, DeptBean d

WHERE e.dept.mgr MEMBER OF d.emps and d.deptno=?1

EXISTS predicate: The exists predicate tests for the presence or absence of a condition specified by a

subselect.

EXISTS (subselect)

EXISTS collection-valued-path-expression

The result of EXISTS is true if the subselect returns at least one value or the path expression evaluates to

a nonempty collection, otherwise the result is false.

To negate an EXISTS predicate, precede it with the logical operator NOT.

Example: EXISTS predicate

Return departments that have at least one employee earning more than 1000000:

SELECT OBJECT(d) FROM DeptBean d

WHERE EXISTS (SELECT 1 FROM IN (d.emps) e WHERE e.salary > 1000000)

Return departments that have no employees:

SELECT OBJECT(d) FROM DeptBean d

WHERE NOT EXISTS (SELECT 1 FROM IN (d.emps) e)

The above query can also be written as follows:

SELECT OBJECT(d) FROM DeptBean d WHERE NOT EXISTS d.emps

IS OF TYPE predicate: The IS OF TYPE predicate is used to test the type of an EJB reference. It is

similar in function to the Java instance of operator. IS OF TYPE is used when several abstract beans have

been grouped into an EJB inheritance hierarchy. The type names specified in the predicate are the bean

abstract names. The ONLY option can be used to specify that the reference must be exactly this type and

not a subtype.

identification-variable IS OF TYPE ([ONLY] type-1, [ONLY] type-2, )

Example: IS OF TYPE predicate

Suppose that bean ManagerBean is defined as a subtype of EmpBean and ExecutiveBean is a subtype of

ManagerBean in an EJB inheritance hierarchy.

1954 Administering applications and their environment

The following query returns employees as well as managers and executives:

SELECT OBJECT(e) FROM EmpBean e

If you are interested in objects which are employees and not managers and not executives:

SELECT OBJECT(e) FROM EmpBean e WHERE e IS OF TYPE(ONLY EmpBean)

If you are interested in object which are managers or executives:

SELECT OBJECT(e) FROM EmpBean e WHERE e IS OF TYPE(ManagerBean)

The above query is equivalent to the following query:

SELECT OBJECT(e) FROM ManagerBean e

If you are interested in managers only and not executives:

SELECT OBJECT(e) FROM EmpBean e WHERE e IS OF TYPE(ONLY ManagerBean)

or:

SELECT OBJECT(e) FROM ManagerBean e

WHERE e IS OF TYPE (ONLY ManagerBean)

Scalar functions: EJB query contains scalar functions for doing type conversions, string manipulation,

and for manipulating date-time values. The list of scalar functions is documented in the topic EJB query:

Scalar functions.

Example: Scalar functions

Find employees hired in 1999:

SELECT OBJECT(e) FROM EmpBean e where YEAR(e.hireDate) = 1999

The only scalar functions that are guaranteed to be portable across backend datastore vendors are the

following:

v ABS

v MOD

v SQRT

v CONCAT

v LENGTH

v LOCATE

v SUBSTRING

v UCASE

v LCASE

The other scalar functions should be used only when DB2 is the backend datastore.

EJB query: Scalar functions: EJB query contains scalar built-in functions, as listed below, for doing type

conversions, string manipulation, and for manipulating date-time values.

Numeric functions

ABS (< any numeric datatype >) -> < any numeric datatype >

MOD (<int>, <int>) -> int

SQRT (< any numeric datatype >) -> Double

Type conversion functions

CHAR (< any numeric datatype >) -> string

CHAR (< string >) -> string

CHAR (< any datetime datatype > [, Keyword k]) -> string

Chapter 20. Learn about WebSphere programming extensions 1955

Datetime datatype is converted to its string representation in a format specified by the keyword k. The

valid keywords values are ISO, USA, EUR or JIS. If k is not specified the default is ISO.

BIGINT (< any numeric datatype >) -> Long

BIGINT (< string >) -> Long

The function in the second line of the following code converts the argument to an integer n by truncation,

and returns the date that is n-1 days after January 1, 0001:

DATE (< date string >) -> Date

DATE (< any numeric datatype>) -> Date

The following function returns date portion of a timestamp:

DATE(timestamp) -> Date

DATE (< timestamp-string >) -> Date

The following function converts number to decimal with optional precision p and scale s.

DECIMAL (< any numeric datatype > [, p [,s]]) -> Decimal

The following function converts string to decimal with optional precision p and scale s.

DECIMAL (< string > [, p [, s]]) -> Decimal

DOUBLE (< any numeric datatype >) -> Double

DOUBLE (< string >) -> Double

FLOAT (< any numeric datatype >) -> Double

FLOAT (< string >) -> Double

Float is a synonym for DOUBLE.

INTEGER (< any numeric datatype >) -> Integer

INTEGER (< string >) -> Integer

REAL (< any numeric datatype >) -> Float

SMALLINT (< any numeric datatype) -> Short

SMALLINT (< string >) -> Short

TIME (< time >) -> Time

TIME (< time-string >) -> Time

TIME (< timestamp >) -> Time

TIME (< timestamp-string >) -> Time

TIMESTAMP (< timestamp >) -> Timestamp

TIMESTAMP (< timestamp-string >) -> Timestamp

String functions

CONCAT (<string>, <string>) -> String

The following function returns a character string representing absolute value of the argument not including

its sign or decimal point. For example, digits(-42.35) is ″4235″.

DIGITS (Decimal d) -> String

The following function returns the length of the argument in bytes. If the argument is a numeric or datetime

type, it returns the length of internal representation.

LENGTH (< string >) -> Integer

The following function returns a copy of the argument string where all upper case characters have been

converted to lower case.

LCASE (< string >) -> String

The following function returns the starting position of the first occurrence of argument 1 inside argument 2

with optional start position. If not found, it returns 0.

LOCATE (String s1 , String s2 [, Integer start]) -> Integer

1956 Administering applications and their environment

The following function returns a substring of s beginning at character m and containing n characters. If n is

omitted, the substring contains the remainder of string s. The result string is padded with blanks if needed

to make a string of length n.

SUBSTRING (String s , Integer m [, Integer n]) -> String

The following function returns a copy of the argument string where all lower case characters have been

converted to upper case.

UCASE (< string >) -> String

Date - time functions

The following function returns the day portion of its argument. For a duration, the return value can be -99

to 99.

DAY (Date) -> Integer

DAY (< date-string >) -> Integer

DAY (< date-duration >) -> Integer

DAY (Timestamp) -> Integer

DAY (< timestamp-string >) -> Integer

DAY (< timestamp-duration >) -> Integer

The following function returns one more than number of days from January 1, 0001 to its argument.

DAYS (Date) -> Integer

DAYS (< Date-string >) -> Integer

DAYS (Timestamp) -> Integer

DAYS (< timestamp-string >) -> Integer

The following function returns the hour part of its argument. For a duration, the return value can be -99 to

99.

HOUR (Time) -> Integer

HOUR (< time-string >) -> Integer

HOUR (< time-duration >) -> Integer

HOUR (Timestamp) -> Integer

HOUR (< timestamp-string >) -> Integer

HOUR (< timestamp-duration >) -> Integer

The following function returns the microsecond part of its argument.

MICROSECOND (Timestamp) -> Integer

MICROSECOND (< timestamp-string >) -> Integer

MICROSECOND (< timestamp-duration >) -> Integer

The following function returns the minute part of its argument. For a duration, the return value can be -99

to 99.

MINUTE (Time) -> Integer

MINUTE (< time-string >) -> Integer

MINUTE (< time-duration >) -> Integer

MINUTE (Timestamp) -> Integer

MINUTE (< timestamp-string >) -> Integer

MINUTE (< timestamp-duration >) -> Integer

The following function returns the month portion of its argument. For a duration, the return value can be

-99 to 99.

MONTH (Date) -> Integer

MONTH (< date-string >) -> Integer

MONTH (< date-duration >) -> Integer

MONTH (Timestamp) -> Integer

MONTH (< timestamp-string >) -> Integer

MONTH (< timestamp-duration >) -> Integer

Chapter 20. Learn about WebSphere programming extensions 1957

The following function returns the second part of its argument. For a duration, the return value can be -99

to 99.

SECOND (Time) -> Integer

SECOND (< time-string >) -> Integer

SECOND (< time-duration >) -> Integer

SECOND (Timestamp) -> Integer

SECOND (< timestamp-string >) -> Integer

SECOND (< timestamp-duration >) -> Integer

The following function returns the year portion of its argument. For a duration, the return value can be

-9999 to 9999.

YEAR (Date) -> Integer

YEAR (< date-string >) -> Integer

YEAR (< date-duration >) -> Integer

YEAR (Timestamp) -> Integer

YEAR (< timestamp-string >) -> Integer

YEAR (< timestamp-duration >) -> Integer

Aggregation functions: Aggregation functions operate on a set of values to return a single scalar value.

You can use these functions in the select and subselect methods. The following example illustrates an

aggregation:

SELECT SUM (e.salary) FROM EmpBean e WHERE e.dept.deptno =20

This aggregation computes the total salary for department 20.

The aggregation functions are AVG, COUNT, MAX, MIN, and SUM. The syntax of an aggregation function

is illustrated in the following example:

aggregation-function ([ALL | DISTINCT] expression)

or:

COUNT([ALL | DISTINCT] identification-variable)

or:

COUNT(*)

The DISTINCT option eliminates duplicate values before applying the function. ALL is the default option

and does not eliminate duplicates. Null values are ignored in computing the aggregate function except in

the cases of COUNT(*) and COUNT(identification-variable), which return a count of all the elements in the

set.

If your datastore is Informix, you must limit the expression argument to a single valued path expression

when using the COUNT function or the DISTINCT forms of the functions SUM, AVG, MIN, and MAX.

Defining return type

For a select method using an aggregation function, you can define the return type as a primitive type or a

wrapper type. The return type must be compatible with the return type from the datastore. The MAX and

MIN functions can apply to any numeric, string or datetime datatype and return the corresponding

datatype. The SUM and AVG functions take a numeric type as input, and return the same numeric type

that is used in the datastore. The COUNT function can take any datatype, and returns an integer.

When applied to an empty set, the SUM, AVG, MAX, and MIN functions can return a null value. The

COUNT function returns zero (0) when it is applied to an empty set. Use wrapper types if the return value

might be NULL; otherwise, the container displays an ObjectNotFound exception.

1958 Administering applications and their environment

Using GROUP BY and HAVING

The set of values that is used for the aggregate function is determined by the collection that results from

the FROM and WHERE clause of the query. You can divide the set into groups and apply the aggregation

function to each group. To perform this action, use a GROUP BY clause in the query. The GROUP BY

clause defines grouping members, which comprise a list of path expressions. Each path expression

specifies a field that is a primitive type of byte, short, int, long, float, double, boolean, char, or a wrapper

type of Byte, Short, Integer, Long, Float, Double, BigDecimal, String, Boolean, Character,

java.util.Calendar, java.util.Date, java.sql.Date, java.sql.Time or java.sql.Timestamp.

The following example illustrates the use of the GROUP BY clause in a query that computes the average

salary for each department:

SELECT e.dept.deptno, AVG (e.salary) FROM EmpBean e GROUP BY e.dept.deptno

In division of a set into groups, a NULL value is considered equal to another NULL value.

Just as the WHERE clause filters tuples (that is, records of the return collection values) from the FROM

clause, the groups can be filtered using a HAVING clause that tests group properties involving aggregate

functions or grouping members:

SELECT e.dept.deptno, AVG (e.salary) FROM EmpBean e

GROUP BY e.dept.deptno

HAVING COUNT(*) > 3 AND e.dept.deptno > 5

This query returns the average salary for departments that have more than three employees and the

department number is greater than five.

It is possible to use a HAVING clause without a GROUP BY clause, in which case the entire set is treated

as a single group, to which the HAVING clause is applied.

SELECT clause: For finder and select queries, the syntax of the SELECT clause is illustrated in the

following example:

SELECT [ALL | DISTINCT]

 { single-valued-path-expression | aggregation expression | OBJECT (identification-variable) }

The SELECT clause consists of either a single identification variable that is defined in the FROM clause,

or a single valued path expression that evaluates to a object reference or CMP value. You can use the

DISTINCT keyword to eliminate duplicate references.

For a query that defines a finder method, the query must return an object type consistent with the home

that is associated with the finder method. For example, a finder method for a department home can not

return employee objects.

Example: SELECT clause

Find all employees that earn more than John:

SELECT OBJECT(e) FROM EmpBean ej, EmpBean e

WHERE ej.name = ’John’ and e.salary > ej.salary

Find all departments that have one or more employees who earn less than 20000:

SELECT DISTINCT e.dept FROM EmpBean e where e.salary < 20000

A select method query can have a path expression that evaluates to an arbitrary value:

SELECT e.dept.name FROM EmpBean e where e.salary < 2000

The previous query returns a collection of name values for those departments having employees earning

less than 20000.

Chapter 20. Learn about WebSphere programming extensions 1959

A select method query can return an aggregate value:

SELECT avg(e.salary) FROM EmpBean e

Example: Valid dynamic queries

For dynamic queries the syntax is as follows:

SELECT { ALL | DISTINCT } [selection ,]* selection

selection ::= { expression | scalar-subselect [[AS] id] }

A scalar-subselect is a subselect that returns a single value.

The following are examples of dynamic queries:

SELECT e.name, e.salary+e.bonus as total_pay from EmpBean e

SELECT SUM(e.salary+e.bonus) from EmpBean e where e.dept.deptno = ?1

ORDER BY clause: The ORDER BY clause specifies an ordering of the objects in the result collection:

ORDER BY [order_element ,]* order_element

order_element ::= { path-expression | integer } [ASC | DESC]

The path expression must specify a single valued field that is a primitive type of byte, short, int, long, float,

double, char or a wrapper type of Byte, Short, Integer, Long, Float, Double, BigDecimal, String, Character,

java.util.Calendar, java.util.Date, java.sql.Date, java.sql.Time, java.sql.Timestamp.

ASC specifies ascending order and is the default. DESC specifies descending order.

Integer refers to a selection expression in the SELECT clause.

Example: ORDER BY clause

Return department objects in decreasing deptno order:

SELECT OBJECT(d) FROM DeptBean d ORDER BY d.deptno DESC

Return employee objects sorted by department number and name:

SELECT OBJECT(e) FROM EmpBean e ORDER BY e.dept.deptno ASC, e.name DESC

UNION operation: The UNION clause specifies a combination of the output of two subqueries. The two

queries must return the same number of elements and compatible types. For the purposes of UNION, all

EJB types in the same inheritance hierarchy are considered compatible. UNION requires that equality be

defined for the element types.

query_expression := query_term [UNION [ALL] query_term]*

query_term := {select_clause_dynamic from_clause [where_clause]

 [group_by_clause] [having_clause] } | (query_expression) }

You cannot use dependent value objects with UNION.

UNION ALL combines all results together in a single collection.

UNION combines results but eliminates duplicates.

If ORDER BY is used together with UNION, the ORDER BY must refer to selection expression using

integer numbers.

1960 Administering applications and their environment

Examples: UNION operation

This example returns a collection of all employee objects of type EmpBean and all manager objects of

type ManagerBean where ManagerBean is a subtype of EmpBean.

 select e from EmpBean e union all select m from DeptBean d, in(d.mgr) m

This example shows a query that is not valid, because EmpBean and DeptBean are not compatible.

 select e from EmpBean e union all select d from DeptBean d

Subqueries: A subquery can be used in quantified predicates, EXISTS predicate or IN predicate. A

subquery should only specify a single element in the SELECT clause. When a path expression appears in

a subquery, the identification variable of the path expression must be defined either in the subquery, in one

of the containing subqueries, or in the outer query. A scalar subquery is a subquery that returns one value.

A scalar subquery can be used in a basic predicate and in the SELECT clause of a dynamic query.

Example: Subqueries

SELECT OBJECT(e) FROM EmpBean e

WHERE e.salary > (SELECT AVG(e1.salary) FROM EmpBean e1)

The above query returns employees who earn more than average salary of all employees.

SELECT OBJECT(e) FROM EmpBean e WHERE e.salary >

(SELECT AVG(e1.salary) FROM IN (e.dept.emps) e1)

The above query returns employees who earn more than average salary of their department.

SELECT OBJECT(e) FROM EmpBean e WHERE e.salary =

(SELECT MAX(e1.salary) FROM IN (e.dept.emps) e1)

The above query returns employees who earn the most in their department.

 SELECT OBJECT(e) FROM EmpBean e

WHERE e.salary > (SELECT AVG(e.salary) FROM EmpBean e1

WHERE YEAR(e1.hireDate) = YEAR(e.hireDate))

The above query returns employees who earn more than the average of employees hired in same year.

EJB query language limitations and restrictions: This topic outlines current known limitations and

restrictions.

v EJB query language (QL) queries involving enterprise beans with keys made up of relationships to other

enterprise beans appear as not valid and cause errors at deployment time. This is a known problem.

v The IBM EJB QL support extends the EJB 2.0 specification in various ways, including relaxing some

restrictions, adding support for more DB2 functions, and so on. If portability across various vendor

databases or EJB deployment tools is a concern, then care should be taken to write all EJB QL queries

strictly according to Chapter 11 in the EJB 2.0 specification.

v Pre-loading across m:n relationships results in the generation of inaccurate structured query language

(SQL). This is a known limitation that may be addressed in the future.

v Pre-loading across self referencing relationships causes inaccurate SQL to be generated.

v Avoid relationships between parent and children enterprise beans within the same inheritance hierarchy

that are not well-defined.

v EJB Query Language validation for EJB 2.0 JAR files currently runs as a part of the EJB-RDB Mapping

validation. If a mapping document (Map.mapxmi file) does not exist in the project, the EJB queries are

not validated.

EJB query compatibility issues with SQL: Because an Enterprise JavaBeans query is compiled into

SQL, you must be aware of compatibility issues between the Java language and SQL. The two languages

differ along the following points that can be critical to correct EJB query formulation:

Chapter 20. Learn about WebSphere programming extensions 1961

v The comparison semantics of SQL strings do not exactly match those of the Java language. For

example: ’A’ (the letter A) and’A ’ (the letter A plus a blank space) are considered equal in SQL, but not

in the Java language.

v Comparisons and collating order depend on the underlying database. For example, if you are using DB2

with an EBCDIC code page, the collating order is not the same as doing the sort in a Java program.

Some databases sort the NULL value low while others sort the NULL value high.

v An arithmetic overflow causes an exception in SQL, but not in the Java language.

v SQL databases have differing minimum and maximum ranges for floating point values, which can differ

from floating point value ranges in the Java language. Values near the range limits of Java Double may

fail to translate into SQL.

v Java methods do not translate into SQL; therefore standard EJB queries cannot include Java methods.

Note: Only with the dynamic EJB query service can you use functions that do not translate into SQL.

Such functions include Java methods and converters or composers that are used in mapping

enterprise beans to relational databases (RDBs). A standard finder or select query that uses any

of these functions fails at deployment time with the message ″Cannot push down query″. (You

can resolve this problem by changing either the query or the mapping.) The dynamic query run

time, however, processes the query by performing the operation involving the function in the

application server.

Database restrictions for EJB query: General database restriction

All of the enterprise beans involved in a given query must map to the same data source. The EJB query

does not support cross-data source join operations.

Specific database restrictions

Different database products place different restrictions on elements that can be included in EJB query

statements. Following is a list of those restrictions; check with your database administrator to see if any

apply in your environment:

v Certain functions are used in queries that run against DB2 only, because these functions are not

supported by other databases. These functions include date and time arithmetic expressions, certain

scalar functions (those not listed as portable across vendors), and implied scalar functions when used

for mapping certain CMP fields. For example, consider mapping an int numeric type to a decimal (5,2)

type field. When deployed against a database other than DB2, a finder or select query that contains a

CMP field with this particular mapping fails, producing a Cannot push down query error message.

v A CMP of type String, when mapped to a character large object (CLOB) in the database, cannot be

used in comparison operations because the database does not support CLOB comparisons.

v Databases can impose limits on the length of string values that are used either as literals or input

parameters with comparison operators. These limits can hinder query performance. For example: For

DB2 on the z/OS platform, the search ″name = ?1″ can fail if the value of ?1 at run time is greater than

255 in length.

v Mapping a numeric CMP type to a column that contains a dissimilar type can cause unexpected results.

For example, consider the case of mapping the int numeric type to a column of type decimal (5,2). This

scenario does not preserve an exact decimal value (for example, the value 12.25) over the course of

transfer from the database to the enterprise bean CMP field, and back again to the database. This

mapping causes replacement of the initial value with a whole number (in this case, 12). Consequently,

you want to avoid using the CMP field in comparison operations when the CMP field uses a mapping of

this nature.

v Some databases do not support a datatype that corresponds to the semantics of java.sql.Time. For

example: If a CMP field of type java.sql.Time is mapped to an Oracle DATE column, comparisons on

time might not produce the expected result because the year-month-day portion of the column value is

truncated in the mapping.

1962 Administering applications and their environment

v Some databases treat a zero length string value (’’) as a null value; this approach can affect the query

results. For the sake of portability, avoid the use of zero length string values.

v Some databases perform division between two integer values using integer arithmetic rules, while

others use non-integer rules. This discrepancy might not be desirable in environments that use both

kinds of databases. For the sake of portability, avoid the division of integer values in an EJB query.

v Current releases of UDB DB2 for i5/OS only support a TIMESTAMP value of the format

’yyyy-mm-dd-hh.mm.ss.nnnnnn’. This is not compatible with the standard format supported by the

java.sql.Timestamp class, which is ’yyyy-mm-dd-hh mm.ss.nnnnnn’. The TIMESTAMP scalar function

should be used to convert a string representation of a java.sql.Timestamp object to a value that can be

recognized by DB2 UDB for i5/OS.

Rules for data type manipulation in EJB query: Rules on CMP field type

You can use a CMP field of any type in a SELECT clause. You must, however, use fields of only the

following types in search conditions and in grouping or ordering operations:

v Primitive types: byte, short, int, long, float, double, boolean, char

v Object types: Byte, Short, Integer, Long, Float, Double, BigDecimal, String, Boolean, Character,

java.util.Calendar, java.util.Date

v JDBC types: java.sql.Date, java.sql.Time, java.sql.Timestamp

v Binary string: byte[]

Converters and basic types

If ALL of the following conditions occur:

v a CMP field of one of the basic types listed previously is mapped to an SQL column using a converter

v the CMP field appears in the left hand side of a basic predicate

v the right hand side of the predicate is a literal or input parameter

then the toData() method of the converter is used to compute the SQL search value.

For example, given a converter that maps the integer value 10 to the string value ″Ten,″ the following EJB

query:

e.cmp = 10

is translated into the following SQL query:

column = ’Ten’

If you include a more complicated predicate, such as in the following example:

e.cmp * 10 > e.salary

in a finder or select query, you receive the Cannot push down query error message. Use the dynamic EJB

query service for such multi-function queries; the dynamic query run time processes the predicate in the

application server.

Overall, converters preserve equality, collating sequence, and NULL values. If a converter does not meet

these requirements, avoid using it for CMP field comparison operations.

User types, converters, and composers

A user type cannot be used in a comparison operation or expression. You can, however, use subfields of

the user type in a path expression. For example, consider the CMP addr field with the type

com.exam.Address, and street, city, and state subfields. The following syntax for a query on this CMP field

is not valid:

e.addr = ?1

Chapter 20. Learn about WebSphere programming extensions 1963

However, a query that designates one of the subfields is valid:

e.addr.street = ?1

A CMP field can be mapped to an SQL column using Java serialization. Using the CMP field in predicates

or expressions for deployment queries usually results in the Cannot push down query error message. The

dynamic query run time processes the expression by reading and deserializing all instances of the user

type in the application server.

However, this expensive process sacrifices performance. You can maintain performance by using a

composer in a deployment EJB query. In the previous example, if you want to map the addr field to a

binary type, you use a composer to map each subfield to a binary column in the database.

EJB query: Reserved words:

The following words are reserved in WebSphere EJB query:

all, as, distinct, empty, false, from, group, having, in, is, like, select, true, union, where

Avoid using identifiers that start with underscore (for example, _integer) as these are also reserved.

EJB query: BNF syntax:

EJB QL ::= [select_clause] from_clause [where_clause] [order_by_clause]

DYNAMIC EJB QL := query_expression [order_by_clause]

query_expression := query_term [UNION [ALL] query_term]*

query_term := {select_clause_dynamic from_clause [where_clause]

 [group_by_clause] [having_clause] } | (query_expression) } [order_by_clause]

from_clause::=FROM identification_variable_declaration

 [, {identification_variable_declaration | collection_member_declaration }]*

identification_variable_declaration::=collection_member_declaration |

 range_variable_declaration [join]*

join := [{ LEFT [OUTER] | INNER }] JOIN {collection_valued_path_expression | single_valued_path_expression}

 [AS] identifier

collection_member_declaration::=

 IN (collection_valued_path_expression) [AS] identifier

range_variable_declaration::=abstract_schema_name [AS] identifier

single_valued_path_expression ::=

 {single_valued_navigation | identification_variable}. (cmp_field |

 method | cmp_field.value_object_attribute | cmp_field.value_object_method)

 | single_valued_navigation

single_valued_navigation::=

 identification_variable.[single_valued_cmr_field.]*

 single_valued_cmr_field

collection_valued_path_expression ::=

 identification_variable.[single_valued_cmr_field.]*

 collection_valued_cmr_field

select_clause::= SELECT { ALL | DISTINCT } {single_valued_path_expression |

 identification_variable | OBJECT (identification_variable) |

 aggregate_functions }

select_clause_dynamic ::= SELECT { ALL | DISTINCT } [selection ,]* selection

1964 Administering applications and their environment

selection ::= { expression | subselect } [[AS] id]

order_by_clause::= ORDER BY [{single_valued_path_expression | integer} [ASC|DESC],]*

 {single_valued_path_expression | integer}[ASC|DESC]

where_clause::= WHERE conditional_expression

conditional_expression ::= conditional_term |

 conditional_expression OR conditional_term

conditional_term ::= conditional_factor |

 conditional_term AND conditional_factor

conditional_factor ::= [NOT] conditional_primary

conditional_primary::=simple_cond_expression | (conditional_expression)

simple_cond_expression ::= comparison_expression | between_expression |

 like_expression | in_expression | null_comparison_expression |

 empty_collection_comparison_expression | quantified_expression |

 exists_expression | is_of_type_expression | collection_member_expression

between_expression ::= expression [NOT] BETWEEN expression AND expression

in_expression ::= single_valued_path_expression [NOT] IN

 { (subselect) | ([atom ,]* atom) }

atom = { string-literal | numeric-constant | input-parameter }

like_expression ::= expression [NOT] LIKE

 {string_literal | input_parameter}

 [ESCAPE {string_literal | input_parameter}]

null_comparison_expression ::=

 single_valued_path_expression IS [NOT] NULL

empty_collection_comparison_expression ::=

 collection_valued_path_expression IS [NOT] EMPTY

collection_member_expression ::=

 { single_valued_path_expression | input_paramter } [NOT] MEMBER [OF]

 collection_valued_path_expression

quantified_expression ::=

 expression comparison_operator {SOME | ANY | ALL} (subselect)

exists_expression ::= EXISTS {collection_valued_path_expression | (subselect)}

subselect ::= SELECT [{ ALL | DISTINCT }] expression from_clause [where_clause]

 [group_by_clause] [having_clause]

group_by_clause::= GROUP BY [single_valued_path_expression,]*

 single_valued_path_expression

having_clause ::= HAVING conditional_expression

is_of_type_expression ::= identifier IS OF TYPE

 ([[ONLY] abstract_schema_name,]* [ONLY] abstract_schema_name)

comparison_expression ::= expression comparison_operator { expression | (subquery) }

comparison_operator ::= = | > | >= | < | <= | <>

method ::= method_name([[expression ,]* expression])

expression ::= term | expression {+|-} term

term ::= factor | term {*|/} factor

Chapter 20. Learn about WebSphere programming extensions 1965

factor ::= {+|-} primary

primary ::= single_valued_path_expression | literal |

 (expression) | input_parameter | functions | aggregate_functions

aggregate_functions :=

 AVG([ALL|DISTINCT] expression) |

 COUNT({[ALL|DISTINCT] expression | * | identification_variable }) |

 MAX([ALL|DISTINCT] expression) |

 MIN([ALL|DISTINCT] expression) |

 SUM([ALL|DISTINCT] expression) |

functions ::=

 ABS(expression) |

 BIGINT(expression) |

 CHAR({expression [,{ISO|USA|EUR|JIS}]) |

 CONCAT (expression , expression) |

 DATE(expression) |

 DAY({expression) |

 DAYS(expression) |

 DECIMAL(expression [,integer[,integer]])

 DIGITS(expression) |

 DOUBLE(expression) |

 FLOAT(expression) |

 HOUR (expression) |

 INTEGER(expression) |

 LCASE (expression) |

 LENGTH(expression) |

 LOCATE(expression, expression [, expression]) |

 MICROSECOND(expression) |

 MINUTE (expression) |

 MOD (expression , expression) |

 MONTH(expression) |

 REAL(expression) |

 SECOND(expression) |

 SMALLINT(expression) |

 SQRT (expression) |

 SUBSTRING(expression, expression[, expression]) |

 TIME(expression) |

 TIMESTAMP(expression) |

 UCASE (expression) |

 YEAR(expression)

xrel := XREL identification_variable . { single_valued_cmr_field | collection_valued_cmr_field }

 [, identification_variable . { single_valued_cmr_field | collection_valued_cmr_field }]*

Comparison of EJB 2.1 specification and WebSphere query language: WebSphere Application

Server Version supports the following extensions to the Enterprise JavaBeans Query Language.

 Item

Delimited identifiers

Dependent Value object attributes used in path

expressions

EJB Inheritance

EXISTS predicate

Java methods: EJB bean methods or value object

methods

dynamic query only

Multiple element select clauses dynamic query only

SQL Date/time expressions

Subqueries, group by, and having clauses

1966 Administering applications and their environment

Using the dynamic query service

Following are common reasons for using the dynamic query service rather than the regular EJB query

service (which can be referred to as deployment query):

v You need to programmatically define a query at application run time, rather than at deployment.

v You need to return multiple CMP or CMR fields from a query. (Deployment queries allow only a single

element to be specified in the SELECT clause.) For more information, see the Example: EJB queries

article.

v You want to return a computed expression in the query.

v You want to use value object methods or bean methods in the query statement. For more information,

see Path expressions.

v You want to interactively test an EJB query during development, but do not want to repeatedly deploy

your application each time you update a finder or select query.

The dynamic query API is a stateless session bean; using it is similar to using any other J2EE EJB

application bean. You can consult the API specifications in Reference: Generated API documentation (the

section for package com.ibm.websphere.ejbquery).

The dynamic query bean has both a remote and a local interface. If you want to return remote EJB

references from the query, or if the query statement contains remote methods, you must use the query

remote interface:

remote interface = com.ibm.websphere.ejbquery.Query

remote home interface = com.ibm.websphere.ejbquery.QueryHome

If you want to return local EJB references from the query, or if the query statement contains local methods,

you must use the query local interface:

local interface = com.ibm.websphere.ejbquery.QueryLocal

local home interface = com.ibm.websphere.ejbquery.QueryLocalHome

Because it uses less application server memory, the local interface ensures better overall EJB

performance than the remote.

1. Verify that the query.ear application file is installed on the application server on which your application

is to run, if that server is different from the default application server created during installation of the

product.

The query.ear file is located in the app_server_root directory, where <WAS_HOME> is the location of the

WebSphere Application Server. The product installation program installs the query.ear file on the

default application server using a JNDI name of

com/ibm/websphere/ejbquery/Query

(You or the system administrator can change this name.)

2. Set up authorization for the methods executeQuery(), prepareQuery(), and executePlan() in the remote

and local dynamic query interfaces to control access to sensitive data. (This step is necessary only if

your application requires security.)

Because you cannot control which ASN names, CMP fields, or CMR fields can be used in a dynamic

EJB query, you or your system administrator must place restrictions on use of the methods. If, for

example, a user is permitted to run the executeQuery method, he or she can run any valid dynamic

query. In a production environment, you certainly want to restrict access to the remote query interface

methods.

3. Write the dynamic query as part of your application client code. You can consult the following

examples as query models; they illustrate which import statements to use, and so on:

Chapter 20. Learn about WebSphere programming extensions 1967

v Remote interface dynamic query example

v Local interface dynamic query example

4. If the CMP you want to query is on a different module, you should:

a. do a remote lookup on query.ear

b. map the query.ear file to the server that the queried CMP bean is installed on.

5. Compile and run your client program with the file qryclient.jar in the classpath.

Example: Dynamic query remote interface

When you run a dynamic EJB query using the remote interface, you are calling the executeQuery method

on the Query interface. The executeQuery method has a transaction attribute of REQUIRED for this

interface; therefore you do not need to explicitly establish a transaction context for the query to run.

Begin with the following import statements:

import com.ibm.websphere.ejbquery.QueryHome;

import com.ibm.websphere.ejbquery.Query;

import com.ibm.websphere.ejbquery.QueryIterator;

import com.ibm.websphere.ejbquery.IQueryTuple;

import com.ibm.websphere.ejbquery.QueryException;

Next, write your query statement in the form of a string, as in the following example that retrieves the

names and ejb-references for underpaid employees:

String query =

"select e.name as name , object(e) as emp from EmpBean e where e.salary < 50000";

Create a Query object by obtaining a reference from the QueryHome class. (This class defines the

executeQuery method.) Note that for the sake of simplicity, the following example uses the dynamic query

JNDI name for the Query object:

InitialContext ic = new InitialContext();

Object obj = ic.lookup("com/ibm/websphere/ejbquery/Query");

QueryHome qh =

 (QueryHome) javax.rmi.PortableRemoteObject.narrow(obj, QueryHome.class);

Query qb = qh.create();

You then must specify a maximum size for the query result set, which is defined in the QueryIterator

object. (See Class QueryIterator in Reference: Generated API documentation for more details.) This

example sets the maximum size of the result set to 99:

QueryIterator it = qb.executeQuery(query, null, null ,0, 99);

The iterator contains a collection of IQueryTuple objects, which are records of the return collection values.

(See Class IQueryTuple in Reference: Generated API documentation for more details.) Corresponding to

the criteria of our example query statement, each tuple in this scenario contains one value of name and

one value of object(e). To display the contents of this query result, use the following code:

while (it.hasNext()) {

 IQueryTuple tuple = (IQueryTuple) it.next();

 System.out.print(it.getFieldName(1));

 String s = (String) tuple.getObject(1);

 System.out.println(s);

 System.out.println(it.getFieldName(2));

 Emp e = (Emp) javax.rmi.PortableRemoteObject.narrow(tuple.getObject(2), Emp.class);

 System.out.println(e.getPrimaryKey().toString());

}

The output from the program might look something like the following:

1968 Administering applications and their environment

name Bob

emp 1001

name Dave

emp 298003

...

Finally, catch and process any exceptions. An exception might occur because of a syntax error in the

query statement or a run-time processing error. The following example catches and processes these

exceptions:

} catch (QueryException qe) {

 System.out.println("Query Exception "+ qe.getMessage());

}

Handling large result collections for the remote interface query

If you intend your query to return a large collection, you have the option of programming it to return results

in multiple smaller, more manageable quantities. Use the skipRow and maxRow parameters on the remote

executeQuery method to retrieve the answer in chunks. For example:

int skipRow=0;

int maxRow=100;

QueryIterator it = null;

do {

 it = qb.executeQuery(query, null, null ,skipRow, maxRow);

 while (it.hasNext()) {

 // display result

 skipRow = skipRow + maxRow;

}

} while (! it.isComplete()) ;

Example: Dynamic query local interface

When you run a dynamic EJB query using the local interface, you are calling the executeQuery method on

the QueryLocal interface. This interface does not initiate a transaction for the method; therefore you must

explicitly establish a transaction context for the query to run.

Note: To establish a transaction context, the following example calls the begin() and commit() methods.

An alternative to using these methods is simply embedding your query code within an EJB method

that runs within a transaction context.

Begin your query code with the following import statements:

import com.ibm.websphere.ejbquery.QueryLocalHome;

import com.ibm.websphere.ejbquery.QueryLocal;

import com.ibm.websphere.ejbquery.QueryLocalIterator;

import com.ibm.websphere.ejbquery.IQueryTuple;

import com.ibm.websphere.ejbquery.QueryException;

Next, write your query statement in the form of a string, as in the following example that retrieves the

names and ejb-references for underpaid employees:

String query =

"select e.name, object(e) from EmpBean e where e.salary < 50000 ";

Create a QueryLocal object by obtaining a reference from the QueryLocalHome class. (This class defines

the executeQuery method.) Note that in the following example, ejb/query is used as a local EJB reference

pointing to the dynamic query JNDI name (com/ibm/websphere/ejbquery/Query):

InitialContext ic = new InitialContext();

 QueryLocalHome qh = (LocalQueryHome) ic.lookup("java:comp/env/ejb/query");

QueryLocal qb = qh.create();

Chapter 20. Learn about WebSphere programming extensions 1969

The last portion of code initiates a transaction, calls the executeQuery method, and displays the query

results. The QueryLocalIterator class is instantiated because it defines the query result set. (See Class

QueryIterator in Reference: Generated API documentation for more details.) Keep in mind that the iterator

loses validity at the end of the transaction; you must use the iterator in the same transaction scope as the

executeQuery call.

userTransaction.begin();

QueryLocalIterator it = qb.executeQuery(query, null, null);

while (it.hasNext()) {

 IQueryTuple tuple = (IQueryTuple) it.next();

 System.out.print(it.getFieldName(1));

 String s = (String) tuple.getObject(1);

 System.out.println(s);

 System.out.println(it.getFieldName(2));

 EmpLocal e = (EmpLocal) tuple.getObject(2);

 System.out.println(e.getPrimaryKey().toString());

}

userTransaction.commit();

In most situations, the QueryLocalIterator object is demand-driven. That is, it causes data to be returned

incrementally: for each record retrieval from the database, the next() method must be called on the iterator.

(Situations can exist in which the iterator is not demand-driven. For more information, consult the ″Local

query interfaces″ subsection of the Dynamic query performance considerations topic.)

Because the full query result set materializes incrementally in the application server memory, you can

easily control its size. During a test run, for example, you may decide that return of only a few tuples of

the query result is necessary. In that case you should use a call of the close() method on the

QueryLocalIterator object to close the query loop. Doing so frees SQL resources that the iterator uses.

Otherwise, these resources are not freed until the full result set accumulates in memory, or the transaction

ends.

Dynamic query performance considerations

General performance considerations

Use of the following elements in your dynamic query can diminish application performance somewhat:

v Datatype converters and Java methods

Why: In general, query operations and predicates are translated into SQL so that the database server

can perform them. If your query includes datatype converters (for EJB to RDB mapping, for example) or

Java methods, however, the associated predicates and operations of your query must be performed in

the memory of the application server.

v EJB methods and criteria that call for the return of EJB references

Why: Queries that incorporate these elements trigger full activation of EJBs in the memory of the

application server. (Returning a list of CMP fields from a query does not cause an EJB to be activated.)

When assessing application performance, you should also be aware that dynamic queries share

connections with the persistence manager. Consequently, an application that includes a mixture of finder

methods, CMR navigation, and dynamic queries relies on a single shared connection between the

persistence manager and the dynamic query service to perform these tasks.

Limiting the return collection size

v Remote interface queries: The QueryIterator class of the remote interface mandates that all of your

query results materialize in application server memory over the course of one method call. The SQL

cursor(s) used to run the EJB query are closed upon completion of that call. Because this requirement

poses a high risk for creating bottlenecks within the database server, you need to limit the size of any

potentially large result collections.

1970 Administering applications and their environment

v Local interface queries: In most situations, the QueryLocalIterator object behaves as a wrapper

around an SQL cursor. It is demand-driven; it causes data to be returned incrementally. For each record

retrieval from the database, the next() method must be called on the iterator.

Use of certain operations in local interface queries, however, overrides the demand-driven behavior. In

these cases, the query results fully materialize in memory just as do the result collections of remote

interface queries. An example of such a case is:

select e.myBusinessMethod() from EmpBean e

 where e.salary < 50000 order by 1 desc

This query requires performance of an EJB method to produce the final result collection. Consequently,

the full dataset from the database must be returned in one collection to application server memory,

where the EJB method can be run on the dataset in its entirety. For that reason, local interface query

operations that invoke EJB methods are generally not demand-driven. You cannot control the return

collection size for such queries.

Because they are demand-driven, all other local interface queries allow you to control the size of return

collections. You can use a call of the close() method on the QueryLocalIterator object to close the query

loop after the desired number of return values has been fetched from the datastore. Otherwise, the SQL

cursor(s) used to run the EJB query are not closed until the full result set accumulates in memory, or

the transaction ends.

Access intent implications for dynamic query

WebSphere Application Server gives you the option to set access intent policies for your entity enterprise

beans as a way of managing their transfer of data with the underlying datastore. An access intent policy

controls the isolation level used on the data source connection, as well as the database locks used during

data retrieval. By manipulating these elements, you can maximize the efficiency of your application’s data

flow. To learn more, begin with the topics “Access intent policies” on page 202 and “Concurrency control”

on page 202.

When formulating dynamic queries, keep in mind the following considerations concerning their interaction

with access intent policies:

v A dynamic query uses the first ASN name in the FROM clause to determine access intent.

v The collection increment attribute of an access intent policy is not used in processing a dynamic query.

v When performed on entity beans that have a pessimistic-Update access intent policy, your dynamic

queries must return updateable collections. Therefore you need to formulate your query statements to

return only collections of entity beans, not collections of CMP fields. For example, the statement select

object(c) from Customer is valid for a dynamic query performed under the constraint of a

pessimistic-Update policy. The statement select c.name from Customer c, however, is not a valid

dynamic query under this constraint.

v Using pessimistic-Update policy places restrictions on the types of query expressions. The restrictions

depend on the back end database type and release. Refer to the topic Access intent -- isolation levels

and update locks for details.

Dynamic query API: prepareQuery() and executePlan() methods

Use these methods to more efficiently allocate the overhead associated with dynamic query. They are

equivalent in function to the prepareStatement() and executeQuery() methods of the JDBC API.

To perform a dynamic EJB query, the application server must parse the query string into SQL at run time.

You can, of course, eliminate run-time overhead by choosing to perform a standard EJB query instead of a

dynamic query. Sometimes referred to as deployment queries, standard queries are parsed and built at

deployment, then performed by a finder or select method.

Another option is to write code that redistributes dynamic query overhead for better application

performance. Begin by calling the prepareQuery() method in place of the executeQuery() method. The

prepareQuery() method parses and translates your query, and returns a string called a query plan. The

plan contains the SQL statement produced by parsing and translation, as well as other information needed

Chapter 20. Learn about WebSphere programming extensions 1971

by the dynamic query API. Save this string in your application and call the executePlan() method with the

string to run your query. (You also might want to use the prepareQuery() method simply to see the SQL

translation product; just call the method and display the return value.)

Pass the parameters of your query as an array of type Object on the prepareQuery() and the

executePlan() method calls. Ensure that you pass appropriate data types, because the application server

validates your query according to parameter type (rather than actual values) when it processes the

prepareQuery() method call.

Example code

Note: In the example code that follows, the first executePlan() method call substitutes parms[0] for ?1.

Hence the first query performed is functionally equivalent to the following query statement:

 select e.name as name, object(e) as emp from EmpBean e where e.salary < 50000

The second call runs a query that is functionally equivalent to this statement:

 select e.name as name, object(e) as emp from EmpBean e where e.salary < 60000

The example:

String query =

"select e.name as name , object(e) as emp from EmpBean e where e.salary < ?1";

QueryIterator it = null;

Integer[] parms = new Integer[1];

parms[0] = new Integer(0);

In the call to prepareQuery(), pass any Integer value. Doing so defines ?1 as an Integer type, as in the

following:

String queryPlan= qb.prepareQuery(query, parms, null);

 parms[0] = new Integer(50000);

Next you run the query with a real value of Integer(50000) for ?1:

select e.name as name, object(e) as emp from EmpBean e where e.salary < 50000it =

 qb.executePlan(queryPlan, parms, 0, 99);

parms[0] = new Integer(60000);

Run the query again with a different value of Integer(60000) for ?1:

it = qb.executePlan(queryPlan, parms, 0, 99);

Comparison of the dynamic and deployment EJB query services

You can use the dynamic query service to build and execute queries against entity beans constructed

dynamically at run time, rather than defining them at deployment time. By using dynamic query you gain

the flexibility of queries defined at run time and utilize the power of EJB-Query Language (QL). Apart from

supporting all of the capabilities of an EJB-QL query, dynamic query adds functionality not available to

standard static query. Two examples are the ability to select multiple data fields directly from the bean

itself (static queries currently only allow one) and executing business methods directly in the query.

You can effectively create more efficient and less resource intensive applications with dynamic query. For

example, two data fields are required from the results of a query. Because a standard EJB-QL query can

only select one data field, it is necessary to select the entire EJB object and extract the needed data from

the returned results through data access methods, possibly traversing Container Managed Relationships

(CMR) boundaries in the process. However, when using dynamic query, you can get both pieces of data

directly from the query without additional CMR traversal or accessor methods. This principle is the key to

evaluating whether or not dynamic query can be used for performance gain. You should review the amount

of data that must be retrieved, in addition to the amount of business logic needed to retrieve it, for

example, CMR traversal or accessor methods.

1972 Administering applications and their environment

Using parameters in the query rather than literal values is another performance consideration. Under most

circumstances, it is better to define conditional values as parameters in the query and then pass those

parameters through the appropriate mechanisms. By using this method, you have a greater chance of

matching a cached query plan, and you eliminate the need to parse and build the plan from scratch. For

example, ″SELECT Object(o) FROM schemaname AS o WHERE o.fieldname LIKE foo″, is more

appropriately expressed as ″SELECT Object(o) FROM schemaname AS o WHERE o.fieldname LIKE ?1″

with the value foo passed as a parameter to the executeQuery method. The result is that any subsequent

execution of a dynamic query structure that is the same, except for different string literal conditions, is

registered as a plan cache hit (which delivers better ″observed″ performance).

When used as a direct replacement for an equivalent static query, dynamic query is approximately 25%

slower than the static variation. This slowdown is due to the need for parsing and building a plan for the

query, in addition to executing it. In the static variation, these costs are paid at deploy time. Despite this,

the added functionality gained through the use of dynamic query, specifically the ability to select multiple

data fields in a single query even across CMRs, creates opportunities to utilize dynamic query for the sake

of performance improvement.

Internationalization

Task overview: Globalizing applications

An application that can present information to users according to regional cultural conventions is said to be

globalized: The application can be configured to interact with users from different localities in culturally

appropriate ways. In a globalized application, a user in one region sees error messages, output, and

interface elements in the requested language. Date and time formats, as well as currencies, are presented

appropriately for users in the specified region. A user in another region sees output in the conventional

language or format for that region. Globalization consists of two phases: internationalization (enabling an

application component to use regional conventions) and localization (implementing a specific regional

convention). This product supports globalization through the use of its localizable-text API and

internationalization service.

v Make sure the server runtime environment is properly configured.

For more information about supported locales and character encodings, see “Working with locales and

character encodings” on page 1978.

v Implement message catalogs in your application by using the localizable-text API.

This product supports the maintenance and deployment of centralized message catalogs for the output

of properly formatted, language-specific (localized) interface strings.

For more information about the localizable-text API, see “Task overview: Internationalizing interface

strings (localizable-text API)” on page 1976.

v Implement more extensive locale support by using the internationalization service.

With the internationalization service, you can manage the distribution of the internationalization

information, or internationalization context, that is necessary to perform localizations within Java 2

Platform, Enterprise Edition (J2EE) application components. Supported application components also

include Web service client environments and Web service-enabled enterprise beans.

For more information about the internationalization service, see “Task overview: Internationalizing

application components (internationalization service)” on page 1977.

Globalization

An application that can present information to users according to regional cultural conventions is said to be

globalized: The application can be configured to interact with users from different localities in culturally

appropriate ways. In a globalized application, a user in one region sees error messages, output, and

interface elements in the requested language. Date and time formats, as well as currencies, are presented

appropriately for users in the specified region. A user in another region sees output in the conventional

Chapter 20. Learn about WebSphere programming extensions 1973

language or format for that region. Globalization consists of two phases: internationalization (enabling an

application component to use regional conventions) and localization (implementing a specific regional

convention).

Historically, the creation of globalized applications has been restricted to large corporations writing

complex systems. However, given the rise in distributed computing and in the use of the World Wide Web,

application developers are pressured to globalize a much wider variety of applications. This trend requires

making globalization techniques much more accessible to application developers.

Internationalization of an application is driven by two variables, the time zone and the locale. The time

zone indicates how to compute the local time as an offset from a standard time like Greenwich Mean

Time. The locale is a collection of information about language, currency, and the conventions for

presenting information like dates. A time zone can cover many locales, and a single locale can span time

zones. With both time zone and locale, the date, time, currency, and language for users in a specific

region can be determined.

A first step: Localization of interface strings

In an application that is not globalized, the user interface is unalterably written into the application code.

Internationalizing a user interface adds a layer of abstraction into the design of an application. The

additional layer of abstraction enables you to localize the application for each locale that must be

supported by the application.

In a localized application, the locale determines the message catalog from which the application retrieves

message strings. Instead of printing an error message, the application represents the error message with

some language-neutral information; in the simplest case, each error condition corresponds to a key. To

print a usable error message, the application looks up the key in a message catalog. Each message

catalog is a list of keys with associated strings. Different message catalogs provide strings for the different

languages that are supported. The application looks up the key in the appropriate catalog, retrieves the

corresponding error message in the requested language, and prints the string for the user.

Localization of text can be used for far more than translating error messages. For example, by using keys

to represent each element in a graphical user interface (GUI) and by providing the appropriate message

catalogs, the GUI (buttons, menus, and so on) can support multiple languages. Extending support to

additional languages requires that you provide message catalogs for those languages; in many cases, the

application needs no further modification.

The localizable-text package is a set of Java classes and interfaces that can be used to localize the

strings in distributed applications easily. Language-specific string catalogs can be stored centrally so that

they can be maintained efficiently.

Globalization challenges in distributed applications

With the advent of Internet-based business computational models, applications increasingly consist of

clients and servers that operate in different geographical regions. These differences introduce the following

challenges to the task of designing a solid client-server infrastructure:

Clients and servers can run on computers that have different endian architectures or code sets

 Clients and servers can reside in computers that have different endian architectures: A client can

reside in a little-endian CPU, while the server code runs in a big-endian one. A client might want to

call a business method on a server running in a code set different from that of the client.

 A client-server infrastructure must define precise endian and code-set tracking and conversion

rules. The Java platform has nearly eliminated these problems in a unique way by relying on its

Java virtual machine (JVM), which encodes all of the string data in UCS-2 format and externalizes

1974 Administering applications and their environment

everything in big-endian format. The JVM uses a set of platform-specific programs for interfacing

with the native platform. These programs perform any necessary code set conversions between

UCS-2 and the native code set of a platform.

Clients and servers can run on computers with different locale settings

 Client and server processes can use different locale settings. For example, a Spanish client might

call a business method upon an object that resides on an American English server. Some

business methods are locale-sensitive in nature; for example, given a business method that

returns a sorted list of strings, the Spanish client expects that list to be sorted according to the

Spanish collating sequence, not in the English collating sequence of the server. Because data

retrieval and sorting procedures run on the server, the locale of the client must be available to

perform a legitimate sort.

 A similar consideration applies in instances where the server has to return strings containing date,

time, currency, exception messages, and so on, that are formatted according to the cultural

expectations of the client.

Clients and servers can reside in different time zones

 Client and server processes can run in different time zones. To date, all internationalization

literature and resources concentrate mainly on code set and locale-related issues. They have

generally ignored the time zone issue, even though business methods can be sensitive to time

zone as well as to locale.

 For example, suppose that a vendor makes the claim that orders received before 2:00 PM are

processed by 5:00 PM the same day. The times given, of course, are in the time zone of the

server that is processing the order. It is important to know the time zone of the client to give

customers in other time zones the correct times for same-day processing.

 Other time zone-sensitive operations include time stamping messages logged to a server, and

accessing file or database resources. The concept of Daylight Savings Time further complicates

the time zone issue.

Java 2 Platform, Enterprise Edition (J2EE) provides support for application components that run on

computers with differing endian architecture and code sets. It does not provide dedicated support for

application components that run on computers with different locales or time zones.

The conventional method for solving locale and time zone mismatches across remote application

components is to pass one or more extra parameters on all business methods needed to convey the

client-side locale or time zone to the server. Although simple, this technique has the following limitations

when used in Enterprise JavaBeans (EJB) applications:

v It is intrusive because it requires that one or more parameters be added to all bean methods in the call

chain to locale-sensitive or time zone-sensitive methods.

v It is inherently error-prone.

v It is impracticable within applications that do not support modification, such as legacy applications.

The internationalization service addresses the challenges posed by locale and time zone mismatch without

incurring the limitations of conventional techniques. The service systematically manages the distribution of

internationalization contexts across the various components of EJB applications, including client

applications, enterprise beans, and servlets. For more information, see “Task overview: Internationalizing

application components (internationalization service)” on page 1977.

Language versions offered by this product

This product is offered in several languages, as enabled by the operating platform on which the product is

installed.

The following language versions are available:

v Brazilian Portuguese

Chapter 20. Learn about WebSphere programming extensions 1975

v Chinese (Simplified)

v Chinese (Traditional)

v English

v French

v German

v Italian

v Japanese

v Korean

v Spanish

Globalization: Resources for learning

Use links in this topic to find relevant supplemental information about globalization. The information resides

on IBM and non-IBM Internet sites, whose sponsors control the technical accuracy of the information.

These links are provided for convenience. Often, the information is not specific to this product but is useful

all or in part for understanding the product. When possible, links are provided to technical papers and

Redbooks™ that supplement the broad coverage of the release documentation with in-depth examinations

of particular product areas.

View links to additional information about:

v “Programming instructions and examples”

v “Programming specifications”

Programming instructions and examples

v Java internationalization tutorial

An online tutorial that explains how to use the Java 2 SDK Internationalization API.

v Globalize your On Demand Business

IBM’s portal site for delivering globalized applications.

Programming specifications

v Java 2 SDK, Standard Edition Documentation: Internationalization

The Java 1.4.2 internationalization documentation from Sun Microsystems, including a list of supported

locales and encodings. For other versions of the Java platform, click the ″Internationalization Home

Page″ link on that page.

v Java Specification Request 150, Internationalization Service for J2EE

The specification of the J2EE internationalization service that is currently being developed through the

Java Community Process.

v W3C, Internationalization Core Working Group

The W3C’s Internationalization Core Working Group responsible for investigating the internationalization

of Web services, in particular, the dependence of Web services on language, culture, region, and

locale-related contexts.

v Making the WWW truly World Wide

The W3C effort to make World Wide Web technology work with the many writing systems, languages,

and cultural conventions of the global community:

Task overview: Internationalizing interface strings (localizable-text API)

This topic summarizes the steps involved in implementing message catalogs through the localizable-text

API.

This product supports the maintenance and deployment of centralized message catalogs for the output of

properly formatted, language-specific (localized) interface strings.

1. Identify localizable text in your application.

1976 Administering applications and their environment

http://java.sun.com/docs/books/tutorial/i18n/index.html
http://www.ibm.com/software/globalization/
http://java.sun.com/j2se/1.4.2/docs/guide/intl/
http://www.jcp.org/en/jsr/detail?id=150
http://www.w3.org/International/core/
http://www.w3.org/International/

2. Create the message catalogs that are necessary for the locales to be supported by your application.

3. In your application code, compose the language-specific strings for output.

4. Using an assembly tool, assemble your application code as one or more application components.

5. Prepare the localizable-text package for deployment with your localized application. In this step, you

create a deployment Java archive (JAR) file.

6. Assemble the application modules and the deployment JAR file into a Java 2 Platform, Enterprise

Edition (J2EE) application.

7. Deploy and manage the application.

Your application is deployed with localized text.

Task overview: Internationalizing application components

(internationalization service)

This topic summarizes the steps involved in using the internationalization service.

With the internationalization service, you can manage the distribution of the internationalization information,

or internationalization context, that is necessary to perform localizations within Java 2 Platform, Enterprise

Edition (J2EE) application components. Supported application components also include Web service client

environments and Web service-enabled enterprise beans.

1. Use the internationalization context API within application components to obtain or manage

internationalization context.

Servlet and enterprise bean business methods can use internationalization context to perform locale-

and time zone-sensitive localizations. Enterprise JavaBeans (EJB) client applications, and server

components that are configured to manage internationalization context must use the

internationalization context API to set the context elements scoped to their invocations.

You use the internationalization context API within Web service-enabled J2EE client programs and

stateless session beans in the same manner that you would use conventional J2EE components, with

one exception. Internationalization context propagated over Web service requests contains a time zone

ID, whereas conventional Remote Method Invocation/ Internet Inter-ORB Protocol (RMI/IIOP) requests

propagate complete time zone information, including the raw offset, Daylight Savings Time information,

and so on.

2. Assemble internationalized applications.

The internationalization type specifies the internationalization policy that applies to a servlet or an

enterprise bean and, in particular, indicates whether the application component or its hosting J2EE

container manages internationalization context. Container internationalization attributes can be

specified for container-managed servlet and enterprise bean business methods. These attributes tailor

a policy by indicating which context the container scopes to an invocation. Configuring

internationalization policies declaratively prescribes, by means of the application deployment descriptor,

the distribution and management of context throughout an application.

As you edit the deployment descriptor for assembly, you can also set the internationalization type and

configure any container internationalization attributes for the servlets and enterprise beans in your

application.

You configure internationalization type and container internationalization attributes for Web

service-enabled stateless session beans in the same manner as you do for conventional beans.

3. Manage the internationalization service.

Use the administrative console to enable the service on all application servers.

By default, the service is enabled within J2EE client environments but is disabled on application

servers. You must enable the service on all application servers hosting your servlets and enterprise

beans to use internationalization context.

4. Troubleshoot the internationalization service as needed.

Chapter 20. Learn about WebSphere programming extensions 1977

Use the administrative console to enable the trace service to log internationalization service messages

when debugging your applications.

The trace strings for the internationalization service follow; use both:

com.ibm.ws.i18n.context.*=all=enabled:com.ibm.websphere.i18n.context.*=all=enabled

Internationalization service

In a distributed client-server environment, application processes can run on different machines, configured

for different locales, corresponding to different cultural conventions; they can also be located across

geographical boundaries. The internationalization service can help manage your application in a globally

distributed environment.

For an understanding of how differences in locale impact application development, read “Globalization” on

page 1973.

Java 2 Platform, Enterprise Edition (J2EE) provides support for application components that run on

computers with differing endian architecture and code sets. It does not provide dedicated support for

application components that run on computers with different locales or time zones.

The internationalization service addresses the challenges posed by locale and time zone mismatch without

incurring the limitations of conventional techniques. The service systematically manages the distribution of

internationalization contexts across the various components of EJB applications, including client

applications, enterprise beans, and servlets.

The service works by associating an internationalization context with every service request within an

application. When a client-side component calls a business method, the internationalization service

interposes by obtaining the internationalization context associated with the current client-side process and

by attaching that context to the outgoing request. On the server side, the internationalization service again

interposes by detaching the context from the incoming request and associating it with the server-side

process on which the business method will run, effectively scoping the context to the business method.

For HTTP requests, the caller context is constructed from the HTTP attributes and default values. The

service propagates internationalization context on subsequent business method invocations in the same

manner, which distributes the context of the originating request over the entire chain of business method

invocations.

This basic operation of scoping and propagation is defined precisely by internationalization context

management policies. Internationalization policies specify whether an application component or its hosting

J2EE container are to manage internationalization context. For container-managed components, the policy

indicates which internationalization context the container scopes to invocations on that component. Server

components configured to manage internationalization context, as well as EJB clients, must use the

internationalization context API to manage the internationalization context elements scoped to their

invocations.

Every application component has a default policy, which can be overridden and tailored for servlets and

enterprise beans at assembly time.

At run time, application components can use the internationalization context API to get any element of the

internationalization contexts scoped to an invocation. To programmatically access context elements,

application components first resolve an internationalization context API reference, then call the appropriate

API method to access the various context elements, such as the caller locale or the invocation time zone.

These elements can be used in calls to Java 2 SDK internationalization API methods; for example, to

perform localizations such as formatting messages, configuring dates, or comparing strings.

Working with locales and character encodings

Internationalization support for this product relies on that provided by the Java 2 Platform, Standard Edition

(J2SE). Support varies by platform.

1978 Administering applications and their environment

v Verify that the operating system on which the application server is installed supports the locales and

encodings that you plan to use.

Java internationalization support might use underlying services of the operating system. For example, if

user IDs for your server are expected to contain non-English characters, make sure that the operating

system is configured to process those characters.

v Plan for encoding changes as necessary.

Consider differences in encoding support among operating system subcomponents. Although this

product and the Java platform are based on Unicode encoding, it is not always possible to run

applications in a purely Unicode environment.

v Set the console.encoding property as necessary.

If your application produces an UnsupportedEncodingException exception, check your operating system

documentation to determine if the target operating system supports the required encoding and adjust the

runtime environment as needed.

Windows

For example, on the Windows® platform, the command prompt runs in a Windows code page. Not all

Windows code pages are supported by the Java platform, so it is possible to get a Java exception when

running a command-line program, such as wsadmin, in an unsupported code page. To avoid exceptions,

use the chcp command to explicitly set the code page to an encoding that is supported by the Java

platform.

v Before command-line calls, change the code page.

For example, Arabic code page 720 is not supported by the Java platform, but the Arabic code page for

Windows (Cp1256) systems is. Type chcp 1256

v When starting a localized application from a command prompt, set the console.encoding property.

For Arabic, pass the following parameter: -Dconsole.encoding=Cp1256

Administering the internationalization service

To use internationalization context in an Enterprise JavaBeans (EJB) application, the internationalization

service must be enabled in the runtime environments for all server-side components (servlets and

enterprise beans, including session beans enabled for Web service usage) as well as all client-side

components (EJB client applications and Web service clients).

If you do not require the internationalization service, do not enable it. Leaving the service disabled

prevents any possible performance degradation incurred by the implicit distribution of internationalization

resources.

The internationalization service cannot be enabled for HTTP clients, because support for

internationalization in that case is provided by the browser, not by the application server.

v Enable or disable the internationalization service for servlets and enterprise beans. By default, the

service is disabled for server-side components within the application server. You enable the service by

using either the administrative console or the wsadmin tool.

v Enable or disable the internationalization service for EJB clients. By default, the service is disabled

within the client container. You enable the service by using the launchClient tool.

Enabling the internationalization service for servlets and enterprise beans

Perform this task to enable the internationalization service in the application server runtime environment.

Any servlet or enterprise bean can use internationalization context if the internationalization service is

enabled within the hosting WebSphere Application Server instance.

1. Start the administrative console.

Chapter 20. Learn about WebSphere programming extensions 1979

2. Click Servers > Application servers > server_name > Container services > Internationalization

service.

3. Enable the internationalization service.

a. If not already selected, select the Enable service at server startup check box.

b. Click OK.

When you select the Enable service at server startup setting, the application server automatically

initializes and starts the internationalization service whenever the server starts. If you change this setting,

be sure to restart the application server for the new setting to take effect.

To disable the service, clear the Enable service at server startup check box. In this case, the

internationalization service is initialized but not started when the application server starts.

Administration through scripting

Alternatively, the internationalization service can be enabled from the command line by using the wsadmin

tool. Start the wsadmin tool and enter the following commands:

set x [$AdminConfig list I18NService]

$AdminConfig modify $x { { enable true } }

$AdminConfig save

exit

If you enable or disable the internationalization service, be sure to stop and then restart the application

server for the new setting to take effect.

Enabling the internationalization service for EJB clients

By default, the internationalization service is disabled for use within Enterprise JavaBeans (EJB) and

Web-service enabled client applications. You must enable the service for client applications as well as for

all server instances in the runtime environment.

Enable the service.

When calling the launchClient tool, include the argument -CCDI18NService.enable=true or

-CCDI18NService.enable=yes.

Internationalization service settings

Use this page to enable or disable the internationalization service. The internationalization service

manages the implicit propagation and scoping of locale and time zone information, called

internationalization context, within application components. When the service is enabled, application

components can use the internationalization context API to programmatically manage locale and time zone

information. In turn, components can use that locale and time zone information with the Java 2 Platform,

Standard Edition (J2SE) Internationalization API to perform localizations. If internationalization support is

not required on the server, disabling the service can improve performance.

To view this administrative console page, click Servers > Application servers > server_name >

Container services > Internationalization service.

Enable service at server startup:

Specifies whether the server attempts to start the internationalization service.

 Default Cleared

Range Valid values are Selected or Cleared

More information about valid values follows:

1980 Administering applications and their environment

Selected

When the application server starts, it attempts to start the internationalization service automatically.

Cleared

The server does not try to start the internationalization service.

 To enable the internationalization service for applications on this server, the system administrator must

select this property and then restart the server.

Internationalization service errors

Certain conditions might cause the internationalization service not to start, to issue

java.lang.IllegalStateException exceptions while an application is running, or to exercise default behaviors.

The java.lang.IllegalStateException exception indicates one of the following things:

v An application component attempted an operation that is not supported by the internationalization

programming model.

The IllegalStateException exception is issued whenever a server application component whose

internationalization type is set to container-managed internationalization (CMI) attempts to set invocation

context. This behavior is a violation of the CMI policy, under which servlets and enterprise beans cannot

modify their invocation internationalization context.

v An anomaly occurred that disabled the service.

For instance, if the internationalization service is not properly initialized, the Java Naming and Directory

Interface (JNDI) lookup on the UserInternationalization URL attribute issues a

javax.naming.NameNotFoundException exception that contains an IllegalStateException instance.

The following conditions can occur while your internationalized application is running. These conditions

might cause the internationalization service not to start, to issue IllegalStateException exceptions, or to

exercise default behaviors:

v “The service is disabled ”

v “The service is not started” on page 1982

v “Invalid context element” on page 1983

v “Missing context element” on page 1983

v “Invalid policy” on page 1983

v “Missing policy” on page 1983

If you encounter unexpected or exceptional behavior, the problem is likely related to one of these

conditions. You need to examine the trace log to investigate these conditions, which requires that you

configure the diagnostic trace service to generate messages about internationalization service function. To

get started with logging and tracing, see Tracing and logging configuration.

The trace strings for the internationalization service follow; use both:

com.ibm.ws.i18n.context.*=all=enabled:com.ibm.websphere.i18n.context.*=all=enabled

The service is disabled

The internationalization service is not initialized when the startup setting is cleared. The service generates

a message that indicates whether it is enabled or disabled. Applications cannot access the

internationalization API when the service is disabled. If an application attempts a JNDI lookup to obtain the

UserInternationalization reference, the lookup fails with a NamingException exception, indicating that the

reference cannot be found. In addition, the service does not scope (propagate) internationalization context

on incoming (outgoing) business method calls.

Chapter 20. Learn about WebSphere programming extensions 1981

The service is not started

The internationalization service is operational whenever it is in the STARTED state. For example, if an

application attempts to access internationalization context and the service is not started, the API issues an

IllegalStateException exception. In addition, the service does not provide runtime support for servlets and

enterprise beans.

As an application server progresses through its life cycle, it initializes, starts, stops, and terminates

(destroys) the internationalization service. If an anomaly occurs during initialization, the service does not

start. After the service is started, its state can change to BLOCKED in the event that a serious error

occurs. The service generates a message for every state change.

If a trace message indicates that the service is not STARTED, examine previous messages to determine

the problem. For instance, the internationalization service does not start if the activity service is

unavailable and a message is displayed to that effect during initialization of the internationalization service.

During startup, the following messages indicate potential configuration or runtime problems:

No ORB support

The service cannot obtain an instance of the object request broker (ORB). This condition is a fatal

error. Examine the SystemErr.log and SystemOut.log files for information.

No TCM support

The service cannot obtain an instance of its thread context manager (TCM). This condition is a

fatal error. Examine the SystemErr.log and SystemOut.log files for information.

No IIOP (activity service) support

The service cannot register with the activity service. This condition is a fatal error. The

internationalization service cannot propagate or receive context on Internet Inter-ORB Protocol

(IIOP) requests without activity service support. Examine the SystemErr.log and SystemOut.log

files for information.

No AsynchBeans support

The service cannot register into the asynchronous beans environment. This warning indicates that

the asynchronous beans environment cannot support internationalization context.

No EJB container support

The service cannot register with the Enterprise JavaBeans (EJB) container. This warning indicates

that the internationalization service cannot support enterprise beans. Without EJB container

support, internationalization contexts do not scope properly to EJB business methods. Review the

trace log for any EJB container-related error conditions.

No Web container support

The service cannot register with the Web container. This warning indicates that the

internationalization service cannot support servlets and JavaServer Page (JSP) files. Without Web

container support, internationalization contexts do not scope properly to servlet service methods.

Review the trace log for any Web container-related error conditions.

No Metadata support

The service cannot register with the metadata service. This warning indicates that the

internationalization service cannot process the internationalization policies within application

deployment descriptors. Without metadata support, the service associates the default

internationalization context management policy, [CMI, RunAsCaller], to every servlet lifecycle

method and enterprise bean business method invocation. Review the trace log for any metadata

service-related error conditions.

No JNDI (Naming service) support

The service cannot bind the UserInternationalization object into the namespace. This condition is a

fatal error. Application components are unable to access internationalization context API

references, and are therefore unable to access internationalization context elements. Review the

trace log for any Naming (JNDI) service-related error conditions.

No API support

The service cannot obtain an instance of an internationalization context API object. This condition

1982 Administering applications and their environment

is a fatal error. Application components are unable to access internationalization context API

references, and are therefore unable to access internationalization context elements.

Invalid context element

The service detected an invalid internationalization context element. For example, the internationalization

service does not support TimeZone instances of a type other than java.util.SimpleTimeZone. If the service

encounters an unusable element, it logs a message and substitutes the corresponding default element of

the JVM.

Missing context element

The service detected a missing internationalization context element. Incoming requests (for example, from

application servers that do not support the internationalization service) lack internationalization context.

When the service attempts to access a caller internationalization context element (which does not exist in

this case), the service logs a message and substitutes the corresponding default element of the Java

virtual machine (JVM).

Whenever possible, enable the internationalization service within all clients and hosting application servers

that comprise an internationalized enterprise application. Read more information about Administering the

internationalization service in the Administering applications and their environment PDF book.

Invalid policy

The internationalization service detected a malformed internationalization policy in the application

deployment descriptor. The service replaces the malformed attribute with the appropriate default. For

instance, if the internationalization type for an entity bean is set to Application during the run of a servlet

or EJB business method call, the service logs the inconsistency and enforces the Container setting

instead.

Also, AMI application components do have an implicit container internationalization attribute. By default

they run as server. The service silently enforces the implicit policy, [AMI, RunAsServer], and logs

messages to this effect.

Invalid container internationalization attributes are likely to occur when specifying the Locales and Time

zone ID fields. When encountering invalid locales and time zone IDs within attributes, the service replaces

each value with the corresponding default element of the JVM. Be sure to follow the guidelines provided in

the Developing and deploying applications PDF book.

Missing policy

The service detected a missing internationalization policy. The service replaces the missing policy with the

appropriate default. For instance, if the internationalization type is missing for a servlet or enterprise bean,

the service sets the attribute to Container.

Container internationalization attributes are not mandatory for CMI application components. In the event

that a CMI servlet or EJB business method lacks a container internationalization attribute, the service

silently enforces the implicit policy [CMI, RunAsCaller].

When an application lacks internationalization policies in its deployment descriptor, or metadata support is

unavailable, the service logs a message and applies the policy [CMI, RunAsCaller] on every servlet

service method and EJB business method invocation.

Read the information in the Developing and deploying applications PDF book:

v Assembling internationalized applications

v Container internationalization attributes

Chapter 20. Learn about WebSphere programming extensions 1983

v Internationalization type

Object pools

Using object pools

An object pool helps an application avoid creating new Java objects repeatedly. Most objects can be

created once, used and then reused. An object pool supports the pooling of objects waiting to be reused.

Object pools are not meant to be used for pooling JDBC connections or Java Message Service (JMS)

connections and sessions. WebSphere Application Server provides specialized mechanisms for dealing

with those types of objects. These object pools are intended for pooling application-defined objects or

basic Developer Kit types.

To use an object pool, the product administrator must define an object pool manager using the

administrative console. Multiple object pool managers can be created in an Application Server cell.

Note: The Object pool manager service is only supported from within the EJB container or Web container.

Looking up and using a configured object pool manager from a Java 2 Platform Enterprise Edition

(J2EE) application client container is not supported.

1. Start the administrative console.

2. Click Resources > Object pool managers.

3. Specify a Scope value and click New.

4. Specify the required properties for work manager settings.

Scope The scope of the configured resource. This value indicates the location for the configuration

file.

Name The name of the object pool manager. This name can be up to 30 ASCII characters long.

JNDI Name

The Java Naming and Directory Interface (JNDI) name for the pool manager.

5. [Optional] Specify a Description and a Category for the object pool manager.

After you have completed these steps, applications can find the object pool manager by doing a JNDI

lookup using the specified JNDI name.

The following code illustrates how an application can find an object pool manager object:

InitialContext ic = new InitialContext();

ObjectPoolManager opm = (ObjectPoolManager)ic.lookup("java:comp/env/pool");

When the application has an ObjectPoolManager, it can cache an object pool for classes of the types it

wants to use. The following is an example:

ObjectPool arrayListPool = null;

ObjectPool vectorPool = null;

try

{

 arrayListPool = opm.getPool(ArrayList.class);

 vectorPool = opm.getPool(Vector.class);

}

catch(InstantiationException e)

{

 // problem creating pool

}

catch(IllegalAccessException e)

{

 // problem creating pool

}

When the application has the pools, the application can use them as in the following example:

1984 Administering applications and their environment

ArrayList list = null;

try

{

 list = (ArrayList)arrayListPool.getObject();

 list.clear(); // just in case

 for(int i = 0; i < 10; ++i)

 {

 list.add("" + i);

 }

 // do what ever we need with the ArrayList

}

finally

{

 if(list != null) arrayListPool.returnObject(list);

}

This example presents the basic pattern for using object pooling. If the application does not return the

object, then the only adverse effect is that the object cannot be reused.

Object pool managers

Object pool managers control the reuse of application objects and Developer Kit objects, such as Vectors

and HashMaps.

Multiple object pool managers can be created in an Application Server cell. Each object pool manager has

a unique cell-wide Java Naming and Directory Interface (JNDI) name. Applications can find a specific

object pool manager by doing a JNDI lookup using the specific JNDI name.

The object pool manager and its associated objects implement the following interfaces:

public interface ObjectPoolManager

{

 ObjectPool getPool(Class aClass)

 throws InstantiationException, IllegalAccessException;

 ObjectPool createFastPool(Class aClass)

 throws InstantiationException, IllegalAccessException;

}

public interface ObjectPool

{

 Object getObject();

 void returnObject(Object o);

}

Each object pool manager can be used to pool any Java object with the following characteristics:

v The object must be a public class with a public default constructor.

v If the object implements the java.util.Collection interface, it must support the optional clear() method.

Each pooled object class must have its own object pool. In addition, an application gets an object pool for

a specific object using either the ObjectPoolManager.getPool() method or the

ObjectPoolManager.createFastPool() method. The difference between these methods is that the getPool()

method returns a pool that can be shared across multiple threads. The createFastPool() method returns a

pool that can only be used by a single thread.

If in a Java virtual machine (JVM), the getPool() method is called multiple times for a single class, the

same pool is returned. A new pool is returned for each call when the createFastPool() method is called.

Basically, the getPool() method returns a pool that is thread-synchronized.

The pool for use by multiple threads is slightly slower than a fast pool because of the need to handle

thread synchronization. However, extreme care must be taken when using a fast pool. Consider the

following interface:

Chapter 20. Learn about WebSphere programming extensions 1985

public interface PoolableObject

{

 void init();

 void returned();

}

If the objects placed in the pool implement this interface and the ObjectPool.getObject() method is called,

the object that the pool distributes has the init() method called on it. When the ObjectPool.returnObject()

method is called, the PoolableObject.returned() method is called on the object before it is returned to the

object pool. Using this method objects can be pre-initialized or cleaned up.

It is not always possible for an object to implement PoolableObject. For example, an application might

want to pool ArrayList objects. The ArrayList object needs clearing each time the application reuses it. The

application might extend the ArrayList object and have the ArrayList object implement a poolable object.

For example, consider the following:

public class PooledArrayList extends ArrayList implements PoolableObject

{

 public PooledArrayList()

 {

 }

 public void init() {

 }

 public void returned()

 {

 clear();

 }

}

If the application uses this object, in place of a true ArrayList object, the ArrayList object is cleared

automatically when it is returned to the pool.

Clearing an ArrayList object simply marks it as empty and the array backing the ArrayList object is not

freed. Therefore, as the application reuses the ArrayList, the backing array expands until it is big enough

for all of the application requirements. When this point is reached, the application stops allocating and

copying new backing arrays and achieves the best performance.

It might not be possible or desirable to use the previous procedure. An alternative is to implement a

custom object pool and register this pool with the object pool manager as the pool to use for classes of

that type. The class is registered by the WebSphere administrator when the object pool manager is

defined in the cell. Take care that these classes are packaged in Java Archive (JAR) files available on all

of the nodes in the cell where they might be used.

Object pool managers collection

An object pool manages a pool of arbitrary objects and helps applications avoid creating new Java objects

repeatedly. Most objects can be created once, used and then reused. An object pool supports the pooling

of objects waiting to be reused. These object pools are not meant to be used for pooling Java Database

Connectivity connections or Java Message Service (JMS) connections and sessions. WebSphere

Application Server provides specialized mechanisms for dealing with those types of objects. These object

pools are intended for pooling application-defined objects or basic Developer Kit types.

To view this administrative console page, click Resources > Object pool managers.

To use an object pool, the product administrator must define an object pool manager using the

administrative console. Multiple object pool managers can be created in an Application Server cell.

Name:

1986 Administering applications and their environment

Specifies the name by which the object pool manager is known for administrative purposes.

 Data type String

Range 1 through 30 ASCII characters

JNDI name:

Specifies the Java Naming and Directory Interface (JNDI) name for the object pool manager.

 Data type String

Scope:

Specifies the scope of the configured resource. This value indicates the location for the configuration file.

Description:

Specifies the description of the object pool manager.

 Data type String

Category:

Specifies the category name used to classify or group this object pool manager.

 Data type String

Object pool managers settings:

An object pool manages a pool of arbitrary objects and helps applications avoid creating new Java objects

repeatedly. Most objects can be created once, used and then reused. An object pool supports the pooling

of objects waiting to be reused. These object pools are not meant to be used for pooling Java Database

Connectivity connections or Java Message Service (JMS) connections and sessions. WebSphere

Application Server provides specialized mechanisms for dealing with those types of objects. These object

pools are intended for pooling application-defined objects or basic Developer Kit types.

 To view this administrative console page, click Resources > Object pool managers >

objectpoolmanager_name

To use an object pool, the product administrator must define an object pool manager using the

administrative console. Multiple object pool managers can be created in an Application Server cell.

Scope:

Specifies the scope of the configured resource. This value indicates the location for the configuration file.

Name:

The name by which the object pool manager is known for administrative purposes.

 Data type String

Range 1 through 30 ASCII characters

JNDI Name:

Chapter 20. Learn about WebSphere programming extensions 1987

The Java Naming and Directory Interface (JNDI) name for the object pool manager.

 Data type String

Description:

A description of the object pool manager.

 Data type String

Category:

A category name used to classify or to group this object pool manager.

 Data type String

Custom object pool collection:

An object pool manages a pool of arbitrary objects and helps applications avoid creating new Java objects

repeatedly. Most objects can be created once, used and then reused. An object pool supports the pooling

of objects waiting to be reused. These object pools are not meant to be used for pooling Java Database

Connectivity connections or Java Message Service (JMS) connections and sessions. WebSphere

Application Server provides specialized mechanisms for dealing with those types of objects. These object

pools are intended for pooling application-defined objects or basic Developer Kit types.

 To view this administrative console page, click Resources > Object pool managers >

objectpoolmanager_name > Custom object pools.

Use custom object pools to insert additional logic around the following mechanisms:

v Constructing an object pool (A list of properties can be set)

v Flushing the object pool

v Getting objects from the pool

v Returning objects from the pool

These features allow for actions such as, clearing the state of an object when returning it to the pool,

configuring the state of an object when retrieving it from the pool, or configuring generic pools and sending

instructions on how to behave using custom properties.

To use an object pool the product administrator must define an object pool manager using the

administrative console. You can create multiple object pool managers in an Application Server cell.

Pool class name:

Specifies the fully qualified class name of the objects that are stored in the custom object pool.

 Data type String

Pool implementation class name:

Specifies the fully qualified class name of the implementation class for the custom object pool.

 Data type String

1988 Administering applications and their environment

Custom object pool settings:

An object pool manages a pool of arbitrary objects and helps applications avoid creating new Java objects

repeatedly. Most objects can be created once, used and then reused. An object pool supports the pooling

of objects waiting to be reused. These object pools are not meant to be used for pooling Java Database

Connectivity connections or Java Message Service (JMS) connections and sessions. WebSphere

Application Server provides specialized mechanisms for dealing with those types of objects. These object

pools are intended for pooling application-defined objects or basic Developer Kit types.

 To view this administrative console page, click Resources > Object pool managers >

objectpoolmanager_name > Custom object pools > objectpool_name.

Use custom object pools to insert additional logic around the following mechanisms:

v Constructing an object pool (A list of properties can be set)

v Flushing the object pool

v Getting objects from the pool

v Returning objects from the pool

These features allow for actions such as, clearing the state of an object when returning it to the pool,

configuring the state of an object when retrieving it from the pool, or configuring generic pools and sending

instructions on how to behave using custom properties.

To use an object pool, the product administrator must define an object pool manager using the

administrative console. Multiple object pool managers can be created in an Application Server cell.

Pool Class Name:

The fully qualified class name of the objects that are stored in the object pool.

 Data type String

Pool Impl Class Name:

The fully qualified class name of the CustomObjectPool implementation class for this object pool.

 Data type String

Object pool service settings

Use this page to enable or disable the object pool service, which manages object pool resources used by

the server.

To view this administrative console page, click Servers > Application Servers > server_name > Container

services > Object Pool Service.

Enable service at server startup:

Specifies whether the server attempts to start the object pool service.

 Default Cleared

Chapter 20. Learn about WebSphere programming extensions 1989

Range Selected

When the application server starts, it attempts to

start the object pool service automatically.

Cleared

The server does not try to start the object pool

service. If object pool resources are used on this

server, then the system administrator must start

the object pool service manually or select this

property, and then restart the server.

Object pools: Resources for learning

This topic provides links to find relevant supplemental information about object pools.

Use the following links to find relevant supplemental information about object pools. The information

resides on IBM and non-IBM Internet sites, whose sponsors control the technical accuracy of the

information.

These links are provided for convenience. Often, the information is not specific to the IBM WebSphere

Application Server product, but is useful all or in part for understanding the product. When possible, links

are provided to technical papers and Redbooks that supplement the broad coverage of the release

documentation with in-depth examinations of particular product areas.

Furthermore, these links provide guidance on using object pools. Since object pooling is a general topic

and the WebSphere Application Server product implementation is only one way to use it, you must

understand when object pooling is necessary. These articles help you make that decision.

Programming model and decisions

v Build your own ObjectPool in Java to boost application speed

v Improve the robustness and performance of your ObjectPool

v Recycle broken objects in resource pools

MBeans for object pool managers and object pools

Legacy MBean names for object pool managers and object pools are deprecated. The legacy names are

based on the object pool manager name (which is not required to be unique) rather than the object pool

manager JNDI name. For object pools, the legacy name is also lacking any identifier of the version of the

pooled class. Additionally, object pool Performance Monitoring Instrumentation (PMI) statistics are

aggregated for object pools with the same legacy object pool MBean name.

For example, if the object pool manager and pooled class are as follows:

object pool manager name: My ObjectPool

object pool manager JNDI name: op/MyObjectPool

pooled class name: java.util.ArrayList

hash code of java.util.ArrayList.class: 1111eb3f (hexadecimal)

the legacy object pool manager MBean name will be:

ObjectPoolManager_My ObjectPool

and the legacy object pool MBean name will be:

ObjectPool_My ObjectPool_java.util.ArrayList

Instead of using the deprecated legacy MBean names, use the MBean names that are based on the JNDI

name of the object pool manager.

For the example above, the JNDI name-based object pool manager MBean name is:

1990 Administering applications and their environment

http://www.javaworld.com/jw-06-1998/jw-06-object-pool.html
http://www.javaworld.com/jw-08-1998/jw-08-object-pool.html
http://www.javaworld.com/javaworld/javatips/jw-javatip78.html

ObjectPoolManager_op/MyObjectPool

and the JNDI name-based object pool MBean name is:

ObjectPool_op/MyObjectPool_java.util.ArrayList.class@1111eb3f

Formats for MBean names

 Type Name format

Deprecated legacy object pool manager MBean name: ObjectPoolManager_[object pool manager name]

JNDI name-based object pool manager MBean name: ObjectPoolManager_[object pool manager JNDI name]

Deprecated legacy object pool MBean name: ObjectPool_[object pool manager name]_[pooled class

name]

JNDI name-based object pool MBean name: ObjectPool_[object pool manager JNDI name]_[pooled

class name].class@[hexadecimal representation of the

hash code of the pooled class’ java.lang.Class reference]

In all of the above formats, characters that are not valid for MBean names are replaced with the ’.’

character.

Scheduler

Using schedulers

Schedulers enable J2EE application tasks to run at a requested time. Schedulers also enable application

developers to create their own stateless session EJB components to receive event notifications during a

task life cycle, allowing the plugging-in of custom logging utilities or workflow applications.

You can schedule the following types of tasks:

v Invoke a session bean method

v Send a Java Message Service (JMS) message to a queue or topic

Stateless session EJB components are also used to provide generic calendaring. Developers can either

use the supplied calendar bean or create their own for their existing business calendars. For example, one

of your business processes might involve invoicing for services. With the scheduler’s use of stateless EJB

components, you can schedule when periodic email distributions are to be sent to your customers who

have received invoices. The scheduler service performs these tasks, repeating as necessary, according to

the metadata for that task.

A scheduler is the mechanism by which the timer service for Enterprise Java Beans 2.1 runs. You can

configure the EJB timer service to use many of the features that schedulers provide. See the timer service

for Enterprise Java Beans 2.1 documentation for more details.

Use the following table to determine which persistent timer service is best for you:

 Schedulers EJB timers

Run stateless session EJB components and sends JMS

messages

Run all EJB types except for stateful session beans

Persistent, transactional and highly available. Persistent, transactional and highly available.

Tasks guaranteed to run only once Timers guaranteed to run only once, if the timer EJB uses

a container-managed global transaction

Run repeating tasks using any calculation rules Run repeating tasks using a repeating interval defined in

milliseconds

Chapter 20. Learn about WebSphere programming extensions 1991

Uses a modified fixed-delay time calculation to determine

repeating intervals (next run time based on the start-time

of the previous task)

Uses a fixed-rate time calculation to determine repeating

intervals (time of the next task is based on the original

scheduled time).

Programmatic task monitoring capability with the use of

the NotificationSink stateless session EJB

No programmatic timer monitoring

Abort late or time-sensitive tasks from running Abort late or time-sensitive tasks from running (achieved

through manual detection within the

javax.ejb.TimedObject implementation).

Manage any task lifecycle (find, suspend, resume, cancel

and purge tasks programmatically and through Java

Management Extensions (JMX)).

Find and cancel its timers programmatically.

Administrators find and cancel timers using a

command-line utility.

Store a limited amount of text with the data, like a Name

(arbitrary data stored externally.)

Store arbitrary data with a timer

This task demonstrates how to manage, develop and interoperate with schedulers and subsequent tasks.

1. Manage the scheduler service. This article includes instructions for creating and configuring

schedulers, creating and configuring a database for schedulers and administering schedulers.

2. Develop and schedule tasks. This article includes instructions for developing various types of tasks,

receiving notifications from a task, submitting tasks to a scheduler, and managing tasks.

Note: Creating and manipulating scheduled tasks through the Scheduler API interface is only

supported from within the Enterprise Java Beans (EJB) container or Web container (JavaServer

Pages or servlets). Looking up and using a configured scheduler from a Java 2 Platform

Enterprise Edition (J2EE) application client container is not supported.

3. Interoperate with schedulers. This article explains how to manage scheduler in a clustered environment

with mixed WebSphere Application Server product versions and mixed platforms.

Scheduler daemon

A scheduler daemon is a background thread that searches for tasks to run in the database.

A scheduler daemon is started for each scheduler defined on each server. If Scheduler 1 is configured on

server1, then only one scheduler daemon runs on server1 unless it is cloned. If Scheduler 1 is defined at

the node scope level, then the scheduler will run on each server within that node.

The poll interval determines the frequency at which the persistent store is queried. By default, this value is

set to 30 seconds. When a task is found that is scheduled to run within the current poll interval, an

asynchronous beans alarm is set. The task then runs as close to this time as possible using an alarm

thread from the scheduler’s associated work manager. Thus, the number of alarm threads configured on

the work manager determines how many concurrent tasks are executed. No tasks are lost. If we reach this

limit, then new tasks are simply queued to be executed when an alarm thread becomes available. The

actual firing time is dictated by server load and availability of free threads in the alarm thread pool of the

associated work manager.

Scheduler daemons in a cluster

When multiple schedulers are configured to use the same tables (as is the case in a clustered

environment), any of the daemons can find a task and set the alarm in its Java virtual machine (JVM). The

task is executed in the virtual machine where the scheduler daemon first runs, until the daemon is stopped

and another daemon starts. If an application on server1 schedules a task to run and server2 was started

before server1, then the task runs on server2.

Example: Stopping and starting scheduler daemons using Java Management Extensions API:

Use the wsadmin scripting tool to invoke a Jacl script and stop and start a scheduler daemon.

1992 Administering applications and their environment

This example JACL script can be invoked using the wsadmin scripting tool. It will attempt to stop and start

a scheduler daemon.

Example JACL Script to restart a Scheduler Daemon

set schedJNDIName sched/MyScheduler

Find the WASScheduler MBean

regsub -all {/} $schedJNDIName "." schedJNDIName

set mbeanName Scheduler_$schedJNDIName

puts "Looking up Scheduler MBean $mbeanName"

set sched [$AdminControl queryNames WebSphere:*,type=WASScheduler,name=$mbeanName]

Invoke the stopDaemon operation.

puts "Stopping the daemon..."

$AdminControl invoke $sched stopDaemon

puts "The daemon has stopped."

Invoke the startDaemon operation.

puts "Starting the daemon..."

$AdminControl invoke $sched startDaemon 0

puts "The daemon has started."

Example: Dynamically changing scheduler daemon poll intervals using Java Management

Extensions API:

Use the wsadmin scripting tool to invoke a Jacl script and dynamically change scheduler daemon poll

intervals.

 To dynamically change scheduler daemon poll intervals, use the wsadmin scripting tool to invoke this

example JACL script. Invoking this example sets the poll interval of the scheduler daemon to 60 seconds.

Example JACL Script to set the Scheduler daemon’s poll interval

set schedJNDIName sched/MyScheduler

Find the WASScheduler MBean

regsub -all {/} $schedJNDIName "." schedJNDIName

set mbeanName Scheduler_$schedJNDIName

puts "Looking-up Scheduler MBean $mbeanName"

set sched [$AdminControl queryNames WebSphere:*,type=WASScheduler,name=$mbeanName]

Set the poll interval to 60 seconds (60000 ms)

$AdminControl setAttribute $sched pollInterval 60000

puts "Poll interval set."

Interoperating with schedulers

Schedulers support forward compatibility. Tasks created in previous versions of WebSphere Application

Server Enterprise Edition 5.0 or WebSphere Business Integration Server Foundation 5.1 continue to run in

WebSphere Application Server, Version 6.x schedulers. Tasks that you create using Version 6.x are not

compatible with product schedulers from Version 5.x. Version 5.x schedulers do not run any Version 6.x

tasks.

Schedulers and versions

All schedulers that are configured to use the same database and tables are considered a clustered

scheduler. To guarantee that your tasks run correctly, all servers in a scheduler cluster must be at the

same version. If the servers are at different versions, tasks created with a Version 6.x scheduler might not

run. If a mixed-Version environment is required for a short period of time, then all scheduler poll daemons

should be stopped on all Version 5.x servers to allow a Version 6.x server to run all tasks. This action

allows the Version 6.x schedulers to obtain leases and run tasks that have been created with a Version 6.x

scheduler.

Chapter 20. Learn about WebSphere programming extensions 1993

Running tasks created with schedulers prior to Version 5.0.2 is not supported. See the topic,

″Interoperating with the Scheduler service,″ in the WebSphere Application Server Enterprise Edition

Version 5.0.2 information center for details on how to migrate these tasks to a more recent version. See

the Information Center Library to access the Version 5.0.2 information center.

Scheduler calendars

The scheduler provides stateless session bean interfaces which allow creating common calendars which

can be used by the scheduler and any J2EE application.

The SchedulerCalendars.ear application is available and provides a default UserCalendar EJB

implementation which allows using the SIMPLE and CRON calendars. Although this application is not

required when using the scheduler, it is available to use from any J2EE application.

For details on how the SIMPLE and CRON calendars behave, see the API documentation for the

com.ibm.websphere.scheduler.UserCalendar interface.

Specifying a UserCalendar with the scheduler

A UserCalendar is specified using the setUserCalendar() method of the TaskInfo interface of the scheduler.

This interface allows you to select the JNDI name of the home interface of a UserCalendar bean. Because

some UserCalendar bean implementations might handle multiple types of calendars, the interface also

allows you to optionally select which type of calendar to use. A list of valid calendar types can be retrieved

by invoking the getCalendarNames() method of the UserCalendar interface.

If the setUserCalendar() method is not invoked, or if a value of null or empty-string is specified for the

home JNDI name parameter, then the default UserCalendar is used internally by the scheduler. When the

default UserCalendar is accessed internally, it is not necessary that the SchedulerCalendars.ear system

application be installed.

You might want to use the default UserCalendar directly in your other J2EE applications, apart from the

scheduler. In this case, you may use the UserCalendarHome.DEFAULT_CALENDAR_JNDI_NAME value

to look up the default UserCalendar from your applications. You may also supply this value to the

setUserCalendar() method of the TaskInfo interface. You will need to ensure the SchedulerCalendars.ear

system application was either automatically installed or that you have installed it manually.

Scheduler service settings

Use this page to enable or disable the scheduler service. The scheduler service manages scheduler

resources used by the server. The administrative console page used to configure the scheduler service is

not available for version 6 (and above) servers. It is only available for version 5.x servers.

To view this administrative console page, click Servers > Application Servers > server_name >

Scheduler Service.

Startup:

Specifies whether the server attempts to start the scheduler service.

 Default Selected

Range Selected

When the application server starts, it attempts to

start the scheduler service automatically.

Cleared

The server does not try to start the scheduler

service. If scheduler resources are to be used on

this server, the system administrator must start

the scheduler service manually or select this

property, then restart the server.

1994 Administering applications and their environment

http://www-306.ibm.com/software/webservers/appserv/infocenter.html

Managing schedulers

Schedulers are configured using the administrative console, configuration service or scripting and are

available to all servers on which a scheduler is visible.

You can create multiple schedulers within a single server, cluster, node or cell. Each configured scheduler

is an independent task scheduling engine that has a unique Java Naming and Directory Interface (JNDI)

name, persistent storage device and daemon.

1. Configure schedulers.

2. Create the database for schedulers.

Configuring schedulers

Before your application can make use of the scheduler service, you must configure a scheduler using the

administrative console, configuration service or scripting. Conceptually, a scheduler is similar to a data

source in that you must specify various configuration attributes, including a JNDI name where the instance

is bound. Once defined, an application using the Scheduler API or WASScheduler MBean can look up the

scheduler object and call various methods to manage tasks.

The scheduler service is always enabled. In previous versions of the product, the scheduler service could

be disabled using the administrative console or configuration service. Scheduler service configuration

objects are present in the configuration service, but the enabled attribute is ignored.

To achieve high availability, you can configure a duplicate scheduler on each server in a cluster, or create

a scheduler at the cluster scope. For example, each server that contains a scheduler with the JNDI name

sched/MyScheduler, with the same database configuration parameters (data source and table prefix)

behaves as a single clustered scheduler. Each server in the scheduler cluster has a running scheduler

instance, which increases the number of poll daemons and allows automatic failover. For more information

on creating clusters for high availability, see the article, ″WebSphere Enterprise Scheduler planning and

administration guide.″

Typically, create schedulers at the server or cluster scope. Scheduler poll daemons run in each server

within the configured scope, which means that if you create a scheduler at the node or cell scope, the

scheduler poll daemon can attempt to run tasks on any of the servers in the node or cell. If applications

are not mapped uniformly over each server in that scope, the scheduler might not run tasks correctly.

Since applications are mapped to servers and clusters, there is less chance for error and less competition

between daemons to run tasks.

Depending on your preferred method of configuration, select one of the following steps to configure

schedulers.

1. Configuring schedulers using the administrative console.

2. Configuring schedulers using Java Management Extensions API (JMX).

A scheduler is configured and ready to use.

Configuring scheduler default transaction isolation:

The scheduler uses read-committed transaction isolation, by default, when reading tasks using the get or

find APIs on the com.ibm.websphere.scheduler.Scheduler interface and WASScheduler MBean. The

default behavior for a scheduler can be changed to read-uncommitted, which allows the get and find

methods to return the current or next state of the task in the database. This topic describes how to change

the default behavior for the get and find methods.

Chapter 20. Learn about WebSphere programming extensions 1995

http://www-106.ibm.com/developerworks/websphere/techjournal/0404_johnson/0404_johnson.html
http://www-106.ibm.com/developerworks/websphere/techjournal/0404_johnson/0404_johnson.html

See the scheduler API documentation to view the

com.ibm.websphere.scheduler.TaskInfo.setTaskExecutionOptions() method, which details how to return the

next state of the task or the current state of the task.

Note: If the scheduler database does not support uncommitted reads, such as Oracle, this parameter has

no effect.

To change the default behavior for the get and find methods, complete the following steps:

1. From the administrative console, click Resources > Schedulers > scheduler_name.

2. Click Custom Properties.

3. Click New.

4. Add the following properties:

 Name defaultReadTransactionIso

Type java.lang.Integer

Value 1 (for read-uncommitted transaction isolation)

2 (for read-committed transaction isolation)

5. Click Apply.

6. Click OK.

7. Save the changes, and verify that you initiate a file synchronization before restarting the servers.

8. Restart the Application Server for the changes to take effect.

Configuring schedulers using the administrative console:

Schedulers can be created or configured using the administrative console.

1. Start the administrative console.

2. Select Resources > Schedulers.

3. Click New.

4. Specify configuration settings. Fields marked with an asterisk (*) are required. The settings are

described in detail in the topic ″Scheduler settings.″

5. Click OK or Apply to save the changes.

6. Save the changes to the configuration repository.

A scheduler is now configured and ready to use for newly installed applications. If the scheduler JNDI

name is not yet visible to your application, restarting the application or restarting application server will

allow the scheduler to be seen.

When schedulers are created for the first time, the poll daemon will not automatically start and must be

started manually and will only start automatically the next time the server is started. To start the poll

daemon manually, see the scheduler daemons topic.

Note: Changes to existing scheduler configurations will not take affect until after the application server is

restarted.

Schedulers collection:

Use this page to manage scheduler configurations. Schedulers are persistent and transactional timer

services that can run business logic. Each scheduler runs tasks independently and has a programming

interface accessible from J2EE applications using the Java Naming and Directory Interface (JNDI). You

can also manage schedulers using a Java Management Extensions (JMX) MBean. See the scheduler

documentation in the Information Center for details on how to configure and use schedulers.

1996 Administering applications and their environment

To view this administrative console page, click Resources > Schedulers.

Name:

Specifies the name of the data source where persistent tasks are stored.

 Data type String

JNDI name:

Specifies the JNDI name of the work manager, which is used to manage the number of tasks that can run

concurrently with the scheduler. The work manager also can limit the amount of J2EE context applied to

the task.

 The JNDI name specifies where this scheduler instance is bound in the name space. Clients can look this

name up directly, although the use of resource references is recommended.

 Data type String

Scope:

Specifies the scope of the configured resource. This value indicates the location for the configuration file.

Data source JNDI name:

Specifies the alias for the user name and password that are used to access the data source.

 Any data source available in the name space can be used with a scheduler. Multiple schedulers can share

a single data source while using different tables by specifying a table prefix.

 Data type String

Table prefix:

Specifies the string prefix to affix to the scheduler tables.

 Multiple independent schedulers can share the same database if each instance specifies a different prefix

string.

 Data type String

Poll interval:

Specifies the interval, in seconds, that a scheduler polls the database. The default value is appropriate for

most applications.

 Each poll operation can be consuming. If the interval is extremely small and there are many scheduled

tasks, polling can consume a large portion of system resources.

 Data type Integer

Units Seconds

Default 30

Range Any positive long integer

Chapter 20. Learn about WebSphere programming extensions 1997

Work manager JNDI name:

Specifies the JNDI name of the work manager, which is used to manage the number of tasks that can run

concurrently with the scheduler. The work manager also can limit the amount of J2EE context applied to

the task.

 The work manager is a server object that serves as a logical thread pool for the scheduler. Each repeating

task that is created using this scheduler uses the Number of alarm threads specified in the work

manager, which affects the number of tasks that can run concurrently. Use the work manager Service

Names property to limit the amount of context information that is propagated to the task when it runs.

When a task runs, the task is run in the work manager associated with the scheduler instance. You can

control the number of actively running tasks at a given time by configuring schedulers with a specific work

manager. The number of tasks that can run concurrently is governed by the Number of alarm threads

parameter on the work manager.

Note: When you configure a scheduler resource on a Version 5.x node or server, the scheduler must

reference a work manager in the same scope. For example, a scheduler instance configured at the

server1 scope must use a work manager also configured at the server1 scope.

Verify tables:

Specifies to validate that scheduler data sources, table prefixes, security authentication information and

tables are configured correctly.

 You can use this verification method in production and development environments without altering

database properties.

Create tables:

Specifies to create the necessary tables and indices required for a scheduler to operate.

 This method of creating scheduler tables is designed for simple topologies and development environments.

Use the supplied scheduler data definition language files for advanced or production environments and for

databases that do not support this feature. .

Drop tables:

Specifies the removal of tables and indices required for schedulers to operate.

 This method of removing scheduler tables and indices is recommended for development environments and

does not delete previously scheduled tasks.

Schedulers settings:

Use this page to modify scheduler settings.

 To view this administrative console page, click Resources > Schedulers > scheduler_name.

Scope:

Specifies the scope of the configured resource. This value indicates the location for the configuration file.

Name:

Specifies the name by which this scheduler is known for administrative purposes.

1998 Administering applications and their environment

Data type String

JNDI name:

Specifies the name of the data source where persistent tasks are stored.

 The JNDI name specifies where this scheduler instance is bound in the namespace. Clients can look this

name up directly, although the use of resource references is recommended.

 Data type String

Description:

Specifies the description of this scheduler for administrative purposes.

 Data type String

Category:

Specifies a string that can be used to classify or group this scheduler.

 Data type String

Data source JNDI name:

Specifies the name of the data source where persistent tasks are stored.

 Any data source available in the name space can be used with a scheduler. Multiple schedulers can share

a single data source while using different tables by specifying a table prefix.

 Data type String

Data source alias:

Specifies the alias for the user name and password that are used to access the data source.

 Data type String

Table prefix:

Specifies the string prefix to affix to the scheduler tables. Multiple independent schedulers can share the

same database if each scheduler specifies a different prefix string.

 Multiple independent schedulers can share the same database if each instance specifies a different prefix

string.

Note: Use a table prefix with all capital characters. If lowercase characters are used for the table prefix,

they are automatically capitalized at run time.

 Data type String

Poll interval:

Chapter 20. Learn about WebSphere programming extensions 1999

Specifies the interval, in seconds, that a scheduler polls the database. The default value is appropriate for

most applications.

 Each poll operation can be consuming. If the interval is extremely small and there are many scheduled

tasks, polling can consume a large portion of system resources.

 Data type Integer

Units Seconds

Default 30

Range Any positive long integer

Work manager JNDI name:

Specifies the JNDI name of the work manager, which is used to manage the number of tasks that can run

concurrently with the scheduler. The work manager also can limit the amount of J2EE context applied to

the task.

 The work manager is a server object that serves as a logical thread pool for the scheduler. Each repeating

task that is created using this scheduler uses the Number of alarm threads specified in the work

manager, which affects the number of tasks that can run concurrently. Use the work manager Service

Names property to limit the amount of context information that is propagated to the task when it runs.

When a task runs, the task is run in the work manager associated with the scheduler instance. You can

control the number of actively running tasks at a given time by configuring schedulers with a specific work

manager. The number of tasks that can run concurrently is governed by the Number of alarm threads

parameter on the work manager.

Note: When you configure a scheduler resource on a Version 5.x node or server, the scheduler must

reference a work manager in the same scope. For example, a scheduler instance configured at the

server1 scope must use a work manager also configured at the server1 scope.

Use administration roles:

Specifies that when this option and administrative security are both enabled, the user administration roles

are enforced when the scheduler JMX commands or APIs are used to create and modify tasks. If this

option is not enabled, all the users can create and modify tasks.

 Schedulers require several user roles to plan for, develop, administer and operate the scheduler service:

administrator, developer and operator.

 Data type check box

Default unchecked

Range v Operator, Administrator --Calls any of the scheduler

MBean or API methods and runs any of the scheduler

administrative console functions.

v Monitor, Configurator --Calls the scheduler MBean or

API methods, but cannot create tasks or modify the

state of any tasks. Only read-only methods and

properties are accepted.

Configuring schedulers using Java Management Extensions:

Schedulers can be created or configured using the Java Management Extensions (JMX) API using one of

several scripting languages or Java.

2000 Administering applications and their environment

To run with Java, two JAR files need to be present in the program class path: wsexception.jar and

wasjmx.jar.

Complete these steps when using Java programs that utilize JMX.

1. Look up the host and get an administration client handle.

2. Get a configuration service handle.

3. Update the resource-pme.xml file using the configuration service, as needed.

a. Find the SchedulerProvider for a given scope.

b. Create a SchedulerConfiguration and specify all required parameters identifying the

SchedulerProvider as the parent object.

4. Reload the resource-pme.xml file to bind the newly created scheduler into the JNDI namespace.

Perform this step if you want to use the newly created scheduler immediately, without restarting the

application server.

a. Locate the DataSourceConfigHelper MBean using the name.

b. Invoke the reload() operation.

A scheduler is now configured and ready to use for newly installed applications. If the scheduler JNDI

name is not yet visible to your application, reinstalling the application or restarting the application server

will allow the scheduler to be seen.

When schedulers are created for the first time, the poll daemon does not automatically start, and you must

start it manually. When you restart the server, the poll daemon starts automatically. To start the poll

daemon manually, see scheduler daemons.

Note: Changes to existing scheduler configurations will not take affect until after the application server is

restarted.

Example: Using scripting to create and configure schedulers:

Use the wsadmin scripting tool to invoke a Jacl script and create a SchedulerConfiguration resource.

 The following Jacl example script can be invoked using the wsadmin scripting tool, which creates a

SchedulerConfiguration resource using the DefaultWorkManager at the server scope.

Example JACL Script to create a SchedulerConfiguration

at the server scope

Change the cell, node and server to match your environment

set cellName MyCell

set nodeName MyNode

set serverName server1

We can just grab the first provider, since there is only one at the

server scope level.

set schedProv [$AdminConfig getid /Cell:$cellName/Node:$nodeName/Server:$serverName/

 SchedulerProvider:SchedulerProvider]

if {$schedProv == ""} {

 puts "Unable to find SchedulerProvider for server: $serverName. Aborting."

 exit

}

puts "Found a SchedulerProvider"

Create a WorkManager for our scheduler at the server scope.

We could use any of the other scopes as long as it is at the same

or higher than the Scheduler’s scope.

set wrkMgrProv [$AdminConfig getid /Cell:$cellName/Node:$nodeName/Server:$serverName/

Chapter 20. Learn about WebSphere programming extensions 2001

WorkManagerProvider:WorkManagerProvider/]

if {$wrkMgrProv == ""} {

 puts "Unable to find the WorkManagerProvider for server: $serverName. Aborting."

 exit

}

puts "Found a WorkManagerProvider"

set wmName "MyScheduler WorkManager"

set wmJNDIName "wm/MySchedWorkManager"

set wmIsGrowable false

set wmMaxThreads 1

set wmMinThreads 0

set wmNumAlarmThreads 10

set wmServiceNames "com.ibm.ws.i18n;security;UserWorkArea;zos.wlm"

set wmThreadPriority 5

Setup our DefaultWorkManager attributes

set createAttrs [subst { \

 {isGrowable $wmIsGrowable} \

 {jndiName $wmJNDIName} \

 {maxThreads $wmMaxThreads} \

 {minThreads $wmMinThreads} \

 {name "$wmName"} \

 {numAlarmThreads $wmNumAlarmThreads} \

 {serviceNames "$wmServiceNames"} \

 {threadPriority $wmThreadPriority} }]

puts "Creating a WorkManager"

$AdminConfig create WorkManagerInfo $wrkMgrProv $createAttrs

puts "WorkManager Created"

Setup our SchedulerConfiguration attributes

set schedulerName MyScheduler

set schedulerJNDIName sched/MyScheduler

set datasourceJNDIName jdbc/MySchedulerDatasource

set datasourceAlias MySchedulerAlias

set pollInterval 30

set tablePrefix MSCD

set useAdminRoles true

set createAttrs [subst { \

 {name $schedulerName} \

 {datasourceJNDIName $datasourceJNDIName} \

 {datasourceAlias $datasourceAlias} \

 {jndiName $schedulerJNDIName} \

 {pollInterval $pollInterval} \

 {tablePrefix $tablePrefix} \

 {useAdminRoles true} \

 {workManagerInfoJNDIName $wmJNDIName}}]

puts "Creating a Scheduler"

$AdminConfig create SchedulerConfiguration $schedProv $createAttrs

puts "Scheduler created"

Save the configuration

$AdminConfig save

 Related tasks

 “Configuring schedulers using Java Management Extensions” on page 2000
Schedulers can be created or configured using the Java Management Extensions (JMX) API using one

of several scripting languages or Java.

 Using scripting (wsadmin)
The WebSphere administrative (wsadmin) scripting program is a powerful, non-graphical command

interpreter environment enabling you to run administrative operations in a scripting language.

Creating a scheduler resource reference:

2002 Administering applications and their environment

When you define schedulers in the server configuration, the object instance is bound into the global name

space under the configured Java Naming Directory Interface (JNDI) name. You can use a resource

reference to avoid manually coding this JNDI name into your application. Using a resource reference

allows administrators to map applications to the appropriate schedulers.

 You can alternatively create a scheduler resource reference by editing the XML directly. A Scheduler

resource reference is a Java 2 Platform Enterprise Edition (J2EE) compliant resource that uses the class

com.ibm.websphere.scheduler.Scheduler as the object type. For information regarding the XML file format,

see the J2EE Specification.

 1. Start an assembly tool, such as Application Server Toolkit or Rational Application Developer.

 2. Open the J2EE perspective.

 3. Open your EJB or Web module with the Deployment Descriptor Editor.

 4. Click the Reference tab at the bottom of the window.

 5. Click Add.

 6. Select the Resource reference option.

 7. Click Next.

 8. Complete the Reference fields as shown in the following properties:

Name The reference name, for example, sched/MyScheduler. According to this example, the name

you choose has a local reference name of java:comp/env/sched/MyScheduler.

Type Select com.ibm.websphere.scheduler.Scheduler, and click OK.

Authentication

Select container.

Description

Any relevant description.

 9. Click finish.

10. (Optional) Enter a global JNDI name of a configured scheduler in the JNDI name field in the

Bindings section of the Reference window. You can specify or override this value when you install

the application.

11. Save your changes to the deployment descriptor.

A scheduler resource reference is now available to use within your application

Creating the database for schedulers

Each scheduler requires a database in which to store its persistent information. Schedulers use this

database for storing tasks and then running them. The choice of database and location should be

determined by the application developer and server administrator.

Scheduler performance is ultimately limited by database performance. If you need more tasks per second,

you can run the scheduler daemons on larger systems, use clusters for the session beans used by the

tasks or partition the tasks by using multiple schedulers. Eventually, however, the scheduler database

becomes saturated, and a larger or better-tuned database system is needed. For detailed information on

scheduler topologies see the technical paper, ″WebSphere Enterprise Scheduler planning and

administration guide″.

Multiple schedulers can share a database when you specify unique table prefix values in each scheduler

configuration. This sharing can lower the cost of administering scheduler databases.

Complete the following steps to create scheduler databases.

1. Create a database. To create the database for a scheduler or to determine if an existing database is

adequate for a scheduler, review the topic, ″Create scheduler databases″.

2. Create the scheduler tables. There are three methods for creating the tables for a scheduler:

Chapter 20. Learn about WebSphere programming extensions 2003

http://www-106.ibm.com/developerworks/websphere/techjournal/0404_johnson/0404_johnson.html
http://www-106.ibm.com/developerworks/websphere/techjournal/0404_johnson/0404_johnson.html

a. Create tables for schedulers using the administrative console. Use the administrative console to

add, delete and verify database tables through your Web browser. This method is ideal for

developers and simple scheduler topologies.

b. Create tables for schedulers using JMX or scripting.

Use JMX to add, delete and verify database tables programmatically with Java or scripting. This

method is ideal for automating scheduler configurations for simple scheduler topologies.

c. Create tables for schedulers using DDL files. Manually edit the DDL files through your favorite text

editor, and verify that mapping between the table names and the scheduler resources and data

sources is correct.

Creating scheduler databases:

The scheduler uses the scheduler database for storing and running tasks. To create a scheduler database,

your database system must be installed and available.

 The performance of schedulers is ultimately limited by the performance of the database. If you need more

tasks per second, you can run the scheduler daemons on larger systems or you can use clusters for the

session beans used by the tasks. Eventually, however, the task database becomes saturated and you then

need a larger or better-tuned database system.

Multiple applications can share a scheduler database. This sharing can lower the cost of administering

scheduler databases.

The scheduler requires a database, a JDBC provider, and a data source.

1. Create the database according to the description for your database system:

v Creating a Cloudscape database for schedulers.

v Creating a DB2 database for schedulers.

v Creating a DB2 database for z/OS for schedulers.

v Creating a DB2 for iSeries database for schedulers.

v Creating an Informix database for schedulers.

v Creating a Microsoft SQL Server database for schedulers.

v Creating an Oracle database for schedulers.

v Creating a Sybase database for schedulers.

2. If the database is not on the same machine as your IBM WebSphere Application Server, verify that you

can access the database from your application server machine.

3. Configure your JDBC provider and data source. For details, see the topic Creating and configuring a

JDBC provider and data source. The JDBC driver can be either one-phase or two-phase commit

depending on whether other transactions take place using other data sources, for example, while using

the scheduler. The data source can represent multiple versions of the product.

The database is created and ready for you to create scheduler tables.

Creating Cloudscape databases for schedulers:

This topic describes how to create Cloudscape databases for schedulers using data definition language

(DDL) or structured query language (SQL) files.

 To create Cloudscape databases for schedulers, using data definition language (DDL) or structured query

language (SQL) files, use these steps.

1. Open a command-line window.

2. Verify that you have administrator rights for the database system.

2004 Administering applications and their environment

3. Verify that the database supports Unicode (UTF-8). Otherwise, the database does not store all

characters that can be handled in Java code, which results in code page conversion problems when a

client uses an incompatible code page.

4. Use the ij utility supplied with the Cloudscape system to create the database. To use ij to create a

database called scheddb which is located in /opt, for example, you would do the following:

ij.sh

ij>connect ’/opt/scheddb;create=true’;

ij>quit;

The embedded version of Cloudscape supports only one local connection. If the Application Server

product is running and accessing a Cloudscape database, then any attempts to open a second

connection to the database from the command line are rejected.

Note: Add a semi-colon (;) at the end of each command. Otherwise, ij does not execute the

command.

5. Exit the ij utility by issuing the quit command: quit;

The Cloudscape database for the scheduler service exists.

Creating DB2 databases for schedulers:

This topic describes how to create DB2 databases for scheduler, using data definition language (DDL) or

structured query language (SQL) files.

 To create DB2 databases for scheduler, using data definition language (DDL) or structured query language

(SQL) files, use these steps.

1. Open a DB2 command-line window.

2. Make sure that you have administrator rights for the database system.

3. Verify that the database supports Unicode (UTF-8). Otherwise, it cannot store all the characters that

can be handled in Java code, which might result in code page conversion problems, when a client

uses an incompatible code page.

To avoid deadlocks, be sure that the DB2 isolation level is set to ″read stability″. If necessary, enter the

command

db2set DB2_RR_TO_RS=YES

then restart the DB2 instance to activate the change.

4. In the DB2 command line processor, enter this command to create the database with an example

name, scheddb:

db2 CREATE DATABASE scheddb USING CODESET UTF-8 TERRITORY en-us

A DB2 database named scheddb has been created.

The DB2 database for the scheduler exists.

Creating DB2 for z/OS databases for schedulers:

This topic describes how to create DB2 for z/OS databases for schedulers using data definition language

(DDL) or structured query language (SQL) files.

 To create DB2 for z/OS databases for schedulers, using data definition language (DDL) or structured query

language (SQL) files, use these steps.

1. You must have a DB2 subsystem installed in the z/OS platform on a UNIX or Windows machine.

2. On the z/OS machine that hosts the database:

Chapter 20. Learn about WebSphere programming extensions 2005

a. Log on to the native z/OS environment.

b. If multiple DB2 systems are installed, then decide which subsystem you want to use.

c. Create a storage group and note the name.

d. Decide which user ID is used to connect to the database from the remote machine running the

product. Normally, for security reasons, this user ID is not the one you used to create the

database.

e. Grant the user ID the rights to access the database and storage group. The user ID must also

have permission to create new tables for the database.

3. On the server machine:

a. Change to the Scheduler subdirectory in the application server installation root directory.

b. Edit the createTablespaceDB2ZOS.ddl script. Replace @STG@ with the storage group name. Replace

@DBNAME@ with the database name (not the subsystem name), and replace

@SCHED_TABLESPACE@ with the name of a valid tablespace.

c. Run your customized version of createTablespaceDB2ZOS.ddl, as described in the header of the

script.

d. To avoid deadlocks, verify that the DB2_RR_TO_RS DB2 flag is set to YES. If necessary, restart

the DB2 instance to activate the change.

The DB2 for z/OS database for the scheduler service is created.

Creating DB2 for iSeries databases for schedulers:

This topic describes how to create DB2 for iSeries databases for scheduler, using data definition language

(DDL) or structured query language (SQL) files.

 To create DB2 for iSeries databases for scheduler, using data definition language (DDL) or structured

query language (SQL) files, use these steps.

1. Run the following command to start an interactive SQL session:

STRSQL

2. In interactive SQL, enter this command to create the collection with an example name, scheddb:

CREATE COLLECTION scheddb

3. Exit the interactive SQL session.

4. Change the owner for the new collection to QEJBSVR by executing the following command:

CHGOBJOWN OBJ(scheddb) OBJTYPE(*LIB) NEWOWN(QEJBSVR)

where scheddb is the name of the collection you created in the previous step.

The DB2 for iSeries database for the scheduler exists.

Creating Informix databases for schedulers:

This topic describes how to create Informix databases for schedulers, using data definition language (DDL)

or structured query language (SQL) files.

 To create Informix databases for schedulers, using data definition language (DDL) or structured query

language (SQL) files, use these steps.

1. Open a command-line window.

2. Verify that you have administrator rights for the database system.

3. Verify that the database supports Unicode (UTF-8). Otherwise, the database does not store all

characters that can be handled in the Java code, which results in code page conversion problems,

when a client uses an incompatible code page.

2006 Administering applications and their environment

4. If you want to create a new database named scheddb, for example, enter the command:

dbaccess CREATE DATABASE scheddb with log

The Informix database for scheduler exists.

Creating Microsoft SQL Server databases for schedulers:

This topic describes how to create Microsoft SQL Server databases for schedulers, using data definition

language (DDL) or structured query language (SQL) files.

 To create Microsoft SQL Server databases for schedulers, using data definition language (DDL) or

structured query language (SQL) files, use these steps.

1. Make sure that you are using a user ID that has administrator rights for the database system.

2. In the Enterprise Manager, expand a server group, then expand a server. A Microsoft SQL Server

database named scheddb is created.

3. Right-click Databases, then click New Database.

4. Verify that the database supports Unicode (UTF-8). Otherwise, the database does not store all

characters that can be handled in the Java code, which results in code page conversion problems,

when a client uses an incompatible codepage.

5. Type the name scheddb.

6. Modify any default values, and save your changes. The Microsoft SQL Server database, scheddb, is

created.

The Microsoft SQL Server database for scheduler exists.

Creating Oracle databases for schedulers:

This topic describes how to create Oracle databases for schedulers, using data definition language (DDL)

or structured query language (SQL) files.

 To create Oracle databases for schedulers, using data definition language (DDL) or structured query

language (SQL) files, use these steps.

1. Open a command-line window.

2. Make sure that you have administrator rights for the database system.

3. Verify that the database supports Unicode (UTF-8). Otherwise, the database does not store all

characters that can be handled in the Java code, which results in code page conversion problems,

when a client uses an incompatible code page.

4. Use the Database Configuration Assistant to create the database, scheddb, for example. Verify that you

select the JServer option for the database. Use a Unicode code page when creating the database.

The text data you pass to the APIs must be compatible with the selected code page.

The Oracle database for scheduler exists.

Creating Sybase databases for schedulers:

This topic describes how to create Sybase databases for schedulers, using data definition language (DDL)

or structured query language (SQL) files.

 This topic describes how to create Sybase databases for schedulers, using data definition language (DDL)

or structured query language (SQL) files, use these steps.

1. Open a command-line window.

2. Make sure that you have administrator rights for the database system.

3. Make sure that you have the DTM option for Sybase ASE installed.

Chapter 20. Learn about WebSphere programming extensions 2007

4. Verify that the database supports Unicode (UTF-8). Otherwise, the database does not store all

characters that can be handled in the Java code, which results in code page conversion problems,

when a client uses an incompatible code page.

5. Use the Sybase isql utility to create the database, scheddb, for example. See your Sybase product

documentation for details.

The Sybase database for the scheduler exists.

Scheduler table management functions:

The administration console and the WASSchedulerConfiguration MBeans provide simplified methods for

creating scheduler tables and schema, verifying that the scheduler tables and schema are setup properly

and are accessible and removing scheduler tables and schema.

 When connecting to a node agent, the operation attempts to verify, create, or drop the tables based on the

most granular scope where the scheduler and associated data source is located.

Note: There are limitations when running the table management functions relating to data source access.

See the Verifying a connection topic for details on these limitations. If a connection cannot be

verified successfully, the scheduler table management functions will fail.

Verify tables

Validates that scheduler data sources, table prefixes, security authentication information and tables are

configured correctly. You can use this verification method in production and development environments

without altering database properties.

Create tables

Creates the necessary tables and indices required for schedulers to operate. This method of creating

scheduler tables is designed for simple topologies and development environments. Use the supplied

scheduler data definition language files for advanced or production environments and for databases that

do not support this feature. For details, see the topic Creating scheduler tables using the administrative

console.

Drop tables

Specifies the removal of tables and indices required for schedulers to operate. This method of removing

scheduler tables and indices is recommended for development environments. When you drop tables, the

action removes all previously scheduled tasks, and the scheduler no longer operates successfully, until the

tables are recreated.

Scheduler table definition:

Schedulers require database tables and indices with a table prefix. This page provides reference

information about the tables.

 Each scheduler requires several database tables and indices to operate. Each table name and index

described in this topic requires a table prefix. For example, if the scheduler is configured with a table prefix

value, SCHED_, the table with the name, TASK, would be named SCHED_TASK. See Scheduler settings

for details on the table prefix.

To create the tables, see Creating the database for schedulers. To see the exact schema definition such

as field sizes and types, see Creating scheduler tables using DDL files. This section references the

location where the DDL or SQL statements are stored. These statements create the table schema.

2008 Administering applications and their environment

Note: The information in this topic is provided for problem determination. Do not alter the scheduler table

names, field names or index names. The data content format might change without notice. Be

aware of this factor when accessing the tables directly. Modifying data in the tables without using

the Scheduler API might cause failures.

TASK

The TASK table contains the tasks that have been scheduled, but not yet purged. The primary key for this

table is the TASKID which equates to the getTaskID() method on the

com.ibm.websphere.scheduler.TaskStatus interface.

Since there is one row in this table for each task, it is important that the database and table support

row-locking. Using page, or table locks, inhibits the scheduler from running tasks concurrently.

 Field name Purpose and notes

TASKID Contains all of the tasks that have been scheduled, but not

yet purged. The primary key for this table is TASKID which

equates to the getTaskID() method on the

com.ibm.websphere.scheduler.TaskStatus interface.

Since there is one row in this table for each task, it is

important that the database and table support row-locking.

Using page, or table locks, will inhibit the scheduler from

running tasks concurrently.

VERSION Internal version ID of this row format.

ROW_VERSION The version of this row. Used for optimistic locking.

TASKTYPE The type of task: 1=BeanTaskInfo, 2=MessageTaskInfo

TASKSUSPENDED This value indicates if the task is suspended or if it is

running. The task is suspended if the value BITWISE AND

1 equals 1. The task is running if the value BITWISE AND

2 equals 2.

CANCELLED The value, 1, if the task is cancelled.

NEXTFIRETIME The date in milliseconds using java.util.Date.getTime()

when the task is scheduled to run next.

STARTBYINTERVAL The start-by-interval of the task.

STARTBYTIME Reserved.

VALIDFROMTIME The task start time.

VALIDTOTIME Reserved.

REPEATINTERVAL The task repeat interval.

MAXREPEATS The number of times to run the task.

REPEATSLEFT The number of times the task has yet to run.

TASKINFO Internal binary data.

NAME The task name.

AUTOPURGE The value, 1, if the task is to automatically purge upon

completion.

FAILUREACTION Reserved.

MAXATTEMPTS Reserved.

QOS Reserved.

PARTITIONID Reserved.

OWNERTOKEN The task owner.

Chapter 20. Learn about WebSphere programming extensions 2009

CREATETIME The time in milliseconds using java.util.Date.getTime()

when the task was created.

The TASK table also has the following indices that are required to allow the scheduler to run and access

tasks concurrently:

v TASK_IDX1 – Used to access individual tasks using the Scheduler API.

v TASK_IDX2 – Used by the poll daemon to load expiring tasks.

TREG

The TREG table is used to store scheduler information that is shared between redundant schedulers. This

table is not highly used.

 Field name Purpose and notes

REGKEY The registry key. This is the primary key of the table.

REGVALUE The registry value.

LMGR

The LMGR table is used to track the leases that redundant schedulers use. This table is not highly used.

 Field name Purpose and notes

LEASENAME The name of the lease. This is the scheduler JNDI name

and is the primary key.

LEASEOWNER The owner of the lease. The format is Cell/Node/Server.

LEASE_EXPIRE_TIME The time in milliseconds using java.util.Date.getTime()

when the lease for the scheduler expires.

DISABLED Reserved.

LMPR

The LMPR table is used to store arbitrary properties for the lease. This table is not highly utilized.

 Field name Purpose and notes

LEASENAME The name of the lease. See the LMGR table.

NAME The name of the property.

VALUE The value of the property.

The LMPR table also has the following index:

v LMPR_IDX1 – Used to retrieve properties for a given lease.

Creating scheduler tables using the administrative console:

To create scheduler tables using the administrative console, the scheduler requires a database, a Java

DataBase Connectivity (JDBC) provider and a data source.

 Note: Limitations for Oracle XA databases

2010 Administering applications and their environment

Oracle XA prohibits required schema operations in a global transaction environment. Local

transactions are not supported. If you have schedulers that use an Oracle XA data source, either

temporarily change the scheduler configuration to use a non-XA Oracle data source, or create the

tables manually using the supplied DDL files. If you use the administrative console to create or drop

scheduler tables for a scheduler configured to use an Oracle XA data source, then you receive a

SchedulerDataStoreException error message, and the operation fails.

Note: Limitations for DB2 z/OS databases

Creating and dropping tables using the administrative console is not supported for DB2 z/OS databases. A

database administrator is typically involved with defining and managing databases on DB2 z/OS systems.

The administration interface is targeted for the non-database administrator or developer who does not

want to know the specifics of setting up the scheduler database. The scheduler has DDL files available for

the database administrator to create the required tables.

1. Verify that the database to be used for this scheduler is available and accessible by the application

server. Review the Creating scheduler databases and tables topic for instructions on creating a

database. The remaining steps describe how to create scheduler tables in an existing database.

2. Start the administrative console.

3. Create a JDBC data source that refers to the scheduler database.

4. Test the data source connection.

5. Create a scheduler. This configuration object contains the desired table prefix and the JNDI name of

the JDBC data source. Verify that you save the new Scheduler to the configuration repository before

you proceed to the next step.

6. Click Resources > Schedulers to view all defined schedulers.

7. Select one or more schedulers.

8. Click Create Tables to create the tables for the selected schedulers in their associated database. The

tables and indices you created reflect the table prefixes and data sources specified in each scheduler

configuration.

9. Restart the server or start the poll daemon to run scheduler tasks.

Scheduler tables and schema are created.

Creating scheduler tables using scripting and Java Management Extensions:

Creating scheduler tables using scripting and Java Management Extensions requires a database, a JDBC

provider, and a data source.

 Note: Limitations for Oracle XA databases

Oracle XA prohibits required schema operations in a global transaction environment. Local

transactions are not supported. If you have schedulers that use an Oracle XA data source, either

temporarily change the scheduler configuration to use a non-XA Oracle data source, or create the

tables manually using the supplied DDL files. If you use the administrative console to create or drop

scheduler tables for a scheduler configured to use an Oracle XA data source, then you receive a

SchedulerDataStoreException error message, and the operation fails.

Note: Limitations for DB2 z/OS databases

Creating and dropping tables using the administrative console is not supported for DB2 z/OS databases. A

database administrator is typically involved with defining and managing databases on DB2 z/OS systems.

The administration interface is targeted for the non-database administrator or developer who does not

want to know the specifics of setting up the scheduler database. The scheduler has DDL files available for

the database administrator to create the required tables.

Chapter 20. Learn about WebSphere programming extensions 2011

1. Verify that the database to be used for this Scheduler is available and accessible by the application

server. Review the Creating scheduler databases and tables topic for instructions on creating a

database. The remainder of these steps describe how to create scheduler tables in an existing

database.

2. Launch the wsadmin tool and connect to a deployment manager or application server. This process

requires an active server to be available and fails, if you are disconnected from the server.

3. Create a JDBC data source that refers to the scheduler database.

4. Test the data source connection.

5. Create a scheduler. This configuration object contains the desired table prefix and the JNDI name of

the JDBC data source. Verify that you save the new Scheduler to the configuration before you proceed

to the next step.

6. Run the createTables MBean operation.

a. Look up the SchedulerConfiguration object or use the object you created in a previous step.

b. Locate the WASSchedulerConfiguration MBean.

c. Run one of the createTables MBean operation on the WASSchedulerConfiguration object to

create the tables for the specified SchedulerConfiguration object in its associated database. The

tables and indices that you created reflect the table prefix and data source specified in the

scheduler configuration.

7. Restart the server or start the poll daemon to run scheduler tasks.

Scheduler tables and schema are created.

Example: Using scripting to verify scheduler tables:

Use the wsadmin scripting tool to invoke a Jacl script and verify tables and indices for a scheduler.

 The following Jacl example script can be invoked using the wsadmin scripting tool, which verifies that the

tables and indices are created correctly for a scheduler. See the “Configuring Schedulers” topic for details

on how a scheduler is created.

Example JACL Script to verify the scheduler tables

The name of the scheduler to verify

set schedName "My Scheduler"

puts ""

puts "Looking-up Scheduler Configuration Helper MBean"

puts ""

set schedHelper [$AdminControl queryNames WebSphere:*,type=WASSchedulerCfgHelper]

#Access the configuration object.

set myScheduler [$AdminConfig getid /SchedulerConfiguration:$schedName/]

if {$myScheduler == ""} {

 puts ""

 puts "Error: Scheduler $schedName could not be found."

 puts ""

 exit

}

Invoke the verifyTables method on the helper MBean.

puts ""

puts "Verifying tables for:"

puts "$myScheduler"

puts ""

if { [catch {$AdminControl invoke $schedHelper verifyTables $myScheduler} errorInfo] } {

 puts ""

2012 Administering applications and their environment

puts "Error verifying tables: $errorInfo"

 puts ""

} else {

 puts ""

 puts "Tables verified successfully."

 puts ""

}

 Related tasks

 “Configuring schedulers” on page 1995
Before your application can make use of the scheduler service, you must configure a scheduler using

the administrative console, configuration service or scripting. Conceptually, a scheduler is similar to a

data source in that you must specify various configuration attributes, including a JNDI name where the

instance is bound. Once defined, an application using the Scheduler API or WASScheduler MBean can

look up the scheduler object and call various methods to manage tasks.

 “Configuring schedulers using Java Management Extensions” on page 2000
Schedulers can be created or configured using the Java Management Extensions (JMX) API using one

of several scripting languages or Java.

 “Creating scheduler tables using scripting and Java Management Extensions” on page 2011
Creating scheduler tables using scripting and Java Management Extensions requires a database, a

JDBC provider, and a data source.

 Related reference

 “Scheduler table management functions” on page 2008
The administration console and the WASSchedulerConfiguration MBeans provide simplified methods

for creating scheduler tables and schema, verifying that the scheduler tables and schema are setup

properly and are accessible and removing scheduler tables and schema.

Example: Using scripting to create scheduler tables:

Use the wsadmin scripting tool to invoke a Jacl script and create scheduler tables.

 The following Jacl example script can be invoked using the wsadmin scripting tool, which creates the

scheduler tables for a configured scheduler. See the “Configuring Schedulers” topic for details on how to

create a scheduler.

Example JACL Script to create the scheduler tables

The name of the scheduler to create tables for

set schedName "My Scheduler"

puts ""

puts "Looking-up Scheduler Configuration Helper MBean"

puts ""

set schedHelper [$AdminControl queryNames WebSphere:*,type=WASSchedulerCfgHelper]

#Access the configuration object.

set myScheduler [$AdminConfig getid /SchedulerConfiguration:$schedName/]

if {$myScheduler == ""} {

 puts ""

 puts "Error: Scheduler with name: $schedName could not be found."

 puts ""

 exit

}

Invoke the createTables method on the helper MBean.

puts ""

puts "Creating tables for:"

puts "$myScheduler"

puts ""

Chapter 20. Learn about WebSphere programming extensions 2013

if {[catch {

 set result [$AdminControl invoke $schedHelper createTables $myScheduler]

 if {$result} {

 puts ""

 puts "Successfully created the tables."

 puts ""

 } else {

 puts ""

 puts "The tables were already created."

 puts ""

 }

 } errorInfo] } {

 puts ""

 puts $errorInfo

 puts ""

}

 Related tasks

 “Configuring schedulers” on page 1995
Before your application can make use of the scheduler service, you must configure a scheduler using

the administrative console, configuration service or scripting. Conceptually, a scheduler is similar to a

data source in that you must specify various configuration attributes, including a JNDI name where the

instance is bound. Once defined, an application using the Scheduler API or WASScheduler MBean can

look up the scheduler object and call various methods to manage tasks.

 “Configuring schedulers using Java Management Extensions” on page 2000
Schedulers can be created or configured using the Java Management Extensions (JMX) API using one

of several scripting languages or Java.

 “Creating scheduler tables using scripting and Java Management Extensions” on page 2011
Creating scheduler tables using scripting and Java Management Extensions requires a database, a

JDBC provider, and a data source.

 Related reference

 “Scheduler table management functions” on page 2008
The administration console and the WASSchedulerConfiguration MBeans provide simplified methods

for creating scheduler tables and schema, verifying that the scheduler tables and schema are setup

properly and are accessible and removing scheduler tables and schema.

Example: Using scripting to drop scheduler tables:

Use the wsadmin scripting tool to invoke a Jacl script and remove scheduler tables.

 The following Jacl example script can be invoked using the wsadmin scripting tool, which removes the

scheduler tables for a configured scheduler. See the “Configuring Schedulers” topic for details on how a

scheduler is created

Example JACL Script to drop the scheduler tables

The name of the scheduler to drop the tables for

set schedName "My Scheduler"

puts ""

puts "Looking-up Scheduler Configuration Helper MBean"

puts ""

set schedHelper [$AdminControl queryNames WebSphere:*,type=WASSchedulerCfgHelper]

#Access the configuration object.

set myScheduler [$AdminConfig getid /SchedulerConfiguration:$schedName/]

if {$myScheduler == ""} {

 puts ""

 puts "Error: Scheduler with name: $schedName could not be found."

 puts ""

 exit

2014 Administering applications and their environment

}

Invoke the dropTables method on the helper MBean.

puts ""

puts "Dropping tables for:"

puts "$myScheduler"

puts ""

if {[catch {

 set result [$AdminControl invoke $schedHelper dropTables $myScheduler]

 if {$result} {

 puts ""

 puts "Successfully dropped the tables."

 puts ""

 } else {

 puts ""

 puts "The tables were already dropped."

 puts ""

 }

 } errorInfo] } {

 puts ""

 puts $errorInfo

 puts ""

}

 Related tasks

 “Configuring schedulers” on page 1995
Before your application can make use of the scheduler service, you must configure a scheduler using

the administrative console, configuration service or scripting. Conceptually, a scheduler is similar to a

data source in that you must specify various configuration attributes, including a JNDI name where the

instance is bound. Once defined, an application using the Scheduler API or WASScheduler MBean can

look up the scheduler object and call various methods to manage tasks.

 “Configuring schedulers using Java Management Extensions” on page 2000
Schedulers can be created or configured using the Java Management Extensions (JMX) API using one

of several scripting languages or Java.

 “Creating scheduler tables using scripting and Java Management Extensions” on page 2011
Creating scheduler tables using scripting and Java Management Extensions requires a database, a

JDBC provider, and a data source.

 Related reference

 “Scheduler table management functions” on page 2008
The administration console and the WASSchedulerConfiguration MBeans provide simplified methods

for creating scheduler tables and schema, verifying that the scheduler tables and schema are setup

properly and are accessible and removing scheduler tables and schema.

Creating scheduler tables using DDL files:

This topic provides the steps for creating scheduler tables using DDL files.

 Your database system must be installed and available.

The scheduler requires a database, a JDBC provider, and a data source.

Complete the following steps to create scheduler tables using DDL files.

1. Verify that your database is created. See the topic ″Creating scheduler databases.″

2. Create the database tables according to the instructions for your database system.

v Creating Cloudscape tables for schedulers.

v Creating DB2 tables for schedulers.

Chapter 20. Learn about WebSphere programming extensions 2015

v Creating DB2 tables for z/OS for schedulers.

v Creating Informix tables for schedulers.

v Creating Microsoft SQL Server tables for schedulers.

v Creating Oracle tables for schedulers.

v Creating Sybase tables for schedulers.

Creating Cloudscape tables for schedulers:

This topic describes how to create tables for schedulers on Cloudscape databases, using data definition

language (DDL) or structured query language (SQL) files.

 This task requires you to configure a database and make it available. See the ″Creating Cloudscape

databases for schedulers″ topic, for more information.

To create tables for schedulers on Cloudscape databases, using data definition language (DDL) or

structured query language (SQL) files, use these steps.

1. Open a command-line window.

2. Create the schema.

a. Using a text editor, edit the script, %app_server_root%\Scheduler\createSchemaCloudscape.ddl,

according to the instructions at the top of the file.

Note: When setting the table prefix, capitalize all characters.

b. Enter one of the following commands.

Note: Cloudscape provides both an embedded and network server version. This example is for the

embedded version of Cloudscape. See the Cloudscape product documentation for more

details on running DDL scripts.
On Windows systems (using the example name, scheddb):

%app_server_root%\cloudscape\bin\embedded\ij.bat %app_server_root%\Scheduler\createSchemaCloudscape.ddl

On UNIX systems (using the example name, scheddb):

%app_server_root%/cloudscape/bin/embedded/ij.sh %app_server_root%/Scheduler/createSchemaCloudscape.ddl

The Cloudscape tables and schema for the scheduler exist.

Creating DB2 tables for schedulers:

This topic describes how to create tables for scheduler on DB2 databases, using data definition language

(DDL) or structured query language (SQL) files.

 This task requires you to configure a database and make it available. See the ″Creating DB2 databases

for schedulers″ topic for more information.

To create tables for scheduler on DB2 databases, using data definition language (DDL) or structured query

language (SQL) files, use these steps.

1. Open a DB2 command-line window.

2. Verify that you have administrator rights for the database system.

3. Create the table space and schema.

a. Analyze the results of your experiences during development and system testing. The size of your

database depends on many factors. If possible, distribute table space containers across different

logical disks, and implement an appropriate security policy. Consider the performance implications

of your choices for buffer pools and log file settings.

b. Using a text editor, edit the following scripts according to the instruction at the top of each file.

2016 Administering applications and their environment

Note: When setting the table prefix, capitalize all characters.
%WAS_HOME%\Scheduler\createTablespaceDB2.ddl, %WAS_HOME%\Scheduler\createSchemaDB2.ddl,

%WAS_HOME%\Scheduler\dropSchemaDB2.ddl, and %WAS_HOME%\Scheduler\dropTablespaceDB2.ddl.

c. Verify that you are attached to the correct instance. Check the environment variable

DB2INSTANCE.

d. To connect to the database, scheddb, for example, and enter the command:

db2 connect to scheddb

e. Create the table space. Enter the following command:

db2 -tf createTablespaceDB2.ddl

Verify that the script output contains no errors. If there were any errors, you can drop the table

space using the following script:

dropTablespaceDB2.ddl

f. To create the schema (tables and indices), in the DB2 command line processor, enter the command

db2 -tf createSchemaDB2.ddl. Verify that the script output contains no errors. If there were any

errors, you can use the following file to drop the schema:

dropSchemaDB2.ddl

g. Verify that the DB2_RR_TO_RS DB2 flag is set to YES to avoid deadlocks. Restart the DB2

instance to activate the change, if needed.

The DB2 tables and schema for the scheduler exist.

Creating DB2 for z/OS tables for schedulers:

This topic describes how to create tables for a scheduler on a DB2 for z/OS database using data definition

language (DDL) or structured query language (SQL) files.

 This task requires that you configure a database and make it available. See the ″Creating DB2 for z/OS

databases for schedulers″ topic for more information.

In addition, you must have the following two machines:

1. The z/OS machine that is hosting the database

2. The WebSphere Application Server machine that is running the scheduler

To create tables for a scheduler on a DB2 for z/OS database, using data definition language (DDL) or

structured query language (SQL) files, use these steps.

1. Work with the z/OS machine that hosts the database to:

a. Log on to the native z/OS environment.

b. Decide which subsystem you want to use, if multiple DB2 systems are installed.

c. Note of the Internet Protocol (IP) port to which the DB2 subsystem is listening.

d. Use the DB2 administration menu to create a new database named, for example, SCHEDDB. Note

the database name.

e. Create a storage group and note the name.

f. Decide which user ID is used to connect to the database from the remote machine running the

product. Normally, for security reasons, this user ID is not the one you used to create the database.

g. Grant the user ID the rights to access the database and storage group. The user ID must also

have permission to create new tables for the database.

2. Work with the Application Server machine to:

a. Verify that you have DB2 Connect Gateway (Version 8.1 fix pack 3 or higher) installed. This

component is part of the DB2 UDB ESE package; however, you can also install it separately.

Chapter 20. Learn about WebSphere programming extensions 2017

b. Catalog the remote database using the following commands, either in a script or in a DB2

command line window:

catalog tcpip node zosnode remote hostname server IP_port ostype mvs;

catalog database subsystem as subsystem at node zosnode authentication dcs;

catalog dcs database subsystem as subsystem parms ’,,INTERRUPT_ENABLED’

An important difference exists between DB2 UDB and DB2 for z/OS. DB2 UDB does not have the

concept of a subsystem, but DB2 for z/OS does have subsystems. To avoid confusion between

Database name and Subsystem name, remember that because DB2 for z/OS runs in a subsystem,

the catalog node and catalog database commands must identify the appropriate subsystem. On

DB2 UDB, the subsystem name is not a known concept, and the database name to which it

connects is actually the name of the DB2 for z/OS subsystem.

c. Verify that you can establish a connection to the remote subsystem by entering the following

command:

db2 connect to subsystem user userid using password

d. Change to the scheduler subdirectory in the application server installation root directory.

e. Edit the createTablespaceDB2ZOS.ddl script. Replace @STG@ with the storage group name. Replace

@DBNAME@ with the database name (not the subsystem name), and replace @SCHED_TABLESPACE@ with

the name of a valid table space. After you replace the database name, place it into an existing JCL

and run the job.

f. Run your customized version of createTablespaceDB2ZOS.ddl, as described in the header of the

script. If this script does not work, or if you want to remove the table space, edit and run the

dropTablespaceDB2ZOS.ddl script.

g. Edit the createSchemaDB2ZOS.ddl script. Replace @STG@ with the storage group name. Replace

@DBNAME@ with the database name (not the subsystem name). Replace @TABLE_PREFIX@ with the

Table Prefix in the configured scheduler resource, and replace @SCHED_TABLESPACE@ with a valid

table space that was created by the createTablespaceDB2ZOS.ddl script.

Note: When setting the table prefix, capitalize all characters.

h. Run your customized version of the createSchemaDB2ZOS.ddl script, as described in the header of

the script. If this script does not work, or if you want to remove the tables and views, use

dropSchemaDB2ZOS.ddl to drop the schema.

i. To avoid deadlocks, verify that the DB2_RR_TO_RS DB2 flag is set to YES. If necessary, restart

the DB2 instance to activate the change. In addition, verify that the table space was created with

the LOCKSIZE ROW statement.

The DB2 for z/OS tables and schema for the scheduler exist.

Creating Informix tables for schedulers:

This topic describes how to create tables for schedulers on Informix databases, using data definition

language (DDL) or structured query language (SQL) files.

 This task requires that you configure a database and make it available. See the ″Creating Informix

databases for schedulers″ topic for more information.

To create tables for schedulers on Informix databases, using data definition language (DDL) or structured

query language (SQL) files, use these steps.

1. Open a command-line window.

2. Verify that you have administrator rights for the database system.

3. Create the schema.

a. Using a text editor, edit the script %WAS_HOME%\Scheduler\createSchemaInformix.sql according to

the instruction at the top of the file.

2018 Administering applications and their environment

Note: When setting the table prefix, capitalize all characters.

b. Enter the following command, using the database, scheddb, for example:

 dbaccess scheddb createSchemaInformix.sql

The Informix tables and schema for the scheduler exist.

Creating Microsoft SQL Server tables for schedulers:

This topic describes how to create tables for schedulers on Microsoft SQL Server databases, using data

definition language (DDL) or structured query language (SQL) files.

 This task requires you to configure a database and make it available. See the ″Creating Microsoft SQL

Server databases for schedulers″ topic for more information.

To create tables for schedulers on Microsoft SQL Server databases, using data definition language (DDL)

or structured query language (SQL) files, use these steps.

1. Open a command-line window.

2. Change to the directory where the configuration scripts for scheduler are located. This is the Scheduler

subdirectory of the IBM WebSphere Application Server installation directory.

On Windows systems, enter:

cd %app_server_root%\Scheduler

On UNIX systems, enter:

cd $app_server_root/Scheduler

3. Use a text editor to edit the schema creation script, createSchemaMSSQL.sql, according to the

instructions at the beginning of the file.

Note: When setting the table prefix, capitalize all characters.

4. Create the schema:

a. Verify that you have administrator rights for the database system. The user ID you use to create

the schema must be the one that you configure WebSphere Application Server to use when

accessing the database.

b. Run the following script to create the schema (tables and views) :

isql -S <servername> -U<userid> -P<password> -D<databaseName> -i<script name>

The Microsoft SQL Server tables and schema for scheduler exist.

Creating Oracle tables for schedulers:

This topic describes how to create tables for schedulers on Oracle databases, using data definition

language (DDL) or structured query language (SQL) files.

 This task requires you to configure a database and make it available. See the ″Creating Oracle databases

for schedulers″ topic for more information.

To create tables for schedulers on Oracle databases, using data definition language (DDL) or structured

query language (SQL) files, use these steps.

1. Open a command-line window.

2. Make sure that you have administrator rights for the database system.

3. Create the table space and schema.

a. Using a text editor, edit the following scripts according to the instructions at the top of the files.

Note: When setting the table prefix, capitalize all characters.

Chapter 20. Learn about WebSphere programming extensions 2019

%app_server_root%\Scheduler\createTablespaceOracle.ddl and %app_server_root%\Scheduler\createSchemaOracle.ddl

b. Set the environment variable ORACLE_SID, if you do not want the schema to be created in the

default instance.

c. Run the script, createTablespaceOracle.ddl, to create the table space.

For test purposes, use the same location for all table spaces and pass the path as a command line

argument to the script. For example, on Windows systems, the user ID is scheduser, password is

schedpwd, database name is scheddb, and table space path is d:\mydb\ts. Enter the command:

sqlplus scheduser/schedpwd@scheddb @createTablespaceOracle.ddl d:\mydb\ts If you get any

errors creating the table space, you can use dropTablespaceOracle.ddl to drop the table space.

d. Run the script, createSchemaOracle.ddl, to create the schema. For example, on Windows systems,

enter the following script:

sqlplus scheduser/schedpwd@scheddb @createSchemaOracle.ddl

If you see any errors creating the schema (tables and views), you can drop the schema by running

script:

dropSchemaOracle.ddl

The Oracle tables and schema for scheduler exist.

Creating Sybase tables for schedulers:

This topic describes how to create tables for schedulers on Sybase databases, using data definition

language (DDL) or structured query language (SQL) files.

 This task requires you to configure a database and make it available. See the ″Creating Sybase

databases for schedulers″ topic for more information.

To create tables for schedulers on Sybase databases, using data definition language (DDL) or structured

query language (SQL) files, use these steps.

1. Open a command-line window.

2. Make sure that you have administrator rights for the database system.

3. Make sure that you have the Distributed Transaction Management (DTM) option for Sybase ASE

installed.

a. Set enable DTM to 1 in the Sybase server configuration.

b. Set enable xact coordination to 1 in the Sybase server configuration.

c. Add the dtm_tm_role role to the Sybase administration user ID. For example, enter the user ID sa.

d. Restart the Sybase server.

4. Use the Sybase isql utility to create a database. For example, enter the database name scheddb. See

your Sybase product documentation for details.

5. Create the schema:

a. Using a text editor, edit the following script according to the instructions located at the top of the

file.

Note: When setting the table prefix, capitalize all characters.
<app_server_root>\Scheduler\createSchemaSybase12.ddl

b. Enter the following command:

isql -S <servername> -U <userid> -P <password> -D scheddb -i createSchemaSybase12.ddl

The Sybase tables and schema for scheduler exist.

2020 Administering applications and their environment

Startup beans

Using startup beans

There are two types of startup beans: application startup beans and Module startup beans.

A module startup bean is a session bean that is loaded when an EJB Jar file starts. Module startup beans

enable Java 2 Platform Enterprise Edition (J2EE) applications to run business logic automatically,

whenever an EJB module starts or stops normally. An application startup bean is a session bean that is

loaded when an application starts. Application startup beans enable Java 2 Platform Enterprise Edition

(J2EE) applications to run business logic automatically, whenever an application starts or stops normally.

Startup beans are especially useful when used with asynchronous bean features. For example, a startup

bean might create an alarm object that uses the Java Message Service (JMS) to periodically publish

heartbeat messages on a well-known topic. This enables clients or other server applications to determine

whether the application is available.

1. For Application startup beans, use the home interface,

com.ibm.websphere.startupservice.AppStartUpHome, to designate a bean as an Application startup

bean. For Module startup beans, use the home interface,

com.ibm.websphere.startupservice.ModStartUpHome, to designate a bean as a Module startup bean.

2. For Application startup beans, use the remote interface,

com.ibm.websphere.startupservice.AppStartUp, to define start() and stop() methods on the bean. For

Module startup beans, use the remote interface, com.ibm.websphere.startupservice.ModStartUp, to

define start() and stop() methods on the bean.

The startup bean start() method is called when the module or application starts and contains business

logic to be run at module or application start time.

The start() method returns a boolean value. True indicates that the business logic within the start()

method ran successfully. Conversely, False indicates that the business logic within the start() method

failed to run completely. A return value of False also indicates to the Application server that application

startup is aborted.

The startup bean stop() methods are called when the module or application stops and contains

business logic to be run at module or application stop time. Any exception thrown by a stop() method

is logged only. No other action is taken.

The start() and stop() methods must never use the TX_MANDATORY transaction attribute. A global

transaction does not exist on the thread when the start() or stop() methods are invoked. Any other

TX_* attribute can be used. If TX_MANDATORY is used, an exception is logged, and the application

start is aborted.

The start() and stop() methods on the remote interface use Run-As mode. Run-As mode specifies the

credential information to be used by the security service to determine the permissions that a principal

has on various resources. If security is on, the Run-As mode needs to be defined on all of the

methods called. The identity of the bean without this setting is undefined.

There are no restrictions on what code the start() and stop() methods can run, since the full Application

Server programming model is available to these methods.

3. Use an optional environment property integer, wasStartupPriority, to specify the start order of multiple

startup beans in the same Java Archive (JAR) file. If the environment property is found and is the

wrong type, application startup is aborted. If no priority value is specified, a default priority of 0 is used.

It is recommended that you specify the priority property. Beans that have specified a priority are sorted

using this property. Beans with numerically lower priorities are run first. Beans that have the same

priority are run in an undefined order. All priorities must be positive integers. Beans are stopped in the

opposite order to their start priority. The priority values for module startup beans and application

startup beans are mutually exclusive. All modules will be started prior to the application being declared

as ″started″ and therefore the start() methods for module startup beans within an application will be

Chapter 20. Learn about WebSphere programming extensions 2021

invoked prior to the start() methods for any application startup beans. Likewise, all application startup

bean stop() methods for a specific Java Archive (JAR) file will be invoked prior to any module startup

bean stop() methods for that JAR.

4. For module startup beans, the order in which EJB modules are started can be adjusted via the

″Starting weight″ value associated with each module

5. To control who can invoke startup bean methods via WebSphere Security do the following:

a. Define the method permissions for the Start() and Stop() methods as you would for any EJB. (See

″Defining method permissions for EJB modules.″)

b. Ensure that the User that is mapped to the Security Role defined for the startup bean methods is

the same user that is defined as the ″Server user ID″ within the User Registry.

View the startup beans service settings.

Startup beans service settings

Use this page to enable startup beans that control whether application-defined startup beans function on

this server. Startup beans are session beans that run business logic through the invocation of start and

stop methods when applications start and stop. If the startup beans service is disabled, then the automatic

invocation of the start and stop methods does not occur for deployed startup beans when the parent

application starts or stops. This service is disabled by default. Enable this service only when you want to

use startup beans. Startup beans are especially useful when used with asynchronous beans.

To view this administrative console page, click Servers > Application servers >server_name > Container

services > Startup beans service.

Enable service at server startup:

Specifies whether the server attempts to initiate the startup beans service.

 Default Cleared

Range Selected

When the application server starts, it attempts to

initiate the startup bean service automatically.

Cleared

The server does not try to initiate the startup

beans service. All startup beans do not start or

stop with the application. If you use startup beans

on this server, then the system administrator

must start the startup beans service manually or

select this property, and then restart the server.

Enabling startup beans in the administrative console

Enabling startup beans in the administrative console enables Java 2 Platform Enterprise Edition (J2EE)

applications to run business logic automatically, whenever an application starts or stops normally.

Use the following steps to enable startup beans in the administrative console.

1. Start the administrative console.

2. Select Servers > Application Servers > server_name > Container Services > Startup beans

service.

3. Select the Enable service at server startup check box.

4. Click Apply to save the configuration.

View the startup beans service settings.

2022 Administering applications and their environment

Work area

Task overview: Implementing shared work areas

The work area service enables application developers to implicitly propagate information beyond the

information passed in remote calls. Applications can create a work area, insert information into it, and

make remote invocations. The work area is propagated with each remote method invocation, eliminating

the need to explicitly include an appropriate argument in the definition of each method. The methods on

the server side can use or ignore the information in the work area as appropriate.

Before proceeding with the steps to implement work areas, as described below, review the topic Work

area service: Overview.

1. Developing applications that use work areas. Applications interact with the work area service by

implementing the UserWorkArea interface.

2. Managing work areas. The work area service is managed using the administrative console.

Overview of work area service

One of the foundations of distributed computing is the ability to pass information, typically in the form of

arguments to remote methods, from one process to another. When application-level software is written

over middleware services, many of the services rely on information beyond that passed in the application’s

remote calls. Such services often make use of the implicit propagation of private information in addition to

the arguments passed in remote requests; two typical users of such a feature are security and transaction

services. Security certificates or transaction contexts are passed without the knowledge or intervention of

the user or application developer. The implicit propagation of such information means that application

developers do not have to manually pass the information in method invocations, which makes

development less error-prone, and the services requiring the information do not have to expose it to

application developers. Information such as security credentials can remain secret.

The work area service gives application developers a similar facility. Applications can create a work area,

insert information into it, and make remote invocations. The work area is propagated with each remote

method invocation, eliminating the need to explicitly include an appropriate argument in the definition of

every method. The methods on the server side can use or ignore the information in the work area as

appropriate. If methods in a server receive a work area from a client and subsequently invoke other

remote methods, the work area is transparently propagated with the remote requests. When the creating

application is done with the work area, it terminates it.

There are two prime considerations in deciding whether to pass information explicitly as an argument or

implicitly by using a work area. These considerations are:

v Pervasiveness: Is the information used in a majority of the methods in an application?

v Size: Is it reasonable to send the information even when it is not used?

When information is sufficiently pervasive that it is easiest and most efficient to make it available

everywhere, application programmers can use the work area service to simplify programming and

maintenance of code. The argument does not need to go onto every argument list. It is much easier to put

the value into a work area and propagate it automatically. This is especially true for methods that simply

pass the value on but do nothing with it. Methods that make no use of the propagated information simply

ignore it.

Work areas can hold any kind of information, and they can hold an arbitrary number of individual pieces of

data, each stored as a property.

Work area property modes: The information in a work area consists of a set of properties; a property

consists of a key-value-mode triple. The key-value pair represents the information contained in the

property; the key is a name by which the associated value is retrieved. The mode determines whether the

property can be removed or modified.

Chapter 20. Learn about WebSphere programming extensions 2023

Property modes

There are four possible mode values for properties, as shown in the following code example:

Code example: The PropertyModeType definition

public final class PropertyModeType {

 public static final PropertyModeType normal;

 public static final PropertyModeType read_only;

 public static final PropertyModeType fixed_normal;

 public static final PropertyModeType fixed_readonly;

};

A property’s mode determines three things:

v Whether the value associated with the key can be modified

v Whether the property can be deleted

v Whether the mode associated with the key-value pair can be modified

The two read-only modes forbid changes to the information in the property; the two fixed modes forbid

deletion of the property.

The work area service does not provide methods specifically for the purpose of modifying the value of a

key or the mode associated with a property. To change information in a property, applications simply

rewrite the information in the property; this has the same effect as updating the information in the property.

The mode of a property governs the changes that can be made. Modifying key-value pairs describes the

restrictions each mode places on modifying the value and deleting the property. Changing modes

describes the restrictions on changing the mode.

Changing modes

The mode associated with a property can be changed only according to the restrictions of the original

mode. The read-only and fixed read-only properties do not permit modification of the value or the mode.

The fixed normal and fixed read-only modes do not allow the property to be deleted. This set of

restrictions leads to the following permissible ways to change the mode of a property within the lifetime of

a work area:

v If the current mode is normal, it can be changed to any of the other three modes: fixed normal,

read-only, fixed read-only.

v If the current mode is fixed normal, it can be changed only to fixed read-only.

v If the current mode is read-only, it can be changed only by deleting the property and re-creating it with

the desired mode.

v If the current mode is fixed read-only, it cannot be changed.

v If the current mode is not normal, it cannot be changed to normal. If a property is set as fixed normal

and then reset as normal, the value is updated but the mode remains fixed normal. If a property is set

as fixed normal and then reset as either read-only or fixed read-only, the value is updated and the mode

is changed to fixed read-only.

Note: The key, value, and mode of any property can be effectively changed by terminating (completing)

the work area in which the property was created and creating a new work area. Applications can

then insert new properties into the work area. This is not precisely the same as changing the value

in the original work area, but some applications can use it as an equivalent mechanism.

Nested work areas: Applications can nest work areas. When an application creates a work area, a work

area context is associated with the creating thread. If the application thread creates another work area, the

new work area is nested within the existing work area and becomes the current work area. Nested work

areas allow applications to define and scope properties for specific tasks without having to make them

available to all parts of the application. All properties defined in the original, enclosing work area are visible

to the nested work area. The application can set additional properties within the nested work area that are

not part of the enclosing work area.

2024 Administering applications and their environment

An application working with a nested work area does not actually see the nesting of enclosing work areas.

The current work area appears as a flat set of properties that includes those from enclosing work areas. In

the figure below, the enclosing work area holds several properties and the nested work area holds

additional properties. From the outermost work area, the properties set in the nested work area are not

visible. From the nested work area, the properties in both work areas are visible.

Nesting can also affect the apparent settings of the properties. Properties can be deleted from or directly

modified only within the work areas in which they were set, but nested work areas can also be used to

temporarily override information in the property without having to modify the property. Depending on the

modes associated with the properties in the enclosing work area, the modes and the values of keys in the

enclosing work area can be overridden within the nested work area.

The mode associated with a property when it is created determines whether nested work areas can

override the property. From the perspective of a nested work area, the property modes used in enclosing

work areas can be grouped as follows:

v Modes that permit a nested work area to override the mode or the value of a key locally. The modes

that permit overriding are:

– Normal

– Fixed normal
v Modes that do not permit a nested work area to override the mode or the value of a key locally. The

modes that do not permit overriding are:

– Read-only

– Fixed read-only

If an enclosing work area defines a property with one of the modes that can be overridden, a nested work

area can specify a new value for the key or a new mode for the property. The new value or mode

becomes the value or mode seen by subsequently nested work areas. Changes to the mode are governed

by the restrictions described in Changing modes. If an enclosing work area defines a property with one of

the modes that cannot be overridden, no nested work area can specify a new value for the key.

key1

key5

key2

key6

key3

key7

key4

key8

A

E

B

F

C

G

D

H

normal

normal

fixed normal

fixed normal

read-only

read-only

fixed read-only

fixed read-only

key value mode

Work Area 1.1

key value mode

Work Area 1
Visible to Work Area 1

key1 = A

key2 = B

key3 = C

key4 = D

Visible to Work Area 1.1

key1 = A

key2 = B

key3 = C

key4 = D

key5 = E

key6 = F

key7 = G

key8 = H

Figure 20. Defining new properties in nested work areas

Chapter 20. Learn about WebSphere programming extensions 2025

A nested work area can delete properties from enclosing work areas, but the changes persist only for the

duration of the nested work area. When the nested work area is completed, any properties that were

added in the nested area vanish and any properties that were deleted from the nested area are restored.

The following figure illustrates the overriding of properties from an enclosing work area. The nested work

area redefines two of the properties set in the enclosing work area. The other two cannot be overridden.

The nested work area also defines two new properties. From the outermost work area, the properties set

or redefined in the nested work are not visible. From the nested work area, the properties in both work

areas are visible, but the values seen for the redefined properties are those set in the nested work area.

Distributed work areas: The propagation of work area context operates differently depending on

whether a work area partition is defined as bidirectional or not. In either case all work area context

propagates to a target object on a remote invocation. However, whether the context propagates from a

target object back to the originator depends on whether a partition is defined as bidirectional.

Non-bidirectional work area partitions (UserWorkArea partition)

If a remote invocation is issued from a thread associated with a work area, a copy of the work area is

automatically propagated to the target object, which can use or ignore the information in the work area as

necessary. If the calling application has a nested work area associated with it, a copy of the nested work

area and all its ancestors is propagated to the target. The target application can locally modify the

information, as allowed by the property modes, by creating additional nested work areas; this information

is propagated to any remote objects it invokes. However, no changes made to a nested work area on a

target object are propagated back to the calling object. The caller’s work area is unaffected by changes

made in the remote method.

Bidirectional work area partitions

If a remote invocation is issued from a thread associated with a work area, a copy of the work area is

automatically propagated to the target object, which can use or ignore the information in the work area as

necessary. If the calling application has a nested work area associated with it, a copy of the nested work

key1

key1

key2

key2

key3

key5

key4

key6

A

X

B

Y

C

E

D

F

normal

normal

fixed normal

fixed normal

read-only

normal

fixed read-only

fixed

key value mode

Work Area 2.1

key value mode

Work Area 2
Visible to Work Area 2

key1 = A

key2 = B

key3 = C

key4 = D

Visible to Work Area 2.1

key1 = X (overridden in 2.1)

key2 = Y (overridden in 2.1)

key3 = C

key4 = D

key5 = E

key6 = F

Figure 21. Redefining existing properties in nested work areas

2026 Administering applications and their environment

area and all its ancestors is propagated to the target. The target application can locally modify the

information, as allowed by the property modes, this information is propagated to any remote objects it

invokes. In a partition that is not defined as bidirectional, a target application must begin a nested work

area before making changes to the imported work area. However, if a partition is defined as bidirectional, a

target application need not begin a nested work area before operating on an imported work area. By not

beginning a nested work area, any new context set into the work area, or any context changes made by

the target application, is not only propagated on future remote invocations but is also propagated back to

the originating application (that is, the one who initiated the remote invocation) thus allowing bidirectional

propagation of work area context. If the target application does not want new or changed context to

propagate back to the originating application, then the target application must begin a nested work area to

scope the context to its process. However, the new or changed context in the nested work area

propagates on any future remote invocation the target application may make.

WorkArea service: Special considerations: Developers who use work areas should consider the

following issues that could potentially cause problems: interoperability between the EJB and CORBA

programming models; and the use of work areas with Java’s Abstract Windowing Toolkit.

EJB and CORBA interoperability

Although the work area service can be used across the EJB and CORBA programming models, many

composed data types cannot be successfully used across those boundaries. For example, if a

SimpleSampleCompany instance is passed from the WebSphere environment into a CORBA environment,

the CORBA application can retrieve the SimpleSampleCompany object encapsulated within a CORBA Any

object from the work area, but it cannot extract the value from it. Likewise, an IDL-defined struct defined

within a CORBA application and set into a work area is not readable by an application using the

UserWorkArea class.

best-practices: Applications can avoid this incompatibility by directly setting only primitive types, like

integers and strings, as values in work areas, or by implementing complex values with

structures designed to be compatible, like CORBA valuetypes.

Also, CORBA Anys that contains either the tk_null or tk_void typecode can be set into the work area by

using the CORBA interface. However, the work area specification cannot allow the Java 2 Platform,

Enterprise Edition (J2EE) implementation to return null on a lookup that retrieves these CORBA-set

properties without incorrectly implying that there is no value set for the corresponding key. For example,

when a user attempts to retrieve a nonexistent key from a work area, the work area service returns null to

indicate that the specified key does not contain a value, implying that the key itself is not in use or does

not exist. In the case where CORBA Anys contains either tk_null or tk_void, when a user requests the key

associated with one of these values, the work area service returns null as expected. In this case, the key

may actually exist and the work area service was simply returning the key’s value of null. Therefore, when

working with CORBA Anys, a user must not make any implications when a null is returned from a work

area because it could mean that either there isn’t a property associated with the given key, or that there is

a property associated with the given key and it contains a tk_null or tk_void, for example, a null in the

J2EE environment. If a J2EE application tries to retrieve CORBA-set properties that are non-serializable,

or contain CORBA nulls or void references, the com.ibm.websphere.workarea.IncompatibleValue exception

is raised.

Using work areas with Java’s Abstract Windowing Toolkit (AWT)

Work areas must be used cautiously in applications that use Java’s Abstract Windowing Toolkit (AWT).

The AWT implementation is multithreaded, and work areas begun on one thread are not available on

another. For example, if a program begins a work area in response to an AWT event, such as pressing a

button, the work area might not be available to any other part of the application after the execution of the

event completes.

Chapter 20. Learn about WebSphere programming extensions 2027

Work area service performance considerations: The work area service is designed to address

complex data passing patterns that can quickly grow beyond convenient maintenance. A work area is a

note pad that is accessible to any client that is capable of looking up Java Naming Directory Interface

(JNDI). After a work area is established, data can be placed there for future use in any subsequent

method calls to both remote and local resources.

You can utilize a work area when a large number of methods require common information or if information

is only needed by a method that is significantly further down the call graph. The former avoids the need for

complex parameter passing models where the number of arguments passed becomes excessive and hard

to maintain. You can improve application function by placing the information in a work area and

subsequently accessing it independently in each method, eliminating the need to pass these parameters

from method to method. The latter case also avoids unnecessary parameter passing and helps to improve

performance by reducing the cost of marshalling and de-marshalling these parameters over the Object

Request Broker (ORB) when they are only needed occasionally throughout the call graph.

When attempting to maximize performance by using a work area, cache the UserWorkArea partition that is

retrieved from JNDI wherever it is accessed. You can reduce the time spent looking up information in JNDI

by retrieving it once and keeping a reference for the future. JNDI lookup takes time and can be costly.

Additional caching mechanisms available to a user-defined partition are defined by the configuration

property, ″Deferred Attribute Serialization″. This mechanism attempts to minimize the number of

serialization and deserialization calls. See “Work area partition service” on page 2032 for further

explanation of this configuration attribute.

The maxSendSize and maxReceiveSize configuration parameters can affect the performance of the work

area. Setting these two values to 0 (zero) effectively turns off the policing of the size of context that can be

sent in a work area. This action can enhance performance, depending on the number of nested work

areas an application uses. In applications that use only one work area, the performance enhancement

might be negligible. In applications that have a large number of nested work areas, there might be a

performance enhancement. However, a user must note that by turning off this policing it is possible that an

extremely large amount of data might be sent to a server.

Performance is degraded if you use a work area as a direct replacement to passing a single parameter

over a single method call. The reason is that you incur more overhead than just passing that parameter

between method calls. Although the degradation is usually within acceptable tolerances and scales

similarly to passing parameters with regard to object size, consider degradation a potential problem before

utilizing the service. As with most functional services, intelligent use of the work areas yields the best

results.

The work area service is a tool to simplify the job of passing information from resource to resource, and in

some cases can improve performance by reducing the overhead that is associated with a parameter

passing when the information is only sparsely accessed within the call graph. Caching the instance

retrieved from JNDI is important to effectively maximize performance during runtime.

Managing the work area service - the UserWorkArea partition

The work area service is managed using the administrative console. There are two administrative tasks

associated with work areas:

v Enabling the work area service. The work area service is disabled by default on servers but enabled by

default on the client

v Managing the size of work areas. Applications can set maximum sizes on each work area to be sent

and to be accepted.

2028 Administering applications and their environment

Enabling the work area service - the UserWorkArea partition

For an application to take advantage of work areas, the work area service must be enabled for both clients

and servers. On a server the service is disabled by default. On the client, the service is enabled by

default.

For an application to take advantage of the default partition, UserWorkArea partition, this partition must be

enabled by enabling the work area service for both clients and servers. The work area service on a server

is disabled by default and the work area service on a client is enabled by default. Note that rather than

using this default work area partition, a user can create their own work area partition using the “Work area

partition service” on page 2032. For a description of the differences between these two services please

see Understand the difference between the work area service and the work area partition service.

1. Enable (or disable) the use of the UserWorkArea partition on a server:

a. Start the administrative console.

b. Select Servers > Application servers >server_name > Business Process Services > Work area

service.

c. Select or clear the Startup check box. This specifies whether or not the server should

automatically start the work area service when the server starts.

d. Save the new configuration and restart the server to apply the new configuration.

2. Enable (or disable) the UserWorkArea partition on a client: Set the

com.ibm.websphere.workarea.enabled property to TRUE or FALSE before starting the client. For

example, to disable the work area service, when invoking the launchClient script found in the

install_root/bin directory, add the following system property to the launchClient invocation:

-CCDcom.ibm.websphere.workarea.enabled=false

Alternatively, this property can be set in a property file that is used by the launchClient script. See

“Running application clients” on page 246 for additional information.

After enabling the UserWorkArea partition, manage the size of the work areas that this server can send

and the number of work areas that this server can accept. See the article, “Managing the size of work

areas” on page 2030.

Work area service settings:

Use this page to manage the work area service.

 The work area service manages the scope and implicit propagation of application context. The work area

service panel in the administrative console configures the UserWorkArea partition only and has no effect

on the work area partition service panel.

To view this administrative console page, click Servers > Application servers > server_name > Business

Process Services > Work area service .

For additional information about work area, see the com.ibm.websphere.workarea package in the API

documentation. The generated API documentation is available in the information center table of contents

from the path Reference > Developer > API documentation > Application programming interfaces.

Enable service at server startup:

Specifies whether the server attempts to start the work area service.

Selected

When the application server starts, it attempts to start the work area service automatically.

Chapter 20. Learn about WebSphere programming extensions 2029

Cleared

The server does not try to start the work area service. If work areas are used on this application

server, the system administrator must start the service manually or select this property and then

restart the server.

Maximum send size:

Specifies the maximum size of data that can be sent within a single work area.

 Data type Integer

Units Bytes

Default 10000

Range -1, 0 (no limit) and 1 to 2147483647

The following values are also used to define the maximum send size.

 -1 Default.

0 No limit.

Maximum receive size:

Specifies the maximum size of data that a single work area can receive.

 Data type Integer

Units Bytes

Default 10000

Range -1, 0 (no limit) and 1 to 2147483647

The following values are also used to define the maximum receive size.

 -1 Default.

0 No limit.

Enable Web service propagation:

Specifies whether the work area is propagated on Web service requests. This option is disabled by

default.

Managing the size of work areas

Applications can set maximum sizes on each work area that is sent or received. By default, the maximum

size of a work area that is sent by a client and received, then possibly resent, by a server is 32,768 bytes.

The maximum size that you can specify is determined by the maximum value expressible in the Java

Integer data type, 2,147,483,647. The smallest maximum size that you can specify is 1. Using a maximum

size of 1 byte effectively means that no requests associated with the work area can leave the system or

enter another system. A value of 0 means that no limit is imposed. A value of -1 means that the default

value is to be honored. The default value is also used if an invalid value or a malformed property is

specified. You can change this size as described in this topic.

1. Change the size of the work area that can be sent or received by a server:

a. Start the administrative console.

b. Select Servers > Application servers >server_name > Business Process Services .

2030 Administering applications and their environment

v To change the send size or receive size on the work area service (namely the ″UserWorkArea″

partition):

– Select Work area service.

v To change the send size or receive size on a user defined partition:

– Select Work area partition service.

– Select a partition.

c. Enter a new value in the Maximum send size field to modify the size of the work area that this

server can send, or enter a new value in the Maximum receive size field to modify the size of the

work area that this server can accept.

d. Save the new configuration and restart the server to apply the new configuration.

2. Change the size of the work area that can be sent by a client. This step only applies to the

UserWorkArea partition on the client. To set the maximum send or receive size on a user defined

partition, you must set these values when creating the partition on the client. For more information on

creating a partition on a client, see the client section in “Configuring work area partitions.” To change

the size of the work area that can be sent by a client, set the

com.ibm.websphere.workarea.maxSendSize property to the desired number of bytes before starting

the client. You can set the maximum send size as follows:

v Set the maximum send size when invoking the launchClient invocation script found in the

$WAS_HOME/bin directory. For example, to set the maximum size to 10,000 bytes, add the following

system properties to the launchClient invocation as needed:

-CCDcom.ibm.websphere.workarea.maxSendSize=10000

v Set the maximum send size propery, com.ibm.websphere.workarea.maxSendSize, in a property file

that is used by the launchClient script. See ″“Running application clients” on page 246″ for

additional information.

Since the UserWorkArea partition is defined as unidirectional, for example, context only propagates on

outbound calls and not on the return of those calls, setting the maximum receive size is ignored.

Configuring work area partitions

The work area partition service extends the work area service by allowing the creation of multiple work

areas with more configuration options than what is available to the UserWorkArea partition. Follow these

steps to create and configure a work area partition:

1. Create a user defined partition on the server.

a. Start the administrative console.

b. Click Servers > Application servers > server_name > Business process services > Work area

partition service.

c. Click New.

d. On the settings page for work area partitions, specify values such as the partition name,

maxSendSize and maxReceiveSize, then click OK.

e. Save the new configuration.

f. Restart the server to apply the new configuration.

2. Create a user defined partition on the client. Use the createWorkAreaPartition method described in the

“The Work area partition manager interface” on page 2034 article to programmatically create a

partition. See “Example: Work area partition manager” on page 2036 for an example of using this

method.

You have created a work area partition.

Retrieve the partition through the work area partition manager interface and use it as defined by the work

area service and the UserWorkArea interface. See the topic “Example: Work area partition manager” on

page 2036 for an example.

Chapter 20. Learn about WebSphere programming extensions 2031

Work area partition service

The work area partition service is an extension of the work area service that allows the creation of multiple

custom work areas. The work area partition service is an optional service to users. Any user that currently

uses the work area service and the UserWorkArea partition can continue using it in the same manner. The

UserWorkArea partition is created automatically (if it has not been disabled) by the work area partition

service. By allowing a user the option to create their own work area partition through the work area

partition service, they can have more control over configuration and access to their partition.

Unlike the UserWorkArea partition, which is publicly known, work areas created by the work area partition

service are accessible to, and known only by the creator. However, the work area partition service does

not strictly enforce that a partition is accessed and/or operated on exclusively by the partition creator.

There are no limitations should the creator want to publish their work area partition and make it publicly

available by binding their partition reference in java naming or by other means. However, the work area

partition service does try to hide a partition as much as possible should a user not want others to know

about a certain partition. The work area partition service does not allow a person to determine, or query

the names of all the partitions that have been created; however, it does not restrict the partitions from

being accessed by users other than the creator of that partition. The context of a partition, such as the

UserWorkArea partition or a user defined partition, is scoped to a single thread and is not accessible by

multiple threads.

The work area partition reference that is returned to a user implements javax.naming.Referenceable, as

well as com.ibm.websphere.UserWorkArea, therefore a user can bind their partition into a name to make

their partition publicly available. An alternative to using Java naming to bind and access the partition is to

use the work area partition manager interface. Anyone can access the work area partition manager

interface; therefore, if a user wants to make their partition publicly available, they simply need to publish

their partition name. Other users can then call the getWorkAreaPartition method on the work area partition

manager interface with the published name.

The WorkAreaPartitionManager.createWorkAreaPartition method can only be used from a Java 2 Platform,

Enterprise Edition (J2EE) client. To create a work area partition on the server side, one must use the

administrative console. On the server side a work area partition must be created during server startup

because each partition needs to be register with the appropriate Web and Enterprise JavaBeans (EJB)

collaborators before the server has started. Custom work area partitions are created by the work area

partition service and defined by the UserWorkArea interface.

The work area partition service also allows a user to configure partitions with additional properties that are

not available on the UserWorkArea partition, such as bidirectional propagation of work area partition

context and deferred attribute serialization. These properties are available as configuration properties when

creating a partition. For a complete list of the configuration properties available when creating a partition,

please see the section ″Configurable Work Area Partition Properties″ in “The Work area partition manager

interface” on page 2034. The properties are defined as follows:

Bidirectional propagation of work area context

If a remote invocation is issued from a thread associated with a work area, a copy of the work area is

automatically propagated to the target object, which can use or ignore the information in the work area as

necessary. If the calling application has a nested work area associated with it, a copy of the nested work

area and all its ancestors are propagated to the target application. The target application can locally

modify the information, as allowed by the property modes, by creating additional nested work areas; this

information is propagated to any remote objects that it invokes.

Whether context changes propagate back to a calling application from a remote application depends on

the configuration of the work area partition. If a user creates a partition to be bidirectional (selects the

Bidirectional property during creation), changes made by a remote application propagates back to the

calling application, meaning that changes made to the work area context by a downstream process will

propagate back up stream. The UserWorkArea partition is not configured (and can never be configured) to

2032 Administering applications and their environment

be bidirectional; therefore context changes only flow to downstream processes and do not propagate back

upstream. See “Bidirectional propagation” on page 2039 for further explanation.

Deferred attribute serialization of work area context

By default, on each set operation the attribute set into a work area is automatically serialized by the work

area service. On each subsequent get operation on that same attribute it is deserialized and returned to

the requester. This gives the work area service complete control of the attribute such that any changes to

a mutable object are not reflected in the work area’s copy of the attribute unless a user specifically resets

the attribute into the work area. However, this can potentially lead to excessive serialization and

deserialization.

Excessive serialization and deserialization can result in observable performance degradation under heavy

load. The deferred attribute serialization configuration property is a caching feature that reduces

serialization and deserialization operations. When deferred attribute serialization is enabled in a client or

server process, by selecting the Deferred Attribute Serialization field during the creation of the work area,

attributes set into the work area service are not automatically serialized during the set operation. Rather, a

reference to the attribute is stored in the work area. If the attribute is mutable, then changes to the object

are reflected in the work area’s reference to that attribute. When a get operation is performed on that

attribute, the reference to that object is returned and no deserialization is performed.

Attributes are not actually serialized until the thread with which the attribute is associated makes a remote

IIOP invocation. At that point the attribute is serialized and the serialized form of the attribute is cached. If

the attribute is not reset into the work area, changes to the original attribute are still reflected within the

attribute contained within the work area because the work area still holds a cached reference to the

original object. However, if the work area has not been told that the attribute has changed by resetting the

attribute into the work area, subsequent remote requests continues to use the cached serialized version of

the attribute and direct changes to the mutable attribute are not propagated. This is an important

distinction between enabling and not enabling the deferred attribute serialization configuration property and

a user must pay close attention to this difference and how mutable objects are handled when enabling

deferred attribute serialization. The work area service releases cached references and cached serialized

versions of attributes when any of the following occur:

v An attribute is reset or removed.

v The work area is explicitly completed by the application.

v Server component ends execution of the request during which the work area was begun.

v Client process which began the work area terminates.

Partition context propagation across process boundaries

Work area context automatically propagates from client to server when a client makes a remote call to a

server. If a client is configured with, for example, three different work area partitions when it makes a

remote call to a server, server1; the context associated with each partition on the client thread propagates

to server1. If the same three partitions reside (have been created) on server1, the context is demarshalled

to the appropriate partition. However, if none or only a few of the three partitions have been created on

server1, only the context associated with a partition that is resident on both the client and server is

demarshalled. The context associated with a partition that is not resident on server1 is still resident on

server1 but will not be accessible. The context associated with partitions that are not resident on server1

must remain resident on server1 in case another remote call is made to a different server. Going one step

further, if server1 makes a call to yet another server, server2 and assume server2 has created all the

same partitions that the client has, server2 receives the context for the partitions that were not resident on

server1. Any partitions that reside on server1 that did not reside on the client, now have its context

propagated to server2.

For additional information about work area, see the com.ibm.websphere.workarea package in the API

documentation. The generated API documentation is available in the information center table of contents

Chapter 20. Learn about WebSphere programming extensions 2033

from the path Reference > Developer > API documentation > Application programming interfaces.

The Work area partition manager interface

Applications interact with the work area partition service by using the work area partition manager

interface. A user can retrieve an instance of the work area partition manager interface out of naming and

use the methods that are defined in the following section.

An implementation of the work area partition manager interface is bound in Java naming at

java:comp/websphere/WorkAreaPartitionManager. This interface is responsible for creating, retrieving, and

manipulating work area partitions:

package com.ibm.websphere.workarea;

import com.ibm.websphere.workarea.UserWorkArea;

import com.ibm.websphere.workarea.PartitionAlreadyExistsException;

import com.ibm.websphere.workarea.NoSuchPartitionException;

import java.util.Properties;

public interface WorkAreaPartitionManager {

 //Returns an instance of a work area partition for the given name, or throws an exception if the

 //partition name doesn’t exists.

 public UserWorkArea getWorkAreaPartition(String partitionName) throws NoSuchPartitionException;

 //Returns a new instance of a work area partition (an implementation of the UserWorkArea interface)

 //or throws an exception if the partition name already exists. The createWorkAreaPartition should

 //only be used within a Java 2 platform, Enterprise Edition (J2EE) client and NOT on the

 //server. To create a work area partition on the server, use the WebSphere administrative

 //console.

 public UserWorkArea createWorkAreaPartition(String partitionName, Properties props) throws

 PartitionAlreadyExistsException, java.lang.IllegalAccessException;

 }

}

EJB applications can use the work area partition manager interface only within the implementation of

methods in either the remote or local interface, or both; likewise, servlets can use the interface only within

the service method of the HTTPServlet class. Use of work areas within any life cycle method of a servlet

or enterprise bean is considered a deviation from the work area programming model and is not supported.

Programmatically creating a work area partition through the createWorkAreaPartition method is only

available on the Java 2 platform, Enterprise Edition (J2EE) client. To create a work area partition on the

server, use the WebSphere administrative console as described in “Configuring work area partitions” on

page 2031. All partitions in a server process must be created before server startup is complete so that the

work area service can register with the appropriate container collaborators. Therefore, calling the

createWorkAreaPartition method in a server process after the server starts results in a

java.lang.IllegalAccessException exception. The createWorkAreaPartition method can be called in a J2EE

application client at any time.

Configurable Work Area Partition Properties

This section applies to the use of the createWorkAreaPartition method on the WorkAreaPartitionManager

interface. As is described above, this method should only be used on a Java 2 platform, Enterprise Edition

(J2EE) client. To create a partition on the server, please see Configuring work area partitions.

The ″createWorkAreaPartition″ method on the WorkAreaPartitionManager interface takes a

java.util.Properties objects. This Properties object, and the properties it contains, is used to define the work

area partition. Below is an example of creating a Properties object and setting a property:

Note: A more detailed example of the usage of the WorkAreaPartitionManager can be found at “Example:

Work area partition manager” on page 2036.

2034 Administering applications and their environment

java.util.Properties props = new java.util.Properties():

props.put("maxSendSize","12345");

Acceptable key/values pairs (properties) for defining a partition are as follows:

v maxSendSize - Indicates the maximum size (bytes) of a work area that can be sent on a remote call.

Acceptable values are:

– ″-1″ = Uses the default size of 32767.

– ″0″ = Unlimited size, this value will not be policed which might help performance a bit depending on

the number of work area an application has.

– ″1″ = Integer.MAX_VALUE

v maxReceiveSize - Indicates the maximum size (bytes) of a work area that can be received. Acceptable

values are:

– ″-1″ = Uses the default size of 32767.

– ″0″ = Unlimited size, this value will not be policed which might help performance a bit depending on

the number of work area an application has.

– ″1″ = Integer.MAX_VALUE

v Bidirectional - Indicates if work area context that is changed by a downstream process should be

propagated back upstream to the originator of that context. For a more complete description of this

property, please see the section ″Bidirectional propagation of work area context″ at “Work area partition

service” on page 2032. Acceptable values are:

– ″true″ = Context changes will be returned from a remote call.

– ″false″ = Context changes will not be returned from a remote call.

Note: The default setting is ″false.″

v DeferredAttributeSerialization - Indicates if the serialization of attribute should be optimized to occur

exactly once per process. For a more complete description of this property, please see the section

″Deferred attribute serialization of work area context″ at “Work area partition service” on page 2032.

Acceptable values are:

– ″true″

- When an attribute is set into the work area, it will not be serialized until a remote request is made.

- If the value is unchanged by response, the serialized form will be used for subsequent requests;

the live object will be retrieved via getters.

- When requests are made during a remote request, a value will be deserialized on demand exactly

once. The serialized form will be used for subsequent requests from this remote process on this

distributed thread; subsequent requests in process for the same attribute will return the already

deserialized value. There are risks with concurrency with DeferredAttributeSerialization. After

serialization in a client process, updates to the attribute will no longer be reflected in the work

area’s copy until the value is explicitly reset through the UserWorkArea interface. Changes made

to a retrieved reference in a downstream process will not be propagated to subsequent

downstream requests (or returned on the reply as a changed value) unless explicitly reset through

the UserWorkArea interface.

– ″false″

- When an attribute is set into the work area, it will be immediately serialized and the bytes will be

stored.

- When an attribute is retrieved from the work area, it will always be deserialized from stored bytes.

Note: The default value is ″false.″

v EnableWebServicePropagation - Indicates if work area context should propagate on a WebService call.

Acceptable values are:

– ″true″ = Context will propagate on a WebService call.

– ″false″ = Context will not propagate on a WebService call.

Chapter 20. Learn about WebSphere programming extensions 2035

Note: The default value is ″false.″

Exceptions

The work area partition service defines the following exceptions for use with the work area partition

manager interface:

PartitionAlreadyExistsException

This exception is raised by the createWorkAreaPartition method on the WorkAreaPartitionManager

implementation if a user tries to create a work area partition with a partition name that already

exists. Partition names must be unique.

NoSuchPartitionException

This exception is raised by the getWorkAreaPartition method on the WorkAreaPartitionManager

implementation if a user requests a work area partition with a partition name that does not exist.

java.lang.IllegalAccessException

This exception is raised by the createWorkAreaPartition method on the WorkAreaPartitionManager

implementation if a user tries to create a work area partition during run time on a server process.

This method can only be used on a J2EE client process. In the server process, a partition must be

created using the administrative console.

For additional information about work area, see the com.ibm.websphere.workarea package in the API

documentation. The generated API documentation is available in the information center table of contents

from the path Reference > Developer > API documentation > Application programming interfaces.

Example: Work area partition manager

The example below demonstrates the use of the work area partition manager interface. The sample

illustrates how to create and retrieve a work area partition programmatically`. Please note that

programmatically creating a work area partition is only available on the Java 2 platform, Enterprise Edition

(J2EE) client. To create a work area partition on the server one must use the administrative console. See

“Work area partition service” on page 2032 for configuration parameters available to configure a partition.

import com.ibm.websphere.workarea.WorkAreaPartitionManager;

import com.ibm.websphere.workarea.UserWorkArea;

import com.ibm.websphere.workarea.PartitionAlreadyExistsException;

import com.ibm.websphere.workarea.NoSuchPartitionException;

import java.lang.IllegalAccessError;

import java.util.Properties;

import javax.naming.InitialContext;

//This sample demonstrates how to retrieve an instance of the

//WorkAreaPartitionManager implementation and how to use that

//instance to create a WorkArea partition and retrieve a partition.

//NOTE: Creating a partition in the way listed below is only available

//on a J2EE client. To create a partition on the server use the

//WebSphere administrative console. Retrieving a WorkArea

//partition is performed in the same way on both client and server.

public class Example {

 //The name of the partition to create/retrieve

 String partitionName = "myPartitionName";

 //The name in java naming the WorkAreaPartitionManager instance is bound to

 String jndiName = "java:comp/websphere/WorkAreaPartitionManager";

 //On a J2EE client a user would create a partition as follows:

 public UserWorkArea myCreate(){

 //Variable to hold our WorkAreaPartitionManager reference

 WorkAreaPartitionManager partitionManager = null;

 //Get an instance of the WorkAreaPartitionManager implementation

 try {

 InitialContext initialContext = new InitialContext();

 partitionManager = (WorkAreaPartitionManager) initialContext.lookup(jndiName);

2036 Administering applications and their environment

} catch (Exception e) { }

 //Set the properties to configure our WorkArea partition

 Properties props = new Properties();

 props.put("maxSendSize","12345");

 props.put("maxReceiveSize","54321");

 props.put("Bidirectional","true");

 props.put("DeferredAttributeSerialization","true");

 //Variable used to hold the newly created WorkArea Partition

 UserWorkArea myPartition = null;

 try{

 //This is the way to create a partition on the J2EE client. Use the

 //WebSphere Administrative Console to create a WorkArea Partition

 //on the server.

 myPartition = partitionManager.createWorkAreaPartition(partitionName,props);

 }

 catch (PartitionAlreadyExistsException e){ }

 catch (IllegalAccessException e){ }

 return myPartition;

 }

 //. . . .

 //In order to retrieve a WorkArea partition at some time later or

 //from some other class, do the following (from client or server):

 public UserWorkArea myGet(){

 //Variable to hold our WorkAreaPartitionManager reference

 WorkAreaPartitionManager partitionManager = null;

 //Get an instance of the WorkAreaPartitionManager implementation

 try {

 InitialContext initialContext = new InitialContext();

 partitionManager = (WorkAreaPartitionManager) initialContext.lookup(jndiName);

 } catch (Exception e) { }

 //Variable used to hold the retrieved WorkArea partition

 UserWorkArea myPartition = null;

 try{

 myPartition = partitionManager.getWorkAreaPartition(partitionName);

 }catch(NoSuchPartitionException e){ }

 return myPartition;

 }

}

Work area partition collection

Use this page to manage the work area service.

The work area partition service supports the definition of custom work area partitions.

To view this administrative console page, click Servers > Application servers > server_name > Business

Process Services > Work area partition service.

Name:

Specifies the name of the work area partition that is used to retrieve the partition. This name must be

unique.

Description:

Specifies the description of the work area partition.

Chapter 20. Learn about WebSphere programming extensions 2037

Enable service at server startup:

Specifies whether the server attempts to start the specified service when the server starts.

Bidirectional:

Permits applications to modify the context of a work area that is imported by a J2EE request; modified

properties are propagated back to the requestor environment. This option is disabled by default.

Maximum send size:

Specifies the maximum size of data that can be sent within a single work area. (0 = no limit; -1 = default)

 A value of 0 means there is no limit to the data sent. The default value of -1 represents 32768 bytes of

data sent.

Maximum receive size:

Specifies the maximum size of data that can be received within a single work area. (0 = no limit; -1 =

default)

 A value of 0 means there is no limit to the data received. The default value of -1 represents 32768 bytes

of data received.

Deferred attribute serialization:

Specifies whether attribute serialization is deferred until the work area is propagated on a remote

invocation.

Enable Web service propagation:

Specifies whether the work area partition is propagated on Web service requests. This option is disabled

by default.

Work area partition settings:

Use this page to modify the work area partition settings.

 The work area partition service supports the definition of custom work area partitions.

To view this administrative console page, click Servers > Application servers > server_name > Business

Process Services > Work area partition service > work_area_partition_name.

Name:

Specifies the name of the work area partition that is used to retrieve the partition. This name must be

unique.

Description:

Specifies the description of the work area partition.

Enable service at server startup:

Specifies whether the server attempts to start the specified service when the server starts.

Bidirectional:

2038 Administering applications and their environment

Permits applications to modify the context of a work area that is imported by a J2EE request; modified

properties are propagated back to the requestor environment. This option is disabled by default.

Maximum send size:

Specifies the maximum size of data that can be sent within a single work area. (0 = no limit; -1 = default)

 Data type Integer

Units Bytes

Default 32768

Range -1, 0 (no limit) and 1 to 2147483647

Maximum receive size:

Specifies the maximum size of data that can be received within a single work area. (0 = no limit; -1 =

default)

 Data type Integer

Units Bytes

Default 32768

Range -1, 0 (no limit) and 1 to 2147483647

Deferred attribute serialization:

Specifies whether attribute serialization is deferred until the work area is propagated on a remote

invocation. This option is disabled by default.

Enable Web service propagation:

Specifies whether the work area partition is propagated on Web service requests. This option is disabled

by default.

Bidirectional propagation

Example: Bidirectional propagation of work area context

Whether context changes propagate back to a calling application from a remote application depends on

the configuration of the work area partition. If a user creates a bidirectional partition, changes made by a

remote application propagate back to the calling application. In other words, changes made to the work

area context by a downstream process propagate back up stream. Figure 1 illustrates distribution of work

area context on a remote call when the partition containing the given work area is configured for

bidirectional propagation of its work area context. For this illustration, the client and server must have

created a partition with the same name.

Chapter 20. Learn about WebSphere programming extensions 2039

As Figure 1 shows, when the client makes a remote call to the server, the server receives the context set

by the client process. The server then can make changes to this context or add to it. In this illustration, the

server overwrites the value at key1, removes the property at key2, and adds two new properties at key5

and key6. When the server application returns to the client, the work area context is propagated back to

the client and demarshalled. The current work area is then updated with the new context. Note, that if the

partition is not configured as bidirectional, and the server tries to change or remove context in work area,

″Work Area 1″, it will receive a com.ibm.websphere.workarea.NotOriginator exception since the client was

the originator of the work area. The server can retrieve the context in ″Work Area 1″. This is the main

distinction between bidirectional propagation of context and non-bidirectional propagation.

Bidirectional propagation of nested work area context

If a remote application needs to add context to a work area that is only used by itself or any other remote

objects, the remote application should begin another work area. By beginning a new work area, the new

context added is scoped to that application and does not flow back to the calling application. The major

benefit of nesting work areas is that nesting work areas allows an application to scope work area context

to a given application. Taking the above illustration one step further, if the server has begun a work area

before overwriting the value at key1, removing the property at key2, or adding new properties at key5 and

key6; those changes would not have propagated back to the client. This is shown in Figure 2. You can

also see from this figure that the client does not receive the context from the nested work area started by

the server.

Context deleted

by the server

Context added

by the server

Process Boundary

Client Server

Work Area 1

Key

key1

key2

key3

key4

Value

A

B

C

D

Mode

normal

read-only

fixed, normal

fixed, read-only

Work Area 1

Key

key3

key4

key1

key5

key6

key2

Value

C

D

G

E

F

B

Mode

fixed normal

fixed read-only

normal

fixed normal

normal

read-only

Work Area 1

Key

key3

key4

key1

key5

key6

key2

Value

C

D

G

E

F

B

Mode

fixed normal

fixed read-only

normal

fixed normal

normal

read-only

Context visible to

Work Area 1

key3 = C

key4 = D

key1 = G

key5 = E

key6 = F

after remote call:

Deleted context

Added context

Context visible to

Work Area 1

key1 = A

key2 = B

key3 = C

key4 = D

before remote call:

Figure 22. Figure 1

2040 Administering applications and their environment

Accessing a user defined work area partition

The work area partition service provides a Java Naming and Directory Interface (JNDI) binding to an

implementation of the work area partition manager interface under the name java:comp/websphere/
WorkAreaPartitionManager. Applications that need to access their partition can perform a lookup on that

JNDI name and then use the getWorkAreaPartition method on the work area partition manager, as shown

in the following code example:

import com.ibm.websphere.workarea.*;

import javax.naming.*;

public class SimpleSampleServlet {

 ...

 //Variable to hold our WorkAreaPartitionManager implementation

 WorkAreaPartitionManager partitionManager = null;

 try {

 InitialContext initialContext = new InitialContext();

 partitionManager = (WorkAreaPartitionManager)

 initialContext.lookup("java:comp/websphere/WorkAreaPartitionManager");

 } catch (Exception e) {...}

 //Variable used to hold the retrieved WorkArea Partition

 UserWorkArea myPartition = null;

 try{

 myPartition = partitionManager.getWorkAreaPartition(partitionName);

 }catch(NoSuchPartitionException e){...}

}

Process Boundary

Client Server

Work Area 1

Key

key1

key2

key3

key4

Value

A

B

C

D

Mode

normal

read-only

fixed, normal

fixed, read-only

Work Area 1

Key

key1

key2

key3

key4

Value

A

B

C

D

Mode

normal

read-only

fixed, normal

fixed, read-only

Work Area 1

Context from Work Area 1

Context added to

Work Area 1.1

Deleted context

Added content

Context visible to

Work Area 1

key1 = A

key2 = B

key3 = C

key4 = D

before remote call:

Context visible to

Work Area 1

key1 = A

key2 = B

key3 = C

key4 = D

after remote call:

Work Area 1.1

Key

key1

key3

key2

key5

key6

key4

Value

A

C

D

B

E

F

Mode

normal

fixed normal

fixed r

read only

read only

fixed normal

ead-only

Figure 23. Figure 2

Chapter 20. Learn about WebSphere programming extensions 2041

The next step is to use the begin method to create a new work area and associate it with the calling

thread, as described in the topic Beginning a new work area.

Propagating work area context over Web services

WebSphere Application Server Version 6.1 introduces the option to propagate work area context on a Web

service call. Prior to WebSphere Application Server Version 6.1, work area context was only propagated

over RMI/IIOP calls. The work area application programming interfaces (APIs) have not changed to

implement this propagation. You can use the work area APIs as they have in the past and as outlined in

the work area documentation. However, by default, work area context is not propagated on a Web service

call, you must enable this option.

1. Enable a server to propagate work area context on a Web service call.

a. Start the administrative console.

b. Select Servers > Application servers > server_name > Business Process Services.

v To enable the work area service, (the UserWorkArea partition) to propagate its context on a Web

service call:

– Select Work area service.

v To enable an individual partition to propagate its context on a Web service call:

– Select Work area partition service.

– Select a partition.

c. Check the EnableWebServicePropagation field to enable Web service propagation.

d. Save the new configuration and restart the server to apply the new configuration.

2. Enable a client to propagate work area context on a Web service call:

Note: The steps below are for the work area service (the UserWorkArea partition). For user defined

partitions the EnableWebServicePropagation property must be set when creating a partition on

the client, see “The Work area partition manager interface” on page 2034.

a. Set the property com.ibm.websphere.workarea.EnableWebServicePropagation to true when

invoking the launchClient script found in the $WAS_HOME/bin directory. For example, to set this

property to true, add the following system properties to the launchClient invocation as needed:

-CCDcom.ibm.websphere.workarea.EnableWebServicePropagation=true

b. Set the property com.ibm.websphere.workarea.EnableWebServicePropagation in a property file that

is used by the launchClient script. See “Running application clients” on page 246for additional

information.

2042 Administering applications and their environment

Chapter 21. Overview and new features for monitoring

Use the links provided in this topic to learn about monitoring capabilities.

New for administrators: Improved monitoring and performance tuning

A section of this topic describes what is new in the area of performance tuning.

Performance: Resources for learning

Use the following links to find relevant supplemental information about performance. The information

resides on IBM and non-IBM Internet sites, whose sponsors control the technical accuracy of the

information.

These links are provided for convenience. Often, the information is not specific to the IBM WebSphere

Application Server product, but is useful for understanding the product. When possible, links are provided

to technical papers and Redbooks that supplement the broad coverage of the release documentation with

in-depth examinations of particular product areas. The following sections are covered in this reference:

View the following links for additional information:

v “Request metrics ”

v “Monitoring performance with third-party tools”

v “Tuning performance”

v “Java™ performance resource” on page 2044

Request metrics

v Systems Management: Application Response Measurement (ARM)

The Open Group ARM specifications.

Monitoring performance with third-party tools

v IBM Search Solutions.

Use IBM’s Global Solution Directory to find a list of IBM’s business partners that offer performance

monitoring tools compliant with WebSphere Application Server.

Tuning performance

v Hints on Running a high-performance Web server

Read hints about running Apache on a heavily loaded Web server. The suggestions include how to tune

your kernel for the heavier TCP/IP load, and hardware and software conflicts.

v Application tuning

See WebSphere Application Server Development Best Practices for Performance and Scalability for

more information on application tuning.

v Performance Analysis for Java Web sites

Offers clear explanations and expert practical guidance on performance analysis for Java-based Web

sites. It offers extensive appendices, including worksheets for capacity planning, checklists to help you

prepare for different stages of performance testing, and a list of performance-test tool vendors.

v

AIX

AIX documentation

View the entire AIX software documentation library for releases 4.3, 5.1, and 5.2.

v WebSphere Application Server Development Best Practices for Performance and Scalability

Describes development best practices for Web applications with servlets, JavaServer Pages files, JDBC

connections, and enterprise applications with Enterprise JavaBeans components.

v IBM WebSphere Application Server Advanced Edition Tuning Guide (Version 4.02)

v Redbook: WebSphere Application Server V3.5 Handbook (SG24-6161-00)

v Redbook: WebSphere Application Server V3 Performance Tuning Guide (SG24-5657-00)

© Copyright IBM Corp. 2006 2043

http://www.opengroup.org/publications/catalog/c807.htm
http://www.developer.ibm.com/gsdod/search.do
http://www-306.ibm.com/software/webservers/httpservers/doc/v136/misc/perf.html
http://www-306.ibm.com/software/webservers/appserv/ws_bestpractices.pdf
http://www.awprofessional.com/catalog/product.asp?product_id={A801214C-A166-4836-859A-423B246C65E4}
http://publib16.boulder.ibm.com/pseries/en_US/infocenter/base/aix.htm
http://www-306.ibm.com/software/webservers/appserv/ws_bestpractices.pdf
http://www-3.ibm.com/software/webservers/appserv/doc/v40/ae/infocenter/was/pdf/nav_Tuneguide.pdf
http://www.redbooks.ibm.com/pubs/pdfs/redbooks/sg246161.pdf
http://www.redbooks.ibm.com/abstracts/sg245657.html?Open

Java™ performance resource

v IBM developerWorks

Search the IBM developerWorks Web site for a list of garbage collection documentation, including

″Understanding the IBM Java Garbage Collector″, a three-part series. To locate the documentation,

search on ″sensible garbage collection″ in the developerWorks search application.

Review ″Understanding the IBM Java Garbage Collector″ for a description of the IBM verbose:gc output

and more information about the IBM garbage collector.

2044 Administering applications and their environment

http://www-136.ibm.com/developerworks

Chapter 22. How do I monitor?

Hold your cursor over the task icon () to see a description of the task. The task preview feature is

unavailable for Mozilla Web browsers.

 Enable and

customize PMI

data collection

Documentation

Monitor system

health by

viewing PMI data

Documentation

Measure

application flow

Documentation

Legend for ″How do I?...″ links

 Detailed steps Show me Tell me Guide me Teach me

Refer to the detailed

steps and reference

Watch a brief

multimedia

demonstration

View the presentation

for an overview

Be led through the

console pages

Perform the tutorial

with sample code

Approximate time:

Varies

Approximate time: 3

to 5 minutes

Approximate time:

10 minutes+

Approximate time:

1/2 hour+

Approximate time: 1

hour+

© Copyright IBM Corp. 2006 2045

2046 Administering applications and their environment

Chapter 23. Monitoring end user response time

To analyze Web site response from a client viewpoint, use Tivoli Monitoring for Transaction Performance.

Monitoring system response time provides an external perspective of how the overall Web site responds

and performs from an client viewpoint. It is important to understand the load and response time on your

site. You have some options when monitoring at this level.

v Use Tivoli Monitoring for Transaction Performance to support you to inject and monitor synthetic

transactions, helping you identify when your Web site experiences a problem.

v You may also use other performance monitoring tools.

© Copyright IBM Corp. 2006 2047

http://www-306.ibm.com/software/tivoli/products/monitor-transaction/

2048 Administering applications and their environment

Chapter 24. Monitoring overall system health

Monitoring overall system health is fundamentally important to understanding the health of every system

involved with your system. This includes Web servers, application servers, databases, back-end systems,

and any other systems critical to running your Web site.

If any system has a problem, it might cause the servlet is slow message to appear. IBM and several

other business partners leverage the WebSphere APIs to capture performance data and to incorporate it

into an overall 24-by-7 monitoring solution. WebSphere Application Server provides Performance

Monitoring Infrastructure (PMI) data to help monitor the overall health of the WebSphere Application Server

environment. PMI provides average statistics on WebSphere Application Server resources, application

resources, and system metrics. Many statistics are available in WebSphere Application Server, and you

might want to understand the ones that most directly measure your site’s resources to detect problems.

To monitor overall system health, monitor the following statistics at a minimum:

 Metric Meaning

Average response time Include statistics, for example, servlet or enterprise beans response time. Response

time statistics indicate how much time is spent in various parts of WebSphere

Application Server and might quickly indicate where the problem is (for example, the

servlet or the enterprise beans).

Number of requests

(transactions)

Enables you to look at how much traffic is processed by WebSphere Application Server,

helping you to determine the capacity that you have to manage. As the number of

transactions increase, the response time of your system might be increasing, showing

the need for more system resources or the need to retune your system to handle

increased traffic.

Number of live HTTP

sessions

The number of live HTTP sessions reflects the concurrent usage of your site. The more

concurrent live sessions, the more memory is required. As the number of live sessions

increase, you might adjust the session time-out values or the Java virtual machine

(JVM) heap available.

Web server thread pools Interpret the Web server thread pools, the Web container thread pools, and the Object

Request Broker (ORB) thread pools, and the data source or connection pool size

together. These thread pools might constrain performance due to their size. The thread

pools setting can be too small or too large, therefore causing performance problems.

Setting the thread pools too large impacts the amount of memory that is needed on a

system or might cause too much work to flow downstream if downstream resources

cannot handle a high influx of work. Setting thread pools too small might also cause

bottlenecks if the downstream resource can handle an increase in workload.

The Web and Enterprise

JavaBeans (EJB) thread

pools

Database and connection

pool size

Java virtual memory (JVM) Use the JVM metric to understand the JVM heap dynamics, including the frequency of

garbage collection. This data can assist in setting the optimal heap size. In addition, use

the metric to identify potential memory leaks.

CPU You must observe these system resources to ensure that you have enough system

resources, for example, CPU, I/O, and paging, to handle the workload capacity. I/O

System paging

To monitor several of these statistics, WebSphere Application Server provides the Performance Monitoring

Infrastructure to obtain the data, and provides the Tivoli Performance Viewer (TPV) in the administrative

console to view this data.

1. Enable PMI through the administrative console to begin data collection.

2. Use TPV or third-party performance monitoring and management solutions to monitor performance.

3. Extend monitoring capabilities by developing your own monitoring applications or extending PMI.

© Copyright IBM Corp. 2006 2049

Performance Monitoring Infrastructure (PMI)

Use this page to learn about Performance Monitoring Infrastructure and other tools to help monitor the

overall health of the application server.

A typical Web system consists of a Web server, application server, and a database. Monitoring and tuning

the application server is critical to the overall performance of the Web system. Performance Monitoring

Infrastructure (PMI) is the core monitoring infrastructure for WebSphere Application Server and

WebSphere family products like, Portal, Commerce, and so on. The performance data provided by

WebSphere PMI helps to monitor and tune the application server performance.

When tuning the WebSphere Application Server for optimal performance, or fixing a poorly performing

Java 2 Platform, Enterprise Edition (J2EE) application, it is important to understand how the various run

time and application resources are behaving from a performance perspective. PMI provides a

comprehensive set of data that explains the runtime and application resource behavior. For example, PMI

provides database connection pool size, servlet response time, Enterprise JavaBeans (EJB) method

response time, Java virtual machine (JVM) garbage collection time, CPU usage, and so on. This data can

be used to understand the runtime resource utilization patterns of the thread pool, connection pool, and so

on, and the performance characteristics of the application components like servlets, JavaServer Pages

(JSP), and enterprise beans.

Using PMI data, the performance bottlenecks in the application server can be identified and fixed. For

instance, one of the PMI statistics in the Java DataBase Connectivity (JDBC) connection pool is the

number of statements discarded from prepared statement cache. This statistic can be used to adjust the

prepared statement cache size in order to minimize the discards and to improve the database query

performance. PMI data can be monitored and analyzed by Tivoli Performance Viewer (TPV), other Tivoli

tools, your own applications, or third party tools. TPV is a graphical viewer for PMI data that ships with

WebSphere Application Server. Performance advisors use PMI data to analyze the run-time state of the

application server, and provide tuning advice to optimize the application server resource utilization.

PMI data can also be used to monitor the health of the application server. Some of the health indicators

are CPU usage, Servlet response time, and JDBC query time. Performance management tools like Tivoli

Monitoring for Web Infrastructure and other third party tools can monitor the PMI data and generate alerts

based on some predefined thresholds.

PMI architecture

The Performance Monitoring Infrastructure (PMI) uses a client-server architecture.

The server collects performance data from various WebSphere Application Server components. A client

retrieves performance data from one or more servers and processes the data. WebSphere Application

Server, Version 6 supports the JavaTM 2 Platform, Enterprise Edition (J2EE) Management Reference

Implementation (JSR-77).

In WebSphere Application Server, Version 6 and later, PMI counters are enabled, based on a monitoring or

instrumentation level. The levels are None, Basic, Extended, All, and Custom. These levels are specified in

the PMI module XML file. Enabling the module at a given level includes all the counters at the given level

plus counters from levels below the given level. So, enabling the module at the extended level enables all

the counters at that level plus all the basic level counters as well.

JSR-077 defines a set of statistics for J2EE components as part of the StatisticProvider interface. The PMI

monitoring level of Basic includes all of the JSR-077 specified statistics. PMI is set to monitor at a Basic

level by default.

As shown in the following figure, the server collects PMI data in memory. This data consists of counters

such as servlet response time and data connection pool usage. The data points are then retrieved using a

2050 Administering applications and their environment

Web client, a Java client, or a Java Management Extensions (JMX) client. WebSphere Application Server

contains Tivoli Performance Viewer, a Java client which displays and monitors performance data. See the

“Monitoring performance with Tivoli Performance Viewer (TPV)” on page 2204, “Third-party performance

monitoring and management solutions” on page 2219, and “Developing your own monitoring applications”

on page 2169 topics for more information on monitoring tools.

IBM Tivoli Monitoring for
Web Infrastructure

WebSphere Studio Application
Monitor

User-developed monitoring tools

Third-party monitoring tools

Web
Client

JMX
Client

Deployment Manager
(JMX Connector)

WebSphere
Application

Server

WebSphere
Application

Server

PMI
Service

PMI
Service

WebSphere PMI Interface

JMX API

JMX API
PMI API

Partner and customer APIs

The figure shows the overall PMI architecture. On the right side, the server updates and keeps PMI data in

memory. The left side displays a Web client, a Java client, and a JMX client retrieving the performance

data.

PMI and J2EE 1.4 Performance Data Framework

Java 2 Platform, Enterprise Edition (J2EE) 1.4 includes a Performance Data Framework that is defined as

part of JSR-077 (Java 2 Platform, Enterprise Edition Management Specification).

This framework specifies the performance data that must be available for various J2EE components.

WebSphere PMI complies with J2EE 1.4 standards by implementing the J2EE 1.4 Performance Data

Framework.

In addition to providing statistics that are defined in J2EE 1.4, PMI provides additional statistics about the

J2EE components, for example, servlets and enterprise beans, and WebSphere Application Server-specific

components, for example, thread pools and workload management.

The following diagram shows how the PMI and J2EE Performance Data Framework fit into WebSphere

Application Server.

Chapter 24. Monitoring overall system health 2051

(Deprecated in 6.0)

PMI Client API

CPD data
Framework

PMI interface (JMX) J2EE interface (JMX)

JMX PerfMBean
J2EE 1.4 MBean

PMI extension for
additional metrics

J2EE 1.4
Performance data framework

PMI run time

Interface

Data stucture

PMI run time

P
M

I
S

e
r
v
ic

e

WebSphere Application Server (foundation)

PMI data classification

This topic describes the Performance Monitoring Infrastructure (PMI) data classification.

The static component consists of a name, ID and other descriptive attributes to identify the data. The

dynamic component contains information that changes over time, such as the current value of a counter

and the time stamp associated with that value.

The PMI data can be one of the following statistic types (these statistic types follow the J2EE 1.4

Performance Data Framework):

 Statistic type Description Example

CountStatistic Represents a running count of a given value. Number of Servlet requests

AverageStatistic Represents a simple average. Keeps track of

total, count, min, and max. The average can

be derived by total and count. (This type is

WebSphere extension to J2EE Performance

Data Framework)

Average HttpSession size in bytes.

TimeStatistic Same as AverageStatistic, except that the unit

of measure is milliseconds or seconds.

Average Servlet response time.

RangeStatistic Represents a time-weighted average. Keeps

track of current, low water mark, high water

mark, time-weight total, and integral.

Number of concurrent Servlet

requests.

BoundedRangeStatistic Same as RangeStatistic, with lower bound

and upper bound.

JDBC connection pool size.

The following diagram shows the statistic class hierarchy:

2052 Administering applications and their environment

Statistic

ID: integer
name: String
unit: String
descriptions: String
startTime: long
lastSampleTime: long

CountStatistic

count: long

DoubleStatistic

count: double

AverageStatistic

count: long
total: long
min: long
max: long

BoundaryStatistic

upperBound: long
lowerBound: long

TimeStatistic
BoundedRangeStatistic

RangeStatistic

highWaterMark: long
lowWaterMark: long
current: long
integral: double

Statistic

ID A unique ID that identifies the Statistic within the given Stats (WebSphere PMI extension)

name Statistic name

unit Unit of measurement for the statistic

description

Textual description of the statistic

startTime

Time the first measurement was taken

lastSampleTime

Time the most recent measurement was taken

CountStatistic

count Count since the measurement started

DoubleStatistic

count Value since the measurement started

AverageStatistic

(WebSphere PMI extension. This is the same as the TimeStatistic defined in J2EE 1.4, except that

it is used to track non-time-related measurements like byte size, etc.)

count Number of measurements

total Sum of the values of all the measurements

min Minimum value

max Maximum value

BoundaryStatistic

upperBound

Upper limit of this attribute

lowerBound

Lower limit of this attribute

RangeStatistic

Chapter 24. Monitoring overall system health 2053

current

Current value of this attribute

lowWaterMark

Lowest value of this attribute

upperWaterMark

Highest value of this attribute

integral

Time-weighted sum of this attribute [time-weighted average = integral / (lastSampleTime -

startTime] (WebSphere PMI extension)

In WebSphere Application Server, Version 4, PMI data was classified with the following types:

v Numeric: Maps to CountStatistic in the J2EE 1.4 specification. Holds a single numeric value that can

either be a long or a double. This data type is used to keep track of simple numeric data, such as

counts.

v Stat: Holds statistical data on a sample space, including the number of elements in the sample set, their

sum, and sum of squares. You can obtain the mean, variance, and standard deviation of the mean from

this data.

v Load: Maps to the RangeStatistic or BoundedRangeStatistic, based on J2EE 1.4 specification. This

data type keeps track of a level as a function of time, including the current level, the time that level was

reached, and the integral of that level over time. From this data, you can obtain the time-weighted

average of that level. For example, this data type is used in the number of active threads and the

number of waiters in a queue.

These PMI data types continue to be supported through the PMI client API. Statistical data types are

supported through both the PMI API and Java Management Extension (JMX) API.

In WebSphere Application Server, Version 4 and Version 5, CountStatistic data require a low monitoring

level, and TimeStatistic data require a medium monitoring level. RangeStatistic and

BoundedRangeStatistic require a high monitoring level. There are a few counters that are exceptions to

this rule. The average method response time, the total method calls, and active methods counters require

a high monitoring level. The Java virtual machine counters, SerializableSessObjSize, and data tracked for

each individual method (method level data) require a maximum monitoring level. Also, the level maximum

enables synchronized update to all the statistic types.

WebSphere Application Server Versions 6.0 and above deprecate the monitoring levels (Low, Medium,

High, and Max) and introduces fine-grained control to enable/disable statistics individually. The fine-grained

control is available under the custom option. Refer to “Enabling PMI using the administrative console” on

page 2159 for more details.

In order to reduce the monitoring overhead, updates to CountStatistic, DoubleStatistic, AverageStatistic,

and TimeStatistic are not synchronized. Since this data tracks the total and average, the extra accuracy is

generally not worth the performance cost. RangeStatistic and BoundedRangeStatistic are very sensitive;

therefore, they are always synchronized. To enable synchronized updates for all the statistic types enable

the ’Use sequential update’ option. Refer to “Enabling PMI using the administrative console” on page 2159

for details.

PMI data organization

Use this page as a general overview of monitoring, data collection, and counters using Performance

Monitoring Infrastructure (PMI) and Tivoli Performance Viewer (TPV).

Performance Monitoring Infrastructure (PMI) provides server-side monitoring and a client-side API to

retrieve performance data. PMI maintains statistical data within the entire WebSphere Application Server

domain, including multiple nodes and servers. Each node can contain one or more WebSphere Application

Server. Each server organizes PMI data into modules and submodules.

2054 Administering applications and their environment

Node

Hierarchy of data collections used for performance reporting to Tivoli Performance Viewer (TPV)

PMI JMX Client TPV

Server*Serve 2Counter

Instance
Module

Enterprise beans
Avg Method RT

EJB Module 1

entity stateful stateless

Bean1 Bean2 Bean3

Avg Method RT

Gets Found

Num Destroys

Num Creates Avg Method RT

Bean3

Tivoli Performance Viewer, formerly Resource Analyzer, organizes performance data in a centralized

hierarchy of the following objects:

v Node. A node represents a physical machine in the WebSphere Application Server administrative

domain.

v Server. A server is a functional unit that provides services to clients over a network. No performance

data is collected for the server itself.

v Module.

A module represents one of the resource categories for which collected data is reported to the

performance viewer. Each module has at least one configuration file in XML format. These files

determine organization and lists a unique identifier for each performance data in the module. Modules

include enterprise beans, JDBC connection pools, J2C connection pool, Java virtual machine (JVM) run

time (including Java Virtual Machine Tool Interface (JVMTI)), servlet session manager, thread pools,

transaction manager, Web applications, Object Request Broker (ORB), Workload Management (WLM),

Web services gateway (WSGW), and dynamic cache.

v Submodule. A submodule represents a fine granularity of a resource category under the module. For

example, ORB thread pool is a submodule of the thread pool category. Submodules can contain other

submodules.

v Counter. A counter is a data type used to hold performance information for analysis. Each resource

category (module) has an associated set of counters. The data points within a module are queried and

distinguished by the MBean ObjectNames or PerfDescriptors. Examples of counters include the number

of active enterprise beans, the time spent responding to a servlet request and the number of kilobytes

of available memory.

Tivoli Performance Viewer is a thin client integrated into the WebSphere Application Server administrative

console. It provides a simple viewer for the performance data provided by Performance Monitoring

Infrastructure (PMI), and allows users to view and manipulate the data for counters. A particular counter

type can appear in several modules. For example, both the servlet and enterprise bean modules have a

Chapter 24. Monitoring overall system health 2055

response time counter. In addition, a counter type can have multiple instances within a module. In the

figure above, both the Enterprise beans module and Bean1 have an Avg Method RT counter.

Counters are enabled at the module level and can be enabled or disabled for elements within the module.

For example, in the figure, if the enterprise beans module is enabled, its Avg Method RT counter is

enabled by default. However, you can then disable the Avg Method RT counter even when the rest of the

module counters are enabled. You can also, if desired, disable the Avg Method RT counter for Bean1, but

the aggregate response time reported for the whole module no longer includes Bean1 data.

As part of a fine-grained control feature, WebSphere Application Server provides statistic sets which are

pre-defined, fixed server-side sets, based on the PMI statistic usage scenarios. The PMI specification

levels include: none, basic, extended, all, or custom. If you choose none, all PMI modules are disabled.

Choosing basic provides the J2EE and the essential set of statistics to give you a basic level of

monitoring. Selecting extended gives you the basic level of monitoring plus Work Load Monitor,

Performance Advisor, and Tivoli resource models for a more robust monitoring set. Choosing all enables

all statistics. Choosing custom gives you fine-grained control to enable or disable statistics individually.

There are only two states for a statistic: enabled or disabled. To provide an option to enable synchronized

updates, WebSphere Application Server, provides a configuration parameter, synchronizedUpdate, at the

PMI service level. When this attribute is true, all the statistic updates are synchronized. By default, the

synchronizedUpdate parameter is set to false. The synchronizedUpdate parameter is the equivalent to the

Max level in V5.0.x and V5.1x.

Data collection can affect performance of the application server. The impact depends on the number of

counters enabled, the type of counters enabled and the monitoring level set for the counters.

ModuleTreeRoot

EJBModule ConnPoolModule TranModule WebAppModule

dataSource1 dataSource2

bean 1 bean 2 bean 3

methods

method 1 method 2

webapp 1 webapp 2

servlets

servlet 1 servlet 2

The following PMI modules are available to provide statistical data:

Enterprise bean module, enterprise bean, methods in a bean

Data counters for this category report load values, response times, and life cycle activities for

enterprise beans. Examples include the average number of active beans and the number of times

bean data is loaded or written to the database. Information is provided for enterprise bean

methods and the remote interfaces used by an enterprise bean. Examples include the number of

times a method is called and the average response time for the method. In addition, the Tivoli

Performance Viewer reports information on the size and use of a bean objects cache or enterprise

bean object pool. Examples include the number of calls attempting to retrieve an object from a

pool and the number of times an object is found available in the pool.

2056 Administering applications and their environment

JDBC connection pools

Data counters for this category contain usage information about the JDBC connection pools for a

database. Examples include the number of managed connections or physical connections and the

total number of connections or connection handles.

Java 2 Connector (J2C) connection pool

Data counters for this category contain usage information about the Java 2 Platform, Enterprise

Edition (J2EE) Connector architecture that enables enterprise beans to connect and interact with

procedural back-end systems, such as Customer Information Control System (CICS), and

Information Management System (IMS). Examples include the number of managed connections or

physical connections and the total number of connections or connection handles.

Java virtual machine API (JVM)

Data counters for this category contain memory used by a process as reported by JVM run time.

Examples are the total memory available and the amount of free memory for the JVM. JVM run

time also includes data from the JVMTI. This data provides detailed information about the JVM

running the application server.

Servlet session manager

Data counters for this category contain usage information for HTTP sessions. Examples include

the total number of accessed sessions, the average amount of time it takes for a session to

perform a request, and the average number of concurrently active HTTP sessions.

Thread pool

Data counters for this category contain information about the thread pools for Object Request

Broker (ORB) threads and the Web container pools used to process HTTP requests. Examples

include the number of threads created and destroyed, the maximum number of pooled threads

allowed, and the average number of active threads in the pool.

Java Transaction API (JTA)

Data counters for this category contain performance information for the transaction manager.

Examples include the average number of active transactions, the average duration of transactions,

and the average number of methods per transaction.

Web applications, servlet

Data counters for this category contain information for the selected server. Examples include the

number of loaded servlets, the average response time for completed requests, and the number of

requests for the servlet.

Object Request Broker (ORB)

Data counters for this category contain information for the ORB. Examples include the object

reference lookup time, the total number of requests, and the processing time for each interceptor.

Web services gateway (WSGW)

Data counters for this category contain information for WSGW. Examples include the number of

synchronous and asynchronous requests and responses.

System data

Data counters for this category contain information for a machine (node). Examples include the

CPU utilization and memory usage. Note that this category is available at node level, which means

it is only available at node agent in the multiple servers version.

Workload Management (WLM)

Data counters for this category contain information for workload management. Examples include

the number of requests, the number of updates and average response time.

Dynamic cache

Data counters for this category contain information for the dynamic cache service. Examples

include in-memory cache size, the number of invalidations, and the number of hits and misses.

Chapter 24. Monitoring overall system health 2057

Web services

Data counters for this category contain information for the Web services. Examples include the

number of loaded Web services, the number of requests delivered and processed, the request

response time, and the average size of requests.

Alarm manager

Data counters for this category contain information for the Alarm Manager.

Object pool

Data counters for this category contain information for Object Pools.

Scheduler

Data counters for this category contain information for the Scheduler service.

You can access PMI data through the getStatsObject and the getStatsArray method in the PerfMBean.

You need to pass the MBean ObjectName(s) to the PerfMBean.

Use the following MBean types to get PMI data in the related categories:

v DynaCache: dynamic cache PMI data

v EJBModule*: Enterprise Java Bean (EJB) module PMI data (BeanModule)

v EntityBean*: specific EJB PMI data (BeanModule)

v JDBCProvider*: JDBC connection pool PMI data

v J2CResourceAdapter*: Java 2 Connectivity (J2C) connection pool PMI data

v JVM: Java virtual machine PMI data

v MessageDrivenBean*: specific EJB PMI data (BeanModule)

v ORB: Object Request Broker PMI data

v Server: PMI data in the whole server, you must pass recursive=true to PerfMBean

v SessionManager*: HTTP Sessions PMI data

v StatefulSessionBean*: specific EJB PMI data (BeanModule)

v StatelessSessionBean*: specific EJB PMI data (BeanModule)

v SystemMetrics: system level PMI data

v ThreadPool*: thread pool PMI data

v TransactionService: JTA Transaction PMI data

v WebModule*: Web application PMI data

v Servlet*: servlet PMI data

v WLMAppServer: Workload Management PMI data

v WebServicesService: Web services PMI data

v WSGW*: Web services gateway PMI data

To use the AdminClient API to query the MBean ObjectName for each MBean type. You can either query

all the MBeans and then match the MBean type or use the query String for the type only: String query =

″WebSphere:type=mytype,node=mynode,server=myserver,*″;

Set the mytype, mynode, and myserver values accordingly. You get a Set value when you call the

AdminClient class to query MBean ObjectNames. This response means that you can get multiple

ObjectNames.

In the previous example, the MBean types with a star (*) mean that there can be multiple ObjectNames in

a server for the same MBean type. In this case, the ObjectNames can be identified by both type and name

(but mbeanIdentifier is the real UID for MBeans). However, the MBean names are not predefined. They

are decided at run time based on the applications and resources. When you get multiple ObjectNames,

you can construct an array of ObjectNames that you are interested in. Then you can pass the

2058 Administering applications and their environment

ObjectNames to PerfMBean to get PMI data. You have the recursive and non-recursive options. The

recursive option returns Stats and sub-stats objects in a tree structure while the non-recursive option

returns a Stats object for that MBean only. More programming information can be found in “Developing

your own monitoring applications” on page 2169.

Enterprise bean counters

Use this page as a reference for properties of enterprise bean counters.

Counters for this category report load values, response times, and life cycle activities for enterprise beans.

Counter definitions:

Chapter 24. Monitoring overall system health 2059

N
am

e
K

ey

D
es

cr
ip

ti
o

n

V
er

si
o

n

G
ra

n
u

la
ri

ty

Ty
p

e
L

ev
el

O

ve
rh

ea
d

C
re

at
eC

ou
nt

be

an
M

od
ul

e.
cr

ea
te

s
T

he

nu

m
be

r
of

tim
es

th

at

be

an
s

w
er

e
cr

ea
te

d

3.
5.

5
an

d
la

te
r

P
er

ho

m
e

C
ou

nt
S

ta
tis

tic

B
as

ic

Lo
w

R
em

ov
eC

ou
nt

be

an
M

od
ul

e.
re

m
ov

es

T
he

nu

m
be

r
of

tim
es

th

at

be

an
s

w
er

e
re

m
ov

ed

3.
5.

5
an

d
la

te
r

P
er

ho

m
e

C
ou

nt
S

ta
tis

tic

B
as

ic

Lo
w

P
as

si
va

te
C

ou
nt

be

an
M

od
ul

e.
pa

ss
iv

at
es

T

he

nu

m
be

r
of

tim
es

th

at

be

an
s

w
er

e
pa

ss
iv

at
ed

(e
nt

ity

an

d
st

at
ef

ul
)

3.
5.

5
an

d
la

te
r

P
er

ho

m
e

C
ou

nt
S

ta
tis

tic

B
as

ic

Lo
w

A
ct

iv
at

eC
ou

nt

be
an

M
od

ul
e.

ac
tiv

at
es

T

he

nu

m
be

r
of

tim
es

th

at

be

an
s

w
er

e
ac

tiv
at

ed

(e
nt

ity

an

d
st

at
ef

ul
)

3.
5.

5
an

d
la

te
r

P
er

ho

m
e

C
ou

nt
S

ta
tis

tic

A
ll

Lo
w

Lo
ad

C
ou

nt

be
an

M
od

ul
e.

lo
ad

s
T

he

nu

m
be

r
of

tim
es

th

at

be

an

da
ta

w

as

lo

ad
ed

fr
om

pe

rs
is

te
nt

st
or

ag
e

(e
nt

ity
)

3.
5.

5
an

d
la

te
r

P
er

ho

m
e

C
ou

nt
S

ta
tis

tic

A
ll

Lo
w

S
to

re
C

ou
nt

be

an
M

od
ul

e.
st

or
es

T

he

nu

m
be

r
of

tim
es

th

at

be

an

da
ta

w

as

st

or
ed

in

pe
rs

is
te

nt

st

or
ag

e
(e

nt
ity

)

3.
5.

5
an

d
la

te
r

P
er

ho

m
e

C
ou

nt
S

ta
tis

tic

A
ll

Lo
w

In
st

an
tia

te
C

ou
nt

be

an
M

od
ul

e.
in

st
an

tia
te

s
T

he

nu

m
be

r
of

tim
es

th

at

be

an

ob
je

ct
s

w
er

e
in

st
an

tia
te

d

3.
5.

5
an

d
la

te
r

P
er

ho

m
e

C
ou

nt
S

ta
tis

tic

A
ll

Lo
w

F
re

ed
C

ou
nt

be

an
M

od
ul

e.
de

st
ro

ys

T
he

nu

m
be

r
of

tim
es

th

at

be

an

ob
je

ct
s

w
er

e
fr

ee
d

3.
5.

5
an

d
la

te
r

P
er

ho

m
e

C
ou

nt
S

ta
tis

tic

A
ll

Lo
w

R
ea

dy

C

ou
nt

be

an
M

od
ul

e.
re

ad
yC

ou
nt

T

he

nu

m
be

r
of

co
nc

ur
re

nt
ly

re

ad
y

be
an

s
(e

nt
ity

an

d
se

ss
io

n)
.

T
hi

s
co

un
te

r
w

as

ca
lle

d
co

nc
ur

re
nt

ac
tiv

e
in

V

er
si

on
s

3.
5.

5+

an

d
4.

0.

3.
5.

5
an

d
la

te
r

P
er

ho

m
e

R
an

ge
S

ta
tis

tic

B
as

ic

H
ig

h

Li
ve

C
ou

nt

be
an

M
od

ul
e.

co
nc

ur
re

nt
Li

ve
s

T
he

nu

m
be

r
of

co
nc

ur
re

nt
ly

liv

e
be

an
s

3.
5.

5
an

d
la

te
r

P
er

ho

m
e

R
an

ge
S

ta
tis

tic

E
xt

en
de

d
H

ig
h

2060 Administering applications and their environment

M
et

ho
dR

es
po

ns
eT

im
e

be
an

M
od

ul
e.

av
gM

et
ho

dR
t

T
he

av

er
ag

e
re

sp
on

se

tim

e
in

m
ill

is
ec

on
ds

on

th
e

be
an

m

et
ho

ds

(h
om

e,

re

m
ot

e,

lo
ca

l)

3.
5.

5
an

d
la

te
r

P
er

ho

m
e

Ti
m

eS
ta

tis
tic

B

as
ic

H

ig
h

C
re

at
eT

im
e

be
an

M
od

ul
e.

av
gC

re
at

eT
im

e
T

he

av

er
ag

e
tim

e
in

m

ill
is

ec
on

ds

th
at

a

be
an

cr

ea
te

ca
ll

ta
ke

s
in

cl
ud

in
g

th
e

tim
e

fo
r

th
e

lo
ad

if

an
y

5.
0

P
er

ho

m
e

Ti
m

eS
ta

tis
tic

A

ll
M

ax

Lo
ad

Ti
m

e
be

an
M

od
ul

e.
lo

ad
Ti

m
e

T
he

av

er
ag

e
tim

e
in

m

ill
is

ec
on

ds

fo

r
lo

ad
in

g
th

e
be

an

da
ta

fr

om

pe
rs

is
te

nt

st

or
ag

e
(e

nt
ity

)

5.
0

P
er

ho

m
e

Ti
m

eS
ta

tis
tic

A

ll
M

ed
iu

m

S
to

re
Ti

m
e

be
an

M
od

ul
e.

st
or

eT
im

e
T

he

av

er
ag

e
tim

e
in

m

ill
is

ec
on

ds

fo

r
st

or
in

g
th

e
be

an

da
ta

to

pe

rs
is

te
nt

st
or

ag
e

(e
nt

ity
)

5.
0

P
er

ho

m
e

Ti
m

eS
ta

tis
tic

A

ll
M

ed
iu

m

R
em

ov
eT

im
e

be
an

M
od

ul
e.

av
gR

em
ov

eT
im

e
T

he

av

er
ag

e
tim

e
in

m

ill
is

ec
on

ds

th
at

a

be
an

en
tr

ie
s

ca
ll

ta
ke

s
in

cl
ud

in
g

th
e

tim
e

at

th

e
da

ta
ba

se
,

if
an

y

5.
0

P
er

ho

m
e

Ti
m

eS
ta

tis
tic

A

ll
M

ax

M
et

ho
dC

al
lC

ou
nt

be

an
M

od
ul

e.
to

ta
lM

et
ho

dC
al

ls

T
he

to

ta
l n

um
be

r
of

m

et
ho

d
ca

lls

3.
5.

5
an

d
la

te
r

P
er

ho

m
e

C
ou

nt
S

ta
tis

tic

B
as

ic

H
ig

h

A
ct

iv
at

io
nT

im
e

be
an

M
od

ul
e.

ac
tiv

at
io

nT
im

e
T

he

av

er
ag

e
tim

e
in

m

ill
is

ec
on

ds

th
at

a

be
an

A
ct

iv
at

e
ca

ll
ta

ke
s

in
cl

ud
in

g
th

e
tim

e
at

th

e
da

ta
ba

se
,

if
an

y

5.
0

P
er

ho

m
e

Ti
m

eS
ta

tis
tic

A

ll
M

ed
iu

m

P
as

si
va

tio
nT

im
e

be
an

M
od

ul
e.

pa
ss

iv
at

io
nT

im
e

T
he

av

er
ag

e
tim

e
in

m

ill
is

ec
on

ds

th
at

a

be
an

P
as

si
va

te

ca
ll

ta
ke

s
in

cl
ud

in
g

th
e

tim
e

at

th

e
da

ta
ba

se
,

if
an

y

5.
0

P
er

ho

m
e

Ti
m

eS
ta

tis
tic

A

ll
M

ed
iu

m

Chapter 24. Monitoring overall system health 2061

A
ct

iv
eM

et
ho

dC
ou

nt

be
an

M
od

ul
e.

ac
tiv

eM
et

ho
ds

T

he

nu

m
be

r
of

co
nc

ur
re

nt
ly

ac
tiv

e
m

et
ho

ds

-

th
e

nu
m

be
r

of

m
et

ho
ds

ca

lle
d

at

th
e

sa
m

e
tim

e.

3.
5.

5
an

d
la

te
r

P
er

ho

m
e

Ti
m

eS
ta

tis
tic

A

ll
H

ig
h

R
et

rie
ve

F
ro

m
P

oo
lC

ou
nt

be

an
M

od
ul

e.
ge

ts
F

ro
m

P
oo

l
T

he

nu

m
be

r
of

ca
lls

re

tr
ie

vi
ng

an

ob
je

ct

fr

om

th

e
po

ol

(e

nt
ity

an

d
st

at
el

es
s)

3.
5.

5
an

d
la

te
r

P
er

ho

m
e

an
d

pe
r

ob
je

ct

po

ol

C
ou

nt
S

ta
tis

tic

A
ll

Lo
w

R
et

rie
ve

F
ro

m
P

oo
lS

uc
ce

ss
C

ou
nt

be

an
M

od
ul

e.
ge

ts
F

ou
nd

T

he

nu

m
be

r
of

tim
es

th

at

a

re
tr

ie
ve

fo

un
d

an

ob
je

ct

av

ai
la

bl
e

in

th
e

po
ol

(e

nt
ity

an
d

st
at

el
es

s)

3.
5.

5
an

d
la

te
r

P
er

ho

m
e

an
d

pe
r

ob
je

ct

po

ol

C
ou

nt
S

ta
tis

tic

A
ll

Lo
w

R
et

ur
ns

To
P

oo
lC

ou
nt

be

an
M

od
ul

e.
re

tu
rn

sT
oP

oo
l

T
he

nu

m
be

r
of

ca
lls

re

tu
rn

in
g

an

ob
je

ct

to

th

e
po

ol

(e
nt

ity

an

d
st

at
el

es
s)

3.
5.

5
an

d
la

te
r

P
er

ho

m
e

an
d

pe
r

ob
je

ct

po

ol

C
ou

nt
S

ta
tis

tic

E
xt

en
de

d
Lo

w

R
et

ur
ns

D
is

ca
rd

C
ou

nt

be
an

M
od

ul
e.

re
tu

rn
sD

is
ca

rd
ed

T

he

nu

m
be

r
of

tim
es

th

at

th

e
re

tu
rn

in
g

ob
je

ct

w
as

di

sc
ar

de
d

be
ca

us
e

th
e

po
ol

w
as

fu

ll
(e

nt
ity

an
d

st
at

el
es

s)

3.
5.

5
an

d
la

te
r

P
er

ho

m
e

an
d

pe
r

ob
je

ct

po

ol

C
ou

nt
S

ta
tis

tic

E
xt

en
de

d
Lo

w

D
ra

in
sF

ro
m

P
oo

lC
ou

nt

be
an

M
od

ul
e.

dr
ai

ns
F

ro
m

P
oo

l
T

he

nu

m
be

r
of

tim
es

th

at

th

e
da

em
on

fo

un
d

th
e

po
ol

w

as

id

le

an

d
at

te
m

pt
ed

to

cl

ea
n

it
(e

nt
ity

an

d
st

at
el

es
s)

3.
5.

5
an

d
la

te
r

P
er

ho

m
e

an
d

pe
r

ob
je

ct

po

ol

C
ou

nt
S

ta
tis

tic

A
ll

Lo
w

D
ra

in
S

iz
e

be
an

M
od

ul
e.

av
gD

ra
in

S
iz

e
T

he

av

er
ag

e
nu

m
be

r
of

ob

je
ct

s
di

sc
ar

de
d

in

ea

ch

dr
ai

n
(e

nt
ity

an

d
st

at
el

es
s)

3.
5.

5
an

d
la

te
r

P
er

ho

m
e

an
d

pe
r

ob
je

ct

po

ol

Ti
m

eS
ta

tis
tic

A

ll
M

ed
iu

m

P
oo

le
dC

ou
nt

be

an
M

od
ul

e.
po

ol
S

iz
e

T
he

nu

m
be

r
of

ob
je

ct
s

in

th

e
po

ol

(e
nt

ity

an

d
st

at
el

es
s)

3.
5.

5
an

d
la

te
r

P
er

ho

m
e

an
d

pe
r

ob
je

ct

po

ol

R
an

ge
S

ta
tis

tic

B
as

ic

H
ig

h

M
es

sa
ge

C
ou

nt

be
an

M
od

ul
e.

m
es

sa
ge

C
ou

nt

T
he

nu

m
be

r
of

m
es

sa
ge

s
de

liv
er

ed

to

th

e
be

an

on

M
es

sa
ge

m
et

ho
d

(m
es

sa
ge

dr
iv

en

be

an
s)

5.
0

P
er

ty

pe

C
ou

nt
S

ta
tis

tic

B
as

ic

Lo
w

2062 Administering applications and their environment

M
es

sa
ge

B
ac

ko
ut

C
ou

nt

be
an

M
od

ul
e.

m
es

sa
ge

B
ac

ko
ut

C
ou

nt

T
he

nu

m
be

r
of

m
es

sa
ge

s
th

at

fa
ile

d
to

be

de
liv

er
ed

to

th

e
be

an

on

M
es

sa
ge

m
et

ho
d

(m
es

sa
ge

dr
iv

en

be

an
s)

5.
0

P
er

ty

pe

C
ou

nt
S

ta
tis

tic

A
ll

Lo
w

W
ai

tT
im

e
be

an
M

od
ul

e.
av

gS
rv

S
es

si
on

W
ai

tT
im

e
T

he

av

er
ag

e
tim

e
to

ob

ta
in

a

S
er

ve
rS

es
si

on

fr
om

th

e
po

ol

(m
es

sa
ge

-d
riv

en

be
an

)

5.
0

P
er

ty

pe

Ti
m

eS
ta

tis
tic

A

ll
M

ed
iu

m

S
er

ve
rS

es
si

on
P

oo
lU

sa
ge

be

an
M

od
ul

e.
se

rv
er

S
es

si
on

U
sa

ge

T
he

pe

rc
en

ta
ge

of

th
e

se
rv

er

se

ss
io

n
po

ol

in

us

e
(m

es
sa

ge

dr

iv
en

)

5.
0

P
er

ty

pe

R
an

ge
S

ta
tis

tic

A
ll

H
ig

h

Chapter 24. Monitoring overall system health 2063

JDBC connection pool counters

Performance Monitoring Infrastructure (PMI) collects performance data for 4.0 and 5.0 Java Database

Connectivity (JDBC) data sources. For a 4.0 data source, the data source name is used. For a 5.0 data

source, the Java Naming and Directory Interface (JNDI) name is used.

The JDBC connection pool counters are used to monitor the performance of JDBC data sources. You can

find the data by using the Tivoli performance viewer and looking under each application server by click

application_server > JDBC connection pool.

Note: With the instrumentation level set to anything other than MAX, the values may be less accurate for

TimeStatistics and CountStatistics (and in the case of CountStatistics, such as

numConnectionHandles, can even be negative). This is due to counters not being synchronized.

Synchronizing counters is very expensive in terms of resources, so it is only done when the

instrumentation level is set to MAX.

Counter definitions:

2064 Administering applications and their environment

N
am

e
K

ey

D
es

cr
ip

ti
o

n

V
er

si
o

n

G
ra

n
u

la
ri

ty

Ty
p

e
L

ev
el

O

ve
rh

ea
d

N
um

cr

ea
te

s
co

nn
ec

tio
nP

oo
lM

od
ul

e.
nu

m
C

re
at

es

T
he

to

ta
l n

um
be

r
of

co

nn
ec

tio
ns

cr
ea

te
d

3.
5.

5
an

d
la

te
r

P
er

co

nn
ec

tio
n

po
ol

C

ou
nt

S
ta

tis
tic

A

ll
Lo

w

P
oo

l s
iz

e
co

nn
ec

tio
nP

oo
lM

od
ul

e.
po

ol
S

iz
e

T
he

si

ze

of

th

e
co

nn
ec

tio
n

po
ol

3.

5.
5

an
d

la
te

r
P

er

co

nn
ec

tio
n

po
ol

B

ou
nd

ed
R

an
ge

S
ta

tis
tic

A

ll
H

ig
h

F
re

e
po

ol

si

ze

co
nn

ec
tio

nP
oo

lM
od

ul
e.

fr
ee

P
oo

lS
iz

e
T

he

nu

m
be

r
of

fr

ee

co

nn
ec

tio
ns

in

th
e

po
ol

(a

pp
ly

to

5.

0
D

at
aS

ou
rc

e
on

ly
)

5.
0

P
er

co

nn
ec

tio
n

po
ol

B

ou
nd

ed
R

an
ge

S
ta

tis
tic

B

as
ic

H

ig
h

N
um

al

lo
ca

te
s

co
nn

ec
tio

nP
oo

lM
od

ul
e.

nu
m

A
llo

ca
te

s
T

he

to

ta
l n

um
be

r
of

co

nn
ec

tio
ns

al
lo

ca
te

d
3.

5.
5

an
d

la
te

r
P

er

co

nn
ec

tio
n

po
ol

C

ou
nt

S
ta

tis
tic

A

ll
Lo

w

N
um

re

tu
rn

s
co

nn
ec

tio
nP

oo
lM

od
ul

e.
nu

m
R

et
ur

ns

T
he

to

ta
l n

um
be

r
of

co

nn
ec

tio
ns

re
tu

rn
ed

4.
0

an
d

la
te

r
P

er

co

nn
ec

tio
n

po
ol

C

ou
nt

S
ta

tis
tic

A

ll
Lo

w

C
on

cu
rr

en
t

w
ai

te
rs

co

nn
ec

tio
nP

oo
lM

od
ul

e.
co

nc
ur

re
nt

W
ai

te
rs

T

he

nu

m
be

r
of

th

re
ad

s
th

at

ar

e
cu

rr
en

tly

w

ai
tin

g
fo

r
a

co
nn

ec
tio

n
3.

5.
5

an
d

la
te

r
P

er

co

nn
ec

tio
n

po
ol

R

an
ge

S
ta

tis
tic

A

ll
H

ig
h

F
au

lts

co
nn

ec
tio

nP
oo

lM
od

ul
e.

fa
ul

ts

T
he

to

ta
l n

um
be

r
of

fa

ul
ts

,
su

ch

as

tim

eo
ut

s,

in

th

e
co

nn
ec

tio
n

po
ol

3.
5.

5
an

d
la

te
r

P
er

co

nn
ec

tio
n

po
ol

C

ou
nt

S
ta

tis
tic

A

ll
Lo

w

N
um

cl

os
es

co

nn
ec

tio
nP

oo
lM

od
ul

e.
nu

m
D

es
tr

oy
s

T
he

to

ta
l n

um
be

r
of

co

nn
ec

tio
ns

cl
os

ed
.

3.
5.

5
an

d
la

te
r

P
er

co

nn
ec

tio
n

po
ol

C

ou
nt

S
ta

tis
tic

A

ll
Lo

w

A
vg

w

ai
t

tim
e

(m
s)

co

nn
ec

tio
nP

oo
lM

od
ul

e.
av

gW
ai

tT
im

e
T

he

av

er
ag

e
w

ai
tin

g
tim

e
in

m
ill

is
ec

on
ds

un

til

a

co
nn

ec
tio

n
is

gr
an

te
d

5.
0

P
er

co

nn
ec

tio
n

po
ol

Ti

m
eS

ta
tis

tic

A
ll

M
ed

iu
m

A
vg

us

e
tim

e
(m

s)

co
nn

ec
tio

nP
oo

lM
od

ul
e.

av
gU

se
Ti

m
e

T
he

av

er
ag

e
tim

e
a

co
nn

ec
tio

n
is

us
ed

(a

pp
ly

to

5.

0
D

at
aS

ou
rc

e
on

ly
).

D

iff
er

en
ce

be

tw
ee

n
th

e
tim

e
at

w

hi
ch

th

e
co

nn
ec

tio
n

is

al
lo

ca
te

d
an

d
re

tu
rn

ed
.

T
hi

s
va

lu
e

in
cl

ud
es

th

e
JD

B
C

op

er
at

io
n

tim
e.

5.
0

P
er

co

nn
ec

tio
n

po
ol

Ti

m
eS

ta
tis

tic

A
ll

M
ed

iu
m

P
er

ce
nt

us

ed

co
nn

ec
tio

nP
oo

lM
od

ul
e.

pe
rc

en
tU

se
d

T
he

av

er
ag

e
pe

rc
en

t
of

th

e
po

ol

th
at

is

in

us

e
3.

5.
5

an
d

la
te

r
P

er

co

nn
ec

tio
n

po
ol

R

an
ge

S
ta

tis
tic

B

as
ic

H

ig
h

P
er

ce
nt

m

ax
ed

co

nn
ec

tio
nP

oo
lM

od
ul

e.
pe

rc
en

tM
ax

ed

T
he

av

er
ag

e
pe

rc
en

t
of

th

e
tim

e
th

at

al

l c
on

ne
ct

io
ns

ar

e
in

us

e
3.

5.
5

an
d

la
te

r
P

er

co

nn
ec

tio
n

po
ol

R

an
ge

S
ta

tis
tic

A

ll
H

ig
h

P
re

pa
re

d
st

m
t

ca
ch

e
di

sc
ar

ds

co
nn

ec
tio

nP
oo

lM
od

ul
e.

pr
ep

S
tm

tC
ac

he
D

is
ca

rd
s

T
he

to

ta
l n

um
be

r
of

st

at
em

en
ts

di
sc

ar
de

d
by

th

e
le

as
t

re
ce

nt
ly

us
ed

(L

R
U

)
al

go
rit

hm

of

th

e
st

at
em

en
t

ca
ch

e

4.
0

an
d

la
te

r
P

er

co

nn
ec

tio
n

po
ol

C

ou
nt

S
ta

tis
tic

A

ll
Lo

w

N
um

m

an
ag

ed

co
nn

ec
tio

ns

co
nn

ec
tio

nP
oo

lM
od

ul
e.

nu
m

M
an

ag
ed

C
on

ne
ct

io
ns

T

he

nu

m
be

r
of

M
an

ag
ed

C
on

ne
ct

io
n

ob
je

ct
s

in

us
e

fo
r

a
pa

rt
ic

ul
ar

co

nn
ec

tio
n

po
ol

(a

pp
lie

s
to

V

5.
0

D
at

aS
ou

rc
e

ob
je

ct
s

on
ly

)

5.
0

P
er

co

nn
ec

tio
n

fa
ct

or
y

C
ou

nt
S

ta
tis

tic

A
ll

Lo
w

N
um

co

nn
ec

tio
n

ha
nd

le
s

co
nn

ec
tio

nP
oo

lM
od

ul
e.

nu
m

C
on

ne
ct

io
nH

an
dl

es

T
he

nu

m
be

r
of

C

on
ne

ct
io

n
ob

je
ct

s
in

us

e
fo

r
a

pa
rt

ic
ul

ar

co

nn
ec

tio
n

po
ol

(a

pp
ly

to

5.

0
D

at
aS

ou
rc

e
on

ly
)

5.
0

P
er

co

nn
ec

tio
n

fa
ct

or
y

C
ou

nt
S

ta
tis

tic

A
ll

Lo
w

Chapter 24. Monitoring overall system health 2065

JD
B

C

tim

e
co

nn
ec

tio
nP

oo
lM

od
ul

e.
jd

bc
O

pe
ra

tio
nT

im
er

T

he

am

ou
nt

of

tim

e
in

m
ill

is
ec

on
ds

sp

en
t

ru
nn

in
g

in

th

e
JD

B
C

dr

iv
er

w

hi
ch

in

cl
ud

es

tim

e
sp

en
t

in

th

e
JD

B
C

dr

iv
er

,
ne

tw
or

k,

an
d

da
ta

ba
se

(a

pp
ly

to

5.

0
D

at
aS

ou
rc

e
on

ly
)

5.
0

P
er

da

ta

so

ur
ce

Ti

m
eS

ta
tis

tic

A
ll

M
ed

iu
m

2066 Administering applications and their environment

J2C connection pool counters

Use this page as a reference for properties of J2C connection pool counters.

The Java 2 Connector (J2C) connection pool counters are used to monitor J2C connection pool

performance. You can find the data using the Tivoli performance viewer and clicking application_server >

J2C connection pool.

Counter definitions:

Chapter 24. Monitoring overall system health 2067

N
am

e
K

ey

D
es

cr
ip

ti
o

n

V
er

si
o

n

G
ra

n
u

la
ri

ty

Ty
p

e
L

ev
el

O

ve
rh

ea
d

M
an

ag
ed

C
on

ne
ct

io
nC

ou
nt

j2

cM
od

ul
e.

nu
m

M
an

ag
ed

C
on

ne
ct

io
ns

T

he

nu

m
be

r
of

M
an

ag
ed

C
on

ne
ct

io
n

ob
je

ct
s

in

us

e

5.
0

P
er

co

nn
ec

tio
n

fa
ct

or
y

C
ou

nt
S

ta
tis

tic

A
ll

Lo
w

C
on

ne
ct

io
nH

an
dl

eC
ou

nt

j2
cM

od
ul

e.
nu

m
C

on
ne

ct
io

nH
an

dl
es

T

he

nu

m
be

r
of

co

nn
ec

tio
ns

th
at

ar

e
as

so
ci

at
ed

w

ith

M
an

ag
ed

C
on

ne
ct

io
ns

(p
hy

si
ca

l c
on

ne
ct

io
ns

)
ob

je
ct

s
in

th

is

po

ol

5.
0

P
er

co

nn
ec

tio
n

fa
ct

or
y

C
ou

nt
S

ta
tis

tic

A
ll

Lo
w

C
re

at
eC

ou
nt

j2

cM
od

ul
e.

nu
m

M
an

ag
ed

C
on

ne
ct

io
ns

C
re

at
ed

T

he

to

ta
l n

um
be

r
of

m
an

ag
ed

co

nn
ec

tio
ns

cr
ea

te
d

5.
0

P
er

co

nn
ec

tio
n

fa
ct

or
y

C
ou

nt
S

ta
tis

tic

B
as

ic

Lo
w

C
lo

se
C

ou
nt

j2

cM
od

ul
e.

nu
m

M
an

ag
ed

C
on

ne
ct

io
ns

D
es

tr
oy

ed

T
he

to

ta
l n

um
be

r
of

m
an

ag
ed

co

nn
ec

tio
ns

de
st

ro
ye

d

5.
0

P
er

co

nn
ec

tio
n

fa
ct

or
y

C
ou

nt
S

ta
tis

tic

B
as

ic

Lo
w

A
llo

ca
te

C
ou

nt

j2
cM

od
ul

e.
nu

m
M

an
ag

ed
C

on
ne

ct
io

ns
A

llo
ca

te
d

T
he

to

ta
l n

um
be

r
of

tim

es

th
at

a

m
an

ag
ed

co

nn
ec

tio
n

is

al

lo
ca

te
d

to

a

cl
ie

nt

(t

he

to
ta

l i
s

m
ai

nt
ai

ne
d

ac
ro

ss

th
e

po
ol

,
no

t
pe

r
co

nn
ec

tio
n)

.

5.
0

P
er

co

nn
ec

tio
n

fa
ct

or
y

C
ou

nt
S

ta
tis

tic

A
ll

Lo
w

F
re

ed
C

ou
nt

j2

cM
od

ul
e.

nu
m

M
an

ag
ed

C
on

ne
ct

io
ns

R
el

ea
se

d
T

he

to

ta
l n

um
be

r
of

tim

es

th
at

a

m
an

ag
ed

co

nn
ec

tio
n

is

re

le
as

ed

ba

ck

to

th

e
po

ol

(t

he

to

ta
l i

s
m

ai
nt

ai
ne

d
ac

ro
ss

th

e
po

ol
,

no
t

pe
r

co
nn

ec
tio

n)
.

5.
0

P
er

co

nn
ec

tio
n

fa
ct

or
y

C
ou

nt
S

ta
tis

tic

A
ll

Lo
w

F
au

ltC
ou

nt

j2
cM

od
ul

e.
fa

ul
ts

T

he

nu

m
be

r
of

fa

ul
ts

,
su

ch

as

tim

eo
ut

s,

in

th

e
co

nn
ec

tio
n

po
ol

5.
0

P
er

co

nn
ec

tio
n

fa
ct

or
y

C
ou

nt
S

ta
tis

tic

A
ll

Lo
w

F
re

eP
oo

lS
iz

e
j2

cM
od

ul
e.

fr
ee

P
oo

lS
iz

e
T

he

nu

m
be

r
of

fr

ee

co
nn

ec
tio

ns

in

th

e
po

ol

5.
0

P
er

co

nn
ec

tio
n

fa
ct

or
y

B
ou

nd
ed

R
an

ge
S

ta
tis

tic

B

as
ic

H

ig
h

P
oo

lS
iz

e
j2

cM
od

ul
e.

po
ol

S
iz

e
A

ve
ra

ge

nu

m
be

r
of

m
an

ag
ed

co

nn
ec

tio
ns

in

th
e

po
ol

.

5.
0

P
er

co

nn
ec

tio
n

fa
ct

or
y

B
ou

nd
ed

R
an

ge
S

ta
tis

tic

B

as
ic

H

ig
h

W
ai

tin
gT

hr
ea

dC
ou

nt

j2
cM

od
ul

e.
co

nc
ur

re
nt

W
ai

te
rs

A

ve
ra

ge

nu

m
be

r
of

th

re
ad

s
co

nc
ur

re
nt

ly

w

ai
tin

g
fo

r
a

co
nn

ec
tio

n

5.
0

P
er

co

nn
ec

tio
n

fa
ct

or
y

R
an

ge
S

ta
tis

tic

B
as

ic

H
ig

h

P
er

ce
nt

U
se

d
j2

cM
od

ul
e.

pe
rc

en
tU

se
d

A
ve

ra
ge

pe

rc
en

t
of

th

e
po

ol

th

at

is

in

us

e.

T

he

va
lu

e
is

de

te
rm

in
ed

by

th

e
to

ta
l n

um
be

r
of

co

nf
ig

ur
ed

co
nn

ec
tio

ns

in

th

e
C

on
ne

ct
io

nP
oo

l,
no

t
th

e
cu

rr
en

t
nu

m
be

r
of

co
nn

ec
tio

ns
.

5.
0

P
er

co

nn
ec

tio
n

fa
ct

or
y

R
an

ge
S

ta
tis

tic

A
ll

H
ig

h

P
er

ce
nt

M
ax

ed

j2
cM

od
ul

e.
pe

rc
en

tM
ax

ed

A
ve

ra
ge

pe

rc
en

t
of

th

e
tim

e
th

at

al

l c
on

ne
ct

io
ns

ar
e

in

us

e

5.
0

P
er

co

nn
ec

tio
n

fa
ct

or
y

R
an

ge
S

ta
tis

tic

A
ll

H
ig

h

2068 Administering applications and their environment

W
ai

tT
im

e
j2

cM
od

ul
e.

av
gW

ai
t

A
ve

ra
ge

w

ai
tin

g
tim

e
in

m
ill

is
ec

on
ds

un

til

a

co
nn

ec
tio

n
is

gr

an
te

d

5.
0

P
er

co

nn
ec

tio
n

fa
ct

or
y

Ti
m

eS
ta

tis
tic

B

as
ic

M

ed
iu

m

U
se

Ti
m

e
j2

cM
od

ul
e.

us
eT

im
e

A
ve

ra
ge

tim

e
in

m
ill

is
ec

on
ds

th

at

co
nn

ec
tio

ns

ar

e
in

us

e

5.
0

P
er

co

nn
ec

tio
n

fa
ct

or
y

Ti
m

eS
ta

tis
tic

B

as
ic

M

ed
iu

m

Chapter 24. Monitoring overall system health 2069

Java virtual machine counters

The Java virtual machine (JVM) counters are used to monitor JVM performance. The total, used, and free

heap size counters are available without any additional configuration settings. The remaining counters are

available only when a Java virtual machine profiler is enabled. See Enabling the Java virtual machine

profiler data for more information on this task.

Counter definitions:

2070 Administering applications and their environment

N
am

e
K

ey

D
es

cr
ip

ti
o

n

V
er

si
o

n

G
ra

n
u

la
ri

ty

Ty
p

e
L

ev
el

O

ve
rh

ea
d

C
pu

U
sa

ge

jv
m

R
un

tim
eM

od
ul

e.
cp

uU
sa

ge

T
he

av

er
ag

e
pe

rc
en

t
of

ce
nt

ra
l p

ro
ce

ss
in

g
un

it
(C

P
U

)
us

ag
e

si
nc

e
th

e
la

st

qu

er
y

6.
1

an
d

la
te

r
P

er

JV

M

C
ou

nt
S

ta
tis

tic

B
as

ic

Lo
w

F
re

eM
em

or
y

jv
m

R
un

tim
eM

od
ul

e.
fr

ee
M

em
or

y
T

he

fr

ee

m

em
or

y
in

th

e
JV

M

ru
n

tim
e

3.
5.

5
an

d
la

te
r

P
er

JV

M

C
ou

nt
S

ta
tis

tic

E
xt

en
de

d
Lo

w

U
se

dM
em

or
y

jv
m

R
un

tim
eM

od
ul

e.
us

ed
M

em
or

y
T

he

us

ed

m

em
or

y
in

th

e
JV

M

ru
n

tim
e

3.
5.

5
an

d
la

te
r

P
er

JV

M

C
ou

nt
S

ta
tis

tic

B
as

ic

Lo
w

H
ea

pS
iz

e
jv

m
R

un
tim

eM
od

ul
e.

to
ta

lM
em

or
y

T
he

to

ta
l m

em
or

y
in

th

e
JV

M

ru
n

tim
e

3.
5.

5
an

d
la

te
r

P
er

JV

M

B
ou

nd
ed

R
an

ge
S

ta
tis

tic
.

T
he

up

pe
rB

ou
nd

an

d
lo

w
er

B
ou

nd

ar

e
no

t
im

pl
em

en
te

d
fo

r
th

e
To

ta
l

m
em

or
y

co
un

te
r.

B
as

ic

H
ig

h

U
pT

im
e

jv
m

R
un

tim
eM

od
ul

e.
up

Ti
m

e
T

he

am

ou
nt

of

tim

e
th

at

th

e
JV

M

is

ru

nn
in

g
5.

0
P

er

JV

M

C
ou

nt
S

ta
tis

tic

B
as

ic

Lo
w

G
C

C
ou

nt

jv
m

R
un

tim
eM

od
ul

e.
nu

m
G

cC
al

ls

T
he

nu

m
be

r
of

ga

rb
ag

e
co

lle
ct

io
n

ca
lls

.
T

hi
s

co
un

te
r

is

no

t
av

ai
la

bl
e

un
le

ss

th

e
JV

M

pr

of
ile

r
is

en

ab
le

d.

S

ee

E
na

bl
in

g
th

e
JV

M

pr

of
ile

r
da

ta
.

4.
0

an
d

la
te

r
P

er

JV

M

C
ou

nt
S

ta
tis

tic

A
ll

M
ax

G
C

In
te

rv
al

Ti
m

e
jv

m
R

un
tim

eM
od

ul
e.

av
gT

im
eB

et
w

ee
nG

cC
al

ls

T
he

av

er
ag

e
ga

rb
ag

e
co

lle
ct

io
n

va
lu

e
in

se

co
nd

s
be

tw
ee

n
tw

o
ga

rb
ag

e
co

lle
ct

io
ns

.
T

hi
s

co
un

te
r

is

no
t

av
ai

la
bl

e
un

le
ss

th

e
JV

M

pr
of

ile
r

is

en

ab
le

d.

S

ee

E
na

bl
in

g
th

e
JV

M

pr

of
ile

r
da

ta
.

4.
0

an
d

la
te

r
P

er

JV

M

Ti
m

eS
ta

tis
tic

A

ll
M

ax

G
C

Ti
m

e
jv

m
R

un
tim

eM
od

ul
e.

av
gG

cD
ur

at
io

n
T

he

av

er
ag

e
du

ra
tio

n
of

a

ga
rb

ag
e

co
lle

ct
io

n.

T

hi
s

co
un

te
r

is

no

t
av

ai
la

bl
e

un
le

ss

th

e
JV

M

pr

of
ile

r
is

en
ab

le
d.

S

ee

E

na
bl

in
g

th
e

JV
M

pr

of
ile

r
da

ta
.

4.
0

an
d

la
te

r
P

er

JV

M

Ti
m

eS
ta

tis
tic

A

ll
M

ax

W
ai

ts
F

or
Lo

ck
C

ou
nt

jv

m
R

un
tim

eM
od

ul
e.

nu
m

W
ai

ts
F

or
Lo

ck

T
he

nu

m
be

r
of

tim

es

th

at

a

th
re

ad

w

ai
ts

fo

r
a

lo
ck

.
T

hi
s

co
un

te
r

is

no

t
av

ai
la

bl
e

un
le

ss

th

e
JV

M

pr

of
ile

r
is

en
ab

le
d.

S

ee

E

na
bl

in
g

th
e

JV
M

pr

of
ile

r
da

ta
.

4.
0

an
d

la
te

r
P

er

JV

M

C
ou

nt
S

ta
tis

tic

A
ll

M
ax

W
ai

tF
or

Lo
ck

Ti
m

e
jv

m
R

un
tim

eM
od

ul
e.

av
gT

im
eW

ai
tF

or
Lo

ck

T
he

av

er
ag

e
tim

e
th

at

a

th
re

ad

w

ai
ts

fo

r
a

lo
ck

.
T

hi
s

co
un

te
r

is

no

t
av

ai
la

bl
e

un
le

ss

th

e
JV

M

pr

of
ile

r
is

en
ab

le
d.

S

ee

E

na
bl

in
g

th
e

JV
M

pr

of
ile

r
da

ta
.

4.
0

an
d

la
te

r
P

er

JV

M

Ti
m

eS
ta

tis
tic

A

ll
M

ax

Chapter 24. Monitoring overall system health 2071

T
hr

ea
dS

ta
rt

ed
C

ou
nt

jv

m
R

un
tim

eM
od

ul
e.

nu
m

T
hr

ea
ds

S
ta

rt
ed

T

he

nu

m
be

r
of

th

re
ad

s
st

ar
te

d.

T

hi
s

co
un

te
r

is

no

t
av

ai
la

bl
e

un
le

ss

th

e
JV

M

pr
of

ile
r

is

en

ab
le

d.

S

ee

E
na

bl
in

g
th

e
JV

M

pr

of
ile

r
da

ta
.

4.
0

an
d

la
te

r
P

er

JV

M

C
ou

nt
S

ta
tis

tic

A
ll

M
ax

T
hr

ea
dE

nd
ed

C
ou

nt

jv
m

R
un

tim
eM

od
ul

e.
nu

m
T

hr
ea

ds
D

ea
d

T
he

nu

m
be

r
of

fa

ile
d

th
re

ad
s.

T
hi

s
co

un
te

r
is

no

t
av

ai
la

bl
e

un
le

ss

th

e
JV

M

pr

of
ile

r
is

en
ab

le
d.

S

ee

E

na
bl

in
g

th
e

JV
M

pr

of
ile

r
da

ta
.

4.
0

an
d

la
te

r
P

er

JV

M

C
ou

nt
S

ta
tis

tic

A
ll

M
ax

O
bj

ec
tA

llo
ca

te
C

ou
nt

jv

m
R

un
tim

eM
od

ul
e.

nu
m

O
bj

ec
ts

A
llo

ca
te

d
T

he

nu

m
be

r
of

ob

je
ct

s
th

at

ar
e

al
lo

ca
te

d
in

th

e
he

ap
.

T
hi

s
co

un
te

r
is

no

t
av

ai
la

bl
e

un
le

ss

th

e
-X

ru
np

m
iJ

vm
pi

P
ro

fil
er

op

tio
n

is

se

t
w

he
n

st
ar

tin
g

th
e

JV
M

.

F
ro

m

4.

0
to

6.
0.

x.

It

is

de
pr

ec
at

ed

in

6.

1.

P
er

JV

M

C
ou

nt
S

ta
tis

tic

A
ll

M
ax

O
bj

ec
tM

ov
ed

C
ou

nt

jv
m

R
un

tim
eM

od
ul

e.
nu

m
O

bj
ec

ts
M

ov
ed

T

he

nu

m
be

r
of

ob

je
ct

s
in

th

e
he

ap
.

T
hi

s
co

un
te

r
is

no

t
av

ai
la

bl
e

un
le

ss

th

e
-X

ru
np

m
iJ

vm
pi

P
ro

fil
er

op

tio
n

is

se

t
w

he
n

st
ar

tin
g

th
e

JV
M

.

F
ro

m

4.

0
to

6.
0.

x.

It

is

de
pr

ec
at

ed

in

6.

1.

P
er

JV

M

C
ou

nt
S

ta
tis

tic

A
ll

M
ax

O
bj

ec
tF

re
ed

C
ou

nt

jv
m

R
un

tim
eM

od
ul

e.
nu

m
O

bj
ec

ts
F

re
ed

T

he

nu

m
be

r
of

ob

je
ct

s
fr

ee
d

in

th

e
he

ap
.

T
hi

s
co

un
te

r
is

no
t

av
ai

la
bl

e
un

le
ss

th

e
-X

ru
np

m
iJ

vm
pi

P
ro

fil
er

op

tio
n

is

se

t
w

he
n

st
ar

tin
g

th
e

JV
M

.

F
ro

m

4.

0
to

6.
0.

x.

It

is

de
pr

ec
at

ed

in

6.

1.

P
er

JV

M

C
ou

nt
S

ta
tis

tic

A
ll

M
ax

2072 Administering applications and their environment

Important: The statistics that are gathered through the JVM Tool Interface (JVMTI) is different between

the JVM provided by IBM and the Sun HotSpot-based JVM, including Sun HotSpot JVM on Solaris and

HP’s JVM for HP-UX.

Object Request Broker counters

Use this page as a reference for properties of Object Request Broker counters.

Counter definitions:

Chapter 24. Monitoring overall system health 2073

N
am

e
K

ey

D
es

cr
ip

ti
o

n

V
er

si
o

n

G
ra

n
u

la
ri

ty

Ty
p

e
L

ev
el

O

ve
rh

ea
d

Lo
ok

up
Ti

m
e

or
bP

er
fM

od
ul

e.
re

fe
re

nc
eL

oo
ku

pT
im

e
T

he

tim

e
(in

m

ill
is

ec
on

ds
)

to

lo

ok

up

an

ob

je
ct

re

fe
re

nc
e

be
fo

re

m
et

ho
d

di
sp

at
ch

ca

n
be

ca

rr
ie

d
ou

t.
A

n
ex

ce
ss

iv
el

y
lo

ng

tim

e
ca

n
in

di
ca

te

an

E

JB

co

nt
ai

ne
r

lo
ok

up

pr

ob
le

m
.

5.
0

O
bj

ec
t

R
eq

ue
st

B
ro

ke
r

(O
R

B
)

Ti
m

eS
ta

tis
tic

A

ll
M

ed
iu

m

R
eq

ue
st

C
ou

nt

or
bP

er
fM

od
ul

e.
to

ta
lR

eq
ue

st
s

T
he

to

ta
l n

um
be

r
of

re

qu
es

ts

se
nt

to

th

e
O

R
B

5.
0

O
R

B

C
ou

nt
S

ta
tis

tic

A
ll

Lo
w

C
on

cu
rr

en
tR

eq
ue

st
C

ou
nt

or

bP
er

fM
od

ul
e.

co
nc

ur
re

nt
R

eq
ue

st
s

T
he

nu

m
be

r
of

re

qu
es

ts

th

at

ar

e
co

nc
ur

re
nt

ly

pr

oc
es

se
d

by

th

e
O

R
B

5.
0

O
R

B

R
an

ge
S

ta
tis

tic

A
ll

H
ig

h

P
ro

ce
ss

in
gT

im
e

or
bP

er
fM

od
ul

e.
in

te
rc

ep
to

rs
.p

ro
ce

ss
in

gT
im

e
T

he

tim

e
(in

m

ill
is

ec
on

ds
)

it
ta

ke
s

a
re

gi
st

er
ed

po

rt
ab

le

in
te

rc
ep

to
r

to

ru

n

5.
0

P
er

in

te
rc

ep
to

r
Ti

m
eS

ta
tis

tic

A
ll

M
ed

iu
m

2074 Administering applications and their environment

Servlet session counters

Use this page as a reference for properties of servlet session counters.

Data counters for this category contain usage information for HTTP sessions.

Counter definitions:

Chapter 24. Monitoring overall system health 2075

N
am

e
K

ey

D
es

cr
ip

ti
o

n

V
er

si
o

n

G
ra

n
u

la
ri

ty

Ty
p

e
L

ev
el

O

ve
rh

ea
d

C
re

at
eC

ou
nt

se

rv
le

tS
es

si
on

sM
od

ul
e.

cr
ea

te
dS

es
si

on
s

T
he

nu

m
be

r
of

se

ss
io

ns

th

at

w
er

e
cr

ea
te

d
3.

5.
5

an
d

la
te

r
P

er

W

eb

ap
pl

ic
at

io
n

C
ou

nt
S

ta
tis

tic

A
ll

Lo
w

In
va

lid
at

eC
ou

nt

se
rv

le
tS

es
si

on
sM

od
ul

e.
in

va
lid

at
ed

S
es

si
on

s
T

he

nu

m
be

r
of

se

ss
io

ns

th

at

w
er

e
in

va
lid

at
ed

3.
5.

5
an

d
la

te
r

P
er

W

eb

ap
pl

ic
at

io
n

C
ou

nt
S

ta
tis

tic

A
ll

Lo
w

Li
fe

Ti
m

e
se

rv
le

tS
es

si
on

sM
od

ul
e.

se
ss

io
nL

ife
Ti

m
e

T
he

av

er
ag

e
se

ss
io

n
lif

e
tim

e
in

m

ill
is

ec
on

ds

(t

im
e

in
va

lid
at

ed

-

tim
e

cr
ea

te
d)

3.
5.

5
an

d
la

te
r

P
er

W

eb

ap
pl

ic
at

io
n

Ti
m

eS
ta

tis
tic

E

xt
en

de
d

M
ed

iu
m

A
ct

iv
eC

ou
nt

se

rv
le

tS
es

si
on

sM
od

ul
e.

ac
tiv

eS
es

si
on

s
T

he

nu

m
be

r
of

co

nc
ur

re
nt

ly

ac
tiv

e
se

ss
io

ns
. A

se

ss
io

n
is

ac
tiv

e
if

th
e

W
eb

S
ph

er
e

A
pp

lic
at

io
n

S
er

ve
r

is

cu
rr

en
tly

pr

oc
es

si
ng

a

re
qu

es
t

th
at

us

es

th

at

se
ss

io
n.

3.
5.

5
an

d
la

te
r

P
er

W

eb

ap
pl

ic
at

io
n

R
an

ge
S

ta
tis

tic

A
ll

H
ig

h

Li
ve

C
ou

nt

se
rv

le
tS

es
si

on
sM

od
ul

e.
liv

eS
es

si
on

s
T

he

nu

m
be

r
of

se

ss
io

ns

th

at

ar
e

cu
rr

en
tly

ca

ch
ed

in

m
em

or
y

5.
0

an
d

la
te

r
P

er

W

eb

ap
pl

ic
at

io
n

R
an

ge
S

ta
tis

tic

B
as

ic

H
ig

h

N
oR

oo
m

F
or

N
ew

S
es

si
on

C
ou

nt

se
rv

le
tS

es
si

on
sM

od
ul

e.
no

R
oo

m
F

or
N

ew
S

es
si

on

A
pp

lie
s

on
ly

to

se

ss
io

n
in

m
em

or
y

w
ith

A
llo

w
O

ve
rf

lo
w

=
fa

ls
e.

T

he

nu
m

be
r

of

tim

es

th

at

a

re
qu

es
t

fo
r

a
ne

w

se

ss
io

n
ca

nn
ot

be

ha

nd
le

d
be

ca
us

e
it

ex
ce

ed
s

th
e

m
ax

im
um

se
ss

io
n

co
un

t.

5.
0

P
er

W

eb

ap
pl

ic
at

io
n

C
ou

nt
S

ta
tis

tic

E
xt

en
de

d
Lo

w

C
ac

he
D

is
ca

rd
C

ou
nt

se

rv
le

tS
es

si
on

sM
od

ul
e.

ca
ch

eD
is

ca
rd

s
T

he

nu

m
be

r
of

se

ss
io

n
ob

je
ct

s
th

at

ha

ve

be

en

fo
rc

ed

ou

t
of

th

e
ca

ch
e.

A

le
as

t
re

ce
nt

ly

us

ed

(L

R
U

)
al

go
rit

hm

re

m
ov

es

ol

d
en

tr
ie

s
to

m

ak
e

ro
om

fo

r
ne

w

se

ss
io

ns

an

d
ca

ch
e

m
is

se
s.

A

pp
lic

ab
le

on

ly

fo

r
pe

rs
is

te
nt

se

ss
io

ns
.

5.
0

P
er

W

eb

ap
pl

ic
at

io
n

C
ou

nt
S

ta
tis

tic

A
ll

Lo
w

E
xt

er
na

lR
ea

dT
im

e
se

rv
le

tS
es

si
on

sM
od

ul
e.

ex
te

rn
al

R
ea

dT
im

e
T

he

tim

e
(m

ill
is

ec
on

ds
)

ta
ke

n
in

re

ad
in

g
th

e
se

ss
io

n
da

ta

fr

om

th

e
pe

rs
is

te
nt

st
or

e.

F

or

m

ul
tir

ow

se
ss

io
ns

,
th

e
m

et
ric

s
ar

e
fo

r
th

e
at

tr
ib

ut
e;

fo

r
si

ng
le

ro

w

se
ss

io
ns

,
th

e
m

et
ric

s
ar

e
fo

r
th

e
en

tir
e

se
ss

io
n.

A
pp

lic
ab

le

on

ly

fo

r
pe

rs
is

te
nt

se

ss
io

ns
.

W
he

n
us

in
g

a
JM

S

pe

rs
is

te
nt

st
or

e,

yo

u
ca

n
ch

oo
se

to

se
ria

liz
e

th
e

re
pl

ic
at

ed

da

ta
.

If
yo

u
ch

oo
se

no

t
to

se
ria

liz
e

th
e

da
ta

,
th

e
co

un
te

r
is

no

t
av

ai
la

bl
e.

5.
0

P
er

W

eb

ap
pl

ic
at

io
n

Ti
m

eS
ta

tis
tic

E

xt
en

de
d

M
ed

iu
m

2076 Administering applications and their environment

E
xt

er
na

lR
ea

dS
iz

e
se

rv
le

tS
es

si
on

sM
od

ul
e.

ex
te

rn
al

R
ea

dS
iz

e
S

iz
e

of

th

e
se

ss
io

n
da

ta

re
ad

fr

om

pe

rs
is

te
nt

st

or
e.

A
pp

lic
ab

le

on

ly

fo

r
(s

er
ia

liz
ed

)
pe

rs
is

te
nt

se
ss

io
ns

;
si

m
ila

r
to

ex

te
rn

al

R
ea

d
Ti

m
e.

5.
0

P
er

W

eb

ap
pl

ic
at

io
n

Ti
m

eS
ta

tis
tic

E

xt
en

de
d

M
ed

iu
m

E
xt

er
na

lW
rit

eT
im

e
se

rv
le

tS
es

si
on

sM
od

ul
e.

ex
te

rn
al

W
rit

eT
im

e
T

he

tim

e
(m

ill
is

ec
on

ds
)

ta
ke

n
to

w

rit
e

th
e

se
ss

io
n

da
ta

fr

om

th

e
pe

rs
is

te
nt

st
or

e.

A

pp
lic

ab
le

on

ly

fo

r
(s

er
ia

liz
ed

)
pe

rs
is

te
nt

se
ss

io
ns

.
S

im
ila

r
to

ex

te
rn

al

R
ea

d
Ti

m
e.

5.
0

P
er

W

eb

ap
pl

ic
at

io
n

Ti
m

eS
ta

tis
tic

E

xt
en

de
d

M
ed

iu
m

E
xt

er
na

lW
rit

eS
iz

e
se

rv
le

tS
es

si
on

sM
od

ul
e.

ex
te

rn
al

W
rit

eS
iz

e
T

he

si

ze

of

th

e
se

ss
io

n
da

ta

w
rit

te
n

to

pe

rs
is

te
nt

st

or
e.

A
pp

lic
ab

le

on

ly

fo

r
(s

er
ia

liz
ed

)
pe

rs
is

te
nt

se
ss

io
ns

.
S

im
ila

r
to

ex

te
rn

al

R
ea

d
Ti

m
e.

5.
0

P
er

W

eb

ap
pl

ic
at

io
n

Ti
m

eS
ta

tis
tic

E

xt
en

de
d

M
ed

iu
m

A
ffi

ni
ty

B
re

ak
C

ou
nt

se

rv
le

tS
es

si
on

sM
od

ul
e.

af
fin

ity
B

re
ak

s
T

he

nu

m
be

r
of

re

qu
es

ts

th

at

ar
e

re
ce

iv
ed

fo

r
se

ss
io

ns

th
at

w

er
e

la
st

ac

ce
ss

ed

fr
om

an

ot
he

r
W

eb

ap
pl

ic
at

io
n.

T

hi
s

va
lu

e
ca

n
in

di
ca

te

fa

ilo
ve

r
pr

oc
es

si
ng

or

a

co
rr

up
t

pl
ug

-in

co
nf

ig
ur

at
io

n.

5.
0

P
er

W

eb

ap
pl

ic
at

io
n

C
ou

nt
S

ta
tis

tic

A
ll

Lo
w

S
es

si
on

O
bj

ec
tS

iz
e

se
rv

le
tS

es
si

on
sM

od
ul

e.
se

ria
liz

ab
le

S
es

sO
bj

S
iz

e
T

he

si

ze

in

by

te
s

of

(t

he

se
ria

liz
ab

le

at

tr
ib

ut
es

of

)

in
-m

em
or

y
se

ss
io

ns
.

O
nl

y
se

ss
io

n
ob

je
ct

s
th

at

co

nt
ai

n
at

le

as
t

on
e

se
ria

liz
ab

le

at
tr

ib
ut

e
ob

je
ct

is

co

un
te

d.

A

se
ss

io
n

ca
n

co
nt

ai
n

so
m

e
at

tr
ib

ut
es

th

at

ar

e
se

ria
liz

ab
le

an

d
so

m
e

th
at

ar
e

no
t.

T
he

si

ze

in

by

te
s

is

at

a

se
ss

io
n

le
ve

l.

5.
0

P
er

W

eb

ap
pl

ic
at

io
n

Ti
m

eS
ta

tis
tic

A

ll
M

ax

Ti
m

eS
in

ce
La

st
A

ct
iv

at
ed

se

rv
le

tS
es

si
on

sM
od

ul
e.

tim
eS

in
ce

La
st

A
ct

iv
at

ed

T
he

tim

e
di

ffe
re

nc
e

in

m
ill

is
ec

on
ds

be

tw
ee

n
pr

ev
io

us

an

d
cu

rr
en

t
ac

ce
ss

tim
e

st
am

ps
.

D
oe

s
no

t
in

cl
ud

e
se

ss
io

n
tim

e
ou

t.

5.
0

P
er

W

eb

ap
pl

ic
at

io
n

Ti
m

eS
ta

tis
tic

A

ll
M

ed
iu

m

Ti
m

eo
ut

In
va

lid
at

io
nC

ou
nt

se

rv
le

tS
es

si
on

sM
od

ul
e.

in
va

lid
at

ed
V

ia
Ti

m
eo

ut

T
he

nu

m
be

r
of

se

ss
io

ns

th

at

ar
e

in
va

lid
at

ed

by

tim

eo
ut

.
5.

0
P

er

W

eb

ap
pl

ic
at

io
n

C
ou

nt
S

ta
tis

tic

A
ll

Lo
w

A
ct

iv
at

eN
on

E
xi

st
S

es
si

on
C

ou
nt

se

rv
le

tS
es

si
on

sM
od

ul
e.

ac
tiv

at
eN

on
E

xi
st

S
es

si
on

s
T

he

nu

m
be

r
of

re

qu
es

ts

fo

r
a

se
ss

io
n

th
at

no

lo

ng
er

ex
is

ts
,

pr
es

um
ab

ly

be

ca
us

e
th

e
se

ss
io

n
tim

ed

ou

t.
U

se

th
is

co

un
te

r
to

he

lp

de
te

rm
in

e
if

th
e

tim
eo

ut

is

to
o

sh
or

t.

5.
0

P
er

W

eb

ap
pl

ic
at

io
n

C
ou

nt
S

ta
tis

tic

A
ll

Lo
w

Chapter 24. Monitoring overall system health 2077

2078 Administering applications and their environment

Transaction counters

Use this page as a reference for properties of transaction counters.

Counter definitions:

Chapter 24. Monitoring overall system health 2079

N
am

e
K

ey

D
es

cr
ip

ti
o

n

V
er

si
o

n

G
ra

n
u

la
ri

ty

Ty
p

e
L

ev
el

O

ve
rh

ea
d

G
lo

ba
lB

eg
un

C
ou

nt

tr
an

sa
ct

io
nM

od
ul

e.
gl

ob
al

Tr
an

sB
eg

un

T
he

to

ta
l n

um
be

r
of

gl

ob
al

tr
an

sa
ct

io
ns

st

ar
te

d
on

th

e
se

rv
er

4.
0

an
d

la
te

r
P

er

tr

an
sa

ct
io

n
m

an
ag

er

or

se

rv
er

C
ou

nt
S

ta
tis

tic

E
xt

en
de

d
Lo

w

G
lo

ba
lIn

vo
lv

ed
C

ou
nt

tr

an
sa

ct
io

nM
od

ul
e.

gl
ob

al
Tr

an
sI

nv
ol

ve
d

T
he

to

ta
l n

um
be

r
of

gl

ob
al

tr
an

sa
ct

io
ns

in

vo
lv

ed

on

th
e

se
rv

er

(f

or

ex

am
pl

e,

be
gu

n
an

d
im

po
rt

ed
)

4.
0

an
d

la
te

r
P

er

tr

an
sa

ct
io

n
m

an
ag

er

or

se

rv
er

C
ou

nt
S

ta
tis

tic

A
ll

Lo
w

Lo
ca

lB
eg

un
C

ou
nt

tr

an
sa

ct
io

nM
od

ul
e.

lo
ca

lT
ra

ns
B

eg
un

T

he

to

ta
l n

um
be

r
of

lo

ca
l

tr
an

sa
ct

io
ns

st

ar
te

d
on

th

e
se

rv
er

4.
0

an
d

la
te

r
P

er

tr

an
sa

ct
io

n
m

an
ag

er

or

se

rv
er

C
ou

nt
S

ta
tis

tic

E
xt

en
de

d
Lo

w

A
ct

iv
eC

ou
nt

tr

an
sa

ct
io

nM
od

ul
e.

ac
tiv

eG
lo

ba
lT

ra
ns

T

he

nu

m
be

r
of

co
nc

ur
re

nt
ly

ac

tiv
e

gl
ob

al

tr
an

sa
ct

io
ns

3.
5.

5
an

d
la

te
r

P
er

tr

an
sa

ct
io

n
m

an
ag

er

or

se

rv
er

C
ou

nt
S

ta
tis

tic

B
as

ic

Lo
w

Lo
ca

lA
ct

iv
eC

ou
nt

tr

an
sa

ct
io

nM
od

ul
e.

ac
tiv

eL
oc

al
Tr

an
s

T
he

nu

m
be

r
of

co
nc

ur
re

nt
ly

ac

tiv
e

lo
ca

l
tr

an
sa

ct
io

ns

4.
0

an
d

la
te

r
P

er

tr

an
sa

ct
io

n
m

an
ag

er

or

se

rv
er

C
ou

nt
S

ta
tis

tic

A
ll

Lo
w

G
lo

ba
lT

ra
nT

im
e

tr
an

sa
ct

io
nM

od
ul

e.
gl

ob
al

Tr
an

D
ur

at
io

n
T

he

av

er
ag

e
du

ra
tio

n
of

gl
ob

al

tr

an
sa

ct
io

ns

3.
5.

5
an

d
la

te
r

P
er

tr

an
sa

ct
io

n
m

an
ag

er

or

se

rv
er

Ti
m

eS
ta

tis
tic

E

xt
en

de
d

M
ed

iu
m

Lo
ca

lT
ra

nT
im

e
tr

an
sa

ct
io

nM
od

ul
e.

lo
ca

lT
ra

nD
ur

at
io

n
T

he

av

er
ag

e
du

ra
tio

n
of

lo
ca

l t
ra

ns
ac

tio
ns

4.
0

an
d

la
te

r
P

er

tr

an
sa

ct
io

n
m

an
ag

er

or

se

rv
er

Ti
m

eS
ta

tis
tic

E

xt
en

de
d

M
ed

iu
m

G
lo

ba
lB

ef
or

eC
om

pl
et

io
nT

im
e

tr
an

sa
ct

io
nM

od
ul

e.
gl

ob
al

B
ef

or
eC

om
pl

et
io

nD
ur

at
io

n
T

he

av

er
ag

e
du

ra
tio

n
of

be
fo

re
_c

om
pl

et
io

n
fo

r
gl

ob
al

tr

an
sa

ct
io

ns

4.
0

an
d

la
te

r
pe

r
tr

an
sa

ct
io

n
m

an
ag

er

or

se

rv
er

Ti
m

eS
ta

tis
tic

A

ll
M

ed
iu

m

G
lo

ba
lC

om
m

itT
im

e
tr

an
sa

ct
io

nM
od

ul
e.

gl
ob

al
C

om
m

itD
ur

at
io

n
T

he

av

er
ag

e
du

ra
tio

n
of

co
m

m
it

fo
r

gl
ob

al

tr
an

sa
ct

io
ns

4.
0

an
d

la
te

r
P

er

tr

an
sa

ct
io

n
m

an
ag

er

or

se

rv
er

Ti
m

eS
ta

tis
tic

A

ll
M

ed
iu

m

G
lo

ba
lP

re
pa

re
Ti

m
e

tr
an

sa
ct

io
nM

od
ul

e.
gl

ob
al

P
re

pa
re

D
ur

at
io

n
T

he

av

er
ag

e
du

ra
tio

n
of

pr
ep

ar
e

fo
r

gl
ob

al

tr
an

sa
ct

io
ns

4.
0

an
d

la
te

r
P

er

tr

an
sa

ct
io

n
m

an
ag

er

or

se

rv
er

Ti
m

eS
ta

tis
tic

A

ll
M

ed
iu

m

Lo
ca

lB
ef

or
eC

om
pl

et
io

nT
im

e
tr

an
sa

ct
io

nM
od

ul
e.

lo
ca

lB
ef

or
eC

om
pl

et
io

nD
ur

at
io

n
T

he

av

er
ag

e
du

ra
tio

n
of

be
fo

re
_c

om
pl

et
io

n
fo

r
lo

ca
l t

ra
ns

ac
tio

ns

4.
0

an
d

la
te

r
P

er

tr

an
sa

ct
io

n
m

an
ag

er

or

se

rv
er

Ti
m

eS
ta

tis
tic

A

ll
M

ed
iu

m

Lo
ca

lC
om

m
itT

im
e

tr
an

sa
ct

io
nM

od
ul

e.
lo

ca
lC

om
m

itD
ur

at
io

n
T

he

av

er
ag

e
du

ra
tio

n
of

co
m

m
it

fo
r

lo
ca

l
tr

an
sa

ct
io

ns

4.
0

an
d

la
te

r
P

er

tr

an
sa

ct
io

n
m

an
ag

er

or

se

rv
er

Ti
m

eS
ta

tis
tic

A

ll
M

ed
iu

m

C
om

m
itt

ed
C

ou
nt

tr

an
sa

ct
io

nM
od

ul
e.

gl
ob

al
Tr

an
sC

om
m

itt
ed

T

he

to

ta
l n

um
be

r
of

gl

ob
al

tr
an

sa
ct

io
ns

co

m
m

itt
ed

3.
5.

5
an

d
la

te
r

P
er

tr

an
sa

ct
io

n
m

an
ag

er

or

se

rv
er

C
ou

nt
S

ta
tis

tic

B
as

ic

Lo
w

R
ol

le
db

ac
kC

ou
nt

tr

an
sa

ct
io

nM
od

ul
e.

gl
ob

al
Tr

an
sR

ol
le

dB
ac

k
T

he

to

ta
l n

um
be

r
of

gl

ob
al

tr
an

sa
ct

io
ns

ro

lle
d

ba
ck

3.
5.

5
an

d
la

te
r

P
er

tr

an
sa

ct
io

n
m

an
ag

er

or

se

rv
er

C
ou

nt
S

ta
tis

tic

B
as

ic

Lo
w

O
pt

im
iz

at
io

nC
ou

nt

tr
an

sa
ct

io
nM

od
ul

e.
nu

m
O

pt
im

iz
at

io
n

T
he

nu

m
be

r
of

gl

ob
al

tr
an

sa
ct

io
ns

co

nv
er

te
d

to

si
ng

le

ph

as
e

fo
r

op
tim

iz
at

io
n

4.
0

an
d

la
te

r
P

er

tr

an
sa

ct
io

n
m

an
ag

er

or

se

rv
er

C
ou

nt
S

ta
tis

tic

A
ll

Lo
w

Lo
ca

lC
om

m
itt

ed
C

ou
nt

tr

an
sa

ct
io

nM
od

ul
e.

lo
ca

lT
ra

ns
C

om
m

itt
ed

T

he

nu

m
be

r
of

lo

ca
l

tr
an

sa
ct

io
ns

co

m
m

itt
ed

4.
0

an
d

la
te

r
P

er

tr

an
sa

ct
io

n
m

an
ag

er

or

se

rv
er

C
ou

nt
S

ta
tis

tic

A
ll

Lo
w

2080 Administering applications and their environment

Lo
ca

lR
ol

le
db

ac
kC

ou
nt

tr

an
sa

ct
io

nM
od

ul
e.

lo
ca

lT
ra

ns
R

ol
le

dB
ac

k
T

he

nu

m
be

r
of

lo

ca
l

tr
an

sa
ct

io
ns

ro

lle
d

ba
ck

4.
0

an
d

la
te

r
P

er

tr

an
sa

ct
io

n
m

an
ag

er

or

se

rv
er

C
ou

nt
S

ta
tis

tic

A
ll

Lo
w

G
lo

ba
lT

im
eo

ut
C

ou
nt

tr

an
sa

ct
io

nM
od

ul
e.

gl
ob

al
Tr

an
sT

im
eo

ut

T
he

nu

m
be

r
of

gl

ob
al

tr
an

sa
ct

io
ns

tim

ed

ou

t
4.

0
an

d
la

te
r

P
er

tr

an
sa

ct
io

n
m

an
ag

er

or

se

rv
er

C
ou

nt
S

ta
tis

tic

E
xt

en
de

d
Lo

w

Lo
ca

lT
im

eo
ut

C
ou

nt

tr
an

sa
ct

io
nM

od
ul

e.
lo

ca
lT

ra
ns

Ti
m

eo
ut

T

he

nu

m
be

r
of

lo

ca
l

tr
an

sa
ct

io
ns

tim

ed

ou

t
4.

0
an

d
la

te
r

P
er

tr

an
sa

ct
io

n
m

an
ag

er

or

se

rv
er

C
ou

nt
S

ta
tis

tic

E
xt

en
de

d
Lo

w

Chapter 24. Monitoring overall system health 2081

Thread pool counters

Use this page as a reference for properties of thread pool counters.

Counter definitions:

2082 Administering applications and their environment

N
am

e
K

ey

D
es

cr
ip

ti
o

n

V
er

si
o

n

G
ra

n
u

la
ri

ty

Ty
p

e
L

ev
el

O

ve
rh

ea
d

C
re

at
eC

ou
nt

th

re
ad

P
oo

lM
od

ul
e.

th
re

ad
C

re
at

es

T
he

to

ta
l n

um
be

r
of

th
re

ad
s

cr
ea

te
d

3.
5.

5
an

d
la

te
r

P
er

th

re
ad

po

ol

C
ou

nt
S

ta
tis

tic

A
ll

Lo
w

D
es

tr
oy

C
ou

nt

th
re

ad
P

oo
lM

od
ul

e.
th

re
ad

D
es

tr
oy

s
T

he

to

ta
l n

um
be

r
of

th
re

ad
s

de
st

ro
ye

d
3.

5.
5

an
d

la
te

r
P

er

th

re
ad

po

ol

C
ou

nt
S

ta
tis

tic

A
ll

Lo
w

A
ct

iv
eC

ou
nt

th

re
ad

P
oo

lM
od

ul
e.

ac
tiv

eT
hr

ea
ds

T

he

nu

m
be

r
of

co
nc

ur
re

nt
ly

ac

tiv
e

th
re

ad
s

3.
5.

5
an

d
la

te
r

P
er

th

re
ad

po

ol

R
an

ge
S

ta
tis

tic

E
xt

en
de

d
H

ig
h

P
oo

lS
iz

e
th

re
ad

P
oo

lM
od

ul
e.

po
ol

S
iz

e
T

he

av

er
ag

e
nu

m
be

r
of

th
re

ad
s

in

po

ol

3.
5.

5
an

d
la

te
r

P
er

th

re
ad

po

ol

B
ou

nd
ed

R
an

ge
S

ta
tis

tic

B
as

ic

H
ig

h

P
er

ce
nt

M
ax

ed

th
re

ad
P

oo
lM

od
ul

e.
pe

rc
en

tM
ax

ed

T
he

av

er
ag

e
pe

rc
en

t
of

th
e

tim
e

th
at

al

l t
hr

ea
ds

ar
e

in

us

e

3.
5.

5
an

d
la

te
r

P
er

th

re
ad

po

ol

R
an

ge
S

ta
tis

tic

A
ll

H
ig

h

D
ec

la
re

dt
hr

ea
dH

un
gC

ou
nt

th

re
ad

P
oo

lM
od

ul
e.

de
cl

ar
ed

T
hr

ea
dH

un
g

T
he

nu

m
be

r
of

th

re
ad

s
de

cl
ar

ed

hu

ng

5.
1.

1
an

d
la

te
r

P
er

th

re
ad

po

ol

C
ou

nt
S

ta
tis

tic

A
ll

M
ax

C
le

ar
ed

T
hr

ea
dH

an
gC

ou
nt

th

re
ad

P
oo

lM
od

ul
e.

de
cl

ar
ed

T
hr

ea
dH

an
gC

le
ar

ed

T
he

nu

m
be

r
of

th

re
ad

ha
ng

s
cl

ea
re

d
5.

1.
1

an
d

la
te

r
P

er

th

re
ad

po

ol

C
ou

nt
S

ta
tis

tic

A
ll

M
ax

C
on

cu
rr

en
tH

un
gT

hr
ea

dC
ou

nt

th
re

ad
P

oo
lM

od
ul

e.
co

nc
ur

re
nt

ly
H

un
gT

hr
ea

ds

T
he

nu

m
be

r
of

co
nc

ur
re

nt
ly

hu

ng

th
re

ad
s

5.
1.

1
an

d
la

te
r

P
er

th

re
ad

po

ol

R
an

ge
S

ta
tis

tic

A
ll

M
ax

A
ct

iv
eT

im
e

th
re

ad
P

oo
lM

od
ul

e.
ac

tiv
eT

im
e

T
he

av

er
ag

e
tim

e
in

m
ill

is
ec

on
ds

th

e
th

re
ad

s
ar

e
in

ac

tiv
e

st
at

e

5.
1.

1
an

d
la

te
r

P
er

th

re
ad

po

ol

Ti
m

eS
ta

tis
tic

A

ll
M

ax

Chapter 24. Monitoring overall system health 2083

Web application counters

Data counters for this category contain information for the selected server.

Counter definitions:

2084 Administering applications and their environment

N
am

e
K

ey

D
es

cr
ip

ti
o

n

V
er

si
o

n

G
ra

n
u

la
ri

ty

Ty
p

e
L

ev
el

O

ve
rh

ea
d

Lo
ad

ed
S

er
vl

et
C

ou
nt

w

eb
A

pp
M

od
ul

e.
nu

m
Lo

ad
ed

S
er

vl
et

s
T

he

nu

m
be

r
of

lo

ad
ed

se

rv
le

ts

3.
5.

5
an

d
la

te
r

P
er

W

eb

ap
pl

ic
at

io
n

C
ou

nt
S

ta
tis

tic

A
ll

Lo
w

R
el

oa
dC

ou
nt

w

eb
A

pp
M

od
ul

e.
nu

m
R

el
oa

ds

T
he

nu

m
be

r
of

re

lo
ad

ed

se

rv
le

ts

3.
5.

5
an

d
la

te
r

P
er

W

eb

ap
pl

ic
at

io
n

C
ou

nt
S

ta
tis

tic

A
ll

Lo
w

R
eq

ue
st

C
ou

nt

w
eb

A
pp

M
od

ul
e.

se
rv

le
ts

.to
ta

lR
eq

ue
st

s
To

ta
l n

um
be

r
of

re

qu
es

ts

th

at

a

se
rv

le
t

pr
oc

es
se

d
3.

5.
5

an
d

la
te

r
P

er

se

rv
le

t
C

ou
nt

S
ta

tis
tic

B

as
ic

Lo

w

C
on

cu
rr

en
tR

eq
ue

st
s

w
eb

A
pp

M
od

ul
e.

se
rv

le
ts

.c
on

cu
rr

en
tR

eq
ue

st
s

T
he

nu

m
be

r
of

re

qu
es

ts

th

at

ar

e
co

nc
ur

re
nt

ly

pr
oc

es
se

d
3.

5.
5

an
d

la
te

r
P

er

se

rv
le

t
R

an
ge

S
ta

tis
tic

E

xt
en

de
d

H
ig

h

S
er

vi
ce

Ti
m

e
w

eb
A

pp
M

od
ul

e.
se

rv
le

ts
.r

es
po

ns
eT

im
e

T
he

re

sp
on

se

tim

e,

in

m

ill
is

ec
on

ds
,

of

a

se
rv

le
t

re
qu

es
t

3.
5.

5
an

d
la

te
r

P
er

se

rv
le

t
Ti

m
eS

ta
tis

tic

B
as

ic

M
ed

iu
m

E
rr

or
C

ou
nt

w

eb
A

pp
M

od
ul

e.
se

rv
le

ts
.n

um
E

rr
or

s
To

ta
l n

um
be

r
of

er

ro
rs

in

a

se
rv

le
t

or

Ja
va

S
er

ve
r

P
ag

e
(J

S
P

)
3.

5.
5

an
d

la
te

r
P

er

se

rv
le

t
C

ou
nt

S
ta

tis
tic

E

xt
en

de
d

Lo
w

Chapter 24. Monitoring overall system health 2085

Workload Management counters

Use this page as a reference for properties of workload management counters.

Data counters for this category contain information for workload management.

Counter definitions:

2086 Administering applications and their environment

N
am

e
K

ey

D
es

cr
ip

ti
o

n

V
er

si
o

n

G
ra

n
u

la
ri

ty

Ty
p

e
L

ev
el

O

ve
rh

ea
d

N
um

IIO

P

re

qu
es

ts

w
lm

M
od

ul
e.

se
rv

er
.n

um
In

co
m

in
gR

eq
ue

st
s

T
he

to

ta
l n

um
be

r
of

in

co
m

in
g

IIO
P

re

qu
es

ts

to

an

ap

pl
ic

at
io

n
se

rv
er

5.
0

P
er

se

rv
er

C

ou
nt

S
ta

tis
tic

E

xt
en

de
d

Lo
w

N
um

st

ro
ng

af

fin
ity

IIO

P

re
qu

es
ts

w
lm

M
od

ul
e.

se
rv

er
.n

um
In

co
m

in
gS

tr
on

gA
ffi

ni
ty

R
eq

ue
st

s
T

he

nu

m
be

r
of

in

co
m

in
g

IIO
P

re
qu

es
ts

to

an

ap

pl
ic

at
io

n
se

rv
er

th
at

ar

e
ba

se
d

on

a

st
ro

ng

af
fin

ity
. A

st

ro
ng

af

fin
ity

re

qu
es

t
is

de
fin

ed

as

a

re
qu

es
t

th
at

m

us
t

be

se
rv

ic
ed

by

th

is

ap

pl
ic

at
io

n
se

rv
er

be
ca

us
e

of

a

de
pe

nd
en

cy

th

at

re
si

de
s

on

th

e
se

rv
er

.
T

hi
s

re
qu

es
t

co
ul

d
no

t
su

cc
es

sf
ul

ly

be

se
rv

ic
ed

on

an

ot
he

r
m

em
be

r
in

th
e

se
rv

er

cl

us
te

r.

5.
0

P
er

se

rv
er

C

ou
nt

S
ta

tis
tic

A

ll
Lo

w

N
um

no

af

fin
ity

IIO

P

re
qu

es
ts

w
lm

M
od

ul
e.

se
rv

er
.n

um
In

co
m

in
gN

on
A

ffi
ni

ty
R

eq
ue

st
s

T
he

nu

m
be

r
of

in

co
m

in
g

IIO
P

re
qu

es
ts

to

an

ap

pl
ic

at
io

n
se

rv
er

ba
se

d
on

no

af

fin
ity

.
T

hi
s

re
qu

es
t

w
as

se

nt

to

th

is

se

rv
er

ba

se
d

on

w
or

kl
oa

d
m

an
ag

em
en

t
se

le
ct

io
n

po
lic

ie
s

th
at

w

er
e

de
ci

de
d

in

th

e
W

or
kl

oa
d

M
an

ag
em

en
t

(W
LM

)
ru

n
tim

e
of

th

e
cl

ie
nt

.

5.
0

P
er

se

rv
er

C

ou
nt

S
ta

tis
tic

A

ll
Lo

w

N
um

no

n-
W

LM

en

ab
le

d
IIO

P

re

qu
es

ts

w
lm

M
od

ul
e.

se
rv

er
.n

um
In

co
m

in
gN

on
W

LM
O

bj
ec

tR
eq

ue
st

s
T

he

nu

m
be

r
of

in

co
m

in
g

IIO
P

re
qu

es
ts

to

an

ap

pl
ic

at
io

n
se

rv
er

th
at

ca

m
e

fr
om

a

cl
ie

nt

th

at

do

es

no
t

ha
ve

th

e
W

LM

ru

n
tim

e
pr

es
en

t
or

w

he
re

th

e
ob

je
ct

re
fe

re
nc

e
on

th

e
cl

ie
nt

w

as

fla
gg

ed

no

t
to

pa

rt
ic

ip
at

e
in

w
or

kl
oa

d
m

an
ag

em
en

t.

5.
0

P
er

se

rv
er

C

ou
nt

S
ta

tis
tic

A

ll
Lo

w

N
um

se

rv
er

cl

us
te

r
up

da
te

s
w

lm
M

od
ul

e.
se

rv
er

.n
um

S
er

ve
rC

lu
st

er
U

pd
at

es

T
he

nu

m
be

r
of

tim

es

in

iti
al

or

up
da

te
d

se
rv

er

cl

us
te

r
da

ta

is

se
nt

to

a

se
rv

er

m

em
be

r
fr

om

th

e
de

pl
oy

m
en

t
m

an
ag

er
.

T
hi

s
m

et
ric

de
te

rm
in

es

ho

w

of

te
n

cl
us

te
r

in
fo

rm
at

io
n

is

be

in
g

pr
op

ag
at

ed
.

5.
0

P
er

se

rv
er

C

ou
nt

S
ta

tis
tic

A

ll
Lo

w

N
um

of

W

LM

cl

ie
nt

s
se

rv
ic

ed

w
lm

M
od

ul
e.

se
rv

er
.n

um
O

fW
LM

C
lie

nt
sS

er
vi

ce
d

T
he

nu

m
be

r
of

W

LM

en

ab
le

d
cl

ie
nt

s
th

at

ha

ve

be

en

se

rv
ic

ed

by

th

is

ap

pl
ic

at
io

n
se

rv
er

.

5.
0

P
er

se

rv
er

C

ou
nt

S
ta

tis
tic

A

ll
Lo

w

N
um

co

nc
ur

re
nt

re
qu

es
ts

w
lm

M
od

ul
e.

se
rv

er
.n

um
O

fC
on

cu
rr

en
tR

eq
ue

st
s

T
he

nu

m
be

r
of

re

m
ot

e
IIO

P

re
qu

es
ts

cu

rr
en

tly

be

in
g

pr
oc

es
se

d
by

th

is

se

rv
er

5.
0

P
er

se

rv
er

R

an
ge

S
ta

tis
tic

E

xt
en

de
d

H
ig

h

S
er

ve
r

re
sp

on
se

tim

e
w

lm
M

od
ul

e.
se

rv
er

.s
er

ve
rR

es
po

ns
eT

im
e

T
he

re

sp
on

se

tim

e
(in

m
ill

is
ec

on
ds

)
of

IIO

P

re

qu
es

ts

be
in

g
se

rv
ic

ed

by

an

ap

pl
ic

at
io

n
se

rv
er

.
T

he

re

sp
on

se

tim

e
is

ca
lc

ul
at

ed

ba

se
d

on

th

e
tim

e
th

e
re

qu
es

t
is

re

ce
iv

ed

to

th

e
tim

e
w

he
n

th
e

re
pl

y
is

se

nt

ba

ck

ou

t.

5.
0

P
er

se

rv
er

Ti

m
eS

ta
tis

tic

E
xt

en
de

d
M

ed
iu

m

Chapter 24. Monitoring overall system health 2087

N
um

ou

tg
oi

ng

IIO

P

re
qu

es
ts

w
lm

M
od

ul
e.

cl
ie

nt
.n

um
O

fO
ut

go
in

gR
eq

ue
st

s
T

he

to

ta
l n

um
be

r
of

ou

tg
oi

ng

IIO
P

re

qu
es

ts

be

in
g

se
nt

fr

om

a

cl
ie

nt

to

an

ap

pl
ic

at
io

n
se

rv
er

5.
0

P
er

W

LM

C
ou

nt
S

ta
tis

tic

A
ll

Lo
w

N
um

se

rv
er

cl

us
te

r
up

da
te

s
w

lm
M

od
ul

e.
cl

ie
nt

.n
um

C
lie

nt
C

lu
st

er
U

pd
at

es

T
he

nu

m
be

r
of

tim

es

in

iti
al

or

up
da

te
d

se
rv

er

cl

us
te

r
da

ta

is

se
nt

to

a

W
LM

en

ab
le

d
cl

ie
nt

fr
om

se

rv
er

cl

us
te

r
m

em
be

r.
U

se

th
is

m

et
ric

to

de

te
rm

in
e

ho
w

of
te

n
cl

us
te

r
in

fo
rm

at
io

n
is

be

in
g

pr
op

ag
at

ed
.

5.
0

P
er

W

LM

C
ou

nt
S

ta
tis

tic

A
ll

Lo
w

C
lie

nt

re

sp
on

se

tim

e
w

lm
M

od
ul

e.
cl

ie
nt

.c
lie

nt
R

es
po

ns
eT

im
e

T
he

re

sp
on

se

tim

e
(in

m
ill

is
ec

on
ds

)
of

IIO

P

re

qu
es

ts

be
in

g
se

nt

fr

om

a

cl
ie

nt
.

T
he

re
sp

on
se

tim

e
is

ca

lc
ul

at
ed

ba
se

d
on

th

e
tim

e
th

e
re

qu
es

t
is

se
nt

fr

om

th

e
cl

ie
nt

to

th

e
tim

e
th

e
re

pl
y

is

re

ce
iv

ed

fr

om

th

e
se

rv
er

.

5.
0

P
er

W

LM

Ti
m

eS
ta

tis
tic

A

ll
M

ed
iu

m

2088 Administering applications and their environment

System counters

Use this page as a reference for properties of system counters.

Counters for this category contain information for a machine (node).

Counter definitions:

Chapter 24. Monitoring overall system health 2089

N
am

e
K

ey

D
es

cr
ip

ti
o

n

V
er

si
o

n

G
ra

n
u

la
ri

ty

Ty
p

e
L

ev
el

O

ve
rh

ea
d

C
P

U
U

sa
ge

S
in

ce
La

st
M

ea
su

re
m

en
t

sy
st

em
M

od
ul

e.
cp

uU
til

iz
at

io
n

T
he

av

er
ag

e
sy

st
em

C

P
U

ut
ili

za
tio

n
ta

ke
n

ov
er

th

e
tim

e
in

te
rv

al

si

nc
e

th
e

la
st

re

ad
in

g.

B
ec

au
se

th

e
fir

st

ca

ll
is

re

qu
ire

d
to

pe
rf

or
m

in

iti
al

iz
at

io
n,

a

va
lu

e
su

ch

as

0,

w

hi
ch

is

no

t
va

lid
,

w
ill

be

re
tu

rn
ed

. A
ll

su
bs

eq
ue

nt

ca

lls

re
tu

rn

th

e
ex

pe
ct

ed

va

lu
e.

O

n
S

M
P

m
ac

hi
ne

s,

th

e
va

lu
e

re
tu

rn
ed

is

th

e
ut

ili
za

tio
n

av
er

ag
ed

ov

er

al

l C
P

U
s.

5.
0

P
er

no

de

C
ou

nt
S

ta
tis

tic

B
as

ic

Lo
w

F
re

eM
em

or
y

sy
st

em
M

od
ul

e.
fr

ee
M

em
or

y
T

he

am

ou
nt

of

re

al

fr

ee

m

em
or

y
av

ai
la

bl
e

on

th

e
sy

st
em

.
R

ea
l

m
em

or
y

th
at

is

no

t
al

lo
ca

te
d

is

on

ly

a
lo

w
er

bo

un
d

on

av

ai
la

bl
e

re
al

m
em

or
y,

si

nc
e

m
an

y
op

er
at

in
g

sy
st

em
s

ta
ke

so

m
e

of

th

e
ot

he
rw

is
e

un
al

lo
ca

te
d

m
em

or
y

an
d

us
e

it
fo

r
ad

di
tio

na
l I

/O

bu

ffe
rin

g.

T
he

ex

ac
t

am
ou

nt

of

bu

ffe
r

m
em

or
y

w
hi

ch

ca

n
be

fr

ee
d

up

is

de
pe

nd
en

t
on

bo

th

th

e
pl

at
fo

rm

an
d

th
e

ap
pl

ic
at

io
n(

s)

ru

nn
in

g
on

it.

5.
0

P
er

no

de

C
ou

nt
S

ta
tis

tic

A
ll

Lo
w

C
P

U
U

sa
ge

S
in

ce
S

er
ve

rS
ta

rt
ed

sy

st
em

M
od

ul
e.

av
gC

pu
U

til
iz

at
io

n
T

he

av

er
ag

e
pe

rc
en

t
C

P
U

U

sa
ge

th
at

is

bu

sy

af

te
r

th
e

se
rv

er

is

st
ar

te
d.

5.
0

P
er

no

de

Ti
m

eS
ta

tis
tic

E

xt
en

de
d

M
ed

iu
m

2090 Administering applications and their environment

Dynamic cache counters

Use this page as a reference for properties of dynamic cache counters.

You can use the Performance Monitoring Infrastructure (PMI) data for Dynamic Cache to monitor the

behavior and performance of the dynamic cache service. For information on the functions and usages of

dynamic cache, refer to “Task overview: Using the dynamic cache service to improve performance” on

page 1867.

Use the DynaCache MBean to access the related data and display it under Dynamic Cache in TPV.

Counter definitions:

Chapter 24. Monitoring overall system health 2091

N
am

e
K

ey

D
es

cr
ip

ti
o

n

V
er

si
o

n

G
ra

n
u

la
ri

ty

Ty
p

e
L

ev
el

O

ve
rh

ea
d

M
ax

In
M

em
or

yC
ac

he
E

nt
ry

C
ou

nt

ca
ch

eM
od

ul
e.

.m
ax

In
M

em
or

yC
ac

he
E

nt
ry

C
ou

nt

T
he

m

ax
im

um

nu

m
be

r
of

in

-m
em

or
y

ca
ch

e
en

tr
ie

s.

It

is

lo

ca
te

d
un

de
r

se
rv

le
t

in
st

an
ce

or

ob

je
ct

in

st
an

ce
.

5.
0

an
d

la
te

r
P

er

S

er
ve

r
C

ou
nt

S
ta

tis
tic

A

ll
Lo

w

In
M

em
or

yC
ac

he
E

nt
ry

C
ou

nt

ca
ch

eM
od

ul
e.

in
M

em
or

yC
ac

he
E

nt
ry

C
ou

nt

T
he

cu

rr
en

t
nu

m
be

r
of

in
-m

em
or

y
ca

ch
e

en
tr

ie
s.

It

is

lo

ca
te

d
un

de
r

se
rv

le
t

in
st

an
ce

an
d

ob
je

ct

in

st
an

ce
.

5.
0

an
d

la
te

r
P

er

S

er
ve

r
C

ou
nt

S
ta

tis
tic

A

ll
Lo

w

H
its

In
M

em
or

yC
ou

nt

ca
ch

eM
od

ul
e.

hi
ts

In
M

em
or

yC
ou

nt

T
he

nu

m
be

r
of

re
qu

es
ts

fo

r
ca

ch
ea

bl
e

ob
je

ct
s

th
at

ar

e
se

rv
ed

fr
om

m

em
or

y.

F

or

se
rv

le
t

in
st

an
ce

,
it

is

lo
ca

te
d

un
de

r
te

m
pl

at
e

gr
ou

p.

F

or

ob

je
ct

in
st

an
ce

,
it

is

lo

ca
te

d
un

de
r

ob
je

ct

gr

ou
p.

5.
0

an
d

la
te

r
P

er

S

er
ve

r
C

ou
nt

S
ta

tis
tic

A

ll
Lo

w

H
its

O
nD

is
kC

ou
nt

ca

ch
eM

od
ul

e.
hi

ts
O

nD
is

kC
ou

nt

T
he

nu

m
be

r
of

re
qu

es
ts

fo

r
ca

ch
ea

bl
e

ob
je

ct
s

th
at

ar

e
se

rv
ed

fr
om

di

sk
.

F
or

se

rv
le

t
in

st
an

ce
,

it
is

lo

ca
te

d
un

de
r

te
m

pl
at

e
gr

ou
p.

F
or

ob

je
ct

in

st
an

ce
,

it
is

lo

ca
te

d
un

de
r

ob
je

ct

gr
ou

p.

5.
0

an
d

la
te

r
P

er

S

er
ve

r
C

ou
nt

S
ta

tis
tic

A

ll
Lo

w

E
xp

lic
itI

nv
al

id
at

io
nC

ou
nt

ca

ch
eM

od
ul

e.
ex

pl
ic

itI
nv

al
id

at
io

nC
ou

nt

T
he

nu

m
be

r
of

ex

pl
ic

it
in

va
lid

at
io

ns
.

F
or

se
rv

le
t

in
st

an
ce

,
it

is

lo
ca

te
d

un
de

r
te

m
pl

at
e

gr
ou

p.

F

or

ob

je
ct

in
st

an
ce

,
it

is

lo

ca
te

d
un

de
r

ob
je

ct

gr

ou
p.

5.
0

an
d

la
te

r
P

er

S

er
ve

r
C

ou
nt

S
ta

tis
tic

A

ll
Lo

w

Lr
uI

nv
al

id
at

io
nC

ou
nt

ca

ch
eM

od
ul

e.
lru

In
va

lid
at

io
nC

ou
nt

T

he

nu

m
be

r
of

ca

ch
e

en
tr

ie
s

th
at

ar

e
re

m
ov

ed

fr

om

m

em
or

y
by

a

Le
as

t
R

ec
en

tly

U
se

d
(L

R
U

)
al

go
rit

hm
.

F
or

se

rv
le

t
in

st
an

ce
,

it
is

lo

ca
te

d
un

de
r

te
m

pl
at

e
gr

ou
p.

F

or

ob
je

ct

in

st
an

ce
,

it
is

lo
ca

te
d

un
de

r
ob

je
ct

gr
ou

p.

5.
0

an
d

la
te

r
P

er

S

er
ve

r
C

ou
nt

S
ta

tis
tic

A

ll
Lo

w

2092 Administering applications and their environment

Ti
m

eo
ut

In
va

lid
at

io
nC

ou
nt

ca

ch
eM

od
ul

e.
tim

eo
ut

In
va

lid
at

io
nC

ou
nt

T

he

nu

m
be

r
of

ca

ch
e

en
tr

ie
s

th
at

ar

e
re

m
ov

ed

fr

om

m

em
or

y
an

d
di

sk

be

ca
us

e
th

ei
r

tim
eo

ut

ha

s
ex

pi
re

d.

F
or

se

rv
le

t
in

st
an

ce
,

it
is

lo

ca
te

d
un

de
r

te
m

pl
at

e
gr

ou
p.

F

or

ob
je

ct

in

st
an

ce
,

it
is

lo
ca

te
d

un
de

r
ob

je
ct

gr
ou

p.

5.
0

an
d

la
te

r
P

er

S

er
ve

r
C

ou
nt

S
ta

tis
tic

A

ll
Lo

w

In
M

em
or

yA
nd

D
is

kC
ac

he
E

nt
ry

C
ou

nt

ca
ch

eM
od

ul
e.

in
M

em
or

yA
nd

D
is

kC
ac

he
E

nt
ry

C
ou

nt

T
he

cu

rr
en

t
nu

m
be

r
of

us
ed

ca

ch
e

en
tr

ie
s

in

m
em

or
y

an
d

di
sk

.
F

or

se
rv

le
t

in
st

an
ce

,
it

is

lo
ca

te
d

un
de

r
te

m
pl

at
e

gr
ou

p.

F

or

ob

je
ct

in
st

an
ce

,
it

is

lo

ca
te

d
un

de
r

ob
je

ct

gr

ou
p.

5.
0

an
d

la
te

r
P

er

S

er
ve

r
C

ou
nt

S
ta

tis
tic

A

ll
Lo

w

R
em

ot
eH

itC
ou

nt

ca
ch

eM
od

ul
e.

re
m

ot
eH

itC
ou

nt

T
he

nu

m
be

r
of

re
qu

es
ts

fo

r
ca

ch
ea

bl
e

ob
je

ct
s

th
at

ar

e
se

rv
ed

fr
om

ot

he
r

Ja
va

vi

rt
ua

l
m

ac
hi

ne
s

w
ith

in

th

e
re

pl
ic

at
io

n
do

m
ai

n.

F

or

se
rv

le
t

in
st

an
ce

,
it

is

lo
ca

te
d

un
de

r
te

m
pl

at
e

gr
ou

p.

F

or

ob

je
ct

in
st

an
ce

,
it

is

lo

ca
te

d
un

de
r

ob
je

ct

gr

ou
p.

5.
0

an
d

la
te

r
P

er

S

er
ve

r
C

ou
nt

S
ta

tis
tic

A

ll
Lo

w

M
is

sC
ou

nt

ca
ch

eM
od

ul
e.

m
is

sC
ou

nt

T
he

nu

m
be

r
of

re
qu

es
ts

fo

r
ca

ch
ea

bl
e

ob
je

ct
s

th
at

w

er
e

no
t

fo
un

d
in

th

e
ca

ch
e.

F

or

se
rv

le
t

in
st

an
ce

,
it

is

lo
ca

te
d

un
de

r
te

m
pl

at
e

gr
ou

p.

F

or

ob

je
ct

in
st

an
ce

,
it

is

lo

ca
te

d
un

de
r

ob
je

ct

gr

ou
p.

5.
0

an
d

la
te

r
P

er

S

er
ve

r
C

ou
nt

S
ta

tis
tic

A

ll
Lo

w

C
lie

nt
R

eq
ue

st
C

ou
nt

ca

ch
eM

od
ul

e.
cl

ie
nt

R
eq

ue
st

C
ou

nt

T
he

nu

m
be

r
of

re
qu

es
ts

fo

r
ca

ch
ea

bl
e

ob
je

ct
s

th
at

ar

e
ge

ne
ra

te
d

by

ap
pl

ic
at

io
ns

ru

nn
in

g
on

th
is

ap

pl
ic

at
io

n
se

rv
er

.
F

or

se

rv
le

t
in

st
an

ce
,

it
is

lo

ca
te

d
un

de
r

te
m

pl
at

e
gr

ou
p.

F

or

ob
je

ct

in

st
an

ce
,

it
is

lo
ca

te
d

un
de

r
ob

je
ct

gr
ou

p.

5.
0

an
d

la
te

r
P

er

S

er
ve

r
C

ou
nt

S
ta

tis
tic

A

ll
Lo

w

Chapter 24. Monitoring overall system health 2093

D
is

tr
ib

ut
ed

R
eq

ue
st

C
ou

nt

ca
ch

eM
od

ul
e.

di
st

rib
ut

ed
R

eq
ue

st
C

ou
nt

T

he

nu

m
be

r
of

re
qu

es
ts

fo

r
ca

ch
ea

bl
e

ob
je

ct
s

th
at

ar

e
ge

ne
ra

te
d

by

co
op

er
at

in
g

ca
ch

es

in

th
is

re

pl
ic

at
io

n
do

m
ai

n.

F
or

se

rv
le

t
in

st
an

ce
,

it
is

lo

ca
te

d
un

de
r

te
m

pl
at

e
gr

ou
p.

F

or

ob
je

ct

in

st
an

ce
,

it
is

lo
ca

te
d

un
de

r
ob

je
ct

gr
ou

p.

5.
0

an
d

la
te

r
P

er

S

er
ve

r
C

ou
nt

S
ta

tis
tic

A

ll
Lo

w

E
xp

lic
itM

em
or

yI
nv

al
id

at
io

nC
ou

nt

ca
ch

eM
od

ul
e.

ex
pl

ic
itM

em
or

yI
nv

al
id

at
io

nC
ou

nt

T
he

nu

m
be

r
of

ex

pl
ic

it
in

va
lid

at
io

ns

re

su
lti

ng

in

th

e
re

m
ov

al

of

an

en
tr

y
fr

om

m

em
or

y.

F

or

se
rv

le
t

in
st

an
ce

,
it

is

lo
ca

te
d

un
de

r
te

m
pl

at
e

gr
ou

p.

F

or

ob

je
ct

in
st

an
ce

,
it

is

lo

ca
te

d
un

de
r

ob
je

ct

gr

ou
p.

5.
0

an
d

la
te

r
P

er

S

er
ve

r
C

ou
nt

S
ta

tis
tic

A

ll
Lo

w

E
xp

lic
itD

is
kI

nv
al

id
at

io
nC

ou
nt

ca

ch
eM

od
ul

e.
ex

pl
ic

itD
is

kI
nv

al
id

at
io

nC
ou

nt

T
he

nu

m
be

r
of

ex

pl
ic

it
in

va
lid

at
io

ns

re

su
lti

ng

in

th

e
re

m
ov

al

of

an

en
tr

y
fr

om

di

sk
.

F
or

se
rv

le
t

in
st

an
ce

,
it

is

lo
ca

te
d

un
de

r
te

m
pl

at
e

gr
ou

p.

F

or

ob

je
ct

in
st

an
ce

,
it

is

lo

ca
te

d
un

de
r

ob
je

ct

gr

ou
p.

5.
0

an
d

la
te

r
P

er

S

er
ve

r
C

ou
nt

S
ta

tis
tic

A

ll
Lo

w

Lo
ca

lE
xp

lic
itI

nv
al

id
at

io
nC

ou
nt

ca

ch
eM

od
ul

e.
lo

ca
lE

xp
lic

itI
nv

al
id

at
io

nC
ou

nt

T
he

nu

m
be

r
of

ex

pl
ic

it
in

va
lid

at
io

ns

ge

ne
ra

te
d

lo
ca

lly
,

ei
th

er

pr
og

ra
m

m
at

ic
al

ly

or

by

a
ca

ch
e

po
lic

y.

F

or

se
rv

le
t

in
st

an
ce

,
it

is

lo
ca

te
d

un
de

r
te

m
pl

at
e

gr
ou

p.

F

or

ob

je
ct

in
st

an
ce

,
it

is

lo

ca
te

d
un

de
r

ob
je

ct

gr

ou
p.

5.
0

an
d

la
te

r
P

er

S

er
ve

r
C

ou
nt

S
ta

tis
tic

A

ll
Lo

w

R
em

ot
eE

xp
lic

itI
nv

al
id

at
io

nC
ou

nt

ca
ch

eM
od

ul
e.

re
m

ot
eE

xp
lic

itI
nv

al
id

at
io

nC
ou

nt

T
he

nu

m
be

r
of

ex

pl
ic

it
in

va
lid

at
io

ns

re

ce
iv

ed

fr
om

a

co
op

er
at

in
g

Ja
va

vi

rt
ua

l m
ac

hi
ne

in

th
is

re

pl
ic

at
io

n
do

m
ai

n.

F
or

se

rv
le

t
in

st
an

ce
,

it
is

lo

ca
te

d
un

de
r

te
m

pl
at

e
gr

ou
p.

F

or

ob
je

ct

in

st
an

ce
,

it
is

lo
ca

te
d

un
de

r
ob

je
ct

gr
ou

p.

5.
0

an
d

la
te

r
P

er

S

er
ve

r
C

ou
nt

S
ta

tis
tic

A

ll
Lo

w

2094 Administering applications and their environment

R
em

ot
eC

re
at

io
nC

ou
nt

ca

ch
eM

od
ul

e.
re

m
ot

eC
re

at
io

nC
ou

nt

T
he

nu

m
be

r
of

ca

ch
e

en
tr

ie
s

th
at

ar

e
re

ce
iv

ed

fr

om

co
op

er
at

in
g

dy
na

m
ic

ca
ch

es
.

F
or

se

rv
le

t
in

st
an

ce
,

it
is

lo

ca
te

d
un

de
r

te
m

pl
at

e
gr

ou
p.

F
or

ob

je
ct

in

st
an

ce
,

it
is

lo

ca
te

d
un

de
r

ob
je

ct

gr
ou

p.

5.
0

an
d

la
te

r
P

er

S

er
ve

r
C

ou
nt

S
ta

tis
tic

A

ll
Lo

w

O
bj

ec
ts

O
nD

is
k

ca
ch

eM
od

ul
e.

ob
je

ct
sO

nD
is

k
T

he

cu

rr
en

t
nu

m
be

r
of

ca
ch

e
en

tr
ie

s
on

di

sk
.

It
is

lo

ca
te

d
un

de
r

di
sk

gr
ou

p.

6.
1

an
d

la
te

r
P

er

S

er
ve

r
C

ou
nt

S
ta

tis
tic

A

ll
Lo

w

H
its

O
nD

is
k

ca
ch

eM
od

ul
e.

hi
ts

O
nD

is
k

T
he

nu

m
be

r
of

re
qu

es
ts

fo

r
ca

ch
ea

bl
e

ob
je

ct
s

th
at

ar

e
se

rv
ed

fr
om

di

sk
.

It
is

lo

ca
te

d
un

de
r

di
sk

gr

ou
p.

6.
1

an
d

la
te

r
P

er

S

er
ve

r
C

ou
nt

S
ta

tis
tic

A

ll
Lo

w

E
xp

lic
itI

nv
al

id
at

io
ns

F
ro

m
D

is
k

ca
ch

eM
od

ul
e.

ex
pl

ic
itI

nv
al

id
at

io
nF

ro
m

D
is

k
T

he

nu

m
be

r
of

ex

pl
ic

it
in

va
lid

at
io

ns

re

su
lti

ng

in

th

e
re

m
ov

al

of

en
tr

ie
s

fr
om

di

sk
.

It
is

lo
ca

te
d

un
de

r
di

sk

gr
ou

p.

6.
1

an
d

la
te

r
P

er

S

er
ve

r
C

ou
nt

S
ta

tis
tic

A

ll
Lo

w

Ti
m

eo
ut

In
va

lid
at

io
ns

F
ro

m
D

is
k

ca
ch

eM
od

ul
e.

tim
eo

ut
In

va
lid

at
io

ns
F

ro
m

D
is

k
T

he

nu

m
be

r
of

di

sk

tim
eo

ut
s.

It

is

lo

ca
te

d
un

de
r

di
sk

gr

ou
p.

6.
1

an
d

la
te

r
P

er

S

er
ve

r
C

ou
nt

S
ta

tis
tic

A

ll
Lo

w

P
en

di
ng

R
em

ov
al

F
ro

m
D

is
k

ca
ch

eM
od

ul
e.

pe
nd

in
gR

em
ov

al
F

ro
m

D
is

k
T

he

cu

rr
en

t
nu

m
be

r
of

pe
nd

in
g

en
tr

ie
s

th
at

ar
e

to

be

re

m
ov

ed

fr

om

di
sk

.
It

is

lo

ca
te

d
un

de
r

di
sk

gr

ou
p.

6.
1

an
d

la
te

r
P

er

S

er
ve

r
C

ou
nt

S
ta

tis
tic

A

ll
Lo

w

D
ep

en
de

nc
yI

D
sO

nD
is

k
ca

ch
eM

od
ul

e.
de

pe
nd

en
cy

Id
sO

nD
is

k
T

he

cu

rr
en

t
nu

m
be

r
of

de
pe

nd
en

cy

ID

th

at

ar

e
on

di

sk
.

It
is

lo

ca
te

d
un

de
r

di
sk

gr

ou
p.

6.
1

an
d

la
te

r
P

er

S

er
ve

r
C

ou
nt

S
ta

tis
tic

A

ll
Lo

w

D
ep

en
de

nc
yI

D
sB

uf
fe

re
dF

or
D

is
k

ca
ch

eM
od

ul
e.

de
pe

nd
en

cy
Id

sB
uf

fe
re

dF
or

D
is

k
T

he

cu

rr
en

t
nu

m
be

r
of

de
pe

nd
en

cy

ID

s
th

at

ar
e

bu
ffe

re
d

fo
r

th
e

di
sk

.
It

is

lo

ca
te

d
un

de
r

di
sk

gr

ou
p.

6.
1

an
d

la
te

r
P

er

S

er
ve

r
C

ou
nt

S
ta

tis
tic

A

ll
Lo

w

D
ep

en
de

nc
yI

D
sO

ffl
oa

de
dT

oD
is

k
ca

ch
eM

od
ul

e.
de

pe
nd

en
cy

Id
sO

ffl
oa

de
dT

oD
is

k
T

he

nu

m
be

r
of

de
pe

nd
en

cy

ID

s
th

at

ar
e

of
flo

ad
ed

to

di

sk
.

It
is

lo

ca
te

d
un

de
r

di
sk

gr
ou

p.

6.
1

an
d

la
te

r
P

er

S

er
ve

r
C

ou
nt

S
ta

tis
tic

A

ll
Lo

w

Chapter 24. Monitoring overall system health 2095

D
ep

en
de

nc
yI

D
B

as
ed

In
va

lid
at

io
ns

F
ro

m
D

is
k

ca
ch

eM
od

ul
e.

de
pe

nd
en

cy
Id

B
as

ed
In

va
lid

at
io

ns
F

ro
m

D
is

k
T

he

nu

m
be

r
of

de
pe

nd
en

cy

ID

-b
as

ed

in
va

lid
at

io
ns

.
It

is

lo
ca

te
d

un
de

r
di

sk

gr
ou

p.

6.
1

an
d

la
te

r
P

er

S

er
ve

r
C

ou
nt

S
ta

tis
tic

A

ll
Lo

w

Te
m

pl
at

es
O

nD
is

k
ca

ch
eM

od
ul

e.
te

m
pl

at
es

O
nD

is
k

T
he

cu

rr
en

t
nu

m
be

r
of

te
m

pl
at

es

th

at

ar

e
on

di
sk

.
It

is

lo

ca
te

d
un

de
r

di
sk

gr

ou
p.

6.
1

an
d

la
te

r
P

er

S

er
ve

r
C

ou
nt

S
ta

tis
tic

A

ll
Lo

w

Te
m

pl
at

es
B

uf
fe

re
dF

or
D

is
k

ca
ch

eM
od

ul
e.

te
m

pl
at

es
B

uf
fe

re
dF

or
D

is
k

T
he

cu

rr
en

t
nu

m
be

r
of

te
m

pl
at

es

th

at

ar

e
bu

ffe
re

d
fo

r
th

e
di

sk
.

It
is

lo

ca
te

d
un

de
r

di
sk

gr
ou

p.

6.
1

an
d

la
te

r
P

er

S

er
ve

r
C

ou
nt

S
ta

tis
tic

A

ll
Lo

w

Te
m

pl
at

es
O

ffl
oa

de
dT

oD
is

k
ca

ch
eM

od
ul

e.
te

m
pl

at
es

O
ffl

oa
de

dT
oD

is
k

T
he

nu

m
be

r
of

te
m

pl
at

es

th

at

ar

e
of

flo
ad

ed

to

di

sk
.

It
is

lo
ca

te
d

un
de

r
di

sk

gr
ou

p.

6.
1

an
d

la
te

r
P

er

S

er
ve

r
C

ou
nt

S
ta

tis
tic

A

ll
Lo

w

Te
m

pl
at

eB
as

ed
In

va
lid

at
io

ns
F

ro
m

D
is

k
ca

ch
eM

od
ul

e.
te

m
pl

at
eB

as
ed

In
va

lid
at

io
ns

F
ro

m
D

is
k

T
he

nu

m
be

r
of

te
m

pl
at

e-
ba

se
d

in
va

lid
at

io
ns

.
It

is

lo
ca

te
d

un
de

r
di

sk

gr
ou

p.

6.
1

an
d

la
te

r
P

er

S

er
ve

r
C

ou
nt

S
ta

tis
tic

A

ll
Lo

w

G
ar

ba
ge

C
ol

le
ct

or
In

va
lid

at
io

ns
F

ro
m

D
is

k
ca

ch
eM

od
ul

e.
ga

rb
ag

eC
ol

le
ct

or
In

va
lid

at
io

ns
F

ro
m

D
is

k
T

he

nu

m
be

r
of

ga

rb
ag

e
co

lle
ct

or

in

va
lid

at
io

ns

re
su

lti
ng

in

th

e
re

m
ov

al

of

en

tr
ie

s
fr

om

di

sk

ca
ch

e
du

e
to

hi

gh

th
re

sh
ol

d
ha

s
be

en

re
ac

he
d.

It

is

lo

ca
te

d
un

de
r

di
sk

gr

ou
p.

6.
1

an
d

la
te

r
P

er

S

er
ve

r
C

ou
nt

S
ta

tis
tic

A

ll
Lo

w

O
ve

rf
lo

w
In

va
lid

at
io

ns
F

ro
m

D
is

k
ca

ch
eM

od
ul

e.
ov

er
flo

w
In

va
lid

at
io

ns
F

ro
m

D
is

k
T

he

nu

m
be

r
of

in
va

lid
at

io
ns

re

su
lti

ng

in

th

e
re

m
ov

al

of

en
tr

ie
s

fr
om

di

sk

du

e
to

ex
ce

ed
in

g
th

e
di

sk

ca
ch

e
si

ze

or

di

sk

ca
ch

e
si

ze

in

G

B

lim

it.

It
is

lo

ca
te

d
un

de
r

di
sk

gr
ou

p.

6.
1

an
d

la
te

r
P

er

S

er
ve

r
C

ou
nt

S
ta

tis
tic

A

ll
Lo

w

2096 Administering applications and their environment

Web services gateway counters

Use this page as a reference for properties of Web services gateway counters.

Counters for this category contain information for Web services gateways (WSGW). Examples include the

number of synchronous and asynchronous requests and responses.

Counter definitions:

Chapter 24. Monitoring overall system health 2097

N
am

e
K

ey

D
es

cr
ip

ti
o

n

V
er

si
o

n

G
ra

n
u

la
ri

ty

Ty
p

e
L

ev
el

O

ve
rh

ea
d

S
yn

ch
ro

no
us

R
eq

ue
st

C
ou

nt

w
sg

w
M

od
ul

e.
sy

nc
hr

on
ou

sR
eq

ue
st

s
T

he

nu

m
be

r
of

sy
nc

hr
on

ou
s

re
qu

es
ts

m
ad

e.

5.
0

P
er

W

eb

se

rv
ic

e
C

ou
nt

S
ta

tis
tic

A

ll
Lo

w

S
yn

ch
ro

no
us

R
es

po
ns

eC
ou

nt

w
sg

w
M

od
ul

e.
sy

nc
hr

on
ou

sR
es

po
ns

es

T
he

nu

m
be

r
of

sy
nc

hr
on

ou
s

re
sp

on
se

s
m

ad
e.

5.
0

P
er

W

eb

se

rv
ic

e
C

ou
nt

S
ta

tis
tic

A

ll
Lo

w

A
sy

nc
hr

on
ou

sR
eq

ue
st

C
ou

nt

w
sg

w
M

od
ul

e.
as

yn
ch

ro
no

us
R

eq
ue

st
s

T
he

nu

m
be

r
of

as
yn

ch
ro

no
us

re
qu

es
ts

m

ad
e.

5.
0

P
er

W

eb

se

rv
ic

e
C

ou
nt

S
ta

tis
tic

A

ll
Lo

w

A
sy

nc
hr

on
ou

sR
es

po
ns

eC
ou

nt

w
sg

w
M

od
ul

e.
as

yn
ch

ro
no

us
R

es
po

ns
es

T

he

nu

m
be

r
of

as
yn

ch
ro

no
us

re
sp

on
se

s
m

ad
e.

5.
0

P
er

W

eb

se

rv
ic

e
C

ou
nt

S
ta

tis
tic

A

ll
Lo

w

2098 Administering applications and their environment

Web services counters

Use this page as a reference for properties of Web services counters.

Counters for this category contain information for the Web services.

Counter definitions:

Chapter 24. Monitoring overall system health 2099

N
am

e
K

ey

D
es

cr
ip

ti
o

n

V
er

si
o

n

G
ra

n
u

la
ri

ty

Ty
p

e
L

ev
el

O

ve
rh

ea
d

Lo
ad

ed
W

eb
S

er
vi

ce
C

ou
nt

w

eb
S

er
vi

ce
sM

od
ul

e.
nu

m
Lo

ad
ed

S
er

vi
ce

s
T

he

nu

m
be

r
of

lo

ad
ed

W
eb

se

rv
ic

es

5.
02

an

d
ab

ov
e

P
er

se

rv
ic

e
C

ou
nt

S
ta

tis
tic

A

ll
Lo

w

R
ec

ei
ve

dR
eq

ue
st

C
ou

nt

w
eb

S
er

vi
ce

sM
od

ul
e.

se
rv

ic
es

.n
um

be
rR

ec
ei

ve
d

T
he

nu

m
be

r
of

re

qu
es

ts

th
e

se
rv

ic
e

re
ce

iv
ed

5.
02

an

d
ab

ov
e

P
er

W

eb

se

rv
ic

e
C

ou
nt

S
ta

tis
tic

A

ll
Lo

w

D
is

pa
tc

he
dR

eq
ue

st
C

ou
nt

w

eb
S

er
vi

ce
sM

od
ul

e.
se

rv
ic

es
.n

um
be

rD
is

pa
tc

he
d

T
he

nu

m
be

r
of

re

qu
es

ts

th
e

se
rv

ic
e

di
sp

at
ch

ed

or

de

liv
er

ed

5.
02

an

d
ab

ov
e

P
er

W

eb

se

rv
ic

e
C

ou
nt

S
ta

tis
tic

A

ll
Lo

w

P
ro

ce
ss

ed
R

eq
ue

st
C

ou
nt

w

eb
S

er
vi

ce
sM

od
ul

e.
se

rv
ic

es
.n

um
be

rS
uc

ce
ss

fu
ll

T
he

nu

m
be

r
of

re

qu
es

ts

th
e

se
rv

ic
e

su
cc

es
sf

ul
ly

pr
oc

es
se

d

5.
02

an

d
ab

ov
e

P
er

W

eb

se

rv
ic

e
Ti

m
eS

ta
tis

tic

A
ll

Lo
w

R
es

po
ns

eT
im

e
w

eb
S

er
vi

ce
sM

od
ul

e.
se

rv
ic

es
.r

es
po

ns
eT

im
e

T
he

av

er
ag

e
re

sp
on

se

tim
e,

in

m

ill
is

ec
on

ds
,

fo
r

a
su

cc
es

sf
ul

re

qu
es

t

5.
02

an

d
ab

ov
e

P
er

W

eb

se

rv
ic

e
Ti

m
eS

ta
tis

tic

A
ll

H
ig

h

R
eq

ue
st

R
es

po
ns

eT
im

e
w

eb
S

er
vi

ce
sM

od
ul

e.
se

rv
ic

es
.r

eq
ue

st
R

es
po

ns
eT

im
e

T
he

av

er
ag

e
re

sp
on

se

tim
e,

in

m

ill
is

ec
on

ds
,

to

pr
ep

ar
e

a
re

qu
es

t
fo

r
di

sp
at

ch

5.
02

an

d
ab

ov
e

P
er

W

eb

se

rv
ic

e
Ti

m
eS

ta
tis

tic

A
ll

M
ed

iu
m

D
is

pa
tc

hR
es

po
ns

eT
im

e
w

eb
S

er
vi

ce
sM

od
ul

e.
se

rv
ic

es
.d

is
pa

tc
hR

es
po

ns
eT

im
e

T
he

av

er
ag

e
re

sp
on

se

tim
e,

in

m

ill
is

ec
on

ds
,

to

di
sp

at
ch

a

re
qu

es
t

5.
02

an

d
ab

ov
e

P
er

W

eb

se

rv
ic

e
Ti

m
eS

ta
tis

tic

A
ll

M
ed

iu
m

R
ep

ly
R

es
po

ns
eT

im
e

w
eb

S
er

vi
ce

sM
od

ul
e.

se
rv

ic
es

.r
ep

ly
R

es
po

ns
eT

im
e

T
he

av

er
ag

e
re

sp
on

se

tim
e,

in

m

ill
is

ec
on

ds
,

to

pr
ep

ar
e

a
re

pl
y

af
te

r
di

sp
at

ch

5.
02

an

d
ab

ov
e

P
er

W

eb

se

rv
ic

e
Ti

m
eS

ta
tis

tic

A
ll

M
ed

iu
m

P
ay

lo
ad

S
iz

e
w

eb
S

er
vi

ce
sM

od
ul

e.
se

rv
ic

es
.s

iz
e

T
he

av

er
ag

e
pa

yl
oa

d
si

ze

in

by

te
s

of

a

re
ce

iv
ed

re

qu
es

t
or

re
pl

y

5.
02

an

d
ab

ov
e

P
er

W

eb

se

rv
ic

e
Ti

m
eS

ta
tis

tic

A
ll

M
ed

iu
m

R
eq

ue
st

P
ay

lo
ad

S
iz

e
w

eb
S

er
vi

ce
sM

od
ul

e.
se

rv
ic

es
.r

eq
ue

st
S

iz
e

T
he

av

er
ag

e
pa

yl
oa

d
si

ze

in

by

te
s

of

a

re
qu

es
t

5.
02

an

d
ab

ov
e

P
er

W

eb

se

rv
ic

e
Ti

m
eS

ta
tis

tic

A
ll

M
ed

iu
m

R
ep

ly
P

ay
lo

ad
S

iz
e

w
eb

S
er

vi
ce

sM
od

ul
e.

se
rv

ic
es

.r
ep

ly
S

iz
e

T
he

av

er
ag

e
pa

yl
oa

d
si

ze

in

by

te
s

of

a

re
pl

y
5.

02

an

d
ab

ov
e

P
er

W

eb

se

rv
ic

e
Ti

m
eS

ta
tis

tic

A
ll

M
ed

iu
m

2100 Administering applications and their environment

Alarm Manager counters

Use this page as a reference for properties of alarm manager counters.

Counters for this category contain information for the Alarm Manager.

Counter definitions:

Chapter 24. Monitoring overall system health 2101

N
am

e
K

ey

D
es

cr
ip

ti
o

n

V
er

si
o

n

G
ra

n
u

la
ri

ty

Ty
p

e
L

ev
el

O

ve
rh

ea
d

A
la

rm
sC

re
at

ed
C

ou
nt

al

ar
m

M
an

ag
er

M
od

ul
e.

nu
m

C
re

at
es

.n
am

e
T

he

to

ta
l n

um
be

r
of

al

ar
m

s
cr

ea
te

d
by

al

l a
sy

nc
hr

on
ou

s
sc

op
es

fo

r
th

is

W

or
kM

an
ag

er

5.
0

an
d

la
te

r
P

er

W

or
kM

an
ag

er

C
ou

nt
S

ta
tis

tic

A
ll

H
ig

h

A
la

rm
sC

an
ce

lle
dC

ou
nt

al

ar
m

M
an

ag
er

M
od

ul
e.

nu
m

C
an

ce
lle

d.
na

m
e

T
he

nu

m
be

r
of

al

ar
m

s
ca

nc
el

le
d

by

th

e
ap

pl
ic

at
io

n
5.

0
an

d
la

te
r

P
er

W

or
kM

an
ag

er

C
ou

nt
S

ta
tis

tic

A
ll

H
ig

h

A
la

rm
sF

ire
dC

ou
nt

al

ar
m

M
an

ag
er

M
od

ul
e.

nu
m

F
ire

d.
na

m
e

T
he

nu

m
be

r
of

al

ar
m

s
fir

ed

5.
0

an
d

la
te

r
P

er

W

or
kM

an
ag

er

C
ou

nt
S

ta
tis

tic

A
ll

H
ig

h

A
la

rm
La

te
nc

yD
ur

at
io

n
al

ar
m

M
an

ag
er

M
od

ul
e.

la
te

nc
y.

na
m

e
T

he

la

te
nc

y
of

al

ar
m

s
fir

ed

in

m
ill

is
ec

on
ds

5.
0

an
d

la
te

r
P

er

W

or
kM

an
ag

er

R
an

ge
S

ta
tis

tic

A
ll

H
ig

h

A
la

rm
sP

en
di

ng
S

iz
e

al
ar

m
M

an
ag

er
M

od
ul

e.
al

ar
m

sP
en

di
ng

.n
am

e
T

he

nu

m
be

r
of

al

ar
m

s
w

ai
tin

g
to

fir
e

5.
0

an
d

la
te

r
P

er

W

or
kM

an
ag

er

R
an

ge
S

ta
tis

tic

A
ll

H
ig

h

A
la

rm
R

at
e

al
ar

m
M

an
ag

er
M

od
ul

e.
al

ar
m

sP
er

S
ec

on
d.

na
m

e
T

he

nu

m
be

r
of

al

ar
m

s
fir

in
g

pe
r

se
co

nd

5.
0

an
d

la
te

r
P

er

W

or
kM

an
ag

er

R
an

ge
S

ta
tis

tic

A
ll

H
ig

h

2102 Administering applications and their environment

Object Pool counters

Use this page as a reference for properties of Object Pool counters.

Counters for this category contain information for Object Pools.

Counter definitions:

Chapter 24. Monitoring overall system health 2103

N
am

e
K

ey

D
es

cr
ip

ti
o

n

V
er

si
o

n

G
ra

n
u

la
ri

ty

Ty
p

e
L

ev
el

O

ve
rh

ea
d

O
bj

ec
ts

C
re

at
ed

C
ou

nt

ob
je

ct
P

oo
lM

od
ul

e.
nu

m
C

re
at

es
.n

am
e

T
he

to

ta
l n

um
be

r
of

ob

je
ct

s
cr

ea
te

d
5.

0
an

d
la

te
r

P
er

O

bj
ec

tP
oo

l
C

ou
nt

S
ta

tis
tic

A

ll
H

ig
h

O
bj

ec
ts

A
llo

ca
te

dC
ou

nt

ob
je

ct
P

oo
lM

od
ul

e.
nu

m
A

llo
ca

te
s.

na
m

e
T

he

nu

m
be

r
of

ob

je
ct

s
re

qu
es

te
d

fr
om

th

e
po

ol

5.
0

an
d

la
te

r
P

er

O

bj
ec

tP
oo

l
C

ou
nt

S
ta

tis
tic

A

ll
H

ig
h

O
bj

ec
ts

R
et

ur
ne

dC
ou

nt

ob
je

ct
P

oo
lM

od
ul

e.
nu

m
R

et
ur

ns
.n

am
e

T
he

nu

m
be

r
of

ob

je
ct

s
re

tu
rn

ed

to

th

e
po

ol

5.
0

an
d

la
te

r
P

er

O

bj
ec

tP
oo

l
C

ou
nt

S
ta

tis
tic

A

ll
H

ig
h

Id
le

O
bj

ec
ts

S
iz

e
ob

je
ct

P
oo

lM
od

ul
e.

po
ol

S
iz

e.
na

m
e

T
he

av

er
ag

e
nu

m
be

r
of

id

le

ob
je

ct

in

st
an

ce
s

in

th

e
po

ol

5.
0

an
d

la
te

r
P

er

O

bj
ec

tP
oo

l
R

an
ge

S
ta

tis
tic

A

ll
H

ig
h

2104 Administering applications and their environment

Scheduler counters

Use this page as a reference for properties of Scheduler counters.

Counters for this category contain information for the Scheduler service.

Counter definitions:

Chapter 24. Monitoring overall system health 2105

N
am

e
K

ey

D
es

cr
ip

ti
o

n

V
er

si
o

n

G
ra

n
u

la
ri

ty

Ty
p

e
L

ev
el

O

ve
rh

ea
d

Ta
sk

F
ai

lu
re

C
ou

nt

sc
he

du
le

rM
od

ul
e.

fa
ile

dT
as

ks
.n

am
e

T
he

nu

m
be

r
of

ta

sk
s

th
at

fa

ile
d

to

ru

n
5.

0
an

d
la

te
r

P
er

S

ch
ed

ul
er

C

ou
nt

S
ta

tis
tic

A

ll
H

ig
h

Ta
sk

F
in

is
hC

ou
nt

sc

he
du

le
rM

od
ul

e.
ex

ec
ut

ed
Ta

sk
s.

na
m

e
T

he

nu

m
be

r
of

ta

sk
s

ra
n

su
cc

es
sf

ul
ly

5.
0

an
d

la
te

r
P

er

S

ch
ed

ul
er

C

ou
nt

S
ta

tis
tic

A

ll
H

ig
h

P
ol

lC
ou

nt

sc
he

du
le

rM
od

ul
e.

to
ta

lP
ol

ls
.n

am
e

T
he

nu

m
be

r
of

po

ll
cy

cl
es

co
m

pl
et

ed

fo

r
al

l d
ae

m
on

th
re

ad
s

5.
0

an
d

la
te

r
P

er

S

ch
ed

ul
er

C

ou
nt

S
ta

tis
tic

A

ll
H

ig
h

Ta
sk

F
in

is
hR

at
e

sc
he

du
le

rM
od

ul
e.

ta
sk

sP
er

S
ec

.n
am

e
T

he

nu

m
be

r
of

ta

sk
s

ru
n

pe
r

se
co

nd

5.
0

an
d

la
te

r
P

er

S

ch
ed

ul
er

R

an
ge

S
ta

tis
tic

A

ll
H

ig
h

Ta
sk

C
ol

lis
io

nR
at

e
sc

he
du

le
rM

od
ul

e.
co

lli
si

on
sP

er
S

ec
.n

am
e

T
he

nu

m
be

r
of

co

lli
si

on
s

en
co

un
te

re
d

pe
r

se
co

nd

be
tw

ee
n

co
m

pe
tin

g
po

ll
da

em
on

s

5.
0

an
d

la
te

r
P

er

S

ch
ed

ul
er

R

an
ge

S
ta

tis
tic

A

ll
H

ig
h

P
ol

lQ
ue

ry
D

ur
at

io
n

sc
he

du
le

rM
od

ul
e.

qu
er

yT
im

e.
na

m
e

T
he

st

ar
t

tim
e

in

m

ill
is

ec
on

ds

fo

r
ea

ch

po

ll
da

em
on

th

re
ad

’s

da
ta

ba
se

po

ll
qu

er
y

5.
0

an
d

la
te

r
P

er

S

ch
ed

ul
er

R

an
ge

S
ta

tis
tic

A

ll
H

ig
h

R
un

D
ur

at
io

n
sc

he
du

le
rM

od
ul

e.
ex

ec
Ti

m
e.

na
m

e
T

he

tim

e
in

m

ill
is

ec
on

ds

ta

ke
n

to

ru

n
a

ta
sk

.
5.

0
an

d
la

te
r

P
er

S

ch
ed

ul
er

R

an
ge

S
ta

tis
tic

A

ll
H

ig
h

Ta
sk

E
xp

ira
tio

nR
at

e
sc

he
du

le
rM

od
ul

e.
ta

sk
Lo

ad
P

er
P

ol
l.n

am
e

T
he

nu

m
be

r
of

ta

sk
s

in

a

po
ll

qu
er

y
5.

0
an

d
la

te
r

P
er

S

ch
ed

ul
er

R

an
ge

S
ta

tis
tic

A

ll
H

ig
h

Ta
sk

D
el

ay
D

ur
at

io
n

sc
he

du
le

rM
od

ul
e.

ex
ec

La
te

nc
y.

na
m

e
T

he

pe

rio
d

of

tim

e
in

se

co
nd

s
th

at

th

e
ta

sk

is

de

la
ye

d
5.

0
an

d
la

te
r

P
er

S

ch
ed

ul
er

R

an
ge

S
ta

tis
tic

A

ll
H

ig
h

P
ol

lD
ur

at
io

n
sc

he
du

le
rM

od
ul

e.
po

llT
im

e.
na

m
e

T
he

nu

m
be

r
of

se

co
nd

s
be

tw
ee

n
po

ll
cy

cl
es

5.
0

an
d

la
te

r
P

er

S

ch
ed

ul
er

R

an
ge

S
ta

tis
tic

A

ll
H

ig
h

Ta
sk

R
un

R
at

e
sc

he
du

le
rM

od
ul

e.
ta

sk
E

xe
cP

er
P

ol
l.n

am
e

T
he

nu

m
be

r
of

ta

sk
s

ru
n

by

ea
ch

po

ll
da

em
on

th

re
ad

.
(M

ul
tip

ly

th

is

by

th

e
nu

m
be

r
of

po
ll

da
em

on

th

re
ad

s
to

ge

t
th

e
ta

sk
s

ru
n

pe
r

ef
fe

ct
iv

e
po

ll
cy

cl
e.

)

5.
0

an
d

la
te

r
P

er

S

ch
ed

ul
er

R

an
ge

S
ta

tis
tic

A

ll
H

ig
h

2106 Administering applications and their environment

High availability manager counters

PMI maintains statistical data within the entire WebSphere Application Server domain, including multiple

nodes and servers.

Counter definitions:

Chapter 24. Monitoring overall system health 2107

N
am

e
K

ey

D
es

cr
ip

ti
o

n

V
er

si
o

n

G
ra

n
u

la
ri

ty

Ty
p

e
L

ev
el

O

ve
rh

ea
d

N
um

be
r

of

lo

ca
l g

ro
up

s
ha

m
an

ag
er

m
od

ul
e.

nu
m

Lo
ca

lG
ro

up
s

T
he

to

ta
l n

um
be

r
of

lo

ca
l g

ro
up

s.

6.
0

an
d

ab
ov

e
P

er

se

rv
er

R

an
ge

S
ta

tis
tic

A

ll
H

ig
h

G
ro

up

st

at
e

re
bu

ild

tim

e
ha

m
an

ag
er

m
od

ul
e.

re
bu

ild
Ti

m
e

Ti
m

e
ta

ke
n

in

m

ill
is

ec
on

ds

to

re

bu
ild

th
e

gl
ob

al

gr

ou
p

st
at

e.

D

ur
in

g
th

e
re

bu
ild

tim

e,

no

fa

il-
ov

er

ca

n
ha

pp
en

.
If

th
is

tim

e
is

to

o
hi

gh

an

d
is

un

ac
ce

pt
ab

le

fo

r
th

e
de

si
re

d
av

ai
la

bi
lit

y,

yo

u
m

ay

w

an
t

to

in
cr

ea
se

th

e
nu

m
be

r
of

co

or
di

na
to

rs
.

F
or

pr

op
er

op

er
at

io
n

of

th

is

co

un
te

r,
yo

u
m

us
t

ho
st

th

e
ac

tiv
e

co
or

di
na

to
r

in

an

ap

pl
ic

at
io

n
se

rv
er

ot

he
r

th
an

th
e

de
pl

oy
m

en
t

m
an

ag
er

.

6.
0

an
d

ab
ov

e
P

er

se

rv
er

Ti

m
eS

ta
tis

tic

A
ll

H
ig

h

N
um

be
r

of

bu

lle
tin

-b
oa

rd

su
bj

ec
ts

ha
m

an
ag

er
m

od
ul

e.
bb

M
gr

N
um

S
ub

je
ct

s
T

he

to

ta
l n

um
be

r
of

su

bj
ec

ts

m
an

ag
ed

.
6.

0
an

d
ab

ov
e

P
er

se

rv
er

R

an
ge

S
ta

tis
tic

A

ll
H

ig
h

N
um

be
r

of

bu

lle
tin

-b
oa

rd

su
bs

cr
ip

tio
ns

ha
m

an
ag

er
m

od
ul

e.
bb

M
gr

N
um

S
ub

sc
rip

tio
ns

T

he

to

ta
l n

um
be

r
of

bu

lle
tin

-b
oa

rd

su
bs

cr
ip

tio
ns

.
6.

0
an

d
ab

ov
e

P
er

se

rv
er

R

an
ge

S
ta

tis
tic

A

ll
H

ig
h

B
ul

le
tin

-b
oa

rd

re

bu
ild

tim

e
ha

m
an

ag
er

m
od

ul
e.

bb
M

gr
R

eb
ui

ld
Ti

m
e

Ti
m

e
ta

ke
n

in

m

ill
is

ec
on

ds

to

re

bu
ild

th
e

gl
ob

al

st

at
e

of

th

e
bu

lle
tin

-b
oa

rd
.

D
ur

in
g

th
is

tim

e
no

m

es
sa

ge
s

w
ill

be

re
ce

iv
ed

by

th

e
su

bs
cr

ib
er

s.

If

th
is

tim
e

is

to

o
hi

gh
,

an
d

is

un
ac

ce
pt

ab
le

,
yo

u
m

ay

w

an
t

to

in
cr

ea
se

th

e
nu

m
be

r
of

co

or
di

na
to

rs
.

F
or

pr

op
er

op

er
at

io
n

of

th

is

co

un
te

r,
yo

u
m

us
t

ho
st

th

e
ac

tiv
e

co
or

di
na

to
r

in

an

ap

pl
ic

at
io

n
se

rv
er

ot

he
r

th
an

th
e

de
pl

oy
m

en
t

m
an

ag
er

.

6.
0

an
d

ab
ov

e
P

er

se

rv
er

Ti

m
eS

ta
tis

tic

A
ll

H
ig

h

N
um

be
r

of

lo

ca
l

bu
lle

tin
-b

oa
rd

su

bj
ec

ts

ha
m

an
ag

er
m

od
ul

e.
bb

Lo
ca

lN
um

S
ub

je
ct

s
T

he

to

ta
l n

um
be

r
of

su

bj
ec

ts

be

in
g

po
st

ed

to

lo

ca
lly

.
T

he

nu

m
be

r
in

cl
ud

es

th

e
pr

ox
y

po
st

in
gs

(if

an

y)

do
ne

by

th

e
co

re

gr

ou
p

br
id

ge

se
rv

ic
e

on

be

ha
lf

of

se

rv
er

s
be

lo
ng

in
g

to

di

ffe
re

nt

W

eb
S

ph
er

e
ce

lls
.

6.
0

an
d

ab
ov

e
P

er

se

rv
er

R

an
ge

S
ta

tis
tic

A

ll
H

ig
h

2108 Administering applications and their environment

DCS stack counters

PMI maintains statistical data within the entire WebSphere Application Server domain, including multiple

nodes and servers.

Counter definitions:

Chapter 24. Monitoring overall system health 2109

N
am

e
K

ey

D
es

cr
ip

ti
o

n

V
er

si
o

n

G
ra

n
u

la
ri

ty

Ty
p

e
L

ev
el

O

ve
rh

ea
d

N
um

be
r

of

m

es
sa

ge

bu
ffe

r
re

al
lo

ca
tio

ns

D
C

S
S

ta
ts

.n
um

O
fR

ea
llo

cs

N
um

be
r

of

m

es
sa

ge

bu

ffe
r

re
al

lo
ca

tio
ns

du

e
to

in

ad
eq

ua
te

bu
ffe

r
si

ze
.

If
th

is

nu

m
be

r
is

la

rg
er

th
an

20

pe

rc
en

t
of

th

e
nu

m
be

r
of

se
nt

m

es
sa

ge
s,

yo

u
m

ay

w

an
t

to

co
nt

ac
t

IB
M

S

up
po

rt

6.
0

an
d

ab
ov

e
P

er

D

C
S

st

ac
k

C
ou

nt
S

ta
tis

tic

A
ll

M
ed

iu
m

O
ut

go
in

g
m

es
sa

ge

si

ze

D
C

S
S

ta
ts

.o
ut

go
in

gM
es

sa
ge

S
iz

e
M

in
im

al
,

m
ax

im
al

,
an

d
av

er
ag

e
si

ze

(in

by

te
s)

of

th

e
m

es
sa

ge
s

th
at

w

er
e

se
nt

th

ro
ug

h
th

e
D

C
S

st
ac

k

6.
0

an
d

ab
ov

e
P

er

D

C
S

st

ac
k

A
ve

ra
ge

S
ta

tis
tic

A

ll
H

ig
h

N
um

be
r

of

se

nt

m

es
sa

ge
s

D
C

S
S

ta
ts

.o
ut

go
in

gM
es

sa
ge

C
ou

nt
er

N

um
be

r
of

m

es
sa

ge
s

se
nt

th
ro

ug
h

th
e

D
C

S

st

ac
k

6.
0

an
d

ab
ov

e
P

er

D

C
S

st

ac
k

C
ou

nt
S

ta
tis

tic

A
ll

H
ig

h

In
co

m
in

g
m

es
sa

ge

si

ze

D
C

S
S

ta
ts

.in
co

m
in

gM
es

sa
ge

S
iz

e
M

in
im

al
,

m
ax

im
al

an

d
av

er
ag

e
si

ze

(in

by

te
s)

of

th

e
m

es
sa

ge
s

th
at

w

er
e

re
ce

iv
ed

by

th

e
D

C
S

st
ac

k

6.
0

an
d

ab
ov

e
P

er

D

C
S

st

ac
k

A
ve

ra
ge

S
ta

tis
tic

A

ll
H

ig
h

N
um

be
r

of

re

ce
iv

ed

m
es

sa
ge

s
D

C
S

S
ta

ts
.in

co
m

in
gM

es
sa

ge
C

ou
nt

er

N
um

be
r

of

m

es
sa

ge
s

re
ce

iv
ed

by

th
e

D
C

S

st

ac
k

6.
0

an
d

ab
ov

e
P

er

D

C
S

st

ac
k

C
ou

nt
S

ta
tis

tic

A
ll

H
ig

h

A
m

ou
nt

of

tim

e
ne

ed
ed

fo
r

th
e

sy
nc

hr
on

iz
at

io
n

pr
oc

ed
ur

e
to

co

m
pl

et
e

D
C

S
S

ta
ts

.v
sC

om
pl

et
eC

ur
re

nt
Ti

m
e

A
m

ou
nt

of

tim

e
ne

ed
ed

to

gu
ar

an
te

e
th

at

al

l v
ie

w

m

em
be

rs

ar
e

sy
nc

hr
on

iz
ed

.

6.
0

an
d

ab
ov

e
P

er

D

C
S

st

ac
k

Ti
m

eS
ta

tis
tic

A

ll
H

ig
h

N
um

be
r

of

tim

es

th

at

th

e
sy

nc
hr

on
iz

at
io

n
pr

oc
ed

ur
e

tim
ed

ou

t

D
C

S
S

ta
ts

.v
sT

im
et

ou
tE

xp
ire

dC
ou

nt
er

N

um
be

r
of

tim

es

th

at

th

e
sy

nc
hr

on
iz

at
io

n
pr

oc
ed

ur
e

tim
ed

ou
t.

6.
0

an
d

ab
ov

e
P

er

D

C
S

st

ac
k

C
ou

nt
S

ta
tis

tic

A
ll

M
ed

iu
m

N
um

be
r

of

tim

es

th

at

a

hi
gh

se

ve
rit

y
co

ng
es

tio
n

ev
en

t
fo

r
ou

tg
oi

ng

m
es

sa
ge

s
w

as

ra

is
ed

D
C

S
S

ta
ts

.tr
an

sm
itt

er
C

on
ge

st
ed

C
ou

nt
er

N

um
be

r
of

tim

es

th

at

a

hi
gh

se
ve

rit
y

co
ng

es
tio

n
ev

en
t

fo
r

ou
tg

oi
ng

m

es
sa

ge
s

w
as

ra

is
ed

.

6.
0

an
d

ab
ov

e
P

er

D

C
S

st

ac
k

C
ou

nt
S

ta
tis

tic

A
ll

M
ed

iu
m

C
oa

le
sc

e
Ti

m
e

D
C

S
S

ta
ts

.c
oa

le
sc

eT
im

e
M

ea
su

re
s

th
e

am
ou

nt

of

tim

e
it

ac
tu

al
ly

ta

ke
s

to

co

al
es

ce

a

vi
ew

.
6.

0
an

d
ab

ov
e

P
er

D

C
S

st

ac
k

Ti
m

eS
ta

tis
tic

A

ll
M

ed
iu

m

Jo
in

V

ie
w

C

ha
ng

e
Ti

m
e

D
C

S
S

ta
ts

.m
er

ge
Ti

m
e

M
ea

su
re

s
th

e
tim

e
to

do

a

m
er

ge

vi
ew

ch

an
ge

.
T

he

D

C
S

st

ac
k

is

bl
oc

ke
d

du
rin

g
th

is

tim

e.

6.
0

an
d

ab
ov

e
P

er

D

C
S

st

ac
k

Ti
m

eS
ta

tis
tic

A

ll
H

ig
h

R
em

ov
e

V
ie

w

C

ha
ng

e
Ti

m
e

D
C

S
S

ta
ts

.s
pl

itT
im

e
M

ea
su

re
s

th
e

tim
e

to

do

a

sp
lit

vi
ew

ch

an
ge

.T
he

D

C
S

st

ac
k

is

bl
oc

ke
d

du
rin

g
th

is

tim

e.

6.
0

an
d

ab
ov

e
P

er

D

C
S

st

ac
k

Ti
m

eS
ta

tis
tic

A

ll
H

ig
h

N
um

be
r

of

su

sp
ic

io
ns

D

C
S

S
ta

ts
.s

us
pe

ct
C

ou
nt

er

M
ea

su
re

s
th

e
nu

m
be

r
of

tim

es

th
at

th

e
lo

ca
l m

em
be

r
su

sp
ec

te
d

ot
he

r
m

em
be

rs
.

6.
0

an
d

ab
ov

e
P

er

D

C
S

st

ac
k

C
ou

nt
S

ta
tis

tic

A
ll

H
ig

h

N
um

be
r

of

vi

ew

ch

an
ge

s
D

C
S

S
ta

ts
.v

ie
w

C
ou

nt
er

N

um
be

r
of

tim

es

th

at

th

is

m

em
be

r
un

de
rw

en
t

vi
ew

ch

an
ge

s.

6.
0

an
d

ab
ov

e
P

er

D

C
S

st

ac
k

C
ou

nt
S

ta
tis

tic

A
ll

M
ed

iu
m

V
ie

w

gr

ou
p

si
ze

D

C
S

S
ta

ts
.g

ro
up

S
iz

e
M

ea
su

re
s

th
e

si
ze

of

th

e
gr

ou
p

th
e

lo
ca

l m
em

be
r

be
lo

ng
s

to
.

6.
0

an
d

ab
ov

e
P

er

D

C
S

st

ac
k

A
ve

ra
ge

S
ta

tis
tic

A

ll1

M
ed

iu
m

2110 Administering applications and their environment

PortletContainer PMI counters

Use this page as a reference for properties of PortletContainer PMI counters.

Counter definitions

These counters are the PMI measurement points for a portlet and a portlet application.

Chapter 24. Monitoring overall system health 2111

N
am

e
K

ey

D
es

cr
ip

ti
o

n

V
er

si
o

n

U
n

it

Ty
p

e
L

ev
el

O

ve
rh

ea
d

to
ta

lR
eq

ue
st

s
po

rt
le

tM
od

ul
e.

to
ta

lR
eq

ue
st

s
T

he

nu

m
be

r
of

re

qu
es

ts

m

ad
e

to

th

e
po

rt
le

t
m

od
ul

e.

6.
1

un
it.

no
ne

C

ou
nt

S
ta

tis
tic

A

ll
Lo

w

nu
m

E
rr

or
s

po
rt

le
tM

od
ul

e.
nu

m
E

rr
or

s
T

he

nu

m
be

r
of

er

ro
rs

re

po
rt

ed

fr
om

th

e
po

rt
le

t
m

od
ul

e.

6.
1

un
it.

no
ne

C

ou
nt

S
ta

tis
tic

A

ll
Lo

w

co
nc

ur
re

nt
R

eq
ue

st
s

po
rt

le
tM

od
ul

e.
co

nc
ur

re
nt

R
eq

ue
st

s
T

he

nu

m
be

r
of

co

nc
ur

re
nt

re
qu

es
ts

.
6.

1
un

it.
no

ne

C
ou

nt
S

ta
tis

tic

A
ll

H
ig

h

re
nd

er
R

es
po

ns
eT

im
e

po
rt

le
tM

od
eu

le
.r

en
de

rR
es

po
ns

eT
im

e
T

he

re

nd
er

re

sp
on

se

tim

e.

6.
1

un
it.

m
s

C
ou

nt
S

ta
tis

tic

A
ll

M
ed

iu
m

ac
tio

nR
es

po
ns

eT
im

e
po

rt
le

tM
od

ul
e.

ac
tio

nR
es

po
ns

eT
im

e
T

he

ac

tio
n

re
sp

on
se

tim

e.

6.
1

un
it.

m
s

C
ou

nt
S

ta
tis

tic

A
ll

M
ed

iu
m

nu
m

Lo
ad

ed
P

or
tle

ts

po
rt

le
tA

pp
M

od
ul

e.
nu

m
Lo

ad
ed

P
or

tle
ts

T

he

nu

m
be

r
of

po

rt
le

ts

lo

ad
ed

.
6.

1
un

it.
no

ne

C
ou

nt
S

ta
tis

tic

A
ll

Lo
w

2112 Administering applications and their environment

Related tasks

 “Task overview: Managing portlets” on page 173
You can use this task to manage deployed portlet applications.

 Related reference

 “PMI data organization” on page 2054
Use this page as a general overview of monitoring, data collection, and counters using Performance

Monitoring Infrastructure (PMI) and Tivoli Performance Viewer (TPV).

Service Integration Bus (SIB) and Messaging counters

These counters are part of Performance Monitoring Infrastructure (PMI), which provides server-side

monitoring and a client-side API to retrieve performance data.

For information on SIB counters, see the following articles:

v “MessageStore Statistics”

v “Mediation Framework Statistics” on page 2121

v “Message Processor Statistics” on page 2124

v “Communications statistics” on page 2134

MessageStore Statistics:

Consult this information for properties of MessageStore statistics.

Counter definitions:

Chapter 24. Monitoring overall system health 2113

P
er

fo
rm

an
ce

M

o
d

u
le

s
>

S
IB

S

er
vi

ce

>

S
IB

M

es
sa

g
in

g

E

n
g

in
es

>

M
es

sa
g

in
g

E

n
g

in
e

>
S

to
ra

g
e

M
an

ag
em

en
t

>
C

ac
h

e
N

am
e

K
ey

D

es
cr

ip
ti

o
n

V

er
si

o
n

G

ra
n

u
la

ri
ty

Ty

p
e

L
ev

el

C
ac

he
A

dd
S

to
re

dC
ou

nt

M
es

sa
ge

S
to

re
S

ta
ts

.C
ac

he
A

dd
S

to
re

dC
ou

nt

T
he

nu

m
be

r
of

ite

m
s

th
at

ha
ve

be

en

ad

de
d

to

th

e
m

es
sa

ge

st

or
e

du
rin

g
th

e
cu

rr
en

t
se

ss
io

n
th

at

ar

e
ei

th
er

pe

rs
is

te
nt

or

po
te

nt
ia

lly

pe

rs
is

te
nt

6.
0

an
d

la
te

r
P

er

M

es
sa

gi
ng

E
ng

in
e

C
ou

nt
S

ta
tis

tic

H
ig

h

C
ac

he
A

dd
N

ot
S

to
re

dC
ou

nt

M
es

sa
ge

S
to

re
S

ta
ts

.C
ac

he
A

dd
N

ot
S

to
re

dC
ou

nt

T
he

nu

m
be

r
of

ite

m
s

th
at

ha
ve

be

en

ad

de
d

to

th

e
m

es
sa

ge

st

or
e

du
rin

g
th

e
cu

rr
en

t
se

ss
io

n
th

at

ar

e
no

t
pe

rs
is

te
nt

6.
0

an
d

la
te

r
P

er

M

es
sa

gi
ng

E
ng

in
e

C
ou

nt
S

ta
tis

tic

H
ig

h

C
ac

he
U

pd
at

eS
to

re
dC

ou
nt

M

es
sa

ge
S

to
re

S
ta

ts
.C

ac
he

U
pd

at
eS

to
re

dC
ou

nt

T
he

nu

m
be

r
of

ite

m
s

th
at

ha
ve

be

en

up

da
te

d
in

th

e
m

es
sa

ge

st

or
e

du
rin

g
th

e
cu

rr
en

t
se

ss
io

n
th

at

ar

e
ei

th
er

pe

rs
is

te
nt

or

po
te

nt
ia

lly

pe

rs
is

te
nt

6.
0

an
d

la
te

r
P

er

M

es
sa

gi
ng

E
ng

in
e

C
ou

nt
S

ta
tis

tic

H
ig

h

C
ac

he
U

pd
at

eN
ot

S
to

re
dC

ou
nt

M

es
sa

ge
S

to
re

S
ta

ts
.C

ac
he

U
pd

at
eN

ot
S

to
re

dC
ou

nt

T
he

nu

m
be

r
of

ite

m
s

th
at

ha
ve

be

en

up

da
te

d
in

th

e
m

es
sa

ge

st

or
e

du
rin

g
th

e
cu

rr
en

t
se

ss
io

n
th

at

no

t
pe

rs
is

te
nt

6.
0

an
d

la
te

r
P

er

M

es
sa

gi
ng

E
ng

in
e

C
ou

nt
S

ta
tis

tic

H
ig

h

C
ac

he
R

em
ov

eS
to

re
dC

ou
nt

M

es
sa

ge
S

to
re

S
ta

ts
.C

ac
he

R
em

ov
eS

to
re

dC
ou

nt

T
he

nu

m
be

r
of

ite

m
s

th
at

ha
ve

be

en

re

m
ov

ed

fr

om

th
e

m
es

sa
ge

st

or
e

du
rin

g
th

e
cu

rr
en

t
se

ss
io

n
th

at

ar

e
ei

th
er

pe

rs
is

te
nt

or

po
te

nt
ia

lly

pe

rs
is

te
nt

6.
0

an
d

la
te

r
P

er

M

es
sa

gi
ng

E
ng

in
e

C
ou

nt
S

ta
tis

tic

H
ig

h

C
ac

he
R

em
ov

eN
ot

S
to

re
dC

ou
nt

M

es
sa

ge
S

to
re

S
ta

ts
.C

ac
he

R
em

ov
eN

ot
S

to
re

dC
ou

nt

T
he

nu

m
be

r
of

ite

m
s

th
at

ha
ve

be

en

re

m
ov

ed

fr

om

th
e

m
es

sa
ge

st

or
e

du
rin

g
th

e
cu

rr
en

t
se

ss
io

n
th

at

ar

e
no

t
pe

rs
is

te
nt

6.
0

an
d

la
te

r
P

er

M

es
sa

gi
ng

E
ng

in
e

C
ou

nt
S

ta
tis

tic

H
ig

h

C
ac

he
R

es
to

re
C

ou
nt

M

es
sa

ge
S

to
re

S
ta

ts
.C

ac
he

R
es

to
re

C
ou

nt

T
he

nu

m
be

r
of

ite

m
s

re
st

or
ed

to

m

em
or

y
fr

om

pe
rs

is
te

nc
e

du
rin

g
th

e
cu

rr
en

t
se

ss
io

n

6.
0

an
d

la
te

r
P

er

M

es
sa

gi
ng

E
ng

in
e

C
ou

nt
S

ta
tis

tic

H
ig

h

C
ac

he
C

ur
re

nt
S

to
re

dC
ou

nt

M
es

sa
ge

S
to

re
S

ta
ts

.C
ac

he
C

ur
re

nt
S

to
re

dC
ou

nt

T
he

nu

m
be

r
of

ite

m
s

cu
rr

en
tly

in

th

e
dy

na
m

ic

m
em

or
y

ca
ch

e
w

hi
ch

ar

e
ei

th
er

pe

rs
is

te
nt

or

po
te

nt
ia

lly

pe

rs
is

te
nt

6.
0

an
d

la
te

r
P

er

M

es
sa

gi
ng

E
ng

in
e

C
ou

nt
S

ta
tis

tic

H
ig

h

C
ac

he
C

ur
re

nt
N

ot
S

to
re

dC
ou

nt

M
es

sa
ge

S
to

re
S

ta
ts

.C
ac

he
C

ur
re

nt
N

ot
S

to
re

dC
ou

nt

T
he

nu

m
be

r
of

ite

m
s

cu
rr

en
tly

in

th

e
dy

na
m

ic

m
em

or
y

ca
ch

e
w

hi
ch

ar

e
ne

ve
r

pe
rs

is
te

d

6.
0

an
d

la
te

r
P

er

M

es
sa

gi
ng

E
ng

in
e

C
ou

nt
S

ta
tis

tic

H
ig

h

2114 Administering applications and their environment

P
er

fo
rm

an
ce

M

o
d

u
le

s
>

S
IB

S

er
vi

ce

>

S
IB

M

es
sa

g
in

g

E

n
g

in
es

>

M
es

sa
g

in
g

E

n
g

in
e

>
S

to
ra

g
e

M
an

ag
em

en
t

>
C

ac
h

e
C

ac
he

C
ur

re
nt

S
to

re
dB

yt
eC

ou
nt

M

es
sa

ge
S

to
re

S
ta

ts
.C

ac
he

C
ur

re
nt

S
to

re
dB

yt
eC

ou
nt

T

he

to

ta
l o

f
th

e
de

cl
ar

ed

si
ze

s
of

al

l i
te

m
s

cu
rr

en
tly

in

th
e

dy
na

m
ic

m

em
or

y
ca

ch
e

w
hi

ch

ar

e
ei

th
er

pe

rs
is

te
nt

or

po

te
nt

ia
lly

pe

rs
is

te
nt

6.
0

an
d

la
te

r
P

er

M

es
sa

gi
ng

E
ng

in
e

C
ou

nt
S

ta
tis

tic

H
ig

h

C
ac

he
C

ur
re

nt
N

ot
S

to
re

dB
yt

eC
ou

nt

M
es

sa
ge

S
to

re
S

ta
ts

.C
ac

he
C

ur
re

nt
N

ot
S

to
re

dB
yt

eC
ou

nt

T
he

cu

rr
en

t
to

ta
l o

f
th

e
de

cl
ar

ed

si

ze
s

of

al

l i
te

m
s

in

th
e

dy
na

m
ic

m

em
or

y
ca

ch
e

w
hi

ch

ar

e
ne

ve
r

pe
rs

is
te

d

6.
0

an
d

la
te

r
P

er

M

es
sa

gi
ng

E
ng

in
e

C
ou

nt
S

ta
tis

tic

H
ig

h

C
ac

he
To

ta
lS

to
re

dC
ou

nt

M
es

sa
ge

S
to

re
S

ta
ts

.C
ac

he
To

ta
lS

to
re

dC
ou

nt

T
he

to

ta
l n

um
be

r
of

ite

m
s

w
hi

ch

ha

ve

be

en

ad

de
d

to

th
e

dy
na

m
ic

m

em
or

y
ca

ch
e

du
rin

g
th

e
cu

rr
en

t
se

ss
io

n
w

hi
ch

ar

e
ei

th
er

pe

rs
is

te
nt

or

po

te
nt

ia
lly

pe

rs
is

te
nt

6.
0

an
d

la
te

r
P

er

M

es
sa

gi
ng

E
ng

in
e

C
ou

nt
S

ta
tis

tic

H
ig

h

C
ac

he
To

ta
lN

ot
S

to
re

dC
ou

nt

M
es

sa
ge

S
to

re
S

ta
ts

.C
ac

he
To

ta
lN

ot
S

to
re

dC
ou

nt

T
he

to

ta
l n

um
be

r
of

ite

m
s

w
hi

ch

ha

ve

be

en

ad

de
d

to

th
e

dy
na

m
ic

m

em
or

y
ca

ch
e

du
rin

g
th

e
cu

rr
en

t
se

ss
io

n
w

hi
ch

ar

e
ne

ve
r

pe
rs

is
te

d
in

ca
ch

e

6.
0

an
d

la
te

r
P

er

M

es
sa

gi
ng

E
ng

in
e

C
ou

nt
S

ta
tis

tic

H
ig

h

C
ac

he
To

ta
lS

to
re

dB
yt

eC
ou

nt

M
es

sa
ge

S
to

re
S

ta
ts

.C
ac

he
To

ta
lS

to
re

dB
yt

eC
ou

nt

T
he

to

ta
l o

f
th

e
de

cl
ar

ed

si
ze

s
of

al

l i
te

m
s

w
hi

ch

ha

ve

be
en

ad

de
d

to

th

e
dy

na
m

ic

m
em

or
y

ca
ch

e
du

rin
g

th
e

cu
rr

en
t

se
ss

io
n

w
hi

ch

ar

e
ei

th
er

pe

rs
is

te
nt

or

po
te

nt
ia

lly

pe

rs
is

te
nt

6.
0

an
d

la
te

r
P

er

M

es
sa

gi
ng

E
ng

in
e

C
ou

nt
S

ta
tis

tic

H
ig

h

C
ac

he
To

ta
lN

ot
S

to
re

dB
yt

eC
ou

nt

M
es

sa
ge

S
to

re
S

ta
ts

.C
ac

he
To

ta
lN

ot
S

to
re

dB
yt

eC
ou

nt

T
he

to

ta
l o

f
th

e
de

cl
ar

ed

si
ze

s
of

al

l i
te

m
s

w
hi

ch

ha

ve

be
en

ad

de
d

to

th

e
dy

na
m

ic

m
em

or
y

ca
ch

e
du

rin
g

th
e

cu
rr

en
t

se
ss

io
n

w
hi

ch

ar

e
ne

ve
r

pe
rs

is
te

d
in

ca

ch
e

6.
0

an
d

la
te

r
P

er

M

es
sa

gi
ng

E
ng

in
e

C
ou

nt
S

ta
tis

tic

H
ig

h

C
ac

he
S

to
re

dD
is

ca
rd

C
ou

nt

M
es

sa
ge

S
to

re
S

ta
ts

.C
ac

he
S

to
re

dD
is

ca
rd

C
ou

nt

T
he

to

ta
l n

um
be

r
of

ite

m
s

w
hi

ch

ha

ve

be

en

di

sc
ar

de
d

fr
om

th

e
dy

na
m

ic

m

em
or

y
ca

ch
e

du
rin

g
th

e
cu

rr
en

t
se

ss
io

n
w

hi
ch

ar

e
ei

th
er

pe
rs

is
te

nt

or

po

te
nt

ia
lly

pe
rs

is
te

nt

6.
0

an
d

la
te

r
P

er

M

es
sa

gi
ng

E
ng

in
e

C
ou

nt
S

ta
tis

tic

H
ig

h

C
ac

he
N

ot
S

to
re

dD
is

ca
rd

C
ou

nt

M
es

sa
ge

S
to

re
S

ta
ts

.C
ac

he
N

ot
S

to
re

dD
is

ca
rd

C
ou

nt

T
he

to

ta
l n

um
be

r
of

ite

m
s

w
hi

ch

ha

ve

be

en

di

sc
ar

de
d

fr
om

th

e
dy

na
m

ic

m

em
or

y
ca

ch
e

du
rin

g
th

e
cu

rr
en

t
se

ss
io

n
w

hi
ch

ar

e
ne

ve
r

pe
rs

is
te

d

6.
0

an
d

la
te

r
P

er

M

es
sa

gi
ng

E
ng

in
e

C
ou

nt
S

ta
tis

tic

H
ig

h

Chapter 24. Monitoring overall system health 2115

P
er

fo
rm

an
ce

M

o
d

u
le

s
>

S
IB

S

er
vi

ce

>

S
IB

M

es
sa

g
in

g

E

n
g

in
es

>

M
es

sa
g

in
g

E

n
g

in
e

>
S

to
ra

g
e

M
an

ag
em

en
t

>
C

ac
h

e
C

ac
he

S
to

re
dD

is
ca

rd
B

yt
eC

ou
nt

M

es
sa

ge
S

to
re

S
ta

ts
.C

ac
he

S
to

re
dD

is
ca

rd
B

yt
eC

ou
nt

T

he

to

ta
l o

f
th

e
de

cl
ar

ed

si
ze

s
of

al

l i
te

m
s

w
hi

ch

ha

ve

be
en

ad

de
d

to

th

e
dy

na
m

ic

m
em

or
y

ca
ch

e
du

rin
g

th
e

cu
rr

en
t

se
ss

io
n

w
hi

ch

ar

e
ei

th
er

pe

rs
is

te
nt

or

po
te

nt
ia

lly

pe

rs
is

te
nt

6.
0

an
d

la
te

r
P

er

M

es
sa

gi
ng

E
ng

in
e

C
ou

nt
S

ta
tis

tic

H
ig

h

C
ac

he
N

ot
S

to
re

dD
is

ca
rd

B
yt

eC
ou

nt

M
es

sa
ge

S
to

re
S

ta
ts

.C
ac

he
N

ot
S

to
re

dD
is

ca
rd

B
yt

eC
ou

nt

T
he

to

ta
l o

f
th

e
de

cl
ar

ed

si
ze

s
of

al

l i
te

m
s

w
hi

ch

ha

ve

be
en

ad

de
d

to

th

e
dy

na
m

ic

m
em

or
y

ca
ch

e
du

rin
g

th
e

cu
rr

en
t

se
ss

io
n

w
hi

ch

ar

e
ne

ve
r

pe
rs

is
te

d

6.
0

an
d

la
te

r
P

er

M

es
sa

gi
ng

E
ng

in
e

C
ou

nt
S

ta
tis

tic

H
ig

h

C
ac

he
S

to
re

dR
ef

us
al

C
ou

nt

M
es

sa
ge

S
to

re
S

ta
ts

.C
ac

he
S

to
re

dR
ef

us
al

C
ou

nt

T
he

to

ta
l n

um
be

r
of

ite

m
s

w
hi

ch

ha

ve

be

en

re

fu
se

d
en

tr
y

to

th

e
dy

na
m

ic

m
em

or
y

ca
ch

e
du

rin
g

th
e

cu
rr

en
t

se
ss

io
n

w
hi

ch

ar

e
ei

th
er

pe

rs
is

te
nt

or

po
te

nt
ia

lly

pe

rs
is

te
nt

6.
0

an
d

la
te

r
P

er

M

es
sa

gi
ng

E
ng

in
e

C
ou

nt
S

ta
tis

tic

H
ig

h

C
ac

he
N

ot
S

to
re

dR
ef

us
al

C
ou

nt

M
es

sa
ge

S
to

re
S

ta
ts

.C
ac

he
N

ot
S

to
re

dR
ef

us
al

C
ou

nt

T
he

to

ta
l n

um
be

r
of

ite

m
s

w
hi

ch

ha

ve

be

en

re

fu
se

d
en

tr
y

to

th

e
dy

na
m

ic

m
em

or
y

ca
ch

e
du

rin
g

th
e

cu
rr

en
t

se
ss

io
n

w
hi

ch

ar

e
ne

ve
r

pe
rs

is
te

d

6.
0

an
d

la
te

r
P

er

M

es
sa

gi
ng

E
ng

in
e

C
ou

nt
S

ta
tis

tic

H
ig

h

C
ac

he
S

tr
ea

m
S

pi
lli

ng
C

ou
nt

M

es
sa

ge
S

to
re

S
ta

ts
.C

ac
he

S
tr

ea
m

S
pi

lli
ng

C
ou

nt

N
um

be
r

of

st

re
am

s
cu

rr
en

tly

sp
ill

in
g

po
te

nt
ia

lly

pe

rs
is

te
nt

ite
m

s

6.
0

an
d

la
te

r
P

er

M

es
sa

gi
ng

E
ng

in
e

C
ou

nt
S

ta
tis

tic

H
ig

h

2116 Administering applications and their environment

P
er

fo
rm

an
ce

M

o
d

u
le

s
>

S
IB

S

er
vi

ce

>

S
IB

M

es
sa

g
in

g

E

n
g

in
es

>

M
es

sa
g

in
g

E

n
g

in
e

>
S

to
ra

g
e

M
an

ag
em

en
t

>
C

ac
h

e
N

am
e

K
ey

D

es
cr

ip
ti

o
n

V

er
si

o
n

G

ra
n

u
la

ri
ty

Ty

p
e

L
ev

el

S
pi

llD
is

pa
tc

he
rR

eq
ue

st
S

iz
e

M
es

sa
ge

S
to

re
S

ta
ts

.S
pi

llD
is

pa
tc

he
rR

eq
ue

st
S

iz
e

M
ea

su
re

s
th

e
nu

m
be

r
of

op
er

at
io

ns

on

no

np
er

si
st

en
t

da
ta

di

sp
at

ch
ed

fo

r
sp

ill
in

g
to

th

e
da

ta

st

or
e.

6.
0

an
d

la
te

r
P

er

M

es
sa

gi
ng

E
ng

in
e

A
ve

ra
ge

S
ta

tis
tic

H

ig
h

S
pi

llD
is

pa
tc

he
rB

at
ch

S
iz

e
M

es
sa

ge
S

to
re

S
ta

ts
.S

pi
llD

is
pa

tc
he

rB
at

ch
S

iz
e

M
ea

su
re

s
th

e
ba

tc
hi

ng

of

op
er

at
io

ns

on

no

np
er

si
st

en
t

da
ta

di

sp
at

ch
ed

fo

r
sp

ill
in

g
to

th

e
da

ta

st

or
e.

6.
0

an
d

la
te

r
P

er

M

es
sa

gi
ng

E
ng

in
e

A
ve

ra
ge

S
ta

tis
tic

H

ig
h

S
pi

llD
is

pa
tc

he
rA

vo
id

an
ce

C
ou

nt

M
es

sa
ge

S
to

re
S

ta
ts

.S
pi

llD
is

pa
tc

he
rA

vo
id

an
ce

C
ou

nt

M
ea

su
re

s
th

e
nu

m
be

r
of

op
er

at
io

ns

on

no

np
er

si
st

en
t

da
ta

di

sp
at

ch
ed

fo

r
sp

ill
in

g
to

th

e
da

ta

st

or
e

bu
t

w
ho

se

sp
ill

in
g

w
as

su

bs
eq

ue
nt

ly

un
ne

ce
ss

ar
y.

6.
0

an
d

la
te

r
P

er

M

es
sa

gi
ng

E
ng

in
e

A
ve

ra
ge

S
ta

tis
tic

H

ig
h

S
pi

llD
is

pa
tc

he
rA

vo
id

an
ce

S
iz

e
M

es
sa

ge
S

to
re

S
ta

ts
.S

pi
llD

is
pa

tc
he

rA
vo

id
an

ce
S

iz
e

M
ea

su
re

s
th

e
nu

m
be

r
of

by
te

s
as

so
ci

at
ed

w

ith

op
er

at
io

ns

on

no

np
er

si
st

en
t

da
ta

di

sp
at

ch
ed

fo

r
sp

ill
in

g
to

th

e
da

ta

st

or
e

bu
t

w
ho

se

sp
ill

in
g

w
as

su

bs
eq

ue
nt

ly

un
ne

ce
ss

ar
y.

6.
0

an
d

la
te

r
P

er

M

es
sa

gi
ng

E
ng

in
e

A
ve

ra
ge

S
ta

tis
tic

H

ig
h

P
er

si
st

en
tD

is
pa

tc
he

rR
eq

ue
st

S
iz

e
M

es
sa

ge
S

to
re

S
ta

ts
.P

er
si

st
en

tD
is

pa
tc

he
rR

eq
ue

st
S

iz
e

M
ea

su
re

s
th

e
nu

m
be

r
of

op
er

at
io

ns

on

re

lia
bl

e
pe

rs
is

te
nt

da

ta

di

sp
at

ch
ed

fo
r

w
rit

in
g

to

th

e
da

ta

st

or
e.

6.
0

an
d

la
te

r
P

er

M

es
sa

gi
ng

E
ng

in
e

A
ve

ra
ge

S
ta

tis
tic

H

ig
h

P
er

si
st

en
tD

is
pa

tc
he

rB
at

ch
S

iz
e

M
es

sa
ge

S
to

re
S

ta
ts

.P
er

si
st

en
tD

is
pa

tc
he

rB
at

ch
S

iz
e

M
ea

su
re

s
th

e
ba

tc
hi

ng

of

op
er

at
io

ns

on

re

lia
bl

e
pe

rs
is

te
nt

da

ta

di

sp
at

ch
ed

fo
r

w
rit

in
g

to

th

e
da

ta

st

or
e.

6.
0

an
d

la
te

r
P

er

M

es
sa

gi
ng

E
ng

in
e

A
ve

ra
ge

S
ta

tis
tic

H

ig
h

P
er

si
st

en
tD

is
pa

tc
he

rC
an

ce
lla

tio
nC

ou
nt

M

es
sa

ge
S

to
re

S
ta

ts
.P

er
si

st
en

tD
is

pa
tc

he
rC

an
ce

lla
tio

nC
ou

nt

C
ou

nt
s

th
e

nu
m

be
r

of

gl
ob

al

tr

an
sa

ct
io

n
co

m
pl

et
io

n
ph

as
es

w

ho
se

op
er

at
io

ns

ca

nc
el

le
d

ou
t

be
fo

re

be

in
g

w
rit

te
n

to

th

e
da

ta

st

or
e.

6.
0

an
d

la
te

r
P

er

M

es
sa

gi
ng

E
ng

in
e

A
ve

ra
ge

S
ta

tis
tic

H

ig
h

P
er

si
st

en
tD

is
pa

tc
he

rA
vo

id
an

ce
C

ou
nt

M

es
sa

ge
S

to
re

S
ta

ts
.P

er
si

st
en

tD
is

pa
tc

he
rA

vo
id

an
ce

C
ou

nt

M
ea

su
re

s
th

e
nu

m
be

r
of

op
er

at
io

ns

on

re

lia
bl

e
pe

rs
is

te
nt

da

ta

di

sp
at

ch
ed

fo
r

w
rit

in
g

to

th

e
da

ta

st

or
e

bu
t

w
ho

se

w

rit
in

g
w

as

su
bs

eq
ue

nt
ly

un

ne
ce

ss
ar

y.

6.
0

an
d

la
te

r
P

er

M

es
sa

gi
ng

E
ng

in
e

A
ve

ra
ge

S
ta

tis
tic

H

ig
h

Chapter 24. Monitoring overall system health 2117

P
er

fo
rm

an
ce

M

o
d

u
le

s
>

S
IB

S

er
vi

ce

>

S
IB

M

es
sa

g
in

g

E

n
g

in
es

>

M
es

sa
g

in
g

E

n
g

in
e

>
S

to
ra

g
e

M
an

ag
em

en
t

>
C

ac
h

e
P

er
si

st
en

tD
is

pa
tc

he
rA

vo
id

an
ce

S
iz

e
M

es
sa

ge
S

to
re

S
ta

ts
.P

er
si

st
en

tD
is

pa
tc

he
rA

vo
id

an
ce

S
iz

e
M

ea
su

re
s

th
e

nu
m

be
r

of

by
te

s
as

so
ci

at
ed

w

ith

op
er

at
io

ns

on

re

lia
bl

e
pe

rs
is

te
nt

da

ta

w

hi
ch

w

er
e

di
sp

at
ch

ed

fo

r
w

rit
in

g
to

th

e
da

ta

st

or
e

bu
t

w
ho

se

w
rit

in
g

w
as

su

bs
eq

ue
nt

ly

un
ne

ce
ss

ar
y.

6.
0

an
d

la
te

r
P

er

M

es
sa

gi
ng

E
ng

in
e

A
ve

ra
ge

S
ta

tis
tic

H

ig
h

JD
B

C
O

pe
nC

ou
nt

M

es
sa

ge
S

to
re

S
ta

ts
.J

D
B

C
O

pe
nC

ou
nt

JD

B
C

co

nn
ec

tio
ns

op

en

6.
0

an
d

la
te

r
P

er

M

es
sa

gi
ng

E
ng

in
e

C
ou

nt
S

ta
tis

tic

H
ig

h

JD
B

C
Tr

an
sa

ct
io

nC
om

pl
et

eC
ou

nt

M
es

sa
ge

S
to

re
S

ta
ts

.J
D

B
C

Tr
an

sa
ct

io
nC

om
pl

et
eC

ou
nt

JD

B
C

lo

ca
l t

ra
ns

ac
tio

ns

co
m

pl
et

ed

6.
0

an
d

la
te

r
P

er

M

es
sa

gi
ng

E
ng

in
e

C
ou

nt
S

ta
tis

tic

H
ig

h

JD
B

C
Tr

an
sa

ct
io

nC
om

pl
et

eC
ou

nt

M
es

sa
ge

S
to

re
S

ta
ts

.J
D

B
C

Tr
an

sa
ct

io
nC

om
pl

et
eC

ou
nt

JD

B
C

lo

ca
l t

ra
ns

ac
tio

ns

co
m

pl
et

ed

6.
0

an
d

la
te

r
P

er

M

es
sa

gi
ng

E
ng

in
e

C
ou

nt
S

ta
tis

tic

H
ig

h

JD
B

C
Tr

an
sa

ct
io

nA
bo

rt
C

ou
nt

M

es
sa

ge
S

to
re

S
ta

ts
.J

D
B

C
Tr

an
sa

ct
io

nA
bo

rt
C

ou
nt

JD

B
C

lo

ca
l t

ra
ns

ac
tio

ns

ab
or

te
d

6.
0

an
d

la
te

r
P

er

M

es
sa

gi
ng

E
ng

in
e

C
ou

nt
S

ta
tis

tic

H
ig

h

JD
B

C
Tr

an
sa

ct
io

nT
im

e
M

es
sa

ge
S

to
re

S
ta

ts
.J

D
B

C
Tr

an
sa

ct
io

nT
im

e
To

ta
l e

xe
cu

tio
n

tim
e

of

in
te

rn
al

ba

tc
he

s
6.

0
an

d
la

te
r

P
er

M

es
sa

gi
ng

E
ng

in
e

Ti
m

eS
ta

tis
tic

H

ig
h

JD
B

C
Ite

m
In

se
rt

C
ou

nt

M
es

sa
ge

S
to

re
S

ta
ts

.J
D

B
C

Ite
m

In
se

rt
C

ou
nt

JD

B
C

Ite

m

ta

bl
e

in
se

rt
s

6.
0

an
d

la
te

r
P

er

M

es
sa

gi
ng

E
ng

in
e

C
ou

nt
S

ta
tis

tic

H
ig

h

JD
B

C
Ite

m
D

el
et

eC
ou

nt

M
es

sa
ge

S
to

re
S

ta
ts

.J
D

B
C

Ite
m

D
el

et
eC

ou
nt

JD

B
C

Ite

m

ta

bl
e

de
le

te
s

6.
0

an
d

la
te

r
P

er

M

es
sa

gi
ng

E
ng

in
e

C
ou

nt
S

ta
tis

tic

H
ig

h

JD
B

C
Ite

m
U

pd
at

eC
ou

nt

M
es

sa
ge

S
to

re
S

ta
ts

.J
D

B
C

Ite
m

U
pd

at
eC

ou
nt

JD

B
C

Ite

m

ta

bl
e

up
da

te
s

6.
0

an
d

la
te

r
P

er

M

es
sa

gi
ng

E
ng

in
e

C
ou

nt
S

ta
tis

tic

H
ig

h

Ite
m

In
se

rt
B

at
ch

C
ou

nt

M
es

sa
ge

S
to

re
S

ta
ts

.It
em

In
se

rt
B

at
ch

C
ou

nt

Ite
m

ta

bl
e

in
se

rt

ba

tc
he

s
6.

0
an

d
la

te
r

P
er

M

es
sa

gi
ng

E
ng

in
e

C
ou

nt
S

ta
tis

tic

H
ig

h

Ite
m

D
el

et
eB

at
ch

C
ou

nt

M
es

sa
ge

S
to

re
S

ta
ts

.It
em

D
el

et
eB

at
ch

C
ou

nt

Ite
m

ta

bl
e

de
le

te

ba

tc
he

s
6.

0
an

d
la

te
r

P
er

M

es
sa

gi
ng

E
ng

in
e

C
ou

nt
S

ta
tis

tic

H
ig

h

Ite
m

U
pd

at
eB

at
ch

C
ou

nt

M
es

sa
ge

S
to

re
S

ta
ts

.It
em

U
pd

at
eB

at
ch

C
ou

nt

Ite
m

ta

bl
e

up
da

te

ba

tc
he

s
6.

0
an

d
la

te
r

P
er

M

es
sa

gi
ng

E
ng

in
e

C
ou

nt
S

ta
tis

tic

H
ig

h

JD
B

C
Tr

an
sa

ct
io

nI
ns

er
tC

ou
nt

M

es
sa

ge
S

to
re

S
ta

ts
.J

D
B

C
Tr

an
sa

ct
io

nI
ns

er
tC

ou
nt

JD

B
C

tr

an
sa

ct
io

n
ta

bl
e

in
se

rt
s

6.
0

an
d

la
te

r
P

er

M

es
sa

gi
ng

E
ng

in
e

C
ou

nt
S

ta
tis

tic

H
ig

h

JD
B

C
Tr

an
sa

ct
io

nD
el

et
eC

ou
nt

M

es
sa

ge
S

to
re

S
ta

ts
.J

D
B

C
Tr

an
sa

ct
io

nD
el

et
eC

ou
nt

JD

B
C

tr

an
sa

ct
io

n
ta

bl
e

de
le

te
s

6.
0

an
d

la
te

r
P

er

M

es
sa

gi
ng

E
ng

in
e

C
ou

nt
S

ta
tis

tic

H
ig

h

JD
B

C
Tr

an
sa

ct
io

nU
pd

at
eC

ou
nt

M

es
sa

ge
S

to
re

S
ta

ts
.J

D
B

C
Tr

an
sa

ct
io

nU
pd

at
eC

ou
nt

JD

B
C

tr

an
sa

ct
io

n
ta

bl
e

up
da

te
s

6.
0

an
d

la
te

r
P

er

M

es
sa

gi
ng

E
ng

in
e

C
ou

nt
S

ta
tis

tic

H
ig

h

Tr
an

sa
ct

io
nI

ns
er

tB
at

ch
C

ou
nt

M

es
sa

ge
S

to
re

S
ta

ts
.T

ra
ns

ac
tio

nI
ns

er
tB

at
ch

C
ou

nt

Tr
an

sa
ct

io
n

ta
bl

e
in

se
rt

ba
tc

he
s

6.
0

an
d

la
te

r
P

er

M

es
sa

gi
ng

E
ng

in
e

C
ou

nt
S

ta
tis

tic

H
ig

h

Tr
an

sa
ct

io
nD

el
et

eB
at

ch
C

ou
nt

M

es
sa

ge
S

to
re

S
ta

ts
.T

ra
ns

ac
tio

nD
el

et
eB

at
ch

C
ou

nt

Tr
an

sa
ct

io
n

ta
bl

e
de

le
te

ba
tc

he
s

6.
0

an
d

la
te

r
P

er

M

es
sa

gi
ng

E
ng

in
e

C
ou

nt
S

ta
tis

tic

H
ig

h

Tr
an

sa
ct

io
nU

pd
at

eB
at

ch
C

ou
nt

M

es
sa

ge
S

to
re

S
ta

ts
.T

ra
ns

ac
tio

nU
pd

at
eB

at
ch

C
ou

nt

Tr
an

sa
ct

io
n

ta
bl

e
up

da
te

ba
tc

he
s

6.
0

an
d

la
te

r
P

er

M

es
sa

gi
ng

E
ng

in
e

C
ou

nt
S

ta
tis

tic

H
ig

h

2118 Administering applications and their environment

P
er

fo
rm

an
ce

M

o
d

u
le

s
>

S
IB

S

er
vi

ce

>

S
IB

M

es
sa

g
in

g

E

n
g

in
es

>

M
es

sa
g

in
g

E

n
g

in
e

>
S

to
ra

g
e

M
an

ag
em

en
t

>
E

xp
ir

y
N

am
e

K
ey

D

es
cr

ip
ti

o
n

V

er
si

o
n

G

ra
n

u
la

ri
ty

Ty

p
e

L
ev

el

E
xp

iry
In

de
xI

te
m

C
ou

nt

M
es

sa
ge

S
to

re
S

ta
ts

.E
xp

iry
In

de
xI

te
m

C
ou

nt

C
ur

re
nt

nu

m
be

r
of

ite

m
s

in

th

e
ex

pi
ry

in

de
x.

T

he
se

ar

e
ite

m
s

cr
ea

te
d

w
ith

an

ex

pi
ry

tim

e
in

th

e
fu

tu
re

an

d
w

hi
ch

ha

ve

no

t
ye

t
be

en

co
ns

um
ed

.

6.
0

an
d

la
te

r
P

er

M

es
sa

gi
ng

E

ng
in

e
C

ou
nt

S
ta

tis
tic

H

ig
h

Chapter 24. Monitoring overall system health 2119

P
er

fo
rm

an
ce

M

o
d

u
le

s
>

S
IB

S

er
vi

ce

>

S
IB

M

es
sa

g
in

g

E

n
g

in
es

>

M
es

sa
g

in
g

E

n
g

in
e

>
S

to
ra

g
e

M
an

ag
em

en
t

>
Tr

an
sa

ct
io

n
s

N
am

e
K

ey

D
es

cr
ip

ti
o

n

V
er

si
o

n

G
ra

n
u

la
ri

ty

Ty
p

e
L

ev
el

Lo
ca

lT
ra

ns
ac

tio
nS

ta
rt

C
ou

nt

M
es

sa
ge

S
to

re
S

ta
ts

.L
oc

al
Tr

an
sa

ct
io

nS
ta

rt
C

ou
nt

Lo

ca
l t

ra
ns

ac
tio

ns

st
ar

te
d

6.
0

an
d

la
te

r
P

er

M

es
sa

gi
ng

E
ng

in
e

C
ou

nt
S

ta
tis

tic

H
ig

h

Lo
ca

lT
ra

ns
ac

tio
nA

bo
rt

C
ou

nt

M
es

sa
ge

S
to

re
S

ta
ts

.L
oc

al
Tr

an
sa

ct
io

nA
bo

rt
C

ou
nt

Lo

ca
l t

ra
ns

ac
tio

ns

ab
or

te
d

6.
0

an
d

la
te

r
P

er

M

es
sa

gi
ng

E
ng

in
e

C
ou

nt
S

ta
tis

tic

H
ig

h

Lo
ca

lT
ra

ns
ac

tio
nC

om
m

itC
ou

nt

M
es

sa
ge

S
to

re
S

ta
ts

.L
oc

al
Tr

an
sa

ct
io

nC
om

m
itC

ou
nt

Lo

ca
l t

ra
ns

ac
tio

ns

co
m

m
itt

ed

6.
0

an
d

la
te

r
P

er

M

es
sa

gi
ng

E
ng

in
e

C
ou

nt
S

ta
tis

tic

H
ig

h

G
lo

ba
lT

ra
ns

ac
tio

nS
ta

rt
C

ou
nt

M

es
sa

ge
S

to
re

S
ta

ts
.G

lo
ba

lT
ra

ns
ac

tio
nS

ta
rt

C
ou

nt

G
lo

ba
l t

ra
ns

ac
tio

ns

st
ar

te
d

6.
0

an
d

la
te

r
P

er

M

es
sa

gi
ng

E
ng

in
e

C
ou

nt
S

ta
tis

tic

H
ig

h

G
lo

ba
lT

ra
ns

ac
tio

nI
nD

ou
bt

C
ou

nt

M
es

sa
ge

S
to

re
S

ta
ts

.G
lo

ba
lT

ra
ns

ac
tio

nI
nD

ou
bt

C
ou

nt

G
lo

ba
l t

ra
ns

ac
tio

ns

in

do
ub

t
6.

0
an

d
la

te
r

P
er

M

es
sa

gi
ng

E
ng

in
e

C
ou

nt
S

ta
tis

tic

H
ig

h

G
lo

ba
lT

ra
ns

ac
tio

nA
bo

rt
C

ou
nt

M

es
sa

ge
S

to
re

S
ta

ts
.G

lo
ba

lT
ra

ns
ac

tio
nA

bo
rt

C
ou

nt

G
lo

ba
l t

ra
ns

ac
tio

ns

ca
nc

el
le

d
6.

0
an

d
la

te
r

P
er

M

es
sa

gi
ng

E
ng

in
e

C
ou

nt
S

ta
tis

tic

H
ig

h

G
lo

ba
lT

ra
ns

ac
tio

nC
om

m
itC

ou
nt

M

es
sa

ge
S

to
re

S
ta

ts
.G

lo
ba

lT
ra

ns
ac

tio
nC

om
m

itC
ou

nt

G
lo

ba
l t

ra
ns

ac
tio

ns

co
m

m
itt

ed

6.
0

an
d

la
te

r
P

er

M

es
sa

gi
ng

E
ng

in
e

C
ou

nt
S

ta
tis

tic

H
ig

h

2120 Administering applications and their environment

Mediation Framework Statistics:

Consult this information for properties of mediation framework statistics.

Counter definitions:

Chapter 24. Monitoring overall system health 2121

P
er

fo
rm

an
ce

M

o
d

u
le

s
>

S
IB

S

er
vi

ce

>

S
IB

M

es
sa

g
in

g

E

n
g

in
es

>

M
es

sa
g

in
g

E

n
g

in
e

>
M

ed
ia

ti
o

n
s

>
M

ed
ia

ti
o

n

N
am

e
K

ey

D
es

cr
ip

ti
o

n

V
er

si
o

n

G
ra

n
u

la
ri

ty

Ty
p

e
L

ev
el

T
hr

ea
dC

ou
nt

M

ed
ia

tio
n.

T
hr

ea
dC

ou
nt

T

he

nu

m
be

r
of

m

es
sa

ge
s

be
in

g
m

ed
ia

te
d

co
nc

ur
re

nt
ly

at

a

m
ed

ia
tio

n.

6.
0

an
d

la
te

r
pe

r
m

ed
ia

tio
n

R
an

ge
S

ta
tis

tic

H
ig

h

2122 Administering applications and their environment

P
er

fo
rm

an
ce

M

o
d

u
le

s
>

S
IB

S

er
vi

ce

>

S
IB

M

es
sa

g
in

g

E

n
g

in
es

>

M
es

sa
g

in
g

E

n
g

in
e

>
M

ed
ia

ti
o

n
s

>
M

ed
ia

ti
o

n

>

D
es

ti
n

at
io

n

N
am

e
K

ey

D
es

cr
ip

ti
o

n

V
er

si
o

n

G
ra

n
u

la
ri

ty

Ty
p

e
L

ev
el

M
ed

ia
tio

nT
im

e
M

ed
ia

tio
n.

M
ed

ia
tio

nT
im

e
T

he

am

ou
nt

of

tim

e
in

m
ill

is
ec

on
ds

ta

ke
n

to

m

ed
ia

te

a
m

es
sa

ge

at

a

m
ed

ia
te

d
de

st
in

at
io

n.

6.
0

an
d

la
te

r
pe

r
m

ed
ia

te
d

de
st

in
at

io
n

Ti
m

eS
ta

tis
tic

Lo

w

M
ed

ia
te

dM
es

sa
ge

sC
ou

nt

M
ed

ia
tio

n.
M

ed
ia

te
dM

es
sa

ge
C

ou
nt

T

he

nu

m
be

r
of

m

es
sa

ge
s

th
at

ha
ve

be

en

m

ed
ia

te
d

at

a

m
ed

ia
te

d
de

st
in

at
io

n.

6.
0

an
d

la
te

r
pe

r
m

ed
ia

te
d

de
st

in
at

io
n

C
ou

nt
S

ta
tis

tic

Lo
w

Chapter 24. Monitoring overall system health 2123

Message Processor Statistics:

Consult this information for properties of message processor statistics.

Counter definitions:

2124 Administering applications and their environment

P
er

fo
rm

an
ce

M

o
d

u
le

s
>

S
IB

S

er
vi

ce

>

S
IB

M

es
sa

g
in

g

E

n
g

in
es

>

M
es

sa
g

in
g

E

n
g

in
e

>
D

es
ti

n
at

io
n

s
>

Q
u

eu
es

N
am

e
K

ey

D
es

cr
ip

ti
o

n

V
er

si
o

n

G
ra

n
u

la
ri

ty

Ty
p

e
L

ev
el

A
va

ila
bl

eM
es

sa
ge

C
ou

nt

Q
ue

ue
S

ta
ts

.A
va

ila
bl

eM
es

sa
ge

C
ou

nt

T
he

nu

m
be

r
of

m
es

sa
ge

s
av

ai
la

bl
e

fo
r

a
qu

eu
e

fo
r

co
ns

um
pt

io
n.

If

th
is

nu
m

be
r

is

cl

os
e

to

th
e

de
st

in
at

io
n

hi
gh

m
es

sa
ge

s
va

lu
e

th
en

re
vi

ew

th

e
hi

gh

m
es

sa
ge

s
va

lu
e.

6.
0

an
d

la
te

r
an

d
la

te
r

P
er

de

st
in

at
io

n
C

ou
nt

S
ta

tis
tic

Lo

w

U
na

va
ila

bl
eM

es
sa

ge
C

ou
nt

Q

ue
ue

S
ta

ts
.U

na
va

ila
bl

eM
es

sa
ge

C
ou

nt

T
he

nu

m
be

r
of

m
es

sa
ge

s
lo

ck
ed

or

un
co

m
m

itt
ed

,
th

is

m
ea

ns

m

es
sa

ge
s

th
at

ha

ve

be

en

ad
de

d
or

re

m
ov

ed

bu
t

th
e

tr
an

sa
ct

io
n

ha
s

no
t

be
en

co
m

m
itt

ed

ye

t.
If

th
is

nu
m

be
r

is

hi

gh

th

en

ch
ec

k
w

hi
ch

m
es

sa
ge

s
ar

e
lo

ck
ed

an
d

w
hy

.

6.
0

an
d

la
te

r
an

d
la

te
r

P
er

de

st
in

at
io

n
C

ou
nt

S
ta

tis
tic

Lo

w

Lo
ca

lP
ro

du
ce

rA
tta

ch
es

Q

ue
ue

S
ta

ts
.L

oc
al

P
ro

du
ce

rA
tta

ch
es

C
ou

nt

T
he

nu

m
be

r
of

tim

es

an

at

ta
ch

m
en

t
ha

s
be

en

m

ad
e

to

th

is

qu
eu

e
by

lo

ca
l

pr
od

uc
er

s.

T

he

lif
et

im
e

of

th

is

va

lu
e

is

th

e
lif

et
im

e
of

th

e
m

es
sa

gi
ng

en

gi
ne

.

6.
0

an
d

la
te

r
an

d
la

te
r

P
er

de

st
in

at
io

n
C

ou
nt

S
ta

tis
tic

Lo

w

Lo
ca

lP
ro

du
ce

rC
ou

nt

Q
ue

ue
S

ta
ts

.L
oc

al
P

ro
du

ce
rC

ou
nt

T

he

nu

m
be

r
of

cu
rr

en
tly

at

ta
ch

ed

lo
ca

l p
ro

du
ce

rs
.

6.
0

an
d

la
te

r
an

d
la

te
r

P
er

de

st
in

at
io

n
C

ou
nt

S
ta

tis
tic

Lo

w

Lo
ca

lC
on

su
m

er
A

tta
ch

es

Q
ue

ue
S

ta
ts

.L
oc

al
C

on
su

m
er

A
tta

ch
es

C
ou

nt

T
he

nu

m
be

r
of

tim

es

an

at

ta
ch

m
en

t
ha

s
be

en

m

ad
e

to

th

is

qu
eu

e
by

lo

ca
l

co
ns

um
er

s.

T

he

lif
et

im
e

of

th

is

va

lu
e

is

th

e
lif

et
im

e
of

th

e
m

es
sa

gi
ng

en

gi
ne

.

6.
0

an
d

la
te

r
an

d
la

te
r

P
er

de

st
in

at
io

n
C

ou
nt

S
ta

tis
tic

Lo

w

Lo
ca

lC
on

su
m

er
C

ou
nt

Q

ue
ue

S
ta

ts
.L

oc
al

C
on

su
m

er
C

ou
nt

T

he

nu

m
be

r
of

cu
rr

en
tly

at

ta
ch

ed

lo
ca

l c
on

su
m

er
s.

6.
0

an
d

la
te

r
an

d
la

te
r

P
er

de

st
in

at
io

n
C

ou
nt

S
ta

tis
tic

Lo

w

To
ta

lM
es

sa
ge

sP
ro

du
ce

d
Q

ue
ue

S
ta

ts
.T

ot
al

M
es

sa
ge

sP
ro

du
ce

dC
ou

nt

T
he

to

ta
l n

um
be

r
of

m
es

sa
ge

s
pr

od
uc

ed

to

th

is

qu

eu
e,

fo

r
th

e
lif

et
im

e
of

th

is

m
es

sa
gi

ng

en

gi
ne

.

6.
0

an
d

la
te

r
an

d
la

te
r

P
er

de

st
in

at
io

n
C

ou
nt

S
ta

tis
tic

Lo

w

Chapter 24. Monitoring overall system health 2125

P
er

fo
rm

an
ce

M

o
d

u
le

s
>

S
IB

S

er
vi

ce

>

S
IB

M

es
sa

g
in

g

E

n
g

in
es

>

M
es

sa
g

in
g

E

n
g

in
e

>
D

es
ti

n
at

io
n

s
>

Q
u

eu
es

B
es

tE
ffo

rt
N

on
-p

er
si

st
en

tM
es

sa
ge

sP
ro

du
ce

d
Q

ue
ue

S
ta

ts
.B

es
tE

ffo
rt

N
on

P
er

si
st

en
tM

es
sa

ge
sP

ro
du

ce
dC

ou
nt

T

he

nu

m
be

r
of

B

es
t

E
ffo

rt

N

on
-p

er
si

st
en

t
m

es
sa

ge
s

pr
od

uc
ed

,
fo

r
th

e
lif

et
im

e
of

th

is

m
es

sa
gi

ng

en

gi
ne

.

6.
0

an
d

la
te

r
an

d
la

te
r

P
er

de

st
in

at
io

n
C

ou
nt

S
ta

tis
tic

Lo

w

E
xp

re
ss

N
on

-p
er

si
st

en
tM

es
sa

ge
sP

ro
du

ce
d

Q
ue

ue
S

ta
ts

.E
xp

re
ss

N
on

P
er

si
st

en
tM

es
sa

ge
sP

ro
du

ce
dC

ou
nt

T

he

nu

m
be

r
of

E
xp

re
ss

N
on

-p
er

si
st

en
t

m
es

sa
ge

s
pr

od
uc

ed
,

fo
r

th
e

lif
et

im
e

of

th

is

m
es

sa
gi

ng

en

gi
ne

.

6.
0

an
d

la
te

r
an

d
la

te
r

P
er

de

st
in

at
io

n
C

ou
nt

S
ta

tis
tic

Lo

w

R
el

ia
bl

eN
on

-p
er

si
st

en
tM

es
sa

ge
sP

ro
du

ce
d

Q
ue

ue
S

ta
ts

.R
el

ia
bl

eN
on

P
er

si
st

en
tM

es
sa

ge
sP

ro
du

ce
dC

ou
nt

T

he

nu

m
be

r
of

R
el

ia
bl

e
N

on
-p

er
si

st
en

t
m

es
sa

ge
s

pr
od

uc
ed

,
fo

r
th

e
lif

et
im

e
of

th

is

m
es

sa
gi

ng

en

gi
ne

.

6.
0

an
d

la
te

r
an

d
la

te
r

P
er

de

st
in

at
io

n
C

ou
nt

S
ta

tis
tic

Lo

w

R
el

ia
bl

eP
er

si
st

en
tM

es
sa

ge
sP

ro
du

ce
d

Q
ue

ue
S

ta
ts

.R
el

ia
bl

eP
er

si
st

en
tM

es
sa

ge
sP

ro
du

ce
dC

ou
nt

T

he

nu

m
be

r
of

R
el

ia
bl

e
P

er
si

st
en

t
m

es
sa

ge
s

pr
od

uc
ed

,
fo

r
th

e
lif

et
im

e
of

th

is

m
es

sa
gi

ng

en

gi
ne

.

6.
0

an
d

la
te

r
an

d
la

te
r

P
er

de

st
in

at
io

n
C

ou
nt

S
ta

tis
tic

Lo

w

A
ss

ur
ed

P
er

si
st

en
tM

es
sa

ge
sP

ro
du

ce
d

Q
ue

ue
S

ta
ts

.A
ss

ur
ed

P
er

si
st

en
tM

es
sa

ge
sP

ro
du

ce
dC

ou
nt

T

he

nu

m
be

r
of

A
ss

ur
ed

P

er
si

st
en

t
m

es
sa

ge
s

pr
od

uc
ed

,
fo

r
th

e
lif

et
im

e
of

th

is

m
es

sa
gi

ng

en

gi
ne

.

6.
0

an
d

la
te

r
an

d
la

te
r

P
er

de

st
in

at
io

n
C

ou
nt

S
ta

tis
tic

Lo

w

To
ta

lM
es

sa
ge

sC
on

su
m

ed

Q
ue

ue
S

ta
ts

.T
ot

al
M

es
sa

ge
sC

on
su

m
ed

C
ou

nt

T
he

to

ta
l n

um
be

r
of

m
es

sa
ge

s
co

ns
um

ed

fr
om

th

is

qu

eu
e,

fo

r
th

e
lif

et
im

e
of

th

is

m
es

sa
gi

ng

en

gi
ne

.

6.
0

an
d

la
te

r
an

d
la

te
r

P
er

de

st
in

at
io

n
C

ou
nt

S
ta

tis
tic

Lo

w

B
es

tE
ffo

rt
N

on
-p

er
si

st
en

tM
es

sa
ge

sC
on

su
m

ed

Q
ue

ue
S

ta
ts

.B
es

tE
ffo

rt
N

on
P

er
si

st
en

tM
es

sa
ge

sC
on

su
m

ed
C

ou
nt

T

he

nu

m
be

r
of

B

es
t

E
ffo

rt

N

on
-p

er
si

st
en

t
m

es
sa

ge
s

co
ns

um
ed

,
fo

r
th

e
lif

et
im

e
of

th

is

m
es

sa
gi

ng

en

gi
ne

.

6.
0

an
d

la
te

r
an

d
la

te
r

P
er

de

st
in

at
io

n
C

ou
nt

S
ta

tis
tic

Lo

w

E
xp

re
ss

N
on

-p
er

si
st

en
tM

es
sa

ge
sC

on
su

m
ed

Q

ue
ue

S
ta

ts
.E

xp
re

ss
N

on
P

er
si

st
en

tM
es

sa
ge

sC
on

su
m

ed
C

ou
nt

T

he

nu

m
be

r
of

E
xp

re
ss

N
on

-p
er

si
st

en
t

m
es

sa
ge

s
co

ns
um

ed
,

fo
r

th
e

lif
et

im
e

of

th

is

m
es

sa
gi

ng

en

gi
ne

.

6.
0

an
d

la
te

r
an

d
la

te
r

P
er

de

st
in

at
io

n
C

ou
nt

S
ta

tis
tic

Lo

w

2126 Administering applications and their environment

P
er

fo
rm

an
ce

M

o
d

u
le

s
>

S
IB

S

er
vi

ce

>

S
IB

M

es
sa

g
in

g

E

n
g

in
es

>

M
es

sa
g

in
g

E

n
g

in
e

>
D

es
ti

n
at

io
n

s
>

Q
u

eu
es

R
el

ia
bl

eN
on

-p
er

si
st

en
tM

es
sa

ge
sC

on
su

m
ed

Q

ue
ue

S
ta

ts
.R

el
ia

bl
eN

on
P

er
si

st
en

tM
es

sa
ge

sC
on

su
m

ed
C

ou
nt

T

he

nu

m
be

r
of

R
el

ia
bl

e
N

on
-p

er
si

st
en

t
m

es
sa

ge
s

co
ns

um
ed

,
fo

r
th

e
lif

et
im

e
of

th

is

m
es

sa
gi

ng

en

gi
ne

.

6.
0

an
d

la
te

r
an

d
la

te
r

P
er

de

st
in

at
io

n
C

ou
nt

S
ta

tis
tic

Lo

w

R
el

ia
bl

eP
er

si
st

en
tM

es
sa

ge
sC

on
su

m
ed

Q

ue
ue

S
ta

ts
.R

el
ia

bl
eP

er
si

st
en

tM
es

sa
ge

sC
on

su
m

ed
C

ou
nt

T

he

nu

m
be

r
of

R
el

ia
bl

e
P

er
si

st
en

t
m

es
sa

ge
s

co
ns

um
ed

,
fo

r
th

e
lif

et
im

e
of

th

is

m
es

sa
gi

ng

en

gi
ne

.

6.
0

an
d

la
te

r
an

d
la

te
r

P
er

de

st
in

at
io

n
C

ou
nt

S
ta

tis
tic

Lo

w

A
ss

ur
ed

P
er

si
st

en
tM

es
sa

ge
sC

on
su

m
ed

Q

ue
ue

S
ta

ts
.A

ss
ur

ed
P

er
si

st
en

tM
es

sa
ge

sC
on

su
m

ed
C

ou
nt

T

he

nu

m
be

r
of

A
ss

ur
ed

P

er
si

st
en

t
m

es
sa

ge
s

co
ns

um
ed

,
fo

r
th

e
lif

et
im

e
of

th

is

m
es

sa
gi

ng

en

gi
ne

.

6.
0

an
d

la
te

r
an

d
la

te
r

P
er

de

st
in

at
io

n
C

ou
nt

S
ta

tis
tic

Lo

w

R
ep

or
tE

na
bl

ed
M

es
sa

ge
sE

xp
ire

d.

Q
ue

ue
S

ta
ts

.R
ep

or
tE

na
bl

ed
M

es
sa

ge
sE

xp
ire

dC
ou

nt

T
he

nu

m
be

r
of

re

po
rt

en
ab

le
d

m
es

sa
ge

s
th

at

ex

pi
re

d
w

hi
le

on

th
is

qu

eu
e.

6.
0

an
d

la
te

r
an

d
la

te
r

P
er

de

st
in

at
io

n
C

ou
nt

S
ta

tis
tic

Lo

w

A
gg

re
ga

te
M

es
sa

ge
W

ai
tT

im
e

Q
ue

ue
S

ta
ts

.A
gg

re
ga

te
M

es
sa

ge
W

ai
tT

im
e

T
he

tim

e
sp

en
t

by

m
es

sa
ge

s
in

th

e
bu

s
at

co

ns
um

pt
io

n.

If

th
is

tim

e
is

no

t
w

ha
t

w
as

ex

pe
ct

ed

th

en

vi
ew

th

e
m

es
sa

ge

vi
a

th
e

ad
m

in

co
ns

ol
e

to

de

ci
de

w
ha

t
ac

tio
n

ne
ed

s
to

be

ta

ke
n.

6.
0

an
d

la
te

r
an

d
la

te
r

P
er

de

st
in

at
io

n
C

ou
nt

S
ta

tis
tic

Lo

w

Lo
ca

lM
es

sa
ge

W
ai

tT
im

e
Q

ue
ue

S
ta

ts
.L

oc
al

M
es

sa
ge

W
ai

tT
im

e
T

he

tim

e
sp

en
t

by

m
es

sa
ge

s
on

th

is

qu
eu

e
at

co
ns

um
pt

io
n.

If

th
is

tim
e

is

no

t
w

ha
t

w
as

ex
pe

ct
ed

th

en

vi

ew

th
e

m
es

sa
ge

vi

a
th

e
ad

m
in

co

ns
ol

e
to

de
ci

de

w

ha
t

ac
tio

n
ne

ed
s

to

be

ta

ke
n.

6.
0

an
d

la
te

r
an

d
la

te
r

P
er

de

st
in

at
io

n
C

ou
nt

S
ta

tis
tic

Lo

w

Chapter 24. Monitoring overall system health 2127

P
er

fo
rm

an
ce

M

o
d

u
le

s
>

S
IB

S

er
vi

ce

>

S
IB

M

es
sa

g
in

g

E

n
g

in
es

>

M
es

sa
g

in
g

E

n
g

in
e

>
D

es
ti

n
at

io
n

s
>

Q
u

eu
es

Lo
ca

lO
ld

es
tM

es
sa

ge
A

ge

Q
ue

ue
S

ta
ts

.L
oc

al
O

ld
es

tM
es

sa
ge

A
ge

T

he

lo

ng
es

t
tim

e
an

y
m

es
sa

ge

ha

s
sp

en
t

on

th

is

qu

eu
e.

If

th
is

tim
e

is

no

t
w

ha
t

w
as

ex
pe

ct
ed

th

en

vi

ew

th
e

m
es

sa
ge

vi

a
th

e
ad

m
in

co

ns
ol

e
to

de
ci

de

w

ha
t

ac
tio

n
ne

ed
s

to

be

ta

ke
n.

6.
0

an
d

la
te

r
an

d
la

te
r

P
er

de

st
in

at
io

n
C

ou
nt

S
ta

tis
tic

Lo

w

2128 Administering applications and their environment

P
er

fo
rm

an
ce

M

o
d

u
le

s
>

S
IB

S

er
vi

ce

>

S
IB

M

es
sa

g
in

g

E

n
g

in
es

>

M
es

sa
g

in
g

E

n
g

in
e

>
D

es
ti

n
at

io
n

s
>

To
p

ic
sp

ac
es

N
am

e
K

ey

D
es

cr
ip

ti
o

n

V
er

si
o

n

G
ra

n
u

la
ri

ty

Ty
p

e
L

ev
el

In
co

m
pl

et
eP

ub
lic

at
io

nC
ou

nt

To
pi

cs
pa

ce
S

ta
ts

.In
co

m
pl

et
eP

ub
lic

at
io

nC
ou

nt

T
he

nu

m
be

r
of

pu
bl

ic
at

io
ns

no

t
ye

t
re

ce
iv

ed

by

al

l
cu

rr
en

t
su

bs
cr

ib
er

s.

If
th

is

nu

m
be

r
is

un
ex

pe
ct

ed

th

en

vi
ew

th

e
pu

bl
ic

at
io

n
vi

a
th

e
ad

m
in

co
ns

ol
e

to

ta

ke

an

y
ac

tio
ns

.

6.
0

an
d

la
te

r
an

d
la

te
r

P
er

de
st

in
at

io
n

C
ou

nt
S

ta
tis

tic

Lo
w

Lo
ca

lP
ub

lis
he

rA
tta

ch
es

To

pi
cs

pa
ce

S
ta

ts
.L

oc
al

P
ub

lis
he

rA
tta

ch
es

C
ou

nt

T
he

nu

m
be

r
of

tim

es

an

at

ta
ch

m
en

t
ha

s
be

en

m

ad
e

to

th

is

to
pi

cs
pa

ce

by

lo

ca
l

pr
od

uc
er

s.

T

he

lif
et

im
e

of

th

is

va

lu
e

is

th

e
lif

et
im

e
of

th

e
m

es
sa

gi
ng

en

gi
ne

.

6.
0

an
d

la
te

r
an

d
la

te
r

P
er

de
st

in
at

io
n

C
ou

nt
S

ta
tis

tic

Lo
w

Lo
ca

lP
ub

lis
he

rC
ou

nt

To
pi

cs
pa

ce
S

ta
ts

.L
oc

al
P

ub
lis

he
rC

ou
nt

T

he

nu

m
be

r
of

lo

ca
l

pu
bl

is
he

rs

to

to

pi
cs

in

th

is

to

pi
cs

pa
ce

.

6.
0

an
d

la
te

r
an

d
la

te
r

P
er

de
st

in
at

io
n

C
ou

nt
S

ta
tis

tic

Lo
w

To
ta

lL
oc

al
S

ub
sc

rip
tio

nC
ou

nt

To
pi

cs
pa

ce
S

ta
ts

.T
ot

al
Lo

ca
lS

ub
sc

rip
tio

nC
ou

nt

T
he

nu

m
be

r
of

lo

ca
l

su
bs

cr
ip

tio
ns

to

to
pi

cs

in

th

is

to
pi

cs
pa

ce
.

E
ac

h
su

bs
cr

ip
tio

n
is

co
un

te
d

on
ce

,
ev

en

if
th

e
to

pi
c

in
cl

ud
es

w
ild

ca
rd

s.

6.
0

an
d

la
te

r
an

d
la

te
r

P
er

de
st

in
at

io
n

C
ou

nt
S

ta
tis

tic

Lo
w

N
on

-D
ur

ab
le

Lo
ca

lS
ub

sc
rip

tio
nC

ou
nt

To

pi
cs

pa
ce

S
ta

ts
.N

on
D

ur
ab

le
Lo

ca
lS

ub
sc

rip
tio

nC
ou

nt

T
he

nu

m
be

r
of

no
n-

du
ra

bl
e

su
bs

cr
ip

tio
ns

.

6.
0

an
d

la
te

r
an

d
la

te
r

P
er

de
st

in
at

io
n

C
ou

nt
S

ta
tis

tic

Lo
w

D
ur

ab
le

Lo
ca

lS
ub

sc
rip

tio
C

ou
nt

To

pi
cs

pa
ce

S
ta

ts
.D

ur
ab

le
Lo

ca
lS

ub
sc

rip
tio

nC
ou

nt

T
he

nu

m
be

r
of

du
ra

bl
e

su
bs

cr
ip

tio
ns

.

6.
0

an
d

la
te

r
an

d
la

te
r

P
er

de
st

in
at

io
n

C
ou

nt
S

ta
tis

tic

Lo
w

To
ta

lM
es

sa
ge

sP
ub

lis
he

d
To

pi
cs

pa
ce

S
ta

ts
.T

ot
al

M
es

sa
ge

sP
ub

lis
he

dC
ou

nt

T
he

to

ta
l n

um
be

r
of

pu
bl

ic
at

io
ns

to

th

is

to
pi

cs
pa

ce
.

6.
0

an
d

la
te

r
an

d
la

te
r

P
er

de
st

in
at

io
n

C
ou

nt
S

ta
tis

tic

Lo
w

B
es

tE
ffo

rt
N

on
-p

er
si

st
en

tM
es

sa
ge

sP
ub

lis
he

d
To

pi
cs

pa
ce

S
ta

ts
.B

es
tE

ffo
rt

N
on

P
er

si
st

en
tM

es
sa

ge
sP

ub
lis

he
dC

ou
nt

T

he

nu

m
be

r
of

B

es
t

E
ffo

rt

N

on
-

pe
rs

is
te

nt

m
es

sa
ge

s
pu

bl
is

he
d

6.
0

an
d

la
te

r
an

d
la

te
r

P
er

de
st

in
at

io
n

C
ou

nt
S

ta
tis

tic

Lo
w

E
xp

re
ss

N
on

-p
er

si
st

en
tM

es
sa

ge
sP

ub
lis

he
d

To
pi

cs
pa

ce
S

ta
ts

.E
xp

re
ss

N
on

P
er

si
st

en
tM

es
sa

ge
sP

ub
lis

he
dC

ou
nt

T

he

nu

m
be

r
of

E
xp

re
ss

N

on
-

pe
rs

is
te

nt

m

es
sa

ge
s

pu
bl

is
he

d

6.
0

an
d

la
te

r
an

d
la

te
r

P
er

de
st

in
at

io
n

C
ou

nt
S

ta
tis

tic

Lo
w

Chapter 24. Monitoring overall system health 2129

P
er

fo
rm

an
ce

M

o
d

u
le

s
>

S
IB

S

er
vi

ce

>

S
IB

M

es
sa

g
in

g

E

n
g

in
es

>

M
es

sa
g

in
g

E

n
g

in
e

>
D

es
ti

n
at

io
n

s
>

To
p

ic
sp

ac
es

R
el

ia
bl

eN
on

-p
er

si
st

en
tM

es
sa

ge
sP

ub
lis

he
d

To
pi

cs
pa

ce
S

ta
ts

.R
el

ia
bl

eN
on

P
er

si
st

en
tM

es
sa

ge
sP

ub
lis

he
dC

ou
nt

T

he

nu

m
be

r
of

R
el

ia
bl

e
N

on
-

pe
rs

is
te

nt

m

es
sa

ge
s

pu
bl

is
he

d

6.
0

an
d

la
te

r
an

d
la

te
r

P
er

de
st

in
at

io
n

C
ou

nt
S

ta
tis

tic

Lo
w

R
el

ia
bl

eP
er

si
st

en
tM

es
sa

ge
sP

ub
lis

he
d

To
pi

cs
pa

ce
S

ta
ts

.R
el

ia
bl

eP
er

si
st

en
tM

es
sa

ge
sP

ub
lis

he
dC

ou
nt

T

he

nu

m
be

r
of

R
el

ia
bl

e
P

er
si

st
en

t
m

es
sa

ge
s

pu
bl

is
he

d

6.
0

an
d

la
te

r
an

d
la

te
r

P
er

de
st

in
at

io
n

C
ou

nt
S

ta
tis

tic

Lo
w

A
ss

ur
ed

P
er

si
st

en
tM

es
sa

ge
sP

ub
lis

he
d

To
pi

cs
pa

ce
S

ta
ts

.A
ss

ur
ed

P
er

si
st

en
tM

es
sa

ge
sP

ub
lis

he
dC

ou
nt

T

he

nu

m
be

r
of

A
ss

ur
ed

P

er
si

st
en

t
m

es
sa

ge
s

pu
bl

is
he

d

6.
0

an
d

la
te

r
an

d
la

te
r

P
er

de
st

in
at

io
n

C
ou

nt
S

ta
tis

tic

Lo
w

To
ta

lL
oc

al
S

ub
sc

rip
tio

nH
its

To

pi
cs

pa
ce

S
ta

ts
.T

ot
al

Lo
ca

lS
ub

sc
rip

tio
nH

itC
ou

nt

T
he

cu

m
ul

at
iv

e
to

ta
l

of

su

bs
cr

ip
tio

ns

w
hi

ch

ha

ve

m

at
ch

ed

to
pi

cs
pa

ce

pu
bl

ic
at

io
ns

.

6.
0

an
d

la
te

r
an

d
la

te
r

P
er

de
st

in
at

io
n

C
ou

nt
S

ta
tis

tic

Lo
w

B
es

tE
ffo

rt
N

on
-p

er
si

st
en

tL
oc

al
S

ub
sc

rip
tio

nH
its

To

pi
cs

pa
ce

S
ta

ts
.B

es
tE

ffo
rt

N
on

P
er

si
st

en
tL

oc
al

S
ub

sc
rip

tio
nH

itC
ou

nt

T
he

cu

m
ul

at
iv

e
to

ta
l

of

su

bs
cr

ip
tio

ns

w
hi

ch

ha

ve

m

at
ch

ed

B
es

t
E

ffo
rt

N
on

-p
er

si
st

en
t

pu
bl

ic
at

io
ns

.

6.
0

an
d

la
te

r
an

d
la

te
r

P
er

de
st

in
at

io
n

C
ou

nt
S

ta
tis

tic

Lo
w

E
xp

re
ss

N
on

-p
er

si
st

en
tL

oc
al

S

ub
sc

rip
tio

nH
its

To

pi
cs

pa
ce

S
ta

ts
.E

xp
re

ss
N

on
P

er
si

st
en

tL
oc

al
S

ub
sc

rip
tio

nH
itC

ou
nt

T

he

cu

m
ul

at
iv

e
to

ta
l

of

su

bs
cr

ip
tio

ns

w
hi

ch

ha

ve

m

at
ch

ed

E
xp

re
ss

N
on

-p
er

si
st

en
t

pu
bl

ic
at

io
ns

.

6.
0

an
d

la
te

r
an

d
la

te
r

P
er

de
st

in
at

io
n

C
ou

nt
S

ta
tis

tic

Lo
w

R
el

ia
bl

eN
on

-p
er

si
st

en
tL

oc
al

S
ub

sc
rip

tio
nH

its

To
pi

cs
pa

ce
S

ta
ts

.R
el

ia
bl

eN
on

P
er

si
st

en
tL

oc
al

S
ub

sc
rip

tio
nH

itC
ou

nt

T
he

cu

m
ul

at
iv

e
to

ta
l

of

su

bs
cr

ip
tio

ns

w
hi

ch

ha

ve

m

at
ch

ed

R
el

ia
bl

e
N

on
-p

er
si

st
en

t
pu

bl
ic

at
io

ns
.

6.
0

an
d

la
te

r
an

d
la

te
r

P
er

de
st

in
at

io
n

C
ou

nt
S

ta
tis

tic

Lo
w

R
el

ia
bl

eP
er

si
st

en
tL

oc
al

S
ub

sc
rip

tio
nH

its

To
pi

cs
pa

ce
S

ta
ts

.R
el

ia
bl

eP
er

si
st

en
tL

oc
al

S
ub

sc
rip

tio
nH

itC
ou

nt

T
he

cu

m
ul

at
iv

e
to

ta
l

of

su

bs
cr

ip
tio

ns

w
hi

ch

ha

ve

m

at
ch

ed

R
el

ia
bl

e
P

er
si

st
en

t
pu

bl
ic

at
io

ns
.

6.
0

an
d

la
te

r
an

d
la

te
r

P
er

de
st

in
at

io
n

C
ou

nt
S

ta
tis

tic

Lo
w

A
ss

ur
ed

P
er

si
st

en
tL

oc
al

S
ub

sc
rip

tio
nH

its

To
pi

cs
pa

ce
S

ta
ts

.A
ss

ur
ed

P
er

si
st

en
tL

oc
al

S
ub

sc
rip

tio
nH

itC
ou

nt

T
he

cu

m
ul

at
iv

e
to

ta
l

of

su

bs
cr

ip
tio

ns

w
hi

ch

ha

ve

m

at
ch

ed

A
ss

ur
ed

P

er
si

st
en

t
pu

bl
ic

at
io

ns
.

6.
0

an
d

la
te

r
P

er

de
st

in
at

io
n

C
ou

nt
S

ta
tis

tic

Lo
w

R
ep

or
tE

na
bl

ed
P

ub
lic

at
io

nE
xp

ire
d

To
pi

cs
pa

ce
S

ta
ts

.R
ep

or
tE

na
bl

ed
P

ub
lic

at
io

ns
E

xp
ire

dC
ou

nt

T
he

nu

m
be

r
of

re

po
rt

en
ab

le
d

in
co

m
pl

et
e

pu
bl

ic
at

io
ns

th

at

ex
pi

re
d

w
hi

le

on

th

is

to
pi

cs
pa

ce
.

6.
0

an
d

la
te

r
P

er

de
st

in
at

io
n

C
ou

nt
S

ta
tis

tic

Lo
w

2130 Administering applications and their environment

P
er

fo
rm

an
ce

M

o
d

u
le

s
>

S
IB

S

er
vi

ce

>

S
IB

M

es
sa

g
in

g

E

n
g

in
es

>

M
es

sa
g

in
g

E

n
g

in
e

>
D

es
ti

n
at

io
n

s
>

To
p

ic
sp

ac
es

Lo
ca

lO
ld

es
tP

ub
lic

at
io

n
To

pi
cs

pa
ce

S
ta

ts
.L

oc
al

O
ld

es
tP

ub
lic

at
io

nA
ge

T

he

lo

ng
es

t
tim

e
an

y
pu

bl
ic

at
io

n
ha

s
sp

en
t

on

th

is

to

pi
cs

pa
ce

.
If

th
is

tim

e
is

no

t
w

ha
t

w
as

ex

pe
ct

ed

th

en

vi
ew

th

e
m

es
sa

ge

vi
a

th
e

ad
m

in

co
ns

ol
e

to

de

ci
de

w
ha

t
ac

tio
n

ne
ed

s
to

be

ta

ke
n.

6.
0

an
d

la
te

r
P

er

de
st

in
at

io
n

Ti
m

eS
ta

tis
tic

m

ax

Chapter 24. Monitoring overall system health 2131

P
er

fo
rm

an
ce

M

o
d

u
le

s
>

S
IB

S

er
vi

ce

>

S
IB

M

es
sa

g
in

g

E

n
g

in
es

>

M
es

sa
g

in
g

E

n
g

in
e

>
D

es
ti

n
at

io
n

s
>

To
p

ic
sp

ac
es

>

To
p

ic

>

D
u

ra
b

le
S

u
b

sc
ri

p
ti

o
n

s
N

am
e

K
ey

D

es
cr

ip
ti

o
n

V

er
si

o
n

G

ra
n

u
la

ri
ty

Ty

p
e

L
ev

el

A
va

ila
be

M
es

sa
ge

C
ou

nt

D
ur

ab
le

S
ub

sc
rip

tio
nS

ta
ts

.A
va

ila
bl

eM
es

sa
ge

C
ou

nt

T
he

nu

m
be

r
of

m
es

sa
ge

s
w

ai
tin

g
to

be

co

ns
um

ed
.

6.
0

an
d

la
te

r
pe

r
m

ed
ia

te
d

de
st

in
at

io
n

C
ou

nt
S

ta
tis

tic

Lo
w

To
ta

lM
es

sa
ge

sC
on

su
m

ed

D
ur

ab
le

S
ub

sc
rip

tio
nS

ta
ts

.T
ot

al
M

es
sa

ge
sC

on
su

m
ed

C
ou

nt

T
he

to

ta
l n

um
be

r
of

m
es

sa
ge

s
co

ns
um

ed

fr

om

th

is

du
ra

bl
e

su
bs

cr
ip

tio
n.

6.
0

an
d

la
te

r
pe

r
m

ed
ia

te
d

de
st

in
at

io
n

C
ou

nt
S

ta
tis

tic

Lo
w

B
es

tE
ffo

rt
N

on
-p

er
si

st
en

tM
es

sa
ge

sC
on

su
m

ed

D
ur

ab
le

S
ub

sc
rip

tio
nS

ta
ts

.B
es

tE
ffo

rt
N

on
P

er
si

st
en

tM
es

sa
ge

sC
on

su
m

ed
C

ou
nt

T

he

nu

m
be

r
of

B

es
t

E
ffo

rt

N

on
-p

er
si

st
en

t
m

es
sa

ge
s

co
ns

um
ed

,
fo

r
th

e
lif

et
im

e
of

th

is

m
es

sa
gi

ng

en

gi
ne

.

6.
0

an
d

la
te

r
pe

r
m

ed
ia

te
d

de
st

in
at

io
n

C
ou

nt
S

ta
tis

tic

Lo
w

E
xp

re
ss

N
on

-p
er

si
st

en
tM

es
sa

ge
sC

on
su

m
ed

D

ur
ab

le
S

ub
sc

rip
tio

nS
ta

ts
.E

xp
re

ss
N

on
P

er
si

st
en

tM
es

sa
ge

sC
on

su
m

ed
C

ou
nt

T

he

nu

m
be

r
of

E
xp

re
ss

N
on

-p
er

si
st

en
t

m
es

sa
ge

s
co

ns
um

ed
,

fo
r

th
e

lif
et

im
e

of

th

is

m
es

sa
gi

ng

en

gi
ne

.

6.
0

an
d

la
te

r
pe

r
m

ed
ia

te
d

de
st

in
at

io
n

C
ou

nt
S

ta
tis

tic

Lo
w

R
el

ia
bl

eN
on

-p
er

si
st

en
tM

es
sa

ge
sC

on
su

m
ed

D

ur
ab

le
S

ub
sc

rip
tio

nS
ta

ts
.R

el
ia

bl
eN

on
P

er
si

st
en

tM
es

sa
ge

sC
on

su
m

ed
C

ou
nt

T

he

nu

m
be

r
of

R
el

ia
bl

e
N

on
-p

er
si

st
en

t
m

es
sa

ge
s

co
ns

um
ed

,
fo

r
th

e
lif

et
im

e
of

th

is

m
es

sa
gi

ng

en

gi
ne

.

6.
0

an
d

la
te

r
pe

r
m

ed
ia

te
d

de
st

in
at

io
n

C
ou

nt
S

ta
tis

tic

Lo
w

R
el

ia
bl

eP
er

si
st

en
tM

es
sa

ge
s

C
on

su
m

ed

D
ur

ab
le

S
ub

sc
rip

tio
nS

ta
ts

.R
el

ia
bl

eP
er

si
st

en
tM

es
sa

ge
sC

on
su

m
ed

C
ou

nt

T
he

nu

m
be

r
of

R
el

ia
bl

e
P

er
si

st
en

t
m

es
sa

ge
s

co
ns

um
ed

,
fo

r
th

e
lif

et
im

e
of

th

is

m
es

sa
gi

ng

en

gi
ne

.

6.
0

an
d

la
te

r
pe

r
m

ed
ia

te
d

de
st

in
at

io
n

C
ou

nt
S

ta
tis

tic

Lo
w

A
ss

ur
ed

P
er

si
st

en
tM

es
sa

ge
s

C
on

su
m

ed

D
ur

ab
le

S
ub

sc
rip

tio
nS

ta
ts

.A
ss

ur
ed

P
er

si
st

en
tM

es
sa

ge
sC

on
su

m
ed

C
ou

nt

T
he

nu

m
be

r
of

A
ss

ur
ed

P

er
si

st
en

t
m

es
sa

ge
s

co
ns

um
ed

,
fo

r
th

e
lif

et
im

e
of

th

is

m
es

sa
gi

ng

en

gi
ne

.

6.
0

an
d

la
te

r
pe

r
m

ed
ia

te
d

de
st

in
at

io
n

C
ou

nt
S

ta
tis

tic

Lo
w

A
gg

re
ga

te
M

es
sa

ge
W

ai
tT

im
e

D
ur

ab
le

S
ub

sc
rip

tio
nS

ta
ts

.A
gg

re
ga

te
M

es
sa

ge
W

ai
tT

im
e

T
he

tim

e
sp

en
t

by

m
es

sa
ge

s
in

th

e
bu

s
at

co

ns
um

pt
io

n.

If

th
is

tim

e
is

no

t
w

ha
t

w
as

ex

pe
ct

ed

th

en

vi
ew

th

e
m

es
sa

ge

vi
a

th
e

ad
m

in

co
ns

ol
e

to

de

ci
de

w
ha

t
ac

tio
n

ne
ed

s
to

be

ta

ke
n.

6.
0

an
d

la
te

r
pe

r
m

ed
ia

te
d

de
st

in
at

io
n

Ti
m

eS
ta

tis
tic

H

ig
h

2132 Administering applications and their environment

P
er

fo
rm

an
ce

M

o
d

u
le

s
>

S
IB

S

er
vi

ce

>

S
IB

M

es
sa

g
in

g

E

n
g

in
es

>

M
es

sa
g

in
g

E

n
g

in
e

>
D

es
ti

n
at

io
n

s
>

To
p

ic
sp

ac
es

>

To
p

ic

>

D
u

ra
b

le
S

u
b

sc
ri

p
ti

o
n

s
Lo

ca
lM

es
sa

ge
W

ai
tT

im
e

D
ur

ab
le

S
ub

sc
rip

tio
nS

ta
ts

.L
oc

al
M

es
sa

ge
W

ai
tT

im
e

T
he

tim

e
sp

en
t

by

m
es

sa
ge

s
on

th

is

du
ra

bl
e

su
bs

cr
ip

tio
n

at

co

ns
um

pt
io

n.

If

th
is

tim

e
is

no

t
w

ha
t

w
as

ex

pe
ct

ed

th

en

vi
ew

th

e
m

es
sa

ge

vi
a

th
e

ad
m

in

co
ns

ol
e

to

de

ci
de

w
ha

t
ac

tio
n

ne
ed

s
to

be

ta

ke
n.

6.
0

an
d

la
te

r
pe

r
m

ed
ia

te
d

de
st

in
at

io
n

Ti
m

eS
ta

tis
tic

H

ig
h

Lo
ca

lO
ld

es
tP

ub
lic

at
io

n
D

ur
ab

le
S

ub
sc

rip
tio

nS
ta

ts
.L

oc
al

O
ld

es
tP

ub
lic

at
io

nA
ge

T

he

lo

ng
es

t
tim

e
an

y
m

es
sa

ge

ha

s
sp

en
t

on

th

is

su

bs
cr

ip
tio

n.

If
th

is

tim

e
is

no

t
w

ha
t

w
as

ex

pe
ct

ed

th
en

vi

ew

th

e
m

es
sa

ge

vi

a
th

e
ad

m
in

co

ns
ol

e
to

de
ci

de

w

ha
t

ac
tio

n
ne

ed
s

to

be

ta

ke
n.

6.
0

an
d

la
te

r
pe

r
m

ed
ia

te
d

de
st

in
at

io
n

Ti
m

eS
ta

tis
tic

M

ax

Chapter 24. Monitoring overall system health 2133

Communications statistics:

Communications statistics is a type of data that PMI maintains within the entire WebSphere Application

Server domain.

Counter definitions:

2134 Administering applications and their environment

P
er

fo
rm

an
ce

M

o
d

u
le

s
>

S
IB

S

er
vi

ce

>

S
IB

C

o
m

m
u

n
ic

at
io

n
s

>
C

lie
n

ts

>

D
et

ai
le

d

S

ta
ti

st
ic

s
N

am
e

K
ey

D

es
cr

ip
ti

o
n

V

er
si

o
n

G

ra
n

u
la

ri
ty

Ty

p
e

L
ev

el

B
yt

es
S

en
tA

tH
ig

he
st

P
rio

rit
yC

ou
nt

C

lie
nt

D
et

ai
le

dS
ta

ts
.B

yt
es

S
en

tA
tH

ig
he

st
P

rio
rit

y
N

um
be

r
of

by

te
s

of

da

ta

tr
an

sm
itt

ed

at

th

e
hi

gh
es

t
po

ss
ib

le

pr

io
rit

y
fo

r
tr

an
sm

is
si

on
.

M
es

sa
ge

da
ta

ca

nn
ot

be

tr
an

sm
itt

ed

w

ith

th

is

pr
io

rit
y,

so

ty

pi
ca

lly

th

es
e

by
te

s
of

da

ta

w

ill

co
m

pr
is

e
co

nt
ro

l
tr

an
sm

is
si

on
s

us
ed

to

ne
go

tia
te

th

e
flo

w

of

m
es

sa
ge

s.

6.
0

an
d

la
te

r
A

ll
cl

ie
nt

s
co

nn
ec

te
d

or

th

at

ha
ve

be

en

co
nn

ec
te

d
to

th

is

ap
pl

ic
at

io
n

se
rv

er

C
ou

nt
S

ta
tis

tic

Lo
w

B
yt

es
S

en
tA

tV
er

yH
ig

hP
rio

rit
yC

ou
nt

C

lie
nt

D
et

ai
le

dS
ta

ts
.B

yt
es

S
en

tA
tV

er
yH

ig
hP

rio
rit

y
N

um
be

r
of

by

te
s

of

da

ta

tr
an

sm
itt

ed

at

a

ve
ry

hi

gh

pr
io

rit
y.

M

es
sa

ge

da

ta

ca
nn

ot

be

tr

an
sm

itt
ed

w
ith

th

is

pr

io
rit

y,

so

ty
pi

ca
lly

th

es
e

by
te

s
of

da
ta

w

ill

co

m
pr

is
e

co
nt

ro
l

tr
an

sm
is

si
on

s
us

ed

to

ne
go

tia
te

th

e
flo

w

of

m
es

sa
ge

s.

6.
0

an
d

la
te

r
A

ll
cl

ie
nt

s
co

nn
ec

te
d

or

th

at

ha
ve

be

en

co
nn

ec
te

d
to

th

is

ap
pl

ic
at

io
n

se
rv

er

C
ou

nt
S

ta
tis

tic

Lo
w

B
yt

es
S

en
tA

tH
ig

hP
rio

rit
yC

ou
nt

C

lie
nt

D
et

ai
le

dS
ta

ts
.B

yt
es

S
en

tA
tH

ig
hP

rio
rit

y
N

um
be

r
of

by

te
s

of

da

ta

tr
an

sm
itt

ed

at

a

hi
gh

pr
io

rit
y.

M

es
sa

ge

da

ta

ca
nn

ot

be

tr

an
sm

itt
ed

w
ith

th

is

pr

io
rit

y,

so

ty
pi

ca
lly

th

es
e

by
te

s
of

da
ta

w

ill

co

m
pr

is
e

co
nt

ro
l

tr
an

sm
is

si
on

s
us

ed

to

ne
go

tia
te

th

e
flo

w

of

m
es

sa
ge

s.

6.
0

an
d

la
te

r
A

ll
cl

ie
nt

s
co

nn
ec

te
d

or

th

at

ha
ve

be

en

co
nn

ec
te

d
to

th

is

ap
pl

ic
at

io
n

se
rv

er

C
ou

nt
S

ta
tis

tic

Lo
w

B
yt

es
S

en
tA

tJ
M

S
9P

rio
rit

yC
ou

nt

C
lie

nt
D

et
ai

le
dS

ta
ts

.B
yt

es
S

en
tA

tJ
M

S
9P

rio
rit

y
N

um
be

r
of

by

te
s

of

da

ta

tr
an

sm
itt

ed

at

th

e
pr

io
rit

y
us

ed

by

JM

S

pr

io
rit

y
9

m
es

sa
ge

s.

Ty

pi
ca

lly

th

is

is

an

ac

cu
ra

te

m

ea
su

re

of

th

e
nu

m
be

r
of

by

te
s

of

m
es

sa
ge

da

ta

tr
an

sm
itt

ed

at

th

is

pr

io
rit

y
le

ve
l.

H
ow

ev
er

,
fr

om

tim

e
to

tim

e,

co

nt
ro

l
tr

an
sm

is
si

on
s

us
ed

to

ne
go

tia
te

th

e
flo

w

of

m
es

sa
ge

s
m

ig
ht

be

tr
an

sm
itt

ed

at

th

is

pr

io
rit

y
le

ve
l.

6.
0

an
d

la
te

r
A

ll
cl

ie
nt

s
co

nn
ec

te
d

or

th

at

ha
ve

be

en

co
nn

ec
te

d
to

th

is

ap
pl

ic
at

io
n

se
rv

er

C
ou

nt
S

ta
tis

tic

Lo
w

Chapter 24. Monitoring overall system health 2135

P
er

fo
rm

an
ce

M

o
d

u
le

s
>

S
IB

S

er
vi

ce

>

S
IB

C

o
m

m
u

n
ic

at
io

n
s

>
C

lie
n

ts

>

D
et

ai
le

d

S

ta
ti

st
ic

s
B

yt
es

S
en

tA
tJ

M
S

8P
rio

rit
yC

ou
nt

C

lie
nt

D
et

ai
le

dS
ta

ts
.B

yt
es

S
en

tA
tJ

M
S

8P
rio

rit
y

N
um

be
r

of

by

te
s

of

da

ta

tr
an

sm
itt

ed

at

th

e
pr

io
rit

y
us

ed

by

JM

S

pr

io
rit

y
8

m
es

sa
ge

s.

Ty

pi
ca

lly

th

is

is

an

ac

cu
ra

te

m

ea
su

re

of

th

e
nu

m
be

r
of

by

te
s

of

m
es

sa
ge

da

ta

tr
an

sm
itt

ed

at

th

is

pr

io
rit

y
le

ve
l.

H
ow

ev
er

,
fr

om

tim

e
to

tim

e,

co

nt
ro

l
tr

an
sm

is
si

on
s

us
ed

to

ne
go

tia
te

th

e
flo

w

of

m
es

sa
ge

s
m

ig
ht

be

tr
an

sm
itt

ed

at

th

is

pr

io
rit

y
le

ve
l.

6.
0

an
d

la
te

r
A

ll
cl

ie
nt

s
co

nn
ec

te
d

or

th

at

ha
ve

be

en

co
nn

ec
te

d
to

th

is

ap
pl

ic
at

io
n

se
rv

er

C
ou

nt
S

ta
tis

tic

Lo
w

B
yt

es
S

en
tA

tJ
M

S
7P

rio
rit

yC
ou

nt

C
lie

nt
D

et
ai

le
dS

ta
ts

.B
yt

es
S

en
tA

tJ
M

S
7P

rio
rit

y
N

um
be

r
of

by

te
s

of

da

ta

tr
an

sm
itt

ed

at

th

e
pr

io
rit

y
us

ed

by

JM

S

pr

io
rit

y
7

m
es

sa
ge

s.

Ty

pi
ca

lly

th

is

is

an

ac

cu
ra

te

m

ea
su

re

of

th

e
nu

m
be

r
of

by

te
s

of

m
es

sa
ge

da

ta

tr
an

sm
itt

ed

at

th

is

pr

io
rit

y
le

ve
l.

H
ow

ev
er

,
fr

om

tim

e
to

tim

e,

co

nt
ro

l
tr

an
sm

is
si

on
s

us
ed

to

ne
go

tia
te

th

e
flo

w

of

m
es

sa
ge

s
m

ig
ht

be

tr
an

sm
itt

ed

at

th

is

pr

io
rit

y
le

ve
l.

6.
0

an
d

la
te

r
A

ll
cl

ie
nt

s
co

nn
ec

te
d

or

th

at

ha
ve

be

en

co
nn

ec
te

d
to

th

is

ap
pl

ic
at

io
n

se
rv

er

C
ou

nt
S

ta
tis

tic

Lo
w

B
yt

es
S

en
tA

tJ
M

S
6P

rio
rit

yC
ou

nt

C
lie

nt
D

et
ai

le
dS

ta
ts

.B
yt

es
S

en
tA

tJ
M

S
6P

rio
rit

y
N

um
be

r
of

by

te
s

of

da

ta

tr
an

sm
itt

ed

at

th

e
pr

io
rit

y
us

ed

by

JM

S

pr

io
rit

y
6

m
es

sa
ge

s.

Ty

pi
ca

lly

th

is

is

an

ac

cu
ra

te

m

ea
su

re

of

th

e
nu

m
be

r
of

by

te
s

of

m
es

sa
ge

da

ta

tr
an

sm
itt

ed

at

th

is

pr

io
rit

y
le

ve
l.

H
ow

ev
er

,
fr

om

tim

e
to

tim

e,

co

nt
ro

l
tr

an
sm

is
si

on
s

us
ed

to

ne
go

tia
te

th

e
flo

w

of

m
es

sa
ge

s
m

ig
ht

be

tr
an

sm
itt

ed

at

th

is

pr

io
rit

y
le

ve
l.

6.
0

an
d

la
te

r
A

ll
cl

ie
nt

s
co

nn
ec

te
d

or

th

at

ha
ve

be

en

co
nn

ec
te

d
to

th

is

ap
pl

ic
at

io
n

se
rv

er

C
ou

nt
S

ta
tis

tic

Lo
w

2136 Administering applications and their environment

P
er

fo
rm

an
ce

M

o
d

u
le

s
>

S
IB

S

er
vi

ce

>

S
IB

C

o
m

m
u

n
ic

at
io

n
s

>
C

lie
n

ts

>

D
et

ai
le

d

S

ta
ti

st
ic

s
B

yt
es

S
en

tA
tJ

M
S

5P
rio

rit
yC

ou
nt

C

lie
nt

D
et

ai
le

dS
ta

ts
.B

yt
es

S
en

tA
tJ

M
S

5P
rio

rit
y

N
um

be
r

of

by

te
s

of

da

ta

tr
an

sm
itt

ed

at

th

e
pr

io
rit

y
us

ed

by

JM

S

pr

io
rit

y
5

m
es

sa
ge

s.

Ty

pi
ca

lly

th

is

is

an

ac

cu
ra

te

m

ea
su

re

of

th

e
nu

m
be

r
of

by

te
s

of

m
es

sa
ge

da

ta

tr
an

sm
itt

ed

at

th

is

pr

io
rit

y
le

ve
l.

H
ow

ev
er

,
fr

om

tim

e
to

tim

e,

co

nt
ro

l
tr

an
sm

is
si

on
s

us
ed

to

ne
go

tia
te

th

e
flo

w

of

m
es

sa
ge

s
m

ig
ht

be

tr
an

sm
itt

ed

at

th

is

pr

io
rit

y
le

ve
l.

6.
0

an
d

la
te

r
A

ll
cl

ie
nt

s
co

nn
ec

te
d

or

th

at

ha
ve

be

en

co
nn

ec
te

d
to

th

is

ap
pl

ic
at

io
n

se
rv

er

C
ou

nt
S

ta
tis

tic

Lo
w

B
yt

es
S

en
tA

tJ
M

S
4P

rio
rit

yC
ou

nt

C
lie

nt
D

et
ai

le
dS

ta
ts

.B
yt

es
S

en
tA

tJ
M

S
4P

rio
rit

y
N

um
be

r
of

by

te
s

of

da

ta

tr
an

sm
itt

ed

at

th

e
pr

io
rit

y
us

ed

by

JM

S

pr

io
rit

y
4

m
es

sa
ge

s.

Ty

pi
ca

lly

th

is

is

an

ac

cu
ra

te

m

ea
su

re

of

th

e
nu

m
be

r
of

by

te
s

of

m
es

sa
ge

da

ta

tr
an

sm
itt

ed

at

th

is

pr

io
rit

y
le

ve
l.

H
ow

ev
er

,
fr

om

tim

e
to

tim

e,

co

nt
ro

l
tr

an
sm

is
si

on
s

us
ed

to

ne
go

tia
te

th

e
flo

w

of

m
es

sa
ge

s
m

ig
ht

be

tr
an

sm
itt

ed

at

th

is

pr

io
rit

y
le

ve
l.

6.
0

an
d

la
te

r
A

ll
cl

ie
nt

s
co

nn
ec

te
d

or

th

at

ha
ve

be

en

co
nn

ec
te

d
to

th

is

ap
pl

ic
at

io
n

se
rv

er

C
ou

nt
S

ta
tis

tic

Lo
w

B
yt

es
S

en
tA

tJ
M

S
3P

rio
rit

yC
ou

nt

C
lie

nt
D

et
ai

le
dS

ta
ts

.B
yt

es
S

en
tA

tJ
M

S
3P

rio
rit

y
N

um
be

r
of

by

te
s

of

da

ta

tr
an

sm
itt

ed

at

th

e
pr

io
rit

y
us

ed

by

JM

S

pr

io
rit

y
3

m
es

sa
ge

s.

Ty

pi
ca

lly

th

is

is

an

ac

cu
ra

te

m

ea
su

re

of

th

e
nu

m
be

r
of

by

te
s

of

m
es

sa
ge

da

ta

tr
an

sm
itt

ed

at

th

is

pr

io
rit

y
le

ve
l.

H
ow

ev
er

,
fr

om

tim

e
to

tim

e,

co

nt
ro

l
tr

an
sm

is
si

on
s

us
ed

to

ne
go

tia
te

th

e
flo

w

of

m
es

sa
ge

s
m

ig
ht

be

tr
an

sm
itt

ed

at

th

is

pr

io
rit

y
le

ve
l.

6.
0

an
d

la
te

r
A

ll
cl

ie
nt

s
co

nn
ec

te
d

or

th

at

ha
ve

be

en

co
nn

ec
te

d
to

th

is

ap
pl

ic
at

io
n

se
rv

er

C
ou

nt
S

ta
tis

tic

Lo
w

Chapter 24. Monitoring overall system health 2137

P
er

fo
rm

an
ce

M

o
d

u
le

s
>

S
IB

S

er
vi

ce

>

S
IB

C

o
m

m
u

n
ic

at
io

n
s

>
C

lie
n

ts

>

D
et

ai
le

d

S

ta
ti

st
ic

s
B

yt
es

S
en

tA
tJ

M
S

2P
rio

rit
yC

ou
nt

C

lie
nt

D
et

ai
le

dS
ta

ts
.B

yt
es

S
en

tA
tJ

M
S

2P
rio

rit
y

N
um

be
r

of

by

te
s

of

da

ta

tr
an

sm
itt

ed

at

th

e
pr

io
rit

y
us

ed

by

JM

S

pr

io
rit

y
2

m
es

sa
ge

s.

Ty

pi
ca

lly

th

is

is

an

ac

cu
ra

te

m

ea
su

re

of

th

e
nu

m
be

r
of

by

te
s

of

m
es

sa
ge

da

ta

tr
an

sm
itt

ed

at

th

is

pr

io
rit

y
le

ve
l.

H
ow

ev
er

,
fr

om

tim

e
to

tim

e,

co

nt
ro

l
tr

an
sm

is
si

on
s

us
ed

to

ne
go

tia
te

th

e
flo

w

of

m
es

sa
ge

s
m

ig
ht

be

tr
an

sm
itt

ed

at

th

is

pr

io
rit

y
le

ve
l.

6.
0

an
d

la
te

r
A

ll
cl

ie
nt

s
co

nn
ec

te
d

or

th

at

ha
ve

be

en

co
nn

ec
te

d
to

th

is

ap
pl

ic
at

io
n

se
rv

er

C
ou

nt
S

ta
tis

tic

Lo
w

B
yt

es
S

en
tA

tJ
M

S
1P

rio
rit

yC
ou

nt

C
lie

nt
D

et
ai

le
dS

ta
ts

.B
yt

es
S

en
tA

tJ
M

S
1P

rio
rit

y
N

um
be

r
of

by

te
s

of

da

ta

tr
an

sm
itt

ed

at

th

e
pr

io
rit

y
us

ed

by

JM

S

pr

io
rit

y
1

m
es

sa
ge

s.

Ty

pi
ca

lly

th

is

is

an

ac

cu
ra

te

m

ea
su

re

of

th

e
nu

m
be

r
of

by

te
s

of

m
es

sa
ge

da

ta

tr
an

sm
itt

ed

at

th

is

pr

io
rit

y
le

ve
l.

H
ow

ev
er

,
fr

om

tim

e
to

tim

e,

co

nt
ro

l
tr

an
sm

is
si

on
s

us
ed

to

ne
go

tia
te

th

e
flo

w

of

m
es

sa
ge

s
m

ig
ht

be

tr
an

sm
itt

ed

at

th

is

pr

io
rit

y
le

ve
l.

6.
0

an
d

la
te

r
A

ll
cl

ie
nt

s
co

nn
ec

te
d

or

th

at

ha
ve

be

en

co
nn

ec
te

d
to

th

is

ap
pl

ic
at

io
n

se
rv

er

C
ou

nt
S

ta
tis

tic

Lo
w

B
yt

es
S

en
tA

tJ
M

S
0P

rio
rit

yC
ou

nt

C
lie

nt
D

et
ai

le
dS

ta
ts

.B
yt

es
S

en
tA

tJ
M

S
0P

rio
rit

y
N

um
be

r
of

by

te
s

of

da

ta

tr
an

sm
itt

ed

at

th

e
pr

io
rit

y
us

ed

by

JM

S

pr

io
rit

y
0

m
es

sa
ge

s.

Ty

pi
ca

lly

th

is

is

an

ac

cu
ra

te

m

ea
su

re

of

th

e
nu

m
be

r
of

by

te
s

of

m
es

sa
ge

da

ta

tr
an

sm
itt

ed

at

th

is

pr

io
rit

y
le

ve
l.

H
ow

ev
er

,
fr

om

tim

e
to

tim

e,

co

nt
ro

l
tr

an
sm

is
si

on
s

us
ed

to

ne
go

tia
te

th

e
flo

w

of

m
es

sa
ge

s
m

ig
ht

be

tr
an

sm
itt

ed

at

th

is

pr

io
rit

y
le

ve
l.

6.
0

an
d

la
te

r
A

ll
cl

ie
nt

s
co

nn
ec

te
d

or

th

at

ha
ve

be

en

co
nn

ec
te

d
to

th

is

ap
pl

ic
at

io
n

se
rv

er

C
ou

nt
S

ta
tis

tic

Lo
w

2138 Administering applications and their environment

P
er

fo
rm

an
ce

M

o
d

u
le

s
>

S
IB

S

er
vi

ce

>

S
IB

C

o
m

m
u

n
ic

at
io

n
s

>
C

lie
n

ts

>

D
et

ai
le

d

S

ta
ti

st
ic

s
B

yt
es

S
en

tA
tL

ow
P

rio
rit

yC
ou

nt

C
lie

nt
D

et
ai

le
dS

ta
ts

.B
yt

es
S

en
tA

tL
ow

P
rio

rit
y

N
um

be
r

of

by

te
s

of

da

ta

tr
an

sm
itt

ed

at

a

lo
w

pr
io

rit
y.

M

es
sa

ge

da

ta

ca
nn

ot

be

tr

an
sm

itt
ed

w
ith

th

is

pr

io
rit

y,

so

ty
pi

ca
lly

th

es
e

by
te

s
of

da
ta

w

ill

co

m
pr

is
e

co
nt

ro
l

tr
an

sm
is

si
on

s
us

ed

to

ne
go

tia
te

th

e
flo

w

of

m
es

sa
ge

s.

6.
0

an
d

la
te

r
A

ll
cl

ie
nt

s
co

nn
ec

te
d

or

th

at

ha
ve

be

en

co
nn

ec
te

d
to

th

is

ap
pl

ic
at

io
n

se
rv

er

C
ou

nt
S

ta
tis

tic

Lo
w

B
yt

es
S

en
tA

tV
er

yL
ow

P
rio

rit
yC

ou
nt

C

lie
nt

D
et

ai
le

dS
ta

ts
.B

yt
es

S
en

tA
tV

er
yL

ow
P

rio
rit

y
N

um
be

r
of

by

te
s

of

da

ta

tr
an

sm
itt

ed

at

a

ve
ry

lo

w

pr
io

rit
y.

M

es
sa

ge

da

ta

ca
nn

ot

be

tr

an
sm

itt
ed

w
ith

th

is

pr

io
rit

y,

so

ty
pi

ca
lly

th

es
e

by
te

s
of

da
ta

w

ill

co

m
pr

is
e

co
nt

ro
l

tr
an

sm
is

si
on

s
us

ed

to

ne
go

tia
te

th

e
flo

w

of

m
es

sa
ge

s.

6.
0

an
d

la
te

r
A

ll
cl

ie
nt

s
co

nn
ec

te
d

or

th

at

ha
ve

be

en

co
nn

ec
te

d
to

th

is

ap
pl

ic
at

io
n

se
rv

er

C
ou

nt
S

ta
tis

tic

Lo
w

B
yt

es
S

en
tA

tL
ow

es
tP

rio
rit

yC
ou

nt

C
lie

nt
D

et
ai

le
dS

ta
ts

.B
yt

es
S

en
tA

tL
ow

es
tP

rio
rit

y
N

um
be

r
of

by

te
s

of

da

ta

tr
an

sm
itt

ed

at

th

e
lo

w
es

t
po

ss
ib

le

pr

io
rit

y.

M
es

sa
ge

da

ta

ca

nn
ot

be

tr
an

sm
itt

ed

w

ith

th

is

pr
io

rit
y,

so

ty

pi
ca

lly

th

es
e

by
te

s
of

da

ta

w

ill

co
m

pr
is

e
co

nt
ro

l
tr

an
sm

is
si

on
s

us
ed

to

ne
go

tia
te

th

e
flo

w

of

m
es

sa
ge

s.

6.
0

an
d

la
te

r
A

ll
cl

ie
nt

s
co

nn
ec

te
d

or

th

at

ha
ve

be

en

co
nn

ec
te

d
to

th

is

ap
pl

ic
at

io
n

se
rv

er

C
ou

nt
S

ta
tis

tic

Lo
w

B
yt

es
R

ec
ei

ve
dA

tH
ig

he
st

P
rio

rit
yC

ou
nt

C

lie
nt

D
et

ai
le

dS
ta

ts
.B

yt
es

R
ec

ei
ve

dA
tH

ig
he

st
P

rio
rit

y
N

um
be

r
of

by

te
s

of

da

ta

re
ce

iv
ed

at

th

e
hi

gh
es

t
po

ss
ib

le

pr

io
rit

y.

M
es

sa
ge

da

ta

ca

nn
ot

be

tr
an

sm
itt

ed

w

ith

th

is

pr
io

rit
y,

so

ty

pi
ca

lly

th

es
e

by
te

s
of

da

ta

w

ill

co
m

pr
is

e
co

nt
ro

l
tr

an
sm

is
si

on
s

us
ed

to

ne
go

tia
te

th

e
flo

w

of

m
es

sa
ge

s.

6.
0

an
d

la
te

r
A

ll
cl

ie
nt

s
co

nn
ec

te
d

or

th

at

ha
ve

be

en

co
nn

ec
te

d
to

th

is

ap
pl

ic
at

io
n

se
rv

er

C
ou

nt
S

ta
tis

tic

Lo
w

B
yt

es
R

ec
ei

ve
dA

tV
er

yH
ig

hP
rio

rit
yC

ou
nt

C

lie
nt

D
et

ai
le

dS
ta

ts
.B

yt
es

R
ec

ei
ve

dA
tV

er
yH

ig
hP

rio
rit

y
N

um
be

r
of

by

te
s

of

da

ta

re
ce

iv
ed

at

a

ve
ry

hi

gh

pr
io

rit
y.

M

es
sa

ge

da

ta

ca
nn

ot

be

tr

an
sm

itt
ed

w
ith

th

is

pr

io
rit

y,

so

ty
pi

ca
lly

th

es
e

by
te

s
of

da
ta

w

ill

co

m
pr

is
e

co
nt

ro
l

tr
an

sm
is

si
on

s
us

ed

to

ne
go

tia
te

th

e
flo

w

of

m
es

sa
ge

s.

6.
0

an
d

la
te

r
A

ll
cl

ie
nt

s
co

nn
ec

te
d

or

th

at

ha
ve

be

en

co
nn

ec
te

d
to

th

is

ap
pl

ic
at

io
n

se
rv

er

C
ou

nt
S

ta
tis

tic

Lo
w

Chapter 24. Monitoring overall system health 2139

P
er

fo
rm

an
ce

M

o
d

u
le

s
>

S
IB

S

er
vi

ce

>

S
IB

C

o
m

m
u

n
ic

at
io

n
s

>
C

lie
n

ts

>

D
et

ai
le

d

S

ta
ti

st
ic

s
B

yt
es

R
ec

ei
ve

dA
tH

ig
hP

rio
rit

yC
ou

nt

C
lie

nt
D

et
ai

le
dS

ta
ts

.B
yt

es
R

ec
ei

ve
dA

tH
ig

hP
rio

rit
y

N
um

be
r

of

by

te
s

of

da

ta

re
ce

iv
ed

at

a

hi
gh

pr
io

rit
y.

M

es
sa

ge

da

ta

ca
nn

ot

be

tr

an
sm

itt
ed

w
ith

th

is

pr

io
rit

y,

so

ty
pi

ca
lly

th

es
e

by
te

s
of

da
ta

w

ill

co

m
pr

is
e

co
nt

ro
l

tr
an

sm
is

si
on

s
us

ed

to

ne
go

tia
te

th

e
flo

w

of

m
es

sa
ge

s.

6.
0

an
d

la
te

r
A

ll
cl

ie
nt

s
co

nn
ec

te
d

or

th

at

ha
ve

be

en

co
nn

ec
te

d
to

th

is

ap
pl

ic
at

io
n

se
rv

er

C
ou

nt
S

ta
tis

tic

Lo
w

B
yt

es
R

ec
ei

ve
dA

tJ
M

S
9P

rio
rit

yC
ou

nt

C
lie

nt
D

et
ai

le
dS

ta
ts

.B
yt

es
R

ec
ei

ve
dA

tJ
M

S
9P

rio
rit

y
N

um
be

r
of

by

te
s

of

da

ta

re
ce

iv
ed

at

th

e
pr

io
rit

y
us

ed

by

JM

S

pr

io
rit

y
9

m
es

sa
ge

s.

Ty

pi
ca

lly

th

is

is

an

ac

cu
ra

te

m

ea
su

re

of

th

e
nu

m
be

r
of

by

te
s

of

m
es

sa
ge

da

ta

re

ce
iv

ed

at

th

is

pr

io
rit

y
le

ve
l.

H
ow

ev
er

,
fr

om

tim

e
to

tim
e,

co

nt
ro

l
tr

an
sm

is
si

on
s

us
ed

to

ne
go

tia
te

th

e
flo

w

of

m
es

sa
ge

s
m

ig
ht

be

tr
an

sm
itt

ed

at

th

is

pr

io
rit

y
le

ve
l.

6.
0

an
d

la
te

r
A

ll
cl

ie
nt

s
co

nn
ec

te
d

or

th

at

ha
ve

be

en

co
nn

ec
te

d
to

th

is

ap
pl

ic
at

io
n

se
rv

er

C
ou

nt
S

ta
tis

tic

Lo
w

B
yt

es
R

ec
ei

ve
dA

tJ
M

S
8P

rio
rit

yC
ou

nt

C
lie

nt
D

et
ai

le
dS

ta
ts

.B
yt

es
R

ec
ei

ve
dA

tJ
M

S
8P

rio
rit

y
N

um
be

r
of

by

te
s

of

da

ta

re
ce

iv
ed

at

th

e
pr

io
rit

y
us

ed

by

JM

S

pr

io
rit

y
8

m
es

sa
ge

s.

Ty

pi
ca

lly

th

is

is

an

ac

cu
ra

te

m

ea
su

re

of

th

e
nu

m
be

r
of

by

te
s

of

m
es

sa
ge

da

ta

re

ce
iv

ed

at

th

is

pr

io
rit

y
le

ve
l.

H
ow

ev
er

,
fr

om

tim

e
to

tim
e,

co

nt
ro

l
tr

an
sm

is
si

on
s

us
ed

to

ne
go

tia
te

th

e
flo

w

of

m
es

sa
ge

s
m

ig
ht

be

tr
an

sm
itt

ed

at

th

is

pr

io
rit

y
le

ve
l.

6.
0

an
d

la
te

r
A

ll
cl

ie
nt

s
co

nn
ec

te
d

or

th

at

ha
ve

be

en

co
nn

ec
te

d
to

th

is

ap
pl

ic
at

io
n

se
rv

er

C
ou

nt
S

ta
tis

tic

Lo
w

2140 Administering applications and their environment

P
er

fo
rm

an
ce

M

o
d

u
le

s
>

S
IB

S

er
vi

ce

>

S
IB

C

o
m

m
u

n
ic

at
io

n
s

>
C

lie
n

ts

>

D
et

ai
le

d

S

ta
ti

st
ic

s
B

yt
es

R
ec

ei
ve

dA
tJ

M
S

7P
rio

rit
yC

ou
nt

C

lie
nt

D
et

ai
le

dS
ta

ts
.B

yt
es

R
ec

ei
ve

dA
tJ

M
S

7P
rio

rit
y

N
um

be
r

of

by

te
s

of

da

ta

re
ce

iv
ed

at

th

e
pr

io
rit

y
us

ed

by

JM

S

pr

io
rit

y
7

m
es

sa
ge

s.

Ty

pi
ca

lly

th

is

is

an

ac

cu
ra

te

m

ea
su

re

of

th

e
nu

m
be

r
of

by

te
s

of

m
es

sa
ge

da

ta

re

ce
iv

ed

at

th

is

pr

io
rit

y
le

ve
l.

H
ow

ev
er

,
fr

om

tim

e
to

tim
e,

co

nt
ro

l
tr

an
sm

is
si

on
s

us
ed

to

ne
go

tia
te

th

e
flo

w

of

m
es

sa
ge

s
m

ig
ht

be

tr
an

sm
itt

ed

at

th

is

pr

io
rit

y
le

ve
l.

6.
0

an
d

la
te

r
A

ll
cl

ie
nt

s
co

nn
ec

te
d

or

th

at

ha
ve

be

en

co
nn

ec
te

d
to

th

is

ap
pl

ic
at

io
n

se
rv

er

C
ou

nt
S

ta
tis

tic

Lo
w

B
yt

es
R

ec
ei

ve
dA

tJ
M

S
6P

rio
rit

yC
ou

nt

C
lie

nt
D

et
ai

le
dS

ta
ts

.B
yt

es
R

ec
ei

ve
dA

tJ
M

S
6P

rio
rit

y
N

um
be

r
of

by

te
s

of

da

ta

re
ce

iv
ed

at

th

e
pr

io
rit

y
us

ed

by

JM

S

pr

io
rit

y
6

m
es

sa
ge

s.

Ty

pi
ca

lly

th

is

is

an

ac

cu
ra

te

m

ea
su

re

of

th

e
nu

m
be

r
of

by

te
s

of

m
es

sa
ge

da

ta

re

ce
iv

ed

at

th

is

pr

io
rit

y
le

ve
l.

H
ow

ev
er

,
fr

om

tim

e
to

tim
e,

co

nt
ro

l
tr

an
sm

is
si

on
s

us
ed

to

ne
go

tia
te

th

e
flo

w

of

m
es

sa
ge

s
m

ig
ht

be

tr
an

sm
itt

ed

at

th

is

pr

io
rit

y
le

ve
l.

6.
0

an
d

la
te

r
A

ll
cl

ie
nt

s
co

nn
ec

te
d

or

th

at

ha
ve

be

en

co
nn

ec
te

d
to

th

is

ap
pl

ic
at

io
n

se
rv

er

C
ou

nt
S

ta
tis

tic

Lo
w

B
yt

es
R

ec
ei

ve
dA

tJ
M

S
5P

rio
rit

yC
ou

nt

C
lie

nt
D

et
ai

le
dS

ta
ts

.B
yt

es
R

ec
ei

ve
dA

tJ
M

S
5P

rio
rit

y
N

um
be

r
of

by

te
s

of

da

ta

re
ce

iv
ed

at

th

e
pr

io
rit

y
us

ed

by

JM

S

pr

io
rit

y
5

m
es

sa
ge

s.

Ty

pi
ca

lly

th

is

is

an

ac

cu
ra

te

m

ea
su

re

of

th

e
nu

m
be

r
of

by

te
s

of

m
es

sa
ge

da

ta

re

ce
iv

ed

at

th

is

pr

io
rit

y
le

ve
l.

H
ow

ev
er

,
fr

om

tim

e
to

tim
e,

co

nt
ro

l
tr

an
sm

is
si

on
s

us
ed

to

ne
go

tia
te

th

e
flo

w

of

m
es

sa
ge

s
m

ig
ht

be

tr
an

sm
itt

ed

at

th

is

pr

io
rit

y
le

ve
l.

6.
0

an
d

la
te

r
A

ll
cl

ie
nt

s
co

nn
ec

te
d

or

th

at

ha
ve

be

en

co
nn

ec
te

d
to

th

is

ap
pl

ic
at

io
n

se
rv

er

C
ou

nt
S

ta
tis

tic

Lo
w

Chapter 24. Monitoring overall system health 2141

P
er

fo
rm

an
ce

M

o
d

u
le

s
>

S
IB

S

er
vi

ce

>

S
IB

C

o
m

m
u

n
ic

at
io

n
s

>
C

lie
n

ts

>

D
et

ai
le

d

S

ta
ti

st
ic

s
B

yt
es

R
ec

ei
ve

dA
tJ

M
S

4P
rio

rit
yC

ou
nt

C

lie
nt

D
et

ai
le

dS
ta

ts
.B

yt
es

R
ec

ei
ve

dA
tJ

M
S

4P
rio

rit
y

N
um

be
r

of

by

te
s

of

da

ta

re
ce

iv
ed

at

th

e
pr

io
rit

y
us

ed

by

JM

S

pr

io
rit

y
4

m
es

sa
ge

s.

Ty

pi
ca

lly

th

is

is

an

ac

cu
ra

te

m

ea
su

re

of

th

e
nu

m
be

r
of

by

te
s

of

m
es

sa
ge

da

ta

re

ce
iv

ed

at

th

is

pr

io
rit

y
le

ve
l.

H
ow

ev
er

,
fr

om

tim

e
to

tim
e,

co

nt
ro

l
tr

an
sm

is
si

on
s

us
ed

to

ne
go

tia
te

th

e
flo

w

of

m
es

sa
ge

s
m

ig
ht

be

tr
an

sm
itt

ed

at

th

is

pr

io
rit

y
le

ve
l.

6.
0

an
d

la
te

r
A

ll
cl

ie
nt

s
co

nn
ec

te
d

or

th

at

ha
ve

be

en

co
nn

ec
te

d
to

th

is

ap
pl

ic
at

io
n

se
rv

er

C
ou

nt
S

ta
tis

tic

Lo
w

B
yt

es
R

ec
ei

ve
dA

tJ
M

S
3P

rio
rit

yC
ou

nt

C
lie

nt
D

et
ai

le
dS

ta
ts

.B
yt

es
R

ec
ei

ve
dA

tJ
M

S
3P

rio
rit

y
N

um
be

r
of

by

te
s

of

da

ta

re
ce

iv
ed

at

th

e
pr

io
rit

y
us

ed

by

JM

S

pr

io
rit

y
3

m
es

sa
ge

s.

Ty

pi
ca

lly

th

is

is

an

ac

cu
ra

te

m

ea
su

re

of

th

e
nu

m
be

r
of

by

te
s

of

m
es

sa
ge

da

ta

re

ce
iv

ed

at

th

is

pr

io
rit

y
le

ve
l.

H
ow

ev
er

,
fr

om

tim

e
to

tim
e,

co

nt
ro

l
tr

an
sm

is
si

on
s

us
ed

to

ne
go

tia
te

th

e
flo

w

of

m
es

sa
ge

s
m

ig
ht

be

tr
an

sm
itt

ed

at

th

is

pr

io
rit

y
le

ve
l.

6.
0

an
d

la
te

r
A

ll
cl

ie
nt

s
co

nn
ec

te
d

or

th

at

ha
ve

be

en

co
nn

ec
te

d
to

th

is

ap
pl

ic
at

io
n

se
rv

er

C
ou

nt
S

ta
tis

tic

Lo
w

B
yt

es
R

ec
ei

ve
dA

tJ
M

S
2P

rio
rit

yC
ou

nt

C
lie

nt
D

et
ai

le
dS

ta
ts

.B
yt

es
R

ec
ei

ve
dA

tJ
M

S
2P

rio
rit

y
N

um
be

r
of

by

te
s

of

da

ta

re
ce

iv
ed

at

th

e
pr

io
rit

y
us

ed

by

JM

S

pr

io
rit

y
2

m
es

sa
ge

s.

Ty

pi
ca

lly

th

is

is

an

ac

cu
ra

te

m

ea
su

re

of

th

e
nu

m
be

r
of

by

te
s

of

m
es

sa
ge

da

ta

re

ce
iv

ed

at

th

is

pr

io
rit

y
le

ve
l.

H
ow

ev
er

,
fr

om

tim

e
to

tim
e,

co

nt
ro

l
tr

an
sm

is
si

on
s

us
ed

to

ne
go

tia
te

th

e
flo

w

of

m
es

sa
ge

s
m

ig
ht

be

tr
an

sm
itt

ed

at

th

is

pr

io
rit

y
le

ve
l.

6.
0

an
d

la
te

r
A

ll
cl

ie
nt

s
co

nn
ec

te
d

or

th

at

ha
ve

be

en

co
nn

ec
te

d
to

th

is

ap
pl

ic
at

io
n

se
rv

er

C
ou

nt
S

ta
tis

tic

Lo
w

2142 Administering applications and their environment

P
er

fo
rm

an
ce

M

o
d

u
le

s
>

S
IB

S

er
vi

ce

>

S
IB

C

o
m

m
u

n
ic

at
io

n
s

>
C

lie
n

ts

>

D
et

ai
le

d

S

ta
ti

st
ic

s
B

yt
es

R
ec

ei
ve

dA
tJ

M
S

1P
rio

rit
yC

ou
nt

C

lie
nt

D
et

ai
le

dS
ta

ts
.B

yt
es

R
ec

ei
ve

dA
tJ

M
S

1P
rio

rit
y

N
um

be
r

of

by

te
s

of

da

ta

re
ce

iv
ed

at

th

e
pr

io
rit

y
us

ed

by

JM

S

pr

io
rit

y
1

m
es

sa
ge

s.

Ty

pi
ca

lly

th

is

is

an

ac

cu
ra

te

m

ea
su

re

of

th

e
nu

m
be

r
of

by

te
s

of

m
es

sa
ge

da

ta

re

ce
iv

ed

at

th

is

pr

io
rit

y
le

ve
l.

H
ow

ev
er

,
fr

om

tim

e
to

tim
e,

co

nt
ro

l
tr

an
sm

is
si

on
s

us
ed

to

ne
go

tia
te

th

e
flo

w

of

m
es

sa
ge

s
m

ig
ht

be

tr
an

sm
itt

ed

at

th

is

pr

io
rit

y
le

ve
l.

6.
0

an
d

la
te

r
A

ll
cl

ie
nt

s
co

nn
ec

te
d

or

th

at

ha
ve

be

en

co
nn

ec
te

d
to

th

is

ap
pl

ic
at

io
n

se
rv

er

C
ou

nt
S

ta
tis

tic

Lo
w

B
yt

es
R

ec
ei

ve
dA

tJ
M

S
0P

rio
rit

yC
ou

nt

C
lie

nt
D

et
ai

le
dS

ta
ts

.B
yt

es
R

ec
ei

ve
dA

tJ
M

S
0P

rio
rit

y
N

um
be

r
of

by

te
s

of

da

ta

re
ce

iv
ed

at

th

e
pr

io
rit

y
us

ed

by

JM

S

pr

io
rit

y
0

m
es

sa
ge

s.

Ty

pi
ca

lly

th

is

is

an

ac

cu
ra

te

m

ea
su

re

of

th

e
nu

m
be

r
of

by

te
s

of

m
es

sa
ge

da

ta

re

ce
iv

ed

at

th

is

pr

io
rit

y
le

ve
l.

H
ow

ev
er

,
fr

om

tim

e
to

tim
e,

co

nt
ro

l
tr

an
sm

is
si

on
s

us
ed

to

ne
go

tia
te

th

e
flo

w

of

m
es

sa
ge

s
m

ig
ht

be

tr
an

sm
itt

ed

at

th

is

pr

io
rit

y
le

ve
l.

6.
0

an
d

la
te

r
A

ll
cl

ie
nt

s
co

nn
ec

te
d

or

th

at

ha
ve

be

en

co
nn

ec
te

d
to

th

is

ap
pl

ic
at

io
n

se
rv

er

C
ou

nt
S

ta
tis

tic

Lo
w

B
yt

es
R

ec
ei

ve
dA

tL
ow

P
rio

rit
yC

ou
nt

C

lie
nt

D
et

ai
le

dS
ta

ts
.B

yt
es

R
ec

ei
ve

dA
tL

ow
P

rio
rit

y
N

um
be

r
of

by

te
s

of

da

ta

re
ce

iv
ed

at

a

lo
w

pr

io
rit

y.

M
es

sa
ge

da

ta

ca

nn
ot

be

tr
an

sm
itt

ed

w

ith

th

is

pr
io

rit
y,

so

ty

pi
ca

lly

th

es
e

by
te

s
of

da

ta

w

ill

co
m

pr
is

e
co

nt
ro

l
tr

an
sm

is
si

on
s

us
ed

to

ne
go

tia
te

th

e
flo

w

of

m
es

sa
ge

s.

6.
0

an
d

la
te

r
A

ll
cl

ie
nt

s
co

nn
ec

te
d

or

th

at

ha
ve

be

en

co
nn

ec
te

d
to

th

is

ap
pl

ic
at

io
n

se
rv

er

C
ou

nt
S

ta
tis

tic

Lo
w

B
yt

es
R

ec
ei

ve
dA

tV
er

yL
ow

P
rio

rit
yC

ou
nt

C

lie
nt

D
et

ai
le

dS
ta

ts
.B

yt
es

R
ec

ei
ve

dA
tV

er
yL

ow
P

rio
rit

y
N

um
be

r
of

by

te
s

of

da

ta

re
ce

iv
ed

at

a

ve
ry

lo

w

pr
io

rit
y.

M

es
sa

ge

da

ta

ca
nn

ot

be

tr

an
sm

itt
ed

w
ith

th

is

pr

io
rit

y,

so

ty
pi

ca
lly

th

es
e

by
te

s
of

da
ta

w

ill

co

m
pr

is
e

co
nt

ro
l

tr
an

sm
is

si
on

s
us

ed

to

ne
go

tia
te

th

e
flo

w

of

m
es

sa
ge

s.

6.
0

an
d

la
te

r
A

ll
cl

ie
nt

s
co

nn
ec

te
d

or

th

at

ha
ve

be

en

co
nn

ec
te

d
to

th

is

ap
pl

ic
at

io
n

se
rv

er

C
ou

nt
S

ta
tis

tic

Lo
w

Chapter 24. Monitoring overall system health 2143

P
er

fo
rm

an
ce

M

o
d

u
le

s
>

S
IB

S

er
vi

ce

>

S
IB

C

o
m

m
u

n
ic

at
io

n
s

>
C

lie
n

ts

>

D
et

ai
le

d

S

ta
ti

st
ic

s
B

yt
es

R
ec

ei
ve

dA
tL

ow
es

tP
rio

rit
yC

ou
nt

C

lie
nt

D
et

ai
le

dS
ta

ts
.B

yt
es

R
ec

ei
ve

dA
tL

ow
es

tP
rio

rit
y

N
um

be
r

of

by

te
s

of

da

ta

re
ce

iv
ed

at

th

e
lo

w
es

t
po

ss
ib

le

pr

io
rit

y.

M
es

sa
ge

da

ta

ca

nn
ot

be

tr
an

sm
itt

ed

w

ith

th

is

pr
io

rit
y,

so

ty

pi
ca

lly

th

es
e

by
te

s
of

da

ta

w

ill

co
m

pr
is

e
co

nt
ro

l
tr

an
sm

is
si

on
s

us
ed

to

ne
go

tia
te

th

e
flo

w

of

m
es

sa
ge

s.

6.
0

an
d

la
te

r
A

ll
cl

ie
nt

s
co

nn
ec

te
d

or

th

at

ha
ve

be

en

co
nn

ec
te

d
to

th

is

ap
pl

ic
at

io
n

se
rv

er

C
ou

nt
S

ta
tis

tic

Lo
w

M
es

sa
ge

sS
en

tA
tJ

M
S

9P
rio

rit
yC

ou
nt

C

lie
nt

D
et

ai
le

dS
ta

ts
.M

es
sa

ge
sS

en
tA

tJ
M

S
9P

rio
rit

y
N

um
be

r
of

m

es
sa

ge
s

tr
an

sm
itt

ed

at

JM

S

pr
io

rit
y

9.

6.
0

an
d

la
te

r
A

ll
cl

ie
nt

s
co

nn
ec

te
d

or

th

at

ha
ve

be

en

co
nn

ec
te

d
to

th

is

ap
pl

ic
at

io
n

se
rv

er

C
ou

nt
S

ta
tis

tic

Lo
w

M
es

sa
ge

sS
en

tA
tJ

M
S

8P
rio

rit
yC

ou
nt

C

lie
nt

D
et

ai
le

dS
ta

ts
.M

es
sa

ge
sS

en
tA

tJ
M

S
8P

rio
rit

y
N

um
be

r
of

m

es
sa

ge
s

tr
an

sm
itt

ed

at

JM

S

pr
io

rit
y

8.

6.
0

an
d

la
te

r
A

ll
cl

ie
nt

s
co

nn
ec

te
d

or

th

at

ha
ve

be

en

co
nn

ec
te

d
to

th

is

ap
pl

ic
at

io
n

se
rv

er

C
ou

nt
S

ta
tis

tic

Lo
w

M
es

sa
ge

sS
en

tA
tJ

M
S

7P
rio

rit
yC

ou
nt

C

lie
nt

D
et

ai
le

dS
ta

ts
.M

es
sa

ge
sS

en
tA

tJ
M

S
7P

rio
rit

y
N

um
be

r
of

m

es
sa

ge
s

tr
an

sm
itt

ed

at

JM

S

pr
io

rit
y

7.

6.
0

an
d

la
te

r
A

ll
cl

ie
nt

s
co

nn
ec

te
d

or

th

at

ha
ve

be

en

co
nn

ec
te

d
to

th

is

ap
pl

ic
at

io
n

se
rv

er

C
ou

nt
S

ta
tis

tic

Lo
w

M
es

sa
ge

sS
en

tA
tJ

M
S

6P
rio

rit
yC

ou
nt

C

lie
nt

D
et

ai
le

dS
ta

ts
.M

es
sa

ge
sS

en
tA

tJ
M

S
6P

rio
rit

y
N

um
be

r
of

m

es
sa

ge
s

tr
an

sm
itt

ed

at

JM

S

pr
io

rit
y

6.

6.
0

an
d

la
te

r
A

ll
cl

ie
nt

s
co

nn
ec

te
d

or

th

at

ha
ve

be

en

co
nn

ec
te

d
to

th

is

ap
pl

ic
at

io
n

se
rv

er

C
ou

nt
S

ta
tis

tic

Lo
w

M
es

sa
ge

sS
en

tA
tJ

M
S

5P
rio

rit
yC

ou
nt

C

lie
nt

D
et

ai
le

dS
ta

ts
.M

es
sa

ge
sS

en
tA

tJ
M

S
5P

rio
rit

y
N

um
be

r
of

m

es
sa

ge
s

tr
an

sm
itt

ed

at

JM

S

pr
io

rit
y

5.

6.
0

an
d

la
te

r
A

ll
cl

ie
nt

s
co

nn
ec

te
d

or

th

at

ha
ve

be

en

co
nn

ec
te

d
to

th

is

ap
pl

ic
at

io
n

se
rv

er

C
ou

nt
S

ta
tis

tic

Lo
w

M
es

sa
ge

sS
en

tA
tJ

M
S

4P
rio

rit
yC

ou
nt

C

lie
nt

D
et

ai
le

dS
ta

ts
.M

es
sa

ge
sS

en
tA

tJ
M

S
4P

rio
rit

y
N

um
be

r
of

m

es
sa

ge
s

tr
an

sm
itt

ed

at

JM

S

pr
io

rit
y

4.

6.
0

an
d

la
te

r
A

ll
cl

ie
nt

s
co

nn
ec

te
d

or

th

at

ha
ve

be

en

co
nn

ec
te

d
to

th

is

ap
pl

ic
at

io
n

se
rv

er

C
ou

nt
S

ta
tis

tic

Lo
w

M
es

sa
ge

sS
en

tA
tJ

M
S

3P
rio

rit
yC

ou
nt

C

lie
nt

D
et

ai
le

dS
ta

ts
.M

es
sa

ge
sS

en
tA

tJ
M

S
3P

rio
rit

y
N

um
be

r
of

m

es
sa

ge
s

tr
an

sm
itt

ed

at

JM

S

pr
io

rit
y

3.

6.
0

an
d

la
te

r
A

ll
cl

ie
nt

s
co

nn
ec

te
d

or

th

at

ha
ve

be

en

co
nn

ec
te

d
to

th

is

ap
pl

ic
at

io
n

se
rv

er

C
ou

nt
S

ta
tis

tic

Lo
w

2144 Administering applications and their environment

P
er

fo
rm

an
ce

M

o
d

u
le

s
>

S
IB

S

er
vi

ce

>

S
IB

C

o
m

m
u

n
ic

at
io

n
s

>
C

lie
n

ts

>

D
et

ai
le

d

S

ta
ti

st
ic

s
M

es
sa

ge
sS

en
tA

tJ
M

S
2P

rio
rit

yC
ou

nt

C
lie

nt
D

et
ai

le
dS

ta
ts

.M
es

sa
ge

sS
en

tA
tJ

M
S

2P
rio

rit
y

N
um

be
r

of

m

es
sa

ge
s

tr
an

sm
itt

ed

at

JM

S

pr
io

rit
y

2.

6.
0

an
d

la
te

r
A

ll
cl

ie
nt

s
co

nn
ec

te
d

or

th

at

ha
ve

be

en

co
nn

ec
te

d
to

th

is

ap
pl

ic
at

io
n

se
rv

er

C
ou

nt
S

ta
tis

tic

Lo
w

M
es

sa
ge

sS
en

tA
tJ

M
S

1P
rio

rit
yC

ou
nt

C

lie
nt

D
et

ai
le

dS
ta

ts
.M

es
sa

ge
sS

en
tA

tJ
M

S
1P

rio
rit

y
N

um
be

r
of

m

es
sa

ge
s

tr
an

sm
itt

ed

at

JM

S

pr
io

rit
y

1.

6.
0

an
d

la
te

r
A

ll
cl

ie
nt

s
co

nn
ec

te
d

or

th

at

ha
ve

be

en

co
nn

ec
te

d
to

th

is

ap
pl

ic
at

io
n

se
rv

er

C
ou

nt
S

ta
tis

tic

Lo
w

M
es

sa
ge

sS
en

tA
tJ

M
S

0P
rio

rit
yC

ou
nt

C

lie
nt

D
et

ai
le

dS
ta

ts
.M

es
sa

ge
sS

en
tA

tJ
M

S
0P

rio
rit

y
N

um
be

r
of

m

es
sa

ge
s

tr
an

sm
itt

ed

at

JM

S

pr
io

rit
y

0.

6.
0

an
d

la
te

r
A

ll
cl

ie
nt

s
co

nn
ec

te
d

or

th

at

ha
ve

be

en

co
nn

ec
te

d
to

th

is

ap
pl

ic
at

io
n

se
rv

er

C
ou

nt
S

ta
tis

tic

Lo
w

M
es

sa
ge

sR
ec

ei
ve

dA
tJ

M
S

9P
rio

rit
yC

ou
nt

C

lie
nt

D
et

ai
le

dS
ta

ts
.M

es
sa

ge
sR

ec
ei

ve
dA

tJ
M

S
9P

rio
rit

y
N

um
be

r
of

m

es
sa

ge
s

re
ce

iv
ed

at

JM

S

pr

io
rit

y
9.

6.
0

an
d

la
te

r
A

ll
cl

ie
nt

s
co

nn
ec

te
d

or

th

at

ha
ve

be

en

co
nn

ec
te

d
to

th

is

ap
pl

ic
at

io
n

se
rv

er

C
ou

nt
S

ta
tis

tic

Lo
w

M
es

sa
ge

sR
ec

ei
ve

dA
tJ

M
S

8P
rio

rit
yC

ou
nt

C

lie
nt

D
et

ai
le

dS
ta

ts
.M

es
sa

ge
sR

ec
ei

ve
dA

tJ
M

S
8P

rio
rit

y
N

um
be

r
of

m

es
sa

ge
s

re
ce

iv
ed

at

JM

S

pr

io
rit

y
8.

6.
0

an
d

la
te

r
A

ll
cl

ie
nt

s
co

nn
ec

te
d

or

th

at

ha
ve

be

en

co
nn

ec
te

d
to

th

is

ap
pl

ic
at

io
n

se
rv

er

C
ou

nt
S

ta
tis

tic

Lo
w

M
es

sa
ge

sR
ec

ei
ve

dA
tJ

M
S

7P
rio

rit
yC

ou
nt

C

lie
nt

D
et

ai
le

dS
ta

ts
.M

es
sa

ge
sR

ec
ei

ve
dA

tJ
M

S
7P

rio
rit

y
N

um
be

r
of

m

es
sa

ge
s

re
ce

iv
ed

at

JM

S

pr

io
rit

y
7.

6.
0

an
d

la
te

r
A

ll
cl

ie
nt

s
co

nn
ec

te
d

or

th

at

ha
ve

be

en

co
nn

ec
te

d
to

th

is

ap
pl

ic
at

io
n

se
rv

er

C
ou

nt
S

ta
tis

tic

Lo
w

M
es

sa
ge

sR
ec

ei
ve

dA
tJ

M
S

6P
rio

rit
yC

ou
nt

C

lie
nt

D
et

ai
le

dS
ta

ts
.M

es
sa

ge
sR

ec
ei

ve
dA

tJ
M

S
6P

rio
rit

y
N

um
be

r
of

m

es
sa

ge
s

re
ce

iv
ed

at

JM

S

pr

io
rit

y
6.

6.
0

an
d

la
te

r
A

ll
cl

ie
nt

s
co

nn
ec

te
d

or

th

at

ha
ve

be

en

co
nn

ec
te

d
to

th

is

ap
pl

ic
at

io
n

se
rv

er

C
ou

nt
S

ta
tis

tic

Lo
w

M
es

sa
ge

sR
ec

ei
ve

dA
tJ

M
S

5P
rio

rit
yC

ou
nt

C

lie
nt

D
et

ai
le

dS
ta

ts
.M

es
sa

ge
sR

ec
ei

ve
dA

tJ
M

S
5P

rio
rit

y
N

um
be

r
of

m

es
sa

ge
s

re
ce

iv
ed

at

JM

S

pr

io
rit

y
5.

6.
0

an
d

la
te

r
A

ll
cl

ie
nt

s
co

nn
ec

te
d

or

th

at

ha
ve

be

en

co
nn

ec
te

d
to

th

is

ap
pl

ic
at

io
n

se
rv

er

C
ou

nt
S

ta
tis

tic

Lo
w

M
es

sa
ge

sR
ec

ei
ve

dA
tJ

M
S

4P
rio

rit
yC

ou
nt

C

lie
nt

D
et

ai
le

dS
ta

ts
.M

es
sa

ge
sR

ec
ei

ve
dA

tJ
M

S
4P

rio
rit

y
N

um
be

r
of

m

es
sa

ge
s

re
ce

iv
ed

at

JM

S

pr

io
rit

y
4.

6.
0

an
d

la
te

r
A

ll
cl

ie
nt

s
co

nn
ec

te
d

or

th

at

ha
ve

be

en

co
nn

ec
te

d
to

th

is

ap
pl

ic
at

io
n

se
rv

er

C
ou

nt
S

ta
tis

tic

Lo
w

Chapter 24. Monitoring overall system health 2145

P
er

fo
rm

an
ce

M

o
d

u
le

s
>

S
IB

S

er
vi

ce

>

S
IB

C

o
m

m
u

n
ic

at
io

n
s

>
C

lie
n

ts

>

D
et

ai
le

d

S

ta
ti

st
ic

s
M

es
sa

ge
sR

ec
ei

ve
dA

tJ
M

S
3P

rio
rit

yC
ou

nt

C
lie

nt
D

et
ai

le
dS

ta
ts

.M
es

sa
ge

sR
ec

ei
ve

dA
tJ

M
S

3P
rio

rit
y

N
um

be
r

of

m

es
sa

ge
s

re
ce

iv
ed

at

JM

S

pr

io
rit

y
3.

6.
0

an
d

la
te

r
A

ll
cl

ie
nt

s
co

nn
ec

te
d

or

th

at

ha
ve

be

en

co
nn

ec
te

d
to

th

is

ap
pl

ic
at

io
n

se
rv

er

C
ou

nt
S

ta
tis

tic

Lo
w

M
es

sa
ge

sR
ec

ei
ve

dA
tJ

M
S

2P
rio

rit
yC

ou
nt

C

lie
nt

D
et

ai
le

dS
ta

ts
.M

es
sa

ge
sR

ec
ei

ve
dA

tJ
M

S
2P

rio
rit

y
N

um
be

r
of

m

es
sa

ge
s

re
ce

iv
ed

at

JM

S

pr

io
rit

y
2.

6.
0

an
d

la
te

r
A

ll
cl

ie
nt

s
co

nn
ec

te
d

or

th

at

ha
ve

be

en

co
nn

ec
te

d
to

th

is

ap
pl

ic
at

io
n

se
rv

er

C
ou

nt
S

ta
tis

tic

Lo
w

M
es

sa
ge

sR
ec

ei
ve

dA
tJ

M
S

1P
rio

rit
yC

ou
nt

C

lie
nt

D
et

ai
le

dS
ta

ts
.M

es
sa

ge
sR

ec
ei

ve
dA

tJ
M

S
1P

rio
rit

y
N

um
be

r
of

m

es
sa

ge
s

re
ce

iv
ed

at

JM

S

pr

io
rit

y
1.

6.
0

an
d

la
te

r
A

ll
cl

ie
nt

s
co

nn
ec

te
d

or

th

at

ha
ve

be

en

co
nn

ec
te

d
to

th

is

ap
pl

ic
at

io
n

se
rv

er

C
ou

nt
S

ta
tis

tic

Lo
w

M
es

sa
ge

sR
ec

ei
ve

dA
tJ

M
S

0P
rio

rit
yC

ou
nt

C

lie
nt

D
et

ai
le

dS
ta

ts
.M

es
sa

ge
sR

ec
ei

ve
dA

tJ
M

S
0P

rio
rit

y
N

um
be

r
of

m

es
sa

ge
s

re
ce

iv
ed

at

JM

S

pr

io
rit

y
0.

6.
0

an
d

la
te

r
A

ll
cl

ie
nt

s
co

nn
ec

te
d

or

th

at

ha
ve

be

en

co
nn

ec
te

d
to

th

is

ap
pl

ic
at

io
n

se
rv

er

C
ou

nt
S

ta
tis

tic

Lo
w

2146 Administering applications and their environment

P
er

fo
rm

an
ce

M

o
d

u
le

s
>

S
IB

S

er
vi

ce

>

S
IB

C

o
m

m
u

n
ic

at
io

n
s

>
C

lie
n

ts

>

S
ta

n
d

ar
d

S

ta
ti

st
ic

s
N

am
e

K
ey

D

es
cr

ip
ti

o
n

V

er
si

o
n

G

ra
n

u
la

ri
ty

Ty

p
e

L
ev

el

C
lie

nt
sA

tta
ch

ed
C

ou
nt

C

lie
nt

S
ta

ts
.C

lie
nt

sA
tta

ch
ed

T

he

nu

m
be

r
of

di

st
in

ct

cl

ie
nt

pr
oc

es
se

s
cu

rr
en

tly

ne

tw
or

k
co

nn
ec

te
d

to

th

is

ap

pl
ic

at
io

n
se

rv
er

.

6.
0

an
d

la
te

r
cu

rr
en

t
cl

ie
nt

s/
co

nn
ec

tio
ns

co
nn

ec
te

d
to

th

is

ap
pl

ic
at

io
n

se
rv

er

C
ou

nt
S

ta
tis

tic

Lo
w

A
P

IC
on

ne
ct

io
ns

C
ou

nt

C
lie

nt
S

ta
ts

.A
P

IC
on

ne
ct

io
ns

T

he

nu

m
be

r
of

A

P
I

se
ss

io
ns

be

in
g

us
ed

by

cl

ie
nt

s
th

at

ar

e
cu

rr
en

tly

ne
tw

or
k

co
nn

ec
te

d
to

th

is

ap
pl

ic
at

io
n

se
rv

er
.

S
om

e
of

th

es
e

A
P

I
co

nn
ec

tio
ns

m

ig
ht

be

be

in
g

by

in

te
rn

al

sy

st
em

pr

oc
es

se
s

on

be
ha

lf
of

a

cl
ie

nt
.

6.
0

an
d

la
te

r
cu

rr
en

t
cl

ie
nt

s/
co

nn
ec

tio
ns

co
nn

ec
te

d
to

th

is

ap
pl

ic
at

io
n

se
rv

er

C
ou

nt
S

ta
tis

tic

Lo
w

E
rr

or
sC

ou
nt

C

lie
nt

S
ta

ts
.E

rr
or

s
C

om
m

un
ic

at
io

n
er

ro
rs

th

at

ha

ve

oc
cu

rr
ed

an

d
re

su
lte

d
in

a

ne
tw

or
k

co
nn

ec
tio

n
to

a

cl
ie

nt

be

in
g

di
sc

on
ne

ct
ed

.

6.
0

an
d

la
te

r
A

ll
cl

ie
nt

s
co

nn
ec

te
d

or

th
at

ha

ve

be

en

co
nn

ec
te

d
to

th

is

ap
pl

ic
at

io
n

se
rv

er

C
ou

nt
S

ta
tis

tic

Lo
w

W
rit

es
C

ou
nt

C

lie
nt

S
ta

ts
.W

rit
es

N

um
be

r
of

w

rit
e

op
er

at
io

ns

us

ed

to

tr

an
sm

it
da

ta

to

cl

ie
nt

pr
oc

es
se

s
vi

a
ne

tw
or

k
co

nn
ec

tio
ns

.

6.
0

an
d

la
te

r
A

ll
cl

ie
nt

s
co

nn
ec

te
d

or

th
at

ha

ve

be

en

co
nn

ec
te

d
to

th

is

ap
pl

ic
at

io
n

se
rv

er

C
ou

nt
S

ta
tis

tic

Lo
w

R
ea

ds
C

ou
nt

C

lie
nt

S
ta

ts
.R

ea
ds

N

um
be

r
of

re

ad

op

er
at

io
ns

us

ed

to

re

ce
iv

e
da

ta

fr

om

cl

ie
nt

pr
oc

es
se

s
vi

a
ne

tw
or

k
co

nn
ec

tio
ns

.

6.
0

an
d

la
te

r
A

ll
cl

ie
nt

s
co

nn
ec

te
d

or

th
at

ha

ve

be

en

co
nn

ec
te

d
to

th

is

ap
pl

ic
at

io
n

se
rv

er

C
ou

nt
S

ta
tis

tic

Lo
w

W
rit

es
B

lo
ck

ed
C

ou
nt

C

lie
nt

S
ta

ts
.W

rit
es

B
lo

ck
ed

N

um
be

r
of

w

rit
e

op
er

at
io

ns

th

at

co
ul

d
no

t
be

co

m
pl

et
ed

im
m

ed
ia

te
ly

.
T

hi
s

nu
m

be
r

ca
n

be

us
ed

as

an

in

di
ca

to
r

of

ne

tw
or

k
co

ng
es

tio
n

w
he

n
co

m
m

un
ic

at
in

g
w

ith

cl

ie
nt

pr

oc
es

se
s.

6.
0

an
d

la
te

r
A

ll
cl

ie
nt

s
co

nn
ec

te
d

or

th
at

ha

ve

be

en

co
nn

ec
te

d
to

th

is

ap
pl

ic
at

io
n

se
rv

er

C
ou

nt
S

ta
tis

tic

Lo
w

R
ea

ds
B

lo
ck

ed
C

ou
nt

C

lie
nt

S
ta

ts
.R

ea
ds

B
lo

ck
ed

N

um
be

r
of

re

ad

op

er
at

io
ns

th

at

co
ul

d
no

t
be

co

m
pl

et
ed

im
m

ed
ia

te
ly

.
T

hi
s

nu
m

be
r

ca
n

be

us
ed

as

an

in

di
ca

to
r

of

ne

tw
or

k
co

ng
es

tio
n

w
he

n
co

m
m

un
ic

at
in

g
w

ith

cl

ie
nt

pr

oc
es

se
s.

6.
0

an
d

la
te

r
A

ll
cl

ie
nt

s
co

nn
ec

te
d

or

th
at

ha

ve

be

en

co
nn

ec
te

d
to

th

is

ap
pl

ic
at

io
n

se
rv

er

C
ou

nt
S

ta
tis

tic

Lo
w

M
ul

tic
as

tW
rit

eB
yt

es
C

ou
nt

C

lie
nt

S
ta

ts
.M

ul
tic

as
tW

rit
eB

yt
es

N

um
be

r
of

by

te
s

tr
an

sm
itt

ed

us

in
g

m
ul

tic
as

t
pr

ot
oc

ol
s.

6.
0

an
d

la
te

r
A

ll
cl

ie
nt

s
co

nn
ec

te
d

or

th
at

ha

ve

be

en

co
nn

ec
te

d
to

th

is

ap
pl

ic
at

io
n

se
rv

er

C
ou

nt
S

ta
tis

tic

Lo
w

M
ul

tic
as

tS
en

dM
es

sa
ge

C
ou

nt

C
lie

nt
S

ta
ts

.M
ul

tic
as

tS
en

dM
es

sa
ge

N

um
be

r
of

m

es
sa

ge
s

tr
an

sm
itt

ed

us
in

g
m

ul
tic

as
t

pr
ot

oc
ol

s.

6.
0

an
d

la
te

r
A

ll
cl

ie
nt

s
co

nn
ec

te
d

or

th
at

ha

ve

be

en

co
nn

ec
te

d
to

th

is

ap
pl

ic
at

io
n

se
rv

er

C
ou

nt
S

ta
tis

tic

Lo
w

Chapter 24. Monitoring overall system health 2147

P
er

fo
rm

an
ce

M

o
d

u
le

s
>

S
IB

S

er
vi

ce

>

S
IB

C

o
m

m
u

n
ic

at
io

n
s

>
C

lie
n

ts

>

S
ta

n
d

ar
d

S

ta
ti

st
ic

s
B

uf
fe

re
dW

rit
eB

yt
es

C
ou

nt

C
lie

nt
S

ta
ts

.B
uf

fe
re

dW
rit

eB
yt

es

N
um

be
r

of

by

te
s

of

da

ta

be

in
g

he
ld

pe

nd
in

g
tr

an
sm

is
si

on
.

La
rg

e
va

lu
es

m

ig
ht

in

di
ca

te

ne

tw
or

k
co

ng
es

tio
n

or

cl

ie
nt

s
w

hi
ch

ar

e
un

ab
le

to

pr

oc
es

s
da

ta

fa

st

en
ou

gh

to

ke

ep

up

w

ith

th

e
ap

pl
ic

at
io

n
se

rv
er

.

6.
0

an
d

la
te

r
A

ll
cl

ie
nt

s
co

nn
ec

te
d

or

th
at

ha

ve

be

en

co
nn

ec
te

d
to

th

is

ap
pl

ic
at

io
n

se
rv

er

C
ou

nt
S

ta
tis

tic

Lo
w

B
uf

fe
re

dR
ea

dB
yt

es
C

ou
nt

C

lie
nt

S
ta

ts
.B

uf
fe

re
dR

ea
dB

yt
es

N

um
be

r
of

by

te
s

of

da

ta

th

at

ha

ve

be
en

re

ce
iv

ed

fr

om

th

e
ne

tw
or

k
an

d
ar

e
he

ld

pe

nd
in

g
fu

rt
he

r
pr

oc
es

si
ng

.
La

rg
e

va
lu

es

m

ig
ht

in
di

ca
te

th

at

th

e
ap

pl
ic

at
io

n
se

rv
er

is

un

ab
le

to

pr

oc
es

s
da

ta

fa

st

en
ou

gh

to

ke

ep

up

w

ith

th

e
cl

ie
nt

s
at

ta
ch

ed
.

6.
0

an
d

la
te

r
A

ll
cl

ie
nt

s
co

nn
ec

te
d

or

th
at

ha

ve

be

en

co
nn

ec
te

d
to

th

is

ap
pl

ic
at

io
n

se
rv

er

C
ou

nt
S

ta
tis

tic

Lo
w

M
es

sa
ge

sB
yt

es
W

rit
te

nC
ou

nt

C
lie

nt
S

ta
ts

.M
es

sa
ge

B
yt

es
W

rit
te

n
N

um
be

r
of

by

te
s

of

m

es
sa

ge

da

ta

se
nt

to

cl

ie
nt

pr

oc
es

se
s

ov
er

ne
tw

or
k

co
nn

ec
tio

ns
.

T
hi

s
do

es

no
t

in
cl

ud
e

da
ta

us

ed

to

ne

go
tia

te

th
e

tr
an

sm
is

si
on

of

m

es
sa

ge
s

6.
0

an
d

la
te

r
A

ll
cl

ie
nt

s
co

nn
ec

te
d

or

th
at

ha

ve

be

en

co
nn

ec
te

d
to

th

is

ap
pl

ic
at

io
n

se
rv

er

C
ou

nt
S

ta
tis

tic

Lo
w

M
es

sa
ge

B
yt

es
R

ea
dC

ou
nt

C

lie
nt

S
ta

ts
.M

es
sa

ge
B

yt
es

R
ea

d
N

um
be

r
of

by

te
s

of

m

es
sa

ge

da

ta

re
ce

iv
ed

fr

om

cl

ie
nt

pr

oc
es

se
s

ov
er

ne

tw
or

k
co

nn
ec

tio
ns

.
T

hi
s

do
es

no

t
in

cl
ud

e
da

ta

us

ed

to

ne
go

tia
te

th

e
tr

an
sm

is
si

on

of

m
es

sa
ge

s

6.
0

an
d

la
te

r
A

ll
cl

ie
nt

s
co

nn
ec

te
d

or

th
at

ha

ve

be

en

co
nn

ec
te

d
to

th

is

ap
pl

ic
at

io
n

se
rv

er

C
ou

nt
S

ta
tis

tic

Lo
w

To
ta

lB
yt

es
W

rit
te

nC
ou

nt

C
lie

nt
S

ta
ts

.T
ot

al
B

yt
es

W
rit

te
n

N
um

be
r

of

by

te
s

of

da

ta

se

nt

to

cl
ie

nt

pr

oc
es

se
s.

T

hi
s

in
cl

ud
es

bo
th

m

es
sa

ge

da

ta

an

d
da

ta

us

ed

to

ne

go
tia

te

th

e
tr

an
sm

is
si

on

of

m
es

sa
ge

s.

6.
0

an
d

la
te

r
A

ll
cl

ie
nt

s
co

nn
ec

te
d

or

th
at

ha

ve

be

en

co
nn

ec
te

d
to

th

is

ap
pl

ic
at

io
n

se
rv

er

C
ou

nt
S

ta
tis

tic

Lo
w

To
ta

lB
yt

es
R

ea
dC

ou
nt

C

lie
nt

S
ta

ts
.T

ot
al

B
yt

es
R

ea
d

N
um

be
r

of

by

te
s

of

da

ta

re

ce
iv

ed

fr
om

cl

ie
nt

pr

oc
es

se
s.

T

hi
s

in
cl

ud
es

bo

th

m

es
sa

ge

da

ta

an

d
da

ta

us

ed

to

ne

go
tia

te

th

e
tr

an
sm

is
si

on

of

m

es
sa

ge
s.

6.
0

an
d

la
te

r
A

ll
cl

ie
nt

s
co

nn
ec

te
d

or

th
at

ha

ve

be

en

co
nn

ec
te

d
to

th

is

ap
pl

ic
at

io
n

se
rv

er

C
ou

nt
S

ta
tis

tic

Lo
w

2148 Administering applications and their environment

Performance Modules > SIB Service > SIB Communications > Messaging Engines > Standard

Statistics

Chapter 24. Monitoring overall system health 2149

N
am

e
K

ey

D
es

cr
ip

ti
o

n

V
er

si
o

n

G
ra

n
u

la
ri

ty

Ty
p

e
L

ev
el

M
E

A
tta

ch
ed

C
ou

nt

M
E

S
ta

ts
.M

E
A

tta
ch

ed

T
he

nu

m
be

r
of

di

st
in

ct

ap
pl

ic
at

io
n

se
rv

er

pr

oc
es

se
s

ho
st

in
g

m
es

sa
gi

ng

en

gi
ne

s
cu

rr
en

tly

ne

tw
or

k
co

nn
ec

te
d

to

th

is

ap

pl
ic

at
io

n
se

rv
er

.

6.
0

an
d

la
te

r
cu

rr
en

t
ap

pl
ic

at
io

ns

se
rv

er
s

ho
st

in
g

m
es

sa
gi

ng

en
gi

ne
s/

co
nn

ec
tio

ns

co
nn

ec
te

d
to

th

is

ap
pl

ic
at

io
n

se
rv

er
.

C
ou

nt
S

ta
tis

tic

Lo
w

A
P

IC
on

ne
ct

io
ns

C
ou

nt

M
E

S
ta

ts
.A

P
IC

on
ne

ct
io

ns

T
he

nu

m
be

r
of

se

ss
io

ns

be
in

g
us

ed

by

m

es
sa

gi
ng

en
gi

ne
s

th
at

ar

e
cu

rr
en

tly

ne
tw

or
k

co
nn

ec
te

d
to

th

is

ap
pl

ic
at

io
n

se
rv

er
.

6.
0

an
d

la
te

r
cu

rr
en

t
ap

pl
ic

at
io

ns

se
rv

er
s

ho
st

in
g

m
es

sa
gi

ng

en
gi

ne
s/

co
nn

ec
tio

ns

co
nn

ec
te

d
to

th

is

ap
pl

ic
at

io
n

se
rv

er
.

C
ou

nt
S

ta
tis

tic

Lo
w

E
rr

or
sC

ou
nt

M

E
S

ta
ts

.E
rr

or
s

C
om

m
un

ic
at

io
n

er
ro

rs

th

at

ha
ve

oc

cu
rr

ed

an

d
re

su
lte

d
in

a
ne

tw
or

k
co

nn
ec

tio
n

to

a

m
es

sa
gi

ng

en

gi
ne

be

in
g

di
sc

on
ne

ct
ed

.

6.
0

an
d

la
te

r
A

ll
m

es
sa

gi
ng

en

gi
ne

s
co

nn
ec

te
d

or

th

at

ha

ve

be
en

co

nn
ec

te
d

to

th

is

ap
pl

ic
at

io
n

se
rv

er

C
ou

nt
S

ta
tis

tic

Lo
w

W
rit

es
C

ou
nt

M

E
S

ta
ts

.W
rit

es

N
um

be
r

of

w

rit
e

op
er

at
io

ns

us
ed

to

tr

an
sm

it
da

ta

to

ap
pl

ic
at

io
n

se
rv

er

pr

oc
es

se
s

ho
st

in
g

m
es

sa
gi

ng

en

gi
ne

s
vi

a
ne

tw
or

k
co

nn
ec

tio
ns

.

6.
0

an
d

la
te

r
A

ll
m

es
sa

gi
ng

en

gi
ne

s
co

nn
ec

te
d

or

th

at

ha

ve

be
en

co

nn
ec

te
d

to

th

is

ap
pl

ic
at

io
n

se
rv

er

C
ou

nt
S

ta
tis

tic

Lo
w

R
ea

ds
C

ou
nt

M

E
S

ta
ts

.R
ea

ds

N
um

be
r

of

re

ad

op

er
at

io
ns

us
ed

to

re

ce
iv

e
da

ta

fr

om

ap
pl

ic
at

io
n

se
rv

er

pr

oc
es

se
s

ho
st

in
g

m
es

sa
gi

ng

en

gi
ne

s
vi

a
ne

tw
or

k
co

nn
ec

tio
ns

.

6.
0

an
d

la
te

r
A

ll
m

es
sa

gi
ng

en

gi
ne

s
co

nn
ec

te
d

or

th

at

ha

ve

be
en

co

nn
ec

te
d

to

th

is

ap
pl

ic
at

io
n

se
rv

er

C
ou

nt
S

ta
tis

tic

Lo
w

W
rit

es
B

lo
ck

ed
C

ou
nt

M

E
S

ta
ts

.W
rit

es
B

lo
ck

ed

N
um

be
r

of

w

rit
e

op
er

at
io

ns

th
at

co

ul
d

no
t

be

co

m
pl

et
ed

im
m

ed
ia

te
ly

.
T

hi
s

nu
m

be
r

ca
n

be

us

ed

as

an

in

di
ca

to
r

of

ne
tw

or
k

co
ng

es
tio

n
w

he
n

co
m

m
un

ic
at

in
g

w
ith

ap
pl

ic
at

io
n

se
rv

er

pr

oc
es

se
s

ho
st

in
g

m
es

sa
gi

ng

en

gi
ne

s.

6.
0

an
d

la
te

r
A

ll
m

es
sa

gi
ng

en

gi
ne

s
co

nn
ec

te
d

or

th

at

ha

ve

be
en

co

nn
ec

te
d

to

th

is

ap
pl

ic
at

io
n

se
rv

er

C
ou

nt
S

ta
tis

tic

Lo
w

R
ea

ds
B

lo
ck

ed
C

ou
nt

M

E
S

ta
ts

.R
ea

ds
B

lo
ck

ed

N
um

be
r

of

re

ad

op

er
at

io
ns

th
at

co

ul
d

no
t

be

co

m
pl

et
ed

im
m

ed
ia

te
ly

.
T

hi
s

nu
m

be
r

ca
n

be

us

ed

as

an

in

di
ca

to
r

of

ne
tw

or
k

co
ng

es
tio

n
w

he
n

co
m

m
un

ic
at

in
g

w
ith

ap
pl

ic
at

io
n

se
rv

er

pr

oc
es

se
s

ho
st

in
g

m
es

sa
gi

ng

en

gi
ne

s.

6.
0

an
d

la
te

r
A

ll
m

es
sa

gi
ng

en

gi
ne

s
co

nn
ec

te
d

or

th

at

ha

ve

be
en

co

nn
ec

te
d

to

th

is

ap
pl

ic
at

io
n

se
rv

er

C
ou

nt
S

ta
tis

tic

Lo
w

2150 Administering applications and their environment

B
uf

fe
re

dW
rit

eB
yt

es
C

ou
nt

M

E
S

ta
ts

.B
uf

fe
re

dW
rit

eB
yt

es

N
um

be
r

of

by

te
s

of

da

ta

be
in

g
he

ld

pe

nd
in

g
tr

an
sm

is
si

on
.

La
rg

e
va

lu
es

m
ig

ht

in

di
ca

te

ne

tw
or

k
co

ng
es

tio
n

or

ap

pl
ic

at
io

n
se

rv
er

pr

oc
es

se
s

ho
st

in
g

m
es

sa
gi

ng

en

gi
ne

s
w

hi
ch

ar

e
un

ab
le

to

pr

oc
es

s
da

ta

fa

st

en
ou

gh

to

ke

ep

up

w

ith

th

e
ap

pl
ic

at
io

n
se

rv
er

.

6.
0

an
d

la
te

r
A

ll
m

es
sa

gi
ng

en

gi
ne

s
co

nn
ec

te
d

or

th

at

ha

ve

be
en

co

nn
ec

te
d

to

th

is

ap
pl

ic
at

io
n

se
rv

er

C
ou

nt
S

ta
tis

tic

Lo
w

B
uf

fe
re

dR
ea

dB
yt

es
C

ou
nt

M

E
S

ta
ts

.B
uf

fe
re

dR
ea

dB
yt

es

N
um

be
r

of

by

te
s

of

da

ta

th

at

ha
ve

be

en

re

ce
iv

ed

fr

om

th

e
ne

tw
or

k
an

d
ar

e
he

ld

pe

nd
in

g
fu

rt
he

r
pr

oc
es

si
ng

.
La

rg
e

va
lu

es

m

ig
ht

in

di
ca

te

th

at

th

e
ap

pl
ic

at
io

n
se

rv
er

is

un

ab
le

to

pr

oc
es

s
da

ta

fa

st

en

ou
gh

to

ke

ep

up

w

ith

th

e
ot

he
r

ap
pl

ic
at

io
n

se
rv

er

pr

oc
es

se
s

ho
st

in
g

m
es

sa
gi

ng

en

gi
ne

s
th

at

it

is

ne

tw
or

k
at

ta
ch

ed
.

6.
0

an
d

la
te

r
A

ll
m

es
sa

gi
ng

en

gi
ne

s
co

nn
ec

te
d

or

th

at

ha

ve

be
en

co

nn
ec

te
d

to

th

is

ap
pl

ic
at

io
n

se
rv

er

C
ou

nt
S

ta
tis

tic

Lo
w

M
es

sa
ge

sB
yt

es
W

rit
te

nC
ou

nt

M
E

S
ta

ts
.M

es
sa

ge
B

yt
es

W
rit

te
n

N
um

be
r

of

by

te
s

of

m

es
sa

ge

da
ta

se

nt

to

ap

pl
ic

at
io

n
se

rv
er

pr

oc
es

se
s

ho
st

in
g

m
es

sa
gi

ng

en

gi
ne

s
ov

er

ne
tw

or
k

co
nn

ec
tio

ns
.

T
hi

s
do

es

no

t
in

cl
ud

e
da

ta

us

ed

to

ne
go

tia
te

th

e
tr

an
sm

is
si

on

of

m
es

sa
ge

s

6.
0

an
d

la
te

r
A

ll
m

es
sa

gi
ng

en

gi
ne

s
co

nn
ec

te
d

or

th

at

ha

ve

be
en

co

nn
ec

te
d

to

th

is

ap
pl

ic
at

io
n

se
rv

er

C
ou

nt
S

ta
tis

tic

Lo
w

M
es

sa
ge

B
yt

es
R

ea
dC

ou
nt

M

E
S

ta
ts

.M
es

sa
ge

B
yt

es
R

ea
d

N
um

be
r

of

by

te
s

of

m

es
sa

ge

da
ta

re

ce
iv

ed

fr

om

ap
pl

ic
at

io
n

se
rv

er

pr

oc
es

se
s

ho
st

in
g

m
es

sa
gi

ng

en

gi
ne

s
ov

er

ne

tw
or

k
co

nn
ec

tio
ns

.
T

hi
s

do
es

no

t
in

cl
ud

e
da

ta

us
ed

to

ne

go
tia

te

th

e
tr

an
sm

is
si

on

of

m

es
sa

ge
s

6.
0

an
d

la
te

r
A

ll
m

es
sa

gi
ng

en

gi
ne

s
co

nn
ec

te
d

or

th

at

ha

ve

be
en

co

nn
ec

te
d

to

th

is

ap
pl

ic
at

io
n

se
rv

er

C
ou

nt
S

ta
tis

tic

Lo
w

To
ta

lB
yt

es
W

rit
te

nC
ou

nt

M
E

S
ta

ts
.T

ot
al

B
yt

es
W

rit
te

n
N

um
be

r
of

by

te
s

of

da

ta

se

nt

to

ap

pl
ic

at
io

n
se

rv
er

pr
oc

es
se

s
ho

st
in

g
m

es
sa

gi
ng

en
gi

ne
s.

6.
0

an
d

la
te

r
A

ll
m

es
sa

gi
ng

en

gi
ne

s
co

nn
ec

te
d

or

th

at

ha

ve

be
en

co

nn
ec

te
d

to

th

is

ap
pl

ic
at

io
n

se
rv

er

C
ou

nt
S

ta
tis

tic

Lo
w

To
ta

lB
yt

es
R

ea
dC

ou
nt

M

E
S

ta
ts

.T
ot

al
B

yt
es

R
ea

d
N

um
be

r
of

by

te
s

of

da

ta

re
ce

iv
ed

fr

om

ap

pl
ic

at
io

n
se

rv
er

pr

oc
es

se
s

ho
st

in
g

m
es

sa
gi

ng

en

gi
ne

s.

6.
0

an
d

la
te

r
A

ll
m

es
sa

gi
ng

en

gi
ne

s
co

nn
ec

te
d

or

th

at

ha

ve

be
en

co

nn
ec

te
d

to

th

is

ap
pl

ic
at

io
n

se
rv

er

C
ou

nt
S

ta
tis

tic

Lo
w

Chapter 24. Monitoring overall system health 2151

P
er

fo
rm

an
ce

M

o
d

u
le

s
>

S
IB

S

er
vi

ce

>

S
IB

C

o
m

m
u

n
ic

at
io

n
s

>
W

M
Q

C

lie
n

t
L

in
ks

>

S
ta

n
d

ar
d

S

ta
ti

st
ic

s
N

am
e

K
ey

D

es
cr

ip
ti

o
n

V

er
si

o
n

G

ra
n

u
la

ri
ty

Ty

p
e

L
ev

el

B
at

ch
es

S
en

tC
ou

nt

M
Q

C
lie

nt
Li

nk
S

ta
ts

.B
at

ch
es

S
en

t
N

um
be

r
of

ba

tc
he

s
of

m
es

sa
ge

s
se

nt

to

ne

tw
or

k
at

ta
ch

ed

M

Q
JM

S

cl

ie
nt

s.

6.
0

an
d

la
te

r
A

ll
W

M
Q

JM

S

cl

ie
nt

s
th

at

ar

e
or

ha

ve

be

en

co
nn

ec
te

d
to

th

is

ap
pl

ic
at

io
n

se
rv

er

C
ou

nt
S

ta
tis

tic

Lo
w

M
es

sa
ge

sS
en

tC
ou

nt

M
Q

C
lie

nt
Li

nk
S

ta
ts

.M
es

sa
ge

sS
en

t
N

um
be

r
of

m

es
sa

ge
s

se
nt

to

ne
tw

or
k

at
ta

ch
ed

W

M
Q

JM

S

cl
ie

nt
s.

6.
0

an
d

la
te

r
A

ll
W

M
Q

JM

S

cl

ie
nt

s
th

at

ar

e
or

ha

ve

be

en

co
nn

ec
te

d
to

th

is

ap
pl

ic
at

io
n

se
rv

er

C
ou

nt
S

ta
tis

tic

Lo
w

M
es

sa
ge

sR
ec

ei
ve

dC
ou

nt

M
Q

C
lie

nt
Li

nk
S

ta
ts

.M
es

sa
ge

sR
ec

ei
ve

d
N

um
be

r
of

m

es
sa

ge
s

re
ce

iv
ed

fr
om

ne

tw
or

k
at

ta
ch

ed

W

M
Q

JM
S

cl

ie
nt

s.

6.
0

an
d

la
te

r
A

ll
W

M
Q

JM

S

cl

ie
nt

s
th

at

ar

e
or

ha

ve

be

en

co
nn

ec
te

d
to

th

is

ap
pl

ic
at

io
n

se
rv

er

C
ou

nt
S

ta
tis

tic

Lo
w

B
yt

es
S

en
tC

ou
nt

M

Q
C

lie
nt

Li
nk

S
ta

ts
.B

yt
es

S
en

t
N

um
be

r
of

by

te
s

of

da

ta

se

nt

to

ne

tw
or

k
at

ta
ch

ed

W

M
Q

JM

S

cl
ie

nt
s.

T

hi
s

in
cl

ud
es

by

te
s

of

m
es

sa
ge

da

ta

as

w

el
l a

s
by

te
s

of

da

ta

us

ed

to

co

nt
ro

l t
he

flo

w

of

m

es
sa

ge
s.

6.
0

an
d

la
te

r
A

ll
W

M
Q

JM

S

cl

ie
nt

s
th

at

ar

e
or

ha

ve

be

en

co
nn

ec
te

d
to

th

is

ap
pl

ic
at

io
n

se
rv

er

C
ou

nt
S

ta
tis

tic

Lo
w

B
yt

es
R

ec
ei

ve
dC

ou
nt

M

Q
C

lie
nt

Li
nk

S
ta

ts
.B

yt
es

R
ec

ei
ve

d
N

um
be

r
of

by

te
s

of

da

ta

re
ce

iv
ed

fr

om

ne

tw
or

k
at

ta
ch

ed

W
M

Q

JM

S

cl

ie
nt

s.

T

hi
s

in
cl

ud
es

by

te
s

of

m

es
sa

ge

da
ta

as

w

el
l a

s
by

te
s

of

da

ta

us
ed

to

co

nt
ro

l t
he

flo

w

of

m
es

sa
ge

s.

6.
0

an
d

la
te

r
A

ll
W

M
Q

JM

S

cl

ie
nt

s
th

at

ar

e
or

ha

ve

be

en

co
nn

ec
te

d
to

th

is

ap
pl

ic
at

io
n

se
rv

er

C
ou

nt
S

ta
tis

tic

Lo
w

A
P

IC
al

ls
S

er
vi

ce
dC

ou
nt

M

Q
C

lie
nt

Li
nk

S
ta

ts
.A

P
IC

al
ls

S
er

vi
ce

d
T

he

nu

m
be

r
of

M

Q

A

P
I

ca
ll

re
qu

es
ts

se

rv
ic

ed

on

be

ha
lf

of

W
M

Q

JM

S

cl

ie
nt

s.

6.
0

an
d

la
te

r
A

ll
W

M
Q

JM

S

cl

ie
nt

s
th

at

ar

e
or

ha

ve

be

en

co
nn

ec
te

d
to

th

is

ap
pl

ic
at

io
n

se
rv

er

C
ou

nt
S

ta
tis

tic

Lo
w

C
om

m
sE

rr
or

sC
ou

nt

M
Q

C
lie

nt
Li

nk
S

ta
ts

.C
om

m
sE

rr
or

s
T

he

nu

m
be

r
of

er

ro
rs

th

at

ha

ve

ca
us

e
co

nn
ec

tio
ns

to

W

M
Q

JM
S

cl

ie
nt

s
to

be

dr

op
pe

d.

6.
0

an
d

la
te

r
A

ll
W

M
Q

JM

S

cl

ie
nt

s
th

at

ar

e
or

ha

ve

be

en

co
nn

ec
te

d
to

th

is

ap
pl

ic
at

io
n

se
rv

er

C
ou

nt
S

ta
tis

tic

Lo
w

C
lie

nt
sA

tta
ch

ed
C

ou
nt

M

Q
C

lie
nt

Li
nk

S
ta

ts
.C

lie
nt

sA
tta

ch
ed

T

he

cu

rr
en

t
nu

m
be

r
of

W

M
Q

JM
S

cl

ie
nt

s
at

ta
ch

ed

to

th

is

ap
pl

ic
at

io
n

se
rv

er
.

6.
0

an
d

la
te

r
W

M
Q

JM

S

cl

ie
nt

s
th

at

ar
e

cu
rr

en
tly

at

ta
ch

ed
.

C
ou

nt
S

ta
tis

tic

Lo
w

W
rit

es
B

lo
ck

ed
C

ou
nt

M

Q
C

lie
nt

Li
nk

S
ta

ts
.W

rit
es

B
lo

ck
ed

N

um
be

r
of

w

rit
e

op
er

at
io

ns

th
at

co

ul
d

no
t

be

co

m
pl

et
ed

im
m

ed
ia

te
ly

.
T

hi
s

nu
m

be
r

ca
n

be

us

ed

as

an

in

di
ca

to
r

of

ne
tw

or
k

co
ng

es
tio

n
w

he
n

co
m

m
un

ic
at

in
g

w
ith

W

M
Q

JM

S

cl
ie

nt
s.

6.
0

an
d

la
te

r
A

ll
W

M
Q

JM

S

cl

ie
nt

s
th

at

ar

e
or

ha

ve

be

en

co
nn

ec
te

d
to

th

is

ap
pl

ic
at

io
n

se
rv

er

C
ou

nt
S

ta
tis

tic

Lo
w

2152 Administering applications and their environment

P
er

fo
rm

an
ce

M

o
d

u
le

s
>

S
IB

S

er
vi

ce

>

S
IB

C

o
m

m
u

n
ic

at
io

n
s

>
W

M
Q

C

lie
n

t
L

in
ks

>

S
ta

n
d

ar
d

S

ta
ti

st
ic

s
R

ea
ds

B
lo

ck
ed

C
ou

nt

M
Q

C
lie

nt
Li

nk
S

ta
ts

.R
ea

ds
B

lo
ck

ed

N
um

be
r

of

re

ad

op

er
at

io
ns

th

at

co
ul

d
no

t
be

co

m
pl

et
ed

im
m

ed
ia

te
ly

.
T

hi
s

nu
m

be
r

ca
n

be

us

ed

as

an

in

di
ca

to
r

of

ne
tw

or
k

co
ng

es
tio

n
w

he
n

co
m

m
un

ic
at

in
g

w
ith

W

M
Q

JM

S

cl
ie

nt
s.

6.
0

an
d

la
te

r
A

ll
W

M
Q

JM

S

cl

ie
nt

s
th

at

ar

e
or

ha

ve

be

en

co
nn

ec
te

d
to

th

is

ap
pl

ic
at

io
n

se
rv

er

C
ou

nt
S

ta
tis

tic

Lo
w

Chapter 24. Monitoring overall system health 2153

P
er

fo
rm

an
ce

M

o
d

u
le

s
>

S
IB

S

er
vi

ce

>

S
IB

C

o
m

m
u

n
ic

at
io

n
s

>
W

M
Q

L

in
ks

>

S
ta

n
d

ar
d

S

ta
ti

st
ic

s
N

am
e

K
ey

D

es
cr

ip
ti

o
n

V

er
si

o
n

G

ra
n

u
la

ri
ty

Ty

p
e

L
ev

el

B
at

ch
es

S
en

tC
ou

nt

M
Q

Li
nk

S
ta

ts
.B

at
ch

es
S

en
t

N
um

be
r

of

ba

tc
he

s
of

m

es
sa

ge
s

se
nt

to

ne

tw
or

k
at

ta
ch

ed

W

M
Q

Q
ue

ue

M

an
ag

er
s.

6.
0

an
d

la
te

r
A

lll

W

M
Q

Q

ue
ue

M
an

ag
er

s
th

at

ar

e
or

ha

ve

be
en

co

nn
ec

te
d

to

th

is

ap
pl

ic
at

io
n

se
rv

er

C
ou

nt
S

ta
tis

tic

Lo
w

B
at

ch
es

R
ec

ei
ve

dC
ou

nt

M
Q

Li
nk

S
ta

ts
.B

at
ch

es
R

ec
ei

ve
d

N
um

be
r

of

ba

tc
he

s
of

m

es
sa

ge
s

re
ce

iv
ed

fr

om

ne

tw
or

k
at

ta
ch

ed

W
M

Q

Q

ue
ue

M

an
ag

er
s.

6.
0

an
d

la
te

r
A

lll

W

M
Q

Q

ue
ue

M
an

ag
er

s
th

at

ar

e
or

ha

ve

be
en

co

nn
ec

te
d

to

th

is

ap
pl

ic
at

io
n

se
rv

er

C
ou

nt
S

ta
tis

tic

Lo
w

M
es

sa
ge

sS
en

tC
ou

nt

M
Q

Li
nk

S
ta

ts
.M

es
sa

ge
sS

en
t

N
um

be
r

of

m

es
sa

ge
s

se
nt

to

ne
tw

or
k

at
ta

ch
ed

W

M
Q

Q

ue
ue

M
an

ag
er

s.

6.
0

an
d

la
te

r
A

lll

W

M
Q

Q

ue
ue

M
an

ag
er

s
th

at

ar

e
or

ha

ve

be
en

co

nn
ec

te
d

to

th

is

ap
pl

ic
at

io
n

se
rv

er

C
ou

nt
S

ta
tis

tic

Lo
w

M
es

sa
ge

sR
ec

ei
ve

dC
ou

nt

M
Q

Li
nk

S
ta

ts
.M

es
sa

ge
sR

ec
ei

ve
d

N
um

be
r

of

m

es
sa

ge
s

re
ce

iv
ed

fr
om

ne

tw
or

k
at

ta
ch

ed

W

M
Q

Q
ue

ue

M

an
ag

er
s.

6.
0

an
d

la
te

r
A

lll

W

M
Q

Q

ue
ue

M
an

ag
er

s
th

at

ar

e
or

ha

ve

be
en

co

nn
ec

te
d

to

th

is

ap
pl

ic
at

io
n

se
rv

er

C
ou

nt
S

ta
tis

tic

Lo
w

S
en

de
rB

yt
es

S
en

tC
ou

nt

M
Q

Li
nk

S
ta

ts
.S

en
de

rB
yt

es
S

en
t

N
um

be
r

of

by

te
s

of

da

ta

se

nt

by

se
nd

er

ch

an
ne

ls

to

ne

tw
or

k
at

ta
ch

ed

W

M
Q

Q

ue
ue

M
an

ag
er

s.

6.
0

an
d

la
te

r
A

lll

W

M
Q

Q

ue
ue

M
an

ag
er

s
th

at

ar

e
or

ha

ve

be
en

co

nn
ec

te
d

to

th

is

ap
pl

ic
at

io
n

se
rv

er

C
ou

nt
S

ta
tis

tic

Lo
w

S
en

de
rB

yt
es

R
ec

ei
ve

dC
ou

nt

M
Q

Li
nk

S
ta

ts
.S

en
de

rB
yt

es
R

ec
ei

ve
d

N
um

be
r

of

by

te
s

of

da

ta

re
ce

iv
ed

by

se

nd
er

ch

an
ne

ls

fr
om

ne

tw
or

k
at

ta
ch

ed

W

M
Q

Q
ue

ue

M

an
ag

er
s.

6.
0

an
d

la
te

r
A

lll

W

M
Q

Q

ue
ue

M
an

ag
er

s
th

at

ar

e
or

ha

ve

be
en

co

nn
ec

te
d

to

th

is

ap
pl

ic
at

io
n

se
rv

er

C
ou

nt
S

ta
tis

tic

Lo
w

R
ec

ei
ve

rB
yt

es
S

en
tC

ou
nt

M

Q
Li

nk
S

ta
ts

.R
ec

ei
ve

rB
yt

es
S

en
t

N
um

be
r

of

by

te
s

of

da

ta

se

nt

by

re
ce

iv
er

ch

an
ne

ls

to

ne

tw
or

k
at

ta
ch

ed

W

M
Q

Q

ue
ue

M
an

ag
er

s.

6.
0

an
d

la
te

r
A

lll

W

M
Q

Q

ue
ue

M
an

ag
er

s
th

at

ar

e
or

ha

ve

be
en

co

nn
ec

te
d

to

th

is

ap
pl

ic
at

io
n

se
rv

er

C
ou

nt
S

ta
tis

tic

Lo
w

R
ec

ei
ve

rB
yt

es
R

ec
ei

ve
dC

ou
nt

M

Q
Li

nk
S

ta
ts

.R
ec

ei
ve

rB
yt

es
R

ec
ei

ve
d

N
um

be
r

of

by

te
s

of

da

ta

re
ce

iv
ed

by

re

ce
iv

er

ch

an
ne

ls

fr
om

ne

tw
or

k
at

ta
ch

ed

W

M
Q

Q
ue

ue

M

an
ag

er
s.

6.
0

an
d

la
te

r
A

lll

W

M
Q

Q

ue
ue

M
an

ag
er

s
th

at

ar

e
or

ha

ve

be
en

co

nn
ec

te
d

to

th

is

ap
pl

ic
at

io
n

se
rv

er

C
ou

nt
S

ta
tis

tic

Lo
w

S
ho

rt
R

et
rie

sC
ou

nt

M
Q

Li
nk

S
ta

ts
.S

ho
rt

R
et

rie
s

N
um

be
r

of

sh

or
t

re
tr

ie
s.

T

hi
s

in
di

ca
te

s
th

e
nu

m
be

r
of

tim

es

ch
an

ne
ls

w

er
e

di
sc

on
ne

ct
ed

an
d

co
ul

d
no

t
be

re

-e
st

ab
lis

he
d

fo
r

sh
or

t
pe

rio
ds

of

tim

e.

6.
0

an
d

la
te

r
A

lll

W

M
Q

Q

ue
ue

M
an

ag
er

s
th

at

ar

e
or

ha

ve

be
en

co

nn
ec

te
d

to

th

is

ap
pl

ic
at

io
n

se
rv

er

C
ou

nt
S

ta
tis

tic

Lo
w

Lo
ng

R
et

rie
sC

ou
nt

M

Q
Li

nk
S

ta
ts

.L
on

gR
et

rie
s

N
um

be
r

of

lo

ng

re

tr
ie

s.

T

hi
s

in
di

ca
te

s
th

e
nu

m
be

r
of

tim

es

ch
an

ne
ls

w

er
e

di
sc

on
ne

ct
ed

an
d

co
ul

d
no

t
be

re

-e
st

ab
lis

he
d

fo
r

lo
ng

er

pe

rio
ds

of

tim

e.

6.
0

an
d

la
te

r
A

lll

W

M
Q

Q

ue
ue

M
an

ag
er

s
th

at

ar

e
or

ha

ve

be
en

co

nn
ec

te
d

to

th

is

ap
pl

ic
at

io
n

se
rv

er

C
ou

nt
S

ta
tis

tic

Lo
w

C
om

m
sE

rr
or

sC
ou

nt

M
Q

Li
nk

S
ta

ts
.C

om
m

sE
rr

or
s

N
um

be
r

of

co

m
m

un
ic

at
io

n
er

ro
rs

th

at

re

su
lte

d
in

a

ne
tw

or
k

co
nn

ec
tio

n
to

a

W
M

Q

Q

ue
ue

M
an

ag
er

be

in
g

di
sc

on
ne

ct
ed

.

6.
0

an
d

la
te

r
A

lll

W

M
Q

Q

ue
ue

M
an

ag
er

s
th

at

ar

e
or

ha

ve

be
en

co

nn
ec

te
d

to

th

is

ap
pl

ic
at

io
n

se
rv

er

C
ou

nt
S

ta
tis

tic

Lo
w

2154 Administering applications and their environment

P
er

fo
rm

an
ce

M

o
d

u
le

s
>

S
IB

S

er
vi

ce

>

S
IB

C

o
m

m
u

n
ic

at
io

n
s

>
W

M
Q

L

in
ks

>

S
ta

n
d

ar
d

S

ta
ti

st
ic

s
Q

M
A

tta
ch

ed
C

ou
nt

M

Q
Li

nk
S

ta
ts

.Q
M

A
tta

ch
ed

To

ta
l n

um
be

r
of

W

M
Q

Q

ue
ue

M
an

ag
er

s
cu

rr
en

tly

ne

tw
or

k
at

ta
ch

ed

to

th

is

ap

pl
ic

at
io

n
se

rv
er

6.
0

an
d

la
te

r
W

M
Q

Q

ue
ue

M

an
ag

er
s

th
at

ar

e
cu

rr
en

tly

at

ta
ch

ed

C
ou

nt
S

ta
tis

tic

Lo
w

W
rit

es
B

lo
ck

ed
C

ou
nt

M

Q
Li

nk
S

ta
ts

.W
rit

es
B

lo
ck

ed

N
um

be
r

of

w

rit
e

op
er

at
io

ns

th

at

co
ul

d
no

t
be

co

m
pl

et
ed

im
m

ed
ia

te
ly

.
T

hi
s

nu
m

be
r

ca
n

be

us

ed

as

an

in

di
ca

to
r

of

ne
tw

or
k

co
ng

es
tio

n
w

he
n

co
m

m
un

ic
at

in
g

w
ith

W

M
Q

Q
ue

ue

M

an
ag

er
s.

6.
0

an
d

la
te

r
A

lll

W

M
Q

Q

ue
ue

M
an

ag
er

s
th

at

ar

e
or

ha

ve

be
en

co

nn
ec

te
d

to

th

is

ap
pl

ic
at

io
n

se
rv

er

C
ou

nt
S

ta
tis

tic

Lo
w

R
ea

ds
B

lo
ck

ed
C

ou
nt

M

Q
Li

nk
S

ta
ts

.R
ea

ds
B

lo
ck

ed

N
um

be
r

of

re

ad

op

er
at

io
ns

th

at

co
ul

d
no

t
be

co

m
pl

et
ed

im
m

ed
ia

te
ly

.
T

hi
s

nu
m

be
r

ca
n

be

us

ed

as

an

in

di
ca

to
r

of

ne
tw

or
k

co
ng

es
tio

n
w

he
n

co
m

m
un

ic
at

in
g

w
ith

W

M
Q

Q
ue

ue

M

an
ag

er
s.

6.
0

an
d

la
te

r
A

lll

W

M
Q

Q

ue
ue

M
an

ag
er

s
th

at

ar

e
or

ha

ve

be
en

co

nn
ec

te
d

to

th

is

ap
pl

ic
at

io
n

se
rv

er

C
ou

nt
S

ta
tis

tic

Lo
w

Chapter 24. Monitoring overall system health 2155

PMI data collection

PMI data collection can occur in three different interfaces, Java Management Extension, Performance

Servlet, or PMI client API (deprecated).

The PMI data can be collected using the following interfaces:

v Java Management Extension (JMX) interface (J2EE MBeans and WebSphere Application Server Perf

MBean)

v Performance Servlet

v PMI client API (deprecated)

JMX Interface

JMX interface is part of the J2EE specification and the recommended way to gather WebSphere

Application Server performance data. PMI data can be gathered from the J2EE managed object

MBeans or the WebSphere Application Server PMI Perf MBean. While the J2EE MBeans provide

performance data about the specific component, the Perf MBean acts as a gateway to the

WebSphere Application Server PMI service, and provides access to the performance data for all

the components.

Performance Servlet

Performance Servlet provides a way to use an HTTP request to query the PMI data for the entire

WebSphere Application Server administrative domain. Since the servlet provides the performance

data through HTTP, issues such as firewalls are trivial to resolve. The performance servlet outputs

the PMI data as an XML document.

PMI client API (deprecated)

PMI client API provides a wrapper class to deliver PMI data to a client. This API was introduced in

WebSphere Application Server, Version 4.0 and deprecated in V6.0. The PMI client API uses the

JMX infrastructure and the Perf MBean to retrieve the PMI data. PMI client provides the data using

a WebSphere Application Server-specific data structure that was introduced in V4.0.

Custom PMI API

You can create specific statistics to best meet your monitoring interests by using custom PMI API.

PMI can be extended using the Custom PMI API to create application specific statistics. For example, a

stock trading application can use Custom PMI API to create business specific statistics like ″number of

stock sell transactions″ and ″number of stock buy transactions″.

Note that PMI provides detailed performance data about various runtime and application components.

Starting with WebSphere Application Server Version 6.0, PMI offers approximately 180 or more

performance statistics. Before creating new statistics, it is important to make sure that the same data is not

captured by PMI already.

With WebSphere PMI, application developers can add their own application-specific instrumentation. The

Custom PMI API simplifies the process of ″PMI enabling″ an application by providing an easy to use API.

The statistics created via the Custom PMI can be accessed via the standard PMI and JMX interfaces that

are used by monitoring tools including the Tivoli Performance Viewer.

PMI instrumentation is based on the J2EE 1.4 standard. As a result, Custom PMI supports all the Statistic

types (CountStatistic, TimeStatistic, RangeStatistic, and BoundedRangeStatistic) defined in the JSR-77

Performance Data Framework. Custom PMI does not support user-defined Statistic types.

What you need to know

PMI collects performance data on runtime applications and provides interfaces that allow external

applications to monitor the performance data.

2156 Administering applications and their environment

With server side PMI, application developers can add their own instrumentation to their applications to help

monitor their own predefined performance metrics.

Key features of Custom PMI:

v Create a custom Stats/PMI (Stats is J2EE terminology) module using an XML template.

v Used by the application to instrument code.

v Statistics in the custom Stats module can be accessed via the standard PMI and JMX interfaces that

are used by monitoring tools, including the Tivoli Performance Viewer.

v PMI instrumentation is based on the J2EE 1.4 standard. As a result, Custom PMI supports all the

Statistic types (CountStatistic, TimeStatistic, RangeStatistic, and BoundedRangeStatistic) defined in the

JSR-77 Performance Data Framework.

v Custom PMI does not support user-defined Statistic types.

PMI is for application server performance monitoring, and the data collected by PMI is used to tune the

application server resources such as pools, queues and caches etc. Since performance instrumentation

and statistics can have considerable impact on the application server performance, it is necessary that

every statistic added via Custom PMI is relevant towards solving a performance problem. When the

statistic to be added is designed, the issues like the following should be taken into consideration:

v Significance of the statistic with respect to solving performance problems.

v Relevance to tuning or configuring the application.

v Check for avoiding data redundancy and does not need frequent updates.

Custom PMI implementation - an example

The following diagram shows the custom PMI environment:

The following steps are required to instrument an application using Custom PMI:

1. Define a Stats module template. An XML document is used to define a set of statistics for a given

application component. This XML document is used as a template to create the PMI data. The XML

document should follow the DTD com/ibm/websphere/pmi/xml/stats.dtd

2. Create a Stats object using StatsFactory. The StatsFactory is used to create an instance

(StatsInstance) or group (StatsGroup) of the Stats template. The StatsInstance object represents a

single instance of the Stats template and contains all the statistics defined in the template. The

StatsGroup is a logical collection of similar Stats instances. Custom PMI provides the flexibility to

arrange the groups and instances in a tree structure.

WebSphere Application Server

Custom Application

(PMI instrumented)
1. Custom App create Stats
StatsTemplate.xml

2. Custom App instrument Stats
increment()

Stats
Factory

Stats
Instance

Stats
Group

Custom PMI API

Performance Monitoring Infrastructure (PMI)

Perf
MBean

JMX
API

3. Monitoring App accessing Stats

Tivoli
Performance

Viewer

The illustration above shows two instances of stock applications that are grouped under a

StockAppStats group. The StockAppStats group can have multiple Stock applications, and each Stock

application instance can have a StockBroker group. In this case, the StockAppStats group aggregates

the statistics from StockApp1 and StockApp2, and the StockBroker group aggregates the statistics

from all the StockBroker instances in their respective groups.

Chapter 24. Monitoring overall system health 2157

3. Instrument the application by updating the Stats object. To instrument, the application should call the

Stats module for PMI service to maintain the raw counts. For example, to instrument the number of

sells processed by the Stock application, create a Stats module with a statistic of type CountStatistic.

When a sell transaction is processed, increment the number of sells statistic by calling:

NumSellsCountStatistic.increment ();

Enabling PMI data collection

Enable PMI data collection to diagnose problems and tune application performance.

Performance Monitoring Infrastructure (PMI) needs to be enabled (by default PMI is enabled) before

collecting any performance data. PMI should be enabled before the server starts. If PMI is enabled after

the server is started, the server needs to be restarted to start the PMI.

When PMI service is enabled, the monitoring of individual components can be enabled or disabled

dynamically. PMI provides four predefined statistic sets that can be used to enable a set of statistics. The

following table provides details about the statistic sets. If the predefined statistic sets does not meet your

monitoring requirement, the Custom option can be used to selectively enable or disable individual

statistics.

 Statistic set Description

None All statistics are disabled.

Basic Statistics specified in J2EE 1.4, as well as top statistics like CPU usage and live HTTP

sessions are enabled. This set is enabled out-of-the-box and provides basic performance data

about runtime and application components.

Extended Basic set plus key statistics from various WebSphere Application Server components like WLM

and Dynamic caching are enabled. This set provides detailed performance data about various

runtime and application components.

All All statistics are enabled.

Custom Enable or disable statistics selectively.

Custom setting

WebSphere Application Server Version 6.0 introduces fine-grained control to enable/disable statistics

individually. The fine-grained control is available under the custom statistic set.

Though the Version 5.x monitoring levels {N, L, M, H, X} are deprecated in Version 6.0 and above, the 5.x

PMI APIs are supported for backward compatibility. It is possible to use a Version 6.0 or later API to set

the monitoring level and a Version 5.0 API to get the monitoring level. A new level ‘F’ – “fine-grained” is

introduced to indicate to the Version 5.x API that the fine-grained or Version 6.x monitoring specification is

in effect. This new level ‘F’ will be returned if a V5.x API is used to get the monitoring level from a server

using Version 6.x monitoring specification.

In WebSphere Application Server Version 4.0 and Version 5.0, the statistics were enabled based on a

monitoring/instrumentation level. The levels are None, Low, Medium, High and Max {N, L, M, H, X}.

Enabling at a given level will include all the statistics at the given level plus counters from levels below the

given level. So if you enable the Web Application module at level Medium {M} it enables all the counters at

level M, plus all the Low {L} level counters. See “PMI data collection” on page 2156 for more information.

Sequential Update

In order to minimize the monitoring overhead, the updates to CountStatistic, AverageStatistic, and

TimeStatistic are not synchronized. Since these statistic types track total and average, the extra accuracy

is generally not worth the performance cost. The RangeStatistic and BoundedRangeStatistic are very

2158 Administering applications and their environment

sensitive, therefore, they are always are synchronized. If needed, updates to all the statistic types can be

synchronized by checking the Use sequential update check box.

Enable PMI using one of the following methods:

v “Enabling PMI using the administrative console”

v “Enabling PMI using the wsadmin tool” on page 2161

v “Enabling the Java virtual machine profiler data” on page 2167

Enabling PMI using the administrative console

When PMI service is enabled, the monitoring of individual components can be enabled or disabled

dynamically.

To monitor performance data through the Performance Monitoring Infrastructure (PMI), you must first

enable PMI through the administrative console.

 1. Open the administrative console.

 2. Click Servers > Application Servers in the console navigation tree.

 3. Click server.

 4. Click the Configuration tab.

 5. Click Performance Monitoring Infrastructure under Performance.

 6. Select the Enable Performance Monitoring Infrastructure (PMI) check box.

 7. Optionally, select the check box Use sequential update to enable precise statistic update.

 8. Optionally, choose a statistic set that needs to be monitored under Currently Monitored Statistic

Set.

 9. Optionally, click on Custom to selectively enable or disable statistics. Choose a component from the

left side tree and enable or disable statistics on the right side table. Go back to the main PMI

configuration page by clicking the Performance Monitoring Infrastructure link.

10. Click Apply or OK.

11. Click Save.

12. Restart the application server. The changes you make will not take effect until you restart the

application server.

When in the Configuration tab, settings apply after the server is restarted.

Performance Monitoring Infrastructure settings

Use this page to specify settings for performance monitoring, including enabling performance monitoring,

selecting the Performance Monitoring Infrastructure (PMI) module and setting monitoring levels.

To view this administrative console page, click Servers > Application Servers > server > Performance

Monitoring Infrastructure (PMI).

Enable Performance Monitoring Infrastructure (PMI):

Specifies whether the application server attempts to enable Performance Monitoring Infrastructure (PMI). If

an application server is started when the PMI is disabled, you have to restart the server in order to enable

it.

Use sequential counter updates:

Specifies whether access to PMI counters (for example, updates to the counters) is sequential. There is

some performance overhead associated with enabling sequential update. The default setting is false.

Persist my changes:

Chapter 24. Monitoring overall system health 2159

Specifies whether changes to the runtime are also persisted for use on subsequent server startups, and

not just the current server runtime. The default setting is false.

 Selecting the Persist my changes option ensures that the counter settings are retained after you restart the

server. This option itself does not remain selected the next time you come to the panel.

Currently monitored statistic set:

Specifies a pre-defined set of Performance Monitoring Infrastructure (PMI) statistics for all components in

the server.

 As part of fine-grained control feature, WebSphere Application Server provides new statistic sets, which

are pre-defined, fixed server-side sets based on the PMI statistic usage scenarios. This enhancement

allows a set of statistics to be enabled via a single action or call. The following statistic sets are defined:

None All statistics are disabled.

Basic Provides basic monitoring for application server resources and applications. This includes J2EE

components, HTTP session information, CPU usage information, and the top 38 statistics. This is

the default setting.

Extended

Provides extended monitoring, including the basic level of monitoring plus workload monitor,

performance advisor, and Tivoli resource models. Extended provides key statistics from frequently

used WebSphere Application Server components.

All Enables all statistics.

Custom

Provides fine-grained control with the ability to enable and disable individual statistics.

Custom monitoring level

Use this page to enable and disable specific PMI counters for individual PMI statistics.

To view this administrative console page, click Servers > Application Servers > server > Performance

Monitoring Infrastructure (PMI) > Custom.

Custom monitoring level:

Click on the individual PMI statistic in the list on the left. The counters available for that module appear in

the table on the right along with the counter type, a description of the counter, and its current status

(Enabled or Disabled).

 You can enable or disable each individual counter by selecting the counter and clicking the Enable or

Disable button, respectively.

Custom monitoring level:

Click on the individual PMI module in the list on the left. The counters available for that statistic appear in

the table on the right along with the counter type, a description of the counter, and its current status

(Enabled or Disabled).

 You can enable or disable each individual counter by selecting the counter and clicking the Enable or

Disable button, respectively.

Note: Enabling or disabling a statistic set that contains subsets will affect the configuration of all the

counters contained in the subsets. The parent statistic set that is selected passes down the current

2160 Administering applications and their environment

configuration set to its subsets, which can disable any counters that were individually selected

within specific subsets. For best results, configure the parent statistic first, and then select specific

counters within its subsets.

Performance Monitoring Infrastructure collection

Use this page to configure Performance Monitoring Infrastructure (PMI).

To view this administrative console page, click Monitoring and Tuning > Performance Monitoring

Infrastructure (PMI) .

Name:

Specifies the logical name of the server.

 The Name property is read only.

Node:

Specifies the name of the node holding the server.

 The Node name property is read only.

Version:

Specifies the version of the WebSphere Application Server product on which the server runs.

 The Version property is read only.

Enabling PMI using the wsadmin tool

Use this page to learn how to enable Performance Monitoring Infrastructure using command line instead of

the administrative console.

You can use the command line to enable Performance Monitoring Infrastructure (PMI).

1. Enable PMI using the administrative console (see “Enabling PMI using the administrative console” on

page 2159). Make sure to restart the application server.

2. Run the wsadmin command, as described in Starting the wsadmin scripting client. Using wsadmin,

you can invoke operations on Perf Mbean to obtain the PMI data, set or obtain PMI monitoring levels,

and enable data counters.

Note: If PMI data are not enabled yet, you need to first enable PMI data by invoking

setInstrumentationLevel operation on PerfMBean.

The following operations in Perf MBean can be used in wsadmin:

/** Get performance data information for stats */

public void getConfig (ObjectName mbean);

/** Returns the current statistic set */

public void getStatisticSet ();

/** Enable PMI data using the pre-defined statistic sets.

 Valid values for the statistic set are "basic", "extended", "all", and "none" */

public void setStatisticSet (String statisticSet);

/** Returns the current custom set specification as a string */

public void getCustomSetString ();

/** Customizing PMI data that is enabled using fine-grained control.

 This method allows to enable or disable statistics selectively.

Chapter 24. Monitoring overall system health 2161

The format of the custom set specification string is STATS_NAME=ID1,ID2,ID3 seperated by ’:’,

 where STATS_NAME and IDs are defined in WS*Stat interfaces in com.ibm.websphere.pmi.stat package.

 Use * to enable all the statistics in the given PMI module. For example, to enable all the statistics

 for JVM and active count, pool size for thread pool use: jvmRuntimeModule=*:threadPoolModule=3,4.

 The string jvmRuntimeModule is the value of the constant WSJVMStats.NAME and threadPoolModule is the

value of WSThreadPoolStats.NAME.

 */

public void setCustomSetString (String customSpec, Boolean recursive);

/** Get stats for an MBean*/

public void getStatsObject (ObjectName mbean, Boolean recursive);

/** Set instrumentation level using String format.

 This should be used by scripting for an easy String processing.

 The level STR is a list of moduleName=Level connected by ":".

 NOTE: This method is deprecated in Version 6.1

 */

public void setInstrumentationLevel(String levelStr, Boolean recursive);

/** Get instrumentation level in String for all the top level modules.

 This should be used by scripting for an easy String processing.

 NOTE: This method is deprecated in Version 6.1

 */

public String getInstrumentationLevelString();

/** Return the PMI data in String

 NOTE: This method is deprecated in Version 6.1

 */

public String getStatsString(ObjectName on, Boolean recursive);

/** Return the PMI data in String

 Used for PMI modules/submodules without direct MBean mappings.

 NOTE: This method is deprecated in Version 6.1

 */

public String getStatsString(ObjectName on, String submoduleName, Boolean recursive);

/** Return the submodule names if any for the MBean

 NOTE: This method is deprecated in Version 6.1

 */

public String listStatMemberNames(ObjectName on);

If an MBean is a StatisticProvider, and if you pass its ObjectName to getStatsObject, you get the

Statistic data for that MBean. MBeans with the following MBean types are statistic providers:

v DynaCache

v EJBModule

v EntityBean

v JDBCProvider

v J2CResourceAdapter

v JVM

v MessageDrivenBean

v ORB

v Server

v SessionManager

v StatefulSessionBean

v StatelessSessionBean

v SystemMetrics

v ThreadPool

v TransactionService

v WebModule

v Servlet

v WLMAppServer

v WebServicesService

2162 Administering applications and their environment

v WSGW

The following are sample commands in wsadmin you can use to obtain PMI data:

Obtain the Perf MBean ObjectName

wsadmin>set perfName [$AdminControl completeObjectName type=Perf,*]

wsadmin>set perfOName [$AdminControl makeObjectName $perfName]

Invoke getStatisticSet operation

Use this method to find the statistic set that is currently in effect:

Wsadmin> $AdminControl invoke $perfName getStatisticSet

This method returns one of the following values: basic, extended, all, none.

Invoke setStatisticSet operation

Use this method to enable monitoring using a statistic set.

The valid statistic set values are: basic, extended, all, none.

Wsadmin> set params [java::new {java.lang.Object[]} 1]

Wsadmin> $params set 0 [java::new java.lang.String extended]

Wsadmin> set sigs [java::new {java.lang.String[]} 1]

Wsadmin> $sigs set 0 java.lang.String

Wsadmin> $AdminControl invoke_jmx $perfOName setStatisticSet

$params $sigs

Invoke getConfig operation

Use this method to find information about the statistics for a given component.

Wsadmin> set jvmName [$AdminControl completeObjectName type=JVM,*]

Wsadmin> set params [java::new {java.lang.Object[]} 1]

Wsadmin> $params set 0 [java::new javax.management.ObjectName $jvmName]

Wsadmin> set sigs [java::new {java.lang.String[]} 1]

Wsadmin> $sigs set 0 javax.management.ObjectName

Wsadmin> $AdminControl invoke_jmx $perfOName getConfig $params

$sigs

This method returns the following:

 Stats type=jvmRuntimeModule, Description=The performance data from

the Java virtual machine run time.

 {name=UpTime, ID=4, type=CountStatistic, description=The amount of

time (in seconds) that the Java virtual machine has been running.,

unit=SECOND, level=low, statisticSet=basic, resettable=false,

aggregatable=true}

 {name=UsedMemory, ID=3, type=CountStatistic, description=The amount

of used memory (in KBytes) in the Java virtual machine run time.,

unit=KILOBYTE, level=low,

 statisticSet=basic, resettable=false, aggregatable=true}

 {name=FreeMemory, ID=2, type=CountStatistic, description=The free

memory (in KBytes) in the Java virtual machine run time.,

unit=KILOBYTE, level=low, statisticSet=all, resettable=false,

aggregatable=true}

Chapter 24. Monitoring overall system health 2163

{name=HeapSize, ID=1, type=BoundedRangeStatistic, description=The

total memory (in KBytes) in the Java virtual machine run time.,

unit=KILOBYTE, level=high, statisticSet=basic, resettable=false,

aggregatable=true}

Invoke getCustomSetString operation

This operation provides the current monitoring specification in a string format:

Wsadmin> $AdminControl invoke $perfName getCustomSetString

The output looks similar to the following:

 jvmRuntimeModule=4,3,1:systemModule=2,1:threadPoolModule=4,3:thread

PoolModule>HAManager.thread.pool=4,3:threadPoolModule>MessageListenerTh

readPool=4,3:threadPoolModule>ORB.thread.pool=4,3:threadPoolModule>Serv

let.Engine.Transports=4,3:threadPoolModule>TCS_DEFAULT=4,3:transactionM

odule=4,19,16,18,3,7,6,1,14

This output indicates that statistic ID’s 1, 3, and 4 are enabled in the JVM component. The description of

the statistic IDs can be found using the above getConfig operation or using the API documentation. The

output contains the current monitoring specification for the entire server. The individual modules are

separated by a :, and > is used as a separator within the module.

Invoke setCustomString operation

This operation can be used to enable or disable statistics selectively. In the following command the

statistic IDs 1, 2, 3, and 4 are enabled for the JVM module. To enable all the statistic IDs use an asterisk

(*).

 Wsadmin> set params [java::new {java.lang.Object[]} 2]

 Wsadmin> $params set 0 [java::new java.lang.String

jvmRuntimeModule=1,2,3,4]

 Wsadmin> $params set 1 [java::new java.lang.Boolean false]

 Wsadmin> set sigs [java::new {java.lang.String[]} 2]

 Wsadmin> $sigs set 0 java.lang.String

 Wsadmin> $sigs set 1 java.lang.Boolean

 Wsadmin> $AdminControl invoke_jmx $perfOName setCustomSetString

$params $sigs

Invoke getStatsObject operation

This operation is used to get the statistics for a given MBean. The following example gets the statistics for

the JVM:

 Wsadmin> set jvmName [$AdminControl completeObjectName type=JVM,*]

 Wsadmin> set params [java::new {java.lang.Object[]} 2]

 Wsadmin> $params set 0 [java::new javax.management.ObjectName

$jvmName]

 Wsadmin> $params set 1 [java::new java.lang.Boolean false]

 Wsadmin> set sigs [java::new {java.lang.String[]} 2]

 Wsadmin> $sigs set 0 javax.management.ObjectName

 Wsadmin> $sigs set 1 java.lang.Boolean

 Wsadmin> $AdminControl invoke_jmx $perfOName getStatsObject $params

$sigs

 Stats name=jvmRuntimeModule, type=jvmRuntimeModule#

 {

 name=HeapSize, ID=1, description=The total memory (in KBytes) in

the Java virtual machine run time., unit=KILOBYTE, type=BoundedRangeStatistic, lowWaterMark=51200,

highWaterMark=263038, current=263038, integral=2.494158617766E12, lowerBound

=51200, upperBound=262144

2164 Administering applications and their environment

name=FreeMemory, ID=2, description=The free memory (in KBytes) in

the Java virtual machine run time., unit=KILOBYTE, type=CountStatistic,

count=53509

 name=UsedMemory, ID=3, description=The amount of used memory (in KBytes) in

the Java virtual machine run time., unit=KILOBYTE,

type=CountStatistic, count=209528

 name=UpTime, ID=4, description=The amount of time (in seconds) that

the Java virtual machine has been running., unit=SECOND,

type=CountStatistic, count=83050

}

Invoke getInstrumentationLevelString operation

Use invoke, because it has no parameter.

wsadmin>$AdminControl invoke $perfName

getInstrumentationLevelString

This command returns the following:

beanModule=H:cacheModule=H:connectionPoolModule=H:j2cModule=H:jvmRu

ntimeModule=H:orbPerfModule=H:servletSessionsModule=H:systemModule=

H:threadPoolModule=H:transactionModule=H:webAppModule=H

Note: You can change the level (n, l, m, h, x) in the above string and then pass it to

setInstrumentationLevel method.

Invoke setInstrumentationLevel operation - enable/disable PMI counters

v sSet parameters (″pmi=l″ is the simple way to set all modules to the low level).

wsadmin>set params [java::new {java.lang.Object[]} 2]

wsadmin>$params set 0 [java::new java.lang.String pmi=l]

 wsadmin>$params set 1 [java::new java.lang.Boolean true]

v Set signatures.

wsadmin>set sigs [java::new {java.lang.String[]} 2]

wsadmin>$sigs set 0 java.lang.String

 wsadmin>$sigs set 1 java.lang.Boolean

v Invoke the method. Use invoke_jmx, because it has a parameter.

wsadmin>$AdminControl invoke_jmx $perfOName

setInstrumentationLevel $params $sigs

This command does not return anything.

Note: The PMI level string can be as simple as pmi=level (where level is n, l, m, h, or x), or something

like module1=level1:module2=level2:module3=level3 with the same format shown in the string

returned from getInstrumentationLevelString.

Invoke getStatsString(ObjectName, Boolean) operation

If you know the MBean ObjectName, you can invoke the method by passing the right parameters. As an

example, JVM MBean is used here.

v Get MBean query string. For example, JVM MBean.

 wsadmin>set jvmName [$AdminControl completeObjectName

type=JVM,*]

v Set parameters.

wsadmin>set params [java::new {java.lang.Object[]} 2]

wsadmin>$params set 0 [$AdminControl makeObjectName $jvmName]

wsadmin>$params set 1 [java::new java.lang.Boolean true]

v Set signatures.

Chapter 24. Monitoring overall system health 2165

wsadmin>set sigs [java::new {java.lang.String[]} 2]

 wsadmin>$sigs set 0 javax.management.ObjectName wsadmin>$sigs

 set 1 java.lang.Boolean

v Invoke method.

 wsadmin>$AdminControl invoke_jmx $perfOName getStatsString

$params $sigs

This command returns the following:

{Description jvmRuntimeModule.desc} {Descriptor {{Node wenjianpc}

{Server server

1} {Module jvmRuntimeModule} {Name jvmRuntimeModule} {Type

MODULE}}} {Level 7} {

Data {{{Id 4} {Descriptor {{Node wenjianpc} {Server server1}

{Module jvmRuntimeM

odule} {Name jvmRuntimeModule} {Type DATA}}} {PmiDataInfo {{Name

jvmRuntimeModul

e.upTime} {Id 4} {Description jvmRuntimeModule.upTime.desc} {Level

1} {Comment {

The amount of time in seconds the JVM has been running}}

{SubmoduleName null} {T

ype 2} {Unit unit.second} {Resettable false}}} {Time 1033670422282}

{Value {Coun

t 638} }} {{Id 3} {Descriptor {{Node wenjianpc} {Server server1}

{Module jvmRunt

imeModule} {Name jvmRuntimeModule} {Type DATA}}} {PmiDataInfo

{{Name jvmRuntimeM

odule.usedMemory} {Id 3} {Description

jvmRuntimeModule.usedMemory.desc} {Level 1

} {Comment {Used memory in JVM runtime}} {SubmoduleName null} {Type

2} {Unit uni

t.kbyte} {Resettable false}}} {Time 1033670422282} {Value {Count

66239} }} {{Id

2} {Descriptor {{Node wenjianpc} {Server server1} {Module

jvmRuntimeModule} {Nam

e jvmRuntimeModule} {Type DATA}}} {PmiDataInfo {{Name

jvmRuntimeModule.freeMemor

y} {Id 2} {Description jvmRuntimeModule.freeMemory.desc} {Level 1}

{Comment {Fre

e memory in JVM runtime}} {SubmoduleName null} {Type 2} {Unit

unit.kbyte} {Reset

table false}}} {Time 1033670422282} {Value {Count 34356} }} {{Id 1}

{Descriptor

{{Node wenjianpc} {Server server1} {Module jvmRuntimeModule} {Name

jvmRuntimeMod

ule} {Type DATA}}} {PmiDataInfo {{Name

jvmRuntimeModule.totalMemory} {Id 1} {Des

cription jvmRuntimeModule.totalMemory.desc} {Level 7} {Comment

{Total memory in

JVM runtime}} {SubmoduleName null} {Type 5} {Unit unit.kbyte}

{Resettable false}

}} {Time 1033670422282} {Value {Current 100596} {LowWaterMark

38140} {HighWaterM

ark 100596} {MBean 38140.0} }}}}

Invoke getStatsString (ObjectName, String, Boolean) operation

This operation takes an additional String parameter, and it is used for PMI modules that do not have

matching MBeans. In this case, the parent MBean is used with a String name representing the PMI

module. The String names available in an MBean can be found by invoking listStatMemberNames. For

example, beanModule is a logic module aggregating PMI data over all Enterprise JavaBeans, but there is

no MBean for beanModule. Therefore, you can pass server MBean ObjectName and a String

(beanModule) to get PMI data in beanModule.

v Get MBean query string. For example, server MBean

2166 Administering applications and their environment

wsadmin>set mySrvName [$AdminControl completeObjectName

 type=Server,name=server1,

 node=wenjianpc,*]

v Set parameters.

wsadmin>set params [java::new {java.lang.Object[]} 3]

wsadmin>$params set 0 [$AdminControl makeObjectName $mySrvName]

wsadmin>$params set 1 [java::new java.lang.String beanModule]

 wsadmin>$params set 2 [java::new java.lang.Boolean true]

v Set signatures.

wsadmin>set sigs [java::new {java.lang.String[]} 3]

wsadmin>$sigs set 0 javax.management.ObjectName

wsadmin>$sigs set 1 java.lang.String

 wsadmin>$sigs set 2 java.lang.Boolean

v Invoke method.

wsadmin>$AdminControl invoke_jmx $perfOName getStatsString

$params $sigs

This command returns PMI data in all the Enterprise JavaBeans within the BeanModule hierarchy because

the recursive flag is set to true.

Note: This method is used to get stats data for the PMI modules that do not have direct MBean

mappings.

Invoke listStatMemberNames operation

v Get MBean queryString. For example, Server.

wsadmin>set mySrvName [$AdminControl completeObjectName

 type=Server,name=server1,

node=wenjianpc,*]

v Set parameter.

wsadmin>set params [java::new {java.lang.Object[]} 1]

wsadmin>$params set 0 [$AdminControl makeObjectName

$mySrvName]

v Set signatures.

wsadmin>set sigs [java::new {java.lang.String[]} 1]

wsadmin>$sigs set 0 javax.management.ObjectName

 wsadmin>$AdminControlinvoke_jmx $perfOName

 listStatMemberNames $params $sigs

This command returns the PMI module and submodule names, which have no direct MBean mapping. The

names are seperated by a space ″ ″. You can then use the name as the String parameter in getStatsString

method. For example:

beanModule connectionPoolModule j2cModule servletSessionsModule

threadPoolModule

webAppModule

Enabling the Java virtual machine profiler data

Use the Java virtual machine profiler to enable the collection of information.

Use the Java Virtual Machine Tool Interface (JVMTI) to collect data about garbage collection and thread

states from the JVM that runs the application server. When JVMTI is enabled, a collection of

JVMTI-specific statistics can be enabled through the predefined All statistic set or through the use of a

Custom statistic set.

To enable JVMTI data reporting for each individual application server:

 1. Open the administrative console.

 2. Click Servers > Application Servers in the administrative console navigation tree.

Chapter 24. Monitoring overall system health 2167

3. Click the application server for the JVM profiler that needs enabling.

 4. Click Java and Process Management under Server Infrastructure.

 5. Click Process Definition.

 6. Click Java virtual machine under Additional properties.

 7. Type -agentlib:pmiJvmtiProfiler in the Generic JVM arguments field.

Note: If the deprecated JVMPI profiler is used in WebSphere Application Server Version 6.1 type

-XrunpmiJvmpiProfiler in the Generic JVM arguments field. For more information, refer to

“Java virtual machine profiling.”

 8. Click Apply or OK.

 9. Click Save.

10. Click Servers > Application Servers in the administrative console navigation tree.

11. Click the application server for the JVM profiler that needs enabling.

12. Click the Configuration tab. When in the Configuration tab, settings apply when the server is

restarted. When in the Runtime Tab, settings apply immediately. Performance Monitoring

Infrastructure (PMI) can be enabled only in the Configuration tab.

13. Click Performance Monitoring Infrastructure under Performance.

14. Select the Enable Performance Monitoring Infrastructure (PMI) check box.

15. Click Custom and select JVM Runtime on the left-side tree.

16. Click a JVM profiler group under JVM Runtime and enable or disable the statistic on the right-side

table. Go back to the main PMI configuration page, by clicking PMI.

17. Click Apply or OK.

18. Click Save.

19. Start the application server, or restart the application server if it is currently running.

20. Refresh the Tivoli Performance Viewer if you are using it. The changes you make will not take affect

until you restart the application server.

Java virtual machine profiling

Use Java virtual machine profiling to gather data about your system for performance analysis.

The Java virtual machine Tool Interface (JVMTI) is a native programming interface that provides tools the

ability to inspect the state of the Java virtual machine (JVM). This interface is new for the JVM, V1.5.

JVMTI replaces the Java virtual machine Profiling Interface (JVMPI), which is supported in WebSphere

Application Server, Version 6.0.2 and earlier. The JVMPI interface is deprecated as of WebSphere

Application Server Version 6.1.

Both interfaces (JVMTI and JVMPI) provide the ability to collect information about the JVM that runs the

application server. The Tivoli Performance Viewer leverages these interfaces to enable more

comprehensive performance analysis.

JVMTI is a two-way function call interface between the JVM and an in-process profiler agent. The JVM

notifies the profiler agent of various events, for example, garbage collection and thread starts. The profiler

agent activates or deactivates specific event notifications that are based on the needs of the profiler. The

allocate, move, and free object counters that are provided through the JVMPI interface are not available

through the JVMTI implementation in WebSphere Application Server Version 6.1.

JVMTI supports partial profiling, by enabling you to choose which types of profiling information to collect

and to select certain subsets of the time during which the JVM API is active. JVMTI moderately increases

the performance impact. Therefore, it is recommended that you use JVMTI monitoring to help diagnose

application problems only.

2168 Administering applications and their environment

Developing your own monitoring applications

You can use the Performance Monitoring Infrastructure (PMI) interfaces to develop your own applications

to collect and display performance information.

There are three such interfaces - a Java Machine Extension (JMX)-based interface, a PMI client interface,

and a servlet interface. All three interfaces return the same underlying data.

The JMX interface is accessible through the WebSphere Application Server administartive client as

described in “Using the JMX interface to develop your own monitoring application” on page 2185. The PMI

client interface is a Java interface that works with Version 3.5.5 and above. The servlet interface is

perhaps the simplest, requiring minimal programming, as the output is XML.

Note: The PMI client interface is deprecated in Version 6.1. The JMX interface is the recommended way

to collect PMI data.

1. “Using PMI client to develop your monitoring application (deprecated)” on page 2170.

2. “Performance servlet (PerfServlet)” on page 2182

3. “Compiling your monitoring applications” on page 2203

4. “Running your new monitoring applications” on page 2203

5. “Using the JMX interface to develop your own monitoring application” on page 2185.

6. “Developing PMI interfaces (Version 4.0) (deprecated)” on page 2202.

PMI client interface (deprecated)

The data provided by the Performance Monitoring Infrastructure (PMI) client interface is documented here.

Access to the PMI client interface data is provided in a hierarchical structure. Descending from the object

are node information objects, module information objects, CpdCollection objects and CpdData objects.

Using Version 5.0, you will get Stats and Statistic objects. The node and server information objects contain

no performance data, only static information.
HTTP

Web
Client

PMIClient
Java
Client

PerfServlet

.PerfMBean
AppServerJMX Client

Java Client

Performance
data
and

application
server

.PerfMBean
AppServer

Cell Manager

JMX
Connector

RMI/IIOP
or

SOAP
Tivoli

Performance
Viewer

PMI
Client

Wrapper

J2EE client

Each time a client retrieves performance data from a server, the data is returned in a subset of this

structure; the form of the subset depends on the data retrieved. You can update the entire structure with

new data, or update only part of the tree, as needed.

The JMX statistic data model is supported, as well as the existing CPD data model from Version 4.0.

When you retrieve performance data using the Version 5.0 PMI client API, you get the Stats object, which

Chapter 24. Monitoring overall system health 2169

includes Statistic objects and optional sub-Stats objects. When you use the Version 4.0 PMI client API to

collect performance data, you get the CpdCollection object, which includes the CpdData objects and

optional sub-CpdCollection objects.

The following are additional Performance Monitoring Infrastructure (PMI) interfaces:

v BoundaryStatistic

v BoundedRangeStatistic

v CountStatistic

v MBeanStatDescriptor

v MBeanLevelSpec

v New Methods in PmiClient

v RangeStatistic

v Stats

v Statistic

v TimeStatistic

The following PMI interfaces introduced in Version 4.0 are also supported:

v CpdCollection

v CpdData

v CpdEventListener and CpdEvent

v CpdFamily class

v CpdValue

– CpdLong

– CpdStat

– CpdLoad
v PerfDescriptor

v PmiClient class

The CpdLong maps to CountStatistic; CpdStat maps to Time Statistic; CpdCollection maps to Stats; and

CpdLoad maps to RangeStatistic and BoundedRangeStatistic.

Note: Version 4.0 PmiClient APIs are supported in this version, however, there are some changes. The

data hierarchy is changed in some PMI modules, notably the enterprise bean module and HTTP sessions

module. If you have an existing PmiClient application, and you want to run it against Version 5.0, you

might have to update the PerfDescriptor(s) based on the new PMI data hierarchy. Also, the getDataName

and getDataId methods in PmiClient are changed to be non-static methods in order to support multiple

WebSphere Application Server versions. You might have to update your existing application which uses

these two methods.

Using PMI client to develop your monitoring application (deprecated)

You can use the Performance Monitoring Infrastructure (PMI) interfaces to develop your own applications

to collect and display performance information.

The following is the programming model for Performance Monitoring Infrastructure (PMI) client:

1. Create an instance of PmiClient. This is used for all subsequent method calls.

2. Optional: You can create your own MBeans. Refer to Extending the WebSphere Application Server

administrative system with custom MBeans.

3. Call the listNodes() and listServers(nodeName) methods to find all the nodes and servers in the

WebSphere Application Server domain. The PMI client provides two sets of methods: one set in

Version 5.0 and the other set inherited from Version 4.0. You can only use one set of methods. Do not

mix them together.

4. Call listMBeans and listStatMembers to get all the available MBeans and MBeanStatDescriptors.

5. Call the getStats method to get the Stats object for the PMI data.

2170 Administering applications and their environment

6. Optional: The client can also call setStatLevel or getStatLevel to set and get the monitoring level. Use

the MBeanLevelSpec objects to set monitoring levels.

If you prefer to use the Version 4.0 interface, the model is essentially the same, but the object

types are different:

1. Create an instance of PmiClient.

2. Call the listNodes() and listServers(nodeName) methods to find all the nodes and servers in the

WebSphere Application Server domain.

3. Call listMembers to get all the perfDescriptor objects.

4. Use the PMI client’s get or gets method to get CpdCollection objects. These contain snapshots of

performance data from the server. The same structure is maintained and its update method is used to

refresh the data.

5. (Optional) The client can also call setInstrumentationLevel or getInstrumentationLevel to set and get

the monitoring level.

Performance Monitoring Infrastructure client (WebSphere Version 4.0)

A Performance Monitoring Infrastructure (PMI) client is an application that receives PMI data from servers

and processes this data.

In WebSphere Application Server Version 4.0, PmiClient API takes PerfDescriptor(s) and returns PMI data

as a CpdCollection object. Each CpdCollection could contain a list of CpdData, which has a CpdValue of

the following types:

v CpdLong

v CpdStat

v CpdLoad

Version 4.0 PmiClient APIs are supported in this version, however, there are some changes. The data

hierarchy is changed in some PMI modules, notably the enterprise bean module and HTTP sessions

module. If you have an existing PmiClient application, and you want to run it against WebSphere

Application Server Version 5.0 or above, you might have to update the PerfDescriptor(s) based on the new

PMI data hierarchy. Also, the getDataName and getDataId methods in PmiClient are changed to be

non-static methods in order to support multiple WebSphere Application Server versions. You might have to

update your existing application which uses these two methods.

Example: Performance Monitoring Infrastructure client (Version 4.0)

The following is a list of example Performance Monitoring Infrastructure (PMI) client code from (Version

4.0):

/**

 * This is a sample code to show how to use PmiClient to collect PMI data.

 * You will need to use adminconsole to set instrumentation level (a level other

 * than NONE) first.

 *

 * <p>

 * End-to-end code path in 4.0:

 * PmiTester -> PmiClient -> AdminServer -> appServer

 */

package com.ibm.websphere.pmi;

import com.ibm.websphere.pmi.*;

import com.ibm.websphere.pmi.server.*;

import com.ibm.websphere.pmi.client.*;

import com.ibm.ws.pmi.server.*;

import com.ibm.ws.pmi.perfServer.*;

import com.ibm.ws.pmi.server.modules.*;

import com.ibm.ws.pmi.wire.*;

import java.util.ArrayList;

Chapter 24. Monitoring overall system health 2171

/**

 * Sample code to use PmiClient API (old API in 4.0) and get CpdData/CpdCollection objects.

 *

 */

public class PmiTester implements PmiConstants {

 /** a test driver:

 * @param args[0] - node name

 * @param args[1] - port number, optional, default is 2809

 * @param args[2] - connector type, default is RMI

 * @param args[3] - verion (AE, AEs, WAS50), default is WAS50

 *

 */

 public static void main(String[] args) {

 String hostName = null;

 String portNumber = "2809";

 String connectorType = "RMI";

 String version = "WAS50";

 if (args.length < 1) {

 System.out.println("Usage: <host> [<port>] [<connectorType>]

[<version>]");

 return;

 }

 if(args.length >= 1)

 hostName = args[0];

 if(args.length >= 2)

 portNumber = args[1];

 if (args.length >=3)

 connectorType = args[2];

 if (args.length >=4)

 version = args[3];

 try {

 PmiClient pmiClnt = new PmiClient(hostName, portNumber,

version, false, connectorType);

 // uncomment it if you want debug info

 //pmiClnt.setDebug(true);

 // get all the node PerfDescriptor in the domain

 PerfDescriptor[] nodePds = pmiClnt.listNodes();

 if(nodePds == null) {

 System.out.println("no nodes");

 return;

 }

 // get the first node

 String nodeName = nodePds[0].getName();

 System.out.println("after listNodes: " + nodeName);

 //list all the servers on the node

 PerfDescriptor[] serverPds = pmiClnt.listServers(nodePds[0].getName());

 if(serverPds == null || serverPds.length == 0) {

 System.out.println("NO app server in node");

 return;

 }

 // print out all the servers on that node

 for(int j=0; j<serverPds.length; j++) {

 System.out.println("server " + j + ": " + serverPds[j].getName());

 }

 for(int j=0; j<serverPds.length; j++) {

2172 Administering applications and their environment

System.out.println("server " + j + ": " + serverPds[j].getName());

 // Option: you can call createPerfLevelSpec and then

setInstrumentationLevel to set the level

 // for each server if you want. For example, to set all

the modules to be LEVEL_HIGH for the server j,

 // uncomment the following.

 // PerfLevelSpec[] plds = new PerfLevelSpec[1];

 // plds[0] = pmiClnt.createPerfLevelSpec(null, LEVEL_HIGH);

 // pmiClnt.setInstrumentationLevel(serverPds[j].getNodeName(),

serverPds[j].getServerName(), plds, true);

 // First, list the PerfDescriptor in the server

 PerfDescriptor[] myPds = pmiClnt.listMembers(serverPds[j]);

 // check returned PerfDescriptor

 if(myPds == null) {

 System.out.println("null from listMembers");

 continue;

 }

 // you can add the pds in which you are interested to PerfDescriptorList

 PerfDescriptorList pdList = new PerfDescriptorList();

 for(int i=0; i<myPds.length; i++) {

 // Option 1: you can recursively call listMembers for each myPds

 // and find the one you are interested. You can call

listMembers

 // until individual data level and after that level

you will null from listMembers.

 // e.g., PerfDescriptor[] nextPds = pmiClnt.listMembers(myPds[i]);

 // Option 2: you can filter these pds before adding to pdList

 System.out.println("add to pdList: " + myPds[i].getModuleName());

 pdList.addDescriptor(myPds[i]);

 if(i % 2 == 0)

 pmiClnt.add(myPds[i]);

 }

 // call gets method to get the CpdCollection[] corresponding to pdList

 CpdCollection[] cpdCols = pmiClnt.gets(pdList, true);

 if(cpdCols == null) {

 // check error

 if(pmiClnt.getErrorCode() >0)

 System.out.println(pmiClnt.getErrorMessage());

 continue;

 }

 for(int i=0; i<cpdCols.length; i++) {

 // simple print them

 //System.out.println(cpdCols[i].toString());

 // Or call processCpdCollection to get each data

 processCpdCollection(cpdCols[i], "");

 }

 // Or call gets() method to add the CpdCollection[] for whatever

there by calling pmiClnt.add().

 System.out.println("\n\n\n ---- get data using gets(true) ----- ");

 cpdCols = pmiClnt.gets(true);

 if(cpdCols == null) {

 // check error

 if(pmiClnt.getErrorCode() >0)

 System.out.println(pmiClnt.getErrorMessage());

 continue;

 }

Chapter 24. Monitoring overall system health 2173

for(int i=0; i<cpdCols.length; i++) {

 // simple print out the whole collection

 System.out.println(cpdCols[i].toString());

 // Option: refer processCpdCollection to get each data

 }

 }

 }

 catch(Exception ex) {

 System.out.println("Exception calling CollectorAE");

 ex.printStackTrace();

 }

 }

 /**

 * show the methods to retrieve individual data

 */

 private static void processCpdCollection(CpdCollection cpdCol, String indent) {

 CpdData[] dataList = cpdCol.dataMembers();

 String myindent = indent;

 System.out.println("\n" + myindent + "--- CpdCollection "

+ cpdCol.getDescriptor().getName() + " ---");

 myindent += " ";

 for(int i=0; i<dataList.length; i++) {

 if (dataList[i] == null)

 continue;

 // if you want to get static info like name, description, etc

 PmiDataInfo dataInfo = dataList[i].getPmiDataInfo();

 // call getName(), getDescription() on dataInfo;

 CpdValue cpdVal = dataList[i].getValue();

 if(cpdVal.getType() == TYPE_STAT) {

 CpdStat cpdStat = (CpdStat)cpdVal;

 double mean = cpdStat.mean();

 double sumSquares = cpdStat.sumSquares();

 int count = cpdStat.count();

 double total = cpdStat.total();

 System.out.println(myindent + "CpdData id=" + dataList[i].getId()

 + " type=stat mean=" + mean);

 // you can print more values like sumSquares, count,etc here

 }

 else if(cpdVal.getType() == TYPE_LOAD) {

 CpdLoad cpdLoad = (CpdLoad)cpdVal;

 long time = cpdLoad.getTime();

 double mean = cpdLoad.mean();

 double currentLevel = cpdLoad.getCurrentLevel();

 double integral = cpdLoad.getIntegral();

 double timeWeight = cpdLoad.getWeight();

 System.out.println(myindent + "CpdData id=" + dataList[i].getId()

 + " type=load mean=" + mean + " currentLevel="

+ currentLevel);

 // you can print more values like sumSquares, count,etc here

 }

 else if(cpdVal.getType() == TYPE_LONG) {

 CpdValue cpdLong = (CpdValue)cpdVal;

 long value = (long)cpdLong.getValue();

 System.out.println(myindent + "CpdData id=" + dataList[i].getId()

 + " type=long value=" + value);

 }

 else if(cpdVal.getType() == TYPE_DOUBLE) {

 CpdValue cpdDouble = (CpdValue)cpdVal;

 double value = cpdDouble.getValue();

 System.out.println(myindent + "CpdData id=" + dataList[i].getId()

2174 Administering applications and their environment

+ " type=double value=" + value);

 }

 else if(cpdVal.getType() == TYPE_INT) {

 CpdValue cpdInt = (CpdValue)cpdVal;

 int value = (int)cpdInt.getValue();

 System.out.println(myindent + "CpdData id=" + dataList[i].getId()

 + " type=int value=" + value);

 }

 }

 // recursively go through the subcollection

 CpdCollection[] subCols = cpdCol.subcollections();

 for(int i=0; i<subCols.length; i++) {

 processCpdCollection(subCols[i], myindent);

 }

 }

 /**

 * show the methods to navigate CpdCollection

 */

 private static void report(CpdCollection col) {

 System.out.println("\n\n");

 if(col==null) {

 System.out.println("report: null CpdCollection");

 return;

 }

 System.out.println("report - CpdCollection ");

 printPD(col.getDescriptor());

 CpdData[] dataMembers = col.dataMembers();

 if(dataMembers != null) {

 System.out.println("report CpdCollection: dataMembers is "

+ dataMembers.length);

 for(int i=0; i<dataMembers.length; i++) {

 CpdData data = dataMembers[i];

 printPD(data.getDescriptor());

 }

 }

 CpdCollection[] subCollections = col.subcollections();

 if(subCollections != null) {

 for(int i=0; i<subCollections.length; i++) {

 report(subCollections[i]);

 }

 }

 }

 private static void printPD(PerfDescriptor pd) {

 System.out.println(pd.getFullName());

 }

}

Example: Performance Monitoring Infrastructure client with new data structure

This page provides example code using Performance Monitoring Infrastructure (PMI) client with the new

data structure.

import com.ibm.websphere.pmi.*;

import com.ibm.websphere.pmi.stat.*;

import com.ibm.websphere.pmi.client.*;

import com.ibm.websphere.management.*;

import com.ibm.websphere.management.exception.*;

import java.util.*;

import javax.management.*;

import java.io.*;

/**

 * Sample code to use PmiClient API (new JMX-based API in 5.0) and

get Statistic/Stats objects.

Chapter 24. Monitoring overall system health 2175

*/

public class PmiClientTest implements PmiConstants {

 static PmiClient pmiClnt = null;

 static String nodeName = null;

 static String serverName = null;

 static String portNumber = null;

 static String connectorType = null;

 static boolean success = true;

 /**

 * @param args[0] host

 * @param args[1] portNumber, optional, default is 2809

 * @param args[2] connectorType, optional, default is RMI connector

 * @param args[3]serverName, optional, default is the first server found

 */

 public static void main(String[] args) {

 try {

 if(args.length < 1) {

 System.out.println("Parameters: host [portNumber]

[connectorType] [serverName]");

 return;

 }

 // parse arguments and create an instance of PmiClient

 nodeName = args[0];

 if (args.length > 1)

 portNumber = args[1];

 if (args.length > 2)

 connectorType = args[2];

 // create an PmiClient object

 pmiClnt = new PmiClient(nodeName, portNumber, "WAS50", false, connectorType);

 // Uncomment it if you want to debug any problem

 //pmiClnt.setDebug(true);

 // update nodeName to be the real host name

 // get all the node PerfDescriptor in the domain

 PerfDescriptor[] nodePds = pmiClnt.listNodes();

 if(nodePds == null) {

 System.out.println("no nodes");

 return;

 }

 // get the first node

 nodeName = nodePds[0].getName();

 System.out.println("use node " + nodeName);

 if (args.length == 4)

 serverName = args[3];

 else { // find the server you want to get PMI data

 // get all servers on this node

 PerfDescriptor[] allservers = pmiClnt.listServers(nodeName);

 if (allservers == null || allservers.length == 0) {

 System.out.println("No server is found on node " + nodeName);

 System.exit(1);

 }

 // get the first server on the list. You may want to get a different server

 serverName = allservers[0].getName();

 System.out.println("Choose server " + serverName);

2176 Administering applications and their environment

}

 // get all MBeans

 ObjectName[] onames = pmiClnt.listMBeans(nodeName, serverName);

 // Cache the MBeans we are interested

 ObjectName perfOName = null;

 ObjectName serverOName = null;

 ObjectName wlmOName = null;

 ObjectName ejbOName = null;

 ObjectName jvmOName = null;

 ArrayList myObjectNames = new ArrayList(10);

 // get the MBeans we are interested in

 if(onames != null) {

 System.out.println("Number of MBeans retrieved= " + onames.length);

 AttributeList al;

 ObjectName on;

 for(int i=0; i<onames.length; i++) {

 on = onames[i];

 String type = on.getKeyProperty("type");

 // make sure PerfMBean is there.

 // Then randomly pick up some MBeans for the test purpose

 if(type != null && type.equals("Server"))

 serverOName = on;

 else if(type != null && type.equals("Perf"))

 perfOName = on;

 else if(type != null && type.equals("WLM")) {

 wlmOName = on;

 }

 else if(type != null && type.equals("EntityBean")) {

 ejbOName = on;

 // add all the EntityBeans to myObjectNames

 myObjectNames.add(ejbOName); // add to the list

 }

 else if(type != null && type.equals("JVM")) {

 jvmOName = on;

 }

 }

 // set monitoring level for SERVER MBean

 testSetLevel(serverOName);

 // get Stats objects

 testGetStats(myObjectNames);

 // if you know the ObjectName(s)

 testGetStats2(new ObjectName[]{jvmOName, ejbOName});

 // assume you are only interested in a server data in WLM MBean,

 // then you will need to use StatDescriptor and MBeanStatDescriptor

 // Note that wlmModule is only available in ND version

 StatDescriptor sd = new StatDescriptor(new String[] {"wlmModule.server"});

 MBeanStatDescriptor msd = new MBeanStatDescriptor(wlmOName, sd);

 Stats wlmStat = pmiClnt.getStats(nodeName, serverName, msd, false);

 if (wlmStat != null)

 System.out.println("\n\n WLM server data\n\n + " + wlmStat.toString());

 else

 System.out.println("\n\n No WLM server data is availalbe.");

 // how to find all the MBeanStatDescriptors

 testListStatMembers(serverOName);

 // how to use update method

 testUpdate(jvmOName, false, true);

Chapter 24. Monitoring overall system health 2177

}

 else {

 System.out.println("No ObjectNames returned from Query");

 }

 }

 catch(Exception e) {

 new AdminException(e).printStackTrace();

 System.out.println("Exception = " +e);

 e.printStackTrace();

 success = false;

 }

 if(success)

 System.out.println("\n\n All tests are passed");

 else

 System.out.println("\n\n Some tests are failed. Check for the exceptions");

 }

 /**

 * construct an array from the ArrayList

 */

 private static MBeanStatDescriptor[] getMBeanStatDescriptor(ArrayList msds) {

 if(msds == null || msds.size() == 0)

 return null;

 MBeanStatDescriptor[] ret = new MBeanStatDescriptor[msds.size()];

 for(int i=0; i<ret.length; i++)

 if(msds.get(i) instanceof ObjectName)

 ret[i] = new MBeanStatDescriptor((ObjectName)msds.get(i));

 else

 ret[i] = (MBeanStatDescriptor)msds.get(i);

 return ret;

 }

 /**

 * Sample code to navigate and display the data value from the Stats object.

 */

 private static void processStats(Stats stat) {

 processStats(stat, "");

 }

 /**

 * Sample code to navigate and display the data value from the Stats object.

 */

 private static void processStats(Stats stat, String indent) {

 if(stat == null) return;

 System.out.println("\n\n");

 // get name of the Stats

 String name = stat.getName();

 System.out.println(indent + "stats name=" + name);

 // Uncomment the following lines to list all the data names

 /*

 String[] dataNames = stat.getStatisticNames();

 for (int i=0; i<dataNames.length; i++)

 System.out.println(indent + " " + "data name=" + dataNames[i]);

 System.out.println("\n");

 */

 // list all datas

 com.ibm.websphere.management.statistics.Statistic[] allData = stat.getStatistics();

2178 Administering applications and their environment

// cast it to be PMI’s Statistic type so that we can have get more

 Statistic[] dataMembers = (Statistic[])allData;

 if(dataMembers != null) {

 for(int i=0; i<dataMembers.length; i++) {

 System.out.print(indent + " " + "data name="

+ PmiClient.getNLSValue(dataMembers[i].getName())

 + ", description="

+ PmiClient.getNLSValue(dataMembers[i].getDescription())

 + ", unit=" + PmiClient.getNLSValue(dataMembers[i].getUnit())

 + ", startTime=" + dataMembers[i].getStartTime()

 + ", lastSampleTime=" + dataMembers[i].getLastSampleTime());

 if(dataMembers[i].getDataInfo().getType() == TYPE_LONG) {

 System.out.println(", count="

+ ((CountStatisticImpl)dataMembers[i]).getCount());

 }

 else if(dataMembers[i].getDataInfo().getType() == TYPE_STAT) {

 TimeStatisticImpl data = (TimeStatisticImpl)dataMembers[i];

 System.out.println(", count=" + data.getCount()

 + ", total=" + data.getTotal()

 + ", mean=" + data.getMean()

 + ", min=" + data.getMin()

 + ", max=" + data.getMax());

 }

 else if(dataMembers[i].getDataInfo().getType() == TYPE_LOAD) {

 RangeStatisticImpl data = (RangeStatisticImpl)dataMembers[i];

 System.out.println(", current=" + data.getCurrent()

 + ", lowWaterMark=" + data.getLowWaterMark()

 + ", highWaterMark=" + data.getHighWaterMark()

 + ", integral=" + data.getIntegral()

 + ", avg=" + data.getMean());

 }

 }

 }

 // recursively for sub-stats

 Stats[] substats = (Stats[])stat.getSubStats();

 if(substats == null || substats.length == 0)

 return;

 for(int i=0; i<substats.length; i++) {

 processStats(substats[i], indent + " ");

 }

 }

 /**

 * test set level and verify using get level

 */

 private static void testSetLevel(ObjectName mbean) {

 System.out.println("\n\n testSetLevel\n\n");

 try {

 // set instrumentation level to be high for the mbean

 MBeanLevelSpec spec = new MBeanLevelSpec(mbean, null, PmiConstants.LEVEL_HIGH);

 pmiClnt.setStatLevel(nodeName, serverName, spec, true);

 System.out.println("after setInstrumentaionLevel high on server MBean\n\n");

 // get all instrumentation levels

 MBeanLevelSpec[] mlss = pmiClnt.getStatLevel(nodeName, serverName, mbean, true);

 if(mlss == null)

 System.out.println("error: null from getInstrumentationLevel");

 else {

 for(int i=0; i<mlss.length; i++)

 if(mlss[i] != null) {

 // get the ObjectName, StatDescriptor,

and level out of MBeanStatDescriptor

 int mylevel = mlss[i].getLevel();

 ObjectName myMBean = mlss[i].getObjectName();

 StatDescriptor mysd = mlss[i].getStatDescriptor(); // may be null

Chapter 24. Monitoring overall system health 2179

// Uncomment it to print all the mlss

 //System.out.println("mlss " + i + ":, " + mlss[i].toString());

 }

 }

 }

 catch(Exception ex) {

 new AdminException(ex).printStackTrace();

 ex.printStackTrace();

 System.out.println("Exception in testLevel");

 success = false;

 }

 }

 /**

 * Use listStatMembers method

 */

 private static void testListStatMembers(ObjectName mbean) {

 System.out.println("\n\ntestListStatMembers \n");

 // listStatMembers and getStats

 // From server MBean until the bottom layer.

 try {

 MBeanStatDescriptor[] msds = pmiClnt.listStatMembers(nodeName, serverName, mbean);

 if(msds == null) return;

 System.out.println(" listStatMembers for server MBean, num members

(i.e. top level modules) is " + msds.length);

 for(int i=0; i<msds.length; i++) {

 if(msds[i] == null) continue;

 // get the fields out of MBeanStatDescriptor if you need them

 ObjectName myMBean = msds[i].getObjectName();

 StatDescriptor mysd = msds[i].getStatDescriptor(); // may be null

 // uncomment if you want to print them out

 //System.out.println(msds[i].toString());

 }

 for(int i=0; i<msds.length; i++) {

 if(msds[i] == null) continue;

 System.out.println("\n\nlistStatMembers for msd=" + msds[i].toString());

 MBeanStatDescriptor[] msds2 =

pmiClnt.listStatMembers(nodeName, serverName, msds[i]);

 // you get msds2 at the second layer now and the

listStatMembers can be called recursively

 // until it returns now.

 }

 }

 catch(Exception ex) {

 new AdminException(ex).printStackTrace();

 ex.printStackTrace();

 System.out.println("Exception in testListStatMembers");

 success = false;

 }

 }

 /**

 * Test getStats method

 */

 private static void testGetStats(ArrayList mbeans) {

 System.out.println("\n\n testgetStats\n\n");

 try {

 Stats[] mystats = pmiClnt.getStats(nodeName,

2180 Administering applications and their environment

serverName, getMBeanStatDescriptor(mbeans), true);

 // navigate each of the Stats object and get/display the value

 for(int k=0; k<mystats.length; k++) {

 processStats(mystats[k]);

 }

 }

 catch(Exception ex) {

 new AdminException(ex).printStackTrace();

 ex.printStackTrace();

 System.out.println("exception from testGetStats");

 success = false;

 }

 }

 /**

 * Test getStats method

 */

 private static void testGetStats2(ObjectName[] mbeans) {

 System.out.println("\n\n testGetStats2\n\n");

 try {

 Stats[] statsArray = pmiClnt.getStats(nodeName, serverName, mbeans, true);

 // You can call toString to simply display all the data

 if(statsArray != null) {

 for(int k=0; k<statsArray.length; k++)

 System.out.println(statsArray[k].toString());

 }

 else

 System.out.println("null stat");

 }

 catch(Exception ex) {

 new AdminException(ex).printStackTrace();

 ex.printStackTrace();

 System.out.println("exception from testGetStats2");

 success = false;

 }

 }

 /**

 * test update method

 */

 private static void testUpdate(ObjectName oName, boolean keepOld,

boolean recursiveUpdate) {

 System.out.println("\n\n testUpdate\n\n");

 try {

 // set level to be NONE

 MBeanLevelSpec spec = new MBeanLevelSpec(oName, null, PmiConstants.LEVEL_NONE);

 pmiClnt.setStatLevel(nodeName, serverName, spec, true);

 // get data now - one is non-recursive and the other is recursive

 Stats stats1 = pmiClnt.getStats(nodeName, serverName, oName, false);

 Stats stats2 = pmiClnt.getStats(nodeName, serverName, oName, true);

 // set level to be HIGH

 spec = new MBeanLevelSpec(oName, null, PmiConstants.LEVEL_HIGH);

 pmiClnt.setStatLevel(nodeName, serverName, spec, true);

 Stats stats3 = pmiClnt.getStats(nodeName, serverName, oName, true);

 System.out.println("\n\n stats3 is");

 processStats(stats3);

 stats1.update(stats3, keepOld, recursiveUpdate);

 System.out.println("\n\n update stats1");

 processStats(stats1);

Chapter 24. Monitoring overall system health 2181

stats2.update(stats3, keepOld, recursiveUpdate);

 System.out.println("\n\n update stats2");

 processStats(stats2);

 }

 catch(Exception ex) {

 System.out.println("\n\n Exception in testUpdate");

 ex.printStackTrace();

 success = false;

 }

 }

}

Performance servlet (PerfServlet)

The PerfServlet is used for simple end-to-end retrieval of performance data that any tool, provided by

either IBM or a third-party vendor, can handle.

The servlet provides a way to use an HTTP request to query the performance metrics for an entire

WebSphere Application Server administrative domain. Because the servlet provides the performance data

through HTTP, issues such as firewalls are trivial to resolve.

The PerfServlet provides the performance data output as an XML document, as described in the provided

document type description (DTD). In the XML structure, the leaves of the structure provide the actual

observations of performance data and the paths to the leaves that provide the context.

Starting with version 6.0, the PerfServlet in WebSphere Application Server uses the JMX Perf MBean

interface to retrieve the PMI data and outputs an XML document that uses the J2EE 1.4 Performance

Data Framework to describe the statistics. The PerfSerlvet in can also provide an output that is compatible

with the PerfServlet 5.0. To provide PerfServlet 5.0 compatible output it uses the PMI client interface.

The performance servlet .ear file PerfServletApp.ear is located in the WAS_HOME/installableApps

directory, where WAS_HOME is the installation path for WebSphere Application Server.

The performance servlet is deployed exactly as any other servlet. To use it, follow these steps:

1. Deploy the servlet on a single application server instance within the domain.

2. After the servlet deploys, you can invoke it to retrieve performance data for the entire domain. Invoke

the performance servlet by accessing the following default URL:

http://hostname/wasPerfTool/servlet/perfservlet

The performance servlet provides performance data output as an XML document, as described by the

provided document type definition (DTD). The DTD is located inside the PerfServletApp.ear file.

PerfServlet input

The PerfServlet input and output is used for simple end-to-end retrieval of performance data that any tool,

provided by either IBM or a third-party vendor, can handle

The PerfServlet is deployed in one of the application server instance within the domain. By default, the

PerfServlet collects all of the performance data across a WebSphere Application Server cell. However, it is

possible to limit the data returned by the servlet to either a specific node, server, or PMI module:

Node .The servlet can limit the information it provides to a specific host by using the node parameter.

For example, to limit the data collection to the node ‘rjones’, invoke the following URL:

http://hostname/wasPerfTool/servlet/perfservlet?node=rjones

2182 Administering applications and their environment

Server

The servlet can limit the information it provides to a specific server by using the server parameter.

For example, in order to limit the data collection to the ‘testserver’ server on all nodes, invoke the

following URL:

http://hostname/wasPerfTool/servlet/perfservlet?server=testserver

To limit the data collection to the ‘testserver’ server located on the host ‘rjones’, invoke the

following URL:

http://hostname/wasPerfTool/servlet/perfservlet?node=rjones&server=testserver

Module

The servlet can limit the information it provides to a specific PMI module by using the module

parameter. You can request multiple modules by using the following URL:

http://hostname/wasPerfTool/servlet/perfservlet?module=beanModule+jvmRuntimeModule

For example, to limit the data collection to the beanModule on all servers and nodes, invoke the

following URL:

http://hostname/wasPerfTool/servlet/perfservlet?module=beanModule

To limit the data collection to the beanModule on the server ‘testserver’ on the node rjones, invoke

the following URL:

http://hostname/wasPerfTool/servlet/perfservlet?node=rjones&server=testserver&module=beanModule

To find the list of the modules, invoke the PerfServlet help with the following URL:

http://hostname/wasPerfTool/servlet/perfservlet?action=help

When the performance servlet is first initialized, it retrieves the list of nodes and servers within the domain

in which it is deployed. Because the collection of this data is expensive, the performance servlet holds this

information as a cached list. If a new node is added to the domain or a new server is started, the

performance servlet does not automatically retrieve the information about the newly created element. To

force the servlet to refresh its configuration, you must add the refreshConfig parameter to the invocation as

follows:

http://hostname/wasPerfTool/servlet/perfservlet?refreshConfig=true

You may want to configure other parameters of the performance servlets according to your specific needs.

You can define the host, port number, connector type, and a user name and password.

v Host. This defines the host name where the server is running. The default value is ″localhost.″ For base

installations, use ″localhost″ or ″host″ where application server is running. In Network Deployment

installations, use the Deployment Manager’s host name.

Note: There can be more than one server instance in Network Deployment installations and a

performance servlet can be installed in any one of the servers.

v Port. This is the port through which the server will connect. The default value is ’8880’ (SOAP

connector port in base installation). In a base installation, use the application server SOAP or RMI

connector port. In a Network Deployment installation, use the Deployment Manager’s SOAP or RMI

port.

Note: The port numbers for SOAP/RMI connector can be configured in the administrative console

under Servers > Application Servers > server_name > End Points.

v Connector. The connector type can be either SOAP or RMI. The default value is SOAP.

v Username. If security is enabled provide the user name.

v Password. If security is enabled provide the password.

Chapter 24. Monitoring overall system health 2183

PerfServlet output

The PerfServlet input and output is used for simple end-to-end retrieval of performance data that any tool,

provided by either IBM or a third-party vendor, can handle.

The performance servlet .ear file PerfServletApp.ear is located in the WAS_HOME/installableApps directory.

The PerfServlet 6.0 provides output using the J2EE 1.4 Performance Data Framework. By default, the

PerfServlet output is in 6.0 format. PerfServlet can provide the output in 5.0 format using the version

parameter:

http://hostname/wasPerfTool/servlet/perfservlet?version=5

Refer to “PMI data classification” on page 2052 for details about the Performance Data Framework.

PerfServlet 5.0 output details: The following section describes the PerfServlet 5.0 output. There are

three types of leaves or output formats within the XML structure: PerfNumericInfo, PerfStatInfo, and

PerfLoadInfo.

PerfNumericInfo:

When each invocation of the performance servlet retrieves the performance values from Performance

Monitoring Infrastructure (PMI), some of the values are raw counters that record the number of times a

specific event occurs during the lifetime of the server. If a performance observation is of the type

PerfNumericInfo, the value represents the raw count of the number of times this event has occurred since

the server started. This information is important to note because the analysis of a single document of data

provided by the performance servlet might not be useful for determining the current load on the system. To

determine the load during a specific interval of time, it might be necessary to apply simple statistical

formulas to the data in two or more documents provided during this interval.

 The PerfNumericInfo type has the following attributes:

time Specifies the time when the observation was collected (Java System.currentTimeMillis)

uid Specifies the PMI identifier for the observation

val Specifies the raw counter value

 The following document fragment represents the number of loaded servlets. The path providing the context

of the observation is not shown:

<numLoadedServlets>

 <PerfNumericData time="988162913175" uid="pmi1" val="132"/>

</numLoadedServlets>

PerfStatInfo:

When each invocation of the performance servlet retrieves the performance values from PMI, some of the

values are stored as statistical data. Statistical data records the number of occurrences of a specific event,

as the PerfNumericInfo type does. In addition, this type has sum of squares, mean, and total for each

observation. This value is relative to when the server started.

 The PerfStatInfo type has the following attributes:

time Specifies the time when the observation was collected (Java System.currentTimeMillis)

uid Specifies the PMI identifier for the observation

num Specifies the number of observations

sum_of_squares

Specifies the sum of the squares of the observations

2184 Administering applications and their environment

total Specifies the sum of the observations

mean Specifies the mean (total number) for this counter

 The following fragment represents the response time of an object. The path providing the context of the

observation is not shown:

<responseTime>

 <PerfStatInfo mean="1211.5" num="5" sum_of_squares="3256265.0"

 time="9917644193057" total="2423.0" uid="pmi13"/>

</responseTime>

PerfLoadInfo:

When each invocation of the performance servlet retrieves the performance values from PMI, some of the

values are stored as a load. Loads record values as a function of time; they are averages. This value is

relative to when the server started.

 The PerfLoadInfo type has the following attributes:

time Specifies the time when the observation was collected (Java System.currentTimeMillis)

uid Specifies the PMI identifier for the observation

currentValue

Specifies the current value for this counter

integral

Specifies the time-weighted sum

timeSinceCreate

Specifies the elapsed time in milliseconds since this data was created in the server

mean Specifies time-weighted mean (integral/timeSinceCreate) for this counter

 The following fragment represents the number of concurrent requests. The path providing the context of

the observation is not shown:

<poolSize>

 <PerfLoadInfo currentValue="1.0" integral="534899.0" mean="0.9985028962051592"

 time="991764193057" timeSinceCreate="535701.0" uid="pmi5"/>

</poolSize>

 Related concepts

 “PerfServlet input” on page 2182
The PerfServlet input and output is used for simple end-to-end retrieval of performance data that any

tool, provided by either IBM or a third-party vendor, can handle

 Related tasks

 “Performance servlet (PerfServlet)” on page 2182
The PerfServlet is used for simple end-to-end retrieval of performance data that any tool, provided by

either IBM or a third-party vendor, can handle.

Using the JMX interface to develop your own monitoring application

You can use AdminClient API to get Performance Monitoring Infrastructure (PMI) data by using either

PerfMBean or individual MBeans.

You can invoke methods on MBeans through the AdminClient Java Management Extension (JMX)

interface. You can use AdminClient API to get Performance Monitoring Infrastructure (PMI) data by using

either PerfMBean or individual MBeans. See information about using individual MBeans at bottom of this

article.

Chapter 24. Monitoring overall system health 2185

Individual MBeans provide the Stats attribute from which you can get PMI data. The PerfMBean provides

extended methods for PMI administration and more efficient ways to access PMI data. To set the PMI

module instrumentation level, you must invoke methods on PerfMBean. To query PMI data from multiple

MBeans, it is faster to invoke the getStatsArray method in PerfMBean than to get the Stats attribute from

multiple individual MBeans. Perf MBean can provide PMI data from multiple MBeans using a single JMX

call, but multiple JMX calls have to be made through individual MBeans.

See the topic ″Developing an administrative client program″ for more information on AdminClient JMX.

After the performance monitoring service is enabled and the application server is started or restarted, a

PerfMBean is located in each application server giving access to PMI data. To use PerfMBean:

1. Create an instance of AdminClient. When using AdminClient API, you need to first create an instance

of AdminClient by passing the host name, port number and connector type.

The example code is:

 AdminClient ac = null;

 java.util.Properties props = new java.util.Properties();

 props.put(AdminClient.CONNECTOR_TYPE, connector);

 props.put(AdminClient.CONNECTOR_HOST, host);

 props.put(AdminClient.CONNECTOR_PORT, port);

 try {

 ac = AdminClientFactory.createAdminClient(props);

 }

 catch(Exception ex) {

 failed = true;

 new AdminException(ex).printStackTrace();

 System.out.println("getAdminClient: exception");

 }

2. Use AdminClient to query the MBean ObjectNames Once you get the AdminClient instance, you can

call queryNames to get a list of MBean ObjectNames depending on your query string. To get all the

ObjectNames, you can use the following example code. If you have a specified query string, you will

get a subset of ObjectNames.

 javax.management.ObjectName on = new javax.management.ObjectName("WebSphere:*");

 Set objectNameSet= ac.queryNames(on, null);

 // you can check properties like type, name, and process to find a specified ObjectName

After you get all the ObjectNames, you can use the following example code to get all the node names:

 HashSet nodeSet = new HashSet();

 for(Iterator i = objectNameSet.iterator(); i.hasNext(); on =

(ObjectName)i.next()) {

 String type = on.getKeyProperty("type");

 if(type != null && type.equals("Server")) {

 nodeSet.add(servers[i].getKeyProperty("node"));

 }

 }

Note, this will only return nodes that are started. To list running servers on the node, you can either

check the node name and type for all the ObjectNames or use the following example code:

 StringBuffer oNameQuery= new StringBuffer(41);

 oNameQuery.append("WebSphere:*");

 oNameQuery.append(",type=").append("Server");

 oNameQuery.append(",node=").append(mynode);

 oSet= ac.queryNames(new ObjectName(oNameQuery.toString()), null);

 Iterator i = objectNameSet.iterator ();

 while (i.hasNext ()) {

 on=(objectName) i.next();

 String process= on[i].getKeyProperty("process");

 serversArrayList.add(process);

 }

2186 Administering applications and their environment

3. Get the PerfMBean ObjectName for the application server from which you want to get PMI data. Use

this example code:

 for(Iterator i = objectNameSet.iterator(); i.hasNext(); on = (ObjectName)i.next()) {

 // First make sure the node name and server name is what you want

 // Second, check if the type is Perf

 String type = on.getKeyProperty("type");

 String node = on.getKeyProperty("node");

 String process= on.getKeyProperty("process");

 if (type.equals("Perf") && node.equals(mynode) &

& server.equals(myserver)) {

 perfOName = on;

 }

 }

4. Invoke operations on PerfMBean through the AdminClient. Once you get the PerfMBean(s) in the

application server from which you want to get PMI data, you can invoke the following operations on the

PerfMBean through AdminClient API:

- setStatisticSet: Enable PMI data using the pre-defined statistic sets.

 params[0] = new String[] { com.ibm.websphere.pmi.stat.StatConstants.STATISTIC_SET_EXTENDED};

 signature = new String[] {"java.lang.String"};

 ac.invoke (perfOName, "setStatisticSet", params, signature);

- getStatisticSet: Returns the current statistic set.

 ac.invoke (perfOName, "getStatisticSet", null, null);

- setCustomSetString: Customizing PMI data that is enabled using fine-grained control.

This method allows to enable or disable statistics selectively. The format of the custom

set specification string is STATS_NAME=ID1,ID2,ID3 seperated by ’:’, where STATS_NAME

and IDs are defined in WS*Stat interfaces in com.ibm.websphere.pmi.stat package.

 params[0] = new String (WSJVMStats.NAME + "=" + WSJVMStats.HeapSize);

 params[1] = new Boolean (false);

 signature = new String[] {"java.lang.String", "java.lang.Boolean"};

 ac.invoke (perfOName, "setCustomSetString", null, null);

- getCustomSetString: Returns the current custom set specification as a string

 ac.invoke (perfOName, "getCustomSetString", null, null);

- setInstrumentationLevel: set the instrumentation level

 params[0] = new MBeanLevelSpec(objectName, new int[]{WSJVMStats.HEAPSIZE});

 params[1] = new Boolean(true);

 signature= new String[]{ "com.ibm.websphere.pmi.stat.MBeanLevelSpec",

"java.lang.Boolean"};

 ac.invoke(perfOName, "setInstrumentationLevel", params, signature);

- getInstrumentationLevel: get the instrumentation level

 params[0] = objectName;

 params[1] = new Boolean(recursive);

 String[] signature= new String[]{

"javax.management.ObjectName", "java.lang.Boolean"};

 MBeanLevelSpec[] mlss = (MBeanLevelSpec[])ac.invoke(perfOName,

"getInstrumentationLevel", params, signature);

- setInstrumentationLevel: set the instrumentation level (deprecated in V6.0)

 params[0] = new MBeanLevelSpec(objectName, optionalSD, level);

 params[1] = new Boolean(true);

 signature= new String[]{ "com.ibm.websphere.pmi.stat.MBeanLevelSpec",

"java.lang.Boolean"};

 ac.invoke(perfOName, "setInstrumentationLevel", params, signature);

- getInstrumentationLevel: get the instrumentation level (deprecated in V6.0)

 Object[] params = new Object[2];

 params[0] = new MBeanStatDescriptor(objectName, optionalSD);

 params[1] = new Boolean(recursive);

 String[] signature= new String[]{

"com.ibm.websphere.pmi.stat.MBeanStatDescriptor", "java.lang.Boolean"};

 MBeanLevelSpec[] mlss = (MBeanLevelSpec[])ac.invoke(perfOName,

Chapter 24. Monitoring overall system health 2187

"getInstrumentationLevel", params, signature);

- getConfigs: get PMI static config info for all the MBeans

 configs = (PmiModuleConfig[])ac.invoke(perfOName, "getConfigs", null, null);

- getConfig: get PMI static config info for a specific MBean

 ObjectName[] params = {objectName};

 String[] signature= { "javax.management.ObjectName" };

 config = (PmiModuleConfig)ac.invoke(perfOName, "getConfig", params,

signature);

- getStatsObject: you can use either ObjectName or MBeanStatDescriptor

 Object[] params = new Object[2];

 params[0] = objectName; // either ObjectName or or MBeanStatDescriptor

 params[1] = new Boolean(recursive);

 String[] signature = new String[] { "javax.management.ObjectName",

"java.lang.Boolean"};

 Stats stats = (Stats)ac.invoke(perfOName, "getStatsObject", params,

signature);

 Note: The returned data only have dynamic information (value and time stamp).

See PmiJmxTest.java for additional code to link the configuration information with the

returned data.

- getStatsArray: you can use either ObjectName or MBeanStatDescriptor

 ObjectName[] onames = new ObjectName[]{objectName1, objectName2};

 Object[] params = new Object[]{onames, new Boolean(true)};

 String[] signature = new String[]{"[Ljavax.management.ObjectName;",

"java.lang.Boolean"};

 Stats[] statsArray = (Stats[])ac.invoke(perfOName, "getStatsArray",

params, signature);

 Note: The returned data only have dynamic information (value and time stamp).

See PmiJmxTest.java for additional code to link the configuration information with the

returned data.

- listStatMembers: navigate the PMI module trees

 Object[] params = new Object[]{mName};

 String[] signature= new String[]{"javax.management.ObjectName"};

 MBeanStatDescriptor[] msds = (MBeanStatDescriptor[])ac.invoke(perfOName,

"listStatMembers", params, signature);

or,

 Object[] params = new Object[]{mbeanSD};

 String[] signature= new String[]

{"com.ibm.websphere.pmi.stat.MBeanStatDescriptor"};

 MBeanStatDescriptor[] msds = (MBeanStatDescriptor[])ac.invoke

(perfOName, "listStatMembers", params, signature);

Refer the API documentation for deprecated classes

v To use an individual MBean: You need to get the AdminClient instance and the ObjectName for

the individual MBean. Then you can simply get the Stats attribute on the MBean.

Example: Administering Java Management Extension-based interface

The page provides example code directly using Java Management Extension (JMX) API. For information

on compiling your source code, see ″Compiling your monitoring applications.″

package com.ibm.websphere.pmi;

import com.ibm.websphere.management.AdminClient;

import com.ibm.websphere.management.AdminClientFactory;

import com.ibm.websphere.management.exception.ConnectorException;

import com.ibm.websphere.management.exception.InvalidAdminClientTypeException;

import com.ibm.websphere.management.exception.*;

2188 Administering applications and their environment

import java.util.*;

import javax.management.*;

import com.ibm.websphere.pmi.*;

import com.ibm.websphere.pmi.client.*;

import com.ibm.websphere.pmi.stat.*;

/**

 * Sample code using AdminClient API to get PMI data from PerfMBean

 * and individual MBeans.

 *

 * @ibm-api

 */

public class PmiJmxTest implements PmiConstants

{

 private AdminClient ac = null;

 private ObjectName perfOName = null;

 private ObjectName serverOName = null;

 private ObjectName wlmOName = null;

 private ObjectName jvmOName = null;

 private ObjectName orbtpOName = null;

 private boolean failed = false;

 private PmiModuleConfig[] configs = null;

 /**

 * Creates a new test object

 * (Need a default constructor for the testing framework)

 */

 public PmiJmxTest()

 {

 }

 /**

 * @param args[0] host

 * @param args[1] port, optional, default is 8880

 * @param args[2] connectorType, optional, default is SOAP connector

 *

 */

 public static void main(String[] args)

 {

 PmiJmxTest instance = new PmiJmxTest();

 // parse arguments and create AdminClient object

 instance.init(args);

 // navigate all the MBean ObjectNames and cache those we are interested

 instance.getObjectNames();

 boolean v6 = !(new Boolean(System.getProperty ("websphereV5Statistics"))).

 booleanValue();

 if(v6)

 {

 // test V6 APIs

 instance.doTestV6();

 }

 else

 {

 // set level, get data, display data

 instance.doTest();

 // test for EJB data

 instance.testEJB();

Chapter 24. Monitoring overall system health 2189

// how to use JSR77 getStats method for individual MBean other than PerfMBean

 instance.testJSR77Stats();

 }

 }

 /**

 * parse args and getAdminClient

 */

 public void init(String[] args)

 {

 try

 {

 String host = null;

 String port = "8880";

 String connector = AdminClient.CONNECTOR_TYPE_SOAP;

 if(args.length < 1) {

 System.err.println("ERROR: Usage: PmiJmxTest <host> [<port>] [<connector>]");

 System.exit(2);

 }

 else

 {

 host = args[0];

 if (args.length > 1)

 port = args[1];

 if (args.length > 2)

 connector = args[2];

 }

 if(host == null) {

 host = "localhost";

 }

 if(port == null) {

 port = "2809";

 }

 if (connector == null) {

 connector = AdminClient.CONNECTOR_TYPE_SOAP;

 }

 System.out.println("host=" + host + " , port=" + port + ",connector=" + connector);

 //--

 // Get the ac object for the AppServer

 //---

 System.out.println("main: create the adminclient");

 ac = getAdminClient(host, port, connector);

 }

 catch (Exception ex)

 {

 failed = true;

 new AdminException(ex).printStackTrace();

 ex.printStackTrace();

 }

 }

 /**

 * get AdminClient using the given host, port, and connector

 */

 public AdminClient getAdminClient(String hostStr, String portStr, String

 connector) {

 System.out.println("getAdminClient: host=" + hostStr + " , portStr=" + portStr);

 AdminClient ac = null;

 java.util.Properties props = new java.util.Properties();

 props.put(AdminClient.CONNECTOR_TYPE, connector);

2190 Administering applications and their environment

props.put(AdminClient.CONNECTOR_HOST, hostStr);

 props.put(AdminClient.CONNECTOR_PORT, portStr);

 /* set the following properties if security is enabled and using SOAP

 connector */

 /* The following shows how to set properties for SOAP connector when

 security is enabled.

 See AdminClient javadoc for more info.

 Properties props = new Properties();

 props.setProperty(AdminClient.CONNECTOR_HOST, "localhost");

 props.setProperty(AdminClient.CONNECTOR_PORT, "8880");

 props.setProperty(AdminClient.CONNECTOR_TYPE, AdminClient.CONNECTOR_

 TYPE_SOAP);

 props.setProperty(AdminClient.CONNECTOR_SECURITY_ENABLED, "true");

 props.setProperty(AdminClient.USERNAME, "test2");

 props.setProperty(AdminClient.PASSWORD, "user24test");

 props.setProperty("javax.net.ssl.trustStore",

 "C:/WebSphere/AppServer/etc/DummyClientTrustFile.jks");

 props.setProperty("javax.net.ssl.keyStore",

 "C:/WebSphere/AppServer/etc/DummyClientKeyFile.jks");

 props.setProperty("javax.net.ssl.trustStorePassword", "WebAS");

 props.setProperty("javax.net.ssl.keyStorePassword", "WebAS");

 */

 try {

 ac = AdminClientFactory.createAdminClient(props);

 }

 catch(Exception ex) {

 failed = true;

 new AdminException(ex).printStackTrace();

 System.out.println("getAdminClient: exception");

 }

 return ac;

 }

 /**

 * get all the ObjectNames.

 */

 public void getObjectNames() {

 try {

 //--

 // Get a list of object names

 //--

 javax.management.ObjectName on = new javax.management.ObjectName

 ("WebSphere:*");

 //---

 // get all objectnames for this server

 //--

 Set objectNameSet= ac.queryNames(on, null);

 //--

 // get the object names that we care about: Perf, Server, JVM, WLM (only applicable in ND)

 //--

 if(objectNameSet != null) {

 Iterator i = objectNameSet.iterator();

 while (i.hasNext()) {

 on = (ObjectName)i.next();

 String type = on.getKeyProperty("type");

 // uncomment it if you want to print the ObjectName for each MBean

 // System.out.println("\n\n" + on.toString());

 // find the MBeans we are interested

Chapter 24. Monitoring overall system health 2191

if(type != null && type.equals("Perf")) {

 System.out.println("\nMBean: perf =" + on.toString());

 perfOName = on;

 }

 if(type != null && type.equals("Server")) {

 System.out.println("\nMBean: Server =" + on.toString());

 serverOName = on;

 }

 if(type != null && type.equals("JVM")) {

 System.out.println("\nMBean: jvm =" + on.toString());

 jvmOName = on;

 }

 if(type != null && type.equals("WLMAppServer")) {

 System.out.println("\nmain: WLM =" + on.toString());

 wlmOName = on;

 }

 if(type != null && type.equals("ThreadPool"))

 {

 String name = on.getKeyProperty("name");

 if (name.equals("ORB.thread.pool"))

 System.out.println("\nMBean: ORB ThreadPool =" + on.toString());

 orbtpOName = on;

 }

 }

 }

 else {

 System.err.println("main: ERROR: no object names found");

 System.exit(2);

 }

 // You must have Perf MBean in order to get PMI data.

 if (perfOName == null)

 {

 System.err.println("main: cannot get PerfMBean. Make sure PMI is enabled");

 System.exit(3);

 }

 }

 catch(Exception ex)

 {

 failed = true;

 new AdminException(ex).printStackTrace();

 ex.printStackTrace();

 }

 }

 /** Test V6 APIs */

 public void doTestV6 ()

 {

 System.out.println ("\ndoTestV6() output:\n");

 // the following methods are specific to V6 and demonstrates the V6 API..so set the flag to false

 String v5PropFlag = System.setProperty ("websphereV5Statistics", "false");

 try

 {

 Object[] params;

 String[] signature;

 // get current statistic set that is used for monitoring

 System.out.println ("\nCurrent statistic set: " + ac.invoke(perfOName, "getStatisticSet", null, null));

 // get all statistics from the server using Perf MBean

 System.out.println ("\nGet all statistics in PMI tree");

 signature = new String[]{"[Lcom.ibm.websphere.pmi.stat.StatDescriptor;","java.lang.Boolean"};

 params = new Object[] {new StatDescriptor[]{new StatDescriptor(null)}, new Boolean(true)};

2192 Administering applications and their environment

com.ibm.websphere.pmi.stat.WSStats[] wsStats = (com.ibm.websphere.pmi.stat.WSStats[])

 ac.invoke(perfOName, "getStatsArray", params, signature);

 System.out.println (wsStats[0].toString());

 // get statistics from one JVM MBean using J2EE JMX

 System.out.println ("\nGet JVM statistics using JVM MBean");

 javax.management.j2ee.statistics.Stats j2eeStats = (javax.management.j2ee.statistics.Stats)

 ac.getAttribute(jvmOName, "stats");

 System.out.println (j2eeStats.toString());

 // get statistics from a specific thread pool -- WebContainer thread pool

 System.out.println ("\nGet statistics for a specific thread pool");

 signature = new String[]{"[Lcom.ibm.websphere.pmi.stat.StatDescriptor;","java.lang.Boolean"};

 StatDescriptor webContainerPoolSD = new StatDescriptor (new String[] {WSThreadPoolStats.NAME,

 "WebContainer"});

 params = new Object[] {new StatDescriptor[]{webContainerPoolSD}, new Boolean(true)};

 wsStats = (com.ibm.websphere.pmi.stat.WSStats[])

 ac.invoke(perfOName, "getStatsArray", params, signature);

 System.out.println (wsStats[0].toString());

 // set monitoring to statistic set "extended"

 System.out.println ("\nSet monitoring to statistic set ’Extended’");

 signature = new String[]{"java.lang.String"};

 params = new Object[] {StatConstants.STATISTIC_SET_EXTENDED};

 ac.invoke(perfOName, "setStatisticSet", params, signature);

 // get current statistic set that is used for monitoring

 System.out.println ("\nCurrent statistic set: "+ ac.invoke(perfOName, "getStatisticSet", null, null));

 // selectively enable statistics for all thread pools

 System.out.println ("\nSelectively enable statistics (ActiveCount and PoolSize statistics)

 for thread pool -- fine grained control");

 StatDescriptor threadPoolSD = new StatDescriptor (new String[]

 {WSThreadPoolStats.NAME});

 // create a spec object to enable ActiveCount and PoolSize on the thread pool

 StatLevelSpec[] spec = new StatLevelSpec[1];

 spec[0] = new StatLevelSpec (threadPoolSD.getPath(), new int[]

 {WSThreadPoolStats.ActiveCount, WSThreadPoolStats.PoolSize});

 signature = new String[]{"[Lcom.ibm.websphere.pmi.stat.StatLevelSpec;","java.lang.Boolean"};

 params = new Object[] {spec, new Boolean(true)};

 ac.invoke(perfOName, "setInstrumentationLevel", params, signature);

 // get current statistic set that is used for monitoring

 System.out.println ("\nCurrent statistic set: "+ ac.invoke(perfOName, "getStatisticSet", null, null));

 // get statistics from all thread pools

 System.out.println ("\nGet statistics from all thread pools");

 signature = new String[]{"[Lcom.ibm.websphere.pmi.stat.StatDescriptor;","java.lang.Boolean"};

 params = new Object[] {new StatDescriptor[]{threadPoolSD},new Boolean(true)};

 wsStats = (com.ibm.websphere.pmi.stat.WSStats[])

 ac.invoke(perfOName, "getStatsArray", params, signature);

 System.out.println (wsStats[0].toString());

 }

 catch (Exception e)

Chapter 24. Monitoring overall system health 2193

{

 e.printStackTrace();

 }

 // set the property to original value

 System.setProperty ("websphereV5Statistics", v5PropFlag);

 }

 /**

 * Some sample code to set level, get data, and display data. (V5)

 * @deprecated Use 6.0 APIs.

 */

 public void doTest()

 {

 try

 {

 // first get all the configs - used to set static info for Stats

 // Note: server only returns the value and time info.

 // No description, unit, etc is returned with PMI data to reduce communication cost.

 // You have to call setConfig to bind the static info and Stats data later.

 configs = (PmiModuleConfig[])ac.invoke(perfOName, "getConfigs", null, null);

 // print out all the PMI modules and matching mbean types

 for (int i=0; i<configs.length; i++)

 System.out.println("config: moduleName=" + configs[i].getShortName() +

 ", mbeanType=" + configs[i].getMbeanType());

 // set the instrumentation level for the server

 setInstrumentationLevel(serverOName, null, PmiConstants.LEVEL_HIGH);

 // example to use StatDescriptor.

 // Note WLM module is only available in ND.

 StatDescriptor sd = new StatDescriptor(new String[] {"wlmModule.server"});

 setInstrumentationLevel(wlmOName, sd, PmiConstants.LEVEL_HIGH);

 // example to getInstrumentationLevel

 MBeanLevelSpec[] mlss = getInstrumentationLevel(wlmOName, sd, true);

 // you can call getLevel(), getObjectName(), getStatDescriptor() on mlss[i]

 // get data for the server

 Stats stats = getStatsObject(serverOName, true);

 System.out.println(stats.toString());

 // get data for WLM server submodule

 stats = getStatsObject(wlmOName, sd, true);

 if (stats == null)

 System.out.println("Cannot get Stats for WLM data");

 else

 System.out.println(stats.toString());

 // get data for JVM MBean

 stats = getStatsObject(jvmOName, true);

 processStats(stats);

 // get data for multiple MBeans

 ObjectName[] onames = new ObjectName[]{orbtpOName, jvmOName};

 Object[] params = new Object[]{onames, new Boolean(true)};

 String[] signature = new String[]{"[Ljavax.management.ObjectName;",

 "java.lang.Boolean"};

 Stats[] statsArray = (Stats[])ac.invoke(perfOName, "getStatsArray",

 params, signature);

 // you can call toString or processStats on statsArray[i]

 if (!failed)

 System.out.println("All tests passed");

 else

 System.out.println("Some tests failed");

2194 Administering applications and their environment

}

 catch(Exception ex)

 {

 new AdminException(ex).printStackTrace();

 ex.printStackTrace();

 }

 }

 /**

 * Sample code to get level

 */

 protected MBeanLevelSpec[] getInstrumentationLevel(ObjectName on, StatDescriptor sd, boolean recursive)

 {

 if (sd == null)

 return getInstrumentationLevel(on, recursive);

 System.out.println("\ntest getInstrumentationLevel\n");

 try {

 Object[] params = new Object[2];

 params[0] = new MBeanStatDescriptor(on, sd);

 params[1] = new Boolean(recursive);

 String[] signature= new String[]{ "com.ibm.websphere.pmi.stat.MBeanStatDescriptor", "java.lang.Boolean"};

 MBeanLevelSpec[] mlss = (MBeanLevelSpec[])ac.invoke(perfOName, "getInstrumentationLevel", params, signature)
 return mlss;

 }

 catch(Exception e) {

 new AdminException(e).printStackTrace();

 System.out.println("getInstrumentationLevel: Exception Thrown");

 return null;

 }

 }

 /**

 * Sample code to get level

 */

 protected MBeanLevelSpec[] getInstrumentationLevel(ObjectName on,

 boolean recursive) {

 if (on == null)

 return null;

 System.out.println("\ntest getInstrumentationLevel\n");

 try {

 Object[] params = new Object[]{on, new Boolean(recursive)};

 String[] signature= new String[]{ "javax.management.ObjectName",

 "java.lang.Boolean"};

 MBeanLevelSpec[] mlss = (MBeanLevelSpec[])ac.invoke(perfOName,

 "getInstrumentationLevel", params, signature);

 return mlss;

 }

 catch(Exception e) {

 new AdminException(e).printStackTrace();

 failed = true;

 System.out.println("getInstrumentationLevel: Exception Thrown");

 return null;

 }

 }

 /**

 * Sample code to set level

 * @deprecated Use 6.0 APIs.

 */

 protected void setInstrumentationLevel(ObjectName on, StatDescriptor sd,

 int level) {

 System.out.println("\ntest setInstrumentationLevel\n");

 try {

 Object[] params = new Object[2];

 String[] signature = null;

 MBeanLevelSpec[] mlss = null;

Chapter 24. Monitoring overall system health 2195

params[0] = new MBeanLevelSpec(on, sd, level);

 params[1] = new Boolean(true);

 signature= new String[]{ "com.ibm.websphere.pmi.stat.MBeanLevelSpec","java.lang.Boolean"};

 ac.invoke(perfOName, "setInstrumentationLevel", params, signature);

 }

 catch(Exception e) {

 failed = true;

 new AdminException(e).printStackTrace();

 System.out.println("setInstrumentationLevel: FAILED: Exception Thrown");

 }

 }

 /**

 * Sample code to get a Stats object

 * @deprecated Use 6.0 APIs.

 */

 public Stats getStatsObject(ObjectName on, StatDescriptor sd, boolean

 recursive) {

 if (sd == null)

 return getStatsObject(on, recursive);

 System.out.println("\ntest getStatsObject\n");

 try {

 Object[] params = new Object[2];

 params[0] = new MBeanStatDescriptor(on, sd); // construct MBeanStatDescriptor

 params[1] = new Boolean(recursive);

 String[] signature = new String[] { "com.ibm.websphere.pmi.stat.MBeanStatDescriptor", "java.lang.Boolean"};

 Stats stats = (Stats)ac.invoke(perfOName, "getStatsObject", params, signature);

 if (stats == null) return null;

 // find the PmiModuleConfig and bind it with the data

 String type = on.getKeyProperty("type");

 if (type.equals(MBeanTypeList.SERVER_MBEAN))

 setServerConfig(stats);

 else

 stats.setConfig(PmiClient.findConfig(configs, on));

 return stats;

 } catch(Exception e) {

 failed = true;

 new AdminException(e).printStackTrace();

 System.out.println("getStatsObject: Exception Thrown");

 return null;

 }

 }

 /**

 * Sample code to get a Stats object

 */

 public Stats getStatsObject(ObjectName on, boolean recursive) {

 if (on == null)

 return null;

 System.out.println("\ntest getStatsObject\n");

 try {

 Object[] params = new Object[]{on, new Boolean(recursive)};

 String[] signature = new String[] { "javax.management.ObjectName",

 "java.lang.Boolean"};

 Stats stats = (Stats)ac.invoke(perfOName, "getStatsObject", params,

 signature);

2196 Administering applications and their environment

// find the PmiModuleConfig and bind it with the data

 String type = on.getKeyProperty("type");

 if (type.equals(MBeanTypeList.SERVER_MBEAN))

 setServerConfig(stats);

 else

 stats.setConfig(PmiClient.findConfig(configs, on));

 return stats;

 }

 catch(Exception e) {

 failed = true;

 new AdminException(e).printStackTrace();

 System.out.println("getStatsObject: Exception Thrown");

 return null;

 }

 }

 /**

 * Sample code to navigate and get the data value from the Stats object.

 */

 private void processStats(Stats stat) {

 processStats(stat, "");

 }

 /**

 * Sample code to navigate and get the data value from the Stats and

 Statistic object.

 * @deprecated Use 6.0 APIs.

 */

 private void processStats(Stats stat, String indent) {

 if(stat == null) return;

 System.out.println("\n\n");

 // get name of the Stats

 String name = stat.getName();

 System.out.println(indent + "stats name=" + name);

 // list data names

 String[] dataNames = stat.getStatisticNames();

 for (int i=0; i<dataNames.length; i++)

 System.out.println(indent + " " + "data name=" + dataNames[i]);

 System.out.println("");

 // list all datas

 //com.ibm.websphere.management.statistics.Statistic[] allData =

 stat.getStatistics();

 // cast it to be PMI’s Statistic type so that we can have get more

 // Also show how to do translation.

 //Statistic[] dataMembers = (Statistic[])allData;

 Statistic[] dataMembers = stat.listStatistics();

 if(dataMembers != null) {

 for(int i=0; i<dataMembers.length; i++) {

 System.out.print(indent + " " + "data name=" +

 PmiClient.getNLSValue(dataMembers[i].getName())

 + ", description=" + PmiClient.getNLSValue

 (dataMembers[i].getDescription())

 + ", startTime=" + dataMembers[i].getStartTime()

 + ", lastSampleTime=" + dataMembers[i].getLastSampleTime());

 if(dataMembers[i].getDataInfo().getType() == TYPE_LONG) {

 System.out.println(", count=" + ((CountStatisticImpl)dataMembers[i]).getCount());

 }

 else if(dataMembers[i].getDataInfo().getType() == TYPE_STAT) {

 TimeStatisticImpl data = (TimeStatisticImpl)dataMembers[i];

Chapter 24. Monitoring overall system health 2197

System.out.println(", count=" + data.getCount()

 + ", total=" + data.getTotal()

 + ", mean=" + data.getMean()

 + ", min=" + data.getMin()

 + ", max=" + data.getMax());

 }

 else if(dataMembers[i].getDataInfo().getType() == TYPE_LOAD) {

 RangeStatisticImpl data = (RangeStatisticImpl)dataMembers[i];

 System.out.println(", current=" + data.getCurrent()

 + ", integral=" + data.getIntegral()

 + ", avg=" + data.getMean()

 + ", lowWaterMark=" + data.getLowWaterMark()

 + ", highWaterMark=" + data.getHighWaterMark());

 }

 }

 }

 // recursively for sub-stats

 Stats[] substats = (Stats[])stat.getSubStats();

 if(substats == null || substats.length == 0)

 return;

 for(int i=0; i<substats.length; i++) {

 processStats(substats[i], indent + " ");

 }

 }

 /**

 * The Stats object returned from server does not have static config info.

 You have to set it on client side.

 */

 public void setServerConfig(Stats stats) {

 if(stats == null) return;

 if(stats.getType() != TYPE_SERVER) return;

 PmiModuleConfig config = null;

 Stats[] statList = stats.getSubStats();

 if (statList == null || statList.length == 0)

 return;

 Stats oneStat = null;

 for(int i=0; i<statList.length; i++) {

 oneStat = statList[i];

 if (oneStat == null) continue;

 config = PmiClient.findConfig(configs, oneStat.getStatsType());

 //getName

 if(config != null)

 oneStat.setConfig(config);

 else

 {

 config = getStatsConfig (oneStat.getStatsType());

 if (config != null)

 oneStat.setConfig(config);

 else

 System.out.println("Error: get null config for " + oneStat.getStatsType());

 }

 }

 }

 /**

 * sample code to show how to get a specific MBeanStatDescriptor

 * @deprecated Use 6.0 APIs.

 */

 public MBeanStatDescriptor getStatDescriptor(ObjectName oName, String name) {

 try {

 Object[] params = new Object[]{serverOName};

 String[] signature= new String[]{"javax.management.ObjectName"};

 MBeanStatDescriptor[] msds = (MBeanStatDescriptor[])ac.invoke

2198 Administering applications and their environment

(perfOName, "listStatMembers", params, signature);

 if (msds == null)

 return null;

 for (int i=0; i<msds.length; i++) {

 if (msds[i].getName().equals(name))

 return msds[i];

 }

 return null;

 }

 catch(Exception e) {

 new AdminException(e).printStackTrace();

 System.out.println("listStatMembers: Exception Thrown");

 return null;

 }

 }

 /**

 * sample code to show you how to navigate MBeanStatDescriptor via

 listStatMembers

 * @deprecated Use 6.0 APIs.

 */

 public MBeanStatDescriptor[] listStatMembers(ObjectName mName) {

 if (mName == null)

 return null;

 try {

 Object[] params = new Object[]{mName};

 String[] signature= new String[]{"javax.management.ObjectName"};

 MBeanStatDescriptor[] msds = (MBeanStatDescriptor[])ac.invoke

 (perfOName, "listStatMembers", params, signature);

 if (msds == null)

 return null;

 for (int i=0; i<msds.length; i++) {

 MBeanStatDescriptor[] msds2 = listStatMembers(msds[i]);

 }

 return null;

 }

 catch(Exception e) {

 new AdminException(e).printStackTrace();

 System.out.println("listStatMembers: Exception Thrown");

 return null;

 }

 }

 /**

 * Sample code to get MBeanStatDescriptors

 * @deprecated Use 6.0 APIs.

 */

 public MBeanStatDescriptor[] listStatMembers(MBeanStatDescriptor mName) {

 if (mName == null)

 return null;

 try {

 Object[] params = new Object[]{mName};

 String[] signature= new String[]{"com.ibm.websphere.pmi.stat.MBeanStatDescriptor"};

 MBeanStatDescriptor[] msds = (MBeanStatDescriptor[])ac.invoke(perfOName, "listStatMembers",

 params, signature);

 if (msds == null)

 return null;

 for (int i=0; i<msds.length; i++) {

 MBeanStatDescriptor[] msds2 = listStatMembers(msds[i]);

 // you may recursively call listStatMembers until find the one you want

 }

 return msds;

Chapter 24. Monitoring overall system health 2199

}

 catch(Exception e) {

 new AdminException(e).printStackTrace();

 System.out.println("listStatMembers: Exception Thrown");

 return null;

 }

 }

 /**

 * sample code to get PMI data from beanModule

 * @deprecated Use 6.0 APIs.

 */

 public void testEJB() {

 // This is the MBeanStatDescriptor for Enterprise EJB

 MBeanStatDescriptor beanMsd = getStatDescriptor(serverOName,

 PmiConstants.BEAN_MODULE);

 if (beanMsd == null)

 System.out.println("Error: cannot find beanModule");

 // get the Stats for module level only since recursive is false

 Stats stats = getStatsObject(beanMsd.getObjectName(), beanMsd.

 getStatDescriptor(), false); // pass true if you wannt data from individual beans

 // find the avg method RT

 TimeStatisticImpl rt = (TimeStatisticImpl)stats.getStatistic

 (EJBStatsImpl.METHOD_RT);

 System.out.println("rt is " + rt.getMean());

 try {

 java.lang.Thread.sleep(5000);

 } catch (Exception ex) {

 ex.printStackTrace();

 }

 // get the Stats again

 Stats stats2 = getStatsObject(beanMsd.getObjectName(), beanMsd.

 getStatDescriptor(), false); // pass true if you wannt data from individual beans

 // find the avg method RT

 TimeStatisticImpl rt2 = (TimeStatisticImpl)stats2.getStatistic

 (EJBStatsImpl.METHOD_RT);

 System.out.println("rt2 is " + rt2.getMean());

 // calculate the difference between this time and last time.

 TimeStatisticImpl deltaRt = (TimeStatisticImpl)rt2.delta(rt);

 System.out.println("deltaRt is " + rt.getMean());

 }

 /**

 * Sample code to show how to call getStats on StatisticProvider MBean

 directly.

 * @deprecated Use 6.0 APIs.

 */

 public void testJSR77Stats() {

 // first, find the MBean ObjectName you are interested.

 // Refer method getObjectNames for sample code.

 // assume we want to call getStats on JVM MBean to get statistics

 try {

 com.ibm.websphere.management.statistics.JVMStats stats =

 (com.ibm.websphere.management.statistics.JVMStats)ac.

 invoke(jvmOName, "getStats", null, null);

2200 Administering applications and their environment

System.out.println("\n get data from JVM MBean");

 if (stats == null) {

 System.out.println("WARNING: getStats on JVM MBean returns null");

 } else {

 // first, link with the static info if you care

 ((Stats)stats).setConfig(PmiClient.findConfig(configs, jvmOName));

 // print out all the data if you want

 //System.out.println(stats.toString());

 // navigate and get the data in the stats object

 processStats((Stats)stats);

 // call JSR77 methods on JVMStats to get the related data

 com.ibm.websphere.management.statistics.CountStatistic upTime =

 stats.getUpTime();

 com.ibm.websphere.management.statistics.BoundedRangeStatistic

 heapSize = stats.getHeapSize();

 if (upTime != null)

 System.out.println("\nJVM up time is " + upTime.getCount());

 if (heapSize != null)

 System.out.println("\nheapSize is " + heapSize.getCurrent());

 }

 } catch (Exception ex) {

 ex.printStackTrace();

 new AdminException(ex).printStackTrace();

 }

 }

 /**

 Get PmiModuleConfig from server

 */

 public PmiModuleConfig getStatsConfig (String statsType)

 {

 try

 {

 return (PmiModuleConfig)ac.invoke(perfOName, "getConfig",

 new String[]{statsType},

 new String[]{"java.lang.String"});

 }

 catch(Exception e)

 {

 e.printStackTrace();

 return null;

 }

 }

 /**

 * Get PmiModuleConfig based on MBean ObjectName

 @deprecated Use com.ibm.websphere.pmi.client.PmiClient.findConfig()

 */

 public PmiModuleConfig findConfig(ObjectName on) {

 if (on == null) return null;

 String type = on.getKeyProperty("type");

 System.out.println("findConfig: mbean type =" + type);

 for (int i=0; i<configs.length ; i++) {

 if (configs[i].getMbeanType().equals(type))

 return configs[i];

 }

 System.out.println("Error: cannot find the config");

Chapter 24. Monitoring overall system health 2201

return null;

 }

 /**

 * Get PmiModuleConfig based on PMI module name

 @deprecated Use com.ibm.websphere.pmi.client.PmiClient.findConfig()

 */

 public PmiModuleConfig findConfig(String moduleName) {

 if (moduleName == null) return null;

 for (int i=0; i<configs.length ; i++) {

 if (configs[i].getShortName().equals(moduleName))

 return configs[i];

 }

 System.out.println("Error: cannot find the config");

 return null;

 }

}

Developing PMI interfaces (Version 4.0) (deprecated)

You can use the Performance Monitoring Infrastructure (PMI) interfaces to develop your own applications

to collect and display performance information.

The Version 4.0 APIs are supported in this release, however, some data hierarchy changes have occurred

in the PMI modules, including the enterprise bean and HTTP sessions modules. If you have an existing

PmiClient application and you want to run it against Version 5.0, you might have to update the

PerfDescriptor(s) based on the new PMI data hierarchy.

The getDataName and getDataId methods in PmiClient have also changed. They are now non-static

methods in order to support multiple WebSphere Application Server versions. You might have to update

your existing application which uses these two methods.

This section discusses the use of the Performance Monitoring Infrastructure (PMI) client interfaces in

applications. The basic steps in the programming model follow:

1. Retrieve an initial collection or snapshot of performance data from the server. A client uses the

CpdCollection interface to retrieve an initial collection or snapshot from the server. This snapshot,

which is called Snapshot in this example, is provided in a hierarchical structure as described in data

organization and hierarchy, and contains the current values of all performance data collected by the

server. The snapshot maintains the same structure throughout the lifetime of the CpdCollection

instance.

2. Process and display the data as specified. The client processes and displays the data as specified.

Processing and display objects, for example, filters and GUIs, can register as CpdEvent listeners to

data of interest. The listener works only within the same Java virtual machine (JVM). When the client

receives updated data, all listeners are notified.

3. Display the new CpdCollection instance through the hierarchy. When the client receives new or

changed data, the client can simply display the new CpdCollection instance through its hierarchy.

When it is necessary to update the Snapshot collection, the client can use the update method to

update Snapshot with the new data.

Snapshot.update(S1);

// ...later...

Snapshot.update(S2);

Steps 2 and 3 are repeated through the lifetime of the client.

2202 Administering applications and their environment

Compiling your monitoring applications

Use this page to find the JAR files required to compile your Performance Monitoring Infrastructure (PMI).

To compile your Performance Monitoring Infrastructure (PMI) code, you must have the following JAR file in

your class path:

v %WAS_HOME%/plugins/com.ibm.ws.runtime_6.1.0.jar

The JAR files listed above are needed to compile the PmiJmxTest example application. If your monitoring

applications use APIs in other packages, also include those packages on the class path. If any

WebSphere Application Server class is not found with the above set of jars, then you can include all the

WebSphere jars using:

javac -classpath %WAS_HOME%\plugins\com.ibm.ws.runtime_6.1.0.jar myclass.java

Running your new monitoring applications

Use this page to learn about the steps you must follow in order to run monitoring applications.

Follow these steps to run your monitoring applications.

1. You need a WebSphere Application Server installation or WebSphere Application Server J2EE client

package to run a PMI application.

2. Use a PMI client API to write your own application.

3. Compile the newly-written PMI application and place it on the class path. (The jar files under

%WAS_HOME%\lib and %WAS_HOME%\classes folder will be placed in the class path by the

following script.)

4. To run a PMI application you need a WebSphere Application Server runtime environment (the

application server installation or a J2EE client package). Using the following script to run the

application:

Note: The following is formatted for Windows based systems. You may need to adjust the script

depending on your operating system.
@echo off

@setlocal

call "%~dp0setupCmdLine.bat"

"%JAVA_HOME%\bin\java" "%CLIENTSAS%" "%CLIENTSOAP%" -DwebsphereV5Statistics=false

-Dwas.install.root="%WAS_HOME%" -Dws.ext.dirs="%WAS_EXT_DIRS%" -classpath "%WAS_CLASSPATH%"

com.ibm.ws.bootstrap.WSLauncher com.ibm.websphere.pmi.PmiJmxTest %*

Performance Monitoring Infrastructure client package

Use this page to learn how to use the PmiClient application and JMX connector to communicate to the

Perf MBean in an application server.

A Performance Monitoring Infrastructure (PMI) client package provides a PmiClient wrapper class to

deliver PMI data to a client. As shown in the following figure, the PmiClient API uses the AdminClient API

to communicate to the Perf MBean in an application server.

Performance Monitoring Infrastructure and Java Management Extensions

The PmiClient API does not work if the Java Management Extensions (JMX) infrastructure and Perf

MBean are not running. If you prefer to use the AdminClient API directly to retrieve PMI data, you still have

a dependency on the JMX infrastructure.

When using the PmiClient API, you have to pass the JMX connector protocol and port number to

instantiate an object of the PmiClient. Once you get a PmiClient object, you can call its methods to list

nodes, servers and MBeans, set the monitoring level, and retrieve PMI data.

Chapter 24. Monitoring overall system health 2203

The PmiClient API creates an instance of the AdminClient API and delegates your requests to the

AdminClient API. The AdminClient API uses the JMX connector to communicate with the Perf MBean in

the corresponding server and then returns the data to the PmiClient, which returns the data to the client.

PmiClient AdminClient

PmiClient Application

JMX Connector

App Server

Perf
MBean

Running your monitoring applications with security enabled

You can opt to run a Performance Monitoring Infrastructure client application with security enabled.

In order to run a Performance Monitoring Infrastructure (PMI) client application with security enabled, you

must have %CLIENTSOAP% properties defined on your Java virtual machine command line for a SOAP

connector, and %CLIENTSAS% properties defined for a RMI connector. The %CLIENTSOAP% and

%CLIENTSAS% properties are defined in the setupCmdLine.bat or setupCmdline.sh files.

v If you are configuring security for a SOAP connector:

1. Set com.ibm.SOAP.securityEnabled to True in the soap.client.props file for the SOAP connector. The

soap.client.props property file is located in the profile_root/properties directory.

2. Set com.ibm.SOAP.loginUserid and com.ibm.SOAP.loginPassword as the user ID and password for

login.

v If you are configuring security for a RMI connector, set the sas.client.props file or type the user ID and

password in the window, if you do not put them in the property file for Remote Method Invocation (RMI)

connector. A common mistake is to leave extra spaces at the end of the lines in the property file. Do not

leave extra spaces at the end of the lines, especially for the user ID and password lines.

Monitoring performance with Tivoli Performance Viewer (TPV)

Tivoli Performance Viewer (TPV) enables administrators and programmers to monitor the overall health of

WebSphere Application Server from within the administrative console.

In Version 4.0, Tivoli Performance Viewer was named the Resource Analyzer. In Version 5.0, TPV is a

standalone Java application. In Versions 6.0.x and later, TPV is embedded in the administrative console.

From TPV, you can view current activity and summary reports, or log Performance Monitoring

Infrastructure (PMI) performance data. TPV provides a simple viewer for the performance data collected by

the Performance Monitoring Infrastructure.

By viewing TPV data, administrators can determine which part of the application and configuration settings

to change in order to improve performance. For example, you can view the servlet summary reports,

enterprise beans, and Enterprise JavaBeans (EJB) methods in order to determine what part of the

application to focus on. Then, you can sort these tables to determine which of these resources has the

highest response time. Focus on improving the configuration for those application resources taking the

longest response time.

1. Optional: Adjust the Performance Monitoring Infrastructure (PMI) settings for the servers that you want

to monitor. The PMI service is enabled by default with a basic set of counters enabled.

2. Monitor current server activity. You can view real-time data on the current performance activity of a

server using TPV in the administrative console.

v Use the performance advisors to examine various data while your application is running. The

performance advisor in TPV provides advice to help tune systems for optimal performance by using

collected PMI data.

2204 Administering applications and their environment

v Configure user and logging settings for TPV. These settings may affect the performance of your

application server.

v View summary reports on servlets, Enterprise JavaBeans (EJB) methods, connections pools and

thread pools in WebSphere Application Server.

v View performance modules that provide graphs and of various performance data on system

resources such as CPU utilization, on WebSphere pools and queues such as database connection

pools, and on customer application data such as servlet response time. In addition to providing a

viewer for performance data, TPV enables you to view data for other products or customer

applications that have implemented custom PMI.

3. View server performance logs. You can record and view data that has been logged by TPV in the

administrative console. Be sure to configure user and logging settings for TPV.

4. Log performance data. You can record real-time data for later retrieval and analysis.

Why use Tivoli Performance Viewer?

Administrators and programmers can monitor the overall health of WebSphere Application Server from

within the administrative console by using Tivoli Performance Viewer (TPV).

From TPV, you can view current activity or log Performance Monitoring Infrastructure (PMI) performance

data for the following:

v System resources such as CPU utilization

v WebSphere pools and queues such as a database connection pool

v Customer application data such as average servlet response time

You can also view data for other products or customer applications that implement custom PMI by using

TPV. For more information on custom PMI, refer to “Enabling PMI data collection” on page 2158.

By viewing PMI data, administrators can determine which part of the application and configuration settings

to alter in order to improve performance. For example, in order to determine what part of the application to

focus on, you can view the servlet summary report, enterprise beans and Enterprise JavaBeans (EJB)

methods, and determine which of these resources has the highest response time. You can then focus on

improving the configuration for those application resources with the longest response times.

Tivoli Performance Viewer is used to help manage configuration settings by viewing the various graphs or

using the Tivoli Performance Advisor. For example, by looking at the summary chart for thread pools, you

can determine whether the thread pool size needs to be increased or decreased by monitoring the percent

(%) usage. After configuration settings are changed based on the data provided, you can determine the

effectiveness of the changes. To help with configuration settings, use the Tivoli Performance Advisor. The

Advisor assesses various data while your application is running, and provides configuration setting advice

to improve performance.

transition: In Version 4.0, Tivoli Performance Viewer was originally named the Resource Analyzer. In

Version 5.0, TPV was a standalone Java application. In Versions 6.0.x and later, TPV is

embedded in the administrative console.

TPV topologies and performance impacts

The Tivoli Performance Viewer (TPV) enables administrators and programmers to monitor the overall

health of WebSphere Application Server from within the administrative console.

The following two topologies exist for the Tivoli Performance Viewer:

v Tivoli Performance Viewer running in a single server environment

v Tivoli Performance Viewer running in a Network Deployment environment

When the Tivoli Performance Viewer is running in a single server environment, the collection and viewing

of the data occurs in the same Java virtual machine. Because the collection and viewing of data occurs in

Chapter 24. Monitoring overall system health 2205

the application server, performance may be affected depending on TPV settings. “Viewing Data with the

Tivoli Performance Viewer” on page 2209 describes the various TPV settings and their effect on

performance.

 Related tasks

 “Monitoring performance with Tivoli Performance Viewer (TPV)” on page 2204
Tivoli Performance Viewer (TPV) enables administrators and programmers to monitor the overall health

of WebSphere Application Server from within the administrative console.

Viewing current performance activity

You can view the current performance activity of a server using the Tivoli Performance Viewer (TPV) in the

administrative console.

Once monitoring is enabled, TPV monitors the performance activity of all servers on a node, which can

include the following:

v Application servers

v Node agent for the node being monitored

TPV enables administrators and programmers to monitor the current health of WebSphere Application

Server. Because the collection and viewing of data occurs in the application server, performance may be

affected. To minimize performance impacts, monitor only those servers whose resources need to be

optimized.

1. Click Monitoring and Tuning > Performance Viewer > Current Activity in the console navigation

tree. The TPV current activity collection is displayed.

2. Start monitoring the current activity of a server in either of two ways:

v Under Server, click the name of the server whose activity you want to monitor. Clicking on the name

starts the monitoring for the server and displays the activity page for the server.

v Select the check box for the server whose activity you want to monitor, and click Start Monitoring.

A TPV console panel is displayed, providing a navigation tree on the left and a view of real-time data

on the current performance activity of a server on the right.

3. From the navigation tree, select the server activity data that you want to view.

 Option Description

Advisor Use the Performance Advisor to examine various data

while your application is running. The Performance

Advisor provides advice to help tune systems for optimal

performance and gives recommendations on inefficient

settings by using collected PMI data.

Settings Configure user and logging settings for TPV. These

settings can affect the performance of your application

server.

Summary Reports View summary reports on servlets, enterprise beans

(EJBs), EJB methods, connections pools and thread

pools in WebSphere Application Server.

Performance Modules View performance modules that provide graphics and

charts of various performance data on system resources

such as CPU utilization, on WebSphere pools and

queues such as database connection pools, and on

customer application data such as servlet response time.

In addition to providing a viewer for performance data,

TPV enables you to view data for other products or

customer applications that have implemented custom

PMI.

2206 Administering applications and their environment

When you finish monitoring a server, select the server and click Stop Monitoring. TPV automatically stops

monitoring a server if you the browser window is closed or if the user logs out..

Selecting a server and changing monitoring status

Use this page to start and stop monitoring for each server and to select a server for Tivoli Performance

Viewer. You can also view the collection status for each server.

To view this administrative console page, click Monitoring and Tuning > Performance Viewer > Current

Activity.

On this page, you can view the collection status of each server. When the collection status is Monitored,

Tivoli Performance Monitor is enabled. If the collection status is Available, the server is ready to be

enabled. If the collection status is Unavailable, server stopped, PMI not enabled, or nodeagent

stopped, you must restart your server before you can start monitoring. Click on any server or node agent

to view the current activity for that server. Lastly, Performance Data Collection Not Supported means

that the server is not version 6.0.x or later.

Maximum rows: Specifies the maximum number of rows that displays when the collection is large. The

rows that are not displayed appear on the next page.

Retain filter criteria: Specifies whether to use the same filter criteria entered in the show filter function to

display this page the next time you visit it.

Start monitoring:

Select one or more servers from the list and press Start monitoring to start the Tivoli Performance Monitor

for the selected servers.

Stop monitoring:

Select one or more servers from the list and press Stop monitoring to stop the Tivoli Performance Monitor

for the selected servers.

Configuring TPV settings

You can configure user and logging settings of the Tivoli Performance Viewer (TPV). Configuring the TPV

settings affects the performance of your application server.

TPV monitors the performance activity of all servers on a node.

The data can also be viewed from the deployment manager.

You can configure the activity monitoring of TPV on a per-user basis. Any changes made to TPV settings

are only for the server being monitored and only affect the user viewing the data.

You can change the user and log TPV settings in the administrative console.

v Configure the TPV user settings.

1. Click Monitoring and Tuning > Performance Viewer > Current Activity > server_name >

Settings > User in the console navigation tree. To see the User link on the Tivoli Performance

Viewer page, expand the Settings node of the TPV navigation tree on the left side of the page.

After clicking User, the TPV user settings are displayed on the right side of the page.

2. Change the values as needed for the user settings. The settings are described briefly below and in

more detail in the Tivoli Performance Viewer settings.

Chapter 24. Monitoring overall system health 2207

Refresh Rate Specifies how frequently TPV collects performance data

for a server from the Performance Monitoring

Infrastructure (PMI) service provided by that server.

The default is 30 seconds. To collect performance data

for the server more frequently, set the refresh rate to a

smaller number. To collect performance data less

frequently, set the refresh rate to a larger number. The

allowed range is 5 to 500 seconds.

Buffer Size Specifies the number of entries to be stored for a server.

Data displayed in TPV is stored in a short in-memory

buffer. After the buffer is full, each time a new entry is

retrieved the oldest entry is discarded. The default buffer

size is 40 entries. Supported values are 10, 20, 30, 40,

50, 60, 70, 80, 90 and 100. The larger the buffer size, the

more memory is consumed. Thus, specify a buffer size

that allows you capture enough monitoring data for

analysis without wasting memory storing unneeded data.

View Data As Specifies how counter values are displayed. Viewing

options include the following:

Raw Value

Displays the absolute value. If the counter

represents load data, such as the average

number of connections in a database pool, then

TPV displays the current value followed by the

average. For example, 18 (avg:5).

Change in Value

Displays the change in the current value from

the previous value.

Rate of Change

Displays the ratio change/(T1 - T2), where

change is the change in the current value from

the previous value, T1 is the time when the

current value was retrieved, and T2 is the time

when the previous value was retrieved.

The refresh rate and buffer size settings combine to control how much temporal history you have for

the application server. The default values for Refresh Rate (30 seconds) and Buffer Size (40

entries) provide you with a 20-minute history of the application server’s performance. Changing one

of these parameters affects the length of the temporal history.

The values you set for Refresh Rate and Buffer Size depend on your use of TPV. To diagnose a

known problem on a test machine, you might poll data more frequently while having a decreased

buffer size. To monitor a production server, you might poll data less frequently and specify a buffer

size depending on how much history you want. However, TPV is not intended to be a full-time

monitoring solution.

3. Click Apply.

v Configure the TPV log settings. The log settings control what happens when Start Logging is clicked

in, for example, a summary report on the performance of a servlet, enterprise bean (EJB), EJB method,

connection pool or thread pool.

1. Click Monitoring and Tuning > Performance Viewer > Current Activity > server_name >

Settings > Log in the console navigation tree. To see the Log link on the Tivoli Performance Viewer

page, expand the Settings node of the TPV navigation tree on the left side of the page. After

clicking Log, the TPV log settings are displayed on the right side of the page.

2. Change the values as needed for the log settings. The settings are described below and in the Tivoli

Performance Viewer settings.

2208 Administering applications and their environment

Duration Specifies the length of time, in minutes, that logging

continues, unless Stop Logging is clicked first. TPV is

not intended as a full-time logging solution.

Maximum File Size Specifies the maximum size, in megabytes, of a single

file. Note that TPV automatically zips log files to save

space and this parameter controls the pre-zipped file size

and not the post-zipped, which is smaller.

Maximum Number of Historical Files Specifies the number of files TPV writes before stopping.

If TPV reaches the maximum file size before the logging

duration ends, it continues logging in another file, up to

the maximum. If TPV reaches the maximum number of

historical files before the logging duration ends, TPV

deletes the oldest historical file and continues logging in a

new file. The total amount of data that is stored is

constrained by the Maximum File Size and Maximum

Number of Historical Files parameters.

File Name Specifies the name of the log file. The server name and

the time at which the log is started is appended to the log

name to help users identify a log file.

Log Output Format Specifies whether TPV writes log files as XML or in a

binary format. Binary format is recommended as it

provides a smaller log file when uncompressed.

3. Click Apply.

Viewing Data with the Tivoli Performance Viewer

Use this page to view and refresh performance data for the selected server, change user and log settings,

view summary reports, and information on specific performance modules.

To view this administrative console page, click Monitoring and Tuning > Performance Viewer > Current

Activity > server.

Click the server name to view the current activity for that server. In this view, the Tivoli Performance

Viewer (TPV) has two main parts, which include the navigation panel located beside the administrative

console navigation tree, and the data viewing panel located to the right of the Tivoli Performance Viewer

navigation panel.

Refresh:

Click Refresh to rebuild the navigation tree. Refreshing is helpful when the available Performance

Monitoring (PMI) Infrastructure data has changed, and the tree does not reflect those changes.

View Module(s):

Click View Module after one or more performance modules are selected in the tree to display the

information for these modules in the data viewing panel.

 The Data Monitoring panel enables the selection of multiple counters and displays the resulting

performance data for the associated resources. It consists of two panels:

v Viewing Counter panel

v Counter Selection panel. If necessary, you can change the scaling factors by editing the default values

in the scale field.

Deselect all items:

Chapter 24. Monitoring overall system health 2209

Select Deselect all items to quickly deselect all modules that are selected in the navigation tree.

Navigation tree:

Use the navigation tree to view advisor output, configure TPV, and select PMI modules for viewing.

 v Click the Advisor node to have the advisor display the data in the viewing panel.

v Expand the Settings node to select and configure either the User or Log settings.

v Expand the Performance Modules node to view one or more PMI modules.

Advisor:

Click Advisor to examine various data while your application is running. The Performance Advisor

provides advice to help tune systems for optimal performance using the PMI data collected.

 The first table represents the number of requests per second and the response time in milliseconds for the

Web container.

The pie graph displays the CPU activity as a percentage of busy and idle.

The third table displays average thread activity for the different resources, for example, Default, Object

Request Broker, and Web container. Activity is expressed as the number of threads or connections busy

and idle.

To view detailed information about the advice, select the message you want to view. This view provides

additional information about the advice message, severity, description, user action, and detail.

User settings:

Change the values as needed for the following user settings:

 Refresh Rate Specifies how frequently TPV collects performance data

for a server from the Performance Monitoring

Infrastructure (PMI) service provided by that server. The

default is 30 seconds. To collect performance data for the

server more frequently, set the refresh rate to a smaller

number. To collect performance data less frequently, set

the refresh rate to a larger number. The allowed range is

5 to 500 seconds.

Buffer Size Specifies the amount of data to be stored for a server.

Data displayed in TPV is stored in a short in-memory

buffer. After the buffer is full, each time a new entry is

retrieved the oldest entry is discarded. The default buffer

size is 40. Allowed values are 10, 20, 30, 40, 50, 60, 70,

80, 90 and 100. The larger the buffer size, the more

memory is consumed. Thus, specify a buffer size that

allows you capture enough monitoring data for analysis

without wasting memory storing unneeded data.

2210 Administering applications and their environment

View Data As Specifies how counter values are displayed. Viewing

options include the following:

Raw Value

Displays the absolute value. If the counter

represents load data, for example, the average

number of connections in a database pool, then

TPV displays the current value.

Change in Value

Displays the change in the current value from

the previous value.

Rate of Change

Displays the ratio change/(T1 - T2), where

change is the change in the current value from

the previous value, T1 is the time when the

current value was retrieved, and T2 is the time

when the previous value was retrieved.

Log settings:

The log settings control what happens when Start Logging is clicked in, for example, a summary report

on the performance of a servlet, enterprise bean (EJB), EJB method, connection pool or thread pool.

 Change the value as needed for the following log settings:

 Duration Specifies the length of time, in minutes, that logging

continues, unless Stop Logging is clicked first. TPV is

not intended as a full-time logging solution.

Maximum File Size Specifies the maximum size, in megabytes, of a single

file. Note that TPV automatically zips log files to save

space and this parameter controls the pre-zipped file size

and not the post-zipped, which is smaller.

Maximum Number of Historical Files Specifies the number of files TPV writes before stopping.

If TPV reaches the maximum file size before the logging

duration ends, it continues logging in another file, up to

the maximum. If TPV reaches the maximum number of

historical files before the logging duration ends, TPV

deletes the oldest historical file and continues logging in a

new file. The total amount of data that is stored is

constrained by the Maximum File Size and Maximum

Number of Historical Files parameters.

File Name Specifies the name of the log file. The server name and

the time at which the log is started is appended to the log

name to help users identify a log file.

Log Output Format Specifies whether TPV writes log files as XML or in a

binary format. Binary format is recommended as it

provides a smaller log file when not compressed.

View summary reports:

Summary reports are available for each application server.

 Before viewing reports, make sure data counters are enabled and monitoring levels are set properly.

The standard monitoring level enables all reports except the report on Enterprise JavaBeans (EJB)

methods. To enable an EJB methods report, adjust the PMI level to include EJB method data.

Chapter 24. Monitoring overall system health 2211

Tivoli Performance Viewer provides the following summary reports for each application server:

Servlets

The servlet summary lists all servlets that are running in the current application server. Use the

servlet summary view to quickly find the most time intensive servlets and the applications that use

them, and to determine which servlets are invoked most often. You can sort the summary table by

any of the columns.

 Tips

v Sort by Avg Response Time to find the slowest servlet or JavaServer page (JSP).

v Sort by Total Requests to find the servlet or JSP used the most.

v Sort by Total Time to find the servlet or JSP with the highest response times.

Enterprise JavaBeans

The Enterprise JavaBeans (EJB) summary lists all enterprise beans running in the server, the

amount of time spent in their methods, the number of EJB invocations, and the total time spent in

each enterprise bean.

total_time = number_of_invocations * time_in_methods

Sort the various columns to find the most expensive enterprise bean. Also, if the PMI counters are

enabled for individual EJB methods, select the check box next to the EJB name see statistics for

each of the methods.

 Tips

v Sort by Avg Response Time to find the slowest enterprise beam.

v Sort by Method Calls to find the enterprise bean used the most.

v Sort by Total Time to find the enterprise bean with the slowest response time.

EJB Methods

The EJB method summary shows statistics for each EJB method. Use the EJB method summary

to find the most costly methods of your enterprise beans.

 Tips

v Sort by Avg Response Time to find the slowest EJB method.

v Sort by Method Calls to find the EJB method used the most.

v Sort by Total Time to find the EJB method with the slowest response time.

Connection pools

The connection pool summary lists all data source connections that are defined in the application

server and shows their usage over time.

 Tip

v When the application is experiencing normal to heavy usage, the pools used by that application

should be nearly fully utilized. Low utilization means that resources are being wasted by

maintaining connections or threads that are never used. Consider the order in which work

progresses through the various pools. If the resources near the end of the pipeline are under

utilized, it might mean that resources near the front are constrained or that more resources than

necessary are allocated near the end of the pipeline.

Thread pools

The thread pool summary shows the usage of all thread pools in the application server over time.

 Tip

v When the application is experiencing normal to heavy usage, the pools used by that application

should be nearly fully utilized. Low utilization means that resources are being wasted by

maintaining connections or threads that are never used. Consider the order in which work

progresses through the various pools. If the resources near the end of the pipeline are under

utilized, it might mean that resources near the front are constrained or that more resources than

necessary are allocated near the end of the pipeline.

2212 Administering applications and their environment

Performance module:

View performance modules that provide graphics and charts of various performance data on system

resources such as CPU utilization, on WebSphere Application Server pools and queues such as database

connection pools, and on customer application data such as servlet response time. In addition to providing

a viewer for performance data, TPV enables you to view data for other products or customer applications

that have implemented custom PMI.

 Each performance module has several counters associated with it. These counters are displayed in a table

underneath the data chart or table. Selected counters are displayed in the chart or table. You can add or

remove counters from the chart or table by selecting or deselecting the check box next to them. By

default, the first three counters for each module are shown.

Tivoli Performance Viewer displays interactive graphics using the Scalable Vector Graphics (SVG) format

or non-interactive graphics using the JPG format. The SVG format is recommended because it provides a

better user experience and is more processor and memory efficient for the application server.

In the performance module, you view current activity. This is a real time operation where the state of

various system resources and their usage is displayed. Unless logging is turned on, data generated in this

scenario will not be saved and is unavailable for subsequent viewing and analysis. To monitor behavior

and system resources, click Start Logging. The user can replay and analyze the file at a later time.

Start Logging/Stop Logging

Use this to start or stop logging performance data. Once you start monitoring for your server, you will be

able to view real time operation in the TPV panels.

Reset to Zero

This sets a new baseline using the current counter readings at the instant the button is clicked. Future

data points are plotted on the graph relative to their position at the time Reset to Zero is clicked. Data

points gathered prior to the time Reset to Zero is clicked are not displayed, although they are still held in

the TPV buffer. If Undo Reset to Zero is clicked again, TPV displays all data currently in the buffer from

their original baseline, not from the Reset to Zero point.

View Table/View Graph

To view the data in a table, click View Table on the counter selection table. To toggle back to a chart, click

View Graph.

Show Legend/Hide Legend

To view the legend for a chart, click Show Legend. To hide the legend, click Hide Legend.

Clear Buffer

To clear values from the table or chart, click Clear Buffer beneath the chart or table. This removes all PMI

data.

Unable to view Scalable Vector Graphics on Internet Explorer: If you encounter problems while

viewing SVG with your Internet Explorer browser, visit the Adobe SVG website at http://www.adobe.com/
svg/main.html to test your Adobe SVG Viewer. You can also download the most recent version of the

Adobe SVG Viewer, view the release notes, and report any bugs with the Adobe SVG Viewer from this

Web site.

Chapter 24. Monitoring overall system health 2213

http://www.adobe.com/svg/main.html
http://www.adobe.com/svg/main.html

Viewing TPV summary reports

The Tivoli Performance Viewer (TPV) provides five different summary reports that make important data

quickly and easily accessible. View summary reports to help you find performance bottlenecks in your

applications and modules. The TPV summary reports are generated upon request and are not dynamically

refreshed.

This article assumes that one or more applications or modules are deployed and running on one or more

servers.

In order to prepare a specific summary report, you must enable the minimum level of PMI data collection,

or utilize the custom level of monitoring and enable specific counters.

Use the administrative console to view TPV summary reports.

1. Click Monitoring and Tuning > Performance Viewer > Current Activity > server_name > Summary

Reports in the console navigation tree.

2. Select the code artifact or pool for which you want a summary report. Expand the Summary Reports

node of the TPV navigation tree on the left side of the Tivoli Performance Viewer page to see links for

the types of summary reports. After clicking on a link for an artifact or pool, a list of artifacts or pools

on the server is displayed on the right side of the page.

3. Select the artifact or pool for which you want to view a summary report.

Types of TPV Summary Reports:

Servlets

The servlet summary lists all servlets that are running in the current application server. Use the servlet

summary view to quickly find the most time intensive servlets and the applications that use them, and to

determine which servlets are invoked most often. You can sort the summary table by any of the columns.

Tips

v Sort by Avg Response Time to find the slowest servlet or JavaServer page (JSP).

v Sort by Total Requests to find the servlet or JSP used the most.

v Sort by Total Time to find the most costly servlet or JSP.

Enterprise beans

The Enterprise JavaBeans (EJB) summary lists all enterprise beans running in the server, the amount of

time spent in their methods, the number of EJB invocations, and the total time spent in each enterprise

bean.

total_time = number_of_invocations * time_in_methods

Sort the various columns to find the most expensive enterprise bean. Also, if the PMI counters are enabled

for individual EJB methods, there is a check box next to the EJB name that you can select to see statistics

for each of the methods.

Tips

v Sort by Avg Response Time to find the slowest enterprise beam.

v Sort by Method Calls to find the enterprise bean used the most.

v Sort by Total Time to find the most costly enterprise bean.

EJB methods

The EJB method summary shows statistics for each EJB method. Use the EJB method summary to find

the most costly methods of your enterprise beans.

Tips

2214 Administering applications and their environment

v Sort by Avg Response Time to find the slowest EJB method.

v Sort by Method Calls to find the EJB method used the most.

v Sort by Total Time to find the most costly EJB method.

Connection pools

The connection pool summary lists all data source connections that are defined in the application server

and shows their usage over time.

Tip

v When the application is experiencing normal to heavy usage, the pools used by that application should

be nearly fully utilized. Low utilization means that resources are being wasted by maintaining

connections or threads that are never used. Consider the order in which work progresses through the

various pools. If the resources near the end of the pipeline are under utilized, it might mean that

resources near the front are constrained or that more resources than necessary are allocated near the

end of the pipeline.

Thread Pools

The thread pool summary shows the usage of all thread pools in the application server over time.

Tip

v When the application is experiencing normal to heavy usage, the pools used by that application should

be nearly fully utilized. Low utilization means that resources are being wasted by maintaining

connections or threads that are never used. Consider the order in which work progresses through the

various pools. If the resources near the end of the pipeline are under utilized, it might mean that

resources near the front are constrained or that more resources than necessary are allocated near the

end of the pipeline.

PMI levels and counters required

In order to view Tivoli Performance Viewer (TPV) summary reports, the minimum PMI level must be

enabled. Otherwise, you must use the custom monitoring level, and enable the PMI level counters

required for the specific report you want to view.

 Table 63. Required properties for TPV summary reports

Summary Report PMI level required Custom PMI counters required

Servlets Basic

JDBC Connection Pools.PoolSize

JDBC Connection Pools.AllocateCount

JDBC Connection Pools.ReturnCount

Enterprise beans Basic Thread Pools.PoolSize

Thread Pools.ActiveCount

EJB methods All Enterprise Beans.MethodCallCount

Enterprise Beans.MethodResponseTime

Connection pools Extended WSEJBStats.MethodStats.MethodLevelCallCount

WSEJBStats.MethodStats.MethodLevelResponseTime

Thread pools Extended Web Applications.RequestCount

Web Applications.ServiceTime

 Related tasks

 “Enabling PMI data collection” on page 2158
Enable PMI data collection to diagnose problems and tune application performance.

Chapter 24. Monitoring overall system health 2215

“Viewing TPV summary reports” on page 2214
The Tivoli Performance Viewer (TPV) provides five different summary reports that make important data

quickly and easily accessible. View summary reports to help you find performance bottlenecks in your

applications and modules. The TPV summary reports are generated upon request and are not

dynamically refreshed.

Viewing PMI data with TPV

You can use the Tivoli Performance Viewer (TPV) to view Performance Monitoring Infrastructure (PMI)

data in chart or table form.

TPV monitors the performance activity of all servers on a node. This article assumes that one or more

servers have been created and are running on the node, and that PMI is enabled.

TPV displays graphics in either the Scalable Vector Graphics (SVG) format or as a static image in the JPG

format. If you do not have the Adobe SVG browser plug-in installed, you are prompted to download and

install it. If you select not to install the plug-in (by selecting Cancel), TPV displays the static image.

Installing the Adobe SVG plug-in is advantageous for several reasons. First, the SVG format provides

interactive graphics that provide additional information when you hover your mouse over a point, line, or

legend item. The SVG format also enables you to click a point and see details for it. Secondly, using the

SVG format provides a performance benefit because the work to display the SVG image is done on the

client side. When viewing a static image, the application server must convert the SVG image into a static

image, which is a processor and memory intensive operation.

If you experience problems with SVG, see “Problems with Scalable Vector Graphics” on page 2217 for

more information.

You view performance modules when your server is experiencing performance problems. For example, a

common performance problem occurs when individual sessions are too large. To help view data on a

session, you can view the Servlet Session Manager PMI module and monitor the SessionObjectSize

counter to make sure that Session Object Size is not too large.

Performance modules are shown in the TPV current activity settings in the administrative console.

v Select PMI data to view.

1. Click Monitoring and Tuning > Performance Viewer > Current Activity > server_name >

Performance Modules in the console navigation tree.

2. Place a check mark in the check box beside the name of each performance module that you want

to view. Expand the tree by clicking + next to a node and shrink it by clicking – next to a node.

If you do not see all the PMI counters you expect, or a PM you are interested in is visible but cannot

be selected, PMI is not enabled for that particular counter or for any counter in that PM. Go to the

PMI control area of the administrative console and enable PMI for any counters you wish to view,

then return to TPV and select those PMs. To view the PMI page, click on Monitoring and Tuning >

Performance Monitoring Infrastructure > server_name.

3. Click on View Modules. A chart or table providing the requested data is displayed on the right side

of the page. Charts are displayed by default.

Each module has several counters associated with it. These counters are displayed in a table

underneath the data chart or table. Selected counters are displayed in the chart or table. You can

add or remove counters from the chart or table by selecting or deselecting individual counters. By

default, the first three counters for each module are shown.

You can select up to 20 counters and display them in the TPV in the Current Activity mode. The

data from all the PMI counters that are currently enabled in each PM for all active instances of the

PM can be recorded and captured in a TPV log file. Refer to “Logging performance data with TPV”

on page 2218 for more information on the TPV log file. You can view the TPV log file for a particular

2216 Administering applications and their environment

time period multiple times, selecting different combinations of up to 20 counters each time. You have

the flexibility to observe the relationships among different performance data in a server during a

particular period of time.

4. Optional: To remove a module from a chart or table, deselect the check box next to the module and

click View Modules again.

5. Optional: To view the data in a table, click View Table on the counter selection table. To toggle

back to a chart, click View Graph.

6. Optional: To view the legend for a chart, click Show Legend. To hide the legend, click Hide

Legend.

v Scale the PMI data. You can manually adjust the scale for each counter so that the graph displays

meaningful comparisons of different counters.

1. Find the counter whose scale you want to modify in the table beneath the chart.

2. Change the value for Scale as needed. Tips:

– When the scale is set to 1 the true value of the counter is displayed in the graph.

– A value greater than 1 indicates that the value is amplified by the factor shown.

– A value less than 1 indicates that the variable is decreased by the factor shown.

For example, a scale setting of .5 means that the counter is graphed as one-half its actual value. A

scale setting of 2 means that the counter is graphed as twice its actual value. Scaling only applies to

the graphed values and has no effect on the data displayed when viewing it in table form.

3. Click Update.

v Clear values from tables and charts.

1. Ensure that one or more modules are selected under Performance Modules in the TPV navigation

tree

2. Click Clear Buffer beneath the chart or table. The PMI data is removed from a table or chart.

v Reset counters to zero (0).

1. Ensure that one or more modules are selected under Performance Modules in the TPV navigation

tree

2. Click Reset to Zero beneath the chart or table. Reset to Zero sets a new baseline using the

current counter readings at the instant the button is clicked. Future datapoints are plotted on the

graph relative to their position at the time Reset to Zero is clicked. Datapoints gathered prior to the

time Reset to Zero is clicked are not displayed, although they are still held in the TPV buffer. If

Undo Reset to Zero is clicked again, TPV displays all data recorded from the original baseline, not

from the Reset to Zero point.

For information on how TPV displays the data, see “Configuring TPV settings” on page 2207.

Problems with Scalable Vector Graphics:

Consult this topic for problems and solutions for Scalable Vector Graphics.

 Using TPV without Scalable Vector Graphics (SVG)

When viewing performance data in Tivoli Performance Viewer (TPV) on a browser that does not support

Scalable Vector Graphics (SVG) graphics, either using the Adobe SVG plug-in or through native support,

complex graphs might take a long time to refresh. Eventually an out of memory error may occur.

When TPV detects a browser that does not support SVG, it uses Apache Batik to transcode the SVG into

a binary image format. The transcoding process is highly memory intensive. The complexity of the graph is

affected by two things: the TPV buffer size, which dictates how many points are in each line that is drawn,

and the number of selected data points, which dictates how many lines are drawn.

To avoid long refresh times or the out of memory errors, use a browser that supports SVG, either with a

plug-in, like the Adobe SVG plug-in, or natively, which is included in some Mozilla builds. If this is not

Chapter 24. Monitoring overall system health 2217

possible, keep the graph simple by limiting the size of the buffer and the number of selected data points.

Unable to view Scalable Vector Graphics on Internet Explorer

If you encounter problems while viewing SVG with your Internet Explorer browser, visit the Adobe SVG

Zone Web site at http://www.adobe.com/svg/main.html to test your Adobe SVG Viewer. You can also

download the most recent version of the Adobe SVG Viewer, view the release notes, and report any bugs

with the Adobe SVG Viewer from this Web site.

Logging performance data with TPV

The Tivoli Performance Viewer (TPV) provides an easy way to store real-time data for system resources,

WebSphere Application Server pools and queues, and applications in log files for later retrieval. You can

start and stop logging while viewing current activity for a server, and later replay this data. Logging of

performance data captures performance data in windows of time so you can later analyze the data.

This article assumes that one or more servers have been created and are running on the node, and that

you have configured the TPV log settings. The log settings may affect performance and are described in

detail in “Viewing Data with the Tivoli Performance Viewer” on page 2209. The TPV logging feature is not

intended to be a full-time monitoring solution, but instead for selective data recording for subsequent

replay and analysis.

You can study the sequence of events that led to a peculiar condition in the application server or node

agent. First, enable TPV logging so performance data generated in the application server persists in a log

file stored at a specific location. Later, using the replay feature in TPV, view the performance data that was

generated in exactly the same chronological order as it was generated in real time, enabling you to

analyze a prior sequence of events.

You do not need to know the syntax and format in which log files are generated and stored. Do not edit

log files generated by TPV; doing so will irrecoverably corrupt or destroy the performance data stored in

the log files.

You can create and view logs in the administrative console.

v Create logs.

1. Click Monitoring and Tuning > Performance Viewer > Current Activity > server_name >

Settings > Log in the console navigation tree. To see the Log link on the Tivoli Performance Viewer

page, expand the Settings node of the TPV navigation tree on the left side of the page. After

clicking Log, the TPV log settings are displayed on the right side of the page.

2. Click on Start Logging when viewing summary reports or performance modules.

3. When finished, click Stop Logging . Once started, logging stops when the logging duration expires,

Stop Logging is clicked, or the file size and number limits are reached. To adjust the settings, see

step 1.

By default, the log files are stored in the profile_root/logs/tpv directory on the node on which the

server is running. TPV automatically compresses the log file when it finishes writing to it to conserve

space. At this point, there must only be a single log file in each .zip file and it must have the same

name as the .zip file.

v View logs.

1. Click Monitoring and Tuning > Performance Viewer > View Logs in the console navigation tree.

2. Select a log file to view using either of the following options:

Explicit Path to Log File

Choose a log file from the machine on which the browser is currently running. Use this

option if you have created a log file and transferred it to your system. Click Browse to open

a file browser on the local machine and select the log file to upload.

2218 Administering applications and their environment

http://www.adobe.com/svg/main.html

Server File

Specify the path of a log file on the server.

 In a stand-alone application server environment, type in the path to the log file. The

profile_root\logs\tpv directory is the default on a Windows system.

3. Click View Log. The log is displayed with log control buttons at the top of the view.

4. Adjust the log view as needed. Buttons available for log view adjustment are described below. By

default, the data replays at the Refresh Rate specified in the user settings. You can choose one of

the Fast Forward modes to play data at rate faster than the refresh rate.

 Rewind Returns to the beginning of the log file.

Stop Stops the log at its current location.

Play Begins playing the log from its current location.

Fast Forward Loads the next data point every three (3) seconds.

Fast Forward 2 Loads ten data points every three (3) seconds.

You can view multiple logs at a time. After a log has been loaded, return to the View Logs panel to see

a list of available logs. At this point, you can load another log.

TPV automatically compresses the log file when finishes writing it. The log does not need to be

decompressed before viewing it, though TPV can view logs that have been decompressed.

Viewing Data Recorded by the TPV

Use this page to view logged data from Tivoli Performance Viewer.

To view this administrative console page, click Monitoring and Tuning > Performance Viewer > View

logs.

Explicit path to log file:

Select explicit path to a log file, specify the path name, and click View log to display the stored data.

Server file:

Select server file, specify the path name, and click View log to display the stored data.

Third-party performance monitoring and management solutions

Several performance monitoring, problem determination, and management solutions are available that can

be used with WebSphere Application Server.

These products use WebSphere Application Server interfaces, including:

v Performance Monitoring Infrastructure (PMI)

v Java Management Extensions (JMX)

v Request metrics Application Response Measurement (ARM)

See the topic “Performance: Resources for learning” on page 2043 for a link to IBM business partners

providing monitoring solutions for WebSphere Application Server.

Chapter 24. Monitoring overall system health 2219

2220 Administering applications and their environment

Chapter 25. Monitoring application flow

Monitoring, optimizing, and troubleshooting WebSphere Application Server performance can be a

challenge. This article gives you a basic strategy for monitoring with an understanding of the application

view.

This information includes understanding the application flow that satisfies the end user request. This

perspective provides the views of specific servlets that access specific session beans, entity

container-managed persistence beans, and a specific database. This perspective is important for the

in-depth internal understanding of who is using specific resources. Typically at this stage, you deploy some

type of trace through the application, or thread analysis under load condition techniques to isolate areas of

the application and particular interactions with the back-end systems that are especially slow under load.

In this case, WebSphere Application Server provides request metrics to help trace each individual

transaction as it flows through the application server, recording the response time at different stages of the

transaction flow (for example, request metrics records the response times for the Web server, the Web

container, the Enterprise JavaBeans container, and the back-end database). In addition, several IBM

development and monitoring tools that are based on the request metrics technology (for example, Tivoli

Monitoring for Transaction Performance) are available to help view the transaction flow.

Why use request metrics?

Request metrics is a tool that enables you to track individual transactions, recording the processing time in

each of the major WebSphere Application Server components.

The information that is tracked by request metrics might either be saved to log files for later retrieval and

analysis, be sent to Application Response Measurement (ARM) agents, or both.

As a transaction flows through the system, request metrics includes additional information so that the log

records from each component can be correlated, building up a complete picture of that transaction. The

result looks similar to the following example:

HTTP request/trade/scenario ------------------------------> 172 ms

 Servlet/trade/scenario -----------------------------> 130 ms

 EJB TradeEJB.getAccountData ---------------------> 38 ms

 JDBC select --------------------------------> 7 ms

Provides a hierarchal view for each individual

transaction by response time

Provides filtering mechanism to monitor synthetic

transactions or specific transactions

Provides response time on individual transactions,

helping to determine if Service Level Agreements

are being met

• Provides data for debugging resource constraint

• Users can exclusively track artificial transactions
to measure performance

What performance area
must be focused on?

Is there too much time being
spent on any given area?

How do I determine if
response times for
transactions are meeting
their goals?

How can I validate SLA
agreements are being met?

*

*

*

This transaction flow with associated response times can help you target performance problem areas and

debug resource constraint problems. For example, the flow can help determine if a transaction spends

most of its time in the Web server plug-in, the Web container, the Enterprise JavaBeans (EJB) container or

the back end database. The response time that is collected for each level includes the time spent at that

level and the time spent in the lower levels. For example, the response time for the servlet, which is 130

© Copyright IBM Corp. 2006 2221

milliseconds, also includes 38 milliseconds from the enterprise beans and Java Database Connectivity.

Therefore, 92 ms can be attributed to the servlet process.

Request metrics tracks the response time for a particular transaction. Because request metrics tracks

individual transactions, using it imposes some performance implications on the system. However, this

function can be mitigated by the use of the request filtering capabilities.

For example, tools can inject synthetic transactions. Request metrics can then track the response time

within the WebSphere Application Server environment for those transactions. A synthetic transaction is one

that is injected into the system by administrators to take a proactive approach to testing the performance

of the system. This information helps administrators tune the performance of the Web site and take

corrective actions. Therefore, the information that is provided by request metrics might be used as an alert

mechanism to detect when the performance of a particular request type goes beyond acceptable

thresholds. The filtering mechanism within request metrics might be used to focus on the specific synthetic

transactions and can help optimize performance in this scenario.

When you have the isolated problem areas, use request metrics filtering mechanism to focus specifically

on those areas. For example, when you have an isolated problem in a particular servlet or EJB method,

use the uniform resource identifier (URI) algorithms or EJB filter to enable the instrumentation only for the

servlet or EJB method. This filtering mechanism supports a more focused performance analysis.

Five types of filters are supported:

v Source IP filter

v URI filter

v EJB method name filter

v JMS parameters filter

v Web services parameters filter

When filtering is enabled, only requests that match the filter generate request metrics data, create log

records, call the ARM interfaces, or all. You can inject the work into a running system (specifically to

generate trace information) to evaluate the performance of specific types of requests in the context of a

normal load, ignoring requests from other sources that might be hitting the system.

Note: Filters are only applicable where the request first enters WebSphere Application Server.

v Learn more about request metrics by reviewing detailed explanations in this section.

v Configure and enable request metrics.

v Retrieve performance data and monitor application flow.

v Extend monitoring to track applications that might require additional instrumentation points.

Example: Using request metrics

Use this page to learn how to use request metrics by viewing an example.

In this example, the HitCount servlet and the Increment enterprise bean are deployed on two different

application server processes. As shown in the following diagram, the Web container tier and Enterprise

JavaBeans (EJB) container tiers are running in two different application servers. To set up such a

configuration, install WebSphere Application Server Network Deployment.

Clients
IBM

HTTP Server

Web

container

EJB

container
Database

2222 Administering applications and their environment

Assume that the Web server and the Web container tier both run on machine 192.168.0.1, and the

Enterprise JavaBeans (EJB) container tier runs on a second machine 192.168.0.2. The client requests

might be sent from a different machine; 192.168.0.3, for example, or other machines.

To illustrate the use of source IP filtering, one source IP filter (192.168.0.3) is defined and enabled. You

can trace requests that originate from machine 192.168.0.3 through http://192.168.0.1/
hitcount?selection=EJB&lookup=GBL&trans=CMT. However, requests that originate from any other

machines are not traced because the source IP address is not in the filter list.

By only creating a source IP filter, any requests from that source IP address are effectively traced. This

tool is effective for locating performance problems with systems under load. If the normal load originates

from other IP addresses, then its requests are not traced. By using the defined source IP address to

generate requests, you can see performance bottlenecks at the various hops by comparing the trace

records of the loaded system to trace records from a non-loaded run. This ability helps focus tuning efforts

to the correct node and process within a complex deployment environment.

Make sure that request metrics is enabled using the administrative console. Also, make sure that the trace

level is set to at least hops (writing request traces at process boundaries). Using the configuration

previously listed, send a request http://192.168.0.1/hitcount?selection=EJB&lookup=GBL&trans=CMT

through the HitCount servlet from machine 192.168.0.3.

In this example, at least three trace records are generated:

v A trace record for the Web server plug-in is displayed in the plug-in log file (default location is

(plugins_root/logs/web_server_name/http_plugin.log) on machine 192.168.0.1.

v A trace record for the servlet displays in the application server log file (default location is

profile_root/logs/appserver/SystemOut.log) on machine 192.168.0.1.

v A trace record for the increment bean method invocation displays in the application server log file

(default location is profile_root/logs/appserver/SystemOut.log) on machine 192.168.0.2.

The two trace records that are displayed on machine 192.168.0.1 are similar to the following example:

PLUGIN:

parent:ver=1,ip=192.168.0.1,time=1016556185102,pid=796,reqid=40,event=0

- current:ver=1,ip=192.168.0.1,time=1016556185102,pid=796,reqid=40,event=1

type=HTTP detail=/hitcount elapsed=90 bytesIn=0 bytesOut=2252

Application server (web container tier)

PMRM0003I: parent:ver=1,ip=192.168.0.1,time=1016556185102,pid=796,reqid=40,event=0

- current:ver=1,ip=192.168.0.1,time=1016556186102,pid=884,reqid=40,event=1

type=URI detail=/hitcount elapsed=60

The trace record that is displayed on machine 192.168.0.2 is similar to the following example:

PMRM0003I:

parent:ver=1,ip=192.168.0.1,time=1016556186102,pid=884,reqid=40,event=1

-

current:ver=1,ip=192.168.0.2,time=1016556190505,pid=9321,reqid=40,event=1

type=EJB

detail=com.ibm.defaultapplication.Increment.increment elapsed=40

Data you can collect with request metrics

Typically, different components of the enterprise application might be hosted across several nodes in a

distributed system. For example, the servlets might be hosted on one node, while the enterprise beans on

which these servlets depend might be hosted on an entirely different node. When a request comes to a

process, the process might send the request to one or more downstream processes, as shown in the

following figure:

Chapter 25. Monitoring application flow 2223

Web
Server

Web
Container

EJB
Container

Database

} }

Data
Source

} }

Request metrics tracks individual transactions, recording and
correlating process time in each of the major components

Transaction A

Transaction B

Transaction C

For example:
Response time
for transaction A

For example: Average servlet response time
across all transactions

PMI provides metrics for all transactions without correlation. PMI
provides data with respect to pools, queues, system data, and so on.

Trace records might be generated for each process with associated elapsed times for that process. These

trace records might be correlated together to build a complete picture of the request flow through the

distributed system, similar to the diagram in “Why use request metrics?” on page 2221.

You can view the process response time that is monitored by request metrics through the Application

Response Measurement (ARM) interface and system log files. When a request is sent to the application

server, request metrics captures response times for the initiating request and any related downstream

invocations. Request metrics are instrumented in the following components as the request, for example,

transaction, travels through the Web server, Proxy Server and the application server:

v the Web server plug-in which is only available when using the Web server port.

v the Proxy Server, instrumented as servlet and Web services requests.

v the Web container, including servlet and servlet filters.

v the Enterprise JavaBeans (EJB) container.

v Java DataBase Connectivity (JDBC) calls.

v J2EE Connector Architecture (JCA).

v Web services, both on the server and the client side.

v the Java Message Service (JMS) engine.

v Service Integration Bus (SIB).

v Portlet container, including the portlet requests.

v Asynchronous Beans.

Select which components that you want to instrument. For example, if you want instrumentation data only

for the Web container and the JMS API, select this data in the administrative console and the detailed

instrumentation data is generated only for the components that you select. The edge transactions are

traced for the other components that are not specified for instrumentation.

When filtering is enabled, only requests that match the filter generate request metrics data, create log

records, or call the ARM interfaces. You can add work into a running system specifically to generate trace

information to evaluate the performance of specific types of requests in the context of normal load,

ignoring requests from other sources that might affect the system. If the request matches any filter with a

trace level greater than None, trace records are generated for that request.

2224 Administering applications and their environment

Getting performance data from request metrics

This topic describes how to enable request metrics.

Request metrics is a tool that enables you to track individual transactions, recording the processing time in

each of the major WebSphere Application Server components.

You can enable request metrics from the following locations:

v The administrative console. To enable request metrics in the administrative console, refer to the

instructions under the Steps for this task section that follows.

v Command line. Java Management Extensions (JMX) interfaces are exposed for enabling request

metrics through external tools. For more details on the exposed interfaces, refer to the request metrics

API documentation.

To enable request metrics in the administrative console:

 1. Open the administrative console.

 2. Click Monitoring and Tuning > Request metrics in the console navigation tree.

 3. Verify that Prepare servers for request metrics collection check box is selected. If Prepare

servers for request metrics collection check box is not selected, you will have to select it, save the

change, and restart the server.

 4. Select All, None, or Custom under Components to be instrumented to specify the request metrics

components. If you select Custom, be sure to select the components you would like to enable.

 5. Specify the components that are instrumented by request metrics.

 6. Specify how much data to collect.

 7. Enable and disable logging.

 8. Enable Application Response Measurement (ARM) Agent.

 9. Specify which ARM type to use.

10. Specify the name of the ARM transaction factory implementation class.

11. Isolate performance for specific types of requests.

a. Add and remove request metrics filters.

12. Click Apply or OK.

13. Click Save.

The request metrics is enabled.

To ensure that the Web server plug-in recognizes the changes you made for the request metrics

configuration, follow the steps in “Regenerating the Web server plug-in configuration file” on page 2238, if

logging time spent in the Web server.

Request metrics

Use this page to enable request metrics, select the components that are instrumented by request metrics,

set trace levels, enable standard logs, enable Application Response Measurement (ARM), specify the type

of ARM agent, and specify the ARM transaction factory implementation class name.

To view this administrative console page, click Monitoring and Tuning > Request metrics.

Prepare Servers for request metrics collection

Turns on the request metrics feature.

When unchecked, the request metrics function is disabled. To enable request metrics, check the box, save

the change, and restart the server. When it is checked, the server is ready to enable request metrics and

Chapter 25. Monitoring application flow 2225

you will not need to restart the server. Depending on what option is selected under Components to be

instrumented, request metrics instrumentation will be enabled/disabled in various components.

Note: This selection process differs from the Enable Request Metrics check box in WebSphere

Application Server Version 6.0x. You now have the option of selecting All, None, or Custom. If you

select Custom, you must specify which components you would like to enable.

Components to be instrumented

Selects the components that are instrumented by request metrics.

When None is selected, no request metrics instrumentation will be enabled. When All is selected, request

metrics instrumentation will be enabled in all the components listed under Custom. When Custom is

selected, request metrics instrumentation will be enabled in the selected components.

Note: An edge transaction, which is defined as the first transaction that enters the application server

without a parent correlator, will always be instrumented even if the corresponding component is

disabled for instrumentation.

Trace level

Specifies how much trace data to accumulate for a given transaction. Note that Trace level and

Components to be instrumented work together to control whether or not a request will be instrumented.

Including one of the following values:

None No instrumentation.

Hops Generates instrumentation information on process boundaries only (for example, at the entry and

exit points for the Web container).

 Generates instrumentation information on process boundaries only (for example, a servlet request

coming from a browser or a Web server and a JDBC request going to a database).

Performance_debug

Generates one additional level of instrumentation data, whereas debug generates detailed

instrumentation data.

 Generates the data at Hops level and the first level of the intra-process servlet and Enterprise

JavaBeans (EJB) call (for example, when an inbound servlet forwards to a servlet and an inbound

EJB calls another EJB). Other intra-process calls like naming and service integration bus (SIB) are

not enabled at this level.

Debug

Provides detailed instrumentation data, including response times for all intra-process servlet and

Enterprise JavaBeans (EJB) calls.

 Provides detailed instrumentation data, including response times for all intra-process calls.

Note: Requests to servlet filters will only be instrumented at this level.

Standard logs

Enables the request metrics logging feature.

Select this check box to trigger the generation of request metrics logs in the SystemOut.log file.

Note: Since enabling the request metrics logging feature will increase processor usage, it is

recommended using this feature together with filters so that only selected requests are

instrumented.

Application Response Measurement (ARM) agent

Enables request metrics to call an underlying Application Response Measurement (ARM) agent.

2226 Administering applications and their environment

Before enabling ARM, you need to install an ARM agent and configure it to the appropriate classpath and

path, following the instructions of the ARM provider.

Specify ARM agent

Specifies the type of ARM agent that you want to use.

The ARM 4.0 agent and Tivoli ARM 2.0 agent are supported.

ARM transaction factory implementation class name

Specifies the ARM transaction factory implementation class name in the package that is supplied by your

provider. This field is required when ARM 4.0 agent is selected, but it is not required when Tivoli ARM

agent is selected.

In this field, type the name of the ARM transaction factory implementation class that is present in the ARM

library. Be sure to follow the instructions of the ARM provider and understand the name of the ARM

transaction factory class for the installed ARM agent.

Filters

When filtering is enabled, only requests matching the specified filter will generate request metrics data.

Filters exist for source IP address, URI name, EJB method name, JMS parameters, and the WebServices

parameters.

Application Response Measurement

Request metrics information might be either saved to the log file for later retrieval and analysis, be sent to

Application Response Measurement (ARM) agents, or both. Request metrics provides response time for

each of the major WebSphere Application Server components through ARM APIs.

ARM is an Open Group standard. Request metrics helps you to plug in an ARM agent to collect response

time measurements.

WebSphere Application Server does not ship an ARM agent. However, it supports the use of agents

adhering to ARM 4.0 and ARM 2.0 standards.

You can choose your own ARM implementation providers to obtain the ARM implementation libraries.

Follow the instruction from the ARM provider, and ensure that the ARM API Java archive (JAR) files found

in the ARM provider are on the class path so that the WebSphere Application Server can load the needed

classes. In the case of Tivoli Monitoring Transaction Performance, V5.3, copy the armjni.jar and

core_util.jar files from the Tivoli Monitoring Transaction Performance <tmtp_install_root>/lib installation

root directory to the app_server_root/lib directory, which is the WebSphere Application Server installation

root directory. If the underlying ARM implementation is ARM 4.0, you need to specify the ARM transaction

factory class name. Otherwise, this specification is not required.

See the article “Performance: Resources for learning” on page 2043 for more information about the ARM

specifications.

ARM application properties and transaction context data

Request metrics provides build-in instrumentation to monitor transaction flows. The data that is collected

by request metrics can be sent to a supported Application Response Measurement (ARM) agent.

ARM application properties

The following tables show the ARM application properties when request metrics initializes an ARM 4.0

agent.

 Identity property names Value

Chapter 25. Monitoring application flow 2227

Cell Name The cell name that the server belongs to.

Version The version of WebSphere Application Server.

 Application Properties Value

Registered application name WebSphere:<server_type>

The <server_type> can be APPLICATION_SERVER,

ONDEMAND_ROUTER, or PROXY_SERVER.

Application group <server_name>

Application instance <node_name>.<server_name>

The following code sample displays how WebSphere Application Server creates an ARM application.

String serverType; // the server type like APPLICATION_SERVER

String version; // WebSphere version

String sCellName; // the cell name of dMgr

String sAppInstance. // <short_node_name>.<short_server_name>

String sServerInstance; // short server name

String sWasName = "WebSphere:" + serverType;

String[] IDNAMES = new String[]{"Cell Name", "Version"};

ArmIdentityProperties appIdentity = txFactory.newArmIdentityProperties(IDNAMES, new String[]{sCellName,

version}, null);

ArmApplicationDefinition appDef = txFactory.newArmApplicationDefinition(sWasName, appIdentity, null);

ArmApplication app = txFactory.newArmApplication(appDef, sServerInstance, sAppInstance, null);

ARM transaction types

You can use the following code sample to create an instance of ARM transaction.

String[] contextNames; // the names for the context data like Port, QueryString, URI, EJBName

String tranIdentityName; // the transaction types shown in the following table like URI, EJB.

String appDef; // defined and created in above code snippet under ARM application properties

String app; // defined and created in above code snippet under ARM application properties

ArmIdentityPropertiesTransaction props = armFactory.newArmIdentityPropertiesTransaction(null, null,

contextNames, null);

ArmTransactionDefinition atd = armFactory.newArmTransactionDefinition(appDef, identityName, props, (ArmID)null);

ArmTransaction at = txFactory.newArmTransaction(app, atd);

The sections below show all ARM transaction types and their corresponding context names. Some types

of transactions are not instrumented unless the trace level is set to DEBUG. In addition, not every

transaction is available in all types of servers. All transaction types and context names are case sensitive.

v “Uniform resource identifier (URI)” on page 2229

v “Enterprise Java Bean (EJB)” on page 2229

v “Servlet filter” on page 2229

v “Java Database Connectivity (JDBC)” on page 2230

v “Java Connector Architecture (JCA)” on page 2230

v “Web Services Provider” on page 2230

v “Web Services Requestor” on page 2231

v “Java Message Service (JMS)” on page 2231

v “JMS send and receive” on page 2232

v “SIB send and receive” on page 2232

v “SIB mediation” on page 2232

v “AsyncBeans” on page 2233

v “JNDI” on page 2233

2228 Administering applications and their environment

v “Portlet” on page 2233

Uniform resource identifier (URI)

This transaction type is the uniform resource identifier (URI) for servlet and JavaServer Page (JSP)

requests. All of the following transaction types and context names are available in all types of servers.

 Transaction type: URI

Context name Description

Port The TCP/IP port where the request arrived, specified as a

string representation of the decimal value.

Example: 9080

QueryString The portion of the dynamic URI that contains the search

parameters of the request in the query segment of the

URI string, excluding the question mark (?) character.

Example: selection=EJB&lookup=GBL&trans=CMT

URI The incoming request URI of the servlet and JSP file

used.

Example: /hitcount

Enterprise Java Bean (EJB)

This EJB transaction type and context names are only available in application servers.

 Transaction Type: EJB

Context name Description

EJBName The fully qualified Enterprise Java™ Bean (EJB) class

name, followed by method name with a period (.) to

connect them. For example,

com.mypackge.MyEJBClass.mymethod.

Example:

com.ibm.defaultapplication.IncrementBean.create

ApplicationName The Java™ 2 Platform, Enterprise Edition (J2EE)

application name that contains the enterprise bean.

Example: DefaultApplication

ModuleName The J2EE module name that contains the enterprise

bean.

Example: Increment.jar

Servlet filter

The servlet filter transaction type is only available at the DEBUG trace level. For other levels, servlet filters

are not instrumented. This transaction type and context names are only available in application servers.

 Transaction Type: Servlet filter

Context name Description

Chapter 25. Monitoring application flow 2229

Transaction Type: Servlet filter

FilterName The servlet filter name for the servlet.

Example: ALoginFilter

Java Database Connectivity (JDBC)

The JDBC transaction type is only available at the DEBUG trace level. For other levels, JDBC is a block

call. This transaction type and context names are only available in application servers.

 Transaction type: JDBC

Context name Description

ClassName The interface name for the JDBC call. This name is not

the actual class name.

Example: java.sql.PreparedStatement

MethodName The method name for the JDBC call.

Example: executeUpdate()

Java Connector Architecture (JCA)

The JCA transaction type is available only at the DEBUG trace level. For other levels, JCA is a block call.

This transaction type and context names are only available in application servers.

 Transaction type: JCA

Context name Description

ClassName The class name for the JCA call.

Example: javax.resource.spi.ManagedConnection

MethodName The method name for the JCA call.

Example: getConnection(Subject,

ConnectionRequestInfo)

Web Services Provider

The Web services provider transaction type is for server-side Web services requests. This transaction type

and the Wsdlport and Operation context names are available in all types of servers. The Transport,

NameSpace, and InputMessage context names are only available in application servers.

 Transaction type: Web Services Provider

Context name Description

WsdlPort The WSDL port name that is associated with the Web

service.

Example: AccountManager

Operation The operation name that is associated with the Web

service.

Example: createNewAccount

2230 Administering applications and their environment

Transaction type: Web Services Provider

Transport The transport name that is associated with the Web

service.

Example: http

NameSpace The name space that is associated with the Web service.

Example: http://accountmanager.mycorp.com

InputMessage The input message name that is associated with the Web

service.

Example: createNewAccountRequest

Web Services Requestor

The Web services requestor transaction type is available only at DEBUG trace level. For other levels, Web

services requestor is a block call. This transaction type and context names are only available in application

servers.

 Transaction type: Web Services Requestor

Context name Description

WsdlPort The Web Services Description Language (WSDL) port

name that is associated with the Web service.

Example: AccountManager

Operation The operation name that is associated with the Web

service.

Example: createNewAccount

Transport The transport name that is associated with the Web

service.

Example: http

Parameters The parameters for the Web service request.

Example:

customerName,addressStreet,addressCity,addressState,addressZip

Java Message Service (JMS)

The JMS transaction type is only for message-driven bean (MDB) scenarios in default messaging,

including the System Integration Bus (SIB) layer and MQ. This transaction type and context names are

only available in application servers.

 Transaction type: JMS

Context name Description

DestinationName The destination queue name or topic name for the Java

Message Service (JMS).

Example: MyBusiness.Topic.Space

MessageSelector The message selector for JMS.

Provider Provider refers to either default messaging, SIB, or MQ.

Example: Default Messaging

Chapter 25. Monitoring application flow 2231

JMS send and receive

The JMS send and receive transaction type is only available at the DEBUG trace level. For other levels,

JMS send and receive is a block call. This transaction type and context names are only available in

application servers.

 Transaction type: JMS send/receive

Context name Description

ClassName The class name in the JMS provider that makes the call.

Example:

com.ibm.ws.sib.api.jms.impl.JmsTopicPublisherImpl

MethodName The method name in the JMS provider that makes the

call.

Example: sendMessage

SIB send and receive

The SIB send and receive transaction type is only available at the DEBUG trace level. For other levels,

SIB send and receive is a block call. This transaction type and context names are only available in

application servers.

 Transaction type: SIB send/receive.

Context name Description

ClassName The class name in the SIB layer that makes the call.

Example:

com.ibm.ws.sib.processor.impl.ProducerSessionImpl

MethodName The method name in the SIB layer that makes the call.

Example: send

SIB mediation

The SIB mediation transaction type and context names are only available in application servers.

 Transaction type: SIB mediation

Context name Description

ClassName The class name in which the call is made.

MethodName The method name in which the call is made.

MediationName The mediation name for the JMS.

Example: myMediation

BusName The service integration bus name for the JMS.

Example: thisBusName

DestinationName The destination name for the JMS.

Example: myMessageQueue

2232 Administering applications and their environment

AsyncBeans

The AsyncBeans transaction type is for AsyncBeans timers, alerts, and deferred starts. This transaction

type and context names are only available in application servers.

 Transaction type: AsyncBeans

Context name Description

Type The type of AsyncBeans task.

Example: COMMONJ_TIMER

ClassName The class name that executes the AsyncBeans task.

Example: com.mycorp.MyTaskClass

JNDI

The JNDI transaction type is only available at DEBUG trace level. For other trace levels, JNDI calls will not

be instrumented. This transaction type and context names are only available in application servers.

 Transaction type: JNDI

Context name Description

JNDIName The JNDI lookup name.

Example: ejbJndiName

Portlet

The portlet transaction type is and context names are only available in application servers.

 Transaction type: Portlet

Context name Description

Method The method of the portlet that is currently utilized, which

can be either action or render.

WindowID The window identifier of the portlet that is currently

utilized.

URI The context path of the current portlet request.

ARM correlators via HTTP and SOAP protocols

For HTTP inbound, WebSphere Application Server checks the case sensitive HTTP header

“ARM_CORRELATOR” for the incoming ARM correlator. The application server does not allow the flow of

ARM correlators via HTTP outbound.

For SOAP inbound, WebSphere Application Server checks the SOAP header for an element as follows:

v element =″arm_correlator″;

v namespace URI = “http://websphere.ibm.com”,

v prefix = ″reqmetrics″;

v actor URI = ″reqmetricsURI″;

For SOAP outbound, WebSphere Application Server creates a new SOAP header and passes the ARM

correlator string as a text node in the header. For example:

Chapter 25. Monitoring application flow 2233

v element =″arm_correlator″;

v namespace URI = “http://websphere.ibm.com”,

v prefix = ″reqmetrics″;

v actor URI = ″reqmetricsURI″;

The following is an example SOAP header with an ARM correlator. Note that the ARM correlator must be

passed in hex string format of the ARM correlator byte array despite whether HTTP or SOAP protocol is

used.

<soapenv:Header xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/" xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<reqmetrics:arm_correlator soapenv:actor="reqmetricsURI" xmlns:reqmetrics="http://websphere.ibm.com">

37000000000000000000

</reqmetrics:arm_correlator>

</soapenv:Header>

Isolating performance for specific types of requests

This topic describes how to enable request metrics filters.

Request metrics compares each incoming request to a set of known filters, but you need to enable these

filters.

1. Open the administrative console.

2. Click Monitoring and Tuning > Request metrics in the administrative console navigation tree.

3. Click Filters.

4. Click filter type.

5. Select the check box in the Enable field under the Configuration tab.

6. Click Apply or OK.

7. Click Save. You can enable or disable a filter group. If the group is enabled, you can enable or disable

individual filters.

The request metrics filters are enabled according to your configuration. For example, if you enabled source

IP, only requests whose source IP matches the one specified in the filter will be instrumented.

Note: Filters will only be checked for edge transactions. An edge transaction is the transaction that first

enters an instrumented system. For example, if a servlet calls an Enterprise JavaBean, the servlet

is the edge transaction, assuming it is not instrumented at the Web server plug-in, and the URI and

SOURCE_IP filters will be checked for the servlet request. However, when the request comes to

EJB container, EJB filter will not be checked because it is no longer an edge transaction.

If logging time is spent in the Web server, refer to “Regenerating the Web server plug-in configuration file”

on page 2238.

Adding and removing request metrics filters

This topic summarizes how to add and remove request metrics filter.

To add or remove request metrics filters, perform the following steps:

1. Open the administrative console.

2. Click Monitoring and Tuning > Request metrics in the console navigation tree.

3. Click Filters.

4. Choose a filter type.

a. Click Filter values.

2234 Administering applications and their environment

b. You can edit, add, and delete a filter value. To edit, click a filter value and change its value. To add,

click New and type in the value and optionally check the Enable filter box. To delete, select a filter

value and click Delete.

5. Click Apply or OK.

6. Click Save.

Adding or removing request metrics filters is complete.

If logging time spent in the Web server, refer to “Regenerating the Web server plug-in configuration file” on

page 2238.

Request metrics filters

Use this page to view a list of request metrics filters.

To view this administrative console page, click Monitoring and Tuning > Request metrics > Filters.

Maximum rows: Specifies the maximum number of rows that displays when the collection is large. The

rows that are not displayed appear on the next page.

Retain filter criteria: Specifies whether to use the same filter criteria entered in the show filter function to

display this page the next time you visit it.

Type:

Specifies the type of request metrics filter.

Enable:

Specifies whether this filter is enabled. This option must be enabled to enable the filter values under this

filter type.

Request metrics filter settings

Use this page to specify filters that define whether or not trace is enabled for inbound requests. Note that

the filters will only be checked for inbound requests. For intra-process and outbound calls, filters will not be

checked. If an inbound request passes the relevant filters, the request will be instrumented as it moves

through WebSphere Application Server. If an inbound request does not pass the relevant filters, the

request will not be instrumented for its entire code path in WebSphere Application Server.

To view this administrative console page, click Monitoring and Tuning > Request metrics > Filters >

filter_type.

Type:

Specifies the type of request metrics filter.

Enable:

Specifies whether this filter is enabled.

Filter values:

Specifies the value(s) of the request metrics filter type and enablement for the value(s).

Chapter 25. Monitoring application flow 2235

Filter values collection

Use this page to specify the values for source IP, URI, Web services, Java Message Service (JMS), or

Enterprise JavaBeans (EJB) request metrics filters. When multiple filter values are enabled, a request will

pass the filter as long as it matches one of the filter values.

To view this administrative console page, click Monitoring and Tuning > Request metrics > Filters >

filter_type > Filter values.

Maximum rows: Specifies the maximum number of rows that displays when the collection is large. The

rows that are not displayed appear on the next page.

Retain filter criteria: Specifies whether to use the same filter criteria entered in the show filter function to

display this page the next time you visit it.

Value:

Specifies a source IP, URI, Web services, JMS, or EJB value based on the type of filter.

 For example, for URI filters, the value might be ″/servlet/snoop″.

Enable filter:

Specifies whether a filter value is enabled.

Filter values settings

Use this page to specify the values for source IP, URI, Web services, Java Message Service (JMS), or

Enterprise JavaBeans (EJB) 2method name request metrics filters.

To view this administrative console page, click Monitoring and Tuning > Request metrics > Filters >

filter_type > Filter values > filter_value.

Value:

Specifies a source IP, URI, Web services, JMS, or EJB value based on the type of filter.

 For example, for URI filters, the value can be /servlet/snoop. When needed, the wildcard (*) can be

appended at the end of the value. For example, /servlet/s* is a valid URI filter value.

For JMS and Web services filter values, the wildcard can be used at the end of one or more name/value

pairs.

Enable filter:

Specifies whether this filter value is enabled.

Specifying how much data to collect

This topic describes how to set the trace level to generate trace records in the administrative console.

Trace level specifies how much trace data to accumulate for a given transaction. You should choose the

one of the following values when setting the trace level in the administrative console.

None No instrumentation.

Hops Generates instrumentation information on process boundaries only (for example, a servlet request

coming from a browser or a Web server and a JDBC request going to a database).

2236 Administering applications and their environment

Performance_debug

Generates the data at Hops level and the first level of the intra-process servlet and Enterprise

JavaBeans (EJB) call (for example, when an inbound servlet forwards to a servlet and an inbound

EJB calls another EJB). Other intra-process calls like naming and service integration bus (SIB) are

not enabled at this level.

Debug

Provides detailed instrumentation data, including response times for all intra-process calls.

Note: Requests to servlet filters will only be instrumented at this level.

1. Open the administrative console.

2. Click Monitoring and Tuning > Request metrics in the administrative console navigation tree.

3. Find Trace level in the Configuration tab.

4. Select a trace level from the drop down list box. To set the request metrics trace level to generate

records, make sure that the trace level is set to a value greater than None.

5. Click Apply or OK.

6. Click Save.

Information will be generated to reflect the trace level you selected.

Regenerate the Web server plug-in configuration file as described in the “Regenerating the Web server

plug-in configuration file” on page 2238 file, if logging time is spent in the Web server.

Request metrics trace filters

When request metrics is active, trace filters control which requests get traced. The data is recorded to the

system log file or sent through Application Response Measurement (ARM) for real-time and historical

analysis.

Incoming HTTP requests

HTTP requests that arrive at WebSphere Application Server might be filtered based on the URI or the IP

address or both of the originator of the request.

.

v Source IP address filters. Requests are filtered based on a known IP address. You can specify a

mask for an IP address using the asterisk (*). If used, the asterisk must always be the last character of

the mask, for example 127.0.0.*, 127.0.*, 127*. For performance reasons, the pattern matches character

by character, until either an asterisk is found in the filter, a mismatch occurs, or the filters are found to

be an exact match.

Only addresses that are entered in one of the following addressing formats are acceptable as the

source IP addresses:

– The IPv4 addressing format:

^(\d{1,2}|1\d\d|2[0-4]\d|25[0-5])\.(\d{1,2}|1\d\d|2[0-4]\d|25[0-5])\.

(\d{1,2}|1\d\d|2[0-4]\d|25[0-5])\.(\d{1,2}|1\d\d|2[0-4]\d|25[0-5])$

– The IPv6 addressing format:

^([0-9a-fA-F]*[0-9a-fA-F]*[0-9a-fA-F]*[0-9a-fA-F]*:){1,7}([0-9a-fA-F]*

[0-9a-fA-F]*[0-9a-fA-F]*[0-9a-fA-F]*)$

– The IPv4 compatiable IPv4 addressing format:

^([0]*[0]*[0]*[0]*:){1,7}((\d{1,2}|1\d\d|2[0-4]\d|25[0-5])\.

(\d{1,2}|1\d\d|2[0-4]\d|25[0-5])\.(\d{1,2}|1\d\d|2[0-4]\d|25[0-5])\.

(\d{1,2}|1\d\d|2[0-4]\d|25[0-5]))$/<constant-value>

– The IPv4MappedIPv6 addressing format:

^([0]*[0]*[0]*[0]*:){1,6}([fF][fF][fF][fF]:){1}((\d{1,2}|1\d\d|2[0-4]

\d|25[0-5])\.(\d{1,2}|1\d\d|2[0-4]\d|25[0-5])\.(\d{1,2}|1\d\d|2[0-4]\d|25[0-5])\.

(\d{1,2}|1\d\d|2[0-4]\d|25[0-5]))$

Chapter 25. Monitoring application flow 2237

Note: If the client machine is a dual stack machine and its IP address is specified as the source IP

address that is filtered by the request metrics filter, you must specify the IPv4 addressing format rather

than the IPv6 addressing format. Only if the client machine is a single stack IPv6 machine, can you

specify it as the IPv6 addressing format

v URI filters. Requests are filtered, based on the URI of the incoming HTTP requests. The rules for

pattern matching are the same as for matching source IP address filters.

v Filter combinations. If both URI and source IP address filters are active, request metrics requires a

match for both filter types. If neither is active, all requests are considered a match.

Incoming enterprise bean requests

Incoming enterprise bean requests

v Requests are filtered based on the full name of the EJB method. As with IP address and URI filters, the

asterisk (*) might be used in the mask. If used, the asterisk must always be the last character of a filter

pattern.

Because the ability to track the request response times comes with a cost, filtering helps optimize

performance when using request metrics.

The Web services filter and the Java Message Service (JMS) filter was added to the WebSphere

Application Server, Version 6 product. The filter values for Web services are a combination of a Web

Services Description Language (WSDL) port name, operation name, and transport name. The filter value

for JMS is the destination name.

 Related tasks

 “Specifying how much data to collect” on page 2236
This topic describes how to set the trace level to generate trace records in the administrative console.

Regenerating the Web server plug-in configuration file

This topic describes the steps to regenerate the Web server plug-in configuration file after you modify the

request metrics configuration.

After modifying the request metrics configuration, you must complete the following steps to regenerate the

Web server plug-in configuration file. Regeneration ensures that the Web server plug-in recognizes the

changes that you made for the request metrics configuration. If you make multiple changes to request

metrics, then regenerate the plug-in configuration files when you complete all the changes.

Important: You must complete this step after you change the request metrics configuration. If you do not,

the Web server plug-in might have different request metrics configuration data than the application server.

This difference in configuration data might cause inconsistent behaviors for request metrics between the

Web server plug-in and the application server.

1. Open the administrative console.

2. Click Server > Web servers .

3. Select the Web server check box.

4. Click Generate Plug-in.

The regeneration of the Web server plug-in configuration file is complete.

Enabling and disabling logging

This topic describes how to enable and disable logging through the administrative console.

You can enable and disable logging through the administrative console to start the generation of request

metrics logs in the SystemOut.log file in the following directory:

profile_root/logs/server_name

1. Open the administrative console.

2238 Administering applications and their environment

2. Click Monitoring and Tuning > Request metrics.

3. Under Request Metrics Destination, select the Standard Logs check box to enable the logging

feature. To disable the logging , clear the Standard Logs check box.

The logging feature is enabled. You can view the generated request metrics logs in the SystemOut.log file.

Request metrics performance data

Use this page to learn how to interpret performance data for request metrics in trace record format.

The trace records for request metrics data are output to two log files: the Web server plug-in log file and

the application server log file. The default directory for these log files is plugin_install_root/logs/
web_server_name/http_plugin.log and install_root/profiles/profile_name/logs/server_name) and

the default names are SystemOut.log and http_plugin.log. You might, however, specify these log file

names and their locations.

In the WebSphere Application Server log file the trace record format is:

PMRM0003I: parent:ver=n,ip=n.n.n.n,time=nnnnnnnnnn,pid=nnnn,reqid=nnnnnn,event=nnnn

-

current:ver=n,ip=n.n.n.n,time=nnnnnnnnnn,pid=nnnn,reqid=nnnnnn,event=nnnn

 type=TTT detail=some_detail_information elapsed=nnnn

In the Web server plug-in log file the trace record format is:

PLUGIN:

parent:ver=n,ip=n.n.n.n,time=nnnnnnnnnn,pid=nnnn,reqid=nnnnnn,event=nnnn

- current:ver=n,ip=n.n.n.n,time=nnnnnnnnnn,pid=nnnn,reqid=nnnnnn,event=nnnn

 type=TTT detail=some_detail_information elapsed=nnnn bytesIn=nnnn

 bytesOut=nnnn

The trace record format is composed of two correlators: a parent correlator and current correlator. The

parent correlator represents the upstream request and the current correlator represents the current

operation. If the parent and current correlators are the same, then the record represents an operation that

occurs as it enters WebSphere Application Server.

To correlate trace records for a particular request, collect records with a message ID of PMRM0003I from

the appropriate application server log files and the PLUGIN trace record from the Web server plug-in log file.

Records are correlated by matching current correlators to parent correlators. You can create the logical

tree by connecting the current correlators of parent trace records to the parent correlators of child records.

This tree shows the progression of the request across the server cluster. Refer to “Why use request

metrics?” on page 2221 for an example of the transaction flow.

The parent correlator is denoted by the comma separating fields following the keyword, parent:. Likewise,

the current correlator is denoted by the comma separating fields following, current:.

The fields of both parent and current correlators are:

v ver: The version of the correlator. For convenience, it is duplicated in both the parent and current

correlators.

v ip: The IP address of the node of the application server that generated the correlator. If the system has

multiple IP addresses, request metrics uses one of the IP addresses to identify the system.

v pid: The process ID of the application server that generated the correlator.

v time: The start time of the application server process that generated the correlator.

v reqid: An ID that is assigned to the request by request metrics, unique to the application server

process.

v event: An event ID that is assigned to differentiate the actual trace events.

Following the parent and current correlators, the metrics data for timed operation are:

Chapter 25. Monitoring application flow 2239

v type: A code that is represents the type of operation being timed. Supported types include HTTP, URI,

EJB, JDBC, JMS, COMMONJ_WORK_POOLED, COMMONJ_TIMER, Web services requester, and Web services

provider.

v detail: Identifies the name of the operation being timed (See the following description of Universal

Resource Identifier (URI), HTTP, EJB, JDBC, JMS, asynchronous beans, and Web services.)

v elapsed: The measured elapsed time in <units> for this operation, which includes all sub-operations

called by this operation. The unit of elapsed time is milliseconds.

v bytesIn: The number of bytes from the request that is received by the Web server plug-in.

v bytesOut: The number of bytes from the reply that is sent from the Web server plug-in to the client.

The type and detail fields that are described include:

v HTTP: The Web server plug-in generates the trace record. The detail is the name of the URI that is used

to invoke the request.

v URI: The trace record is generated by a Web component. The URI is the name of the URI that is used

to invoke the request.

v EJB: The fully qualified package and the method name of the enterprise bean.

v JDBC The interface name and method name for that JDBC call.

v JMS: JMS includes the particulars of various JMS parameters

v Asynchronous beans:The detail specifies the name of the asynchronous beans. Asynchronous beans

include two types: COMMONJ_WORK_POOLED and COMMONJ_TIMER.

v Web services:Web services include the particulars of various Web services parameters. Web services

include two types: Web services requestor and Web services provider.

v SIB: Used for instrumentation in service integration bus including message send/receive and mediation.

v JCA: J2EE Connector Architecture. The detail specifies the class name in which the JCA call is made.

v JNDI: Used for JNDI naming look up. The detail specifies the JNDI name.

v JMS send and receive: Generates the trace record by JMS sending and receiving messages.

v SIB send and receive: Generates the trace record by SIB sending and receiving messages.

 Related tasks

 “Enabling and disabling logging” on page 2238
This topic describes how to enable and disable logging through the administrative console.

Request metric extension

Certain applications might require additional instrumentation points within the request metrics flow. For

example, you might want to understand the response time to a unique back-end system as seen in the

following call graph:

HTTP request /trade/scenario ------------------------------> 172 ms

 Servlet/trade/scenario --------------------------------> 130 ms

 Servlet/call to unique back-end system -------------------------->38 ms

Request metrics uses a token or correlator when tracing the flow of each request through the system. To

create the call graph above with this instrumentation, you must plug into that flow of the request and issue

the appropriate Application Response Measurement (ARM) API for an ARM agent to collect the data and

for the ARM vendor to create the call graph.

Request metrics exposes the Correlation Service API for you to plug into the flow of the request. The

following example is one of the typical flows that might be followed by an instrumented application to plug

into the request metrics flow:

1. Create a new ArmTransaction object, which runs various instrumentation calls such as start or stop.

The Correlation Service Arm wrapper (PmiRmArmTx) encapsulates this object before being inserted

into the request metrics flow.

2. Populate the ArmTransaction object with an appropriate ArmCorrelator object. This object encapsulates

the actual ARM correlator bytes.

3. Run the start method on the ArmTransaction object, marking the beginning of the instrumented

method.

2240 Administering applications and their environment

4. Instantiate a PmiRmArmTx object using the static method on the PmiRmArmTxFactory class, and

populate it with the ArmTransaction object above.

5. Pass the PmiRmArmTx object above to the Correlation Service by pushing it onto the Correlation

Service stack using exposed methods on the PmiRmArmStack class.

6. Perform the tasks that need to be done by the method being instrumented. The Correlation Service

takes care of flowing the ArmTransaction object as necessary, which eventually results in the call graph

view of the transaction times.

7. At the end of the instrumented method, access the PmiRmArmTx object from the Correlation Service

using exposed methods on the PmiRmArmStack class, access the ArmTransaction object and perform

a stop to indicate the end of the transaction.

Example: Using the correlation service interface

Consult this information when utilizing the ARM API with the correlation service as part of a servlet

instrumentation.

The arm40 binaries should be installed in accordance with the installation instructions supplied by the

implementation provider. Once this is done, restart the server. This causes trace records to be generated

in the SystemOut.log file indicating the instantiation of the appropriate ARM implementation.

The following example illustrates one of the typical workflows of using the ARM API in conjunction with the

correlation service as part of a servlet instrumentation:

public void doGet(HttpServletRequest request, HttpServletResponse response)

 throws ServletException, IOException {

PmiRmArmTx artrax =

// The factory detects the currently active ARM implementation (specified by user through

// admin console) and instantiates an appropriate ARM wrapper object

 PmiRmArmTxFactory.createPmiRmArmTx();

ArmTransaction at = newArmTx();

if (null == at)

 out.println("Got a null ArmTransaction");

ArmCorrelator arc = newArmCorr();

at.start(arc);

try {

 artrax.setArmTransaction(at);

 PmiRmArmStack.pushTransaction(artrax);

} catch (Exception e) {

 System.out.println("Caught 1 exception" + e);

}

PmiRmArmTx atxwrp = PmiRmArmStack.peekTransaction();

if (atxwrp == null)

 out.println("Armtransaction is null");

//getArmType

try {

 out.println("ARMTYPE is"+ PmiRmArmTx.getARMType());

} catch (Exception e) {

 out.println(e);

}

//getting correlator bytes

try {

 if (null == atxwrp.getCorrelatorBytes())

 out.println("Got a null Correlator");

} catch (Exception e) {

 out.println(e);

}

//blocked/unblocked

Chapter 25. Monitoring application flow 2241

long blkid = 0;

try {

 out.println(blkid = atxwrp.blocked());

} catch (Exception e) {

 out.println(e);

}

try {

 out.println(atxwrp.unblocked(blkid));

} catch (Exception e) {

 out.println(e);

}

try {

 atxwrp = PmiRmArmStack.popTransaction();

 ArmTransaction art = (ArmTransaction) atxwrp.getArmTransaction();

 art.stop(ArmConstants.STATUS_GOOD);

} catch (Exception e) {

 out.println(e);

}

}

private ArmTransaction newArmTx() {

 ArmTransactionFactory txFactory = null;

try {

 String sWasName = "WebSphere";

 String appName = "t23xpimage/t23xpimage/server1";

 String sCellName = appName.substring(0, appName.indexOf("/"));

 String sNodeInstance =

 appName.substring(appName.indexOf("/") + 1, appName.length());

 sNodeInstance = sNodeInstance.replace(’/’, ’.’);

 txFactory = (ArmTransactionFactory)

 newObjectInstance("org.opengroup.arm40.sdk.ArmTransactionFactoryImpl");

 ArmApplication app = null; // 149297

 ArmApplicationDefinition appDef = null; //LIDB3207

 appDef = txFactory.newArmApplicationDefinition(sWasName, null, null);

 app = txFactory.newArmApplication(appDef, sCellName, sNodeInstance, null);

 String[] idnames = { "request_type" };

 String[] idvalues = { "URI" };

 String[] ctxnames = { "URI" };

 ArmIdentityPropertiesTransaction props =

 txFactory.newArmIdentityPropertiesTransaction(

 idnames,

 idvalues,

 ctxnames,

 null);

 ArmTransactionDefinition atd =

 txFactory.newArmTransactionDefinition(

 appDef,

 "URI",

 props,

 (ArmID) null);

 ArmTransaction at = txFactory.newArmTransaction(app, atd);

 return at;

} catch (Exception e) {

 System.out.println(e);

 return null;

}

}

private ArmCorrelator newArmCorr() {

2242 Administering applications and their environment

ArmTransactionFactory txFactory = null;

try {

 String sWasName = "WebSphere";

 String appName = "t23xpimage/t23xpimage/server1";

 txFactory =

 (ArmTransactionFactory) newObjectInstance("org.opengroup.arm40.sdk.ArmTransactionFactoryImpl");

 ArmCorrelator arc =txFactory.newArmCorrelator(

 PmiRmArmStack.peekTransaction().getCorrelatorBytes());

 return arc;

} catch (Exception e) {

 System.out.println(e);

 return null;

}

}

There are several potential scenarios for using the PmiRmArmStack. This example shows a scenario

where code accesses an existing PmiRmArmTx on the stack, extracts the correlator, and calls blocked and

unblocked. This is a typical scenario when sending a correlator along an unsupported protocol. In this

scenario, the Arm transaction is already on the stack.

1 PmiRmArmTx artrax =

2 PmiRmArmStack.peekTransaction();

3 if(artrax != null)

4 {

5 try

6 {

7 byte[] cbytes = artrax.getCorrelatorBytes();

8 stuffBytesIntoOutboundMessage(msg, cbytes);

9 long blockedId = 0;

10 try

11 {

12 blockedId = artrax.blocked();

13 }

14 catch(NoSuchMethodException nsme)

15 {

16 // must not be running ARM4 or eWLM

17 }

18 sendMsg(msg);

19 try

20 {

21 artrax.blocked(blockedId);

22 }

23 catch(NoSuchMethodException nsme)

24 {

25 // must not be running ARM4 or eWLM

26 }

27

28 }

29 catch(Exception e)

30 {

31 report a problem;

32 }

33 }

Chapter 25. Monitoring application flow 2243

Differences between Performance Monitoring Infrastructure and

request metrics

Performance Monitoring Infrastructure (PMI) provides information about average system resource usage

statistics, with no correlation between the data across different WebSphere Application Server

components. For example, PMI provides information about average thread pool usage. Request metrics

provides data about each individual transaction, correlating this information across the various WebSphere

Application Server components to provide an end-to-end picture of the transaction, as shown in the

following diagram:

Web
Server

Web
Container

correlator correlator
EJB

Container

Database
JDBC call

correlator

} } } }

Filtered by
IP or URLs

Request

RM in plug-in

Log ARM

Entry/exit

RM in application server

Log ARM

Entry/exit

Tivoli or Third-Party Tools

2244 Administering applications and their environment

Chapter 26. Troubleshooting deployment

v Select the problem you are having with deploying or installing developed code for WebSphere

Application Server.

– Errors or problems deploying, installing, or promoting applications

– Class loader exceptions

v To troubleshoot other deployment issues, use the following resources.

– For current information available from IBM Support on known problems and their resolution, see the

IBM Support page.

– IBM Support has documents that can save you time gathering information needed to resolve this

problem. Before opening a PMR, see the IBM Support page.

– If you do not see a problem that resembles yours, or if the information provided does not solve your

problem, see Troubleshooting help from IBM.

Errors or problems deploying, installing, or promoting applications

This topic describes problems that you might encounter when deploying, installing, or promoting

applications and suggests ways to resolve the problems.

What kind of problem are you having?

v “I installed my application using the wsadmin tool, but the application does not display under

Applications > Enterprise Applications ” on page 2246

v “Unable to save a deployed application” on page 2246

v “I get a java.lang.RuntimeException: Failed_saving_bytes_to_wor_ERROR_ error in the assembly tool,

administrative console or the wsadmin tool.” on page 2246

v “WASX7015E error running wsadmin command $AdminApp installInteractive or $AdminApp install” on

page 2247

v “Data definition language (DDL) generated by an assembly tool throws SQL error on target platform ” on

page 2247

v “Error message ADMA0004E: Validation error in task Specifying the Default Datasource for EJB

Modules returned when installing application using the administrative console or the wsadmin tool” on

page 2247

v “Cannot load resource WEB-INF/ibm-web-bnd.xmi in archive file” on page 2248

v “Error message No valid target is specified in ObjectName anObject for module module_name from

installation ” on page 2248

v “″Timeout!!!″ error displays when attempting to install an enterprise application in the administrative

console ” on page 2249

v “I get a NameNotFoundException message when deploying an application that contains an EJB

module” on page 2249

v “During application installation, the call to EJB deploy throws an exception” on page 2249

v “I get compilation errors and EJB deploy fails when installing an EJB JAR file generated for Version 5.x

or earlier” on page 2249

Check the following first:

v Verify that the logical name that you have specified to appear on the console for your application,

enterprise bean module or other resource does not contain invalid characters such as these: - / \ : * ? ″

< > |.

v If the application was installed using the wsadmin $AdminApp install command with the -local flag,

restart the server or rerun the command without the -local flag.

© Copyright IBM Corp. 2006 2245

http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCR4XA
http://www-1.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCR4XA&q=mustgather

If you do not see a problem that resembles yours, or if the information provided does not solve your

problem, check to see if the problem is identified and documented by looking at available online support

including hints and tips, technotes, and fixes. If the problem has not been identified, see Troubleshooting

help from IBM.

I installed my application using the wsadmin tool, but the application does not

display under Applications > Enterprise Applications

The application might be installed but you have not saved the configuration:

1. Verify that the application subdirectory is located under the app_server_root/installedApps directory.

2. Run the $AdminApp list command and verify that the application is not among those displayed.

v In the bin directory, run the wsadmin.bat or wsadmin.sh command.

v From the wsadmin prompt, enter $AdminApp list and verify that the problem application is not

among the items that display.
3. Reinstall your application using the wsadmin tool. Run the $AdminConfig save command in the

wsadmin tool before exiting.

Unable to save a deployed application

If you are unable to save a deployed application, the problem might be that too many files are opened,

exceeding the limit of the operating system.

On the SuSE9 or other Linux platform, you can either increase the number of files that can be opened to

resolve the problem or you can modify the application to close files with disciplines. To increase the

number of files that you can open at the same time, run the following command in the shell before

invoking the process that needs to open a number of files:

ulimit -n number_of_files

Only root has authority to adjust the maximum number of files for each process. Complete the following

steps to modify the application to close files with disciplines:

1. After you open a file and complete your work, call the close method of the file to release the file handle

back to the operating system.

2. Using the java.io.FileInputStream and the FileOutputStream classes as examples, you can invoke their

close method to release any system resources that are associated with the stream.

I get a java.lang.RuntimeException: Failed_saving_bytes_to_wor_ERROR_ error in the

assembly tool, administrative console or the wsadmin tool.

If you see this error when attempting to generate deployed code in an assembly tool, installing an

application or module in the administrative console, or using the wsadmin tool to install an application or

module, the file path length of the temporary system file might be exceeded. This situation is typically an

issue only on Windows platforms.

To verify this problem, check the TEMP and TMP environment variables for your system. Long environment

variables add path length to the file names accessed by the EJB deployment tool.

To resolve the problem:

1. Stop all WebSphere Application Server processes and close all DOS prompts.

2. Set the TMP and TEMP environment variables to something short, for example C:\TMP and C:\TEMP.

3. Reinstall the application.

Otherwise, try rebooting and redeploying or reinstalling the application.

2246 Administering applications and their environment

WASX7015E error running wsadmin command $AdminApp installInteractive or

$AdminApp install

This problem has two possible causes:

v If the full text of the error is similar to:

WASX7015E: Exception running command: "$AdminApp installInteractive C:/Documents and Settings/

myUserName/Desktop/MyApp/myapp.ear"; exception information:

com.ibm.bsf.BSFException: error while

eval’ing Jacl expression: can’t find method "installInteractive"

with 3 argument(s) for class

"com.ibm.ws.scripting.AdminAppClient"

The file and path name are incorrectly specified. In this case, since the path included spaces, it was

interpreted as multiple parameters by the wsadmin program.

Enter the path of the .ear file correctly. In this case, by enclosing it in double quotes:

$AdminApp installInteractive "C:\Documents

and Settings\myUserName\Desktop\MyApps\myapp.ear"

v If the full text of the error is similar to:

WASX7015E: Exception running command: "$AdminApp installInteractive c:\MyApps\myapp.ear ";

exception information: com.ibm.ws.scripting.ScriptingException: WASX7115E:

Cannot read input file

"c:\WebSphere\AppServer\bin\MyAppsmyapp.ear"

The application path is incorrectly specified. In this case, you must use ″forward-slash″ (/) separators in

the path.

Data definition language (DDL) generated by an assembly tool throws SQL error

on target platform

If you receive SQL errors in attempting to execute data definition language (DDL) statements generated by

an assembly tool on a different platform, for example if you are deploying a container-managed

persistence (CMP) enterprise bean designed on Windows onto a UNIX operating system server, try the

following actions:

v Browse the DDL statements for dependencies on specific user identifiers and passwords, and correct as

necessary.

v Browse the DDL statements for dependencies on specific server names, and correct as necessary.

v Refer to the message reference of the vendor for causes and suggested actions regarding specific SQL

errors. For IBM DB2, you can view the message references online at http://www.ibm.com/cgi-bin/
db2www/data/db2 /udb/winos2unix/support/index.d2w/report.

If you receive the following error after executing a DDL file created on the Windows operating system or

on operating systems such as AIX or Linux, the problem might come from a difference in file formats:

SQL0104N An unexpected token "CREATE TABLE AGENT (COMM DOUBLE, PERCENT DOUBLE, P"

was found following " ". Expected tokens may include: " ".

SQLSTATE=42601

To resolve this problem:

v For operating systems other than Linux, edit the DDL in the vi editor, removing the Ctl-M character at

the beginning of each line.

v For Linux systems, regenerate the deployment code for the application EAR file on a Linux platform.

Error message ADMA0004E: Validation error in task Specifying the Default

Datasource for EJB Modules returned when installing application using the

administrative console or the wsadmin tool

If you see the following error when trying to install an application through the administrative console or the

wsadmin command prompt:

Chapter 26. Troubleshooting deployment 2247

http://www.ibm.com/cgi-bin/db2www/data/db2/udb/winos2unix/support/index.d2w/report
http://www.ibm.com/cgi-bin/db2www/data/db2/udb/winos2unix/support/index.d2w/report

AppDeploymentException: [ADMA0014E: Validation failed.

ADMA0004E: Validation error in task Specifying the Default Datasource for

EJB Modules JNDI name is not

specified for module beannameBean Jar with URI filename.jar,META-INF/ejb-jar.xml.

You have not specified the

data source for each CMP bean belonging to this module. Either specify the data

source for each CMP beans or

specify the default data source for the entire module.]

one possible cause is that in WebSphere Application Server version 4.0, it was mandatory to have a data

source defined for each CMP bean in each JAR. In versions 5.0 and later releases, you can specify either

a data source for a container-managed persistence (CMP) bean or a default data source for all CMP

beans in the JAR file. Thus during installation interaction, such as the installation wizard in the

administrative console, the data source fields are optional, but the validation performed at the end of the

installation checks to see that at least one data source is specified.

To correct this problem, step through the installation again, and specify either a default data source or a

data source for each CMP-type enterprise bean. If you are using the wsadmin tool:

v Use the $AdminApp installInteractive filename command to receive prompts for data sources during

installation, or to provide them in a response file.

v Specify data sources as an option to the $AdminApp install command. For details on the syntax, see

Installing applications with the wsadmin tool.

Cannot load resource WEB-INF/ibm-web-bnd.xmi in archive file

The Web application tmp.war installs on WebSphere Application Server versions 5.0 and 5.1, but fails on a

WebSphere Application Server version 6 server. The application fails to install because the

WEB-INF/ibm-web-bnd.xmi file contains xmi tags that the underlying WCCM model no longer recognizes.

The following error messages display:

IWAE0007E Could not load resource "WEB-INF/ibm-web-bnd.xmi" in archive "tmp.war"

[2/24/05 14:53:10:297 CST] 000000bc SystemErr R

AppDeploymentException:

com.ibm.etools.j2ee.commonarchivecore.exception.ResourceLoadException:

IWAE0007E Could not load resource "WEB-INF/ibm-web-bnd.xmi" in archive "tmp.war"

[2/24/05 14:53:10:297 CST] 000000bc SystemErr R

com.ibm.etools.j2ee.commonarchivecore.exception.ResourceLoadException:

IWAE0007E Could not load resource "WEB-INF/ibm-web-bnd.xmi" in archive "tmp.war"

!Stack_trace_of_nested_exce!

com.ibm.etools.j2ee.exception.WrappedRuntimeException: Exception occurred loading

WEB-INF/ibm-web-bnd.xmi

!Stack_trace_of_nested_exce!

To work around this problem, remove the xmi:type=EJBLocalRef tag from the ibm-web-bnd.xmi file.

Removing this tag does not affect the application because the tag was previously used for matching the

cross document reference type. The application now works for the WebSphere Application Server v5.1,

v6.0, and later releases.

Error message No valid target is specified in ObjectName anObject for module

module_name from installation

This error can occur in a clustered environment if the target cell, node, server or cluster into which the

application is to be installed is incorrectly specified. For example, it can occur if the target is misspelled.

To correct this problem, check the target names against the actual WebSphere Application Server topology

and reenter them with corrections.

2248 Administering applications and their environment

″Timeout!!!″ error displays when attempting to install an enterprise application in

the administrative console

This error can occur if you attempt to install an enterprise application that has not been deployed.

To correct this problem:

v Open the file_name.ear file in an assembly tool and then click Deploy. This action creates a file with a

name like Deployed_file_name.ear.

v In the administrative console, install the deployed .ear file.

I get a NameNotFoundException message when deploying an application that

contains an EJB module

If you specify that EJB deploy be run during application installation and the installation fails with a

NameNotFoundException message, ensure that the input JAR or EAR file does not contain source files. If

there are source files in the input JAR or EAR file, the EJB deployment tools runs a rebuild before

generating the deployment code.

To work around this problem, either remove the source files or include all dependent classes and resource

files on the class path. Otherwise, the source files or the lack of access to dependent classes and

resource files might cause problems during rebuilding of your application on the server.

During application installation, the call to EJB deploy throws an exception

When you specify that the EJB deployment tool be run during application installation and if installation fails

with the error command line too long, the problem is that the deployment command generated during

installation exceeds the character limit for a command line on the Windows platform. This problem occurs

only on Windows platforms.

To work around this problem, you can reduce the length of the EAR file name, reduce the length of the

JAR file name within the EAR file, reduce the class path or other options specified for deployment, or

change the %TEMP% location of the Windows system to make its path shorter.

I get compilation errors and EJB deploy fails when installing an EJB JAR file

generated for Version 5.x or earlier

When installing an old application that uses EJB modules that were built to run on WebSphere Application

Server Version 5.x or earlier, compilation errors result and EJB deploy fails. The EJB JAR file contains

Java source for the old generated code. The old Java source was generated for Version 5.x or before but,

when deployed to a WebSphere Application Server Version 6.x product, it is compiled using the Version

6.x run-time JAR files.

To work around this problem, remove all .java files from the application .ear file. After the Java source

files are removed, you can deploy the application onto a server successfully.

Troubleshooting testing and first time run problems

Select the problem you are having with testing or the first run of deployed code for WebSphere Application

Server:

v “The server process does not start or starts with errors” on page 2269.

v “The application does not start or starts with errors” on page 2254.

v “A Web resource does not display” on page 2257.

v “Cannot access a data source” on page 726.

v “Cannot access an enterprise bean from a servlet, a JSP file, a stand-alone program, or another client”

on page 198.

Chapter 26. Troubleshooting deployment 2249

v Cannot look up an object hosted by WebSphere Application Server from a servlet, JSP file, or other

client.

v Access problems after enabling security.

v Errors after enabling security.

v Errors after configuring or enabling Secure Sockets Layer.

v Errors in messaging.

v .

v A client program does not work.

v Errors connecting to WebSphere MQ and creating WebSphere MQ queue connection factory.

If you do not see a problem that resembles yours, or if the information provided does not solve your

problem, see Troubleshooting help from IBM.

For current information available from IBM Support on known problems and their resolution, see the IBM

Support page.

IBM Support has documents that can save you time gathering information needed to resolve this problem.

Before opening a PMR, see the Must gather documents page for information to gather to send to IBM

Support page.

Errors starting an application

Use this information for troubleshooting problems that occur when starting an application.

What kind of error do you see when you start an application?

v “HTTP server and Application Server are working separately, but requests are not passing from HTTP

server to Application Server”

v “File serving problems” on page 2251

v “Graphics do not appear in the JSP file or servlet output” on page 2251

v “SRVE0026E: [Servlet Error]-[Unable to compile class for JSP file” on page 2252

v “After modifying and saving a JSP file, the change does not show up in the browser (the old JSP file

displays)” on page 2253

v “Message like ″Message: /jspname.jsp(9,0) Include: Mandatory attribute page missing″ appears when

attempting to browse JSP file” on page 2253

v “The Java source generated from a JSP file is not retained in the temp directory (only the class file is

found)” on page 2253

v “The JSP Batch Compiler fails with the message ″Enterprise Application [application name you typed in]

not found.″” on page 2254

v “There is a translation problem with non-English browser input” on page 2254

v “Scroll bars do not appear around items in the browser window” on page 2254

v “Error ″Page cannot be displayed... server not found or DNS error″ appears when attempting to browse

a JavaServer Pages (JSP) file using Internet Explorer” on page 2254

HTTP server and Application Server are working separately, but requests are not

passing from HTTP server to Application Server

If your HTTP server appears to be functioning correctly, and the Application Server also works on its own,

but browser requests sent to the HTTP server for pages are not being served, a problem exists in the

WebSphere Application Server plug-in.

In this case:

1. Determine whether the HTTP server is attempting to serve the requested resource itself, rather than

forwarding it to the WebSphere Application Server.

a. Browse the HTTP server access log (IHS install root/logs/access.log for IBM HTTP Server). It

might indicate that it could not find the file in its own document root directory.

b. Browse the plug-in log file as described below.

2250 Administering applications and their environment

http://www-306.ibm.com/software/webservers/appserv/was/support/
http://www-306.ibm.com/software/webservers/appserv/was/support/
http://www-1.ibm.com/support/docview.wss?rs=180&context=SSEQTP&uid=swg21145599

2. Refresh the plugin-cfg.xml file that determines which requests sent to the HTTP server are forwarded

to the WebSphere Application Server, and to which Application Server.

Use the console to refresh this file:

v In the WebSphere Application Server administrative console, expand the Environment tree control.

v Click Update WebSphere Plugin.

v Stop and restart the HTTP server.

v Retry the Web request.

3. Browse the plugin_install_root/logs/web_server_name/http_plugin.log file for clues to the problem.

Make sure the timestamps with the most recent plug-in information stanza, which is printed out when

the plug-in is loaded, correspond to the time the Web server started.

4. Turn on plug-in tracing by setting the LogLevel attribute in the plugin-cfg.xml file to Trace and

reloading the request. Browse the plugin_install_root/logs/Web_server_name/http_plugin.log file.

You should be able to see the plug-in attempting to match the request URI with the various URI

definitions for the routes in the plugin-cfg.xml. Check which rules the plug-in is not matching against

and then figure out if you need to add additional ones. If you just recently installed the application you

might need to manually regenerate the plug-in configuration to pick up the new URIs related to the

new application.

For further details on troubleshooting plug-in-related problems, see Webserver plug-in troubleshooting tips

located in the Administering applications and their environment PDF book.

File serving problems

If text output appears on your JSP- or servlet-supported Web page, but image files do not:

v Verify that your files are in the right place: the document root directory of your Web application

WebSphere Application Server follows the J2EE standard, which means that the document root is the

Web_module_name.war directory of your deployed Web application.

Typically this directory will be found in the install_root/installedApps/nodename/appname.ear directory or

install_root/installedApps/nodename/appnameNetwork.ear directory.

If the files are in a subdirectory of the document root, verify that the reference to the file reflects that.

That is, if the invoices.html file is stored in Windows directory Web_module_name.war\invoices, then

links from other pages in the Web application to display it should read ″invoices\invoices.html″, not

″invoices.html″.

v Verify that your Web application is configured to enable file serving (in other words, that it is enabled to

display static resources like image and .html files):

1. View the file serving property of the hosting Web module by browsing the source .war file in an

assembly tool. If necessary, update the property and redeploy the module. For more information

about the assembly tool, refer to the assembly tools section of the Developing and deploying

applications PDF book.

2. Edit the fileServingEnabled property in the deployed Web application ibm-web-ext.xmi

configuration file.

The file typically is found in the install_root/config/cells/nodename or nodenameNetwork/
applications/application_name/deployments/application name/Web_module_name/web-inf

directory.

Graphics do not appear in the JSP file or servlet output

If text output appears on your JSP- or -servlet-supported Web page, but image files do not:

v Verify that your graphic files are in the right place: the document root directory of your Web

application. WebSphere Application Server Version 5 follows the J2EE standard, which means that the

document root is the Web_module_name.war directory of your deployed Web application.

Typically, this directory is found in the install_root/installedApps/nodename/appname.ear directory or

install_root/installedApps/nodename/appnameNetwork.ear directory.

Chapter 26. Troubleshooting deployment 2251

If the graphics files are in a subdirectory of the document root, verify that the reference to the graphic

reflects that; for example, if the banner.gif file is stored in Windows directory Web_module_name.war/
images, the tag to display it should read: , not .

v Verify that your Web application is configured to enable file serving (that is, display of static resources

like image and .html files).

1. View the file serving property of the hosting Web module by browsing the source .war file in an

assembly tool. If necessary, update the property and redeploy the module. For more information

about the assembly tool, refer to the assembly tools section of the Developing and deploying

applications PDF book.

2. Edit the fileServingEnabled property in the deployed Web application ibm-web-ext.xmi

configuration file.

The file typically is found in the install_root/config/cells/nodename or nodenameNetwork/
applications/application_name/deployments/application name/Web_module_name/web-inf

directory.

3. After completing the previous step:

– In the administrative console, expand the Environment tree control .

– Click Update WebSphere Plugin.

– Stop and restart the HTTP server and retry the Web request.

SRVE0026E: [Servlet Error]-[Unable to compile class for JSP file

If this error appears in a browser when trying to access a new or modified .jsp file for the first time, the

most likely cause is that the JSP file Java source failed (was incorrect) during the javac compilation phase.

Check the SystemErr.log file for a compiler error message, such as:

C:\WASROOT\temp\ ... test.war_myJsp.java:14: \Duplicate variable declaration: int myInt was int myInt

int myInt = 122;

String myString = "number is 122";

static int myStaticInt=22;

int myInt=121;

 ^

Fix the problem in the JSP source file, save the source and request the JSP file again.

If this error occurs when trying to serve a JSP file that was copied from another system where it ran

successfully, then there is something different about the new server environment that prevents the JSP file

from running. Browse the text of the error for a statement like:

Undefined variable or class name: MyClass

This error indicates that a supporting class or jar file is not copied to the target server, or is not on the

class path. Find the MyClass.class file, and place it on the Web module WEB-INF/classes directory, or

place its containing .jar file in the Web module WEB-INF/lib directory.

Verify that the URL used to access the resource is correct by doing the following:

v For a JSP file, html file, or image file: http://host_name/Web_module_context_root/subdir under doc

root, if any/filename.ext. The document root for a Web application is the application_name.WAR

directory of the installed application.

– For example, to access the myJsp.jsp file, located in c:\WebSphere\ApplicationServer\installedApps\
myEntApp.ear\myWebApp.war\invoices on myhost.mydomain.com, and assuming the context root for

the myWebApp Web module is myApp, the URL is http://myhost.mydomain.com/myApp/invoices/
myJsp.jsp.

– JSP serving is enabled by default. File serving for HTML and image files must be enabled as a

property of the Web module, in an assembly tool, or by setting the fileServingEnabled property to

true in the ibm-web-ext.xmi file of the installed Web application and restarting the application. For

more information about the assembly tool, refer to the assembly tools section of the Developing and

deploying applications PDF book.

2252 Administering applications and their environment

v For servlets served by class name, the URL is http://hostname/Web_module_context_root/servlet/
packageName.className.

For example, to access myCom.myServlet.class, located in c:\WebSphere\ApplicationServer\
installedApps\ myEntApp.ear\myWebApp.war\WEB-INF\classes, and assuming the context root for the

myWebApp module is ″myApp″, the URL would be http://myhost.mydomain.com/myApp/servlet/
myCom.MyServlet.

v Serving servlets by class name must be enabled as a property of the Web module, and is enabled by

default. File serving for HTML and image files must be enabled as a property of the Web application, in

an assembly tool, or by setting the fileServingEnabled property to true in the ibm-web-ext.xmi file of

the installed Web application and restarting the application. For more information about the assembly

tool, refer to the assembly tools section of the Developing and deploying applications PDF book.

Correct the URL in the ″from″ HTML file, servlet or JSP file. An HREF with no leading slash (/) inherits the

calling resource context. For example:

v an HREF in http://[hostname]/myapp/servlet/MyServlet to ″ServletB″ resolves to

″http://hostname/myapp/servlet/ServletB″

v an HREF in http://[hostname]/myapp/servlet/MyServlet to ″servlet/ServletB″ resolves to

″http://hostname/myapp/servlet/servlet/ServletB″ (an error)

v an HREF in http://[hostname]/myapp/servlet/MyServlet to ″/ServletB″ resolves to

″http://hostname/ServletB″ (an error, if ServletB requires the same context root as MyServlet)

After modifying and saving a JSP file, the change does not show up in the

browser (the old JSP file displays)

It is probable that the Web application is not configured for servlet reloading, or the reload interval is too

high.

To correct this problem, in an assembly tool, check the Reloading Enabled flag and the Reload Interval

value in the IBM Extensions for the Web module in question. Enable reloading, or if it is already enabled,

then set the Reload Interval lower. For more information about the assembly tool, refer to the assembly

tools section of the Developing and deploying applications PDF book.

Message like ″Message: /jspname.jsp(9,0) Include: Mandatory attribute page

missing″ appears when attempting to browse JSP file

It is probable that the JSP file failed during the translation to Java phase. Specifically, a JSP directive, in

this case an Include statement, was incorrect or referred to a file that could not be found.

To correct this problem, fix the problem in the JSP source, save the source and request the JSP file again.

The Java source generated from a JSP file is not retained in the temp directory

(only the class file is found)

It is probable that the JSP processor is not configured to keep generated Java source.

In an assembly tool, check the JSP Attributes under Assembly Property Extensions for the Web

module in question. Make sure the keepgenerated attribute is there and is set to true. If not, set this

attribute and restart the Web application. To see the results of this operation, delete the class file from the

temp directory to force the JSP processor to translate the JSP source into Java source again. For more

information about the assembly tool, refer to the assembly tools section of the Developing and deploying

applications PDF book.

Chapter 26. Troubleshooting deployment 2253

The JSP Batch Compiler fails with the message ″Enterprise Application

[application name you typed in] not found.″

It is probable that the full enterprise application path and name, starting with the .ear subdirectory that

resides in the applications directory is expected as an argument to the JspBatchCompiler tool, not just

the display name.

The directory path is install_root\config\cells\node_nameNetwork\applications.

For example:

v ″JspBatchCompiler -enterpriseapp.name sampleApp.ear/deployments/sampleApp″ is correct, as

opposed to

v ″JspBatchCompiler -enterpriseapp.name sampleApp″, which is incorrect.

There is a translation problem with non-English browser input

If non-English-character-set browser input cannot be translated after being read by a servlet or JSP file,

ensure that the request parameters are encoded according to the expected character set before reading.

For example, if the site is Chinese, the target .jsp file should have a line:

 req.setCharacterEncoding("gb2312");

before any req.getParameter method calls.

This problem affects servlets and jsp files ported from earlier versions of WebSphere Application Server,

which converted characters automatically based upon the locale of the WebSphere Application Server.

Scroll bars do not appear around items in the browser window

In some browsers, tree or list type items that extend beyond their allotted windows do not have scroll bars

to permit viewing of the entire list.

To correct this problem, right-click on the browser window and click Reload from the menu.

Error ″Page cannot be displayed... server not found or DNS error″ appears when

attempting to browse a JavaServer Pages (JSP) file using Internet Explorer

This error can occur when an HTTP timeout causes the servant to be brought down and restarted. To

correct this problem, increase the ConnectionIOTimeOut value:

1. From the administrative console, select System administration > Deployment manager >

Administration Services > Custom Properties

2. Select ConnectionIOTimeOut.

3. Increase the ConnectionIOTimeOut value.

4. Click OK.

The application does not start or starts with errors

When an application is not starting or starting with errors, the problem could be from one of various

sources.

What kind of error do you see when you start an application?

v A “java.lang.ClassNotFoundException: classname Bean_AdderServiceHome_04f0e027Bean” on page

2255 error occurs

v A “ConnectionFac E J2CA0102E: Invalid EJB component: Cannot use an EJB module with version 1.1

using The Relational Resource Adapter” on page 2255 error occurs

2254 Administering applications and their environment

v “NMSV0605E: ″A Reference object looked up from the context...″ error when starting an application” on

page 2256.

v “Deployed application that uses Java Native Interface (JNI) code does not start” on page 2256

v A parsing error when running an application that uses the JSF configuration occurs.

If none of these errors match the error you see:

v Browse the log files of the application server for this application looking for clues. By default, these files

are: install_dir/logs/server_name/SystemErr.log and SystemOut.log.

v Look up any error or warning messages in the message reference table by clicking the Reference view

and expanding the ″Messages″ heading.

If you do not see a problem that resembles yours, or if the information provided does not solve your

problem, see Troubleshooting help from IBM.

java.lang.ClassNotFoundException: classname

Bean_AdderServiceHome_04f0e027Bean

An similar exception occurs when you try to start an undeployed application containing enterprise beans,

or containing undeployed enterprise bean modules.

Enterprise JavaBeans modules created in an assembly tool intentionally have incomplete configuration

information. Deploying these modules completes the configuration by reading the module’s deployment

descriptor and completing platform- or installation-dependent settings and adding related classes to the

Enterprise JavaBeans JAR file.

To avoid this problem, do the following:

v Use an assembly tool and administrative console to generate deployment code and install the

application or Enterprise JavaBeans module onto a server.

1. Uninstall the application or Enterprise JavaBeans module in the administrative console.

2. Configure your assembly tool so the target server is a WebSphere Application Server installation

such as WebSphere Application Server v6. If you do not have access to the target server, you can

specify a false location such as c:\temp. Specifying a false location enables you to assemble and

generate deployment code for the enterprise bean.

3. In the Project Explorer view of an assembly tool, right-click the enterprise bean (Enterprise

JavaBeans) in the undeployed .ear file containing the Enterprise JavaBeans module or the

standalone undeployed Enterprise JavaBeans JAR file, and click Deploy. If your assembly tool can

access the WebSphere Application Server target server, deployment code is generated for the

Enterprise JavaBeans and the assembly tool attempts to install the application or module onto the

target server. If your assembly tool cannot access the WebSphere Application Server target server

or the installation fails, use the deployment code that is generated for the next step.

For information on using an assembly tool, refer to Assembling applications.

4. Use the wsadmin $AdminApp install command or the administrative console to install the deployed

version created by the assembly tool.
v If you use the wsadmin $AdminApp install command, uninstall it and then reinstall using the -EJBDeploy

option. Follow the install command with the $AdminConfig save command.

ConnectionFac E J2CA0102E: Invalid EJB component: Cannot use an EJB module

with version 1.1 using The Relational Resource Adapter

This error occurs when an enterprise bean developed to the Enterprise JavaBeans 1.1 specification is

deployed with a WebSphere Application Server V5 J2C-compliant data source, which is the default data

source. By default, persistent enterprise beans created under WebSphere Application Server V4.0’s using

the Application Assembly Tool fulfill the Enterprise JavaBeans 1.1 specification. To run on WebSphere

Application Server V6, these enterprise beans must be associated with a WebSphere Application Server

V4.0-type data source.

Chapter 26. Troubleshooting deployment 2255

Either modify the mapping in the application of enterprise beans to associate 1.x container managed

persistence (CMP) beans to associate them with a V4.0 data source or delete the existing data source and

create a V4.0 data source with the same name.

To modify the mapping in the application of enterprise beans, in the WebSphere Application Server

administrative console, select the properties for the problem application and use map resource

references to resources or Map data sources for all 1.x CMP beans to switch the data source the

enterprise bean uses. Save the configuration and restart the application.

To delete the existing data source and create a V4.0 data source with the same name:

1. In the administrative console, click Resources>Manage JDBC Providers>JDBC_provider_name>Data

sources.

2. Delete the data source associated with the Enterprise JavaBeans 1.1 module.

3. Click Resources>Manage JDBC Providers>JDBC_provider_name>Data sources (Version 4).

4. Create the data source for the Enterprise JavaBeans 1.1 module.

5. Save the configuration and restart the application.

NMSV0605E: ″A Reference object looked up from the context...″ error when

starting an application

If the full text of the error is similar to:

[7/17/02 15:20:52:093 CDT] 5ae5a5e2 UrlContextHel W NMSV0605E: A Reference object looked up from the context

 "java:" with the name "comp/PM/WebSphereCMPConnectionFactory" was sent to the JNDI Naming Manager

 and an exception resulted. Reference data follows:

 Reference Factory Class Name: com.ibm.ws.naming.util.IndirectJndiLookupObjectFactory

 Reference Factory Class Location URLs:

 Reference Class Name: java.lang.Object

 Type: JndiLookupInfo

 Content: JndiLookupInfo: ; jndiName="eis/jdbc/MyDatasource_CMP"; providerURL=""; initialContextFactory=""

then the problem might be that the data source intended to support a CMP enterprise bean is not correctly

associated with the enterprise bean.

To resolve this problem:

1. Select the Use this Data Source in container managed persistence (CMP) check box in the data

source ″General Properties″ panel of the administrative console.

2. Verify that the JNDI Name given in administrative console under Resources-> Manage JDBC

Provider > DataSource > JNDI Name for DataSource matches the JNDI Name given for CMP or

BMP Resource Bindings at the time of assembling the application in an assembly tool, or

3. Check the JNDI Name for CMP or BMP resource bindings specified in the code by J2EE Application

Developer. Open the deployed .ear folder in an assembly tool, and look for the JNDI Name for your

entity beans under CMP or BMP resource bindings. Verify that the names match.

Deployed application that uses Java Native Interface (JNI) code does not start

An application that uses JNI code might not start after deployment. The JNI allows Java code running in a

virtual machine to operate with applications and libraries written in other languages, such as C, C++, and

assembly. If your J2EE application uses JNI in a 32-bit environment, you must recompile your code in a

64-bit environment. The JNI calls might be different after the compilation because JNI specifications can

change from version to version. WebSphere Application Server now supports 64-bit environments.

For a ″pure″ Java application that does not use JNI code, 32-bit to 64-bit compatibility is not an issue.

Parsing error when running an application that uses the JSF configuration

If you are using double-byte characters in the profile name, you receive a parsing error when running an

application that uses the JavaServer Faces™ (JSF) configuration. The problem is related to the JSF

2256 Administering applications and their environment

configuration that is part of the jsf-ibm.jar, which is included when building JSF applications in Rational®

Application Development (RAD). The configuration files are referencing entities from inside the main

faces-config.xml file.

Avoid using double-byte characters when you create a profile.

A Web resource does not display

If you are not able to display a resource in your browser, follow these steps:

1. Verify that your HTTP server is healthy by accessing the URL http://server_name from a browser and

seeing whether the Welcome page appears. This action indicates whether the HTTP server is up and

running, regardless of the state of WebSphere Application Server.

2. If the HTTP server Welcome page does not appear, that is, if you get a browser message like page

cannot be displayed or something similar, try to diagnose your Web server problem.

3. If the HTTP server appears to function, the Application Server might not be serving the target resource.

Try accessing the resource directly through the Application Server instead of through the HTTP server.

If you cannot access the resource directly through the Application Server, Verify that the URL used to

access the resource is correct.

If the URL is incorrect and it is created as a link from another JSP file, servlet, or HTML file, try

correcting it in the browser URL field and reloading, to confirm that the problem is a malformed URL.

Correct the URL in the ″from″ HTML file, servlet or JSP file.

If the URL appears to be correct, but you cannot access the resource directly through the Application

Server, verify the health of the hosting Application Server and Web module:

a. View the hosting Application Server and Web module in the administrative console to verify that

they are up and running.

b. Copy a simple HTML or JSP file (such as SimpleJsp.jsp in the WebSphere Application Server

directory structure) to your Web module document root, and try to access it. If successful, the

problem is with your resource.

View the JVM log of your Application Server to find out why your resource cannot be found or

served .
4. If you can access the resource directly through the Application Server, but not through an HTTP server,

the problem lies with the HTTP plug-in -- the component that communicates between the HTTP server

and the WebSphere Application Server.

5. If the JSP file and the servlet output are served, but not static resources such as .html and image

files, see the steps for enabling file serving.

6. If some kinds of resources display correctly, but you cannot display a servlet by its class name:

v Verify that the servlet is in a directory in the Web module class path, such as in the

/Web_module_name.war/WEB-INF/classes directory.

v Verify that you specify the full class name of the servlet, including its package name, in the URL.

v Verify that ″/servlet″ precedes the class name in the URL. For example, if the root context of a

Web module is ″myapp″, and the servlet is com.mycom.welcomeServlet, then the URL reads:

http://hostname/myapp/servlet/com.mycom.welcomeServlet

v Verify that serving the servlets by class name is enabled for the hosting Web module by opening the

source Web module in an assembly tool and browsing the serve servlets by classname setting in

the IBM Extensions property page. If necessary, enable this flag and redeploy the Web module. For

more information about the assembly tool, refer to the assembly tools section of the Developing and

deploying applications PDF book.

v For servlets or other resources served by mapped URLs, the URL is http://hostname/Web module

context root/mappedURL.

If none of these steps fixes your problem, see if the problem has been identified and documented by

looking at available online support (hints and tips, technotes, and fixes). If you do not find your problem

listed there, see Troubleshooting help from IBM.

Chapter 26. Troubleshooting deployment 2257

Diagnosing Web server problems

If you are unable to view the welcome page of your HTTP server, determine if the server is operating

properly.

On Windows systems, look in the Services panel for the service corresponding to your HTTP server, and

verify that the state is Started. If not, start it. If the service does not start, try starting it manually from the

command prompt. If you are using IBM HTTP Server, the command is IHS_install_dir\apache .

On UNIX systems, execute the ps -ef | grep httpd command. There should be several processes running

with a name of ″httpd″. If not, start your HTTP server manually. If you are using IBM HTTP Server, the

command is IHS_install_dir/bin/apachectl start.

If the HTTP server does not start:

v Examine the HTTP server error log for clues.

v Try restoring the HTTP server to its configuration prior to installing WebSphere Application Server and

restarting it. If you are using IBM HTTP Server:

– Rename the file IHS_install_dir\httpd.conf.

– Copy the httpd.conf.default file to the httpd.conf directory.

– If Apache is running, stop and restart it.
v For the Sun ONE (iPlanet) Web server, restore the obj.conf configuration file for Sun ONE V4.1 and

both obj.conf and magnus.conf files for Sun ONE V6.0 and later.

v For the Microsoft Internet Information Server (IIS), remove the WebSphere Application Server plug-in

through the IIS administrative GUI.

If restoring the HTTP server default configuration file works, manually review the configuration file that has

WebSphere Application Server updates to verify directory and file names for WebSphere Application

Server files. If you cannot manually correct the configuration, you can uninstall and reinstall WebSphere

Application Server to create a clean HTTP configuration file.

If restoring the default configuration file does not help, contact technical support for the Web server you

are using. If you are using IBM HTTP Server with WebSphere Application Server, check available online

support (hints and tips, technotes, and fixes). If you do not find your problem listed there, see

Troubleshooting help from IBM

Accessing a Web resource through the application server and bypassing the HTTP

server

Starting with WebSphere Application Server Version 4.0, you can bypass the HTTP server and access a

Web resource through the application server. It is not recommended to serve a production Web site in this

way, but it provides a good diagnostic tool when it is not clear whether a problem resides in the HTTP

server, WebSphere Application Server, or the HTTP plug-in.

To access a Web resource through the Application Server:

1. Determine the port of the HTTP service in the target application server.

a. In the WebSphere administrative console, click Servers>Manage Application Servers.

b. Select the target server, then under Additional Properties click Web Container.

c. Under the Additional Properties of the Web container, click HTTP Transports. You see the ports

listed for virtual hosts served by the application server.

d. There can be more than one port listed. In the default application server (server1), for example,

9060 is the port reserved for administrative requests, 9443 and 9043 are used for SSL-encrypted

requests. To test the sample ″snoop″ servlet, for example, use the default application port 9080,

unless it changes.
2. Use the HTTP transport port number of the application server to access the resource from a browser.

For example, if the port is 9080, the URL is http://hostname:9080/myAppContext/myJSP.jsp.

2258 Administering applications and their environment

3. If you are still unable to access the resource, verify that the HTTP transport port is in the ″Host Alias″

list:

a. Click Application Servers > Your_ApplicationServer > Web Container > HTTP Transports to

check the Default virtual host and the HTTP transport ports used by this application server.

b. Click Environment > Manage Virtual Hosts > default host > Host Aliases to check if the HTTP

transport port exists. Add an entry if necessary. For example, if the HTTP port for your application

is server is 9080, add a host alias of *:9082.

Cannot uninstall an application or remove a node or application server

What kind of problem are you having?

v After uninstalling an application through wsadmin tool, the application continues to run and throws

″DocumentIOException″

If none of these steps fixes your problem:

v Make sure that the application and its Web and EJB modules are in a stopped state before uninstalling.

v If you are uninstalling or installing an application using wsadmin, make sure that you are using the

-conntype NONE option to invoke wsadmin and enable local mode. To use the -conntype NONE option,

stop the hosting application server before uninstalling the application.

v Check to see if the problem has been identified and documented by looking at the available online

support (hints and tips, technotes, and fixes).

v If you don’t find your problem listed there contact IBM support

After uninstalling application through the wsadmin tool, the application throws

″DocumentIOException″

If this exception occurs after the application was uninstalled using wsadmin with the -conntype NONE

option:

v Restart the server or,

v Rerun the uninstall command without the -conntype NONE option.

Chapter 26. Troubleshooting deployment 2259

2260 Administering applications and their environment

Chapter 27. Troubleshooting administration

Use this information if you are having problems with administrative functions.

v Select the problem you are experiencing.

– I have problems bringing up or using the administrative console.

– I have problems starting or using the wsadmin command prompt.

– I have problems using command line tools.

– My Web module or application server dies or hangs.

– I get errors trying to configure and enable security.

– I cannot uninstall or remove a node or application server.

– I have problems creating or using HTTP sessions.

– I have problems using tracing, logging, log files, or other troubleshooting features.

– I get errors connecting to the administrative console from a browser.

– The stopServer.sh (base and ND) hangs and creates a Java core dump (Red Hat Linux).

v If you did not solve the problem, prepare to contact IBM support.

If you do not see a problem that resembles yours, or if the information provided does not solve your

problem, contact IBM support for further assistance.

For current information available from IBM Support on known problems and their resolution, see the

IBM Support page.

IBM Support has documents that can save you time gathering information needed to resolve this

problem. Before opening a PMR, see the IBM Support page.

Administration and administrative console troubleshooting

In WebSphere Application Server products, administrative functions are supported by:

v The application server (such as server1) process

The process must be running to use the administrative console. The wsadmin command-line utility has a

local mode that you can use to perform some administrative functions, even when the server process is

not running.

What kind of problem are you seeing?

v “Server status and messages in the console view are not current”

v “Role-based authorization fails” on page 2262

v “When starting or stopping a server using a wsadmin interactive scripting session, you receive an

exception indicating read timed out” on page 2263

v “Problems starting or using the administrative console or wsadmin utility” on page 2263

Server status and messages in the console view are not current

When connecting to an Application Server that uses a Simple Object Access Protocol (SOAP) connection

for a long time, the following problems begin to occur:

v Under the status column in the Servers view on an administrative console panel, the status of the

server does not refresh.

v Server messages are not updated in the administrative console.

v A decrease of system resources occurs as numerous ports are created and left in the TIME_WAIT

state.

This problem persists even after you restart the server or you start another server that uses the SOAP

connection port.

The problem occurs because the SOAP connector does not support connection pooling. If the Application

Server has many ongoing operations that use the SOAP connector, the Application Server quickly opens

© Copyright IBM Corp. 2006 2261

http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCMPDF
http://www-1.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCMPDF&q=mustgather

and closes many ports. Due to the nature of the underlying TCP/IP protocol, these ports remain in the

TIME_WAIT state for some time before the operating system can reclaim them. The number of ports that

WebSphere Application Server opens can exceed the limit that the operating system imposes. Under this

condition, the opening of additional ports fails through the SOAP connector until the operating system

reclaims ports.

Use the following options to work around the problem:

v Increase the operating system limits on the number of ports.

v For WebSphere Application Server Toolkit, the wsadmin utility, or Java applications that use the Java

Management Extension (JMX) connectors, switch to the Remote Method Invocation (RMI) connector.

v Wait until few or no ports are in the TIME_WAIT state before performing new operations through

WebSphere Application Server Toolkit or the administrative console.

Role-based authorization fails

When you make a Java Management Extension (JMX) call such as getAttribute, setAttribute, invoke, and

so on in your application, the caller requires an administrative role with sufficient permissions. The required

role depends on the MBean attribute or method that the JMX caller calls and can be one of administrator,

configurator, monitor, or operator. If one of the administrative roles is not assigned to the caller, or if the

role is assigned, but the caller does not have the required permissions, the application receives a

role-based authorization failure, for example:

SECJ0305I: Role based authorization check failed for securityname server.domain.name:3890/user.id,

accessId user:server.domain.name:3890/uid=user.id,ou=xxxx,dc=yyy,dc=zzz while invoking method

getNodeName on resource Server and module Server.

If the caller of the application cannot be assigned one of the administrative roles, the application can log in

with one of the roles on behalf of the caller. For example:

 try

 {

 // Create a LoginContext to authenticate a user ID and password.

 javax.security.auth.login.LoginContext

 lc = new javax.security.auth.login.LoginContext("WSLogin",

 new com.ibm.websphere.security.auth.callback.WSCallbackHandlerImpl("adminuser",

 "adminpassword"));

 // perform the login

 lc.login();

 // Get the authenticated subject.

 javax.security.auth.Subject adminSubject = lc.getSubject();

 // Define the action that will take place using the authenticated Subject

 // You can define this action anywhere in the code, the action

 // is reference in the WSSubject.doAs that follows.

 java.security.PrivilegedAction adminAction = new java.security.PrivilegedAction()

 {

 public Object run()

 {

 try

 {

 // Get the WebSphere AdminService.

 AdminService adminservice = AdminServiceFactory.getAdminService();

 // Get the WebSphere Admin Local Server MBean instance.

 ObjectName objectname = adminservice.getLocalServer();

 // Get the Node name.

 String nodeName = (String)adminservice.getAttribute(objectname, "nodeName");

 // Get the Application Server name.

 String serverName = (String)adminservice.getAttribute(objectname, "name");

2262 Administering applications and their environment

// Get the Application Server Process ID.

 String serverPid = (String)adminservice.getAttribute(objectname, "pid");

 // Return a result, for this example, just return the serverPid.

 return serverPid;

 }

 catch (Exception e)

 {

 e.printStackTrace();

 }

 return null;

 }

 });

 // Invoke an AdminClient resource using the authenticated subject.

 // This example demonstrates the action of creating an

 // administrative client and returning a String value to use outside

 // the doAs block.

 String myData = (String)

 com.ibm.websphere.security.auth.WSSubject.doAs(adminSubject, adminAction);

 // use "myData" later on....

 }

 catch (javax.security.auth.login.LoginException e)

 {

 e.printStackTrace();

 }

When starting or stopping a server using a wsadmin interactive scripting session,

you receive an exception indicating read timed out

When starting or stopping a server using a wsadmin interactive scripting session, you receive an exception

indicating read timed out, for example:

WASX7015E: Exception running command: "$AdminControl startServer server1 Node1";

exception information: com.ibm.websphere.management.exception.ConnectorException

org.apache.soap.SOAPException: [SOAPException: faultCode=SOAP-ENV:Client; msg=Read

timed out; targetException=java.net.SocketTimeoutException: Read timed out]

This exception occurs because the timeout value is too small. Increase the timeout value specified by the

com.ibm.SOAP.requestTimeout property in the soap.client.props file in the app_server_root/profiles/
profile_name/properties directory for a single server edition. The value you choose depends on a

number of factors such as the size and the number of the applications installed on the server, the speed of

your machine, and the level of usage of your machine. The default value of the

com.ibm.SOAP.requestTimeout property is 180 seconds.

Problems starting or using the administrative console or wsadmin utility

If you have problems starting or using the administrative console or wsadmin utility, verify that the

supporting server process is started and that it is healthy.

v For the application server process, look at these files:

– app_server_root/profiles/profile_name/logs/server_name/startServer.log for the message that

indicates that the server started successfully: ADMU3000I: Server server1 open for e-business;

process id is nnnn..

– app_server_root/profiles/profile_name/logs/server_name/SystemOut.log
v Look up any error messages in these files in the message reference table. Select the Reference view

in the information center navigation, and click Messages. A message like WASX7213I: This scripting

client is not connected to a server process when trying to start wsadmin indicates that either the

server process is not running, the host machine where it is running is not accessible, or that the port or

server name that the wsadmin utility uses is incorrect.

Chapter 27. Troubleshooting administration 2263

v Verify that you are using the right port number to communicate with the administrative console or the

wsadmin server:

– Look in the SystemOut.log file.

- The line ADMC0013I: SOAP connector available at port nnnn indicates the port that the server is

using to listen for wsadmin functions.

- The com.ibm.ws.scripting.port property in the app_server_root/profiles/profile_name/
properties/wsadmin.properties file controls the port used by the wsadmin utility to send requests

to the server.
– If port value is different from the value shown in the SystemOut.log file, either change the port

number in the wsadmin.properties file, or specify the correct port number when starting the wsadmin

utility by using the -port port_number property on the command line.

The com.ibm.ws.scripting.port property in the app_server_root/profiles/profile_name/properties/
wsadmin.properties file controls the port used by the wsadmin utility to send requests to the server.

– If the port value is different than the one specified in the Web address for the administrative console,

change the Web address in the browser to the correct value. The default value is

http://localhost:9060/ibm/console.
v Use the telnet command to test that the host name where the application server is running, is

reachable from the system where the browser or wsadmin program is used. If you can ping the host

name, no firewall or connectivity issues exist.

v If the host where the application server is running is remote to the machine from which the client

browser or wsadmin command is running, ensure that the appropriate host name parameter is correct.

Verify:

– The host name in the browser Web address for the console.

– The -host host name option of the wsadmin command that is used to direct the wsadmin utility to

the right server
v Tracing the administrative component: WebSphere Application Server technical support might ask you to

trace the administrative component for detailed problem determination. The trace specification for this

component is com.ibm.websphere.management.*=all=enabled:com.ibm.ws.management.*=all=enabled″

If none of these steps solves the problem, see if the specific problem you are having is addressed in the

Installation completes but the administrative console does not start topic. Check to see if the problem has

been identified and documented using the links in the Diagnosing and fixing problems: Resources for

learning topic. If you do not see a problem that resembles yours, or if the information provided does not

solve your problem, contact IBM support for further assistance.

For current information available from IBM Support on known problems and their resolution, see the

following topics on the IBM support page:

v Administrative Console

v Administrative Scripting Tools

v System management

IBM Support has documents that can save you time gathering the information that is needed to resolve

this problem. Before opening a PMR, see the following topics on information gathering on the IBM support

page:

v Administrative Console

v Administrative Scripting Tools

v System management

Installation completes but the administrative console does not start

This topic discusses problems that you can encounter when you attempt to access the console.

What kind of problem are you having?

2264 Administering applications and their environment

http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCPPRK
http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCPPRL
http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCMPDZ
http://www-1.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCPPRK&q=mustgather
http://www-1.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCPPRL&q=mustgather
http://www-1.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCMPDZ&q=mustgather

v “An Internal Server Error, Page cannot be found, 404, or similar error occurs trying to view the

administrative console”

v “An Unable to process login. Check user ID and password and try again. error occurs when trying to

access the administrative console page”

v “The directory paths in the administrative console contain strange characters”

If you can bring up the browser page, but the administrative console behavior is inconsistent, error prone,

or unresponsive, try upgrading your browser. Older browsers might not support all the features of the

administrative console.

IBM Support has documents and tools that can save you time gathering information needed to resolve

problems as described in Troubleshooting help from IBM. Before opening a problem report, see the

Support page:

v http://www.ibm.com/software/webservers/appserv/was/support/

An Internal Server Error, Page cannot be found, 404, or similar error occurs trying

to view the administrative console

Here are some steps to try if you are unable to view the administrative console:

v Verify that the application server that supports the administrative console is up and running. For a base

configuration, the administrative console is deployed by default on server1.

Before viewing the administrative console, you must take one of the following actions:

– Run the startServer server1 command for the Windows platform from a command prompt in the

install_dir\bindirectory, or the ./startServer.sh server1 command for operating systems such as AIX

or Linux.

– Click the Start application server link from the first steps panel.

– Start WebSphere Application Server as a service or from the Start menu, if you are using a Windows

operating system.
v View the SystemOut.log file for the application server to verify that the server that supports the

administrative console started.

v Check the Web address you use to view the console. By default, this address is http://
server_name:9060/ibm/console, where server_name is the host name.

v If you are browsing the administrative console from a remote machine, try to eliminate connection,

address and firewall issues by pinging the server machine from a command prompt, using the server

name in the Web address.

v If you have never been able to access the administrative console see Troubleshooting installation.

An Unable to process login. Check user ID and password and try again. error

occurs when trying to access the administrative console page

This error indicates that security is enabled for WebSphere Application Server, and that the user ID or

password supplied is either not valid or not authorized to access the console.

To access the console:

v If you are the administrator, use the ID defined as the security administrative ID. This ID is stored in the

WebSphere Application Server security.xml file.

v If you are not the administrator, ask the administrator to enable your ID for the administrative console.

The directory paths in the administrative console contain strange characters

Directory paths that are used for class paths or resources specified in an assembly tool, in configuration

files, or elsewhere that contain strange characters when they are viewed in the administrative console

might result from the Java run time interpreting a backslash (\) as a control character.

Chapter 27. Troubleshooting administration 2265

http://www.ibm.com/software/webservers/appserv/was/support/

To resolve this problem, modify Windows-style class paths by replacing occurrences of single back slashes

to two. For example, change c:\MyFiles\MyJsp.jsp to c:\\MyFiles\\MyJsp.jsp.

Errors connecting to the administrative console from a browser

This topic describes problems that you can have when logging into the administrative console from a

browser.

Review the following information to resolve your browser problem.

If you are able to bring up the browser page, but the console behavior is inconsistent, error-prone, or

unresponsive, try upgrading the browser you are using. Older browsers may not support the administrative

console’s features. For a listing of supported Web browsers, see the Supported hardware and software

Web page.

Check to see if the problem has been identified and documented using the links in Diagnosing and fixing

problems: Resources for learning. If you do not see a problem that resembles yours, or if the information

provided does not solve your problem, contact IBM support for further assistance.

Check the following list for your problem and how to solve it:

v When a single user that uses multiple instances of the Mozilla browser logs into the administrative

console, the first user ID that logs into the administrative console is the current user.

v A user on Mozilla browser Version 1.4 selects a check box on a collection table, presses Enter, and

receives an error.

v A user on Mozilla browser Version 1.4 enters an invalid ID or password, presses Enter, and receives an

error message

When a single user that uses multiple instances of the Mozilla browser

logs into the administrative console, the first user ID that logs into the

administrative console is the current user.

When a single user logged into an operating system tries to use multiple instances of the Mozilla browser,

the first user ID that logs into the administrative console is the current user. This situation occurs because

the browser windows share a single process.

To resolve the problem, do one of the following actions:

v Have single users logged into an operating system use a single instance of the Mozilla browser to log

into the administrative console.

v If the operating system allows multiple users on an operating system, have each user log into the

operating system with a different user ID and bring up a single instance of the Mozilla browser.

A user on Mozilla browser Version 1.4 selects a check box on a

collection table, presses Enter, and receives an error.

A user on Mozilla browser Version 1.4 selects a check box on a collection table, presses Enter, and

receives an error.

To resolve the problem, do one of the following actions:

v Explicitly select a button of interest on the administrative console panel instead of pressing Enter.

v Use a later version of a supported Mozilla browser.

v Use a supported version of the Microsoft Internet Explorer browser.

2266 Administering applications and their environment

http://www.ibm.com/support/docview.wss?rs=180&uid=swg27006921
http://www.ibm.com/support/docview.wss?rs=180&uid=swg27006921

A user on Mozilla browser Version 1.4 enters an invalid ID or

password, presses Enter, and receives an error message

A user on Mozilla browser Version 1.4 enters an invalid user ID or password, presses Enter, and receives

an error message. Clicking OK fails to refresh the administrative login screen

To resolve the problem, do one of the following actions:

v Use a later version of a supported Mozilla browser.

v Use a supported version of the Microsoft Internet Explorer browser.

Web server plug-in troubleshooting tips

The following topics might help you diagnose problems with the Web server plug-ins.

If you are having problems using a Web server plug-in, try these steps:

v Review the file plugins_root/logs/web_server_name/http_plugin.log for clues. Look up any error or

warning messages in the message table.

v Review your Web server’s error and access logs to see if the Web server is having a problem:

– IBM HTTP Server and Apache: access.log and error.log.

– Domino Web server: httpd-log and httpd-error.

– Sun Java System: access and error.

– Microsoft IIS: timedatestamp.log.

If these files don’t reveal the cause of the problem, follow these additional steps.

Plug-in Problem Determination Steps

The plug-in provides very readable tracing which can be beneficial in helping to figure out the problem. By

setting the LogLevel attribute in the config/plugin-cfg.xml file to Trace, you can follow the request

processing to see what is going wrong. At a high level:

1. The plug-in gets a request.

2. The plug-in checks the routes defined in the plugin-cfg.xml file.

3. It finds the server group.

4. It finds the server.

5. It picks the transport protocol, HTTP or HTTPS.

6. It sends the request.

7. It reads the response.

8. It writes it back to the client.

You can see this very clearly by reading through the trace for a single request:

v The first step is to determine if the plug-in has successfully loaded into the Web server.

– Check to make sure thehttp_plugin.log file has been created.

– If it has, look in it to see if any error messages indicate some sort of failure that took place during

plug-in initialization. If no errors are found look for the following stanza, which indicates that the

plug-in started normally. Ensure that the timestamps for the messages correspond to the time you

started the Web server:

[Thu Jul 11 10:59:15 2002] 0000009e 000000b1 - PLUGIN: ------------System Information----------

[Thu Jul 11 10:59:15 2002] 0000009e 000000b1 - PLUGIN: Bld date: Jul 3 2002, 15:35:09

[Thu Jul 11 10:59:15 2002] 0000009e 000000b1 - PLUGIN: Web server: IIS

[Thu Jul 11 10:59:15 2002] 0000009e 000000b1 - PLUGIN: Hostname = SWEETTJ05

[Thu Jul 11 10:59:15 2002] 0000009e 000000b1 - PLUGIN: OS version 4.0, build 1381, ’Service Pack 6’

[Thu Jul 11 10:59:15 2002] 0000009e 000000b1 - PLUGIN: --

– Some common errors are:

lib_security: loadSecurityLibrary: Failed to load gsk library

Either GSKit did not get installed or the wrong version of GSKit got installed. To determine

which situation occurred:

-

Windows

On a Windows platform, search for the file gsk7ssl.dll

- On a UNIX platform, search for a libgsk7*.so files in the /usr/lib directory.

Chapter 27. Troubleshooting administration 2267

If you cannot find the appropriate file, try reinstalling the plug-in with the correct GSKit

version to see if this fixes the problem.

ws_transport: transportInitializeSecurity: Keyring wasn’t set

The HTTPS transport defined in the configuration file was prematurely terminated and did

not contain the Property definitions for the keyring and stashfile. Check your XML syntax for

the line number given in the error messages that follow this one to make sure the Transport

element contains definitions for the keyring and stashfiles before it is terminated.
– If thehttp_plugin.log file is not created, check the Web server error log to see if any plug-in related

error messages have been logged there that indicate why the plug-in is failing to load. Typical

causes of this can include failing to correctly configure the plug-in with the Web server environment.

Check the documentation for configuring the Web server that you are using with the Web server

plug-in.
v Determine whether there are network connection problems with the plug-in and the various application

servers defined in the configuration. Typically you will see the following message when this is the case:

ws_common: websphereGetStream: Failed to connect to app server, OS err=%d

Where %d is an OS specific error code related to why the connect() call failed. This can happen for a

variety of reasons.

– Ping the machines to make sure they are properly connected to the network. If the machines cannot

be pinged, there is no way for the plug-in to contact them. Possible reasons for this problem include:

- Firewall policies that limit the traffic from the plug-in to the application server.

- The machines are not on the same network.
– If you are able to ping the machines then the probable cause of the problem is that the port is not

active. The port might not be active because the application server or cluster is not started or the

application server has gone down for some reason. To verify that this is the problem, you can try to

manually telnet into the port that the connect is failing on. If you cannot telnet into the port the

application server is not up and that problem needs to be resolved before the plug-in can

successfully connect.
v Determine whether other activity on the machines where the servers are installed is impairing the ability

of the server to service a request. Check the processor utilization as measured by the task manager,

processor ID, or some other outside tool to see if it:

– Is not what was expected.

– Is erratic rather than a constant.

– Shows that a newly added member of the cluster is not being utilized.

– Shows that a failing member that has been fixed is not being utilized.
v Check the administrative console for server status.

Check the administrative console to ensure that the application server is started. View the administrative

console for error messages or look in the JVM logs.

v In the administrative console, select the problem application server and view its installed applications to

verify that they are started.

If none of these steps solves the problem:

v For specific problems that can cause web pages and their contents not to display, seeWeb resource

(JSP file, servlet, html file, image, etc) will not display in the information center.

v Check to see if the problem has been identified and documented using the links in Diagnosing and

fixing problems: Resources for learning.

v If you do not see a problem that resembles yours, or if the information provided does not solve your

problem, contact IBM support for further assistance.

For current information available from IBM Support on known problems and their resolution, see the

following topics on the IBM support page:

v HTTP transport

v HTTP plug-in

v HTTP plug-in remote install

2268 Administering applications and their environment

http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCMPBD
http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCC2GP
http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCMPDA

For current information available from IBM Support on known problems and their resolution, see the IBM

Support page. You should also refer to this page before opening a PMR because it contains documents

that can save you time gathering information needed to resolve a problem.

You might find the following topics on the IBM support page helpful:

v HTTP plug-in

v HTTP plug-in remote install

The server process does not start or starts with errors

If a server process does not start or starts with errors, the following topics might help you to diagnose the

problem.

Installation program completes successfully, but an application server does not

start, or starts with errors

v Browse the Application Server log files for clues. The log files are located by default in:

–

Linux

profile_root/logs/server_name/SystemErr.log and SystemOut.log

–

Windows

profile_root\logs\server_name\SystemErr.log and SystemOut.log

Several applications deployed on an application server or node can take time to start. Browse the

SystemOut.log periodically and look at the most recent updates to see if the server is still starting up.

v

Linux

The tail -f profile_root/ logs/server_name/SystemOut.log command is a convenient way

to watch the progress of the server.

v Look for any errors or warnings relating to specific resources with the module, such as Web modules,

enterprise beans and messaging resources. If you find any, examine the application server configuration

file for the configuration settings of that resource. Then restart the server to see if this component

causes the problem.

For example, in a base or non-distributed configuration on Windows systems, browse

profile_root\config\cells/ApplicationServerCell\nodes\node_name\servers\server_name\server.xml, and

examine the XML tags for the properties of that resource. Change its initialState value from START to

STOP.

v Look up any error or warning messages in the message reference table by clicking the Reference view

of the information center navigation and expanding Messages in the navigation tree.

v After you create an application server, you must synchronize the nodes before saving the configuration

settings for the new server. If you do not synchronize the nodes, your new server might not start.

1. On the Applications server page listing all of your application server, click Preferences.

2. Select Synchronize changes with Nodes, if it is not already selected.

3. Click Apply and then click Application servers to return to your list of application servers.

4. Click Save to save the configuration settings for the new server.
v Verify that the logical name that you specified to appear on the console for your application server does

not contain invalid characters like: - / \ : * ? ″ < > and leading or trailing spaces.

v If you are using IBM Cloudscape and receive an ERROR XSDB6: Another instance of Cloudscape may

have already booted the database databaseName error when starting the application server, consult this

topic for more information.

v When using a non-root user ID to run application servers, verify that:

– The non-root user has write access to the app_server_root/temp directory.

– The JVM has write access to app_server_root/config/plugin-cfg.xml file.

– The non-root user has access to the logs directory.

Message ″The socket bind failed for host hostname and port portnumber. The port

may already be in use.″ occurs when restarting an application server.

The following error message might appear in the SystemOut.log after restarting an application server:

The socket bind failed for host hostname and port portnumber. The port may already be in use.

Chapter 27. Troubleshooting administration 2269

http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCMPCT
http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCMPCT
http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCC2GP&q=mustgather
http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCMPDA&q=mustgather

This problem might occur if the network is slow, and the port listed in the message text did not finish

listening when the application was stopped and restarted.

To verify that this is the problem, check the port status.

To correct this problem, wait for a few minutes after stopping the server:

1. Verify that no ports are listening. Use the command:

netstat -a

2. Restart the server

IBM Support has documents and tools that can save you time gathering information needed to resolve

problems as described in Troubleshooting help from IBM. Before opening a problem report, see the

Support page:

v http://www.ibm.com/software/webservers/appserv/was/support/

The stopServer.sh hangs and creates a Java core dump (Red Hat

Linux)

When you run the stopServer.sh script on Red Hat Linux Advanced Server Version 2.1 with the latest

operating system patches, it creates a Java core dump and hangs the terminal.

To fix this problem:

v kill all Java and MQ processes

v uninstall the latest version of GNU Standard C++ Library

– run the command rpm -e --nodeps libstdc++-2.96-116.7.2

v Reinstall the older version from Redhat Advanced Server V2.1 CD

– run the command rpm -ihv libstdc++-2.96-108.1.rpm

Problems starting or using the wsadmin command

Use this information if you are having problems starting or using the wsadmin tool.

What kind of problem are you having?

v WASX7016E, WASX7017E, or WASX7209I: Jython scripting language error

v ″WASX7023E: Error creating ″SOAP″ connection to host″ or similar error trying to launch wsadmin

command line utility.

v ″com.ibm.bsf.BSFException: error while evaluating Jacl expression: no such method ″<command

name>″ in class com.ibm.ws.scripting.AdminConfigClient″ returned from wsadmin command.

v WASX7022E returned from running ″wsadmin -c ...″ command, indicating invalid command.

v com.ibm.ws.scripting.ScriptingException: WASX7025E: String ″″ is malformed; cannot create

ObjectName.

v ″The input line is too long″ error returned from the wsadmin command on a Windows platform.

v WASX701E: Exception received while running file ″scriptName.jacl″; exception information:

com.ibm.bsf.BSFException: error while evaluating Jacl expression: missing close-bracket

v WASX7015E: Exception running command: ″source c: ...″; exception information:

com.ibm.bsf.BSFException: error while evaluating Jacl expression: couldn’t read file ″c: ...″

v Unexpected error CWSIV0806E in WebSphere log following deletion of an outbound service

v Separator exception

v Enabling authentication in the file transfer service

v The format of ″$AdminConfig list″ output has changed for V6.0

v You are not prompted for user ID and password after applying V6.0.2 service if you use an existing 6.0

profile

v Required ports not defined when a new V5.0/V5.1 server is created

2270 Administering applications and their environment

http://www.ibm.com/software/webservers/appserv/was/support/

v When running the $AdminApp searchJNDIReferences command with the Java Naming and Directory

Interface (JNDI) name of a message destination, the message destination reference is not returned

v AWXJR0006E: Exception received when configuring JACC provider for the Tivoli Access Manager

v WASX7022E: Problem running command ″import sys″ -- exception information:

com.ibm.bsf.BSFException: unable to load language

If you do not see your problem here:

v If you are not able to enter wsadmin command mode, try running wsadmin -c ″$Help wsadmin″ for

help in verifying that you are entering the command correctly.

v If you can get the wsadmin command prompt, enter $Help help to verify that you are using specific

commands correctly.

v wsadmin commands are a superset of Jacl (Java Command Language), which is in turn a Java-based

implementation of the Tcl command language. For details on Jacl syntax beyond wsadmin commands,

refere to the Tcl developers’ site, http://www.tcl.tk. For specific details relating to the Java

implementation of Tcl, refer to http://www.tcl.tk/software/java.

v Browse the install_dir/profiles/profile_name/logs/wsadmin.traceout file for clues.

– Keep in mind that wsadmin.traceout is refreshed (existing log records are deleted) whenever a new

wsadmin session is started.

– If the error returned by wsadmin does not seem to apply to the command you entered, for example,

you receive WASX7023E, stating that a connection could not be created to host ″myhost,″ but you

did not specify ″-host myhost″ on the command line, examine the properties files used by wsadmin

to determine what properties are specified. If you do not know what properties files were loaded, look

for the WASX7326I messages in the wsadmin.traceout file; there will be one of these messages for

each properties file loaded.

If none of these steps fixes your problem, check to see if the problem has been identified and documented

by looking at the available online support (hints and tips, technotes, and fixes). If you don’t find your

problem listed there please contact IBM support.

WASX7016E, WASX7017E, or WASX7209I: Jython scripting language error

The following errors may occur when you run this Jython script:

Jython script

″profile_root/bin/wsadmin.sh -lang jython -profile profile_name -host host_name -f

script_file.py″

Error Messages

WASX7209I: Connected to process "server1" on node

node_name using SOAP connector; The type of process is:

UnManagedProcess

WASX7016E: Exception received while reading file

"script_file.py"; exception information:

sun.io.MalformedInputException

WASX7017E: Exception received while running file

"script_file.py"; exception information:

com.ibm.bsf.BSFException: exception from Jython: Traceback

(innermost last): File "<string>" line 89, in ? NameError: log

These errors can occur because there are UTF-8 characters in the file that are not valid. The default

codepage for RHEL 3 is UTF-8 (en_US.UTF-8). When doing a text file read through Java™ code, the

program assumes all characters are UTF-8 encoded. There might be one or more characters in the file

that are not part of the UTF-8 specification, causing the load to fail. An easy way to determine if a

character that is not valid is causing the error is to enter export LANG=C and run the script again. If you

determine that the problem is a character that is not valid:

Chapter 27. Troubleshooting administration 2271

http://www.tcl.tk
http://www.tcl.tk/software/java

1. Open a new text reader on the file.

2. Read it one character at a time.

3. Print the character that is not valid.

4. When you press the back characters, you get the exception and will then know which of the characters

is causing the error.

5. Remove any characters that are not valid, then run the script again

″WASX7023E: Error creating ″SOAP″ connection to host″ or similar error trying to

launch wsadmin command line utility

By default, the wsadmin utility attempts to connect to an application server at startup. This is because

some commands act upon running application servers. This error indicates that no connection could be

established.

To resolve this problem:

v If you are not sure whether an application server is running, start it by entering startserver servername

from the command prompt. If the server is already running, you will see an error similar to

″ADMU3027E: An instance of the server is already running″.

v If you are running a Network Deployment configuration, you will first need to start the deployment

manager by running ″startManager″ or ″startManager.sh″ from the install_dir/bin directory. Then you can

launch wsadmin immediately to connect to the deployment manager, or start a node and application

server to connect to.

v If an application server is running and you still get this error:

– If you are running remotely (that is, on a different machine from the one running WebSphere

Application Server), you must use the -host hostname option to the wsadmin command to direct

wsadmin to the right physical server.

– If you are using the -host option, try pinging the server machine from the command line from the

machine on which you are trying to launch wsadmin to verify there are no issues of connectivity such

as firewalls.

– verify that you are using the right port number to connect to the WebSphere Application Server

process:

- If you are not specifying a port number (using the -port option) when you start the wsadmin tool,

the wsadmin tool uses the default port specified in install_dir/profiles/profile_name/properties/
wsadmin.properties file, property name=com.ibm.ws.scripting.port (default value =8879).

- The port that wsadmin should send on depends on the server process wsadmin is trying to

connect to.

For a single-server installation, wsadmin attempts to connect to the application server process by

default. To verify the port number:

v Look in the file profile_root/config/cells/node_name/nodes/node_name/serverindex.html for a tag

containing the property serverType=″APPLICATION_SERVER″.

v Look for an entry within that tag with the property

endPointName=″SOAP_CONNECTOR_ADDRESS″.

v Look for a port property within that tag. This is the port wsadmin should send on.

In a Network Deployment installation, wsadmin launched from the bin directory on the Network

Deployment installation attempts to send requests to the deployment manager by default. To verify

the port number:

v Get the hostname of the node on which the Deployment Manager is installed.

v Using that hostname, look in profile_root/config/cells/cell_name/nodes/node_name/
serverindex.html file for a tag containing the property

serverType=″DEPLOYMENT_MANAGER″.

v Within that tag, look for an entry with a property

endPointName=″SOAP_CONNECTOR_ADDRESS″.

v Within that tag, look for a ″port″ property. This is the port that the wsadmin tool should send on.

2272 Administering applications and their environment

″com.ibm.bsf.BSFException: error while eval’ing Jacl expression: no such method

command name in class com.ibm.ws.scripting.AdminConfigClient″ returned from

wsadmin command.

This error is usually caused by a misspelled command name. Use the $AdminConfig help command to

get information about what commands are available. Note that command names are case-sensitive.

WASX7022E returned from running ″wsadmin -c ...″ command, indicating invalid

command

If the command following -c appears to be valid, the problem may be caused by the fact that on Unix,

using wsadmin -c to invoke a command that includes dollar signs results in the shell attempting to do

variable substitution. To confirm that this is the problem, check the command to see if it contains an

unescaped dollar sign, for example: wsadmin -c ″$AdminApp install ″.

To correct this problem, escape the dollar sign with a backslash. For example: wsadmin -c ″\$AdminApp

install ...″.

com.ibm.ws.scripting.ScriptingException: WASX7025E: String ″″ is malformed;

cannot create ObjectName

One possible cause of this error is that an empty string was specified for an object name. This can happen

if you use one scripting statement to create an object name and the next statement to use that name,

perhaps in an ″invoke″ or ″getAttribute″ command, but you don’t check to see if the first statement really

returned an object name. For example (the following samples use basic Jacl commands in addition to the

wsadmin Jacl extensions to make a sample script):

#let’s misspell "Server"

set serverName [$AdminControl queryNames type=Srever,*]

$AdminControl getAttributes $serverName

To correct this error, make sure that object name strings have values before using them. For example:

set serverName[$AdminControl queryNames node=mynode,type=Server,name=server1,*]

if {$serverName == ""} {puts "queryNames returned empty - check query argument"}

else {$AdminControl getAttributes $serverName}

For details on Jacl syntax beyond wsadmin commands, refer to the Tcl developers’ site, http://www.tcl.tk.

″The input line is too long″ error returned from the wsadmin command on a

Windows platform

This error indicates that the Windows command line limit of 2048 characters has been exceeded, probably

due to a long profile path used within the wsadmin.bat command. You may get this error when running

wsadmin in a Windows command prompt or calling wsadmin from a .bat file, an ant build file, or Profile

Management Tool. If this error results in running wsadmin other than from the Profile Management Tool,

avoid the problem by using the Windows subst command, which allows you to map an entire path to a

virtual drive. To see the syntax of the subst command, enter help subst from a Windows command

prompt.

For example, if the product resides in the app_server_root directory, edit the app_server_root\bin\
setupCmdLine.bat file as follows:

SET CUR_DIR=%cd%

cd /d "%~dp0.."

SET WAS_HOME=%cd%

cd /d "%CUR_DIR%"

@REM add the following two lines to workaround Windows 2K command line length limit

subst w: %WAS_HOME%

Chapter 27. Troubleshooting administration 2273

http://www.tcl.tk

set WAS_HOME=w:

...

...

Then edit the setupCmdLine.bat file residing in the bin directory of your profile as follows:

SET WAS_USER_PROFILE=...

SET USER_INSTALL_ROOT=...

SET WAS_HOME=app_server_root

SET JAVA_HOME=app_server_root\java

@REM add the following three lines to workaround Windows 2K command line length limit

subst w: %WAS_HOME%

set WAS_HOME=w:

set JAVA_HOME=%WAS_HOME%\java

...

...

If this error occurred while running the Profile Management Tool, you have to rerun the Profile

Management Tool to provide a shorter profile path with a shorter profile name. If this does not fix the

problem, follow the same instructions above to edit the setupCmdLine.bat file in the bin directory of your

WebSphere Application Server installation. After editing the file, rerun the Profile Management Tool. If the

same problem persists, reinstall WebSphere Application Server with a shorter installation root directory

path.

IBM Support has documents that can save you time gathering information needed to resolve this problem.

Before opening a PMR, see the IBM Support page.

WASX701E: Exception received while running file ″scriptName.jacl″; exception

information: com.ibm.bsf.BSFException: error while evaluating Jacl expression:

missing close-bracket

This error is caused by a mix-up between the code page that the scripting client expects to see and the

code page in which the Jacl script was written.

To fix this problem, set the -Dscript.encoding=script codepage option in the wsadmin.sh or wsadmin.bat

file to the code page of the Jacl script. The following guideline will help you to determine the code page of

the script:

v If the script was written in the OMVS interface using the OEDIT editor, the code page is IBM-037. In this

case, set the option to the following: -Dscript.encoding=Cp037

v If the script was written in a telnet session to the OMVS interface using the VI editor, the code page is

IBM-1047. In this case, set the option to the following: -Dscript.encoding=Cp1047

v IF the script was written on a personal computer, or any other ASCII machine, and was transferred to

the host as a text file, the code page is IBM-1047. In this case, set the option to the following:

-Dscript.encoding=Cp1047

v If the script was written on a personal computer, or any other ASCII machine, and transferred to the

host in binary format, the code page is ISO-8859-1 (ASCII). In this case, you do not need to set the

option because the default is ASCII. You should review other possible reasons for this error.

WASX7015E: Exception running command: ″source c: ...″; exception information:

com.ibm.bsf.BSFException: error while evaluating Jacl expression: couldn’t read

file ″c: ...″

This error is caused by using a backslash (\) instead of a forward slash (/) when running the wsadmin

command to source a Jacl script in a Windows® environment. The file path cannot contain the backslash (

2274 Administering applications and their environment

http://www-1.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCQTYF&q=mustgather

\); for example, wsadmin> source c:\temp\test.jacl. The file path must use the forward slash (/) as the

path separator; for example, wsadmin> source c:/temp/test.jacl.

To correct this problem use the forward slash (/) in the file path when using the wsadmin command to

source a Jacl script in a Windows® environment:

app_server_root\bin>wsadmin

WASX7209I: Connected to process "dmgr" on node sunCellManager01

using SOAP connector; The type of process is:

DeploymentManager WASX7029I: For help, enter: "$Help help"

wsadmin>source c:/temp/test.jacl

Unexpected error CWSIV0806E in WebSphere log following deletion of an

outbound service

This error occurs when an exception is issued for destination MPOutBoundServicePortDestination, on

messaging engine trueliesNode01.server1-FVTSIBus01, on bus FVTSIBus01, for endpoint activation:

com.ibm.websphere.sib.exception.SINotPossibleInCurrentConfigurationException: CWSIP0111E: The

destination with name MPOutBoundServicePortDestination is being deleted on messaging engine {1}.

You can ignore this error; it is benign.

Separator exception

You must use forward slashes (/) as your path separator. Backward slashes (\) will not work.

Enabling authentication in the file transfer service

In WebSphere Application Server Network Deployment Version 5.0.1 or later, the file transfer service was

enhanced to provide role-based authentication. Two versions of the file transfer Web application were

provided. By default, the version that does not authenticate its caller is installed. This default supports

compatibility between the WebSphere Application Server Network Deployment, Version 5.0 and Version

5.0.1 or later. Turning the file transfer authentication on is recommended to prevent unauthorized use of

the file transfer application. However, if you have any Version 5.0 clients in your WebSphere Application

Server Network Deployment environment, they will not be able to communicate with the secured file

transfer application if global security is turned on.

In WebSphere Application Server Version 6.x, mixed cells are supported and file transfer has become a

system application. If all of the nodes in the cell are of Version 5.0.1 or later, you can activate

authentication in the file transfer service by redeploying the file transfer application at the deployment

manager. The compatible version is shipped in the ${app_server_root}/systemApps/filetransfer.ear

directory. The secured version is provided in the ${app_server_root}/systemApps/filetransferSecured.ear

directory.

Also in WebSphere Application Server Version 6.x, the file transfer service is also supported for

WebSphere Application Server and WebSphere Application Server Express as long as the node is not

federated into a managed cell. If this node becomes federated, it will make use of the deployment

manager file transfer.

A wsadmin Jacl script is provided to help you redeploy file transfer. The script is redeployFileTransfer.jacl

and you can find it in the ${app_server_root}/bin directory. After the deployment manager and all the nodes

are at Version 5.0.1 or later, you can deploy the secured file transfer service by running the script. The

syntax for running the script from the bin directory includes the following:

wsadmin -profile redeployFileTransfer.jacl -c "fileTransferAuthenticationXxx

cell_name node_name server_name

Chapter 27. Troubleshooting administration 2275

where ″Xxx″ is ″On″ or ″Off″.

For example, when running the script to enable use of the filetransferSecured.ear, the syntax is similar to

the following example:

wsadmin -profile redeployFileTransfer.jacl -c

"fileTransferAuthenticationOn managedCell managedCellManager dmgr"

or

wsadmin -profile redeployFileTransfer.jacl -c

"fileTransferAuthenticationOn baseCell base server1"

If you want to go back to run the file transfer service without authentication, you can run the script as

shown in the following example:

wsadmin -profile redeployFileTransfer.jacl -c

"fileTransferAuthenticationOff managedCell managedCellManager dmgr"

or

wsadmin -profile redeployFileTransfer.jacl -c

"fileTransferAuthenticationOff baseNodeCell baseNode server1"

The format of ″$AdminConfig list″ output has changed for V6.0

If you have a script that parses the output of $AdminConfig list, such as $AdminConfig list Node, you

might receive errors, such as ″Node not found.″ Scripts should not parse the output of $AdminConfig;

however, if you have a script that does this parsing, it must be updated for WebSphere Application Server

V6.0 to reflect changes to the output format.

You are not prompted for user ID and password after applying V6.0.2 service if

you use an existing 6.0 profile

If security is enabled, executing a .bat file requires a user ID and password. On V6.0.2, a new feature is

introduced to prompt you for a user ID and password if they are not supplied in the command line.

However, this feature is not available for profiles that were created at the 6.0 level.

Property files for profiles created at the V6.0 level are not updated after applying the V6.0.2 refresh pack.

There are two solutions to this problem:

1. Create a new profile after applying the V6.0.2 service. This new profile contains all the updated

property files and you will then be prompted for a user ID and password.

2. If you want to keep the existing V6.0 profile and use the new prompt feature, you must manually

update three files:

v for app_server_root/properties/soap.client.props, add the following line:

com.ibm.SOAP.loginSource=prompt

v for app_server_root/properties/wsjaas_client.conf, add the following lines:

WSAdminClientLogin {

 com.ibm.ws.security.common.auth.module.proxy.WSLoginModuleProxy required del

egate=com.ibm.ws.security.common.auth.module.WSAdminClientLoginModuleImpl;

};

v for app_server_root/bin/setupCmdLine.bat add the following line:

SET JAASSOAP=-Djava.security.auth.login.config=app_server_root/properties/
wsjaas_client.conf

Required ports not defined when a new V5.0/V5.1 server is created

2276 Administering applications and their environment

Required ports not defined when a new V5.0/V5.1 server is created

You create a new V5.0 or V5.1 server using a default template in a mixed cell environment, and all of the

required ports are not defined for the newly created server.

Add the following two entries to the serverindex.xml directory in the deployment manager profile:

profile_root/config/templates/servertypes/APPLICATION_SERVER/serverindex.xml directory:

v <serverEntries xmi:id="ServerEntry_3" serverName="default_5X"

serverType="APPLICATION_SERVER">

<specialEndpoints xmi:id="NamedEndPoint_25" endPointName="BOOTSTRAP_ADDRESS">

<endPoint xmi:id="EndPoint_25" host="$(node.host.name)" port="2809"/>

</specialEndpoints>

<specialEndpoints xmi:id="NamedEndPoint_26" endPointName="SOAP_CONNECTOR_ADDRESS">

<endPoint xmi:id="EndPoint_26" host="$(node.host.name)" port="8880"/>

</specialEndpoints>

<specialEndpoints xmi:id="NamedEndPoint_27" endPointName="SAS_SSL_

SERVERAUTH_LISTENER_ADDRESS">

<endPoint xmi:id="EndPoint_27" host="$(node.host.name)" port="0"/>

</specialEndpoints>

<specialEndpoints xmi:id="NamedEndPoint_28" endPointName="CSIV2_

SSL_SERVERAUTH_LISTENER_ADDRESS">

<endPoint xmi:id="EndPoint_28" host="$(node.host.name)" port="0"/>

</specialEndpoints>

<specialEndpoints xmi:id="NamedEndPoint_29" endPointName="CSIV2_

SSL_MUTUALAUTH_LISTENER_ADDRESS">

<endPoint xmi:id="EndPoint_29" host="$(node.host.name)" port="0"/>

</specialEndpoints>

</serverEntries>

v <serverEntries xmi:id="ServerEntry_4" serverDisplayName="default

ZOS_5X" serverName="defaultZOS_5X" serverType="APPLICATION_SERVER"

serverUniqueId="BB80B67909190083000000DC0010200209390F08">

<specialEndpoints xmi:id="NamedEndPoint_31" endPointName="BOOTSTRAP_ADDRESS">

<endPoint xmi:id="EndPoint_31" host="$(node.host.name)" port="2809"/>

</specialEndpoints>

<specialEndpoints xmi:id="NamedEndPoint_32" endPointName="SOAP_CONNECTOR_ADDRESS">

<endPoint xmi:id="EndPoint_32" host="$(node.host.name)" port="8880"/>

</specialEndpoints>

<specialEndpoints xmi:id="NamedEndPoint_33" endPointName="ORB_SSL_LISTENER_ADDRESS">

<endPoint xmi:id="EndPoint_33" host="*" port="0"/>

</specialEndpoints>

<specialEndpoints xmi:id="NamedEndPoint_34" endPointName="ORB_LISTENER_ADDRESS">

<endPoint xmi:id="EndPoint_34" host="*" port="0"/>

</specialEndpoints>

</serverEntries>

The xmi:ids must all be unique within this file.

When running the $AdminApp searchJNDIReferences command with the Java

Naming and Directory Interface (JNDI) name of a message destination, the

message destination reference is not returned

This problem occurs when the command $AdmnApp searchJNDIReferences is run with the JNDI name of

a message destination. The command cannot collect the message destination reference that is defined in

the application deployment descriptor. The message destination that you configured for the application

server is defined with a message destination link on not one element, but two: both a message-driven

bean (MDB) and a message destination reference.

Currently there is no workaround for this problem. The $AdmnApp searchJNDIReferences command

cannot return a reference for a message destination that is defined on two elements.

Chapter 27. Troubleshooting administration 2277

AWXJR0006E: Exception received when configuring JACC provider for the Tivoli

Access Manager

This problem occurs when you attempt to configure a JACC provider for the Tivoli Access Manager using

the wsdamin tool in a deployment manager environment with or without nodes added. You enter a

deployment manager node name, for example, t54Manager, instead of an asterisk (*) for all nodes. The

wsadmin command finishes successfully but when you try to add a new node and start the node, or start

an existing node, you receive an error in the nodeagent SystemOut.log file similar to the following:

[12/7/05 17:09:51:266 CST] 0000000a SystemOut O AWXJR0006E The file,

C:\cc_was602\WebSphere\AppServer\profiles\AppSrv01\etc\tam\amwas.t54Node01_.amjacc.pr

operties, was not found.

[12/7/05 17:09:51:266 CST] 0000000a distSecurityC E SECJ0391E: Error when setting

the Policy object to the providers policy implementation {0}. The exception is

{1}.

[12/7/05 17:09:51:281 CST] 0000000a distSecurityC E SECJ0324E: Error during Java

2 Security and Dynamic Policy initialization.

To workaround this problem, unconfigure the existing Tivoli Access Manager configuration and configure it

again using an asterisk (*) for the node name, for example:

wsadmin.bat -user wsadmin -password pw1 -f enableTAM.jacl "*" TAMHostName:7135"

TAMHostName:7136:1" "cn=wsadmin,o=ibm,c=us" "o=ibm,c=us" "sec_master"

sec_master pw1 "9990:9999"

WASX7022E: Problem running command ″import sys″ -- exception information:

com.ibm.bsf.BSFException: unable to load language

This problem may be caused by a limitation on some UNIX platforms, for example, Linux, when attempting

to use the Jython language.

To workaround this problem, perform the following steps:

1. Check the number of open files that you are allowed to have on the machine, for example:

ulimit -a

2. Check the number of open files that you have set on your machine. The default value is 1024.

3. Change it to a higher number, for example:

ulimit -n 2048

4. Try to use the wsadmin tool again with the Jython language.

Problems using command line tools

This article provides troubleshooting support for a variety of problems relating to using command line tools.

What kind of problem are you having?

v Just-in-time (JIT) compiler is disabled when you start application server with DEBUG enabled on a Red

Hat Linux machine

v The startServer.sh or stopServer.sh commands fail to start or stop the server when the server definition

is part of the configuration repository.

v With Windows service, there is no indication when a server is already started.

v ″ADMU0125E: Change the clock of the new node to be within {0} minutes of the clock of the

deployment manager″ error message occurs during federation

Just-in-time (JIT) compiler is disabled when you start the application server with

DEBUG enabled on a Red Hat Linux machine

The just-in-time (JIT) compiler is disabled when you start the application server with Software Developer

Kit (SDK) DEBUG enabled on a Red Hat Linux® machine, even though JIT is set to enabled. To verify this

setting, check the SystemOut.log or the startServer.log file.

2278 Administering applications and their environment

Use the administrative console to remove the following DEBUG options of the Java™ process definition.

-Xdebug -Xnoagent

For more information, see the V6.0 Information Center Release Notes page.

The startServer.sh or stopServer.sh commands fail to start or stop the server

when the server definition is part of the configuration repository.

This problem occurs when the startServer.sh or stopServer.sh commands are trying to start or stop non

Java™ process. To solve this problem, use the -nowait option to start or stop the server, for example:

startServer.sh webserver1 -nowait

stopServer.sh webserver1 -nowait

With Windows service, there is no indication when a server is already started.

When attempting to start an already-started server from the command line, there is no indication that the

server is already started and running. When running startManager.bat on Windows® the following output is

displayed before the command returns:

ADMU7701I: Because dmgr is registered to run as a Windows Service, the request to start this

server will be completed by starting the associated Windows Service.

When running startServer.bat, the following output is displayed before the command returns:

ADMU7701I: Because server1 is registered to run as a Windows Service, the request to start this

server will be completed by starting the associated Windows Service.

When running WASService.exe, the following output is displayed before the command returns:

Starting Service: service name

To check if the server is started or if the service is running, use the serverStatus server name command

or the WASService -status service name command.

″ADMU0125E: Change the clock of the new node to be within {0} minutes of the

clock of the deployment manager″ error message occurs during federation

The workaround for this problem is to adjust the time on the node to be within the recommended amount

of the deployment manager. Verify that the time zones are correct and that the times within the time zones

are correct. For AIX systems, if the time on the node system is within five minutes of the deployment

manager, review the timezone setting in the /etc/environment file. Verify that the TZ= property is set

correctly. For example, in the Central Time Zone, it should read TZ=CST6CDT. For more information, see

the environment file section of the Files Reference Web site.

If none of these steps fixes your problem, check to see if the problem has been identified and documented

by looking at the available online support (hints and tips, technotes, and fixes). If you don’t find your

problem listed there contact IBM support.

Problems using tracing, logging or other troubleshooting features

Use this information if you are having problems using tracing, logging or other troubleshooting tools.

What kind of problem are you having?

v Netscape browser fails when trying to enable a component trace.

Chapter 27. Troubleshooting administration 2279

http://publib.boulder.ibm.com/infocenter/ws60help/index.jsp?topic=/com.ibm.websphere.nd.doc/info/ae/ae/v6rn.html
http://publib16.boulder.ibm.com/doc_link/en_US/a_doc_lib/files/aixfiles/environment.htm

Netscape browser fails when trying to enable a component trace

On systems using AIX, the Netscape browser fails when you try to enable trace on a component.

To work around this problem, do one of the following:

v Disable JavaScript on the browser and continue setting trace.

v Administer the AIX server from a remote machine running another browser and operating system.

v Change the trace manually in the server.xml file.

2280 Administering applications and their environment

Appendix. Directory conventions

References in product information to app_server_root, profile_root, and other directories infer specific

default directory locations. This topic describes the conventions in use for WebSphere Application Server.

Default product locations when the root user or an administrator user installs the

product

The root user or administrator user (on a Windows system) is capable of registering shared products and

installing into system-owned directories. The following default directories are system-owned directories.

These file paths are default locations. You can install the product and other components in any directory

where you have write access. You can create profiles in any valid directory where you have write access.

Multiple installations of WebSphere Application Server products or components, of course, require multiple

locations.

app_server_root - the install_root for WebSphere Application Server

The following list shows default installation root directories for WebSphere Application Server:

AIX

/usr/IBM/WebSphere/AppServer

HP�UX

/opt/IBM/WebSphere/AppServer

Linux

/opt/IBM/WebSphere/AppServer

Solaris

/opt/IBM/WebSphere/AppServer

Windows

C:\Program Files\IBM\WebSphere\AppServer

profile_root

The following list shows the default directory for a profile named profile_name on each distributed

operating system:

AIX

/usr/IBM/WebSphere/AppServer/profiles/profile_name

HP�UX

/opt/IBM/WebSphere/AppServer/profiles/profile_name

Linux

/opt/IBM/WebSphere/AppServer/profiles/profile_name

Solaris

/opt/IBM/WebSphere/AppServer/profiles/profile_name

Windows

C:\Program Files\IBM\WebSphere\AppServer\profiles\profile_name

plugins_root

The following default installation root is for the Web server plug-ins for WebSphere Application

Server:

AIX

/usr/IBM/HTTPServer/Plugins

HP�UX

/opt/IBM/HTTPServer/Plugins

Linux

/opt/ibm/HTTPServer/Plugins

Solaris

/opt/IBM/HTTPServer/Plugins

Windows

C:\Program Files\IBM\HTTPServer\Plugins

web_server_root

The following default installation root directories are for the IBM HTTP Server:

AIX

/usr/IBM/HTTPServer

© Copyright IBM Corp. 2006 2281

HP�UX /opt/IBM/HTTPServer

Linux

/opt/ibm/HTTPServer

Solaris

/opt/IBM/HTTPServer

Windows

C:\Program Files\IBM\HTTPServer

gskit_root

The following list shows the default installation root directories for Version 7 of the IBM Global

Security Kit (GSKit):

AIX

/usr/ibm/gsk7

HP�UX

/opt/ibm/gsk7

Linux

/opt/ibm/gsk7

Solaris

/opt/ibm/gsk7

Windows

C:\Program Files\IBM\GSK7

app_client_root

The following default installation root directories are for the WebSphere Application Client:

AIX

/usr/IBM/WebSphere/AppClient (J2EE Application client only)

HP�UX

/opt/IBM/WebSphere/AppClient (J2EE Application client only)

Linux

/opt/IBM/WebSphere/AppClient (J2EE Application client only)

Solaris

/opt/IBM/WebSphere/AppClient (J2EE Application client only)

Windows

C:\Program Files\IBM\WebSphere\AppClient

updi_root

The following list shows the default installation root directories for the Update Installer for

WebSphere Software:

AIX

/usr/IBM/WebSphere/UpdateInstaller

HP�UX

/opt/IBM/WebSphere/UpdateInstaller

Linux

/opt/IBM/WebSphere/UpdateInstaller

Solaris

/opt/IBM/WebSphere/UpdateInstaller

Windows

C:\Program Files\IBM\WebSphere\UpdateInstaller

cip_app_server_root

The following list shows the default installation root directories for a customized installation

package (CIP) produced by the Installation Factory.

 A CIP is a WebSphere Application Server product bundled with one or more maintenance

packages, an optional configuration archive, one or more optional enterprise archive files, and

other optional files and scripts:

AIX

/usr/IBM/WebSphere/AppServer/cip/cip_uid

HP�UX

/opt/IBM/WebSphere/AppServer/cip/cip_uid

Linux

/opt/IBM/WebSphere/AppServer/cip/cip_uid

Solaris

/opt/IBM/WebSphere/AppServer/cip/cip_uid

2282 Administering applications and their environment

Windows C:\Program Files\IBM\WebSphere\AppServer\cip\cip_uid

 The cip_uid variable is the CIP unique ID generated during creation of the build definition file. You

can override the generated value in the Build definition wizard. Use a unique value to allow

multiple CIPs to install on the system.

component_root

The component installation root directory is any installation root directory described in this topic.

Some programs are for use across multiple components. In particular, the Update Installer for

WebSphere Software is for use with WebSphere Application Server, Web server plug-ins, the

Application Client, and the IBM HTTP Server. All of these components are part of the product

package.

Default product locations when a non-root user or a non-administrator user

installs the product

The non-root user or non-administrator user (on a Windows system) is not capable of registering shared

products and installing into system-owned directories. The following default directories are user-owned

directories in the home directory of the non-root installer as opposed to being globally shared resources

that are available to all users.

app_server_root

The following list shows the default installation directories for non-root installation of WebSphere

Application Server:

AIX

user_home/IBM/WebSphere/AppServer

HP�UX

user_home/IBM/WebSphere/AppServer

Linux

user_home/IBM/WebSphere/AppServer

Solaris

user_home/IBM/WebSphere/AppServer

Windows

C:\IBM\WebSphere\AppServer

profile_root

The following list shows the default directories for creating profiles:

AIX

user_home/IBM/WebSphere/AppServer/profiles/

HP�UX

user_home/IBM/WebSphere/AppServer/profiles/

Linux

user_home/IBM/WebSphere/AppServer/profiles/

Solaris

user_home/IBM/WebSphere/AppServer/profiles/

Windows

C:\IBM\WebSphere\AppServer\profiles\

web_server_root

The following default installation root directories are for the IBM HTTP Server:

AIX

user_home/IBM/HTTPServer

HP�UX

user_home/IBM/HTTPServer

Linux

user_home/ibm/HTTPServer

Solaris

user_home/IBM/HTTPServer

Windows

C:\IBM\HTTPServer

Appendix. WebSphere Application Server directories 2283

plugins_root

The following list shows the default installation root directories for the Web server plug-ins for

WebSphere Application Server:

AIX

user_home/IBM/HTTPServer/Plugins

HP�UX

user_home/IBM/HTTPServer/Plugins

Linux

user_home/ibm/HTTPServer/Plugins

Solaris

user_home/IBM/HTTPServer/Plugins

Windows

C:\IBM\HTTPServer\Plugins

app_client_root

The following list shows the default installation root directories for the WebSphere Application

Client:

AIX

user_home/IBM/WebSphere/AppServer/AppClient (J2EE Application client only)

HP�UX

user_home/IBM/WebSphere/AppClient (J2EE Application client only)

Linux

user_home/IBM/WebSphere/AppClient (J2EE Application client only)

Solaris

user_home/IBM/WebSphere/AppClient (J2EE Application client only)

Windows

C:\IBM\WebSphere\AppClient

updi_root

The following list shows the default installation directories for non-root installation of WebSphere

Application Server:

AIX

user_home/IBM/WebSphere/UpdateInstaller

HP�UX

user_home/IBM/WebSphere/UpdateInstaller

Linux

user_home/IBM/WebSphere/UpdateInstaller

Solaris

user_home/IBM/WebSphere/UpdateInstaller

Windows

C:\Program Files\IBM\WebSphere\UpdateInstaller

cip_app_server_root

The following list shows the default installation root directories for a WebSphere Application Server

product CIP:

AIX

user_home/IBM/WebSphere/AppServer/cip/cip_uid

HP�UX

user_home/IBM/WebSphere/AppServer/cip/cip_uid

Linux

user_home/IBM/WebSphere/AppServer/cip/cip_uid

Solaris

user_home/IBM/WebSphere/AppServer/cip/cip_uid

Windows

C:\IBM\WebSphere\AppServer\cip\cip_uid

2284 Administering applications and their environment

Notices

References in this publication to IBM products, programs, or services do not imply that IBM intends to

make these available in all countries in which IBM operates. Any reference to an IBM product, program, or

service is not intended to state or imply that only IBM’s product, program, or service may be used. Any

functionally equivalent product, program, or service that does not infringe any of IBM’s intellectual property

rights may be used instead of the IBM product, program, or service. Evaluation and verification of

operation in conjunction with other products, except those expressly designated by IBM, is the user’s

responsibility.

IBM may have patents or pending patent applications covering subject matter in this document. The

furnishing of this document does not give you any license to these patents. You can send license inquiries,

in writing, to:

 IBM Director of Intellectual Property & Licensing

 IBM Corporation

 North Castle Drive

 Armonk, NY 10504-1785

 USA

© Copyright IBM Corp. 2006 2285

2286 Administering applications and their environment

Trademarks and service marks

For trademark attribution, visit the IBM Terms of Use Web site (http://www.ibm.com/legal/us/).

© Copyright IBM Corp. 2006 2287

http://www.ibm.com/legal/us/

	Contents
	How to send your comments
	Chapter 1. Overview and new features for administering applications and their environments
	Introduction: System administration
	Introduction: Administrative console
	Introduction: Administrative scripting (wsadmin)
	Introduction: Administrative commands
	Introduction: Administrative programs
	Introduction: Administrative configuration data

	Introduction: Servers
	Introduction: Application servers
	Introduction: Web servers

	Introduction: Environment
	Variables
	Language versions offered by this product

	Chapter 2. How do I administer applications and their environments?
	Chapter 3. Starting and stopping quick reference
	Chapter 4. Backing up and recovering the application serving environment
	Chapter 5. Class loading
	Class loaders
	Configuring class loaders of a server
	Class loader collection
	Class loader ID
	Class loader order
	Class loader settings
	Class loader ID
	Class loader order

	Configuring application class loaders
	Configuring Web module class loaders
	Class loading: Resources for learning

	Chapter 6. Deploying and administering applications
	Enterprise (J2EE) applications
	System applications
	Installing application files
	Installable module versions
	Ways to install applications or modules
	Installing application files with the console
	Preparing for application installation settings
	Select installation options settings
	Provide options to perform the EJB Deploy settings
	Bind listeners for message-driven beans settings

	Example: Installing an EAR file using the default bindings
	Installing J2EE modules with JSR-88
	Customizing modules using DConfigBeans

	Enterprise application collection
	Name
	Application Status
	Startup order
	Enterprise application settings
	Name
	Application reference validation

	Configuring an application
	Application bindings
	Configuring application startup
	Startup behavior settings

	Configuring binary location and use
	Application binary settings

	Configuring the use of class loaders by an application
	Class loading and update detection settings

	Manage modules settings
	Clusters and Servers
	Module
	URI
	Module type
	Server

	Mapping modules to servers
	Mapping virtual hosts for Web modules
	Virtual hosts settings

	Mapping properties for a custom login configuration
	Name
	Value
	Description

	Viewing deployment descriptors
	Starting or stopping applications
	Disabling automatic starting of applications
	Target specific application status
	Target
	Node
	Version
	Auto Start
	Application Status

	Exporting applications
	Exporting DDL files
	Updating applications
	Ways to update application files
	Updating applications with the console
	Preparing for application update settings
	Application to be updated
	Replace the entire application
	Replace or add a single module
	Replace or add a single file
	Replace, add, or delete multiple files

	Hot deployment and dynamic reloading
	Changing or adding application files
	Changing or adding WAR files
	Changing or adding EJB Jar files
	Changing the HTTP plug-in configuration

	Uninstalling applications
	Removing a file
	Common deployment framework
	Deploying and administering applications: Resources for learning

	Chapter 7. Web applications
	Task overview: Developing and deploying Web applications
	Web applications
	web.xml file
	Default Application
	Servlets
	JavaServer Pages
	JSP class file generation
	Packages and directories for generated .java and .class files
	JSP class loading
	Configuring JSP run time reloading
	JSP reload options for Web modules settings
	Disabling JavaServer Pages run time compilation
	Provide options to compile JavaServer Pages settings
	JSP batch compilation
	Global tag libraries
	JavaServer Pages migration best practices and considerations

	Web modules
	Troubleshooting tips for Web application deployment
	Web applications: Resources for learning

	Tuning URL invocation cache
	Task overview: Managing HTTP sessions
	Sessions
	HTTP session migration
	Session security support
	Session management support
	Session tracking options
	Session tracking with cookies
	Session tracking with URL rewriting
	Session tracking with SSL information

	Distributed sessions
	Session recovery support
	Clustered session support
	Session management tuning
	Base in-memory session pool size
	Tuning parameter settings
	Tuning parameter custom settings

	Best practices for using HTTP Sessions
	HTTP session manager troubleshooting tips
	Problems creating or using HTTP sessions
	HTTP sessions: Resources for learning

	Modifying the default Web container configuration
	Web container
	Web container settings
	Default virtual host
	Enable servlet caching
	Disable servlet request and response pooling

	Web container custom properties
	Web module deployment settings
	URI
	Alternate deployment descriptor
	Starting weight
	Class loader order

	Context root for Web modules settings
	Web module
	URI
	Context root

	Environment entries for Web modules settings
	Module
	URI
	Name
	Type
	Description
	Value

	Web container troubleshooting tips
	Disabling servlet pooling: Best practices and considerations

	Configuring session management by level
	Configuring session tracking
	Serializing access to session data
	Session management settings
	Session tracking mechanism
	Maximum in-memory session count
	Allow overflow
	Session timeout
	Security integration
	Serialize session access

	Cookie settings
	Cookie name
	Restrict cookies to HTTPS sessions
	Cookie domain
	Cookie path
	Cookie maximum age

	Session management custom properties

	Configuring session tracking for Wireless Application Protocol (WAP) devices
	Configuring for database session persistence
	Switching to a multirow schema
	Configuring tablespace and page sizes for DB2 session databases
	Database settings
	Datasource JNDI name
	User ID
	Password
	DB2 row size
	Table space name
	Use multi row schema

	Multirow schema considerations

	Chapter 8. Portlet applications
	Task overview: Managing portlets
	Portlets
	Portlet container
	Portlet container settings
	Enable portlet fragment cache

	Portlet aggregation using JavaServer Pages
	Aggregation tag library attributes
	Example: Using the portlet aggregation tag library

	Portlet Uniform Resource Locator (URL) addressability
	Portlet preferences
	Portlet deployment descriptor extensions
	Converting portlet fragments to an HTML document
	Portlet and PortletApplication MBeans

	Chapter 9. SIP applications
	Providing real time collaboration with SIP applications
	SIP applications
	SIP container

	Configuring the SIP container
	Configuring SIP timers
	SIP timer summary

	Session Initiation Protocol (SIP) container settings
	Maximum application sessions
	Maximum messages per averaging period
	Maximum queue dispatch size
	Maximum response time
	Averaging period in milliseconds
	Statistic update rate in milliseconds

	Deploying SIP applications
	Deploying SIP applications through the console
	Deploying SIP applications through scripting

	Chapter 10. EJB applications
	Task overview: Using enterprise beans in applications
	Enterprise beans
	EJB modules
	EJB containers
	Enterprise beans: Resources for learning
	EJB method Invocation Queuing
	Enterprise bean and EJB container troubleshooting tips
	Error in client log: Missing jar file

	Cannot access an enterprise bean from a servlet, a JSP file, a stand-alone program, or another client

	Using access intent policies
	Access intent policies
	Concurrency control
	Read-ahead hints
	Database deadlocks caused by lock upgrades
	Access intent assembly settings

	Access intent for both entity bean types
	Applying access intent policies to beans
	Configuring read-read consistency checking with the assembly tools
	Examples: read-read consistency checking

	Access intent service
	Access intent with BMP entity beans

	Access intent design considerations
	Applying access intent policies to methods
	Using the AccessIntent API
	AccessIntent interface

	Access intent exceptions
	Access intent best practices
	Frequently asked questions: Access intent

	Managing EJB containers
	EJB container settings
	Passivation directory
	Inactive pool cleanup interval
	Default data source JNDI name
	Enable stateful session bean failover using memory-to-memory replication
	Initial state

	EJB container system properties
	Changing enterprise bean types to initialize at application start time using the Application Server Toolkit
	Changing enterprise bean types to initialize at application start time using the administrative console
	Stateful session bean failover for the EJB container
	Stateful session beans failover settings (applications)
	Stateful session beans failover settings (EJB modules)

	Enabling or disabling stateful session bean failover with the EJB container panel
	Enabling or disabling stateful session bean failover with the enterprise applications panel
	Enabling or disabling stateful session bean failover with the EJB modules panel
	EJB cache settings
	Cleanup interval
	Cache size

	Container interoperability
	EJB Container tuning

	Deploying EJB modules
	Troubleshooting tips for EJBDEPLOY relationships
	EJB module settings
	URI
	Alternate deployment descriptor
	Starting weight

	Chapter 11. Client applications
	Using application clients
	Application Client for WebSphere Application Server
	Application client functions
	ActiveX application clients
	Applet clients
	J2EE application clients
	Pluggable application clients
	Thin application clients

	Application client troubleshooting tips

	Running application clients
	launchClient tool
	Specifying the directory for an expanded EAR file
	Java Web Start architecture for deploying application clients
	Using Java Web Start
	Client application Java Network Launcher Protocol deployment descriptor file
	Preparing the Application Client run-time dependency component for Java Web Start
	Preparing Application Clients run-time library component for Java Web Start
	Using the Java Web Start sample
	Installing Java Web Start
	Java Web Start for Application client best practices

	Installing Application Client for WebSphere Application Server
	Best practices for installing Application Client for WebSphere Application Server
	Installing Application Client for WebSphere Application Server silently
	Uninstalling Application Client for WebSphere Application Server

	Deploying J2EE application clients on workstation platforms
	Resource Adapters for the client
	Configuring resource adapters
	clientRAR tool
	Configuring new connection factories for resource adapters
	Configuring administered objects

	Resource adapter settings
	Name
	Description
	Class Path
	Native Path
	Resource Adapter Name
	Installed Resource Adapter Path

	Starting the Application Client Resource Configuration Tool and opening an EAR file
	Data sources for the Application Client
	Data source properties for application clients
	Name
	Description
	JNDI Name
	Database Name
	User
	Password
	Re-Enter Password
	Custom Properties

	Configuring new data source providers (JDBC providers) for application clients
	Example: Configuring data source provider and data source settings
	Data source provider settings for application clients

	Configuring new data sources for application clients
	Configuring mail providers and sessions for application clients
	Mail provider settings for application clients
	Mail session settings for application clients
	Example: Configuring JavaMail provider and JavaMail session settings for application clients

	Configuring new mail sessions for application clients
	URLs for application clients
	URL providers for the Application Client Resource Configuration Tool
	Configuring new URL providers for application clients
	Configuring URL providers and sessions using the Application Client Resource Configuration Tool
	Example: Configuring URL and URL provider settings for application clients

	Configuring new URLs with the Application Client Resource Configuration Tool
	Asynchronous messaging in WebSphere Application Server using JMS
	Java Message Service (JMS) providers for clients
	Configuring Java messaging client resources
	Configuring new JMS providers with the Application Client Resource Configuration Tool
	JMS provider settings for application clients
	Default Provider connection factory settings
	Default Provider queue connection factory settings
	Default Provider topic connection factory settings
	Default Provider queue destination settings
	Default Provider topic destination settings
	Version 5 Default Provider queue connection factory settings for application clients
	Version 5 Default Provider topic connection factory settings for application clients
	Version 5 Default Provider queue destination settings for application clients
	Version 5 Default Provider topic destination settings for application clients
	WebSphere MQ Provider queue connection factory settings for application clients
	WebSphere MQ Provider topic connection factory settings for application clients
	WebSphere MQ Provider queue destination settings for application clients
	WebSphere MQ Provider topic destination settings for application clients
	Generic JMS connection factory settings for application clients
	Generic JMS destination settings for application clients
	Example: Configuring JMS provider, JMS connection factory and JMS destination settings for application clients

	Configuring new JMS connection factories for application clients
	Configuring new Java Message Service destinations for application clients
	Configuring new resource environment providers for application clients
	Resource environment provider settings for application clients

	Configuring new resource environment entries for application clients
	Resource environment entry settings for application clients

	Managing application clients
	Updating data source and data source provider configurations with the Application Client Resource Configuration Tool
	Updating URLs and URL provider configurations for application clients
	Updating mail session configurations for application clients
	Updating Java Message Service provider, connection factories, and destination configurations for application clients
	Updating WebSphere MQ as a Java Message Service provider, and its JMS resource configurations, for application clients
	Updating resource environment entry and resource environment provider configurations for application clients
	Removing application client resources

	Chapter 12. Web services
	Implementing Web services applications
	Web services
	Web Services for J2EE specification
	JAX-RPC
	SOAP
	SOAP with Attachments API for Java interface
	Web services SOAP/JMS protocol
	Web Services-Interoperability Basic Profile
	RMI-IIOP using JAX-RPC
	WS-I Attachments Profile
	Web services: Resources for learning

	Deploying Web services
	
	Provide options to perform the Web services deployment settings

	wsdeploy command

	Configuring Web service client bindings
	Web services client bindings
	Web service
	EJB
	WSDL file name
	Preferred port mappings
	Port information
	Preferred port mappings
	Web services client port information

	Getting started with the UDDI registry
	Getting started for UDDI Administrators
	Getting started for UDDI users

	Using the UDDI registry user interface
	Displaying the UDDI registry user interface
	Finding an entity using the UDDI registry user interface
	Publishing an entity using the UDDI registry user interface
	Editing or deleting an entity using the UDDI registry user interface
	Creating business relationships using the UDDI registry user interface
	Example: Publishing a business, service and technical model using the UDDI registry user interface

	Planning to use Web services
	Service-oriented architecture
	Web services approach to a service-oriented architecture
	Web services business models supported

	Learning about the Web Services Invocation Framework (WSIF)
	Goals of WSIF
	WSIF - Web services are more than just SOAP services
	WSIF - Tying client code to a particular protocol implementation is restricting
	WSIF - Incorporating new bindings into client code is hard
	WSIF - Multiple bindings can be used in flexible ways
	WSIF - Enabling a freer Web services environment promotes intermediaries

	WSIF: Overview
	WSIF architecture
	WSIF and Web services that offer multiple bindings
	WSIF and WSDL
	WSIF usage scenarios
	Dynamic invocation

	Setting up and deploying a new UDDI registry
	Database considerations for production use of the UDDI registry
	Setting up a default UDDI node with a default datasource
	Setting up a default UDDI node
	Creating a DB2 distributed database for the UDDI registry
	Creating a DB2 distributed database for the UDDI registry
	Creating a DB2 for z/OS database for the UDDI registry
	Creating a DB2 for z/OS database for the UDDI registry
	Creating a Cloudscape database for the UDDI registry
	Creating an Oracle database for the UDDI registry
	Creating a data source for the UDDI registry
	Deploying the UDDI registry application

	Setting up a customized UDDI node
	Creating a DB2 distributed database for the UDDI registry
	Creating a DB2 distributed database for the UDDI registry
	Creating a DB2 for z/OS database for the UDDI registry
	Creating a DB2 for z/OS database for the UDDI registry
	Creating a Cloudscape database for the UDDI registry
	Creating an Oracle database for the UDDI registry
	Creating a data source for the UDDI registry
	Deploying the UDDI registry application
	Initializing the UDDI registry node

	Using the UDDI registry Installation Verification Program (IVP)
	Changing the UDDI registry application environment after deployment

	Publishing WSDL files
	WSDL
	WSDL architecture
	Multipart WSDL best practices

	Configuring endpoint URL information for JMS bindings
	Provide JMS and EJB endpoint URL information
	URL fragment for JMS
	URL fragment for EJB

	Configuring the scope of a Web service port
	Web services implementation scope
	Port
	Web service
	URI
	Scope

	Configuring Web services applications with the wsadmin tool
	WSIF system management and administration
	Maintaining the WSIF properties file
	Enabling security for WSIF
	Tips for troubleshooting the Web Services Invocation Framework
	Trace and logging for WSIF
	WSIF (Web Services Invocation Framework) messages
	WSIF - Known restrictions

	Using the UDDI registry
	Overview of the Version 3 UDDI registry
	UDDI registry terminology
	UDDI registry management interfaces
	UDDI registry Administrative (JMX) Interface
	User-defined value set support in the UDDI registry
	UDDI Utility Tools

	Java API for XML Registries (JAXR) Provider for UDDI
	JAXR for UDDI - getting started and advanced topics

	Removing and reinstalling the UDDI registry
	Removing a UDDI registry node
	Reinstalling the UDDI registry application

	Applying an upgrade to the UDDI registry
	Configuring the UDDI registry application
	Configuring UDDI registry security
	Configuring the UDDI registry to use WebSphere Application Server security
	Configuring the UDDI registry to use UDDI security
	Access control for UDDI registry interfaces
	UDDI registry security additional considerations

	Configuring SOAP API and GUI services
	Multiple language encoding support in UDDI
	Customizing the UDDI registry user interface (GUI)

	Managing the UDDI registry
	UDDI node collection
	UDDI Node ID
	Description
	UDDI Application Location
	Status
	UDDI node settings

	Overview of the UDDI registry Administrative Interface
	Backing up and restoring the UDDI registry database

	Chapter 13. Data access resources
	Task overview: Accessing data from applications
	Resource adapter
	J2EE Connector Architecture resource adapters
	WebSphere relational resource adapter settings
	WebSphere Relational Resource Adapter
	Data access portability features

	Connection factory
	CMP connection factories collection

	JDBC providers
	Data sources
	Data access beans
	Connection management architecture
	Connection pooling
	Connection life cycle
	Unshareable and shareable connections
	Connection handles
	Transaction type and connection behavior
	Application scoped resources

	Cache instances
	Data access: Resources for learning

	Configuring data access with scripting
	Configuring a JDBC provider using scripting
	Configuring new data sources using scripting
	Configuring new connection pools using scripting
	Changing connection pool settings with the wsadmin tool
	Example: Changing connection pool settings with the wsadmin tool
	Example: Connection factory and data source Mbean access using wsadmin

	Configuring new data source custom properties using scripting
	Configuring new J2CAuthentication data entries using scripting
	Configuring new WAS40 data sources using scripting
	Configuring new WAS40 connection pools using scripting
	Configuring new WAS40 custom properties using scripting
	Configuring new J2C resource adapters using scripting
	Configuring custom properties for J2C resource adapters using scripting
	Configuring new J2C connection factories using scripting
	Configuring new J2C authentication data entries using scripting
	Configuring new J2C activation specifications using scripting
	Configuring new J2C administrative objects using scripting
	Testing data source connections using scripting
	Commands for the EventServiceDBCommands group of the AdminTask object
	Commands for the JDBCProviderManagement group of the AdminTask object

	Administering data access applications
	Installing a Resource Adapter Archive (RAR) file
	Installing resource adapters within applications
	Install RAR
	Resource Adapters collection

	Configuring J2EE Connector connection factories in the administrative console
	Connection pool settings
	Connection pool advanced settings
	Connection pool (Version 4) settings
	Configuring connection factories for resource adapters within applications
	J2C Connection Factories collection
	Connection factory JNDI name tips

	J2EE connector security
	Security of lookups with component managed authentication
	Mapping resource references to references

	Configuring a JDBC provider and data source
	Vendor-specific data sources minimum required settings
	Configuring a JDBC provider using the administrative console
	Configuring a data source using the administrative console
	Creating and configuring a JDBC provider and data source using the Java Management Extensions API
	Verifying a connection
	Test connection service
	Testing a connection with the administrative console
	Testing a connection using wsadmin

	Configuring data access for the Application Client
	Client configuration with the ACRCT

	Resource references
	Select
	Module
	EJB
	URI
	Reference binding
	JNDI name
	Login configuration

	Performing platform-specific tasks for JDBC access
	Pretesting pooled connections to ensure validity
	Passing client information to a database
	Example: setClientInformation(Properties) API
	Implicitly set client information
	Setting client information traces with the administrative console

	About Cloudscape v10.1.x
	Verifying the Cloudscape v10.1.x automatic migration
	Upgrading Cloudscape manually
	Database performance tuning
	DB2 tuning parameters

	Tuning parameters for data access resources
	Managing resources through JCA lifecycle management operations
	JCA lifecycle management

	Cannot access a data source
	Problems accessing an Oracle data source
	Problems accessing a DB2 database
	Problems accessing a SQL server data source
	Problems accessing a Cloudscape database
	Problems accessing a Sybase data source

	JDBC trace configuration

	Deploying data access applications
	Available resources
	Select
	JNDI name
	Scope
	Description

	1.x CMP bean data sources
	Select
	EJB
	EJB Module
	URI
	JNDI name
	User name

	1.x entity bean data sources
	Select
	EJB Module
	URI
	JNDI name
	User name

	2.x CMP bean data sources
	Select
	EJB
	EJB Module
	URI
	JNDI name
	Resource authorization

	2.x entity bean data sources
	Select
	EJB Module
	URI
	JNDI name
	Resource authorization

	Chapter 14. Messaging resources
	Using asynchronous messaging
	Learning about messaging with WebSphere Application Server
	JMS providers
	Styles of messaging in applications
	JMS interfaces - explicit polling for messages
	Message-driven beans - automatic message retrieval
	Message-driven beans - JCA components
	J2C activation specification configuration and use
	WebSphere activation specification optional binding properties
	Message-driven beans - transaction support

	Asynchronous messaging - security considerations
	Messaging: Resources for learning

	Installing and configuring a JMS provider
	Installing the default messaging provider
	JMS providers collection
	Select JMS resource provider
	Activation specification collection
	Connection factory collection
	Queue connection factory collection
	Queue collection
	Topic connection factory collection
	Topic collection

	Configuring messaging with scripting
	Configuring the message listener service using scripting
	Configuring new JMS providers using scripting
	Configuring new JMS destinations using scripting
	Configuring new JMS connections using scripting
	Configuring new WebSphere queue connection factories using scripting
	Configuring new WebSphere topic connection factories using scripting
	Configuring new WebSphere queues using scripting
	Configuring new WebSphere topics using scripting
	Configuring new MQ connection factories using scripting
	Configuring new MQ queue connection factories using scripting
	Configuring new MQ topic connection factories using scripting
	Configuring new MQ queues using scripting
	Configuring new MQ topics using scripting
	Commands for the JCA management group of the AdminTask object

	Maintaining Version 5 default messaging resources
	Listing Version 5 default messaging resources
	JMS provider settings
	Version 5 JMS server collection
	Version 5 WebSphere Queue connection factory collection
	Version 5 WebSphere topic connection factory collection
	Version 5 WebSphere queue destination collection
	Version 5 WebSphere topic destination collection

	Configuring Version 5 default JMS resources
	Configuring a Version 5 queue connection factory
	Configuring a Version 5 JMS topic connection factory
	Configuring a Version 5 WebSphere queue destination
	Configuring a Version 5 WebSphere topic destination

	Configuring authorization security for a Version 5 default messaging provider
	Authorization settings for Version 5 default JMS resources

	JMS components on Version 5 nodes

	Using the JMS resources provided by WebSphere MQ
	Installing and configuring WebSphere MQ as a JMS provider
	Listing JMS resources for WebSphere MQ
	WebSphere MQ connection factory collection
	WebSphere MQ queue connection factory collection
	WebSphere MQ topic connection factory collection
	WebSphere MQ queue destination collection
	WebSphere MQ topic destination collection

	Configuring JMS resources for the WebSphere MQ messaging provider
	Configuring a unified JMS connection factory, for WebSphere MQ
	Configuring a JMS queue connection factory for WebSphere MQ
	Configuring a JMS topic connection factory for WebSphere MQ
	Configuring a JMS queue destination for WebSphere MQ
	Configuring a JMS topic destination for WebSphere MQ
	Configuring WebSphere MQ connection pooling
	Configuring custom properties for the WebSphere MQ messaging provider

	Securing WebSphere MQ messaging directories and log files

	Using JMS resources of a generic provider
	Defining a generic messaging provider
	Listing generic JMS messaging resources
	JMS provider collection
	Generic JMS connection factory collection
	Generic JMS destination collection

	Configuring JMS resources for a generic messaging provider
	Configuring a JMS connection factory for the generic JMS provider
	Configuring a JMS destination, a generic JMS provider

	Administering support for message-driven beans
	Configuring a J2C activation specification
	J2C Activation Specifications collection

	Configuring a J2C administered object
	J2C Administered Objects collection

	Configuring message listener resources for message-driven beans
	Configuring the message listener service
	Creating a new listener port
	Configuring a listener port
	Deleting a listener port
	Administering listener ports
	Message-driven beans - listener port components

	Important file for message-driven beans

	Chapter 15. Mail, URLs, and other J2EE resources
	Using mail
	JavaMail API
	Mail providers and mail sessions
	JavaMail security permissions best practices
	Mail: Resources for learning
	JavaMail support for IPv6

	Using URL resources within an application
	URLs
	URL provider collection
	Name
	Scope
	Description

	URL provider settings
	Scope
	Name
	Description
	Class path
	Stream handler class name
	Protocol

	URL collection
	Name
	JNDI Name
	Scope
	Provider
	Description
	Category

	URL configuration settings
	Scope
	Provider
	Create New Provider
	Name
	JNDI Name
	Description
	Category
	Specification

	URLs: Resources for learning

	Resource environment entries
	Resource environment providers and resource environment entries
	Resource environment provider collection
	Name
	Scope
	Description
	Resource environment provider settings
	New Resource environment provider

	Resource environment entries collection
	Name
	JNDI Name
	Scope
	Provider
	Description
	Category
	Resource environment entry settings

	Referenceables collection
	Factory Class name
	Class name
	Referenceables settings

	Resource environment references
	Select
	Module
	EJB
	URI
	Reference binding
	JNDI name

	Configuring mail providers and sessions
	Mail provider collection
	Name
	Scope
	Description

	Mail provider settings
	Scope
	Name
	Description

	Protocol providers collection
	Protocol
	Class name
	Class path
	Type

	Protocol providers settings
	Scope
	Protocol
	Class name
	Class path
	Type

	Mail session collection
	Name
	Scope
	Provider
	JNDI Name
	Description
	Category

	Mail session settings
	Scope
	Provider
	Create New Provider
	Name
	JNDI name
	Description
	Category
	Mail transport host
	Mail transport protocol
	Mail transport user ID
	Mail transport password
	Enable strict Internet address parsing
	Mail from
	Mail store host
	Mail store protocol
	Mail store user ID
	Mail store password
	Enable debug mode

	JavaMail system properties
	mail.mime.charset
	mail.mime.decodetext.strict
	mail.mime.encodeeol.strict

	Configuring mail, URLs, and resource environment entries with scripting
	Configuring new mail providers using scripting
	Configuring new mail sessions using scripting
	Configuring new protocols using scripting
	Configuring new custom properties using scripting
	Configuring new resource environment providers using scripting
	Configuring custom properties for resource environment providers using scripting
	Configuring new referenceables using scripting
	Configuring new resource environment entries using scripting
	Configuring custom properties for resource environment entries using scripting
	Configuring new URL providers using scripting
	Configuring custom properties for URL providers using scripting
	Configuring new URLs using scripting
	Configuring custom properties for URLs using scripting
	Commands for the provider group of the AdminTask object

	Chapter 16. Security
	Task overview: Securing resources
	Setting up and enabling security
	Migrating, coexisting, and interoperating – Security considerations
	Interoperating with previous product versions
	Interoperating with a C++ common object request broker architecture client
	Migrating custom user registries
	Migrating trust association interceptors
	Migrating Common Object Request Broker Architecture programmatic login to Java Authentication and Authorization Service (CORBA and JAAS)
	Migrating from the CustomLoginServlet class to servlet filters
	Migrating Java 2 security policy

	Preparing for security at installation time
	Securing your environment before installation
	Securing your environment after installation

	Enabling security
	Administrative security
	Application security
	Java 2 security
	Enabling security for the realm
	Testing security after enabling it

	Authenticating users
	Selecting a registry or repository
	User registries and repositories
	Configuring local operating system registries
	Configuring Lightweight Directory Access Protocol user registries
	Configuring standalone custom registries
	Managing the realm in a federated repository configuration
	Local operating system registries
	Standalone Lightweight Directory Access Protocol registries
	Federated repositories

	Authentication mechanisms
	Portlet URL security
	Lightweight Third Party Authentication
	Trust associations
	Single sign-on
	Security attribute propagation
	Simple WebSphere authentication mechanism
	UserRegistry interface methods

	Authentication protocol for EJB security
	Supported authentication protocols
	Common Secure Interoperability Version 2 features
	Identity assertion
	Identity assertions with trust validation
	Message layer authentication

	Configuring the Lightweight Third Party Authentication mechanism
	Authentication mechanisms and expiration
	Generating Lightweight Third Party Authentication keys
	Exporting Lightweight Third Party Authentication keys
	Importing Lightweight Third Party Authentication keys
	Disabling automatic generation of Lightweight Third Party Authentication keys
	Managing LTPA keys from multiple WebSphere Application Server cells
	Activating Lightweight Third Party Authentication key versions

	Integrating third-party HTTP reverse proxy servers
	Trust association settings
	Trust association interceptor collection
	Trust association interceptor settings

	Implementing single sign-on to minimize Web user authentications
	Configuring single sign-on capability with SPNEGO TAI
	Configuring single sign-on capability with Tivoli Access Manager or WebSEAL

	Propagating security attributes among application servers
	Configuring the authentication cache
	Security cache properties

	Configuring IIOP authentication
	Configuring Common Secure Interoperability Version 2 inbound authentication
	Configuring Common Secure Interoperability Version 2 outbound authentication
	Example: Common Secure Interoperability Version 2 scenarios

	Configuring RMI over IIOP
	Configuring inbound transports
	Configuring outbound transports
	Performing identity mapping for authorization across servers in different realms
	Common Secure Interoperability Version 2 and Security Authentication Service client configuration

	Java Authentication and Authorization Service
	Java Authentication and Authorization Service authorization
	Using the Java Authentication and Authorization Service programming model for Web authentication

	Authorizing access to resources
	Authorization technology
	Administrative roles and naming service authorization
	Role-based authorization
	Administrative roles
	Enterprise bean component security
	Authorization providers
	Delegations
	Programmatic login

	Authorizing access to J2EE resources using Tivoli Access Manager
	Using the default authorization provider
	Enabling an external JACC provider

	Authorizing access to administrative roles
	Administrative user roles settings and CORBA naming service user settings
	Administrative group roles and CORBA naming service groups
	Assigning users to naming roles
	Propagating administrative role changes to Tivoli Access Manager
	The migrateEAR utility for Tivoli Access Manager

	Securing communications
	Secure communications using Secure Sockets Layer
	Secure Sockets Layer configurations
	Keystore configurations
	Dynamic outbound selection of Secure Sockets Layer configurations
	Central management of Secure Sockets Layer configurations
	Secure Sockets Layer node, application server, and cluster isolation
	Default self-signed certificate configuration
	Dynamic configuration updates
	Management scope configurations
	Certificate management using iKeyman
	Certificate management

	Creating a Secure Sockets Layer configuration
	SSL certificate and key management
	SSL configurations for selected scopes
	SSL configurations collection
	SSL configuration settings
	Creating a custom trust manager configuration
	Creating a custom key manager
	Associating a Secure Sockets Layer configuration dynamically with an outbound protocol and remote secure endpoint
	Quality of protection (QoP) settings
	ssl.client.props client configuration file

	Creating a keystore configuration
	Changing a keystore password
	Configuring a hardware cryptographic keystore
	Managing keystore configurations remotely
	Key stores and certificates collection
	Key store settings
	Key managers collection
	Key managers settings

	Creating a self-signed certificate
	Replacing an existing self-signed certificate

	Creating a certificate authority request
	Certificate request settings
	Personal certificates collection
	Personal certificates settings
	Personal certificate requests collection
	Personal certificate requests settings
	Extract certificate request
	Receiving a certificate issued by a certificate authority
	Replace a certificate

	Extracting a signer certificate from a personal certificate
	Extract certificate
	Extract signer certificate
	Retrieving signers using the retrieveSigners utility at the client
	Changing the signer auto-exchange prompt at the client
	Importing a signer certificate from a truststore to a z/OS keyring
	Exporting a signer certificate from WebSphere Application Server for z/OS to a truststore

	Retrieving signers from a remote SSL port
	Retrieve from port

	Adding a signer certificate to a keystore
	Add signer certificate
	Signer certificates collection
	Signer certificate settings

	Exchanging signer certificates
	Key stores and certificates exchange signers

	Configuring certificate expiration monitoring
	Manage certificate expiration settings
	Notifications
	Notifications settings

	Key management for cryptographic uses
	Creating a key set configuration
	Active key history collection
	Add key alias reference settings
	Key sets collection
	Key sets settings

	Creating a key set group configuration
	Example: Retrieving the generated keys from a key set group
	Example: Developing a key or key pair generation class for automated key generation
	Key set groups collection
	Key set groups settings

	Configuring security with scripting
	Enabling and disabling administrative security using scripting
	Enabling and disabling Java 2 security using scripting
	Enabling authentication in the file transfer service using scripting
	Propagating security policy of installed applications to a JACC provider using wsadmin scripting
	Configuring the JACC provider for Tivoli Access Manager using the wsadmin utility
	Disabling embedded Tivoli Access Manager client using wsadmin
	Creating an SSL configuration at the node scope using scripting
	Creating self-signed certificates using scripting
	Automating SSL configurations using scripting
	Updating default key store passwords using scripting
	Commands for the IdMgrConfig group of the AdminTask object
	Commands for the IdMgrRepositoryConfig group of the AdminTask object
	Commands for the IdMgrRealmConfig group of the AdminTask object
	Commands for the WIMManagementCommands group of the AdminTask object
	Commands for the KeyStoreCommands group of the AdminTask object
	Commands for the SSLConfigCommands group of the AdminTask object
	Commands for the DescriptivePropCommands group of the AdminTask object
	Commands for the TrustManagerCommands group of the AdminTask object
	Commands for the keyManagerCommands group of the AdminTask object
	Commands for the SSLConfigGroupCommands group of the AdminTask object
	Commands for the DynamicSSLConfigSelections group of the AdminTask object
	Commands for the ManagementScopeCommands group of the AdminTask object
	Commands for the WSCertExpMonitorCommands group of the AdminTask object
	Commands for the KeySetGroupCommands group of the AdminTask object
	Commands for the KeySetCommands group of the AdminTask object
	Commands for the KeyReferenceCommands group of the AdminTask object
	Commands for the securityEnablement group of the AdminTask object
	Commands for the CertificateRequestCommands group of the AdminTask object
	Commands for the SignerCertificateCommands group of the AdminTask object
	Commands for the PersonalCertificateCommands group of the AdminTask object
	Commands for the SPNEGO TAI group of the AdminTask object
	Commands for the AuthorizationGroupCommands group of the AdminTask object
	Commands for the ChannelFrameworkManagement group of the AdminTask object

	Chapter 17. Naming and directory
	Using naming
	Naming
	Name space logical view
	Initial context support
	Lookup names support in deployment descriptors and thin clients
	JNDI support in WebSphere Application Server
	Configured name bindings
	Name space federation
	Naming roles
	Naming and directories: Resources for learning

	Configuring name servers
	Name server settings
	Name
	Initial State

	Configuring name space bindings
	Name space binding collection
	Name
	Scope
	Binding type

	Specify binding type settings
	Binding type

	String binding settings
	Scope
	Binding type
	Binding identifier
	Name in name space
	String value

	EJB binding settings
	Scope
	Binding type
	Binding identifier
	Name in name space
	Enterprise Bean Location
	Server
	JNDI name

	CORBA object binding settings
	Scope
	Binding type
	Binding identifier
	Name in name space
	Corbaname URL
	Federated context

	Indirect lookup binding settings
	Scope
	Binding type
	Binding identifier
	Name in name space
	Provider URL
	JNDI name
	Initial context factory name

	Developing applications that use JNDI
	Example: Getting the default initial context
	Example: Getting an initial context by setting the provider URL property
	Using a CORBA object URL
	Using a CORBA object URL with multiple name server addresses
	Using a CORBA object URL from a non-WebSphere Application Server JNDI implementation
	Using an IIOP URL

	Example: Setting the provider URL property to select a different root context as the initial context
	Selecting the initial root context with a CORBA object URL
	Selecting the initial root context with the name space root property

	Example: Looking up an EJB home with JNDI
	Example: Looking up a JavaMail session with JNDI
	JNDI interoperability considerations
	JNDI caching
	JNDI cache settings
	com.ibm.websphere.naming.jndicache.cachename
	com.ibm.websphere.naming.jndicache.cacheobject
	com.ibm.websphere.naming.jndicache.maxcachelife
	com.ibm.websphere.naming.jndicache.maxentrylife

	Example: Controlling JNDI cache behavior from a program
	JNDI name syntax
	INS name syntax
	JNDI to CORBA name mapping considerations
	Example: Setting the syntax used to parse name strings

	Chapter 18. Object Request Broker
	Managing Object Request Brokers
	Object Request Brokers
	Logical pool distribution
	Object Request Broker service settings
	Request timeout
	Request retries count
	Request retries delay
	Connection cache maximum
	Connection cache minimum
	ORB tracing
	Locate request timeout
	Force tunneling
	Tunnel agent URL
	Pass by reference

	Object Request Broker custom properties
	com.ibm.CORBA.BootstrapHost
	com.ibm.CORBA.BootstrapPort
	com.ibm.CORBA.ConnectTimeout
	com.ibm.CORBA.ConnectionInterceptorName
	com.ibm.CORBA.enableLocateRequest
	com.ibm.CORBA.FragmentSize
	com.ibm.CORBA.ListenerPort
	com.ibm.CORBA.LocalHost
	com.ibm.CORBA.numJNIReaders
	com.ibm.CORBA.ORBPluginClass.com.ibm.ws.orbimpl.transport.JNIReaderPoolImpl
	com.ibm.CORBA.RasManager
	com.ibm.CORBA.ServerSocketQueueDepth
	com.ibm.CORBA.ShortExceptionDetails
	com.ibm.CORBA.WSSSLClientSocketFactoryName
	com.ibm.CORBA.WSSSLServerSocketFactoryName
	com.ibm.websphere.ObjectIDVersionCompatibility
	com.ibm.websphere.threadpool.strategy.implementation
	com.ibm.websphere.threadpool.strategy.LogicalPoolDistribution.calcinterval
	com.ibm.websphere.threadpool.strategy.LogicalPoolDistribution.lruinterval
	com.ibm.websphere.threadpool.strategy.LogicalPoolDistribution.outqueues
	com.ibm.websphere.threadpool.strategy.LogicalPoolDistribution.statsinterval
	com.ibm.websphere.threadpool.strategy.LogicalPoolDistribution.workqueue
	com.ibm.ws.orb.services.redirector.MaxOpenSocketsPerEndpoint
	com.ibm.ws.orb.services.redirector.RequestTimeout
	com.ibm.ws.orb.transport.useMultiHome
	javax.rmi.CORBA.UtilClass

	Object Request Broker communications trace
	Client-side programming tips for the Java Object Request Broker service
	Character code set conversion support for the Java Object Request Broker service
	Object Request Brokers: Resources for learning
	Object request broker troubleshooting tips

	Chapter 19. Transactions
	Using the transaction service
	Transaction support in WebSphere Application Server
	Resource manager local transaction (RMLT)
	Global transactions
	Local transaction containment (LTC)
	Local and global transaction considerations
	Client support for transactions
	Transaction compensation and business activity support
	The effect of application server shutdown on active transactions and later recovery
	Extended JTA support
	Support for Web Services protocols

	Use of local transactions
	The business activity API
	Transaction service exceptions
	UserTransaction interface - methods available

	Configuring transaction properties for an application server
	Transaction service settings
	Transaction log directory
	Total transaction lifetime timeout
	Asynchronous response timeout
	Client inactivity timeout
	Maximum transaction timeout
	Heuristic retry limit
	Heuristic retry wait
	Enable logging for heuristic reporting
	Heuristic completion direction
	Enable file locking
	Enable protocol security
	HTTP proxy prefix
	HTTPS proxy prefix
	Manual transactions
	Retry transactions
	Heuristic transactions
	Imported prepared transactions
	Transactions needing manual completion
	Transactions retrying resources
	Transactions with heuristic outcome
	Transactions imported and prepared
	Transaction resources

	Managing active and prepared transactions
	Managing transaction logging for optimum server availability
	Configuring transaction aspects of servers for optimum availability
	Moving a transaction log from one server to another
	Restarting an application server on a different host

	Interoperating transactionally between application servers
	Configuring an intermediary node for Web services transactions
	Enabling WebSphere Application Server to use an intermediary node for Web services transactions
	Configuring a server to use business activity support
	Compensation service settings
	Enable service at server startup
	Recovery log directory
	Recovery Log File Size
	Compensation handler retry limit
	Compensation handler retry interval

	Chapter 20. Learn about WebSphere programming extensions
	ActivitySessions
	Configuring the default ActivitySession timeout for an application server
	ActivitySession service settings

	Disabling or enabling the ActivitySession service

	Application profiling
	Task overview: Application profiling
	Application profiling
	Application profiling tasks
	Application profiling interoperability

	Managing application profiles
	Using the TaskNameManager interface
	Application profiling exceptions
	Application profiling service settings
	Application profile collection

	Asynchronous beans
	Using asynchronous beans
	Asynchronous beans
	Work manager service settings

	Configuring timer managers
	Timer manager collection

	Configuring work managers
	Work manager collection

	Dynamic cache
	Task overview: Using the dynamic cache service to improve performance
	Dynamic cache
	Eviction policies using the disk cache garbage collector
	Example: Caching Web services
	Dynamic cache MBean statistics
	Example: Configuring the dynamic cache
	Accessing dynamic cache PMI counters

	Enabling the dynamic cache service
	Dynamic cache service settings
	Configuring servlet caching
	Configuring portlet fragment caching
	Configuring portlet fragment caching with the wsadmin tool
	Configuring caching for Struts and Tiles applications
	Configuring dynamic cache disk offload
	Configuring Edge Side Include caching
	Configuring external cache groups

	Configuring cacheable objects with the cachespec.xml file
	Verifying the cacheable page
	Cachespec.xml file

	Configuring command caching
	Command class
	CacheableCommandImpl class
	Example: Caching a command object

	Configuring the Web services client cache
	Web services client cache

	Using the DistributedMap and DistributedObjectCache interfaces for the dynamic cache
	Object cache instance settings
	Object cache instance collection
	Invalidation listeners

	Disabling template-based invalidations during JSP reloads
	Using object cache instances
	Displaying cache information
	Cache monitor
	Tuning dynamic cache with the cache monitor

	Using servlet cache instances
	Servlet cache instance collection
	Servlet cache instance settings
	Using the DynamicContentProvider interface for dynamic cache

	Dynamic query
	Using EJB query
	EJB query language

	Using the dynamic query service
	Example: Dynamic query remote interface
	Example: Dynamic query local interface
	Dynamic query performance considerations
	Access intent implications for dynamic query
	Dynamic query API: prepareQuery() and executePlan() methods
	Comparison of the dynamic and deployment EJB query services

	Internationalization
	Task overview: Globalizing applications
	Globalization
	Language versions offered by this product
	Globalization: Resources for learning

	Task overview: Internationalizing interface strings (localizable-text API)
	Task overview: Internationalizing application components (internationalization service)
	Internationalization service

	Working with locales and character encodings
	Administering the internationalization service
	Enabling the internationalization service for servlets and enterprise beans
	Enabling the internationalization service for EJB clients
	Internationalization service settings
	Internationalization service errors

	Object pools
	Using object pools
	Object pool managers
	Object pool managers collection
	Object pool service settings
	Object pools: Resources for learning

	MBeans for object pool managers and object pools

	Scheduler
	Using schedulers
	Scheduler daemon
	Interoperating with schedulers
	Scheduler calendars
	Scheduler service settings

	Managing schedulers
	Configuring schedulers
	Creating the database for schedulers

	Startup beans
	Using startup beans
	Startup beans service settings

	Enabling startup beans in the administrative console

	Work area
	Task overview: Implementing shared work areas
	Overview of work area service

	Managing the work area service - the UserWorkArea partition
	Enabling the work area service - the UserWorkArea partition
	Managing the size of work areas

	Configuring work area partitions
	Work area partition service
	The Work area partition manager interface
	Example: Work area partition manager
	Work area partition collection
	Bidirectional propagation
	Accessing a user defined work area partition
	Propagating work area context over Web services

	Chapter 21. Overview and new features for monitoring
	Performance: Resources for learning

	Chapter 22. How do I monitor?
	Chapter 23. Monitoring end user response time
	Chapter 24. Monitoring overall system health
	Performance Monitoring Infrastructure (PMI)
	PMI architecture
	PMI and J2EE 1.4 Performance Data Framework
	PMI data classification
	PMI data organization
	Enterprise bean counters
	JDBC connection pool counters
	J2C connection pool counters
	Java virtual machine counters
	Object Request Broker counters
	Servlet session counters
	Transaction counters
	Thread pool counters
	Web application counters
	Workload Management counters
	System counters
	Dynamic cache counters
	Web services gateway counters
	Web services counters
	Alarm Manager counters
	Object Pool counters
	Scheduler counters
	High availability manager counters
	DCS stack counters
	PortletContainer PMI counters
	Service Integration Bus (SIB) and Messaging counters

	PMI data collection

	Custom PMI API
	Custom PMI implementation - an example

	Enabling PMI data collection
	Enabling PMI using the administrative console
	Performance Monitoring Infrastructure settings
	Custom monitoring level
	Performance Monitoring Infrastructure collection

	Enabling PMI using the wsadmin tool
	Enabling the Java virtual machine profiler data
	Java virtual machine profiling

	Developing your own monitoring applications
	PMI client interface (deprecated)
	Using PMI client to develop your monitoring application (deprecated)
	Performance Monitoring Infrastructure client (WebSphere Version 4.0)
	Example: Performance Monitoring Infrastructure client (Version 4.0)
	Example: Performance Monitoring Infrastructure client with new data structure

	Performance servlet (PerfServlet)
	PerfServlet input
	PerfServlet output

	Using the JMX interface to develop your own monitoring application
	Example: Administering Java Management Extension-based interface

	Developing PMI interfaces (Version 4.0) (deprecated)
	Compiling your monitoring applications
	Running your new monitoring applications
	Performance Monitoring Infrastructure client package
	Running your monitoring applications with security enabled

	Monitoring performance with Tivoli Performance Viewer (TPV)
	Why use Tivoli Performance Viewer?
	TPV topologies and performance impacts
	Viewing current performance activity
	Selecting a server and changing monitoring status
	Configuring TPV settings
	Viewing Data with the Tivoli Performance Viewer
	Viewing TPV summary reports
	Viewing PMI data with TPV

	Logging performance data with TPV
	Viewing Data Recorded by the TPV

	Third-party performance monitoring and management solutions

	Chapter 25. Monitoring application flow
	Why use request metrics?
	Example: Using request metrics
	Data you can collect with request metrics
	Getting performance data from request metrics
	Request metrics
	Prepare Servers for request metrics collection
	Components to be instrumented
	Trace level
	Standard logs
	Application Response Measurement (ARM) agent
	Specify ARM agent
	ARM transaction factory implementation class name
	Filters

	Application Response Measurement
	ARM application properties and transaction context data

	Isolating performance for specific types of requests
	Adding and removing request metrics filters
	Request metrics filters
	Request metrics filter settings
	Filter values collection
	Filter values settings

	Specifying how much data to collect
	Request metrics trace filters

	Regenerating the Web server plug-in configuration file
	Enabling and disabling logging
	Request metrics performance data

	Request metric extension
	Example: Using the correlation service interface

	Differences between Performance Monitoring Infrastructure and request metrics

	Chapter 26. Troubleshooting deployment
	Errors or problems deploying, installing, or promoting applications
	Troubleshooting testing and first time run problems
	Errors starting an application
	The application does not start or starts with errors
	A Web resource does not display
	Cannot uninstall an application or remove a node or application server

	Chapter 27. Troubleshooting administration
	Administration and administrative console troubleshooting
	Installation completes but the administrative console does not start
	Errors connecting to the administrative console from a browser
	When a single user that uses multiple instances of the Mozilla browser logs into the administrative console, the first user ID that logs into the administrative console is the current user.
	A user on Mozilla browser Version 1.4 selects a check box on a collection table, presses Enter, and receives an error.
	A user on Mozilla browser Version 1.4 enters an invalid ID or password, presses Enter, and receives an error message

	Web server plug-in troubleshooting tips
	The server process does not start or starts with errors
	The stopServer.sh hangs and creates a Java core dump (Red Hat Linux)
	Problems starting or using the wsadmin command
	Problems using command line tools
	Problems using tracing, logging or other troubleshooting features

	Appendix. Directory conventions
	Notices
	Trademarks and service marks

