
WebSphere® Application Server Network Deployment for i5/OS, Version 6.1

Tuning guide

���

Note

Before using this information, be sure to read the general information under “Notices” on page 123.

Compilation date: April 28, 2006

© Copyright International Business Machines Corporation 2006. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

How to send your comments . v

Chapter 1. Overview and new features for tuning performance 1

Tuning parameter hot list . 1

Chapter 2. How do I tune performance? . 3

Chapter 3. Planning for performance . 5

Application design consideration . 5

Chapter 4. Taking advantage of performance functions 9

Chapter 5. Obtaining advice from the advisors . 11

Why you want to use the performance advisors . 11

Performance advisor types and purposes . 12

Performance and Diagnostic Advisor . 13

Tivoli Performance Viewer advisor . 15

Using the Performance and Diagnostic Advisor . 15

Performance and Diagnostic Advisor configuration settings 16

Advice configuration settings . 18

Viewing the Performance and Diagnostic Advisor recommendations 19

Enabling the lightweight memory leak detection . 19

Generating and analyzing heap dump . 20

Using the performance advisor in Tivoli Performance Viewer 21

Performance advisor report in Tivoli Performance Viewer 22

Heap monitor . 23

Heap monitor default operation . 23

Activating the heap monitor . 24

Chapter 6. Tuning the application serving environment 25

Tuning parameter hot list . 25

Tuning TCP/IP buffer sizes . 26

Tuning Java virtual machines . 27

Tuning transport channel services . 29

Checking hardware configuration and settings . 33

Tuning operating systems . 34

Tuning i5/OS systems . 35

Tuning Web servers . 35

Tuning WebSphere applications . 36

Web applications . 37

EJB applications . 43

Web services . 46

Setting tuning properties of a messaging engine . 48

Messaging engine failover between v6 and v6.1 . 48

Tuning and problem solving for messaging engine data stores 49

Setting tuning properties for a mediation . 52

Enabling CMP entity beans and messaging engine data stores to share database connections . . . 53

Tuning service integration technologies . 55

Tuning the SIBWS . 58

Setting tuning properties for service integration . 65

Data access resources . 67

Security . 71

Object Request Broker . 96

© Copyright IBM Corp. 2006 iii

Learn about WebSphere programming extensions 100

Chapter 7. Troubleshooting performance . 117

Appendix. Directory conventions . 121

Notices . 123

Trademarks and service marks . 125

iv Tuning guide

How to send your comments

Your feedback is important in helping to provide the most accurate and highest quality information.

v To send comments on articles in the WebSphere Application Server Information Center

1. Display the article in your Web browser and scroll to the end of the article.

2. Click on the Feedback link at the bottom of the article, and a separate window containing an e-mail

form appears.

3. Fill out the e-mail form as instructed, and click on Submit feedback .

v To send comments on PDF books, you can e-mail your comments to: wasdoc@us.ibm.com or fax

them to 919-254-0206.

Be sure to include the document name and number, the WebSphere Application Server version you are

using, and, if applicable, the specific page, table, or figure number on which you are commenting.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information

in any way it believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 2006 v

vi Tuning guide

Chapter 1. Overview and new features for tuning performance

Use the links provided in this topic to learn about tuning applications and their environment.

New for administrators: Improved monitoring and performance tuning

A section of this topic describes what is new in the area of performance tuning.

Tuning parameter hot list

The following hot list contains recommendations that have improved performance or scalability, or both, for

many applications.

WebSphere Application Server provides several tunable parameters and options to match the application

server environment to the requirements of your application.

v Review the hardware and software requirements

Review the hardware and software requirements on the IBM WebSphere Application Server supported

hardware, software, and APIs Web site to get started.

v Install the latest WebSphere Application Server PTFs

The list of recommended updates is maintained on the Business solutions

v Check hardware configuration and settings

Check network connections to make sure that they are running at their highest speed. For more

information, see Chapter 6, “Tuning the application serving environment,” on page 25.

v Review your application design

You can track many performance problems back to the application design. Review the design to

determine if it causes performance problems.

v “Tuning i5/OS systems” on page 35

Operating system configuration plays a key role in performance. In many cases, adjustments to some

TCP/IP parameters might be necessary for your application.

v Set the minimum and maximum Java virtual machine (JVM) heap sizes

Many applications need a larger heap size for best performance.

v Use a type 2 JDBC driver for local data access and a type 4 (or pure Java) JDBC driver for

remote data access

In general, the type 2 JDBC driver is recommended. Use the link above to view a list of database

vendor-specific requirements, which can tell you if a type 4 JDBC driver is supported for your database.

See the Administering applications and their environment PDF for more information.

v Enable the pass by reference option

Use applications that can take advantage of the pass by reference option to avoid the cost of copying

parameters to the stack.

v Ensure that the transaction log is assigned to a fast disk

Some applications generate a high rate of writes to the WebSphere Application Server transaction log.

Locating the transaction log on a fast disk or disk array can improve response time

See the Administering applications and their environment PDF for more information.

v Tune related components, for example, database

In many cases, some other component, for example, a database, needs adjustments to achieve higher

throughput for your entire configuration.

For more information, see the Administering applications and their environment PDF for more

information.

© Copyright IBM Corp. 2006 1

http://www.ibm.com/support/docview.wss?rs=180&uid=swg27006921
http://www.ibm.com/support/docview.wss?rs=180&uid=swg27006921
http://publib.boulder.ibm.com/infocenter/iseries/v5r4/topic/rzahg/rzahgebusapp.htm

2 Tuning guide

Chapter 2. How do I tune performance?

Hold your cursor over the task icon () to see a description of the task. The task preview feature is

unavailable for Mozilla Web browsers.

 Tune the

application

serving

environment

Related

documentation

topics:

v Performance

Capabilities

Reference for

iSeries

v WebSphere

Application

Server

Performance

Tuning

Resources for

iSeries

Documentation

Obtain tuning

advice:

Performance

advisor

Documentation

Obtain tuning

advice: TPV

advisor

Documentation

Tune WebSphere

applications

Documentation

Pool database

connections

Documentation

Configure

caching

Documentation

Legend for ″How do I?...″ links

 Detailed steps Show me Tell me Guide me Teach me

Refer to the detailed

steps and reference

Watch a brief

multimedia

demonstration

View the presentation

for an overview

Be led through the

console pages

Perform the tutorial

with sample code

Approximate time:

Varies

Approximate time: 3

to 5 minutes

Approximate time:

10 minutes+

Approximate time:

1/2 hour+

Approximate time: 1

hour+

© Copyright IBM Corp. 2006 3

http://www-03.ibm.com/servers/eserver/iseries/perfmgmt/resource.html
http://www-03.ibm.com/servers/eserver/iseries/perfmgmt/resource.html
http://www-03.ibm.com/servers/eserver/iseries/perfmgmt/resource.html
http://www-03.ibm.com/servers/eserver/iseries/perfmgmt/resource.html
http://www-03.ibm.com/servers/eserver/iseries/perfmgmt/webjtune.html
http://www-03.ibm.com/servers/eserver/iseries/perfmgmt/webjtune.html
http://www-03.ibm.com/servers/eserver/iseries/perfmgmt/webjtune.html
http://www-03.ibm.com/servers/eserver/iseries/perfmgmt/webjtune.html
http://www-03.ibm.com/servers/eserver/iseries/perfmgmt/webjtune.html
http://www-03.ibm.com/servers/eserver/iseries/perfmgmt/webjtune.html
http://www-03.ibm.com/servers/eserver/iseries/perfmgmt/webjtune.html

4 Tuning guide

Chapter 3. Planning for performance

How well a Web site performs while receiving heavy user traffic is an essential factor in the overall

success of an organization. This section provides online resources that you can consult to ensure that

your site performs well under pressure.

v Consult the following Web resources for learning.

IBM Patterns for e-Business

 IBM Patterns for e-business is a group of reusable assets that can help speed the process of

developing Web-based applications. The patterns leverage the experience of IBM architects to

create solutions quickly, whether for a small local business or a large multinational enterprise.

Planning for availability in the enterprise

 Availability is an achievable service-level characteristic that every enterprise struggles with. The

worst case scenario is realized when load is underestimated or bandwidth is overloaded

because availability planning was not carefully conducted. Applying the information in this article

and the accompanying spreadsheet to your planning exercises can help you avoid such a

scenario.

Hardware configurations for WebSphere Application Server production environments

This article describes the most common production hardware configurations, and provides the

reasons for choosing each one. It begins with a single machine configuration, and then

proceeds with additional configurations that have higher fault tolerance, horizontal scaling, and a

separation of Web and enterprise bean servers.

v See the documentation for the product functionality to improve performance .

Application design consideration

This topic describes the architectural suggestions in design and how to tune applications.

Consult the Designing applications topic, which highlights Web sites and other ideas for finding best

practices for designing WebSphere applications, particularly in the realm of WebSphere extensions to the

Java 2 Platform, Enterprise Edition (J2EE) specification.

The Designing applications topic contains the architectural suggestions in design and the implementation

of applications. For existing applications, the suggestions might require changing the existing

implementations. Tuning the application server and resource parameters can have the greatest effect on

performance of the applications that are well designed.

best-practices: Use the following information as an architectural guide when implementing applications:

v Persistence

v Model-view-controller pattern

v Statelessness

v Caching

v Asynchronous considerations

v Third-party libraries

Persistence

Java 2 Platform, Enterprise Edition (J2EE) applications load, store, create, and remove data from relational

databases, a process commonly referred to as persistence. Most enterprise applications have significant

database access. The architecture and performance of the persistence layer is critical to the performance

of an application. Therefore, persistence is a very important area to consider when making architectural

© Copyright IBM Corp. 2006 5

http://www.ibm.com/developerworks/patterns/
http://www.ibm.com/developerworks/websphere/techjournal/0312_polozoff/polozoff.html
http://www-106.ibm.com/developerworks/websphere/library/techarticles/0212_vansickel/0212_vansickel.html

choices that require trade-offs related to performance. This guide recommends first focusing on a solution

that has clean architecture. The clean architecture considers data consistency, security, maintenance,

portability, and the performance of that solution. Although this approach might not yield the absolute peak

performance obtainable from manual coding a solution that ignores the mentioned qualities of service, this

approach can achieve the appropriate balance of data consistency, maintainability, portability, security, and

performance.

Multiple options are available in J2EE for persistence: Session beans using entity beans including

container-managed persistence (CMP) or bean-managed persistence (BMP), session beans using Java

Database Connectivity (JDBC), and Java beans using JDBC. For the reasons previously mentioned,

consider CMP entity persistence because it provides maximum security, maintenance, and portability. CMP

is also recommended for good performance. Refer to the Tune the EJB container section of the Tuning

application servers topic on tuning enterprise beans and more specifically, CMP.

If an application requires using enterprise beans not using EJB entities, the persistence mechanism

usually involves the JDBC API. Because JDBC requires manual coding, the Structured Query Language

(SQL) that runs against a database instance, it is critical to optimize the SQL statements that are used

within the application. Also, configure the database server to support the optimal performance of these

SQL statements. Finally, usage of specific JDBC APIs must be considered including prepared statements

and batching.

Regardless of which persistence mechanism is considered, use container-managed transactions where the

bean delegates management of transactions to the container. For applications that use JDBC, this is easily

achieved by using the session façade pattern, which wraps all JDBC functions with a stateless session

bean.

Finally, information about tuning the connection over which the EJB entity beans or JDBC communicates

can be found in the Tune the data sources section of the Tuning application servers topic.

Model-view-controller pattern

One of the standard J2EE programming architectures is the model-view-controller (MVC) architecture,

where a call to a controller servlet might include one or more child JavaServer Pages (JSP) files to

construct the view. The MVC pattern is a recommended pattern for application architecture. This pattern

requires distinct separation of the view (JSP files or presentation logic), the controller (servlets), and the

model (business logic). Using the MVC pattern enables optimization of the performance and scalability of

each layer separately.

Statelessness

Implementations that avoid storing the client user state scale and perform the best. Design

implementations to avoid storing state. If state storage is needed, ensure that the size of the state data

and the time that the state is stored are kept to the smallest possible values. Also, if state storage is

needed, consider the possibility of reconstructing the state if a failure occurs, instead of guaranteeing state

failover through replication.

Specific tuning of state affects HTTP session state, dynamic caching, and enterprise beans. Refer to the

follow tuning guides for tuning the size, replication, and timing of the state storage:

v “Session management tuning” on page 37

v “EJB Container tuning” on page 43

v “Tuning dynamic cache with the cache monitor” on page 105

Caching

Most J2EE application workloads have more read operations than write operations. Read operations

require passing a request through several topology levels that consist of a front-end Web server, the Web

6 Tuning guide

container of an application server, the EJB container of an application server, and a database. WebSphere

Application Server provides the ability to cache results at all levels of the network topology and J2EE

programming model that include Web services.

Application designers must consider caching when the application architecture is designed because

caching integrates at most levels of the programming model. Caching is another reason to enforce the

MVC pattern in applications. Combining caching and MVC can provide caching independent of the

presentation technology and in cases where there is no presentation to the clients of the application.

Network designers must consider caching when network planning is performed because caching also

integrates at most levels of the network topology. For applications that are available on the public Internet,

network designers might want to consider Edge Side Include (ESI) caching when WebSphere Application

Server caching extends into the public Internet. Network caching services are available in the proxy server

for WebSphere Application Server, WebSphere Edge Component Caching Proxy, and the WebSphere

plug-in.

Asynchronous considerations

J2EE workloads typically consist of two types of operations. You must perform the first type of operation to

respond to a system request. You can perform the second type of operation asynchronously after the user

request that initiated the operation is fulfilled.

An example of this difference is an application that enables you to submit a purchase order, enables you

to continue while the system validates the order, queries remote systems, and in the future informs you of

the purchase order status. This example can be implemented synchronously with the client waiting for the

response. The synchronous implementation requires application server resources and you wait until the

entire operations complete. If the process enables you to continue, while the result is computed

asynchronously, the application server can schedule the processing to occur when it is optimal in relation

to other requests. The notification to you can be triggered through e-mail or some other interface within the

application.

Because the asynchronous approach supports optimal scheduling of workloads and minimal server

resource, consider asynchronous architectures. WebSphere Application Server supports asynchronous

programming through J2EE Java Message Service (JMS) and message-driven beans (MDB) as well as

asynchronous beans that are explained in the Tuning Java Message Service and Tuning MDB topics.

Third-party libraries

Verify that all the libraries that applications use are also designed for server-side performance. Some

libraries are designed to work well within a client application and fail to consider server-side performance

concerns, for example, memory utilization, synchronization, and pooling. It is suggested that all libraries

that are not developed as part of an application undergo performance testing using the same test

methodologies as used for the application.

Additional reference:

IBM WebSphere Developer Technical Journal: The top 10 (more or less) J2EE best practices

Improve performance in your XML applications, Part 2

Chapter 3. Planning for performance 7

http://www-106.ibm.com/developerworks/websphere/techjournal/0405_brown/0405_brown.html
http://www-106.ibm.com/developerworks/xml/library/x-perfap2.html

8 Tuning guide

Chapter 4. Taking advantage of performance functions

This topic highlights a few main ways you can improve performance through a combination of product

features and application development considerations.

v Use this product functionality to improve performance.

Balancing workloads with clusters

 Clusters are sets of servers that are managed together and participate in workload

management. The servers that are members of a cluster can be on different host machines, as

opposed to the servers that are part of the same node and must be located on the same host

machine. A cell can have no clusters, one cluster, or multiple clusters.

Task overview: Using the dynamic cache service to improve performance

 The dynamic cache service improves performance by caching the output of servlets,

commands, and JavaServer Pages (JSP) files. Dynamic caching features include cache

replication among clusters, cache disk offload, Edge-side include caching, and external caching,

which is the ability to control caches outside of the application server, such as that of your Web

server.

v Ensure your applications perform well.

Details are available in the following topics:

– “Application design consideration” on page 5 (architectural suggestions)

– Designing applications (coding best practices)

© Copyright IBM Corp. 2006 9

10 Tuning guide

Chapter 5. Obtaining advice from the advisors

Advisors provide a variety of recommendations that help improve the performance of your application

server.

The advisors provide helpful performance as well as diagnostic advice about the state of the application

server.

Tuning WebSphere Application Server is a critical part of getting the best performance from your Web site.

However, tuning WebSphere Application Server involves analyzing performance data and determining the

optimal server configuration. This determination requires considerable knowledge about the various

components in the application server and their performance characteristics. The performance advisors

encapsulate this knowledge, analyze the performance data, and provide configuration recommendations to

improve the application server performance. Therefore, the performance advisors provide a starting point

to the application server tuning process and help you without requiring that you become an expert.

The Runtime Performance Advisor is extended to also provide diagnostic advice and is now called the

Performance and Diagnostic Advisor. Diagnostic advice provides useful information regarding the state of

the application server. Diagnostic advice is especially useful when an application is not functioning as

expected, or simply as a means of monitoring the health of application server.

v Decide which performance advisor is right for the purpose, Performance and Diagnostic Advisor or Tivoli

Performance Viewer advisor.

v Use the chosen advisor to periodically check for inefficient settings, and to view recommendations.

v Analyze Performance Monitoring Infrastructure data with performance advisors.

Additionally, you can use the heap monitor feature to monitor the Java Virtual Machine (JVM) heap size of

a WebSphere Application Server profile in comparison to pool size. The feature is available for new

WebSphere Application Server profiles or profiles that are created after you update to the WebSphere

Application Server. For existing WebSphere Application Server profiles, there is a script available to add

the feature. See The heapMonitor script for more information.

Why you want to use the performance advisors

The advisors analyze the Performance Monitoring Infrastructure (PMI) data of WebSphere Application

Server using general performance principles, best practices, and WebSphere Application Server-specific

rules for tuning. The advisors that are based on this information provide advice on how to set some of

your configuration parameters to better tune WebSphere Application Server.

The advisors provide a variety of advice on the following application server resources:

v Object Request Broker service thread pools

v Web container thread pools

v Connection pool size

v Persisted session size and time

v Data source statement cache size

v Session cache size

v Dynamic cache size

v Java virtual machine heap size

v DB2 Performance Configuration wizard

For example, consider the data source statement cache. It optimizes the processing of prepared

statements and callable statements by caching those statements that are not used in an active connection.

(Both statements are SQL statements that essentially run repeatable tasks without the costs of repeated

© Copyright IBM Corp. 2006 11

compilation.) If the cache is full, an old entry in the cache is discarded to make room for the new one. The

best performance is generally obtained when the cache is large enough to hold all of the statements that

are used in the application. The PMI counter, prepared statement cache discards, indicates the number

of statements that are discarded from the cache. The performance advisors check this counter and provide

recommendations to minimize the cache discards.

Using another example with pools in the application server, the idea behind pooling is to use an existing

thread or connection from the pool instead of creating a new instance for each request. Because each

thread or connection in the pool consumes memory and increases the context-switching cost, the pool size

is an important configuration parameter. A pool that is too large can hurt performance as much as a pool

that is too small. The performance advisors use PMI information about current pool usage, minimum or

maximum pool size, and the application server CPU utilization to recommend efficient values for the pool

sizes.

The advisors can also issue diagnostic advice to help in problem determination and health monitoring. For

example, if your application requires more memory than is available, the diagnostic adviser tells you to

increase the size or the heap for application server.

Performance advisor types and purposes

Two performance advisors are available: the Performance and Diagnostic Advisor and the performance

advisor in Tivoli Performance Viewer. The Performance and Diagnostic Advisor runs in the Java virtual

machine (JVM) process of application server; therefore, it does not provide expensive advice. In a

stand-alone application server environment, the performance advisor in Tivoli Performance Viewer runs

within the application server JVM. In a Network Deployment environment, the performance advisor in Tivoli

Performance Viewer runs within the JVM of the node agent and can provide advice on resources that are

more expensive to monitor and analyze. The Tivoli Performance Viewer advisor requires that you enable

performance modules, counters, or both.

The following chart shows the differences between the Performance and Diagnostic Advisor and the Tivoli

Performance Viewer advisor:

 Performance and Diagnostic Advisor Tivoli Performance Viewer advisor

Start location Application server Tivoli Performance Viewer client

Invocation of tool Administrative console Tivoli Performance Viewer

Output v The SystemOut.log file

v The administrative console

v JMX notifications

Tivoli Performance Viewer in the

administrative console

Frequency of operation Configurable When you select refresh in the Tivoli

Performance Viewer administrative

console

12 Tuning guide

Types of advice Performance advice:

v Object Request Broker (ORB) service

thread pools

v Web container thread pools

v Connection pool size

v Persisted session size and time

v Prepared statement cache size

v Session cache size

v Memory leak detection

Diagnostic advice:

v Connection factory diagnostics

v Data source diagnostic

Performance advice:

v ORB service thread pools

v Web container thread pools

v Connection pool size

v Persisted session size and time

v Prepared statement cache size

v Session cache size

v Dynamic cache size

v Java virtual machine (JVM) heap size

v DB2 Performance Configuration wizard

Performance and Diagnostic Advisor

Use this topic to understand the functions of the Performance and Diagnostic Advisor.

The Performance and Diagnostic Advisor provides advice to help tune systems for optimal performance

and is configured using the WebSphere Application Server administrative console or the wsadmin tool.

Running in the Java virtual machine (JVM) of the application server, the Performance and Diagnostic

Advisor periodically checks for inefficient settings and issues recommendations as standard product

warning messages. These recommendations are displayed both as warnings in the administrative console

under Runtime Messages in the WebSphere Application Server Status panel and as text in the application

server SystemOut.log file. Enabling the Performance and Diagnostic Advisor has minimal system

performance impact.

The Performance and Diagnostic Advisor provides performance advice and diagnostic advice to help tune

systems for optimal performance, and also to help understand the health of the system. It is configured

using the WebSphere Application Server administrative console or the wsadmin tool. Running in the Java

virtual machine (JVM) of the application server, the Performance and Diagnostic Advisor periodically

checks for inefficient settings and issues recommendations as standard product warning messages. These

recommendations are displayed as warnings in the administrative console under Runtime Messages in the

WebSphere Application Server Status panel, as text in the application server SystemOut.log file, and as

Java Management Extensions (JMX) notifications. Enabling the Performance and Diagnostic Advisor has

minimal system performance impact.

From WebSphere Application Server, Version 6.0.2, you can use the Performance and Diagnostic Advisor

to enable the lightweight memory leak detection, which is designed to provide early detection of memory

problems in test and production environments.

The advice that the Performance and Diagnostic Advisor gives is all on the server level. The only

difference when running in a Network Deployment environment is that you might receive contradictory

advice on resources that are declared at the node or cell level and used at the server level.

For example, two sets of advice are given if a data source is declared at the node level to have a

connection pool size of {10,50} and is used by two servers (server1 and server2). If server1 uses only two

connections and server2 uses all fifty connections during peak load, the optimal connection pool size is

different for the two servers. Therefore, the Performance and Diagnostic Advisor gives two sets of advice

(one for server1 and another for server2). The data source is declared at the node level and you must

make your decisions appropriately by setting one size that works for both, or by declaring two different

data sources for each server with the appropriate level.

Read “Using the Performance and Diagnostic Advisor” on page 15 for startup and configuration steps.

Chapter 5. Obtaining advice from the advisors 13

Diagnostic alerts

In WebSphere Application Server Version 6.1 the Performance and Diagnostic Advisors are extended to

provide more diagnostic alerts to help common troubleshoot problems.

Several alerts are made available to monitor connection factory and data sources behavior. Some of these

alerts are straightforward and easy to comprehend. Others are much more involved and are intended for

use by IBM support only.

ConnectionErrorOccured diagnostic alert

When a resource adapter or data source encounters a problem with connections such that the connection

might no longer be usable, it informs the connection manager that a connection error occurred. This

causes the destruction of the individual connection or a pool purge, which is the destruction of all

connections in the pool, depending on the pool purge policy configuration setting. An alert is sent,

indicating a potential problem with the back-end if an abnormally high number of unusable connections are

detected.

Connection low-percent efficiency diagnostic alert

If the percentage of time that a connection is used versus held for any individual connections drops below

a threshold, an alert is sent with a call stack.

Pool low-percent efficiency diagnostic alert

If the average time that a connection is held versus used for the all connections in the pool drops below a

threshold, an alert is sent.

Surge mode entered or exited diagnostic alert

When surge mode is configured, an alert is sent whenever surge mode engages or disengages. See the

Connection pool advanced settings surge mode documentation.

Stuck connection block mode entered or exited diagnostic alert

When stuck connection detection is configured, an alert is sent whenever stuck connection blocking starts

or stops. See the Connection pool advanced settings stuck connection documentation.

Local transaction containment (LTC) nesting threshold exceeded diagnostic alert

For LTC definition, see the Local transaction containment (LTC) and Transaction type and connection

behavior topics. Also, see the Factors that Determine Sharing section in the Unshareable and shareable

connections topic, and Default behavior of managed connections in WebSphere Application Server topic.

If a high number of LTCs are started on a thread before completing, an alert is raised. This alert is useful

in debugging some situations where the connection pool is unexpectedly running out of connections due to

multiple nested LTCs holding onto multiple shareable connections.

Thread maximum connections exceeded diagnostic alert

When one or more LTCs on a thread ties too many managed connections, or poolable connections for

data sources, an alert is issued.

Serial reuse violation diagnostic alert

14 Tuning guide

http://www-128.ibm.com/developerworks/websphere/library/techarticles/0506_johnsen/0506_johnsen.html

For information on what serial reuse is, see the Transaction type and connection behavior topic. Some

legitimate scenarios exist, where a serial reuse violation is appropriate, but in most cases this violation is

not intended and might lead to data integrity problems.

If this alert is enabled, any time a serial reuse violation occurs within an LTC, an alert is sent.

Tivoli Performance Viewer advisor

The performance advisor in Tivoli Performance Viewer (TPV) provides advice to help tune systems for

optimal performance and provide recommendations on inefficient settings by using collected Performance

Monitoring Infrastructure (PMI) data. Obtain the advice by selecting the performance advisor in TPV.

Using the Performance and Diagnostic Advisor

The advisors analyze the Performance Monitoring Infrastructure (PMI) data of WebSphere Application

Server using general performance principles, best practices, and WebSphere Application Server-specific

rules for tuning.

 1. Ensure that PMI is enabled, which is default. If PMI is disabled, consult theEnabling PMI using the

administrative console topic. To obtain advice, you must first enable PMI through the administrative

console and restart the server. The Performance and Diagnostic Advisor enables the appropriate

monitoring counter levels for all enabled advice when PMI is enabled. If specific counters exist that

are not wanted, or when disabling the Performance and Diagnostic Advisor, you might want to disable

PMI or the counters that the Performance and Diagnostic Advisor enabled.

 2. Click Servers > Application servers in the administrative console navigation tree.

 3. Click server_name > Performance and Diagnostic Advisor Configuration.

 4. Under the Configuration tab, specify the number of processors on the server. This setting is critical

to ensure accurate advice for the specific configuration of the system.

 5. Select the Calculation Interval. PMI data is taken over time and averaged to provide advice. The

calculation interval specifies the length of time over which data is taken for this advice. Therefore,

details within the advice messages display as averages over this interval.

 6. Select the Maximum Warning Sequence. The maximum warning sequence refers to the number of

consecutive warnings that are issued before the threshold is updated. For example, if the maximum

warning sequence is set to 3, then the advisor sends only three warnings, to indicate that the

prepared statement cache is overflowing. After three warnings, a new alert is issued only if the rate of

discards exceeds the new threshold setting.

 7. Specify Minimum CPU for Working System. The minimum central processing unit (CPU) for a

working system refers to the CPU level that indicates a application server is under production load.

Or, if you want to tune your application server for peak production loads that range from 50-90% CPU

utilization, set this value to 50. If the CPU is below this value, some diagnostic and performance

advice are still issued. For example, regardless of the CPU level if you are discarding prepared

statements at a high rate, you are notified.

 8. Specify CPU Saturated. The CPU saturated level indicates at what level the CPU is considered fully

utilized. The level determines when concurrency rules no longer increase thread pools or other

resources, even if they are fully utilized.

 9. Click Apply.

10. Click Save.

11. Click the Runtime tab.

12. Click Restart. Select Restart on the Runtime tab to reinitialize the Performance and Diagnostic

Advisor using the last configuration information that is saved to disk.

This action also resets the state of the Performance and Diagnostic Advisor. For example, the current

warning count is reset to zero (0) for each message.

Chapter 5. Obtaining advice from the advisors 15

13. Simulate a production level load. If you use the Performance and Diagnostic Advisor in a test

environment, do any other tuning for performance, or simulate a realistic production load for your

application. The application must run this load without errors. This simulation includes numbers of

concurrent users typical of peak periods, and drives system resources, for example, CPU and

memory, to the levels that are expected in production. The Performance and Diagnostic Advisor

provides advice when CPU utilization exceeds a sufficiently high level only. For a list of IBM business

partners that provide tools to drive this type of load, see the topic, Performance: Resources for

learning in the subsection of Monitoring performance with third-party tools.

14. Select the check box to enable the Performance and Diagnostic Advisor.

Tip: To achieve the best results for performance tuning, enable the Performance and Diagnostic

Advisor when a stable production-level load is applied.

15. Click OK.

16. Select Runtime Warnings in the administrative console under the Runtime Messages in the Status

panel or look in the SystemOut.log file, which is located in the following directory:

profile_root/logs/server_name

Some messages are not issued immediately.

17. Update the product configuration for improved performance, based on advice. Although the

performance advisors attempt to distinguish between loaded and idle conditions, misleading advice

might be issued if the advisor is enabled while the system is ramping up or down. This result is

especially likely when running short tests. Although the advice helps in most configurations, there

might be situations where the advice hinders performance. Because of these conditions, advice is not

guaranteed. Therefore, test the environment with the updated configuration to ensure that it functions

and performs better than the previous configuration.

Over time, the advisor might issue differing advice. The differing advice is due to load fluctuations and

the runtime state. When differing advice is received, you need to look at all advice and the time

period over which it is issued. Advice is taken during the time that most closely represents the peak

production load.

Performance tuning is an iterative process. After applying advice, simulate a production load, update

the configuration that is based on the advice, and retest for improved performance. This procedure is

continued until optimal performance is achieved.

You can enable and disable advice in the Advice Configuration panel. Some advice applies only to certain

configurations, and can be enabled only for those configurations. For example, unbounded Object Request

Broker (ORB) service thread pool advice is only relevant when the ORB service thread pool is unbounded,

and can only be enabled when the ORB thread pool is unbounded. For more information on Advice

configuration, see the topic, “Advice configuration settings” on page 18.

Performance and Diagnostic Advisor configuration settings

Use this page to specify settings for the Performance and Diagnostic Advisor.

To view this administrative page, click Servers > Application Servers > server_name > Performance

and Diagnostic Advisor Configuration under the Performance section.

Enable Performance and Diagnostic Advisor Framework

Specifies whether the Performance and Diagnostic Advisor runs on the server startup.

The Performance and Diagnostic Advisor requires that the Performance Monitoring Infrastructure (PMI) be

enabled. It does not require that individual counters be enabled. When a counter that is needed by the

Performance and Diagnostic Advisor or is not enabled, the Performance and Diagnostic Advisor enables it

automatically. When disabling the Performance and Diagnostic Advisor, you might want to disable

Performance Monitoring Infrastructure (PMI) or the counters that Performance and Diagnostic Advisor

enabled. The following counters might be enabled by the Performance and Diagnostic Advisor:

v ThreadPools (module)

16 Tuning guide

– Web Container (module)

- Pool Size

- Active Threads
– Object Request Broker (module)

- Pool Size

- Active Threads
v JDBC Connection Pools (module)

– Pool Size

– Percent used

– Prepared Statement Discards
v Servlet Session Manager (module)

– External Read Size

– External Write Size

– External Read Time

– External Write Time

– No Room For New Session
v System Data (module)

– CPU Utilization

– Free Memory

Enable automatic heap dump collection

Specifies whether the Performance and Diagnostic Advisor automatically generates heap dumps for post

analysis when suspicious memory activity is detected.

Calculation Interval

Specifies the length of time over which data is taken for this advice.

PMI data is taken over an interval of time and averaged to provide advice. The calculation interval

specifies the length of time over which data is taken for this advice. Details within the advice messages

display as averages over this interval. The default value is automatically set to four minutes.

Maximum warning sequence

The maximum warning sequence refers to the number of consecutive warnings that are issued before the

threshold is relaxed.

For example, if the maximum warning sequence is set to 3, the advisor only sends three warnings to

indicate that the prepared statement cache is overflowing. After three warnings, a new alert is only issued

if the rate of discards exceeds the new threshold setting. The default value is automatically set to one.

Number of processors

Specifies the number of processors on the server.

This setting is helpful to ensure accurate advice for the specific configuration of the system. Depending

your configuration and system, there may be only one processor utilized. The default value is automatically

set to two.

Minimum CPU For Working System

The minimum CPU for working system refers to the point at which concurrency rules do not attempt to free

resources in thread pools.

There is a set of concurrency alerts to warn you if all threads in a pool are busy. This can affect

performance, and it may be necessary for you to increase them. The CPU bounds are a mechanism to

help determine when an application server is active and tunable.

The Minimum CPU for working system sets a lower limit as to when you should consider adjusting thread

pools. For example, say you set this value to 50%. If the CPU is less than 50%, concurrency rules do not

Chapter 5. Obtaining advice from the advisors 17

try to free up resources by decreasing pools to get rid of unused threads. That is, if the pool size is 50-100

and only 20 threads are consistently used then concurrency rules would like to decrease the minimum

pool size to 20.

CPU Saturated

The CPU Saturated setting determines when the CPU is deemed to be saturated.

There is a set of concurrency alerts to warn you if all threads in a pool are busy. This can affect

performance, and it may be necessary for you to increase them. The CPU bounds are a mechanism to

help determine when an application server is active and tunable.

The CPU saturated setting determines when the CPU has reached its saturation point. For example, if this

is set to 95%, when the CPU is greater than 95% the concurrency rules do not try to improve things, that

is, increase the size of a thread pool.

Advice configuration settings

Use this page to select the advice you wish to enable or disable.

To view this administrative page, click Servers > Application Servers > server_name . Under the

Performance section, click Performance and Diagnostic Advisor Configuration > Performance and

Diagnostic Advice Configuration.

Advice name

Specifies the advice that you can enable or disable.

Advice applied to component

Specifies the WebSphere Application Server component to which the advice applies.

Advice type

Categorizes the primary indent of a piece of Advice.

Use Advice type for grouping, and then enabling or disabling sets of advice that is based upon your

purpose. Advice has the following types:

v Performance: Performance advice provides tuning recommendations, or identifies problems with your

configuration from a performance perspective.

v Diagnostic: Diagnostic advice provide automated logic and analysis relating to problem identification and

analysis. These types advice are usually issued when unexpected circumstances are encountered by

the application server.

Performance impact

Generalizes the performance overhead that an alert might incur.

The performance impact of a particular piece of advice is highly dependant upon the scenario being run

and upon the conditions meet. The performance categorization of alerts is based upon worst case

scenario measurements. The performance categorizations are:

v Low: Advice has minimal performance overhead. Advice might be run in test and production

environments. Cumulative performance overhead is within run to run variance when all advice of this

type is enabled.

v Medium: Advice has measurable but low performance overhead. Advice might be run within test

environments, and might be run within production environments if deemed necessary. Cumulative

performance overhead is less than 4% when all advice of this type is enabled.

v High: Advice impact is high or unknown. Advice might be run during problem determination tests and

functional tests. It is not run in production simulation or production environments unless deemed

necessary. Cumulative performance overhead might be significant when all advice of this type is

enabled.

18 Tuning guide

Advice status

Specifies whether the advice is stopped, started, or unavailable.

The advice status has one of three values: Started, Stopped or Unavailable.

v Started: The advice is enabled.

v Stopped: The advice is not enabled.

v Unavailable: The advice does not apply to the current configuration, for example, persisted session size

advice in a configuration without persistent sessions.

Viewing the Performance and Diagnostic Advisor recommendations

Runtime Performance Advisor uses Performance Monitoring Infrastructure (PMI) data to provide

recommendations for performance tuning.

The Performance and Diagnostic Advisor uses Performance Monitoring Infrastructure (PMI) data to provide

recommendations for performance tuning. Running in the Java virtual machine (JVM) of the application

server, this advisor periodically checks for inefficient settings, and issues recommendations as standard

product warning messages.

The Performance and Diagnostic Advisor recommendations are displayed in two locations:

1. The WebSphere Application Server SystemOut.log log file.

2. The Runtime Messages panel in the administrative console. To view this administrative page, click

Troubleshooting > Runtime Messages > Runtime Warning.

The following log file is a sample output of advice on the SystemOut.log file:

[4/2/04 15:50:26:406 EST] 6a83e321 TraceResponse W CWTUN0202W:

Increasing the Web Container thread pool Maximum Size to 48

might improve performance.

Additional explanatory data follows.

Average number of threads: 48.

Configured maximum pool size: 2.

This alert has been issued 1 time(s) in a row.

The threshold will be updated to reduce the

overhead of the analysis.

Enabling the lightweight memory leak detection

Use this task to enable the lightweight memory leak detection using the Performance and Diagnostic

Advisor.

If you have a memory leak and want to confirm the leak, or you want to automatically generate heap

dumps on Java virtual machines (JVM) in WebSphere Application Server, consider changing your

minimum and maximum heap sizes to be equal. This change provides the memory leak detection more

time for reliable diagnosis.

To enable the lightweight memory leak detection using the Performance and Diagnostic Advisor, perform

the following steps in the administrative console:

1. Click Servers > Application servers in the administrative console navigation tree.

2. Click server_name > Performance and Diagnostic Advisor Configuration.

3. Click the Runtime tab.

4. Select the check box to enable the Performance and Diagnostic Advisor.

5. Click OK.

Chapter 5. Obtaining advice from the advisors 19

6. From the Runtime or Configuration tab of Performance and Diagnostic Advisor, click Performance and

Diagnostic Advice configuration.

7. Enable the memory leak detection advice and disable any other unwanted advice.

The memory leak detection advice is enabled.

Important: To achieve the best results for performance tuning, enable the Performance and Diagnostic

Advisor when a stable production level load is running.

You can monitor any notifications of memory leaks by checking the SystemOut.log file or Runtime

Messages. For more information, see the “Viewing the Performance and Diagnostic Advisor

recommendations” on page 19 topic.

Lightweight memory leak detection

This topic describes memory leaks in Java applications and introduces lightweight memory leak detection,

a new function available in WebSphere Application Server Version 6.0.2 and above.

Memory leaks in Java applications

Although a Java application has a built-in garbage collection mechanism, which frees the programmer from

any explicit object deallocation responsibilities, memory leaks are still common in Java applications.

Memory leaks occur in Java applications when unintentional references are made to unused objects. This

occurrence prevents Java garbage collection from freeing memory.

The term memory leak is overused; a memory leak refers to a memory misuse or mismanagement. Old

unused data structures might have outstanding references but are never garbage collected. A data

structure might have unbounded growth or there might not be enough memory that is allocated to

efficiently run a set of applications.

Lightweight memory leak detection in WebSphere Application Server

Most existing memory leak technologies are based upon the idea that you know that you have a memory

leak and want to find it. Because of these analysis requirements, these technologies have significant

performance burdens and are not designed for use as a detection mechanism in production. This limitation

means that memory leaks are generally not detected until the problem is critical; the application passes all

system tests and is put in production, but it crashes and nobody knows why.

WebSphere Application Server has implemented a lightweight memory leak detection mechanism that runs

within the WebSphere Performance and Diagnostic Advisor framework. This mechanism is designed to

provide early detection of memory problems in test and production environments. This framework is not

designed to provide analysis of the source of the problem, but rather to provide notification and help

generating the information that is required to use analysis tools. The mechanism only detects memory

leaks in the Java heap and does not detect native leaks.

The lightweight memory leak detection in WebSphere Application Server does not require any additional

agents. The detection relies on algorithms that are based on information that is available from the

Performance Monitoring Infrastructure service and has minimal performance overhead.

Generating and analyzing heap dump

Use this task to generate and analyze heap dump on i5 operating systems.

Although heap dumps are only generated in response to a detected memory leak, you must understand

that generating heap dumps can have a severe performance impact on WebSphere Application Server for

several minutes.

20 Tuning guide

To help you analyze memory leak problems when memory leak detection occurs, use the Heap Analysis

Tools for Java™. Use the Heap Analysis Tools component (also known as Heap Analyzer) to perform Java

application heap analysis and object create profiling (size and identification) over time. Heap Analyzer

includes information about:

v Java virtual machine (JVM) heap growth or size

v The objects being created that include type of object, count and object size, object heap size

v The application ″Heap Footprint″ for memory sizing and performance considerations

v Includes a call stack for every snapshot when running in profile mode so objects created can be

correlated to functions in the application.

The Heap Analyzer tool is a component of the iDoctor for iSeries suite of performance monitoring tools.

Use the heap monitor feature to monitor the JVM heap size of a WebSphere Application Server profile in

comparison to pool size.

Using the performance advisor in Tivoli Performance Viewer

The performance advisor in Tivoli Performance Viewer (TPV) provides advice to help tune systems for

optimal performance and provides recommendations on inefficient settings by using the collected

Performance Monitoring Infrastructure (PMI) data.

Obtain advice by clicking Performance advisor in TPV. The performance advisor in TPV provides more

extensive advice than the “Performance and Diagnostic Advisor” on page 13. For example, TPV provides

advice on setting the dynamic cache size, setting the Java virtual machine (JVM) heap size and using the

DB2 Performance Configuration wizard.

1. Enable data collection and set the PMI monitoring level to Extended. The monitoring levels that

determine which data counters are enabled can be set dynamically, without restarting the server.

These monitoring levels and the data selected determine the type of advice you obtain. The

performance advisor in TPV uses the extended monitoring level; however, the performance advisor in

TPV can use a few of the more expensive counters (to provide additional advice) and provide advice

on which counters can be enabled.

For example, the advice pertaining to session size needs the PMI statistic set to All. Or, you can use

the PMI Custom Monitoring Level to enable the Servlet Session Manager SessionObjectSize counter.

The monitoring of the SessionSize PMI counter is expensive, and is not in the Extended PMI statistic

set. Complete this action in one of the following ways:

a. Performance Monitoring Infrastructure settings.

b. Enabling Performance Monitoring Infrastructure using the wsadmin tool.

2. In the administrative console, click Monitoring and Tuning > Performance Viewer > Current

activity.

3. Simulate a production level load. Simulate a realistic production load for your application, if you use the

performance advisor in a test environment, or do any other performance tuning. The application must

run this load without errors. This simulation includes numbers of concurrent users typical of peak

periods, and drives system resources, for example, CPU and memory to the levels that are expected

in production. The performance advisor only provides advice when CPU utilization exceeds a

sufficiently high level. For a list of IBM business partners providing tools to drive this type of load, see

the article, Performance: Resources for learning in the subsection of Monitoring performance with third

party tools.

4. Log performance data with TPV.

5. Clicking Refresh on top of the table of advice causes the advisor to recalculate the advice based on

the current data in the buffer.

6. Tuning advice displays when the Advisor icon is chosen in the TPV Performance Advisor. Double-click

an individual message for details. Because PMI data is taken over an interval of time and averaged to

provide advice, details within the advice message display as averages.

Chapter 5. Obtaining advice from the advisors 21

https://www-912.ibm.com/i_dir/idoctor.nsf/jv.html
https://www-912.ibm.com/i_dir/idoctor.nsf/jv.html
https://www-912.ibm.com/i_dir/iDoctor.nsf

Note: If the Refresh Rate is adjusted, the Buffer Size must also be adjusted to enable sufficient data

to be collected for performing average calculations. Currently 5 minutes of data is required.

Hence, the following guidelines intend to help you use the Tivoli Performance Advisor:

a. You cannot have a Refresh Rate of more than 300 seconds.

b. RefreshRate * BufferSize > 300 seconds. Buffer Size * Refresh Rate is the amount of PMI

data available in memory and it must be greater than 300 seconds.

c. For the Tivoli Performance Advisor to work properly with TPV logs, the logs must be at least

300 seconds of duration.

For more information about configuring user and logging settings of TPV, refer to the

Configuring TPV settings article.

7. Update the product configuration for improved performance, based on advice. Because Tivoli

Performance Viewer refreshes advice at a single instant in time, take the advice from the peak load

time. Although the performance advisors attempt to distinguish between loaded and idle conditions,

misleading advice might be issued if the advisor is enabled while the system is ramping up or down.

This result is especially likely when running short tests. Although the advice helps in most

configurations, there might be situations where the advice hinders performance. Because of these

conditions, advice is not guaranteed. Therefore, test the environment with the updated configuration to

ensure it functions and performs well.

Over a period of time the advisor might issue differing advice. The differing advice is due to load

fluctuations and run-time state. When differing advice is received, you need to look at all advice and

the time period over which it was issued. You must take advice during the time that most closely

represents the peak production load.

Performance tuning is an iterative process. After applying advice, simulate a production load, update

the configuration that is based on the advice, and retest for improved performance. This procedure is

continued until optimal performance is achieved.

Performance advisor report in Tivoli Performance Viewer

View recommendations and data from the performance advisor in Tivoli Performance Viewer (TPV) by

clicking the Advisor link in TPV for a server.

For more information on how to use the performance advisor in TPV, see the article, Using the

performance advisor in Tivoli Performance Viewer.

Message

Specifies recommendations for performance tuning.

Click the message to obtain more details.

Performance data in the upper panel

Displays a summary of performance data for WebSphere Application Server. Data here corresponds to the

same period that recommendations were provided for. However, recommendations might use a different

set of data points during analysis than the set that is displayed by the summary page.

The first table represents the number of requests per second and the response time in milliseconds for

both the Web and Enterprise JavaBeans containers.

The pie graph displays the CPU activity as percentage busy and idle.

The second table displays the average thread activity for the Web container and Object Request Broker

(ORB) thread pools, and the average database connection activity for connection pools. The activity is

expressed as the number of threads or connections busy and idle.

22 Tuning guide

Heap monitor

You can use the heap monitor feature to monitor the Java Virtual Machine (JVM) heap size of a

WebSphere Application Server profile in comparison to pool size.

The feature is available for new WebSphere Application Server profiles or profiles that are created.

For existing WebSphere Application Server profiles, there is a script available to add the feature. See the

Using the administrative clients PDF for more information.

Heap monitor default operation

The heap monitor follows default operation behavior as described in this file.

An active heap monitor typically sends a message to the QSYSOPR message queue when the

WebSphere Application Server profile starts. For example, the Display Message command (DSPMSG

QSYSOPR) displays the following message:

HEAP MONITOR STARTED FOR 012500/QEJBSVR/SERVER1 IN SUBSYSTEM QWAS61 IN POOL

 *BASE POOL ID=2 POOLSIZE(B)=1687994368 RESERVED(B)=778240 HEAP

 TOTAL(B)=202276864 FREE(B)=67037600 USEDHEAP=135239264

 OS400.GC.HEAP.SIZE.MAX(KB) =240000000

In default operation, a similar message displays ENDED instead of STARTED when the WebSphere

Application Server profile is ended. For example:

HEAP MONITOR ENDED FOR 012500/QEJBSVR/SERVER1 IN SUBSYSTEM

 QWAS61 IN POOL *BASE POOL ID=2 POOLSIZE(B)=6662139904 RESERVED(B)=5165056

 HEAP TOTAL(B)=312999936 FREE(B)=168637264 USEDHEAP=144362672

 OS400.GC.HEAP.SIZE.MAX(KB) =240000000

The Display Log command (DSPLOG LOG(QHST) MSGID(CPI8859)) shows all STARTED and ENDED

messages in the history log.

The default operation monitors the size of the Java Virtual Machine (JVM) Garbage Collection (GC) heap

against the following:

v The size of the effective memory pool.

v The size of the memory pool size minus the reserved size.

It also issues a message if the effective memory pool size exceeds 85, 90, 95, or 100 percent. For

example:

048241/QEJBSVR/SERVER1 GC HEAP USES 95% OF THE NON-RESERVED POOL. JVM GC

 HEAP SIZE(KB) EFFECTIVE POOLSIZE(KB):840282 882444.

 048241/QEJBSVR/SERVER1 GC HEAP USES 110% OF THE NON-RESERVED POOL. JVM GC

 HEAP SIZE(KB) EFFECTIVE POOLSIZE(KB):974601 882392.

The first number is the size of the heap, such as 840282 or 974601. The second number is the effective

pool size (or non-reserved pool size), such as 882444 or 882392. The Display Log command (DSPLOG

LOG(QHST) MSGID(CPF9898)) shows warning messages in the history log.

For the maximum Garbage Collection heap size, the default operation is to monitor the size of the JVM

Garbage Collection heap so that it does not exceed 85, 90, or 95 percent of the maximum. For example:

048358/QEJBSVR/USER JAVA USED 88% OF THE GC HEAP. USED HEAP SIZE(KB)

 AND MAX HEAP(KB):909088 1024001.

The maximum heap size is 1024001 Kbytes (-Xmx1000m), and the used heap size is 909088 Kbytes.

Chapter 5. Obtaining advice from the advisors 23

Activating the heap monitor

This task describes the steps used to activate the heap monitor. Heap monitor is used with WebSphere

Application Server profiles to monitor heap size of a profile in comparison to pool size.

For existing WebSphere Application Server profiles, there is a script available to add the feature. See the

Using the administrative clients PDF for more information.

To check if a WebSphere Application Server profile has the heap monitor enabled and to activate it if

necessary, perform the following steps.

1. Start the server for the WebSphere Application Server profile.

2. Run the heapMonitor script with the -status flag. For example, for a WebSphere Application Server

version 6.1 profile named default, enter the following command in the Qshell environment:

/QIBM/ProdData/WebSphere/AppServer/V61/ND/bin/heapMonitor -profileName default -status

The output should look similar to the following:

WASX7209I: Connected to process "server1" on node MYSERVER using SOAP connector;

 The type of process is: UnManagedProcess

 WASX7303I: The following options are passed to the scripting

 environment and are available as argument that is stored in the argv

 variable: "[status, server1]"

 HEAP0002I: The heap monitor is disabled.

 $

3. To enable the heap monitor for this example, enter the following command in the Qshell environment:

/QIBM/ProdData/WebSphere/AppServer/V61/ND/bin/heapMonitor -profileName default -enable

The output should look similar to the following:

WASX7209I: Connected to process "server1" on node MYSERVER using SOAP connector;

 The type of process is: UnManagedProcess

 WASX7303I: The following options are passed to the scripting environment and are

 available as argument that is stored in the argv

 variable: "[enable, server1]"

 HEAP0005I: Enabling the heap monitor...

 HEAP0003I: The heap monitor has been enabled.

 $

4. Stop and start the server.

The following message typically appears in the Display Message command (DSPMSG QSYSOPR):

HEAP MONITOR STARTED FOR 012500/QEJBSVR/SERVER1 IN SUBSYSTEM QWAS61 IN POOL

 *BASE POOL ID=2 POOLSIZE(B)=1687994368 RESERVED(B)=778240 HEAP

 TOTAL(B)=202276864 FREE(B)=67037600 USEDHEAP=135239264

 OS400.GC.HEAP.SIZE.MAX(KB) =240000000

The heap monitor is activated.

24 Tuning guide

Chapter 6. Tuning the application serving environment

This topic describes the benefits of tuning for optimal performance, highlights the tunable parameters of

the major WebSphere Application Server components, and provides insight about how these parameters

affect performance.

WebSphere Application Server provides tunable settings for its major components to enable you to make

adjustments to better match the runtime environment to the characteristics of your application. Many

applications can run successfully without any changes to the default values for these tuning parameters.

Other applications might need changes, for example, a larger heap size, to achieve optimal performance.

Performance tuning can yield significant gains in performance even if an application is not optimized for

performance. However, correcting shortcomings of an application typically results in larger performance

gains than are possible with just altering tuning parameters. Many factors contribute to a high performing

application.

The tuning guide focuses on server tuning. If you want to tune your applications, see the Performance:

Resources for learning article for more information about application tuning.

For your convenience, procedures for tuning parameters in other products, such as DB2, Web servers and

operating systems are included. Because these products might change, consider these descriptions as

suggestions.

Each WebSphere Application Server process has several parameters that influence application

performance. You can use the WebSphere Application Server administrative console to configure and tune

applications, Web containers, Enterprise JavaBeans (EJB) containers, application servers and nodes in the

administrative domain.

Each parameter description: explains the parameter; provides reasons to adjust the parameter; discusses

how to view or set the parameter; as well as indicates default and recommended values.

Additional references:

v WebSphere Application Server - Performance Web site

Tuning parameter hot list

The following hot list contains recommendations that have improved performance or scalability, or both, for

many applications.

WebSphere Application Server provides several tunable parameters and options to match the application

server environment to the requirements of your application.

v Review the hardware and software requirements

Review the hardware and software requirements on the IBM WebSphere Application Server supported

hardware, software, and APIs Web site to get started.

v Install the latest WebSphere Application Server PTFs

The list of recommended updates is maintained on the Business solutions

v Check hardware configuration and settings

Check network connections to make sure that they are running at their highest speed. For more

information, see Chapter 6, “Tuning the application serving environment.”

v Review your application design

You can track many performance problems back to the application design. Review the design to

determine if it causes performance problems.

v “Tuning i5/OS systems” on page 35

© Copyright IBM Corp. 2006 25

http://www-306.ibm.com/software/webservers/appserv/was/performance.html
http://www.ibm.com/support/docview.wss?rs=180&uid=swg27006921
http://www.ibm.com/support/docview.wss?rs=180&uid=swg27006921
http://publib.boulder.ibm.com/infocenter/iseries/v5r4/topic/rzahg/rzahgebusapp.htm

Operating system configuration plays a key role in performance. In many cases, adjustments to some

TCP/IP parameters might be necessary for your application.

v Set the minimum and maximum Java virtual machine (JVM) heap sizes

Many applications need a larger heap size for best performance.

v Use a type 2 JDBC driver for local data access and a type 4 (or pure Java) JDBC driver for

remote data access

In general, the type 2 JDBC driver is recommended. Use the link above to view a list of database

vendor-specific requirements, which can tell you if a type 4 JDBC driver is supported for your database.

See the Administering applications and their environment PDF for more information.

v Enable the pass by reference option

Use applications that can take advantage of the pass by reference option to avoid the cost of copying

parameters to the stack.

v Ensure that the transaction log is assigned to a fast disk

Some applications generate a high rate of writes to the WebSphere Application Server transaction log.

Locating the transaction log on a fast disk or disk array can improve response time

See the Administering applications and their environment PDF for more information.

v Tune related components, for example, database

In many cases, some other component, for example, a database, needs adjustments to achieve higher

throughput for your entire configuration.

For more information, see the Administering applications and their environment PDF for more

information.

Tuning TCP/IP buffer sizes

WebSphere Application Server uses the TCP/IP sockets communication mechanism extensively. For a

TCP/IP socket connection, the send and receive buffer sizes define the receive window. The receive

window specifies the amount of data that can be sent and not received before the send is interrupted. If

too much data is sent, it overruns the buffer and interrupts the transfer. The mechanism that controls data

transfer interruptions is referred to as flow control. If the receive window size for TCP/IP buffers is too

small, the receive window buffer is frequently overrun, and the flow control mechanism stops the data

transfer until the receive buffer is empty.

Flow control can consume a significant amount of CPU time and result in additional network latency as a

result of data transfer interruptions. It is recommended that you increase buffer sizes avoid flow control

under normal operating conditions. A larger buffer size reduces the potential for flow control to occur, and

results in improved CPU utilization. However, a large buffer size can have a negative effect on

performance in some cases. If the TCP/IP buffers are too large and applications are not processing data

fast enough, paging can increase. The goal is to specify a value large enough to avoid flow control, but

not so large that the buffer accumulates more data than the system can process.

The default buffer size is 8 KB. The maximum size is 8 MB (8096 KB). The optimal buffer size depends on

several network environment factors including types of switches and systems, acknowledgment timing,

error rates and network topology, memory size, and data transfer size. When data transfer size is

extremely large, you might want to set the buffer sizes up to the maximum value to improve throughput,

reduce the occurrence of flow control, and reduce CPU cost.

Buffer sizes for the socket connections between the Web server and WebSphere Application Server are

set at 64KB. In most cases this value is adequate.

Flow control can be an issue when an application uses either the IBM Developer Kit for Java(TM) JDBC

driver or the IBM Toolbox for Java JDBC driver to access a remote database. If the data transfers are

large, flow control can consume a large amount of CPU time. If you use the IBM Toolbox for Java JDBC

driver, you can use custom properties to configure the buffer sizes for each data source. It is

recommended that you specify large buffer sizes, for example,1 MB.

26 Tuning guide

Some system-wide settings can override the default 8 KB buffer size for sockets. With some applications,

for exmaple, WebSphere Commerce Suite, a buffer size of 180 KB reduces flow control and typically does

not adversely affect paging. The optimal value is dependent on specific system characteristics. You might

need to try several values before you determine the ideal buffer size for your system. To change the

system wide value, perform the following steps:

v Change the TCP/IP configuration.

1. Run the Change TCP/IP Attribute, CHGTCPA command.

2. View and change the buffer sizes. On the Change TCP/IP Attributes window, press F4. The buffer

sizes are displayed as the TCP receive and send buffer sizes. Type new values and save your

changes.

v Recycle TCP/IP, then monitor CPU and paging rates to determine if they are within recommended

system guidelines.

Repeat this process until you determine the ideal buffer size.

The TCP/IP buffer sizes are changed. Repeat this process until you determine the ideal buffer size.

For more information about TCP/IP performance, see Chapter 5 of the Performance Capabilities

Reference. Links to several editions of the Performance Capabilities Reference are in the Performance

Management Resource Library.

Tuning Java virtual machines

The application server, being a Java process, requires a Java virtual machine (JVM) to run, and to support

the Java applications running on the application server.

As part of configuring an application server, you can fine-tune settings that enhance system use of the

JVM. For more information about JVM settings, see Java virtual machine settings.

A JVM provides the runtime execution environment for Java based applications. WebSphere Application

Server is a combination of a JVM runtime environment and a Java based server runtime. It can run on

JVMs from different JVM providers. To determine the JVM provider on which your Application Server is

running, issue the java –fullversion command from within your WebSphere Application Server

app_server_root/java/bin directory. You can also check the SystemOut.log file for one of your servers.

When an application server starts, WebSphere Application Server writes information about the JVM,

including the JVM provider information, into this log file.

Even though JVM tuning is dependent on the JVM provider general tuning concepts apply to all JVMs.

These general concepts include:

v Compiler tuning. All JVMs use Just In Time (JIT) compilers to compile Java byte codes into native

instructions during server run-time.

v Java memory or heap tuning. The JVM memory management function, or garbage collection provides

one of the biggest opportunities for improving JVM performance.

v Class loading tuning.

You can adjust the following settings to change how the system uses the JVM. The following steps do not

have to be performed in any specific order.

1. Change the setting for class garbage collection

The class garbage collection argument, -Xnoclassgc, disables class garbage collection so that your

applications can reuse classes more easily. You can monitor garbage collection using the -verbosegc

configuration setting because its output includes class garbage collection statistics.

To view or set this argument

a. In the administrative console, click Servers > Application Servers > server.

Chapter 6. Tuning the application serving environment 27

http://www-1.ibm.com/servers/eserver/iseries/perfmgmt/resource.htm
http://www-1.ibm.com/servers/eserver/iseries/perfmgmt/resource.htm

b. Under Server Infrastructure, click Java and Process Management > Process Definition > Java

Virtual Machine.

c. Enter -Xnoclassgc in the Generic JVM arguments field.

d. Click Apply or OK.

e. Save changes to the master configuration.

f. Stop and restart the application server.

 Default: Class garbage collection is enabled.

Recommended: Do not disable class garbage collection.

2. Change the value of the Initial heap size setting

The Initial heap size setting specifies, in megabytes, how often garbage collection runs, and can have

a significant effect on performance. For more information, see the topic Tuning Garbage Collection for

Java and WebSphere on iSeries in the i5/OS Information Center.

a. In the administrative console, click Servers > Application Servers > server.

b. Under Server Infrastructure, click Java and Process Management > Process Definition > Java

Virtual Machine.

c. Specify a value in the Initial Heap Size field.

d. Click Apply or OK.

e. Save changes to the master configuration.

f. Stop and restart the application server.

 Default: 96 MB

Recommended: 96MB per processor

3. Change the value of the Maximum heap size setting

The Maximum heap size setting specifies how often garbage collection runs. This setting can have a

significant effect on performance. For more information, see the topic Tuning Garbage Collection for

Java and WebSphere on iSeries in the i5/OS Information Center.

a. In the administrative console, click Servers > Application Servers > server.

b. Under Server Infrastructure, click Java and Process Management > Process Definition > Java

Virtual Machine.

c. Specify a value in the Maximum Heap Size field.

d. Click Apply or OK.

e. Save changes to the master configuration.

f. Stop and restart the application server.

 Default: 0, which indicates that there is no maximum value.

Recommended: It is recommended that you do not change the maximum

heap size. When the maximum heap size triggers a

garbage collection cycle, the i5/OS JVM’s garbage

collection stops operating asynchronously. When this

happens, the application server cannot process user

threads until the garbage collection cycle ends, which

significantly lowers performance.

4. Change the setting for the Just-In-Time (JIT) compiler

A Just-In-Time (JIT) compiler is a platform-specific compiler that generates machine instructions for

each method as needed. For more information, see the sections Using the Just-In-Time compiler and

Just-In-Time compiler in the i5/OS Information Center topicIBM Developer Kit for Java.

a. In the administrative console, click Servers > Application Servers > server.

28 Tuning guide

http://www-1.ibm.com/servers/eserver/iseries/perfmgmt/pdf/tuninggc.pdf
http://www-1.ibm.com/servers/eserver/iseries/perfmgmt/pdf/tuninggc.pdf
http://www-1.ibm.com/servers/eserver/iseries/perfmgmt/pdf/tuninggc.pdf
http://www-1.ibm.com/servers/eserver/iseries/perfmgmt/pdf/tuninggc.pdf
http://publib.boulder.ibm.com/infocenter/iseries/v5r3/topic/rzaha/runtperf.htm#usingthejustintimecompiler
http://publib.boulder.ibm.com/iseries/v5r3/ic2924/index.htm?info/rzaha/jit.htm

b. Under Server Infrastructure, click Java and Process Management > Process Definition > Java

Virtual Machine.

c. Select the Disable JIT option if you want to disable the JIT.

d. Enter -Djava.compiler=jitc in the Generic JVM arguments field if you want to run with the full JIT

compiler.

e. Click Apply or OK.

f. Save changes to the master configuration.

g. Stop and restart the application server.

 Default: JIT is enabled.

Recommended: It is recommended that you do not disable the JIT

compiler, and you enable the full JIT compiler (see step

4.d). The os400.jit.mmi.threshold can have a significant

effect on performance. For more information about the

JIT compiler and the os400.jit.mmi.threshold property, see

the section Just-In-Time compiler in the i5/OS Information

Center topic IBM Developer Kit for Java.

See Java memory tuning tips for additional tuning information.

If your application experiences slow response times at startup or first touch, you might want to use the

Java user classloader cache. For more information, see Caching classes previously loaded by a user class

loader.

Tuning transport channel services

The transport channel services manage client connections and I/O processing for HTTP and JMS

requests. These I/O services are based on the non-blocking I/O (NIO) features that are available in Java™.

These services provide a highly scalable foundation to WebSphere Application Server request processing.

Java NIO based architecture has limitations in terms of performance, scalability and end user usability.

Therefore, integration of true asynchronous I/O is implemented. This implementation provides significant

benefits in usability, reduces the complexity of I/O processing and reduces that amount of performance

tuning you have to perform.

Key features of the new transport channel services include:

v Scalability, which enables the WebSphere Application Server to handle many concurrent requests.

v Asynchronous request processing, which provides a many-to-one mapping of client requests to Web

container threads

v Resource sharing and segregation, which enables thread pools to be shared between the Web

container and a messaging service.

v Improved usability and

v Incorporation of autonomic tuning and configuration functions.

Changing the default values for settings on one or more of the transport channels associated with a

transport chain can improve the performance of that chain.

Chapter 6. Tuning the application serving environment 29

http://publib.boulder.ibm.com/iseries/v5r3/ic2924/index.htm?info/rzaha/jit.htm

v Adjust TCP transport channel settings. In the administration console, click Servers > Application

servers > server_name > Ports. Then click View associated transports for the appropriate port.

1. Select the transport chain whose properties you are changing.

2. Click on the TCP transport channel defined for that chain.

3. Leave the Maximum open connections parameter set to the default value. This parameter controls

the maximum number of connections that are available for a server’s use. It should be left at the

default value of 20000, which is the maximum number of connections allowed. The transport

channel service by default manages high client connection counts and requires no tuning.

4. If client connections are being closed without data being written back to the client, change the value

specified for the Inactivity timeout parameter. This parameter controls the maximum number of

connections available for a server’s use. Upon receiving a new connection, the TCP transport

channel waits for enough data to arrive to dispatch the connection to the protocol specific channels

above the TCP transport channel. If not enough data is received during the time period specified for

the Inactivity timeout parameter, the TCP transport channel closes the connection.

The default value for this parameter is 60 seconds, which is adequate for most applications. You

should increase the value specified for this parameter if your workload involves a lot of connections

and all of these connections can not be serviced in 60 seconds.

5. Assign a thread pool to a specific HTTP port. Each TCP transport channel is assigned to a particular

thread pool. Thread pools can be shared between one or more TCP transport channels as well as

with other components. The default settings for a TCP transport channel is to have all HTTP based

traffic assigned to the WebContainer thread pool and all other traffic assigned to the Default thread

pool. Use the Thread pool pull-down to assign a particular thread pool to each TCP transport

channel. The default settings for this parameter has all HTTP based traffic assigned to the

WebContainer thread pool and all other traffic is assigned to the Default thread pool. (Thread pool

collection describes how to create additional thread pools.)

6. Tune the size of your thread pools. By default, a thread pool can have a minimum of 10 threads and

a maximum of 50 maximum threads. To adjust these values, click on Thread pools >

threadpool_name and adjust the values specified for the Minimum Size and Maximum Size

parameters for that thread pool.

WebContainer

WebContainer
Channel

TCP Channel

Thread 1 Thread X

HTTP Channel

Request 1 Request 2 Request N

The WebContainer Channel provides a
dispatching layer between the channel
and the servlet/JSP container

The HTTP Channel provides a HTTP
protocol support for the WebSphere Web
serving capabilities.

The TCP Channel manages client
connections providing and
asynchronous I/O layer between
clients and WebSphere threads. The
mapping of client connections to
threads is generally many to one.

Figure 1. Transport Channel Service

30 Tuning guide

Typical applications usually do not need more than 10 threads per processor. One exception is if

there is some off server condition, such as a very slow backend request, that causes a server

thread to wait for the backend request to complete. In such a case, CPU usage is usually low and

increasing the workload does not increase CPU throughput. Thread dumps show nearly all threads

in a call out to the backend resource. If this condition exists, and the backend is tuned correctly, try

increasing the minimum number of threads in the pooll until you see improvements in throughput

and thread dumps show threads in other areas of the runtime besides the backend call.

The setting for the Grow as needed parameter should not be changed unless your backend is prone

to hanging for long periods of time. This condition might indicate that all of your runtime threads are

blocked waiting for the backend instead of processing other work that does not involve the hung

backend.

v Adjust HTTP transport channel settings. In the administration console, click Servers > Application

servers > server_name > Ports. Then click View associated transports for the appropriate port.

1. Select the transport chain whose properties you are changing.

2. Click on the HTTP transport channel defined for that chain.

3. Tune HTTP keep-alive. The Use persistent (keep-alive) connections setting controls whether or not

connections are left open between requests. Leaving the connections open can save setup and

teardown costs of sockets if your workload has clients that send multiple requests. The default value

is true and is the optimal setting in most cases.

If your clients only send single requests over substantially long periods of time, it is probably better

to disable this option and close the connections right away rather than to have the HTTP transport

channel setup the timeouts to close the connection at some later time.

4. Change the value specified for the Maximum persistent requests parameter to increase the number

of requests that can flow over a connection before it is closed. When the Use persistent connections

option is enabled, the Maximum persistent requests parameter controls the number of requests that

can flow over a connection before it is closed. The default value is 100. This value should be set to

a value such that most, if not all, clients always have an open connection when they make multiple

requests during the same session. A proper setting for this parameter helps to eliminate

unnecessary setting up and tearing down of sockets.

For test scenarios in which the client will never close a socket or where sockets are always proxy or

Web servers in front of your application server, a value of -1 will disable the processing which limits

the number of requests over a single connection. The persistent timeout will still shutdown some idle

sockets and protect your server from running out of open sockets.

5. Change the value specified for the Persistent timeout parameter to increase the length of time that a

connection is held open before being closed due to inactivity. The Persistent timeout parameter

controls the length of time that a connection is held open before being closed because there is no

activity on that connection. The default value is 30 seconds This parameter should be set to a value

that keeps enough connections open so that most clients can obtain a connection available when

they need to make a request.

6. If clients are having trouble completing a request because it takes them more than 60 seconds to

send their data, change the value specified for the Read timeout parameter. Some clients pause

more than 60 seconds while sending data as part of a request. To ensure they are able to complete

their requests, change the value specified for this parameter to a length of time in seconds that is

sufficient for the clients to complete the transfer of data. Be careful when changing this value that

you still protect the server from clients who send incomplete data and thereby utilize resources

(sockets) for an excessive amount of time.

7. If some of your clients require more than 60 seconds to receive data being written to them, change

the value specified for the Write timeout parameter. Some clients are slow and require more than 60

seconds to receive data that is sent to them. To ensure they are able to obtain all of their data,

change the value specified for this parameter to a length of time in seconds that is sufficient for all

of the data to be received. Be careful when changing this value that you still protect the server from

malicious clients.

Chapter 6. Tuning the application serving environment 31

v Adjust Web container transport channel settings. In the administration console, click Servers >

Application servers > server_name > Ports. Then click View associated transports for the

appropriate port.

1. Select the transport chain whose properties need to be changed.

2. Click on the Web container transport channel defined for that chain.

3. If multiple writes are required to handle responses to the client, change the value specified for the

Write buffer size parameter to a value that is more appropriate for your clients. The Write buffer size

parameter controls the maximum amount of data per thread that the Web container buffers before

sending the request on for processing. The default value is 32768 bytes, which is sufficient for most

applications. If the size of a response is greater than the size of the write buffer, the response is

chunked and written back in multiple TCP writes.

If you need to change the value specified for this parameter, make sure the new value enables most

requests to be written out in a single write. To determined an appropriate value for this parameter,

look at the size of the pages that are returned and add some additional bytes to account for the

HTTP headers.

v Adjust the settings for the bounded buffer.

Even though the default bounded buffer parameters are optimal for most of the environments, you might

need to change the default values in certain situations and for some operating systems to enhance

performance. Changing the bounded buffer parameters can degrade performance. Therefore, make

sure that you tune the other related areas, such as the Web container and ORB thread pools, before

deciding to change the bounded buffer parameters.

To change the bounded buffer parameters:

1. In the administrative console, click Servers > Application Servers > server.

2. Under Server Infrastructure, click Java and Process Management > Process Definition > Java

Virtual Machine.

3. Specify one of the following parameters in the Generic JVM arguments field.

4. Click Apply or OK.

5. Enter one of the following custom properties in the Name field and an appropriate value in the Value

field, and then click Apply to save the custom property and its setting.

– com.ibm.ws.util.BoundedBuffer.spins_take=value

Specifies the number of times a Web container thread is allowed to attempt to retrieve a request

from the buffer before the thread is suspended and enqueued. This parameter enables you to

trade off the cost of performing possibly unsuccessful retrieval attempts, with the cost to

suspending a thread and activating it again in response to a put operation.

 Default: 4

Recommended: Any non-negative integer value is allowed. In practice an

integer between 2 and 8 have shown the best

performance results.

Usage: com.ibm.ws.util.BoundedBuffer.spins_take=6. Six

attempts are made before the thread is suspended.

– com.ibm.ws.util.BoundedBuffer.yield_take=true or false

Specifies that a thread yields the CPU to other threads after a set number of attempts to take a

request from the buffer. Typically a lower number of attempts is preferable.

 Default: false

Recommended: The effect of yield is implementation specific for individual

platforms.

Usage: com.ibm.ws.util.BoundedBuffer.spins_take=boolean value

32 Tuning guide

– com.ibm.ws.util.BoundedBuffer.spins_put=value

Specifies the number of attempts an InboundReader thread makes to put a request into the

buffer before the thread is suspended and enqueued. This value allows to trade off between the

cost of repeated, possibly unsuccessful, attempts to put a request into the buffer with the cost to

suspend a thread and reactivate it in response to a take operation.

 Default: 4

Recommended: Any non-negative integer value is allowed. In practice an

integer between 2 and 8 have shown the best

performance results.

Usage: com.ibm.ws.util.BoundedBuffer.spins_put=6. Six attempts

are made before the thread is suspended.

– com.ibm.ws.util.BoundedBuffer.yield_put=true or false

Specifies that a thread yields the CPU to other threads after a set number of attempts to put a

request into the buffer. Typically a lower number of attempts is preferable.

 Default: false

Recommended: The effect of yield is implementation specific for individual

platforms.

Usage: com.ibm.ws.util.BoundedBuffer.yield_put=boolean value

– com.ibm.ws.util.BoundedBuffer.wait=number of milliseconds

Specifies the maximum length of time, in milliseconds, that a request might unnecessarily be

delayed if the buffer is completely full or if the buffer is empty.

 Default: 10000 milliseconds

Recommended: A value of 10000 milliseconds usually works well. In rare

instances when the buffer becomes either full or empty, a

smaller value guarantee a more timely handling of

requests, but there is usually a performance impact to

using a smaller value.

Usage: com.ibm.ws.util.BoundedBuffer.wait=8000. A request

might unnecessarily be delayed up to 8000 milliseconds.

v Click Apply and then Save to save these changes.

Checking hardware configuration and settings

An optimal hardware configuration enables applications to get the greatest benefit from performance

tuning. The hardware speed impacts all types of applications and is critical to overall performance.

For proper system sizing for WebSphere Application Server workloads, use the IBM Systems Workload

Estimator.

The following parameters include considerations for selecting and configuring the hardware on which the

application servers run.

v Optimize disk speed

– Description: Disk speed and the number of disk arms have a significant effect on application server

performance in the following cases:

- Your application is heavily dependent on database support .

- Your application uses messaging extensively.
– Recommendation: Use disk I/O subsystems that are optimized for performance, for example,

Redundant Array of Independent Disks (RAID). Distribute the disk processing across as many disks

Chapter 6. Tuning the application serving environment 33

http://www-03.ibm.com/servers/eserver/iseries/perfmgmt/sizing.html
http://www-03.ibm.com/servers/eserver/iseries/perfmgmt/sizing.html

as possible to avoid contention issues that occur with 1 or 2 disk systems. For more information

about disk arms and how they can affect performance, see the iSeries Disk Arm Requirements

documentation.

v Increase processor speed and processor cache

– Description: In the absence of other bottlenecks, increasing the processing power can improve

throughput, response times, or both. On WebSphere Application Server for i5/OS, processing power

can be related to the Commercial Processing Workload (CPW) value of the system. For more

information about CPW values, see the http://www-03.ibm.com/servers/eserver/iseries/perfmgmt/
resource.html Web site.

v Increase system memory

– Description: If a large number of page faults occur, performing the following tasks to improve

performance:

- Increase the memory available to WebSphere Application Server.

- Move WebSphere Application Server to another memory pool.

- Remove jobs from the WebSphere Application Server memory pool

– Recommendation: To determine the current page fault level, run the Work with System Status

(WRKSYSSTS) command from an i5/OS command line. For information about the minimum memory

requirements, see the IBM Support Web site.

v Run network cards and network switches at full duplex

– Description: Run network cards and network switches at full duplex and use the highest supported

speed. Full duplex is much faster than half duplex. Verify that the network speed of adapters, cables,

switches, and other devices can accommodate the required throughput. Some Web sites might

require multiple gigabit links.

– Recommendation Make sure that the highest speed is in use on 10/100/1000 Ethernet networks.

v Verify that the activity levels for storage pools are sufficient

– Description: Verify that the activity levels for storage pools are sufficient. Increasing these values

can prevent threads from transitioning into the ineligible condition.

– Recommendation

- To modify the activity level for the storage pool in which you are running WebSphere Application

Server, run the following WRKSYSSTS command from the command line:

WRKSYSSTS ASTLVL(*INTERMED)

- Perform the following steps to set the QMAXACTLVL system value to a value equal to or greater

than the total activity level for all pools, or *NOMAX:

v Run the following WRKSYSSTS command from the command line:

WRKSYSSTS ASTLVL(*INTERMED)

v Adjust the value in the Max Active column.

Tuning operating systems

Use this page to determine your operating system and configure tuning specifications.

The following tuning parameters are specific to operating systems. Because these operating systems are

not WebSphere Application Server products, be aware that the products can change and results can vary.

Note: Check your operating system documentation to determine how to make the tuning parameters

changes permanent and if a reboot is required.

1. Determine your operating system.

2. Select your operating system from the related links section.

3. Configure your settings to optimize performance of Websphere Application Server.

34 Tuning guide

http://www-1.ibm.com/servers/eserver/iseries/perfmgmt/pdf/V5R2FiSArmct.pdf
http://www-03.ibm.com/servers/eserver/iseries/perfmgmt/resource.html
http://www-03.ibm.com/servers/eserver/iseries/perfmgmt/resource.html
http://www.ibm.com/support/docview.wss?rs=180&uid=swg27006921

Tuning i5/OS systems

This topic describes how to tune iSeries operating system to optimize the performance of WebSphere

Application Server. Because the iSeries operating system is not a WebSphere Application Server product,

be aware that the products can change and results can vary.

When you have a performance concern, check the operating system settings to determine if they are

appropriate for your application.

For detailed performance tuning, refer to the Tune server performance topic in the iSeries Information

Center.

This tuning procedure improves performance of WebSphere Application Server on the iSeries operating

system. After tuning your operating system for performance, consult other tuning topics for various tuning

tips.

Tuning Web servers

WebSphere Application Server provides plug-ins for several Web server brands and versions. If you are

running your Web server on a non-i5/OS platform, see the product documentation for performance tuning

information.

For additional information, refer to Chapter 6 of the Performance Capabilities Reference Manual. This

manual is available in the Performance Management Resource Library.

The IBM HTTP Server (powered by Apache) is a multi-process, multi-threaded server. To tune this Web

server:

v Enable the access logs. The access logs record all incoming HTTP requests. Logging can degrade

performance even though logging occurs in a separate process from the Web server function.

By default, the access log is disabled. It is recommended that you do not enable the access logs unless

you need a record of all incoming HTTP requests.

To enable the access logs:

1. Open the IBM HTTP Server httpd.conf file, located in the /QIBM/ProdData/HTTPA/conf directory.

2. Search for lines with the text CustomLog.

3. Remove the hash mark (#) at the beginning of the line to enable a custom access log.

4. Save and close the httpd.conf file.

5. Stop and restart the IBM HTTP Server.

v Change the ThreadsPerChild directive setting. The ThreadsPerChild directive specifies the maximum

number of concurrent client requests that the server processes at any time. The Web server uses one

thread for each request that it processes. The value specified for this directive does not represent the

number of active clients.

To change the ThreadsPerChild directive setting:

1. Open the IBM HTTP Server httpd.conf file, located in the /QIBM/ProdData/HTTPA/conf directory.

2. Search for the ThreadsPerChild directive.

3. Change the setting. The default value is 40. It is recommended that you either use the default value

or increase the value if you need to increase the number of concurrent client requests that the

server can process at any time. You should not decrease the setting of this directive.

4. Save and close the httpd.conf file.

5. Stop and restart the IBM HTTP Server.

v Change the ListenBackLog directive setting. This directive specifies the length of the pending

connections queue. When several clients request connections to the IBM HTTP Server, and all threads

are in use, a queue is created to hold additional client requests.

Chapter 6. Tuning the application serving environment 35

http://publib.boulder.ibm.com/infocenter/iseries/v5r3/topic/rzahx/rzahxtune.htm
http://www-1.ibm.com/servers/eserver/iseries/perfmgmt/resource.htm

If you use the default Fast Response Cache Accelerator (FRCA) feature, the value specified for the

ListenBackLog directive is ignored, because FRCA uses its own internal queue.

To change the ListenBackLog directive setting:

1. Open the IBM HTTP Server httpd.conf file, located in the /QIBM/ProdData/HTTPA/conf directory.

2. Search for the ListenBackLog directive.

3. Change the setting. For the IBM HTTP Server 1.3.26, the default setting is 1024 if FRCA is enabled,

and 511 if FRCA disabled. It is recommended that you use these default values.

4. Save and close the httpd.conf file.

5. Stop and restart the IBM HTTP Server.

For more information about tuning heavily loaded Web servers, see Performance: Resources for learning

Tuning WebSphere applications

This topic provides quick links to information about tuning specific WebSphere application types, and the

services and containers that support them.

Note: The WebSphere Application Server documentation contains a finite set of tuning topics to which the

following table provides links. Installing the documentation plug-ins for additional components, such

as Service integration, might add new entries to the information table of contents. The new entries

will not be shown in the table. To see the complete set of application tuning topics available in this

information center installation, expand Tuning performance > Tuning WebSphere applications in

the table of contents.

36 Tuning guide

Product architecture and programming model, at a glance

 Application serving environment -- See

Tuning the application serving

environment

WebSphere applications WebSphere applications

Servers

v Application servers

v Java virtual machines

v Transport channels

v Web servers

v More server types

v Core groups

v Workload balancing

Environment

v Hardware

v Operating system

v Virtual hosts

v Variable settings

v Shared libraries

v Replication domains

System administration

v Administrative clients

v Configuration files

v Domains (cells, nodes)

Performance tools

v Monitoring

v Tuning performance

Troubleshooting tools

v Diagnostic tools

v Support and self-help

The product subsystems are discussed in

the Product architecture. For the most part,

they do not depend on the type of

applications being deployed

Services

v Security

v Naming

v ORB

v Transactions

J2EE applications

v Web applications > Sessions

v EJB applications

Clients

v Client applications

v Web clients

v Web services clients

v Administrative clients

Web services

v Web services and Service

Oriented Architecture (SOA)

v Web services security

J2EE resources

v Data access resources

v Messaging resources

v Mail, URLs, and more

WebSphere extensions

v ActivitySessions

v Application profiling

v Asynchronous beans

v Dynamic caching

v Dynamic and EJB query

v Internationalization

v Object pools

v Scheduler

v Startup beans

v Work area

Web applications

Session management tuning

WebSphere Application Server session support has features for tuning session performance and operating

characteristics, particularly when sessions are configured in a distributed environment. These options

support the administrator flexibility in determining the performance and failover characteristics for their

environment.

The table summarizes the features, including whether they apply to sessions tracked in memory, in a

database, with memory-to-memory replication, or all. Click a feature for details about the feature. Some

features are easily manipulated using administrative settings; others require code or database changes.

Chapter 6. Tuning the application serving environment 37

Feature or option Goal Applies to sessions in memory,

database, or memory-to-memory

Write frequency Minimize database write operations. Database and Memory-to-Memory

Session affinity Access the session in the same

application server instance.

All

Multirow schema Fully utilize database capacities. Database

Base in-memory session pool size Fully utilize system capacity without

overburdening system.

All

Write contents Allow flexibility in determining what

session data to write

Database and Memory-to-Memory

Scheduled invalidation Minimize contention between session

requests and invalidation of sessions

by the Session Management facility.

Minimize write operations to database

for updates to last access time only.

Database and Memory-to-Memory

Tablespace and row size Increase efficiency of write operations

to database.

Database (DB2 only)

Scheduled invalidation:

Instead of relying on the periodic invalidation timer that runs on an interval based on the session timeout

parameter, you can set specific times for the session management facility to scan for invalidated sessions

in a distributed environment. When used with distributed sessions, this feature has the following benefits:

v You can schedule the scan for invalidated sessions for times of low application server activity, avoiding

contention between invalidation scans of database or another WebSphere Application Server instance

and read and write operations to service HTTP session requests.

v Significantly fewer external write operations can occur when running with the End of Service Method

Write mode because the last access time of the session does not need to be written out on each HTTP

request. (Manual Update options and Time Based Write options already minimize the writing of the last

access time.)

Usage considerations

v The session manager invalidates sessions only at the scheduled time, therefore sessions are available

to an application if they are requested before the session is invalidated.

v With scheduled invalidation configured, HttpSession timeouts are not strictly enforced. Instead, all

invalidation processing is handled at the configured invalidation times.

v HttpSessionBindingListener processing is handled at the configured invalidation times unless the

HttpSession.invalidate method is explicitly called.

v The HttpSession.invalidate method immediately invalidates the session from both the session cache and

the external store.

v The periodic invalidation thread still runs with scheduled invalidation. If the current hour of the day does

not match one of the configured hours, sessions that have exceeded the invalidation interval are

removed from cache, but not from the external store. Another request for that session results in

returning that session back into the cache.

v When the periodic invalidation thread runs during one of the configured hours, all sessions that have

exceeded the invalidation interval are invalidated by removal from both the cache and the external

store.

v The periodic invalidation thread can run more than once during an hour and does not necessarily run

exactly at the top of the hour.

v If you specify the interval for the periodic invalidation thread using the HttpSessionReaperPollInterval

custom property, do not specify a value of more than 3600 seconds (1 hour) to ensure that invalidation

processing happens at least once during each hour.

38 Tuning guide

Configuring write contents:

In session management, you can configure which session data is written to the database or to another

WebSphere instance, depending on whether you are using database persistent sessions or memory to

memory replication. This flexibility allows for fewer code changes for the JavaServer Pages (JSP) writer

when the application will be operating in a clustered environment. The following options are available in

Session Management for tuning what is to be written back:

v Write changed (the default) - Write only session data properties that have been updated through

setAttribute method and removeAttribute method calls.

v Write all - Write all session data properties.

The Write all setting might benefit servlet and JSP writers who change Java objects’ states that reside as

attributes in HttpSession and do not call HttpSession.setAttribute method.

However, the use of Write all could result in more data being written back than is necessary. If this

situation applies to you, consider combining the use of Write all with Time-based write to boost

performance overall. As always, be sure to evaluate the advantages and disadvantages for your

installation.

With either Write Contents setting, when a session is first created, complete session information is written,

including all of the objects bound to the session. When using database session persistence, in subsequent

session requests, what is written to the database depends on whether a single-row or multi-row schema

has been set for the session database, as follows:

 Write Contents setting Behavior with single-row schema Behavior with multirow schema

Write changed If any session attribute is updated, all

objects bound to the session are

written.

Only the session data modified

through setAttribute method or

removeAttribute method calls is

written.

Write all All bound session attributes are

written.

All session attributes that currently

reside in the cache are written. If the

session has never left the cache, all

session attributes are written.

1. Go to the appropriate level of Session Management.

2. Click Distributed Environment Settings

3. Click Custom Tuning Parameters.

4. Select Custom Settings, and click Modify.

5. Select the appropriate write contents setting.

Configuring write frequency:

In the Session Management facility, you can configure the frequency for writing session data to the

database or to a WebSphere instance, depending on whether you use database distributed sessions or

memory-to-memory replication. This flexibility enables you to weigh session performance gains against

varying degrees of failover support. The following options are available in the Session Management facility

for tuning write frequency:

v End of service servlet- Write session data at the end of the servlet service method call.

v Manual update- Write session data only when the servlet calls the IBMSession.sync method.

v Time based (the default) - Write session data at periodic intervals, in seconds (called the write interval).

When a session is first created, session information is always written at the end of the service call.

Chapter 6. Tuning the application serving environment 39

Using the time based write or manual update options can result in loss of data in failover scenarios since

the backup copy of the session in the persistent store (for example, a database or another JVM) may not

be in sync with the session in the session cache.

Base in-memory session pool size: The base in-memory session pool size number has different

meanings, depending on session support configuration:

v With in-memory sessions, session access is optimized for up to this number of sessions.

v With distributed sessions (meaning, when sessions are stored in a database or in another WebSphere

Application Server instance); it also specifies the cache size and the number of last access time

updates saved in manual update mode.

For distributed sessions, when the session cache has reached its maximum size and a new session is

requested, the Session Management facility removes the least recently used session from the cache to

make room for the new one.

General memory requirements for the hardware system, and the usage characteristics of the e-business

site, determines the optimum value.

Note that increasing the base in-memory session pool size can necessitate increasing the heap sizes of

the Java processes for the corresponding WebSphere Application Servers.

Overflow in non-distributed sessions

By default, the number of sessions maintained in memory is specified by base in-memory session pool

size. If you do not wish to place a limit on the number of sessions maintained in memory and allow

overflow, set overflow to true.

Allowing an unlimited amount of sessions can potentially exhaust system memory and even allow for

system sabotage. Someone could write a malicious program that continually hits your site and creates

sessions, but ignores any cookies or encoded URLs and never utilizes the same session from one HTTP

request to the next.

When overflow is disallowed, the Session Management facility still returns a session with the

HttpServletRequest getSession(true) method when the memory limit is reached, and this is an invalid

session that is not saved.

With the WebSphere Application Server extension to HttpSession,

com.ibm.websphere.servlet.session.IBMSession, an isOverflow method returns true if the session is such

an invalid session. An application can check this status and react accordingly.

Write operations:

You can manually control when modified session data is written out to the database or to another

WebSphere Application Server instance by using the sync method in the

com.ibm.websphere.servlet.session.IBMSession interface. This interface extends the

javax.servlet.http.HttpSession interface. By calling the sync method from the service method of a servlet,

you send any changes in the session to the external location. When manual update is selected as the

write frequency mode, session data changes are written to an external location only if the application calls

the sync method. If the sync method is not called, session data changes are lost when a session object

leaves the server cache. When end of service servlet or time based is the write frequency mode, the

session data changes are written out whenever the sync method is called. If the sync method is not called,

changes are written out at the end of service method or on a time interval basis based on the write

frequency mode that is selected.

40 Tuning guide

IBMSession iSession = (IBMSession) request.getSession();

 iSession.setAttribute("name", "Bob");

 //force write to external store

 iSession.sync()

If the database is down or is having difficulty connecting during an update to session values, the sync

method always makes three attempts before it finally creates a BackedHashtable.getConnectionError error.

For each connection attempt that fails, the BackedHashtable.StaleConnectionException is created and can

be found in the sync method. If the database opens during any of these three attempts, the session data

in the memory is then persisted and committed to the database.

However, if the database is still not up after the three attempts, then the session data in the memory is

persisted only after the next check for session invalidation. Session invalidation is checked by a separate

thread that is triggered every five minutes. The data in memory is consistent unless a request for session

data is issued to the server between these events. For example, if the request for session data is issued

within five minutes, then the previous persisted session data is sent.

Sessions are not transactional resources. Because the sync method is associated with a separate thread

than the client, the exception that is created does not propagate to the client, which is running on the

primary thread. Transactional integrity of data can be maintained through resources such as enterprise

beans.

Tuning parameter settings:

Use this page to set tuning parameters for distributed sessions.

 To view this administrative console page, click Servers > Application servers > server_name > Web

container settings > Session management > Distributed environment settings > Custom tuning

parameters.

Tuning level:

Specifies that the session management facility provides certain predefined settings that affect

performance.

 Select one of these predefined settings or customize a setting. To customize a setting, select one of the

predefined settings that comes closest to the setting desired, click Custom settings, make your changes,

and then click OK.

Very high (optimize for performance)

 Write frequency Time based

Write interval 300 seconds

Write contents Only updated attributes

Schedule sessions cleanup true

First time of day default 0

Second time of day default 2

High

 Write frequency Time based

Write interval 300 seconds

Write contents All session attributes

Schedule sessions cleanup false

Chapter 6. Tuning the application serving environment 41

Medium

 Write frequency End of servlet service

Write contents Only updated attributes

Schedule sessions cleanup false

Low (optimize for failover)

 Write frequency End of servlet service

Write contents All session attributes

Schedule sessions cleanup false

Custom settings

 Write frequency default Time based

Write interval default 10 seconds

Write contents default All session attributes

Schedule sessions cleanup default false

Tuning parameter custom settings:

Use this page to customize tuning parameters for distributed sessions.

 To view this administrative console page, click Servers > Application servers > server_name Web

container settings > Session management > Distributed environment settings > Custom tuning

parameters > Custom settings.

Write frequency:

Specifies when the session is written to the persistent store.

 End of servlet service A session writes to a database or another WebSphere

Application Server instance after the servlet completes

execution.

Manual update A programmatic sync on the IBMSession object is required

to write the session data to the database or another

WebSphere Application Server instance.

Time based Session data writes to the database or another

WebSphere Application Server instance based on the

specified Write interval value. Default: 10 seconds

Write contents:

Specifies whether updated attributes are only written to the external location or all of the session attributes

are written to the external location, regardless of whether or not they changed. The external location can

be either a database or another application server instance.

 Only updated attributes Only updated attributes are written to the persistent store.

All session attribute All attributes are written to the persistent store.

Schedule sessions cleanup:

42 Tuning guide

Specifies when to clean the invalid sessions from a database or another application server instance.

 Specify distributed sessions cleanup schedule Enables the scheduled invalidation process for cleaning

up the invalidated HTTP sessions from the external

location. Enable this option to reduce the number of

updates to a database or another application server

instance required to keep the HTTP sessions alive. When

this option is not enabled, the invalidator process runs

every few minutes to remove invalidated HTTP sessions.

When this option is enabled, specify the two hours of a

day for the process to clean up the invalidated sessions in

the external location. Specify the times when there is the

least activity in the application servers. An external

location can be either a database or another application

server instance.

First Time of Day (0 - 23) Indicates the first hour during which the invalidated

sessions are cleared from the external location. Specify

this value as a positive integer between 0 and 23. This

value is valid only when schedule invalidation is enabled.

Second Time of Day (0 - 23) Indicates the second hour during which the invalidated

sessions are cleared from the external location. Specify

this value as a positive integer between 0 and 23. This

value is valid only when schedule invalidation is enabled.

EJB applications

EJB Container tuning

If you use applications that affect the size of the EJB Container Cache, it is possible that the performance

of your applications can be impacted by an incorrect size setting. Monitoring Tivoli Performance Viewer

(TPV) is a great way to diagnose if the EJB Container Cache size setting is tuned correctly for your

application.

If the application has filled the cache causing evictions to occur, TPV will show a very high rate of

ejbStores() being called and probably a lower than expected CPU utilization on the application server

machine.

All applications using enterprise beans should have this setting adjusted from the default if the following

formula works out to more than 2000.

EJB_Cache_Size = (Largest number of Option B or C Entity Beans enlisted in a

transaction * maximum number of concurrent transactions) +

(Largest number of unique Option A Entity Beans expected to be accessed during

typical application workload) +

(Number of stateful Session Beans active during typical workload) +

(Number of stateless SessionBean types used during typical workload)

Where:

Option B and C Entity Beans are only held in the EJB cache during the lifetime

of the transaction they are enlisted in. Therefore, the first term in the formula

computes the average EJB cache requirements for these types of beans.

Option A Entity Beans are held in the EJB cache indefinitely, and are only removed

 from the cache if there start to become more beans in the cache than the cache

size has been set to.

Stateful Session Beans are held in the EJB cache until they are removed by the

application, or their session timeout value is reached.

Only a single stateless Session Bean instance for each EJB type is held in the

cache during the time any methods are being executed on that stateless Session

Chapter 6. Tuning the application serving environment 43

Bean. If two or more methods are being executed simultaneously on the same

stateless Session Bean type, each method executes on its own bean instance, but

only one cache location is used for all of these instances.

This calculates the upper bound on the maximum possible number of enterprise beans active at one time

inside the application server. Because the EJB Containers cache is built to contain all these beans for

performance optimizations, best performance can be achieved by setting this cache size to be larger than

the number resulting from the calculation above.

<tuning parameter>

This setting can be found under Servers > Application Servers > serverName >

 EJB Container > EJB Cache Settings

Also while adjusting the EJB Cache Size, the EJB Container management thread parameter can be tuned

to meet the needs of the application. The management thread is controlled through the Clean Up Interval

setting. This setting controls how frequently a daemon thread inside of WebSphere Application Server

wakes up and attempts to remove bean instances from the cache that have not been used recently,

attempting to keep the number of bean instances at or below the cache size. This allows the EJB

container to place and look up items in the cache as quickly as possible. It normally is best to leave this

interval set to the default, however, in some cases, it may be worthwhile to see if there is a benefit to

reducing this interval.

EJB Container Pool Size

If the application is using the majority of the instances in the pool, TPV indicates this. When this occurs,

then the size of those bean pools that are being exhausted should be increased. This can be done by

adding the following parameter in the JVM’s custom properties tag .

-Dcom.ibm.websphere.ejbcontainer.poolSize=<application_name>#<module_name>#

<enterprisebean_name>=<minSize>,<maxSize>

where:

 <application_name> is the J2EE application name as defined in the application

archive (.ear) file deployment descriptor, for the bean whose pool size is being

set

<module_name> is the .jar file name of the EJB module, for the bean whose pool size

 is being set,

<bean_name> is the J2EE Enterprise Bean name as defined in the EJB module

deployment descriptor, for the bean whose pool size is being set

<minSize> is the number of bean instances the container maintains in the pool,

 irrespective of how long the beans have been in the pool (beans greater than this

 number are cleared from the pool over time to optimize memory usage)

<maxSize> is the number of bean instances in the pool where no more bean instances

 are placed in the pool after they are used (that is, once the pool is at this

 size, any additional beans are discarded rather than added into the pool --

this ensures the number of beans in the pool has an upper limit so memory usage

does not grow in an unbounded fashion).

To keep the number of instances in the pool at a fixed size, minSize and maxSize

can be set to the same number. Note that there is a separate instance pool for

every EJB type running in the application server, and that every pool starts out

with no instances in it - that is, the number of instances grows as beans are

used and then placed in the pool. When a bean instance is needed by the container

and no beans are available in the pool, the container creates a new bean

instance, uses it, then places that instance in the pool (unless there are

already maxSize instances in the pool).

For example, the statement

-Dcom.ibm.websphere.ejbcontainer.poolSize=ivtApp#ivtEJB.jar#ivtEJBObject=125,1327

44 Tuning guide

would set a minSize of 125 and a maxSize of 1327 on the bean named "ivtEJBObject"

within the ivtEJB.jar file, in the application "ivtApp".

Where ivtApp is replaced by the actual application name, ivtEJB.jar is replaced by the jar containing the

bean that needs to have its pool size increased, and ivtEJBObject is the bean name of the enterprise bean

whose pool size should be increased. The 125,1327 is the minimum and maximum number of beans that

will be held in the pool. These should be set so no more evictions occur from the pool and in most cases

should be set equal if memory is plentiful because no growth and shrinkage of the pool will occur.

EJB Container Primary Key Mutation

Application developers and administrators should have a good idea of how their application handles the

creation of primary key objects for use by container-managed persistence (CMP) beans and

bean-managed persistence (BMP) beans inside of WebSphere Application Server. The IBM EJB Container

uses the primary key of an Entity bean as an identifier inside of many internal data structures to optimize

performance. However, the EJB Container must copy these primary key objects upon the first access to

the bean to ensure that the objects stored in the internal caches are separate from the ones used in an

application, in case the application changes or mutates the primary key, to keep the internal structures

consistent.

If the application does not mutate any of the primary keys used to create and access entity beans after

they are created, then a special flag can be used that allows the EJB Container to skip the copy of the

primary key object, thus saving CPU cycles and increasing performance. This mechanism can be enabled

at your own risk by adding the following –D property to the JVM custom property field.

<tuning parameter>

-Dcom.ibm.websphere.ejbcontainer.noPrimaryKeyMutation=true

The performance benefit of this optimization depends on the application. If the application uses primitive

types for enterprise beans’ primary keys there will be no gain because these objects are already

immutable and the copy mechanism takes this into account. If, however, the application uses many

complex primary keys (that is, And object for a primary key or multiple fields) then this parameter can yield

significant improvements.

Persistence Manager Deferred Insert on EJB Create

The IBM Persistence manager is used by the EJB Container to persist data to the database from CMP

entity beans. When creating entity beans by calling the ejbCreate() method, by default the Persistence

manager immediately inserts the empty row with only the primary key in the database. In most cases

applications, after creating the bean, modify fields in the bean created or in other beans inside of the same

transaction. If the user wishes to postpone the insert into the database until the end of the transaction, so

that it will eliminate one trip to the database, they may set this –D flag inside of the JVM custom properties

field. The data will still be inserted into the database and consistency will be maintained.

<tuning parameter>

-Dcom.ibm.ws.pm.deferredcreate=true

The performance benefit of this optimization depends on the application. If the EJB applications

transactions are very insert intensive the application could benefit largely from this optimization. If the

application performs very few inserts then the benefit of this optimization will be much less.

Persistence Manager Database Batch Update on EJB Update

When an EJB application accesses multiple CMP beans inside of a single transaction, depending on the

operations performed on the beans (updates, inserts, reads), the number of operations issued to the

database will correspond directly to the operations performed on the CMP beans. If the database system

you are using supports batching of update statements you can enable this flag and gain a performance

Chapter 6. Tuning the application serving environment 45

boost on all interactions with the database that involve more than two updates in a single transaction. This

flag will let the persistence manager add all the update statements into one single batch statement which

will then be issued to the database. This saves round trips to the database, thus increasing performance.

If the user knows their application exhibits the behavior of updating multiple CMP beans in a single

transaction and the database supports batch updates they may set this –D flag inside of the JVM custom

properties field.

<tuning parameter>

-Dcom.ibm.ws.pm.batch=true

The performance benefit of this optimization depends on the application. If the application never or

infrequently updates CMP beans or only updates a single bean per transaction there will be no

performance gain. If the application updates multiple beans per transaction then this parameter will benefit

your applications performance.

The following table lists which backend databases support batch update.

 Table 1.

Database Supports Batch update

Supports Batch update with

Optimistic Concurrency Control

DB2 yes no

Oracle yes no

DB2 Universal Driver yes yes

Informix yes yes

SQLServer yes yes

Cloudscape yes yes

Note: Batch update with OCC cannot be performed for databases that do not support it, even if specified

by the access intent.

Persistence Manager cache Tuning

Persistence Manager has two different types of caching mechanisms available: legacy cache and two-level

cache. Normally two-level cache performs better than legacy cache because of optimizations in this mode.

The default is legacy cache, although two-level cache is recommended. Set this configuration through the

system property

com.ibm.ws.pm.useLegacyCache=false

Persistence Manager Partial Updates Tuning

The partial updates feature enhances the performance of applications with enterprise beans in certain

scenarios. Persistence Manager has two different types of caching mechanisms available, legacy cache

and two-level cache. Normally, two-level cache performs better than legacy cache because of the

optimizations in this mode. In certain applications where you need to perform both batch updates and

partial updates, you must configure the following system properties to gain the benefits of both.

‘com.ibm.ws.pm.grouppartialupdate=true’ and ‘com.ibm.ws.pm.batch=true’

Web services

Tuning Web services security for Version 6.1 applications

The Java Cryptography Extension (JCE) is integrated into the software development kit (SDK) version

1.4.x and is no longer an optional package. However, the default Java Cryptography Extension (JCE)

jurisdiction policy file shipped with the SDK enables you to use cryptography to enforce this default policy.

46 Tuning guide

The Java Cryptography Extension (JCE) is integrated into the software development kit (SDK) version

1.4.x and is no longer an optional package. However, due to export and import regulations, the default

Java Cryptography Extension (JCE) jurisdiction policy file shipped with the SDK enables you to use strong,

but limited, cryptography only. To enforce this default policy, WebSphere Application Server uses a JCE

jurisdiction policy file that might introduce a performance impact. The default JCE jurisdiction policy might

have a performance impact on the cryptographic functions that are supported by Web services security. If

you have Web services applications that use transport level security for XML encryption or digital

signatures, you might encounter performance degradation over previous releases of WebSphere

Application Server. However, IBM and Sun Microsystems provide versions of these jurisdiction policy files

that do not have restrictions on cryptographic strengths. If you are permitted by your governmental import

and export regulations, download one of these jurisdiction policy files. After downloading one of these files,

the performance of JCE and Web services security might improve.

For WebSphere Application Server platforms using IBM Developer Kit, Java Technology Edition Version 5,

including the AIX, Linux, and Windows platforms, you can obtain unlimited jurisdiction policy files by

completing the following steps:

1. Go to the following Web site: http://www.ibm.com/developerworks/java/jdk/security/index.html

2. Click J2SE 5.0

3. Scroll down and click IBM SDK Policy files.

The Unrestricted JCE Policy files for the SDK Web site is displayed.

4. Click Sign in and provide your IBM intranet ID and password.

5. Select the appropriate Unrestricted JCE Policy files and then click Continue.

6. View the license agreement and then click I Agree.

7. Click Download Now.

For WebSphere Application Server platforms using the Sun-based Java Development Kit (JDK) Version 5,

including the Solaris environments and the HP-UX platform, you can obtain unlimited jurisdiction policy

files by completing the following steps:

1. Go to the following Web site: http://java.sun.com/j2se/1.5.0/download.jsp

2. Click Other Downloads.

3. Locate the Java Cryptography Extension (JCE) Unlimited Strength Jurisdiction Policy Files

1.5.1information and click Download. The policy files are downloaded onto your machine.

In IBM WebSphere Application Server Version 6.1, Web services security supports the use of

cryptographic hardware devices. There are two ways in which to use hardware cryptographic devices with

Web services security.

See Hardware cryptographic device support for Web Services Security for more information.

After following either of these sets of steps, two Java Archive (JAR) files are placed in the JVM

jre/lib/security/ directory.

Tuning Web services security for Version 5.x applications

The Java Cryptography Extension (JCE) policy is integrated into the software development kit (SDK)

Version 1.4.x and is no longer an optional package. However, due to export and import regulations, the

default JCE jurisdiction policy file shipped with the SDK enables you to use strong, but limited,

cryptography only. To enforce this default policy, WebSphere Application Server uses a JCE jurisdiction

policy file that might introduce a performance impact. The default JCE jurisdiction policy might have a

performance impact on the cryptographic functions that are supported by Web services security. If you

have Web services applications that use transport level security for XML encryption or digital signatures,

you might encounter performance degradation over previous releases of WebSphere Application Server.

However, IBM and Sun Microsystems provide versions of these jurisdiction policy files that do not have

Chapter 6. Tuning the application serving environment 47

http://www.ibm.com/developerworks/java/jdk/security/index.html
http://java.sun.com/j2se/1.5.0/download.jsp

restrictions on cryptographic strengths. If you are permitted by your governmental import and export

regulations, download one of these jurisdiction policy files. After downloading one of these files, the

performance of JCE and Web Services security might improve.

For WebSphere Application Server platforms using IBM Developer Kit, Java Technology Edition Version

1.4.2, including the AIX, Linux, and Windows platforms, you can obtain unlimited jurisdiction policy files by

completing the following steps:

1. Go to the following Web site: http://www.ibm.com/developerworks/java/jdk/security/index.html

2. Click Java 1.4.2

3. Click IBM SDK Policy files.

The Unrestricted JCE Policy files for SDK 1.4 Web site is displayed.

4. Enter your user ID and password or register with IBM to download the policy files. The policy files are

downloaded onto your machine.

For WebSphere Application Server platforms using the Sun-based Java Development Kit (JDK) Version

1.4.2, including the Solaris environments and the HP-UX platform, you can obtain unlimited jurisdiction

policy files by completing the following steps:

1. Go to the following Web site: http://java.sun.com/j2se/1.4.2/download.html

2. Click Other Downloads.

3. Locate the JCE Unlimited Strength Jurisdiction Policy Files 1.4.2 information and click Download. The

policy files are downloaded onto your machine.

After following either of these sets of steps, two Java Archive (JAR) files are placed in the JVM

jre/lib/security/ directory.

Setting tuning properties of a messaging engine

Use this task to set the tuning properties for a messaging engine.

You can set the following property to improve the performance of a messaging engine:

 Name Value

sib.trm.retry The messaging engine to messaging engine connection

retry interval in seconds. The retry interval is the time

delay left between attempts to contact neighboring

messaging engines with which communications contact

should exist. The default retry interval is 30 seconds.

To set the tuning properties for a messaging engine, use the administrative console to complete the

following steps:

1. In the navigation pane, click Service integration → Buses → [Content Pane] bus_name → [Topology]

Messaging engines → engine_name → [Additional Properties] Custom properties.

2. Type the name of the property that you want to set.

3. Type the value that you want to set for that property.

4. Click OK.

5. Save your changes to the master configuration.

6. Restart the messaging engine for the changes to take effect.

Messaging engine failover between v6 and v6.1

It is not permissible to failover a messaging engine using a file store onto a WebSphere Application Server

v6 server. If you have a cluster as a bus member that consists of a mixture of v6 and v6.1 servers, you

must modify the high availability policy to prevent this.

48 Tuning guide

http://www.ibm.com/developerworks/java/jdk/security/index.html
http://java.sun.com/j2se/1.4.2/download.html

To prevent failover of a v6.1 messaging engine to a v6 server, the high availability policy for the messaging

engine should be modified so that the cluster is effectively divided into sets of servers at the different

versions and the messaging engine is restricted to the servers at v6.1.

Tuning and problem solving for messaging engine data stores

Obtain an overview of improving the performance of messaging engine data stores and understanding

problems that can occur with a data store.

For more information about tuning and problem solving for messaging engine data stores, see the

following topics:

v “Tuning the JDBC data source of a messaging engine”

v “Controlling the memory buffers used by a messaging engine”

v Sharing connections to benefit from one-phase commit optimization

v Diagnosing problems with data store exclusive access locks

v “Diagnosing problems with your data store configuration” on page 51

v “Avoiding failover problems when you use DB2 v8.2 with HADR as your data store” on page 52

Tuning the JDBC data source of a messaging engine

The messaging engine needs to have the correct configuration for JDBC data source to achieve

messaging performance on a service integration bus.

Consider whether you need to configure the connection pool for the JDBC data source to achieve your

requirements for messaging performance.

The messaging engine uses the connection pool to obtain its connections to the database. With a heavy

workload, a messaging engine might require a large number of concurrent connections to avoid delays

waiting for connections to become available in the pool. For example, a very heavily loaded messaging

engine might need 50 or more connections. Perform the following steps to configure the connection pool to

meet your performance requirements:

1. Ensure that the configuration of your relational database management system (RDBMS) permits the

number of connections that you require. Refer to the documentation for your RDBMS for more

information.

2. Use the WebSphere administrative console to set the connection pool parameters. Navigate to the

General properties for your data source and click Additional properties → Connection pool

properties

a. Set the Maximum connections to the number of connections you require, for example, at least

50. The default number of connections is 10.

Tip: If your messaging engine times out when requesting a database connection, check the error

log. If the error log contains error message CWSIS1522E, increase the number of

connections and ensure that the configuration of your RDBMS permits that number of

connections.

b. Set the Purge policy to EntirePool. This policy enables the connection pool to release all

connections when the messaging engine stops.

Important: You must set this value if the messaging engine can failover in a cluster.

Controlling the memory buffers used by a messaging engine

To control the sizes of the memory buffers used by a messaging engine you should follow these

instructions and tips. Also learn about how to set the messaging engine to improve its interaction with its

data store.

Every messaging engine manages two memory buffers that contain messages and message-related data.

You can set the following properties to improve the interaction of a messaging engine with its data store.

Chapter 6. Tuning the application serving environment 49

Name Value

sib.msgstore.discardableDataBufferSize The size in bytes of the data buffer used by the messaging engine to contain

data for which the quality of service attribute is best effort nonpersistent. The

messaging engine holds this data entirely within this memory buffer and

never writes this data to the data store. When the messaging engine adds

data to this buffer, for example when the messaging engine receives a best

effort nonpersistent message from a client, the messaging engine might

discard data already in the buffer to make space. This behavior enables the

messaging engine to discard best effort nonpersistent messages.

The discardable data buffer contains all data for which the quality of service

attribute is best effort nonpersistent. That data comprises data both that is

involved in active transactions, and any other best effort nonpersistent that

the messaging engine has neither discarded nor consumed. The messaging

engine can discard only data that is not involved in active transactions.

Tip: If the messaging engine attempts to add data to the discardable data

buffer when insufficient space remains after discarding all the data that is not

involved in active transaction, the messaging engine throws a

com.ibm.ws.sib.msgstore.OutOfCacheSpace exception. Client applications

can catch this exception, wrapped inside API-specific exceptions such as

javax.jms.JMSException.

The sib.msgstore.discardableDataBufferSize property of the messaging

engine controls the size of the discardable data buffer. You specify the value

of this property in bytes. The default value is 320000, which is approximately

320 kilobytes.

sib.msgstore.cachedDataBufferSize The size in bytes of the data buffer used by the messaging engine to contain

data for which the quality of service attribute is better than best effort

nonpersistent and which is held in the data store. The purpose of the cached

data buffer is to optimize the performance of the messaging engine by

caching in memory the data that the messaging engine might otherwise need

to read from the data store. As it writes data to the data store and reads from

the data store, the messaging engine attempts to add that data to the

cached data buffer. The messaging engine might discard data already in the

buffer to make space.

The sib.msgstore.cachedDataBufferSize property of the messaging engine

controls the size of the cached data buffer. You specify the value of this

property in bytes. The default value is 320000, which is approximately 320

kilobytes.

sib.msgstore.transactionSendLimit The maximum number of operations that the messaging engine includes in

each transaction. For example, each JMS send or receive is an operation

that counts towards the transaction send limit. The default value is 100.

Attention: The messaging engine uses approximate calculations to manage the data it holds in the

memory buffers. Neither of the DataBufferSize properties gives an accurate indication of the amount of

memory that the messaging engine consumes in the JVM heap. The messaging engine can consume

considerably more heap storage than the DataBufferSize properties indicate.

To set the properties of a messaging engine to improve its interaction with its data store, use the

administrative console to complete the following steps:

1. In the navigation pane, click Service integration → Buses → [Content Pane] bus_name → [Topology]

Messaging engines → engine_name → [Additional Properties] Custom properties.

2. Type the name of the property that you want to set.

3. Type the value that you want to set for that property.

4. Click OK.

50 Tuning guide

5. Save your changes to the master configuration.

Remember: When you change any of these properties, the new values do not take effect until you restart

the messaging engine.

Increasing the number of data store tables to relieve concurrency bottleneck

Service integration technologies enables users to spread the data store for a messaging engine across

several tables. In typical use this is unlikely to have a significant influence. However, if statistics suggest a

concurrency bottleneck on the SIBnnn tables for a data store, you might try to solve the problem by

increasing the number of tables.

For more information on the set of tables in a data store see Data store tables

 SIB000 contains information about the structure of the data in the

other two tables – the “stream table”

SIB001 contains persistent objects – the “permanent item table”

SIB002 contains nonpersistent objects that have been saved to

the data store to reduce the messaging engine memory

requirement – the “temporary item table”

Having multiple tables means you can relieve any performance bottleneck you might have in your system.

You can modify SIBnnn tables of the data store of a messaging engine. You can increase the number of

permanent and temporary tables (SIB001 and SIB002), although there is no way to increase the number

of stream tables (SIB000).

This example illustrates what the SIBnnn tables for a data store might look like after modification:

 SIB000 contains information about the structure of the data in the

other two tables – the “stream table”

SIB001 contains persistent objects – the “permanent item table”

SIB002 contains persistent objects – the “permanent item table”

SIB003 contains persistent objects – the “permanent item table”

SIB004 contains nonpersistent objects that have been saved to

the data store to reduce the messaging engine memory

requirement – the “temporary item table”

SIB005 contains nonpersistent objects that have been saved to

the data store to reduce the messaging engine memory

requirement – the “temporary item table”

For instructions on how to configure the data store to use multiple item table, see the following topics:

Diagnosing problems with your data store configuration

Find out how to diagnose problems that are caused by your data store configuration and possible solutions

to these problems.

The following problems depend on the database that you use with your data store configuration and the

level of that database:

v Examine this section if your messaging engine uses an Oracle 9i database for its data store and your

messaging engine fails to start. If the messaging engine fails with the following message, where

XXXXXXXX is the schema for the table, ensure that your Oracle installation is at 9.2.0.4, or higher:

CWSIS1530E: The data type, 1,111, was found instead of the expected type, 2,004, for column,

LONG_DATA, in table, XXXXXXXX.SIB000.

Chapter 6. Tuning the application serving environment 51

v Examine this section if your messaging engine uses a Sybase database for its data store. When you

create your Sybase server:

– Ensure that you create the database server with a page size of at least 4k.

– Ensure that you set the lock scheme property on your server to the value datarows. This avoids the

possibility of a deadlock on the data store tables.

v Examine this section if your messaging engine uses an Informix database for its data store and the

messaging engine is unable to access its data store. When you configure your messaging engine to use

an Informix database, ensure that you specify the schema name in lower case. For a full description of

the configuring procedure, refer to Modify data store configurations.

Avoiding failover problems when you use DB2 v8.2 with HADR as your data store

Use this task to avoid problems that can occur when a messaging engine that is configured to use DB2

v8.2 with the High Availability Data Recovery (HADR) feature for its data store terminates if the DB2

database fails over.

If you use the High Availability Data Recovery (HADR) feature of DB2, note the following restrictions:

v The messaging engine default messaging provider supports only the synchronous and

near-synchronoous synchronization modes of HADR. The default messaging provider does not support

asynchronous HADR configurations.

v The TAKEOVER BY FORCE command is permitted only when the standby database is in peer state, or

in a non-peer state (such as disconnected state) having changed from peer state.

One-phase commit optimization tuning

If you have configured your messaging engine to use a data store, you can achieve better performance by

configuring both the messaging engine and container-managed persistent (CMP) beans.

You need to configure both the CMP and the messaging engine’s resource authorization so that they

share the same data source.

1. Open the administrative console.

2. Click on Enterprise Applications > servername > Map data sources for all 2.x CMP beans.

3. On the content pane, select the check boxes next to all the CMPs.

4. Select Per application in the Resource authorization selection list.

5. You can modify the messaging engine’s resource authorization to Per application by modify the

property file sib.properties by adding the custom property

sib.msgstore.jdbcResAuthForConnections=Application.

Setting tuning properties for a mediation

Use this task to tune a mediation for performance using the administrative console.

Before you begin this task, you should review the guidance on when it is appropriate to tune a mediation

for performance in the topic Guidance for tuning mediations for performance.

You can set the following tuning property to improve the performance of a mediation:

 Name Value

sib:SkipWellFormedCheck Whether you want to omit the well formed check that is

performed on messages after they have been processed

by the mediation. Either true or false.

Note: This property is overridden for messages that have

the delivery option assured persistent, and a well formed

check is always performed.

52 Tuning guide

To set, or unset, one or more tuning properties for a mediation, use the administrative console to complete

the following steps:

1. Display the mediation context information:

a. In the navigation pane, click Service integration → Buses

b. In the content pane, click the name of the service integration bus.

c. In the content pane, under Destination resources, click Mediations.

d. In the content pane, select the name of the mediation for which you want to configure tuning

information.

e. Under Additional Properties, click Context information.

2. In the content pane, click New.

3. Type the name of the property in the Name field.

4. Select the type Boolean in the list box.

5. Type true in the Context Value field to set the property, or type false to unset the property.

6. Click OK.

7. Save your changes to the master configuration.

Enabling CMP entity beans and messaging engine data stores to share

database connections

Use this task to enable container-managed persistence (CMP) entity beans to share the database

connections used by the data store of a messaging engine. This has been estimated as a potential

performance improvement of 15% for overall message throughput, but can only be used for entity beans

connected to the application server that contains the messaging engine.

To enable CMP entity beans to share the database connections used by the data store of a messaging

engine, complete the following steps:

1. Configure the data store to use a data source that is not XA-capable. For more information about

configuring a data store, see Configuring a JDBC data source.

2. Select the Share data source with CMP option.

This option is provided on the JMS connection factory or JMS activation specification used to connect

to the service integration bus that hosts the bus destination that is used to store and process

messages for the CMP bean.

For example, to select the option on a unified JMS connection factory, complete the following steps:

a. Display the default messaging provider. In the navigation pane, expand Resources → JMS → JMS

Providers.

b. Select the default provider for which you want to configure a unified connection factory.

c. Optional: Change the Scope check box to set the level at which the connection factory is to be

visible, according to your needs.

d. In the content pane, under Additional Properties, click Connection factories

e. Optional: To create a new unified JMS connection factory, click New.

Specify the following properties for the connection factory:

Name Type the name by which the connection factory is known for administrative purposes.

JNDI name

Type the JNDI name that is used to bind the connection factory into the name space.

Bus name

Type the name of the service integration bus that the connection factory is to create

connections to. This service integration bus hosts the destinations that the JMS queues

and topics are assigned to.

Chapter 6. Tuning the application serving environment 53

f. Optional: To change the properties of an existing connection factory, click one of the connection

factories displayed. This displays the properties for the connection factory in the content pane.

g. Select the check box for the Share data source with CMP field

h. Click OK.

i. Save your changes to the master configuration.

The JMS connection factory can only be used to connect to a “local” messaging engine that is in the

application server on which the CMP beans are deployed.

3. Deploy the CMP beans onto the application server that contains the messaging engine, and specify

the same data source as used by the messaging engine. You can use the administrative consoles to

complete the following steps:

a. Optional: To determine the data source used by the messaging engine, click Servers →

Application servers → server_name → Messaging engines → engine_name → Data store The

Data source name field displays the name of the data source; by default:

jdbc/com.ibm.ws.sib/engine_name

b. Click Applications → Install New Application

c. On the first Preparing for application install page, specify the full path name of the source

application file (.ear file otherwise known as an EAR file), then click Next

d. On the second Preparing for application install page, complete the following steps:

1) Select the check box for the Generate Default Bindings property. Data source bindings (for EJB

1.1 JAR files) are generated based on the JNDI name, data source user name password

options. This results in default data source settings for each EJB JAR file. No bean-level data

source bindings are generated.

2) Under Connection Factory Bindings, click the check box for the Default connection factory

bindings: property, then type the JNDI name for the data source and optionally select a

Resource authorization value.

3) Click Next

4. If your application uses EJB modules that contain Container Managed Persistence (CMP) beans that

are based on the EJB 1.x specification, for Step: Provide default data source mapping for modules

containing 1.x entity beans, specify a JNDI name for the default data source for the EJB modules. The

default data source for the EJB modules is optional if data sources are specified for individual CMP

beans.

5. If your application has CMP beans that are based on the EJB 1.x specification, for Step: Map data

sources for all 1.x CMP, specify a JNDI name for data sources to be used for each of the 1.x CMP

beans. The data source attribute is optional for individual CMP beans if a default data source is

specified for the EJB module that contains CMP beans. If neither a default data source for the EJB

module nor a data source for individual CMP beans are specified, then a validation error displays after

you click Finish (step 13) and the installation is cancelled.

6. Complete other panels as needed.

7. On the Summary panel, verify the cell, node, and server onto which the application modules will install:

a. Beside Cell/Node/Server, click Click here.

b. Verify the settings on the Map modules to servers page displayed. Ensure that the application

server that is specified contains the messaging engine and its data store.

c. Specify the Web servers as targets that will serve as routers for requests to this application. This

information is used to generate the plug-in configuration file (plugin-cfg.xml) for each Web server.

d. Click Finish.

For more information about installing applications, see Installing application files with the console.

54 Tuning guide

Tuning service integration technologies

Use this task to set tuning properties that control the performance of message-driven beans and other

messaging applications deployed to use service integration technologies.

To optimize the performance of messaging with service integration technologies, such as message-driven

beans that use the default messaging provider, you can use the following parameters set through the

WebSphere administrative console or command line interfaces.

v Viewing the Available Message Count on a destination enables you to determine whether your message

consumers are able to cope with your current workload. If the available message count on a given

destination is too high, or is increasing over time, you should consider some of the tuning

recommendations on this page.

1. To monitor the available message count for a queue, you need to enable runtime

AvailableMessageCount statistics for the queue. If you restart administrative server, you need to

enable AvailableMessageCount statistics again because such runtime settings are not preserved

when the server is restarted.

To enable AvailableMessageCount statistics using the administrative console, complete the following

steps:

a. In the navigation pane, click Monitoring and Tuning → Performance Monitoring Infrastructure

(PMI)

b. In the content pane, click server_name

c. Click the Runtime tab.

d. In the Currently monitored statistic set, click Custom

e. On the Custom monitoring level panel, click SIB Service → SIB Messaging Engines →

messageEngine_name → Destinations → Queues → queue_name

f. Select the AvailableMessageCount option.

g. Click the Enable button at the top of the panel.

2. To view the available message count, you can use the administrative console to complete the

following steps:

a. In the navigation pane, click Monitoring and Tuning → Performance Viewer → Current activity

b. In the content pane, click server_name

c. Click Performance Modules → SIB Service → SIB Messaging Engines →

messageEngine_name → Destinations → Queues → queue_name

d. Click the View Module(s) button at the top of the Resource Selection panel, located on the left

side. This displays the AvailableMessageCount data in the Data Monitoring panel, located on the

right side.

You can use the Data Monitoring panel to manage the collection of monitoring data; for example,

you can use the buttons to start or stop logging, or to change the data displayed as either a

table or graph.

v Monitoring MDB Thread Pool Size for the Default Message Provider. You may experience a

performance bottleneck if there are insufficient threads available for the Message Driven Beans. There

is a trade-off between providing sufficient threads to maximize the throughput of messages and

configuring excessive threads, which can lead to CPU starvation of the threads in the application server.

If you notice that the throughput for express nonpersistent, reliable nonpersistent, or reliable persistent

messaging has fallen as a result of increasing the size of the default thread pool, then you should

decrease the size of the thread pool and reassess the message throughput.

1. By default MDBs use the default thread pool. To view or change the number of threads in the

default thread pool for an application server, you can use the administrative console to complete the

following steps:

a. In the navigation pane, click Servers → Application servers

b. In the content pane, click server_name

Chapter 6. Tuning the application serving environment 55

c. Under Additional properties, click Thread Pools → Default. By default the Minimum size value is

set to 5 and the Maximum size value is set to 20. The best performance is obtained by setting

the Maximum size value to the expected maximum concurrency for all message-driven beans.

For high throughput using a single message-driven bean, 41 was found to be the optimal

Maximum size value.

d. To change the Maximum size value, type the new value in the Maximum size field then click OK.

Finally, save your changes to the master configuration.

2. As the default thread pool is also used by other WAS components it can be beneficial to define a

separate thread pool for the MDBs. This will reduce thread contention for the default thread pool. To

create your own thread pool you can use the administrative console to complete the following steps:

a. In the navigation pane, click Servers → Application servers

b. In the content pane, click server_name

c. Under Additional properties, click Thread Pools. Create a new thread pool. Create sufficient

threads to support the maximum amount of concurrent work for the MDBs.

d. b. Change the SIB JMS Resource Adapter to use the new thread pool: Resources -> Resource

Adapters -> Resource Adapters.

e. Open Preferences and select the SIB JMS Resource Adapter with the appropriate scope

depending upon the scope of the connection factories. Add the name of the new thread pool in

the Thread pool alias box. Click Apply and save the changes.

v Tuning MDB performance with the default messaging provider.

1. The maximum concurrent endpoints parameter controls the amount of concurrent work that can be

processed by an MDB. The parameter is applicable to MDBs using an activation specification.

Increasing the number of concurrent endpoints can improve performance but can increase the

number of threads in use at one time. To benefit from a change in this parameter, there should be

sufficient threads available in the MDB thread pool to support the concurrent work. If message

ordering must be retained across failed deliveries this parameter should be set to 1. This parameter

can be set from the administrative console:

a. Click on Resources -> JMS -> Activation Specification.

2. 2. Delivering batches of messages to each MDB endpoint can improve performance particularly

when used with Acknowledge mode set to Duplicates-ok auto-acknowledge. This parameter is

applicable to MDBs using an activation specification. If message-ordering must be retained across

failed deliveries, the batch size should be set to 1. This parameter can be set from the

administrative console:

a. Click on Resources -> JMS -> Activation Specification.

For additional information about tuning the throttling of message-driven beans, including controlling

the maximum number of instances of each message-driven bean and the message batch size for

serial delivery, see Configuring MDB throttling on the default messaging provider.

v Reducing the number of OutOfCacheSpace errors in the SystemOut.log file.

OutOfCacheSpace errors in the SystemOut.log file indicate that the discardable data buffer used by the

messaging engine is overflowing. For best effort nonpersistent messages, the messaging engine starts

to discard messages when this buffer is full. You can increase the size of this data buffer to allow more

best effort nonpersistent data to be handled before the messaging engine begins to discard the

messages.

For more information about tuning the size of the discardable data buffer, set by the

sib.msgstore.discardableDataBufferSize property of a messaging engine, see “Controlling the memory

buffers used by a messaging engine” on page 49.

v Reducing the occurrence of OutOfMemoryError exceptions when processing a large set of messages

within a transaction. If the cumulative size of the set of messages being processed within a transaction

by the service integration bus is large enough to exhaust the JVM heap, OutOfMemoryError exceptions

occur. Consider one of the following options:

56 Tuning guide

– Increase the heap size for the Java Virtual Machine (JVM) used by the WebSphere Application

Server by setting the Initial Heap Size and Maximum Heap Size properties of the application server.

To view the administrative console page, click Servers → Application Servers → server_name →

Server Infrastructure → Process Definition → Java Virtual Machine. For more information about

changing the JVM configuration for the application server, see Java virtual machine settings.

– Reduce the cumulative size of the set of messages being processed within the transaction.

v Changing the maximum connections in a Connection Factory for the default messaging provider. The

maximum connections parameter limits the number of local connections. The default is 10. This

parameter should be set to a number equal to or greater than the number of threads (enterprise beans)

concurrently sending messages. Using the administrative console you can set the Maximum

connections property as follows:

1. Click on Resources -> JMS -> Topic Connection Factory -> factory_name -> Connection pool

properties

2. Enter the required value in the Maximum connections field.

3. Click Apply and save the changes to master configurations.

v Tuning the messaging engine message stores

– For file store configurations see File stores .

– For tuning information of JDBC data sources see “Tuning and problem solving for messaging engine

data stores” on page 49

v Additional tuning advice for a messaging engine using a JDBC data source.

To improve the performance of messaging throughput of a messaging engine data store, you can tune

the JDBC connection pool and statement cache size. In tests of high throughput MDB workloads, the

following changes provided a 10% gain in throughput.

1. The messaging engine uses a connection pool for managing the JDBC connections to its data store.

Tuning the size of the pool can improve the messaging throughput.

To view or change the size of the connection pool, you can use the administrative console to

complete the following steps:

a. In the navigation pane, click Resources → JDBC Providers

b. In the content pane, click jdbc_provider_name

c. Under Additional properties, click Data sources → data_source_name

d. Under Additional properties, click Connection pool properties

e. View the Maximum connections property and the Minimum connections property. By default,

these properties are set to Maximum connections=10 and Minimum connections=1. Setting the

value of both these properties to 50 is recommended. For especially high throughput workloads,

setting the value of both these properties up to 100 can be beneficial. You may need to

configure the underlying database to accept this many concurrent connections.

f. To change the value of a property, type a new value in the property field then click OK. Finally,

save your changes to the master configuration.

2. The statement cache contains recently used prepared statements to remove the costs associated

with repeated preparation of statements. Tuning the size of the cache helps prevent useful entries

from being discarded to make room for new entries.

To view or change the size of the statement cache, you can use the administrative console to

complete the following steps:

a. In the navigation pane, click Resources → JDBC Providers

b. In the content pane, click jdbc_provider_name

c. Under Additional properties, click Data sources → data_source_name

d. Under Additional properties, click WebSphere Application Server data source properties

e. View the Statement cache size property. By default, the value of this property is set to 10. For

high throughput JMS messaging, a value of 40 is recommended.

Chapter 6. Tuning the application serving environment 57

f. To change the value of the property, type a new value in the property field then click OK. Finally,

save your changes to the master configuration.

v Tuning reliability levels for messages.

The reliability level chosen for the messages has a significant impact on performance. In order of

decreasing performance (fastest first), the reliability levels are: Best-Effort Nonpersistent, Express

Nonpersistent, Reliable Nonpersistent, Reliable Persistent, and Assured Persistent. For MDB

point-to-point messaging, best-effort nonpersistent throughput is more than 6 times greater than assured

persistent.

For more information about reliability levels, see Message reliability levels.

v Tuning MDB performance with the default messaging provider.

For information about tuning the throttling of message-driven beans, including controlling the maximum

number of instances of each message-driven bean and the message batch size for serial delivery, see

Configuring MDB throttling on the default messaging provider.

Tuning the SIBWS

You can use the administrative console or a Jacl script to tune performance settings for the service

integration bus Web services enablement (SIBWS).

The SIBWS dynamically selects an optimized route through the code where possible. If you migrate Web

services from the WebSphere Application Server Version 5 Web services gateway, and you do not use

mediations to support previous Gateway filter applications, then your messages avoid being routed through

the internal infrastructure that enables additional SIBWS functionality. This fast-path route through the bus

is used if the following criteria are met:

v The inbound port and outbound port for the service are on the same server.

v There are no mediations on the path from the inbound port to the outbound port.

Further optimizations can be made, if your configuration meets the previous two criteria, and also meets

the following criteria:

v The inbound template WSDL URI is the same location as the Outbound Target Service WSDL location

URI.

v The inbound service template WSDL service name matches the outbound WSDL service name.

v The inbound service template port name matches the outbound WSDL port name.

v The mapping of the namespaces is disabled (that is, you have set the inbound service property

com.ibm.websphere.wsgw.mapSoapBodyNamespace to false).

v Operation-level security is not enabled on the outbound service.

If your Web services use the fast-path route, you need not tune mediations or the service integration bus.

However it is good practise to do so, because a typical environment will have at least one non-fast-path

(for example, mediated) service.

To improve the performance of the SIBWS, you can tune the following parameters:

v The Java virtual machine heap size. This helps ensure there is enough memory available to process

large messages, or messages with large attachments.

v The maximum number of instances of a message-driven bean that are permitted by the activation

specification for the service integration technologies resource adapter. This throttles the number of

concurrent clients serviced.

v The maximum batch size for batches of messages to be delivered to a client. By default, only a single

message is delivered to a message-driven bean instance at one time; you can improve performance by

allowing messages to be sent in batches to a message-driven bean.

58 Tuning guide

v The number of threads available to service requests for each client. That is, the number of threads

available in the default thread pool, the Web container thread pool and the mediation thread pool for a

given application server.

v The number of threads available in the mediation thread pool. This assumes that your mediations use

concurrent support where appropriate, as explained in Concurrent mediations.

If you have mediations that act on SOAP headers, you can improve performance by inserting the

associated header schemas (.xsd files) into the SDO repository.

To tune the SIBWS, complete one of the following two steps:

v Use the administrative console to tune the SIBWS, or

v Use a Jacl script to tune the SIBWS.

If you have mediations that act on SOAP headers, also complete the following step:

v Insert the header schemas into the SDO repository.

v Optional: To use the administrative console to tune the SIBWS, complete the following steps:

1. Use the topic Tuning Java virtual machines to set the JVM heap size to a larger value than the

default value (256 megabytes). The value should generally be as large as possible without incurring

paging.

2. Use the topic Tuning service integration messaging to tune the maximum number of instances of a

message-driven bean, the maximum batch size for batches of messages for a bean, and the

number of threads available to service requests for a bean.

3. Use the topic Tuning the application serving environment to tune the general application serving

environment, in particular the size of the Web Container Thread Pool. In a server which is

exclusively serving requests to the SIBWS the default thread pool and the Web Container thread

pool should be the same size.

4. Use the topic Configuring the mediation thread pool to configure the number of threads available to

concurrent mediations.

v To use a Jacl script to tune the SIBWS, use the wsadmin scripting client (from within Qshell) to run a

script based on the following example:

#--

SIBWS WebSphere Tuning Script

#--

This script is designed to modify some of the tuning pertinent to a SIBWS

deployment.

In order to tune the config parameters, simply change the values

provided below. This script assumes that all server names in a

cluster configuration are unique.

To invoke the script, type:

wsadmin -f tuneWAS.jacl <scope> <id>

scope - ’cluster’ or ’server’

id - name of target object within scope (i.e. servername)

Examples:

wsadmin -f tuneWAS.jacl server server1

wsadmin -f tuneWAS.jacl cluster WSGWCluster#

#--

$AdminConfig setValidationLevel NONE

puts "Starting script..."

puts "Reading config parameters..."

#--

COMMON CONFIG PARAMETERS

- Adjust these parameters based on the intended target system (Defaults in parentheses)

Chapter 6. Tuning the application serving environment 59

#--

WebContainer Thread Pool (10,50)

set minWebPool 10

set maxWebPool 15

Default Thread Pool - (Multiprotocol MDB) (10,50)

set minDefaultPool 10

set maxDefaultPool 15

Mediations Thread Pool (1,5)

set minMediationPool 10

set maxMediationPool 15

HTTP KeepAlive settings (true, 100)

set keepAliveEnabled true

set maxPersistentRequests -1

Inactivity Timeouts for thread pools (3500)

set inactivity 3500

JVM properties

set minHeap 1280

set maxHeap 1280

set verboseGC "false"

set genericArgs ""

J2CActivationSpec for the SIB_RA Resource adapter

set SIB_RA_maxConcurrency 15

set SIB_RA_maxBatchSize 5

Java2 Security (false for 5.1 and true for 6.0)

set j2Security false

Parallel server startup

set parallelStart false

#---

Check/Print Usage

#---

proc printUsageAndExit {} {

 puts " "

 puts "Usage: wsadmin -f tuneWAS.jacl <cluster | server> <name>"

 exit

}

#---

Misc Procedures

#---

proc getName {objectid} {

 set endIndex [expr [string first "(" $objectid] - 1]

 return [string range $objectid 0 $endIndex]

}

#---

Parse command line arguments

#---

puts "Parsing command line arguments..."

if {[llength $argv] < 2} {

 printUsageAndExit

} else {

60 Tuning guide

set scope [lindex $argv 0]

 puts "Scope: ${scope}"

 if {$scope == "cluster"} {

 set clustername [lindex $argv 1]

 puts "Cluster: ${clustername}"

 } elseif {$scope == "server"} {

 set servername [lindex $argv 1]

 puts "Server: ${servername}"

 } else {

 puts "Error: Invalid Argument ($scope)"

 printUsageAndExit

 }

}

#---

Obtain server list

#---

puts ""

puts "Obtaining server list..."

if {$scope == "cluster"} {

 set cluster [$AdminConfig getid "/ServerCluster:${clustername}/"]

 set temp [$AdminConfig showAttribute $cluster members]

 set memberList [split [string trim $temp "{ }"] " "]

 foreach member $memberList {

 set memberName [getName $member]

 lappend serverList [$AdminConfig getid "/Server:${memberName}/"]

 }

} else {

 set server [$AdminConfig getid "/Server:${servername}/"]

 lappend serverList $server

}

#---

Print config properties

#---

puts ""

puts "WebSphere configuration"

puts "-----------------------"

puts ""

puts " Enforce Java2 Security: ${j2Security} "

puts ""

puts "Servers:"

foreach server $serverList {

 puts " [getName $server]"

}

puts ""

puts " Web --"

puts " Min WebContainer Pool Size: ${minWebPool} "

puts " Max WebContainer Pool Size: ${maxWebPool} "

puts " JVM --"

puts " Min JVM Heap Size: ${minHeap} "

puts " Max JVM Heap Size: ${maxHeap} "

puts " Verbose GC: ${verboseGC}"

puts ""

#---

Modify cell parameters

#---

Accessing cell based security config

Chapter 6. Tuning the application serving environment 61

puts "Accessing security configuration..."

set sec [$AdminConfig list Security]

set attrs [subst {{enforceJava2Security $j2Security}}]

puts "Updating security..."

$AdminConfig modify $sec $attrs

#---

Modify server parameters

#---

foreach server $serverList {

 set servername [getName $server]

 puts ""

 puts "Server: $servername"

 puts ""

 # Accessing server startup config

 puts "Accessing server startup configuration..."

 puts "Parallel Startup (old/new): [$AdminConfig showAttribute $server parallelStartEnabled]/

$parallelStart"

 set attrs [subst {{parallelStartEnabled $parallelStart}}]

 puts "Updating server startup..."

 puts ""

 $AdminConfig modify $server $attrs

 # Accessing web container thread pool config

 puts "Accessing web container thread pool configuration..."

 set tpList [$AdminConfig list ThreadPool $server]

 set oI [lsearch -glob $tpList "*WebContainer*"]

 set webPool [lindex $tpList $oI]

 puts "ThreadPool MaxSize (old/new): [$AdminConfig showAttribute $webPool maximumSize

]/$maxWebPool"

 puts "ThreadPool MinSize (old/new): [$AdminConfig showAttribute $webPool minimumSize

]/$minWebPool"

 puts "ThreadPool Inactivity Timeout (old/new): [$AdminConfig showAttribute $webPool

inactivityTimeout]/$inactivity"

 set attrs [subst {{maximumSize $maxWebPool} {minimumSize $minWebPool} {inactivityTimeout

$inactivity}}]

 puts "Updating web container thread pool..."

 puts " "

 $AdminConfig modify $webPool $attrs

 # Accessing default thread pool config

 puts "Accessing default thread pool configuration..."

 set tpList [$AdminConfig list ThreadPool $server]

 set oI [lsearch -glob $tpList "*Default*"]

 set webPool [lindex $tpList $oI]

 puts "ThreadPool MaxSize (old/new): [$AdminConfig showAttribute $webPool maximumSize

]/$maxDefaultPool"

 puts "ThreadPool MinSize (old/new): [$AdminConfig showAttribute $webPool minimumSize

]/$minDefaultPool"

 puts "ThreadPool Inactivity Timeout (old/new): [$AdminConfig showAttribute $webPool

inactivityTimeout]/$inactivity"

 set attrs [subst {{maximumSize $maxDefaultPool} {minimumSize $minDefaultPool} {inactivityTimeout

$inactivity}}]

 puts "Updating default thread pool..."

 puts " "

 $AdminConfig modify $webPool $attrs

 # Creating Mediations Thread Pool

 puts "Creating Mediations thread pool"

 set me [$AdminConfig list SIBMessagingEngine]

62 Tuning guide

set mtpName [$AdminConfig showAttribute $me name]-mediationThreadPool

 set tpAttrs [subst {{name $mtpName} {minimumSize $minMediationPool} {maximumSize

$maxMediationPool}}]

 puts "ThreadPool Name : $mtpName"

 puts "ThreadPool MaxSize : $maxMediationPool"

 puts "ThreadPool MinSize : $minMediationPool"

 $AdminConfig create ThreadPool $me $tpAttrs mediationThreadPool

 puts "Mediations Thread Pool Created"

 puts " "

 # Accessing HTTP keepalive config

 puts "Accessing HTTP KeepAlive configuration..."

 set HTTPInbound [$AdminConfig list HTTPInboundChannel $server]

 set oI [lsearch -glob $HTTPInbound "*HTTP_2*"]

 set http2 [lindex $HTTPInbound $oI]

 puts "KeepAlive Enabled (old/new): [$AdminConfig showAttribute $http2 keepAlive]/

$keepAliveEnabled"

 puts "Max Persistent Requests (old/new): [$AdminConfig showAttribute $http2

maximumPersistentRequests]/$maxPersistentRequests"

 set attrs [subst {{keepAlive $keepAliveEnabled} {maximumPersistentRequests

$maxPersistentRequests}}]

 puts "Updating HTTP KeepAlives..."

 puts " "

 $AdminConfig modify $http2 $attrs

 # Accessing JVM config

 puts "Accessing JVM configuration..."

 set jvm [$AdminConfig list JavaVirtualMachine $server]

 puts "Initial Heap Size (old/new): [$AdminConfig showAttribute $jvm initialHeapSize]/$minHeap"

 puts "Maximum Heap Size (old/new): [$AdminConfig showAttribute $jvm maximumHeapSize]/$maxHeap"

 puts "VerboseGC Enabled (old/new): [$AdminConfig showAttribute $jvm

verboseModeGarbageCollection]/$verboseGC"

 set attrs [subst {{initialHeapSize $minHeap} {maximumHeapSize $maxHeap}

{verboseModeGarbageCollection $verboseGC} }]

 puts "Updating JVM..."

 puts " "

 $AdminConfig modify $jvm $attrs

 # Accessing J2CActivationSpec for the SIB Resource Adapter

 puts "Modifying the J2CActivationSpec for the SIB Resource Adapter"

 set actSpec [$AdminConfig getid /J2CActivationSpec:SIBWS_OUTBOUND_MDB/]

 set propSet [$AdminConfig showAttribute $actSpec resourceProperties]

 set propSet [lindex $propSet 0]

 set maxConcurrency [list value $SIB_RA_maxConcurrency]

 set maxConcurrency [list $maxConcurrency]

 set maxBatchSize [list value $SIB_RA_maxBatchSize]

 set maxBatchSize [list $maxBatchSize]

 foreach propId $propSet {

 if { [string compare [$AdminConfig showAttribute $propId name] maxConcurrency] == 0} {

 $AdminConfig modify $propId $maxConcurrency

 puts "Custom property changed : [$AdminConfig showall $propId] "

 }

 if { [string compare [$AdminConfig showAttribute $propId name] maxBatchSize] == 0} {

 $AdminConfig modify $propId $maxBatchSize

 puts "Custom property changed : [$AdminConfig showall $propId] "

 }

 }

 puts "J2CActivationSpec modifications complete"

}

Chapter 6. Tuning the application serving environment 63

puts ""

puts "Script completed..."

puts "Saving config..."

$AdminConfig save

v Optional: If you have mediations that act on SOAP headers, insert the associated schemas (.xsd files)

into the SDO repository as described in “Including SOAP header schemas in the SDO repository.”

Including SOAP header schemas in the SDO repository

Mediations accessing SOAP headers should ensure that the SOAP header schema is made available to

the SDO repository. This simplifies access to the header fields (see Web Services code example) and can

provide a significant performance benefit. Normally the schema (.xsd file) for a SOAP header is already

available to the application developer.

Here is an example of a header (used for routing) that is passed in the SOAP message:

<soapenv:Header>

<hns0:myClientToken xmlns:hns0="http://www.ibm.com/wbc">

 <UseRoutingId>true</ UseRoutingId >

 <RoutingID>5</ RoutingID >

 </hns0: myClientToken >

</soapenv:Header>

Here is an example of an associated header schema:

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

 targetNamespace="http://www.ibm.com/wbc"

 elementFormDefault="unqualified">

<xs:element name=" myClientToken">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="UseRoutingId" type="xs:string"/>

 <xs:element name="RoutingID" type="xs:string"/>

 </xs:sequence>

 </xs:complexType>

</xs:element>

</xs:schema>

To insert the schema into the SDO repository, complete the following steps:

1. Create a Jacl script called sdoXSDImport.jacl that contains the following code:

set xsdFile [lindex $argv 0]

set xsdKey [lindex $argv 1]

set sdoRep [$AdminControl queryNames *,type=SdoRepository,node=[$AdminControl getNode]]

puts [$AdminControl invoke $sdoRep importResource [list $xsdKey $xsdFile]]

Note: To create an equivalent script for removing a resource from the SDO repository, take a copy of

this script and modify the final line as follows:

$AdminControl invoke $sdoRep removeResource [list $xsdKey false]

2. Use the wsadmin scripting client (from within Qshell) to insert the schema into the SDO repository by

entering the following command:

wsadmin -f sdoXSDImport.jacl your_header.xsd your_header_namespace

where

v your_header.xsd is the name of the file that contains your header schema.

v your_header_namespace is the target namespace for the header. For example http://
yourCompany.com/yourNamespace.

64 Tuning guide

Setting tuning properties for service integration

Use this task to set tuning properties for the service integration environment.

The service integration environment includes properties that you can set to improve the performance of a

messaging engine or the component of the messaging engine that manages the data store. These

properties are known collectively as “tuning properties”. You can set these properties either with the

WebSphere administrative console or by editing the sib.properties file.

Tip: Properties set with the WebSphere administrative console take precedence over properties set in the

sib.properties file.

To set tuning properties using the administrative console, click the relevant link from the following list:

v “Setting tuning properties of a messaging engine” on page 48.

v “Controlling the memory buffers used by a messaging engine” on page 49.

You can also use the administrative console to tune the data source. Refer to “Tuning the JDBC data

source of a messaging engine” on page 49.

To set tuning properties for any of the components mentioned above by editing the sib.properties file, refer

to Setting tuning properties by editing the sib.properties file.

Sub-topics

Setting tuning properties of a messaging engine

Use this task to set the tuning properties for a messaging engine.

You can set the following property to improve the performance of a messaging engine:

 Name Value

sib.trm.retry The messaging engine to messaging engine connection

retry interval in seconds. The retry interval is the time

delay left between attempts to contact neighboring

messaging engines with which communications contact

should exist. The default retry interval is 30 seconds.

To set the tuning properties for a messaging engine, use the administrative console to complete the

following steps:

1. In the navigation pane, click Service integration → Buses → [Content Pane] bus_name → [Topology]

Messaging engines → engine_name → [Additional Properties] Custom properties.

2. Type the name of the property that you want to set.

3. Type the value that you want to set for that property.

4. Click OK.

5. Save your changes to the master configuration.

6. Restart the messaging engine for the changes to take effect.

Controlling the memory buffers used by a messaging engine

To control the sizes of the memory buffers used by a messaging engine you should follow these

instructions and tips. Also learn about how to set the messaging engine to improve its interaction with its

data store.

Every messaging engine manages two memory buffers that contain messages and message-related data.

You can set the following properties to improve the interaction of a messaging engine with its data store.

Chapter 6. Tuning the application serving environment 65

Name Value

sib.msgstore.discardableDataBufferSize The size in bytes of the data buffer used by the messaging engine to contain

data for which the quality of service attribute is best effort nonpersistent. The

messaging engine holds this data entirely within this memory buffer and

never writes this data to the data store. When the messaging engine adds

data to this buffer, for example when the messaging engine receives a best

effort nonpersistent message from a client, the messaging engine might

discard data already in the buffer to make space. This behavior enables the

messaging engine to discard best effort nonpersistent messages.

The discardable data buffer contains all data for which the quality of service

attribute is best effort nonpersistent. That data comprises data both that is

involved in active transactions, and any other best effort nonpersistent that

the messaging engine has neither discarded nor consumed. The messaging

engine can discard only data that is not involved in active transactions.

Tip: If the messaging engine attempts to add data to the discardable data

buffer when insufficient space remains after discarding all the data that is not

involved in active transaction, the messaging engine throws a

com.ibm.ws.sib.msgstore.OutOfCacheSpace exception. Client applications

can catch this exception, wrapped inside API-specific exceptions such as

javax.jms.JMSException.

The sib.msgstore.discardableDataBufferSize property of the messaging

engine controls the size of the discardable data buffer. You specify the value

of this property in bytes. The default value is 320000, which is approximately

320 kilobytes.

sib.msgstore.cachedDataBufferSize The size in bytes of the data buffer used by the messaging engine to contain

data for which the quality of service attribute is better than best effort

nonpersistent and which is held in the data store. The purpose of the cached

data buffer is to optimize the performance of the messaging engine by

caching in memory the data that the messaging engine might otherwise need

to read from the data store. As it writes data to the data store and reads from

the data store, the messaging engine attempts to add that data to the

cached data buffer. The messaging engine might discard data already in the

buffer to make space.

The sib.msgstore.cachedDataBufferSize property of the messaging engine

controls the size of the cached data buffer. You specify the value of this

property in bytes. The default value is 320000, which is approximately 320

kilobytes.

sib.msgstore.transactionSendLimit The maximum number of operations that the messaging engine includes in

each transaction. For example, each JMS send or receive is an operation

that counts towards the transaction send limit. The default value is 100.

Attention: The messaging engine uses approximate calculations to manage the data it holds in the

memory buffers. Neither of the DataBufferSize properties gives an accurate indication of the amount of

memory that the messaging engine consumes in the JVM heap. The messaging engine can consume

considerably more heap storage than the DataBufferSize properties indicate.

To set the properties of a messaging engine to improve its interaction with its data store, use the

administrative console to complete the following steps:

1. In the navigation pane, click Service integration → Buses → [Content Pane] bus_name → [Topology]

Messaging engines → engine_name → [Additional Properties] Custom properties.

2. Type the name of the property that you want to set.

3. Type the value that you want to set for that property.

4. Click OK.

66 Tuning guide

5. Save your changes to the master configuration.

Remember: When you change any of these properties, the new values do not take effect until you restart

the messaging engine.

Tuning the JDBC data source of a messaging engine

The messaging engine needs to have the correct configuration for JDBC data source to achieve

messaging performance on a service integration bus.

Consider whether you need to configure the connection pool for the JDBC data source to achieve your

requirements for messaging performance.

The messaging engine uses the connection pool to obtain its connections to the database. With a heavy

workload, a messaging engine might require a large number of concurrent connections to avoid delays

waiting for connections to become available in the pool. For example, a very heavily loaded messaging

engine might need 50 or more connections. Perform the following steps to configure the connection pool to

meet your performance requirements:

1. Ensure that the configuration of your relational database management system (RDBMS) permits the

number of connections that you require. Refer to the documentation for your RDBMS for more

information.

2. Use the WebSphere administrative console to set the connection pool parameters. Navigate to the

General properties for your data source and click Additional properties → Connection pool

properties

a. Set the Maximum connections to the number of connections you require, for example, at least

50. The default number of connections is 10.

Tip: If your messaging engine times out when requesting a database connection, check the error

log. If the error log contains error message CWSIS1522E, increase the number of

connections and ensure that the configuration of your RDBMS permits that number of

connections.

b. Set the Purge policy to EntirePool. This policy enables the connection pool to release all

connections when the messaging engine stops.

Important: You must set this value if the messaging engine can failover in a cluster.

Data access resources

EJB Container tuning

If you use applications that affect the size of the EJB Container Cache, it is possible that the performance

of your applications can be impacted by an incorrect size setting. Monitoring Tivoli Performance Viewer

(TPV) is a great way to diagnose if the EJB Container Cache size setting is tuned correctly for your

application.

If the application has filled the cache causing evictions to occur, TPV will show a very high rate of

ejbStores() being called and probably a lower than expected CPU utilization on the application server

machine.

All applications using enterprise beans should have this setting adjusted from the default if the following

formula works out to more than 2000.

EJB_Cache_Size = (Largest number of Option B or C Entity Beans enlisted in a

transaction * maximum number of concurrent transactions) +

(Largest number of unique Option A Entity Beans expected to be accessed during

typical application workload) +

(Number of stateful Session Beans active during typical workload) +

(Number of stateless SessionBean types used during typical workload)

Chapter 6. Tuning the application serving environment 67

Where:

Option B and C Entity Beans are only held in the EJB cache during the lifetime

of the transaction they are enlisted in. Therefore, the first term in the formula

computes the average EJB cache requirements for these types of beans.

Option A Entity Beans are held in the EJB cache indefinitely, and are only removed

 from the cache if there start to become more beans in the cache than the cache

size has been set to.

Stateful Session Beans are held in the EJB cache until they are removed by the

application, or their session timeout value is reached.

Only a single stateless Session Bean instance for each EJB type is held in the

cache during the time any methods are being executed on that stateless Session

Bean. If two or more methods are being executed simultaneously on the same

stateless Session Bean type, each method executes on its own bean instance, but

only one cache location is used for all of these instances.

This calculates the upper bound on the maximum possible number of enterprise beans active at one time

inside the application server. Because the EJB Containers cache is built to contain all these beans for

performance optimizations, best performance can be achieved by setting this cache size to be larger than

the number resulting from the calculation above.

<tuning parameter>

This setting can be found under Servers > Application Servers > serverName >

 EJB Container > EJB Cache Settings

Also while adjusting the EJB Cache Size, the EJB Container management thread parameter can be tuned

to meet the needs of the application. The management thread is controlled through the Clean Up Interval

setting. This setting controls how frequently a daemon thread inside of WebSphere Application Server

wakes up and attempts to remove bean instances from the cache that have not been used recently,

attempting to keep the number of bean instances at or below the cache size. This allows the EJB

container to place and look up items in the cache as quickly as possible. It normally is best to leave this

interval set to the default, however, in some cases, it may be worthwhile to see if there is a benefit to

reducing this interval.

EJB Container Pool Size

If the application is using the majority of the instances in the pool, TPV indicates this. When this occurs,

then the size of those bean pools that are being exhausted should be increased. This can be done by

adding the following parameter in the JVM’s custom properties tag .

-Dcom.ibm.websphere.ejbcontainer.poolSize=<application_name>#<module_name>#

<enterprisebean_name>=<minSize>,<maxSize>

where:

 <application_name> is the J2EE application name as defined in the application

archive (.ear) file deployment descriptor, for the bean whose pool size is being

set

<module_name> is the .jar file name of the EJB module, for the bean whose pool size

 is being set,

<bean_name> is the J2EE Enterprise Bean name as defined in the EJB module

deployment descriptor, for the bean whose pool size is being set

<minSize> is the number of bean instances the container maintains in the pool,

 irrespective of how long the beans have been in the pool (beans greater than this

 number are cleared from the pool over time to optimize memory usage)

<maxSize> is the number of bean instances in the pool where no more bean instances

 are placed in the pool after they are used (that is, once the pool is at this

 size, any additional beans are discarded rather than added into the pool --

this ensures the number of beans in the pool has an upper limit so memory usage

68 Tuning guide

does not grow in an unbounded fashion).

To keep the number of instances in the pool at a fixed size, minSize and maxSize

can be set to the same number. Note that there is a separate instance pool for

every EJB type running in the application server, and that every pool starts out

with no instances in it - that is, the number of instances grows as beans are

used and then placed in the pool. When a bean instance is needed by the container

and no beans are available in the pool, the container creates a new bean

instance, uses it, then places that instance in the pool (unless there are

already maxSize instances in the pool).

For example, the statement

-Dcom.ibm.websphere.ejbcontainer.poolSize=ivtApp#ivtEJB.jar#ivtEJBObject=125,1327

would set a minSize of 125 and a maxSize of 1327 on the bean named "ivtEJBObject"

within the ivtEJB.jar file, in the application "ivtApp".

Where ivtApp is replaced by the actual application name, ivtEJB.jar is replaced by the jar containing the

bean that needs to have its pool size increased, and ivtEJBObject is the bean name of the enterprise bean

whose pool size should be increased. The 125,1327 is the minimum and maximum number of beans that

will be held in the pool. These should be set so no more evictions occur from the pool and in most cases

should be set equal if memory is plentiful because no growth and shrinkage of the pool will occur.

EJB Container Primary Key Mutation

Application developers and administrators should have a good idea of how their application handles the

creation of primary key objects for use by container-managed persistence (CMP) beans and

bean-managed persistence (BMP) beans inside of WebSphere Application Server. The IBM EJB Container

uses the primary key of an Entity bean as an identifier inside of many internal data structures to optimize

performance. However, the EJB Container must copy these primary key objects upon the first access to

the bean to ensure that the objects stored in the internal caches are separate from the ones used in an

application, in case the application changes or mutates the primary key, to keep the internal structures

consistent.

If the application does not mutate any of the primary keys used to create and access entity beans after

they are created, then a special flag can be used that allows the EJB Container to skip the copy of the

primary key object, thus saving CPU cycles and increasing performance. This mechanism can be enabled

at your own risk by adding the following –D property to the JVM custom property field.

<tuning parameter>

-Dcom.ibm.websphere.ejbcontainer.noPrimaryKeyMutation=true

The performance benefit of this optimization depends on the application. If the application uses primitive

types for enterprise beans’ primary keys there will be no gain because these objects are already

immutable and the copy mechanism takes this into account. If, however, the application uses many

complex primary keys (that is, And object for a primary key or multiple fields) then this parameter can yield

significant improvements.

Persistence Manager Deferred Insert on EJB Create

The IBM Persistence manager is used by the EJB Container to persist data to the database from CMP

entity beans. When creating entity beans by calling the ejbCreate() method, by default the Persistence

manager immediately inserts the empty row with only the primary key in the database. In most cases

applications, after creating the bean, modify fields in the bean created or in other beans inside of the same

transaction. If the user wishes to postpone the insert into the database until the end of the transaction, so

that it will eliminate one trip to the database, they may set this –D flag inside of the JVM custom properties

field. The data will still be inserted into the database and consistency will be maintained.

<tuning parameter>

-Dcom.ibm.ws.pm.deferredcreate=true

Chapter 6. Tuning the application serving environment 69

The performance benefit of this optimization depends on the application. If the EJB applications

transactions are very insert intensive the application could benefit largely from this optimization. If the

application performs very few inserts then the benefit of this optimization will be much less.

Persistence Manager Database Batch Update on EJB Update

When an EJB application accesses multiple CMP beans inside of a single transaction, depending on the

operations performed on the beans (updates, inserts, reads), the number of operations issued to the

database will correspond directly to the operations performed on the CMP beans. If the database system

you are using supports batching of update statements you can enable this flag and gain a performance

boost on all interactions with the database that involve more than two updates in a single transaction. This

flag will let the persistence manager add all the update statements into one single batch statement which

will then be issued to the database. This saves round trips to the database, thus increasing performance.

If the user knows their application exhibits the behavior of updating multiple CMP beans in a single

transaction and the database supports batch updates they may set this –D flag inside of the JVM custom

properties field.

<tuning parameter>

-Dcom.ibm.ws.pm.batch=true

The performance benefit of this optimization depends on the application. If the application never or

infrequently updates CMP beans or only updates a single bean per transaction there will be no

performance gain. If the application updates multiple beans per transaction then this parameter will benefit

your applications performance.

The following table lists which backend databases support batch update.

 Table 2.

Database Supports Batch update

Supports Batch update with

Optimistic Concurrency Control

DB2 yes no

Oracle yes no

DB2 Universal Driver yes yes

Informix yes yes

SQLServer yes yes

Cloudscape yes yes

Note: Batch update with OCC cannot be performed for databases that do not support it, even if specified

by the access intent.

Persistence Manager cache Tuning

Persistence Manager has two different types of caching mechanisms available: legacy cache and two-level

cache. Normally two-level cache performs better than legacy cache because of optimizations in this mode.

The default is legacy cache, although two-level cache is recommended. Set this configuration through the

system property

com.ibm.ws.pm.useLegacyCache=false

Persistence Manager Partial Updates Tuning

The partial updates feature enhances the performance of applications with enterprise beans in certain

scenarios. Persistence Manager has two different types of caching mechanisms available, legacy cache

and two-level cache. Normally, two-level cache performs better than legacy cache because of the

70 Tuning guide

optimizations in this mode. In certain applications where you need to perform both batch updates and

partial updates, you must configure the following system properties to gain the benefits of both.

‘com.ibm.ws.pm.grouppartialupdate=true’ and ‘com.ibm.ws.pm.batch=true’

Database performance tuning

Database performance tuning can dramatically affect the throughput of your application. For example, if

your application requires high concurrency (multiple, simultaneous interactions with backend data), an

improperly tuned database can result in a bottleneck. Database access threads accumulate in a backlog

when the database is not configured to accept a sufficient number of incoming requests.

Tuning parameters vary according to the type of database you are using. If you run DB2 UDB for iSeries,

consult the “DB2 Universal Database performance tips” article as a starting point reference.

DB2 Universal Database performance tips

You can easily adjust your system QSQSRVR prestart job settings to optimize the process of acquiring

connections from DB2 Universal Database for i5/OS. On the i5/OS platform, QSQSRVR jobs process Java

Database Connectivity (JDBC) tasks. By default, five QSQSRVR jobs are initially active. When fewer than

two QSQSRVR jobs are unused, the i5/OS system creates two more jobs. If you increase the active job

values, an application that establishes a large number of database connections over a short period of time

might create connections more quickly. Increase the values for the initial number of jobs, threshold, and

additional number of jobs by running this command on an i5/OS command line:

CHGPJE SBSD(QSYS/QSYSWRK) PGM(QSYS/QSQSRVR)

Do not start more QSQSRVR jobs than your application requires. Active QSQSRVR jobs require some

overhead, even if these jobs are not used.

Related Web resources

The following links direct you to IBM Web pages for DB2 and i5/OS tuning tips that potentially can

increase the performance of WebSphere Application Server applications.

v http://publib.boulder.ibm.com/iseries/v5r2/ic2924/index.htm?info/rzahf/rzahfmonitortunedb.htm This URL

takes you to the ″Monitor and tune database performance″ section in the Database topic of the IBM

iSeries Information Center. The content addresses DB2 Universal Database for i5/OS. If you use a

different database, refer to that vendor documentation.

v http://www.ibm.com/servers/eserver/iseries/perfmgmt/resource.htm This URL takes you to the i5/OS

Performance Management Resource Library page, which contains links to several editions of the

Performance Capabilities Reference. Consult chapter 4 of this reference document.

Security

Security cache properties

The following Java virtual machine (JVM) security cache custom properties determine whether the

authentication cache is enabled or disabled. If the authentication cache is enabled, as recommended,

these custom properties specify the initial size of the primary and secondary hash table caches, which

affect the frequency of rehashing and the distribution of the hash algorithms.

Important: The com.ibm.websphere.security.util.tokenCacheSize and

com.ibm.websphere.security.util.LTPAValidationCacheSize properties were replaced with the

com.ibm.websphere.security.util.authCacheSize property.

You can specify these system properties by completing the following steps:

1. Click Servers > Application servers > server_name.

2. Click Java and Process Management > Process Definition.

3. Under Additional properties, click Java Virtual Machine.

Chapter 6. Tuning the application serving environment 71

http://publib.boulder.ibm.com/iseries/v5r2/ic2924/index.htm?info/rzahf/rzahfmonitortunedb.htm
http://www.ibm.com/servers/eserver/iseries/perfmgmt/resource.htm

4. Specify the property name and its value in the Generic JVM arguments field. You can specify multiple

property name and value pairs delimited by a space.

WebSphere Application Server includes the following security cache custom properties:

com.ibm.websphere.security.util.authCacheEnabled

Specifies whether to disable the authentication cache. It is recommended that you leave the

authentication cache enabled for performance reasons. However, you can disable the

authentication cache for debug or measurement purposes.

 Default: True

com.ibm.websphere.security.util.authCacheSize

Specifies the initial size of the primary and secondary hash table caches. A higher number of

available hash values might decrease the occurrence of hash collisions. A hash collision results in

a linear search for the hash bucket, which might decrease the retrieval time. If several entries

compose a hash table cache, you create a table with a larger capacity that supports more efficient

hash entries instead of allowing automatic rehashing determine the growth of the table. Rehashing

causes every entry to move each time.

 Default: 200

Type: Integer

Tuning, hardening, and maintaining

After you have installed WebSphere Application Server, there are several considerations for tuning,

strengthening, and maintaining your security configuration.

The following topics are covered in this section:

v Tuning security configurations

v Hardening security configurations

v Changing keys and passwords

v Securing passwords in files

Tuning security configurations:

Performance issues typically involve trade-offs between function and speed. Usually, the more function

and the more processing that are involved, the slower the performance. Consider what type of security is

necessary and what you can disable in your environment. For example, if your application servers are

running in a Virtual Private Network (VPN), consider whether you can disable Secure Sockets Layer

(SSL). If you have a lot of users, can they be mapped to groups and then associated to your Java 2

Platform, Enterprise Edition (J2EE) roles? These questions are things to consider when designing your

security infrastructure.

v Consider the following recommendations for tuning general security.

– Consider disabling Java 2 security manager if you know exactly what code is put onto your server

and you do not need to protect process resources. Remember that in doing so, you put your local

resources at some risk.

– Consider propagating new security settings to all nodes before restarting the deployment manager

and node agents, to change the new security policy.

If your security configurations are not consistent across all servers, you get access denied errors.

Therefore, you must propagate new security settings when enabling or disabling administrative

security.

Configuration changes are generally propagated using configuration synchronization. If

auto-synchronization is enabled, you can wait for the automatic synchronization interval to pass, or

you can force synchronization before the synchronization interval expires. If you are using manual

synchronization, you must synchronize all the nodes.

72 Tuning guide

If the cell is in a configuration state and the security policy is mixed with nodes that have security

enabled and disabled, you can use the syncNode utility to synchronize the nodes where the new

settings are not propagated.

For more detailed information about enabling security in a distributed environment, see Enabling

security for the realm.

– Consider increasing the cache and token timeout if you feel your environment is secure enough. By

increasing these values, you have to re-authenticate less often. This action supports subsequent

requests to reuse the credentials that already are created. The downside of increasing the token

timeout is the exposure of having a token hacked and providing the hacker more time to hack into

the system before the token expires. You can use security cache properties to determine the initial

size of the primary and secondary hashtable caches, which affect the frequency of rehashing and the

distribution of the hash algorithms.

See the article “Security cache properties” on page 71 for a list of these properties.

– Consider changing your administrative connector from Simple Object Access Protocol (SOAP) to

Remote Method Invocation (RMI) because RMI uses stateful connections while SOAP is completely

stateless. Run a benchmark to determine if the performance is improved in your environment.

– Use the wsadmin script to complete the access IDs for all the users and groups to speed up the

application startup. Complete this action if applications contain many users or groups, or if

applications are stopped and started frequently. WebSphere Application Server maps user and group

names to unique access IDs in the authorization table. The exact format of the access ID depends

on the repository. The access ID can only be determined during and after application deployment.

Authorization tables created during assembly time do not have the proper access IDs. See

Commands for the AdminApp object for more information about how to update access IDs.

– Consider tuning the Object Request Broker (ORB) because it is a factor in enterprise bean

performance with or without security enabled. Refer to the ORB tuning guidelines topic.

– If using SSL, enable the SSL session tracking mechanism option as described in the article, Session

management settings.

– In some cases, using the unrestricted Java Cryptography Extension (JCE) policy file can improve

performance. Refer to the article, Tuning Web services security.

v Consider the following steps to tune Common Secure Interoperability version 2 (CSIv2).

– Consider using Secure Sockets Layer (SSL) client certificates instead of a user ID and password to

authenticate Java clients. Because you are already making the SSL connection, using mutual

authentication adds little overhead while it removes the service context that contains the user ID and

password completely.

– If you send a large amount of data that is not very security sensitive, reduce the strength of your

ciphers. The more data you have to bulk encrypt and the stronger the cipher, the longer this action

takes. If the data is not sensitive, do not waste your processing with 128-bit ciphers.

– Consider putting only an asterisk (*) in the trusted server ID list (meaning trust all servers) when you

use identity assertion for downstream delegation. Use SSL mutual authentication between servers to

provide this trust. Adding this extra step in the SSL handshake performs better than having to fully

authenticate the upstream server and check the trusted list. When an asterisk (*) is used, the identity

token is trusted. The SSL connection trusts the server through client certificate authentication.

– Ensure that stateful sessions are enabled for CSIv2. This is the default, but requires authentication

only on the first request and on any subsequent token expirations.

–

V6.0.x

If you are communicating only with WebSphere Application Server Version 5 or higher

servers, make the Active Authentication Protocol CSI, instead of CSI and SAS. This action removes

an interceptor invocation for every request on both the client and server sides.

Important: SAS is supported only between Version 6.0.x and previous version servers that have

been federated in a Version 6.1 cell.

v Consider the following steps to tune Lightweight Directory Access Protocol (LDAP) authentication.

Chapter 6. Tuning the application serving environment 73

1. In the administration console, click Security > Secure administration, applications, and

infrastructure.

2. Under User account repository, click the Available realm definitions drop-down list,

selectStandalone LDAP registry and click Configure.

3. Select the Ignore case for authorization option in the standalone LDAP registry configuration,

when case-sensitivity is not important.

4. Select the Reuse connection option.

5. Use the cache features that your LDAP server supports.

6. Choose either the IBM Tivoli Directory Server or SecureWay directory type, if you are using an IBM

Tivoli Directory Server. The IBM Tivoli Directory Server yields improved performance because it is

programmed to use the new group membership attributes to improve group membership searches.

However, authorization must be case insensitive to use IBM Tivoli Directory Server.

7. Choose either iPlanet Directory Server (also known as Sun ONE) or Netscape as the directory if you

are an iPlanet Directory user. Using the iPlanet Directory Server directory can increase performance

in group membership lookup. However, use Role only for group mechanisms.

v Consider the following steps to tune Web authentication.

– Increase the cache and token timeout values if you feel your environment is secure enough. The

Web authentication information is stored in these caches and as long as the authentication

information is in the cache, the login module is not invoked to authenticate the user. This supports

subsequent requests to reuse the credentials that are already created. A disadvantage of increasing

the token timeout is the exposure of having a token stolen and providing the thief more time to hack

into the system before the token expires.

See the article “Security cache properties” on page 71 for a list of these properties.

– Enable single sign-on (SSO). To configure SSO, click Security > Secure administration,

applications, and infrastructure. Under Web security, click Single sign-on (SSO).

SSO is only available when you configure LTPA as the authentication mechanism in the

Authentication mechanisms and expiration panel. Although you can select Simple WebSphere

Authentication Mechanism (SWAM) as the authentication mechanism on the Authentication

mechanisms and expiration panel, SWAM is deprecated in Version 6.1 and does not support SSO.

When you select SSO, a single authentication to one application server is enough to make requests

to multiple application servers in the same SSO domain. Some situations exist where SSO is not a

desirable and you do not want to use it in those situations.

– Disable or enabling the Web Inbound Security Attribute Propagation option on the Single sign-on

(SSO) panel if the function is not required. In some cases, having the function enabled can improve

performance. This improvement is most likely for higher volume cases where a considerable number

of user registry calls reduces performance. In other cases, having the feature disabled can improve

performance. This improvement is most likely when the user registry calls do not take considerable

resources.

v Consider the following steps to tune authorization.

– Map your users to groups in the user registry. Associate the groups with your Java 2 Platform,

Enterprise Edition (J2EE) roles. This association greatly improves performance when the number of

users increases.

– Judiciously assign method-permissions for enterprise beans. For example, you can use an asterisk

(*) to indicate all the methods in the method-name element. When all the methods in enterprise

beans require the same permission, use an asterisk (*) for the method-name to indicate all methods.

This indication reduces the size of deployment descriptors and reduces the memory that is required

to load the deployment descriptor. It also reduces the search time during method-permission match

for the enterprise beans method.

– Judiciously assign security-constraints for servlets. For example, you can use the *.jsp URL pattern

to apply the same authentication data constraints to indicate all JavaServer Pages (JSP) files. For a

given URL, the exact match in the deployment descriptor takes precedence over the longest path

74 Tuning guide

match. Use the *.jsp, *.do, *.html extension match if no exact matches exist and longest path

matches exist for a given URL in the security constraints.

You always have a trade off between performance, feature, and security. Security typically adds more

processing time to your requests, but for a good reason. Not all security features are required in your

environment. When you decide to tune security, create a benchmark before making any change to ensure

that the change is improving performance.

In a large scale deployment, performance is very important. Running benchmark measurements with

different combinations of features can help you to determine the best performance versus the benefit of

configuration for your environment. Continue to run benchmarks if anything changes in your environment,

to help determine the impact of these changes.

Secure Sockets Layer performance tips:

Use this page to learn about Secure Sockets Layer (SSL) performance tips. Be sure to consider that

performance issues typically involve trade-offs between function and speed. Usually, the more function and

the more processing that are involved, the slower the performance.

 The following are two types of Secure Sockets Layer (SSL) performance:

v Handshake

v Bulk encryption and decryption

When an SSL connection is established, an SSL handshake occurs. After a connection is made, SSL

performs bulk encryption and decryption for each read-write. The performance cost of an SSL handshake

is much larger than that of bulk encryption and decryption.

To enhance SSL performance, decrease the number of individual SSL connections and handshakes.

Decreasing the number of connections increases performance for secure communication through SSL

connections, as well as non-secure communication through simple Transmission Control Protocol/Internet

Protocol (TCP/IP) connections. One way to decrease individual SSL connections is to use a browser that

supports HTTP 1.1. Decreasing individual SSL connections can be impossible if you cannot upgrade to

HTTP 1.1.

Another common approach is to decrease the number of connections (both TCP/IP and SSL) between two

WebSphere Application Server components. The following guidelines help to verify the HTTP transport of

the application server is configured so that the Web server plug-in does not repeatedly reopen new

connections to the application server:

v Verify that the maximum number of keep alives are, at minimum, as large as the maximum number of

requests per thread of the Web server (or maximum number of processes for IBM HTTP Server on

UNIX). Make sure that the Web server plug-in is capable of obtaining a keep alive connection for every

possible concurrent connection to the application server. Otherwise, the application server closes the

connection after a single request is processed. Also, the maximum number of threads in the Web

container thread pool should be larger than the maximum number of keep alives, to prevent the keep

alive connections from consuming the Web container threads.

Note: HTTP Transports have been deprecated. For instructions on how to set a maximum keep alive

value for channel based configurations, see HTTP transport channel settings.

v Increase the maximum number of requests per keep alive connection. The default value is 100, which

means the application server closes the connection from the plug-in after 100 requests. The plug-in then

has to open a new connection. The purpose of this parameter is to prevent denial of service attacks

when connecting to the application server and preventing continuous send requests to tie up threads in

the application server.

v Use a hardware accelerator if the system performs several SSL handshakes.

Chapter 6. Tuning the application serving environment 75

Hardware accelerators currently supported by WebSphere Application Server only increase the SSL

handshake performance, not the bulk encryption and decryption. An accelerator typically only benefits

the Web server because Web server connections are short-lived. All other SSL connections in

WebSphere Application Server are long-lived.

The IBM Cryptographic Coprocessor is not supported for use with WebSphere Application Server.

However, you can use the IBM Cryptographic Coprocessor to improve SSL performance for other

products, such as IBM HTTP Server for iSeries, which is powered by Apache.

v Use an alternative cipher suite with better performance.

The performance of a cipher suite is different with software and hardware. Just because a cipher suite

performs better in software does not mean a cipher suite will perform better with hardware. Some

algorithms are typically inefficient in hardware, for example, Data Encryption Standard (DES) and

triple-strength DES (3DES); however, specialized hardware can provide efficient implementations of

these same algorithms.

The performance of bulk encryption and decryption is affected by the cipher suite used for an individual

SSL connection. The following chart displays the performance of each cipher suite. The test software

calculating the data was Java Secure Socket Extension (JSSE) for both the client and server software,

which used no cryptographic hardware support. The test did not include the time to establish a

connection, but only the time to transmit data through an established connection. Therefore, the data

reveals the relative SSL performance of various cipher suites for long running connections.

Before establishing a connection, the client enables a single cipher suite for each test case. After the

connection is established, the client times how long it takes to write an integer to the server and for the

server to write the specified number of bytes back to the client. Varying the amount of data had

negligible effects on the relative performance of the cipher suites.

0

100

200

300

400

SSL_RSA_WITH_RC4_128_MD5

SSL_RSA_WITH_RC4_128_SHA

SSL_RSA_WITH_DES_CBC_SHA

SSL_RSA_WITH_3DES_EDE_CBC_SHA

SSL_DHE_RSA_WITH_DES_CBC_SHA

SSL_DHE_RSA_WITH_3DES_EDE_CBC_SHA

SSL_DHE_DSS_WITH_DES_CBC_SHA

SSL_DHE_DSS_WITH_3DES_EDE_CBC_SHA

SSL_RSA_EXPORT_WITH_RC4_40_MD5

SSL_RSA_EXPORT_WITH_DES40_CBC_SHA

SSL_RSA_EXPORT_WITH_RC2_CBC_40_MD5

SSL_DHE_RSA_EXPORT_WITH_DES40_CBC_SHA

SSL_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA

SSL_RSA_WITH_NULL_MD5

SSL_RSA_WITH_NULL_SHA

NONE(TCP/IP no SSL)

An analysis of the above data reveals the following:

v Bulk encryption performance is only affected by what follows the WITH in the cipher suite name. This is

expected since the portion before the WITH identifies the algorithm used only during the SSL

handshake.

v MD5 and Secure Hash Algorithm (SHA) are the two hash algorithms used to provide data integrity. MD5

is generally faster than SHA, however, SHA is more secure than MD5.

v DES and RC2 are slower than RC4. Triple DES is the most secure, but the performance cost is high

when using only software.

v The cipher suite providing the best performance while still providing privacy is

SSL_RSA_WITH_RC4_128_MD5. Even though SSL_RSA_EXPORT_WITH_RC4_40_MD5 is

cryptographically weaker than RSA_WITH_RC4_128_MD5, the performance for bulk encryption is the

same. Therefore, as long as the SSL connection is a long-running connection, the difference in the

76 Tuning guide

performance of high and medium security levels is negligible. It is recommended that a security level of

high be used, instead of medium, for all components participating in communication only among

WebSphere Application Server products. Make sure that the connections are long running connections.

Tuning security:

Use the following procedures to tune the performance, without compromising your security settings.

 Enabling security decreases performance. The following tuning parameters provide ways to minimize this

performance impact.

v Disable security on any application servers that do not need security. You can disable security in the

administrative console by clicking Security > Secure administration, applications, and infrastructure

and deselecting the Enable administrative security option.

v Fine-tune the Authentication cache timeout value on the Authentication mechanisms and expiration

panel in the administrative console. For more information, see the Secure administration, applications,

and infrastructure settings topic.

v Configure the security cache properties. For more information, see the “Security cache properties” on

page 71 topic.

v Enable the Enable SSL ID tracking option on the Session management panel in the administrative

console. For more information, see the Session management settings topic.

v Improve the performance of Web services security by downloading a Java Cryptography Extension

(JCE) unlimited jurisdiction policy file that does not have restrictions on cryptography strength. For more

information, see the “Tuning Web services security for Version 6.1 applications” on page 46 topic.

v Read the Secure Sockets Layer performance tips and “Tuning security configurations” on page 72

topics for more information.

Hardening security configurations:

There are several methods that you can use to protect the WebSphere Application Server infrastructure

and applications from different forms of attack. Several different techniques can help with multiple forms of

attack. Sometimes a single attack can leverage multiple forms of intrusion to achieve the end goal.

 For example, in the simplest case, network sniffing can be used to obtain passwords and those passwords

can then be used to mount an application-level attack. The following issues are discussed in IBM

WebSphere Developer Technical Journal: WebSphere Application Server V5 advanced security and

system hardening:

v Take preventative measures to protect the infrastructure.

v Make applications less vulnerable to attack.

Securing passwords in files:

Password encoding and encryption deters the casual observation of passwords in server configuration and

property files.

 The following topics are covered in this section:

v Password encoding and encryption

v Encoding passwords in files

v Enabling custom password encryption

Password encoding and encryption:

Password encoding deters the casual observation of passwords in server configuration and property files.

Chapter 6. Tuning the application serving environment 77

http://www-128.ibm.com/developerworks/websphere/techjournal/0406_botzum/0406_botzum.html
http://www-128.ibm.com/developerworks/websphere/techjournal/0406_botzum/0406_botzum.html
http://www-128.ibm.com/developerworks/websphere/techjournal/0406_botzum/0406_botzum.html

By default, passwords are automatically encoded with a simple masking algorithm in various WebSphere

Application Server ASCII configuration files. Additionally, you can manually encode passwords in properties

files that are used by Java clients and by administrative commands for WebSphere Application Server.

The default encoding algorithm is referred to as XOR. An alternate OS400 encoding algorithm can be used

with WebSphere Application Server for i5/OS that exploits native validation list (*VLDL) objects only. With

the OS400 algorithm, passwords are stored in an encrypted form within a validation list. The configuration

files contain indexes to the stored passwords instead of the masked passwords, as is done with the XOR

algorithm.

Encoded passwords use the following syntax:

{algorithm}encoded_password

where {algorithm} is a tag that specifies the algorithm that is used to encode the password, which is either

XOR or OS400. The encoded_password variable is the encoded value of the password. When a server or

client needs to decode a password, it uses the tag to determine what algorithm to use and then uses that

algorithm to decode the encoded password.

Java clients use passwords from the sas.client.props file, which is in the profile_root/properties directory.

To use password encoding with Java clients, the passwords must be manually encoded in the

sas.client.props file using the PropFilePasswordEncoder tool.

The administrative commands for WebSphere Application Server use passwords from the soap.client.props

file, which is also located in the /properties subdirectory, for SOAP connections. Some administrative

commands optionally use passwords from the sas.client.props file in the /properties subdirectory for

Remote Method Invocation (RMI) connections. To use password encoding with administrative commands,

you must manually encode the passwords in the soap.client.props and sas.client.props files using the

PropFilePasswordEncoder tool.

Attention: Whether you select to use the OS400 encoding algorithm or the default encoding algorithm,

encoding is not sufficient to fully protect passwords. Native security is the primary mechanism for

protecting passwords that are used in the configuration and property files for WebSphere Application

Server.

Issues to consider when you use the OS400 password encoding algorithm

The following issues are important for you to consider before deciding to use the OS400 password

encoding algorithm:

v You must set the QRETSVRSEC operating system value to 1 to use on the system that hosts the Java

client application or WebSphere Application Server. With this setting, WebSphere Application Server to

retrieve the encrypted passwords from the validation list.

 Attention: The QRETSVRSEC system value affects access to the encrypted data in all of the

validation lists on your operating system. Do not use the OS400 password encoding algorithm if this

setting is not consistent with your security policy for your operating system.

v You can use the OS400 algorithm with server instances only when all of the server instances within the

administrative domain for WebSphere Application Server reside on the same i5/OS system. Consider

the following related issues:

– Administrative domains for WebSphere Application Server can extend across multiple i5/OS systems.

You can use the OS400 password algorithm only when all of the servers within an administrative

domain reside on the same i5/OS system.

– Server configuration XML files contain encoded passwords. If the passwords that are contained in

the XML files are encoded using the OS400 encoding algorithm, those encodings are valid only for

the Application Server instances on the same i5/OS system on which the passwords were originally

78 Tuning guide

encoded. Copies of configuration files that contain passwords that are encoded using the OS400

encoding algorithm cannot be used to configure servers on other i5/OS systems.

– All server instances within an administrative domain must be configured to use the same native

validation list (*VLDL) object.

v For Java clients, you can use the OS400 password algorithm on any i5/OS system. However, option 1

must be installed on the system that hosts the Java client.

v If an error occurs while a password is encoded using the OS400 encoding algorithm, the XOR encoding

algorithm is used to encode the password. An error might occur if an administrator manually creates the

validation list object and grants insufficient authority to the validation list object for the i5/OS QEJB user

profile.

 Related tasks

 “Enabling the non-default OS/400 password encoding algorithm” on page 84
The purpose of password encoding is to deter casual observation of passwords in server configuration

and property files.

 “Manually encoding passwords in properties files” on page 82
To use password encoding with WebSphere Application Server administrative commands and Java

clients, passwords must be manually encoded in the soap.client.props and sas.client.props files using

the PropFilePasswordEncoder tool.

 “Restoring or replacing damaged validation list objects” on page 87
Periodically, you should save your validation list objects with the other configuration data objects that

are used by WebSphere Application Server. Use this task if you need to restore or replace a damaged

validation list object.

 Related reference

 Password decoding troubleshooting tips
If the password encoding is corrupted and you cannot decode a password, you can complete one of

the following tasks.

 Related information

 “Using the non-default OS/400 password encoding algorithm” on page 86
Use these steps to change your encoding algorithm from OS400 to XOR.

Object and file security:

This topic discusses the various objects and files that contain sensitive information and need to be

protected.

Secure integrated file system files

In addition to enterprise beans and servlets, WebSphere Application Server accesses integrated file

system stream files. The following files might contain sensitive information. It is recommended that you

give these files close consideration to ensure that unauthorized access is not granted.

v In the /properties subdirectory of your profile, the following files can contain user IDs and passwords:

– sas.client.props

– soap.client.props

– sas.stdclient.properties

– sas.tools.properties

– wsserver.key

By default, the /properties subdirectory is located in the profile_root directory. Each of the previous files

is shipped with *PUBLIC authority set to *EXCLUDE. The QEJBSVR user profile is granted *RW

authority to these files. Additional protection is available through password encoding. For more

information, see “Password encoding and encryption” on page 77.

Chapter 6. Tuning the application serving environment 79

v In the /etc subdirectory if your profile, protect all of the key (KDB) files and trust (JKS) files that you

create for your WebSphere Application Server profile.

For the JKS files, the QEJBSVR user profiles should have *R authority and *PUBLIC should have

*EXCLUDE authority.

For the KDB files, the user profile that the Web server is running under should have *RX authority and

*PUBLIC should have *EXCLUDE authority.

Secure database resources for WebSphere Application Server

WebSphere Application Server uses tables to persist data for user applications such as enterprise beans

persistence and servlet session data. You have several options for controlling which user profiles are

allowed access to this user data. For more information, see Database access security.

Secure WebSphere Application Server files

When you enable WebSphere Application Server security, the server user profile and password are placed

into server configuration files, which should be maintained in a secure way using operating system

security. Additionally, you can password protect some WebSphere Application Server resources. These

passwords are also placed in server configuration files. The server automatically encodes passwords to

deter casual observation, but password encoding alone is not sufficient protection.

The following files are located in the /config subdirectory of your profile and they can contain user

identifiers and passwords:

v cells/cell_name/security.xml

v cells/cell_name/nodes/node_name/resources.xml

v cells/cell_name/nodes/node_name/servers/server_name/server.xml

For example, for the default profile, the server_name is server1.

The server user profile and password are used for authenticating the server when it initializes. This

authentication is required for the following reasons:

v The user ID and password are used as the system identity for the server when an enterprise bean

security is deployed to use SYSTEM_IDENTITY for method delegation. In this case, the user ID and

password are used when method calls are made from one enterprise bean to another.

v The user ID and password are used to authenticate servers for inter-server communication. Because

security for these files can be compromised, use a non-default user profile for the server identity and

password. The default user profile is QEJBSVR. If you use the local OS user registry, you might choose

to create and use a user profile that has no special authorities. For more information, see Running

application servers under specific user profiles.

Secure user profiles for WebSphere Application Server

When WebSphere Application Server is first installed, by default, it uses the following user profiles:

QEJB This profile provides access to some administrative data, including passwords.

QEJBSVR

This profile provides the context in which your WebSphere Application Server runs. For security or

administrative purposes, you might want to create other user profiles under which to run various

parts of WebSphere Application Server. For more information, see Running application servers

under specific user profiles.

Encoding password in files:

Use this task to encode your passwords in files. WebSphere Application Server does not provide a utility

for decoding the passwords.

80 Tuning guide

WebSphere Application Server contains several encoded passwords that are not encrypted. WebSphere

Application Server provides the PropFilePasswordEncoder utility, which you can use to encode these

passwords. However, the utility does not encode passwords that are contained within XML or XMI files.

Instead, WebSphere Application Server automatically encodes the passwords in the following XML or XMI

files.

 Table 3. XML and XMI files that contain encoded passwords

File name Additional information

profile_root/config/cells/cell_name

/security.xml

The following fields contain encoded

passwords:

v LTPA password

v JAAS authentication data

v User registry server password

v LDAP user registry bind password

v Keystore password

v Truststore password

v Cryptographic token device password

war/WEB-INF/ibm_web_bnd.xml Specifies the passwords for the default basic

authentication for the resource-ref bindings

within all the descriptors, except in the Java

cryptography architecture

ejb jar/META-INF/ibm_ejbjar_bnd.xml Specifies the passwords for the default basic

authentication for the resource-ref bindings

within all the descriptors, except in the Java

cryptography architecture

client jar/META-INF/ibm-appclient_bnd.xml Specifies the passwords for the default basic

authentication for the resource-ref bindings

within all the descriptors, except in the Java

cryptography architecture

ear/META-INF/ibm_application_bnd.xml Specifies the passwords for the default basic

authentication for the run as bindings within all

the descriptors

profile_root/config/cells/cell_name

/nodes/node_name/servers/security.xml

The following fields contain encoded

passwords:

v Keystore password

v Truststore password

v Cryptographic token device password

v Session persistence password

v DRS client data replication password

profile_root/config/cells/cell_name

/nodes/node_name/servers/server1/resources.xml

The following fields contain encoded

passwords:

v WAS40Datasource password

v mailTransport password

v mailStore password

v MQQueue queue mgr password

profile_root/config/cells/cell_name

/ws-security.xml

ibm-webservices-bnd.xmi

ibm-webservicesclient-bnd.xmi

You can use the PropFilePasswordEncoder utility to encode the passwords that are located in the

following files.

Chapter 6. Tuning the application serving environment 81

Table 4. Files that you can encode using the PropFilePasswordEncoder utility

File name Additional information

profile_root/properties/sas.client.props Specifies the passwords for the following files:

v com.ibm.ssl.keyStorePassword

v com.ibm.ssl.trustStorePassword

v com.ibm.CORBA.loginPassword

profile_root/properties/soap.client.props Specifies passwords for:

v com.ibm.ssl.keyStorePassword

v com.ibm.ssl.trustStorePassword

v com.ibm.SOAP.loginPassword

profile_root/properties/sas.tools.properties

Specifies passwords for:

v com.ibm.ssl.keyStorePassword

v com.ibm.ssl.trustStorePassword

v com.ibm.CORBA.loginPassword

profile_root/properties/sas.stdclient.properties Specifies passwords for:

v com.ibm.ssl.keyStorePassword

v com.ibm.ssl.trustStorePassword

v com.ibm.CORBA.loginPassword

profile_root/properties/wsserver.key

To encode a password again in one of the previous files, complete the following steps:

1. Access the file using a text editor and type over the encoded password. The new password is shown

is no longer encoded and must be re-encoded.

2. Use the PropFilePasswordEncode script in the app_server_root/bin/ directory to encode the password

again.

V6.0.x

If you are encoding the SAS properties files again, type: PropFilePasswordEncoder

″file_name″ -sas and the PropFilePasswordEncoder file encodes the known SAS properties.

If you are encoding files that are not SAS properties files, type PropFilePasswordEncoder ″file_name″

password_properties_list

″file_name″ is the name of the SAS properties file and password_properties_list is the name of the

properties to encode within the file.

Note: Only the password should be encoded in this file using the PropFilePasswordEncoder tool.

Use the PropFilePasswordEncoder utility to encode WebSphere Application Server password files only.

The utility cannot encode passwords that are contained in XML files or other files that contain open

and close tags.

If you reopen the affected files, the passwords are encoded. WebSphere Application Server does not

provide a utility for decoding the passwords.

Manually encoding passwords in properties files:

To use password encoding with WebSphere Application Server administrative commands and Java clients,

passwords must be manually encoded in the soap.client.props and sas.client.props files using the

PropFilePasswordEncoder tool.

 To run the script, your user profile must have *ALLOBJ authority.

Use the PropFilePasswordEncoder utility to encode the passwords in properties files. The

PropFilePasswordEncoder utility is a Qshell script. Complete the following steps to manually encode the

passwords:

1. Sign on the server with a user profile that has all object (*ALLOBJ) special authority.

82 Tuning guide

2. Run the Start Qshell (STRQSH) command on a command line to start the Qshell environment.

3. Use the PropFilePasswordEncoder utility to encode the passwords.

For example, to encode the passwords for properties in the sas.client.props file for the default

WebSphere Application Server profile (in a default installation), enter the following command:

profile_root/bin/PropFilePasswordEncoder

 -profileName server1

 profile_root/properties/sas.client.props -SAS

For example, to encode the passwords for properties in the soap.client.props file for the default

stand-alone application server profile, enter the following command:

profile_root/bin/PropFilePasswordEncoder

 -profileName server1

 profile_root/properties/soap.client.props

 com.ibm.SOAP.loginPassword,com.ibm.ssl.keyStorePassword,

 com.ibm.ssl.trustStorePassword

For more information on the PropFilePasswordEncoder utility, see the “PropFilePasswordEncoder

command reference.”

The passwords are encoded in the soap.client.props and sas.client.props files.

See “Restoring or replacing damaged validation list objects” on page 87 for information on how to restore

or replace a damaged validation list object.

 Related concepts

 “Password encoding and encryption” on page 77
Password encoding deters the casual observation of passwords in server configuration and property

files.

 Related tasks

 “Enabling the non-default OS/400 password encoding algorithm” on page 84
The purpose of password encoding is to deter casual observation of passwords in server configuration

and property files.

 “Restoring or replacing damaged validation list objects” on page 87
Periodically, you should save your validation list objects with the other configuration data objects that

are used by WebSphere Application Server. Use this task if you need to restore or replace a damaged

validation list object.

 Related reference

 Password decoding troubleshooting tips
If the password encoding is corrupted and you cannot decode a password, you can complete one of

the following tasks.

 Related information

 “Using the non-default OS/400 password encoding algorithm” on page 86
Use these steps to change your encoding algorithm from OS400 to XOR.

PropFilePasswordEncoder command reference:

The PropFilePasswordEncoder command encodes passwords that are located in plain text property files.

This command encodes both Secure Authentication Server (SAS) property files and non-SAS property

files. After you encode the passwords, a decoding command does not exist.

 To encode passwords, you must run this command from the directory:

v

V6.0.x

app_server_root/bin

To run this script, your user profile must have *ALLOBJ authority.

Chapter 6. Tuning the application serving environment 83

Important: SAS is supported only between Version 6.0.x and previous version servers that have been

federated in a Version 6.1 cell.

Syntax

V6.0.x

The command syntax is as follows:

PropFilePasswordEncoder "fileName" { passwordPropertiesList

 | -SAS } [-profileName profile] [-help | -?]

Important: You must specify either the passwordPropertiesList parameter or the -SAS parameter.

Parameters

The following option is available for the PropFilePasswordEncoder command:

fileName

This required parameter specifies the name of the file in which passwords are encoded.

passwordPropertiesList

This parameter is required if you are encoding passwords in the soap.client.props file. Specify one or

more password properties that you want to encode.

V6.0.x

-SAS

This parameter is required if you are encoding passwords in the sas.client.props file.

-profileName

This parameter is optional. The profile value specifies an application server profile name. The script

uses the password encoding algorithm that it retrieves from the specified profile. If you do not specify

this parameter, the script uses the default profile.

-help or -?

If you specify this parameter, the script ignores all other parameters and displays usage text.

V6.0.x

The following command encodes the passwords in the sas.client.props file for the default

stand-alone application server profile:

app_server_root/bin/PropFilePasswordEncoder

 profile_root/default/properties/sas.client.props -SAS

The following command encodes the passwords in the soap.client.props file for the default stand-alone

application server profile:

app_server_root/bin/PropFilePasswordEncoder

 profile_root/default/properties/soap.client.props

com.ibm.SOAP.loginPassword,com.ibm.ssl.keyStorePassword,com.ibm.ssl.trustStorePassword

Attention: These commands are displayed on multiple lines for illustrative purposes only.

Enabling the non-default OS/400 password encoding algorithm:

The purpose of password encoding is to deter casual observation of passwords in server configuration and

property files.

 Make sure all server instances within the administration console reside on the same i5/OS system.

By default, passwords are automatically encoded with a simple masking algorithm in various ASCII

configuration files for WebSphere Application Server. You can manually encode passwords in properties

files that are used by Java clients and by Application Server administrative commands.

84 Tuning guide

For a description of the OS400 encoding algorithm, see “Password encoding and encryption” on page 77.

To enable the OS400 password encoding algorithm for a WebSphere Application Server profile, complete

these steps:

1. Set the os400.security.password properties to turn on the OS400 password encoding algorithm and to

specify which the validation list object to use.

Use the same validation list object for all WebSphere Application Server profiles. However, it is not

recommended if you do not back up the objects and data for all profiles simultaneously. Consider your

backup and restore policy when you decide what validation list object to use for each WebSphere

Application Server profile.

To set the properties, complete one of these steps:

v Use the -os400passwords and -validationlist options for the manageprofiles -create utility, which is

located in the app_server_root/bin directory, to set the properties when creating the profile. To create

a WebSphere Application Server profile named prod, and to enable that profile for the OS400

encoding algorithm using the /QSYS.LIB/QUSRSYS.LIB/WAS.VLDL validation list object, you can

complete the following steps:

a. Run the Start Qshell (STRQSH) command on the i5/OS command line.

b. In Qshell, run the following command:

app_server_root/bin/manageprofiles

-create -profileName prod -startingPort 10150

-templatePath default -os400passwords

-validationlist /QSYS.LIB/QUSRSYS.LIB/WAS.VLDL

The previous command is on multiple lines for illustration purposes only.

v Set the Java system properties in the setupCmdLine Qshell script of the WebSphere Application

Server profile. To enable the OS400 password encoding algorithm, edit the profile_root/bin/
setupCmdLine script using the following steps:

a. Set the os400.security.password.encoding.algorithm property to OS400. The default setting is

XOR.

b. Set the os400.security.password.validation.list.object property to the absolute name of the

validation list that you need to use. The default setting is /QSYS.LIB/QUSRSYS.LIB/
EJSADMIN.VLDL.

c. Save the file.

2. Grant the QEJB user profile run authority (*X) to the library that contains the validation list. If QEJB

already has the minimum required authority (*X) to access the library, then proceed to the next step.

a. Use the Display Authority (DSPAUT) to check for the minimum required authority if the validation

list is created in the /QSYS.LIB/WSADMIN.LIB file.

For example:

DSPAUT OBJ(’/QSYS.LIB/WSADMIN.LIB’)

b. Use the Change Authority (CHGAUT) command to grant run authority to the QEJB profile only if

the QEJB profile does not already have this authority.

For example:

CHGAUT OBJ(’/QSYS.LIB/WSADMIN.LIB’) USER(QEJB) DTAAUT(*X)

3. Create a native validation list object (*VLDL). This step is optional for server profiles. The validation list

object is created when the server is started. For remote profiles, create the validation list if the

validation list does not already exist on the system that hosts the remote profile. Also, consider your

backup and restore policy when you decide what validation list object to use with each remote profile.

 Attention: When you use the OS400 password encoding algorithm, the Java client is not required to

reside on the same i5/OS system as the WebSphere Application Server profile that the client

accesses.

To create a validation list object, perform the following steps with an i5/OS user profile that has

*ALLOBJ special authority:

a. Sign on the server with a user profile that has the *ALLOBJ special authority.

Chapter 6. Tuning the application serving environment 85

b. Use the Create Validation List (CRTVLDL) command to create the validation list object.

For example, to create the WSVLIST validation list object in the WSADMIN.LIB library, use the

following command:

CRTVLDL VLDL(WSADMIN/WSVLIST)

c. Grant the QEJB user profile *RWX authority to the validation list object. For example, to grant

*RWX authority to the WSVLIST validation list object in the WSADMIN library , use the following

command:

CHGAUT OBJ(’/QSYS.LIB/WSADMIN.LIB/WSVLIST.VLDL’) USER(QEJB) DTAAUT(*RWX)

4. Use the Change System Value (CHGSYSVAL) command to set the QRETSVRSEC system value to 1.

For example:

CHGSYSVAL SYSVAL(QRETSVRSEC) VALUE(’1’)

5. For server profile, start or restart the server and wait until the server is ready for service before

attempting to manually encode passwords in properties files that belong to the profile.

You have enabled the OS400 password encoding algorithm.

After completing the previous steps and restarting the server, you can manually encode passwords in

properties files. See “Manually encoding passwords in properties files” on page 82 for more information.

 Related concepts

 “Password encoding and encryption” on page 77
Password encoding deters the casual observation of passwords in server configuration and property

files.

 Related tasks

 “Manually encoding passwords in properties files” on page 82
To use password encoding with WebSphere Application Server administrative commands and Java

clients, passwords must be manually encoded in the soap.client.props and sas.client.props files using

the PropFilePasswordEncoder tool.

 “Restoring or replacing damaged validation list objects” on page 87
Periodically, you should save your validation list objects with the other configuration data objects that

are used by WebSphere Application Server. Use this task if you need to restore or replace a damaged

validation list object.

 Related reference

 Password decoding troubleshooting tips
If the password encoding is corrupted and you cannot decode a password, you can complete one of

the following tasks.

Using the non-default OS/400 password encoding algorithm:

Use these steps to change your encoding algorithm from OS400 to XOR.

 WebSphere Application Server supports both the OS400 and the XOR encoding algorithms. The default

encoding algorithm is XOR. For more conceptual information on these algorithms, see “Password

encoding and encryption” on page 77.

There might be instances where you need to use the OS400 encoding algorithm. See “Enabling the

non-default OS/400 password encoding algorithm” on page 84.

If you use the OS400 encoding algorithm, but change the os400.security.password.encoding.algorithm

property value to XOR as described in the first step, then all of the passwords remain encoded with the

OS400 algorithm. However, after you restart the server, when you make changes to the passwords

through the administrative console, the passwords are encoded using the XOR algorithm.

The following steps describe how to change your encoding algorithm from OS400 to XOR:

86 Tuning guide

1. Set the os400.security.password.encoding.algorithm property to XOR for each WebSphere Application

Server profile that uses the Validation list object.

2. Stop all of the servers.

3. Edit the configuration files and change all of the encoded passwords to their unencoded values.

4. Edit the properties files and change all of the encoded passwords to their clear text values.

You have changed your encoding algorithm from OS400 to XOR.

After you completing these steps, you can encode the passwords in the properties files. See “Manually

encoding passwords in properties files” on page 82 for more information.

 Related concepts

 “Password encoding and encryption” on page 77
Password encoding deters the casual observation of passwords in server configuration and property

files.

 Related tasks

 “Manually encoding passwords in properties files” on page 82
To use password encoding with WebSphere Application Server administrative commands and Java

clients, passwords must be manually encoded in the soap.client.props and sas.client.props files using

the PropFilePasswordEncoder tool.

 “Restoring or replacing damaged validation list objects”
Periodically, you should save your validation list objects with the other configuration data objects that

are used by WebSphere Application Server. Use this task if you need to restore or replace a damaged

validation list object.

 Related reference

 Password decoding troubleshooting tips
If the password encoding is corrupted and you cannot decode a password, you can complete one of

the following tasks.

Restoring or replacing damaged validation list objects:

Periodically, you should save your validation list objects with the other configuration data objects that are

used by WebSphere Application Server. Use this task if you need to restore or replace a damaged

validation list object.

 You can share validation lists between multiple WebSphere Application Server profiles. For example, if you

have two profiles of WebSphere Application Server, default and prod, both profiles can use the

/QSYS.LIB/QUSRSYS.LIB/EJSADMIN.VLDL validation list.

To restore or replace a damaged validation list object, complete the following steps:

1. Replace the encoded passwords with the unencoded value of the password for all of the WebSphere

Application Server profiles that use the validation list object. To replace the password values, complete

the following steps:

a. Stop each of the servers.

b. Set the os400.security.password.validation.list.object property for all of the servers to the absolute

name of the new validation list that you want to use. You can use an existing validation list object

or specify a new object. For new validation list objects, create them manually or use the objects

that are created automatically when the server is restarted. For more information on manually

creating validation list objects, see “Manually encoding passwords in properties files” on page 82.

c. Edit the configuration files and set each encoded password to the appropriate clear text value.

2. Edit the sas.client.props and soap.client.props files and set each encoded password to the

appropriate unencoded value before manually encoding the passwords.

Chapter 6. Tuning the application serving environment 87

3. Restart the servers for all of the WebSphere Application Server profiles whose validation list objects

that are replaced.

After restarting the server, you have successfully replaced a damaged validation list object.

For additional information on backing up your data objects, see “Backing up security configuration files” on

page 90.

 Related concepts

 “Password encoding and encryption” on page 77
Password encoding deters the casual observation of passwords in server configuration and property

files.

 Related tasks

 “Using the non-default OS/400 password encoding algorithm” on page 86
Use these steps to change your encoding algorithm from OS400 to XOR.

 “Enabling the non-default OS/400 password encoding algorithm” on page 84
The purpose of password encoding is to deter casual observation of passwords in server configuration

and property files.

 “Manually encoding passwords in properties files” on page 82
To use password encoding with WebSphere Application Server administrative commands and Java

clients, passwords must be manually encoded in the soap.client.props and sas.client.props files using

the PropFilePasswordEncoder tool.

 Related reference

 Password decoding troubleshooting tips
If the password encoding is corrupted and you cannot decode a password, you can complete one of

the following tasks.

Enabling custom password encryption:

After creating the server profile, perform this task to better protect passwords contained in configuration.

 Create your custom class for encrypting passwords. For more information, see Plug point for custom

password encryption.

Complete the following steps to enable custom password encryption.

1. Add the following system properties for every server and client process. For server processes, update

the server.xml file for each process. Add these properties as a genericJvmArgument argument

preceded by a -D prefix.

com.ibm.wsspi.security.crypto.customPasswordEncryptionClass=

 com.acme.myPasswordEncryptionClass

com.ibm.wsspi.security.crypto.customPasswordEncryptionEnabled=true

Tip: If the custom encryption class name is

com.ibm.wsspi.security.crypto.CustomPasswordEncryptionImpl, it is automatically enabled when

this class is present in the classpath. Do not define the system properties that are listed

previously when the custom implementation has this package and class name. To disable

encryption for this class, you must specify

com.ibm.wsspi.security.crypto.customPasswordEncryptionEnabled=false as a system property.

2. Add the Java archive (JAR) file containing the implementation class to the app_server_root/classes

directory so that the WebSphere Application Server runtime can load the file.

3. Restart all server processes.

4. Edit each configuration document that contains a password and save the configuration. All password

fields are then run through the WSEncoderDecoder utility, which calls the plug point when it is

88 Tuning guide

enabled. The {custom:alias} tags are displayed in the configuration documents. The passwords, even

though they are encrypted, are still Base64-encoded. They seem similar to encoded passwords, except

for the tags difference.

5. Encrypt any passwords that are in client-side property files using the PropsFilePasswordEncoder

(.bat or .sh) utility. This utility requires that the properties listed previously are defined as system

properties in the script to encrypt new passwords instead of encoding them.

6. To decrypt passwords from client Java virtual machines (JVMs), add the properties listed previously as

system properties for each client utility.

7. Ensure that all nodes have the custom encryption classes in their class paths prior to enabling this

function. The order in which enablement occurs is important. When adding a new node to a cell that

contains password encryption, the new node must contain the custom encryption classes prior to using

the addNode command. Consider the following Network Deployment enablement scenarios:

a. The StandAloneProfile profile is encrypting passwords with a different key prior to federation to a

deployment manager cell. For this scenario, you must uninstall custom password encryption to

ensure that the configuration has {xor} tags preceding the passwords prior to running the addNode

command. The same implementation of the plug point must be in the /classes directory prior to

running the addNode command, and the proper configuration properties are set so that the new

node can recognize the encrypted password format of the security.xml file after federation

completes.

b. The StandAloneProfile profile does not have password encryption configured prior to federation to

a deployment manager cell. The same implementation of the plug point must be in the /classes

directory prior to running the addNode command, and the proper configuration properties are set

so that the new node can recognize the encrypted password format of the security.xml file after

federation completes.

c. If enabling custom password encryption in a cell with multiple nodes present, update the correct

configuration properties and have the custom password encryption implementation class located on

all nodes. Stop all processes in the cell, and then start the deployment manager. Use the

administrative console to edit the security configuration and then save it. Verify that the passwords

are encrypted by looking at the security.xml file to see if the passwords are preceded by

{custom:alias} tags.

d. Run the syncNode command on each node, and start each one individually. If any nodes fail to

start, make sure that they have custom password encryption enabled properly in each

security.xml file and that the implementation class is in the appropriate /classes directory for the

platform.

Custom password encryption is enabled.

If custom password encryption fails or is no longer required, see “Disabling custom password encryption.”

Disabling custom password encryption:

If custom password encryption fails or is no longer required, perform this task to disable custom password

encryption.

 Enable custom password encryption.

Complete the following steps to disable custom password encryption.

1. Change the com.ibm.wsspi.security.crypto.customPasswordEncryptionEnabled property to be false in

the security.xml file, but leave the com.ibm.wsspi.security.crypto.customPasswordEncryptionClass

property configured. Any passwords in the model that still have the {custom:alias} tag are decrypted

by using the customer password encryption class.

Chapter 6. Tuning the application serving environment 89

2. If an encryption key is lost, any passwords that are encrypted with that key cannot be retrieved. To

recover a password, retype the password in the password field in plaintext and save the document.

The new password must be written out using encoding with the {xor} tag with scripting or from the

administrative console.

com.ibm.wsspi.security.crypto.customPasswordEncryptionClass=

 com.acme.myPasswordEncryptionClass

com.ibm.wsspi.security.crypto.customPasswordEncryptionEnabled=false

3. Restart all processes to make the changes effective.

4. Edit each configuration document that contains an encrypted password and save the configuration. All

password fields are then run through the WSEncoderDecoder utility, which calls the plug point in the

presence of the {custom:alias} tag. The {xor} tags display in the configuration documents again after

the documents are saved.

5. Decrypt and encode any passwords that are in client-side property files using the

PropsFilePasswordEncoder (.bat or .sh) utility. If the encryption class is specified, but custom

encryption is disabled, running this utility converts the encryption to encoding and causes the {xor}

tags to display again.

6. Disable custom password encryption from the client Java virtual machines (JVMs) by adding the

system properties listed previously to all client scripts. This action enables the code to decrypt

passwords, but this action is not used to encrypt them again. The {xor} algorithm becomes the default

for encoding. Leave the custom password encryption class defined for a time in case any encrypted

passwords still exist in the configuration.

Custom password encryption is disabled.

Backing up security configuration files:

Back up your security configuration files to prevent the loss of information due to a potential system failure.

 Consider backing up the following security information:

v Back up your user profiles.

When you use local OS security, back up your user profiles, using the normal save procedures for user

profiles. For more information, see the Backup and Recovery Guide by searching for ″Saving group and

user profiles″ in the iSeries information center.

For information about the Directory Services Product (LDAP server), see the iSeries information center.

For information about Lotus Domino, see the Lotus Domino reference library.

v Back up your security property files.

Security settings are saved in several properties files. By default, these properties are located in

theprofile_root/properties directory. The default stand-alone profile name is default. If you define

additional WebSphere Application Server profiles, there are additional properties files located in the

directories for those profiles.

The following command saves all of the properties in the /SAS subdirectory:

SAV DEV(’/QSYS.lib/wsalib.lib/wsasavf.file’)

OBJ((’profile/properties/sas*’))

This previous command is on two lines for illustrative purposes only. Enter it as one continuous line

You can save security property files while WebSphere Application Server is running.

v Back up your HTTP configuration.

The following information applies to IBM HTTP Server. If you are using Lotus Domino HTTP Server, see

the Notes.net Documentation Library.

Changes to the HTTP configuration are often made to enable WebSphere Application Server to serve

servlets and JavaServer Pages (JSP) file requests and to enable WebSphere Application Server

security. Consider saving your HTTP configuration as a part of your WebSphere Application Server

backup and recovery. The IBM HTTP Server configurations are stored as members of the QATMHTTPC

90 Tuning guide

http://publib.boulder.ibm.com/pubs/html/as400/infocenter.html
http://publib.boulder.ibm.com/pubs/html/as400/infocenter.html
http://doc.notes.net/domino_notes/5.0/as400/as400hlp.nsf
http://www.notes.net/notesua.nsf?OpenDatabase

file in the QUSRSYS library. HTTP server instances are members of the QATMHINSTC file in the

QUSRSYS library. The following example commands back up these files:

SAVOBJ OBJ(QUSRSYS/QATMHTTPC)

SAVOBJ OBJ(QUSRSYS/QATMHINSTC)

v Back up your key files.

The key files contain certificates that are used by the security infrastructure for WebSphere Application

Server. These certificates are also used for HTTPS transport between servers. Save all of the files in

the WAS_INSTANCE_ROOT/etc directory. Key files are contained in the WAS_INSTANCE_ROOT/etc

directory, but administrators might create and store these files in other directories.

v Back up your validation lists.

Passwords are stored as encrypted data in validation list objects when you use the OS/400 password

encoding algorithm. The default validation list is /QSYS.LIB/QUSRSYS.LIB/EJSADMIN.VLDL, but you

can change it in the administrative console by specifying it as a system property for the application

server. For more information, see Administering application servers.

For more information on backup and recovery strategies, see the following references:

v iSeries Information Center

v iSeries Backup and Recovery Version 5

v Security: Resources for learning

 Related tasks

 Administering application servers
An application server configuration provides settings that control how an application server provides

services for running applications and their components.

SPNEGO trust association interceptor (TAI) troubleshooting tips

Presented here is a list of trouble shooting tips useful in diagnosing Simple and Protected GSS-API

Negotiation (SPNEGO) TAI problems and exceptions.

The IBM Java Generic Security Service (JGSS) and IBM SPNEGO providers use a Java virtual machine

(JVM) custom property to control trace information. The SPNEGO TAI uses the JRas facility to allow an

administrator to trace only specific classes. To debug the TAI using tracing, the following important trace

specifications or JVM customer should be used:

 Table 5. SPNEGO TAI trace specifications

Trace Use

com.ibm.security.jgss.debug Set this JVM Custom Property to all to trace through JGSS code.

Messages appear in the trace.log file, and SystemOut.log.

com.ibm.security.krb5.Krb5Debug Set this JVM Custom Property to all to trace through the Kerberos5 -

specific JGSS code. Messages appear in the trace.log file, and

SystemOut.log.

com.ibm.ws.security.spnego.* Set this trace on using the administrative console -> troubleshooting ->

Logging and Tracing -> server1 -> Change Log Detail

Levels->com.ibm.ws.security.spnego.*. Messages appear in the

trace.log file.

Problem: WebSphere Application Server and the Active Directory (AD) Domain Controller’s time are

not synchronized within 5 minutes:

The time is not synchronized between WebSphere Application Server and AD Domain Controller.

 [2/24/06 13:12:46:093 CST] 00000060 Context 2 com.ibm.ws.security.spnego.Context

 begin GSSContext accepted

[2/24/06 13:12:46:093 CST] 00000060 Context E com.ibm.ws.security.spnego.Context

Chapter 6. Tuning the application serving environment 91

http://publib.boulder.ibm.com/infocenter/iseries/v5r3/ic2924/index.htm
http://publib.boulder.ibm.com/infocenter/iseries/v5r3/ic2924/info/rzaiu/sc415304.pdf

begin

CWSPN0011E: An invalid SPNEGO token has been encountered while authenticating a

 HttpServletRequest:

0000: 60820160 06062b06 01050502 a1820154 `..` ..+. T

0010: 30820150 a0030a01 01a10b06 092a8648 0..P *.H

0020: 82f71201 0202a282 013a0482 01366082 :.. .6`.

0030: 01320609 2a864886 f7120102 0203007e .2.. *.H. ~

0040: 82012130 82011da0 03020105 a1030201 ..!0

0050: 1ea41118 0f323030 36303232 34313931 200 6022 4191

0060: 3234365a a5050203 016b48a6 03020125 246Z kH. ...%

0070: a9161b14 57535345 432e4155 5354494e WSSE C.AU STIN

0080: 2e49424d 2e434f4d aa2d302b a0030201 .IBM .COM .-0+

0090: 00a12430 221b0448 5454501b 1a773230 ..$0 "..H TTP. .w20

00a0: 30337365 63646576 2e617573 74696e2e 03se cdev .aus tin.

00b0: 69626d2e 636f6dab 81aa1b81 a76f7267 ibm. com. org

00c0: 2e696574 662e6a67 73732e47 53534578 .iet f.jg ss.G SSEx

00d0: 63657074 696f6e2c 206d616a 6f722063 cept ion, maj or c

00e0: 6f64653a 2031302c 206d696e 6f722063 ode: 10, min or c

00f0: 6f64653a 2033370a 096d616a 6f722073 ode: 37. .maj or s

0100: 7472696e 673a2044 65666563 74697665 trin g: D efec tive

0110: 20746f6b 656e0a09 6d696e6f 72207374 tok en.. mino r st

0120: 72696e67 3a20436c 69656e74 2074696d ring : Cl ient tim

0130: 65204672 69646179 2c204665 62727561 e Fr iday , Fe brua

0140: 72792032 342c2032 30303620 61742031 ry 2 4, 2 006 at 1

0150: 3a31323a 34352050 4d20746f 6f20736b :12: 45 P M to o sk

0160: 65776564 ewed

Solution: You can fix this in one of two ways. The preferred way is to synchronize the WebSphere

Application Server system time to within 5 minutes of the AD server’s time. A best practice is to use a time

server to keep all systems synchronized. Or you can add or adjust the clockskew parameter in the

Kerberos configuration file.

Note: The default for the clockskew parameter is 300 seconds (or 5 minutes).

Problem: Getting exception: No factory available to create a name for mechanism 1.3.6.1.5.5.2:

There apparently is no factory available to process the creation of a name for the specific mechanism.

 The systemout.log displays something like this:

[4/8/05 22:51:24:542 EDT] 5003e481 SystemOut O [JGSS_DBG_PROV] Provider

 IBMJGSSProvider version 1.01 does not support mech 1.3.6.1.5.5.2

[4/8/05 22:51:24:582 EDT] 5003e481 ServerCredent >

 com.ibm.ws.security.spnego.ServerCredential initialize ENTRY

SPNEGO014: Kerberos initialization Failure: org.ietf.jgss.GSSException, major code: 2,

 minor code: 0

 major string: Unsupported mechanism

 minor string: No factory available to create name for mechanism 1.3.6.1.5.5.2

 at com.ibm.security.jgss.i18n.I18NException.throwGSSException

 (I18NException.java:30)

 at com.ibm.security.jgss.GSSManagerImpl.a(GSSManagerImpl.java:36)

 at com.ibm.security.jgss.GSSCredentialImpl.add(GSSCredentialImpl.java:217)

 at com.ibm.security.jgss.GSSCredentialImpl.<init>(GSSCredentialImpl.java:264)

Solution: Check the Java.security file to ensure it contains the IBMSPNEGO security provider and that the

provider is defined correctly. The Java.security file should contain a line similar to:

security.provider.6=com.ibm.security.jgss.mech.spnego.IBMSPNEGO

Problem: Getting an exception:

An exception has occurred when reporting to the client.

 You get the following display.

92 Tuning guide

Error authenticating request. Reporting to client

Major code = 11, Minor code = 31

org.ietf.jgss.GSSException, major code: 11, minor code: 31

 major string: General failure, unspecified at GSSAPI level

 minor string: Kerberos error while decoding and verifying token:

 com.ibm.security.krb5.internal.KrbException, status code: 31

 message: Integrity check on decrypted field failed

as the JGSS library is trying to process the SPNEGO token.

Cause: This exception is the result of encoding the ticket using one key and attempting to decode it using

a different key. There are number of possible reasons for this condition:

1. The Kerberos keytab file has not been copied to the server machine after it has been regenerated.

2. The Kerberos configuration points to the wrong Kerberos keytab file.

3. The Kerberos service principal name (SPN) has been defined to the Active Directory more than once;

this can occur because you have another userid with a similarly defined SPN (either exactly the same

name, or one having a different name but with a port defined part of the SPN).

Solution: If the problem is with the Kerberos keytab file, then fix it. If the problem is with multiple SPN

definitions, then remove the extra or conflicting SPN, confirm that the SPN is no longer registered with the

Active Directory, and then add the SPN. The Active Directory may need to be searched for other entries

with SPNs defined that clash with the SPN.

To confirm that the SPN is not registered, the command:

setspn –l userid

should return with the following response:

Cannot find account userid

Problem: Single Sign-on is not occurring.:

 When trace is turned on, the following message appears:

[2/27/06 14:28:04:191 CST] 00000059 SpnegoHandler <

 com.ibm.ws.security.spnego.SpnegoHandler handleRequest: Received a

 non-SPNEGO Authorization Header RETURN

Cause: The client is returning an NT LAN manager (NTLM) response to the authorize challenge, not a

SPNEGO token. This condition can be occur due to any of the following reasons:

v The client has not been configured properly.

v The client is not using a supported browser. For example, when using Microsoft Internet Explorer 5.5,

SP1 responds with a non-SPNEGO authentication header.

v The user has not logged into the Active Directory domain, or into a trusted domain, or the client used

does not support integrated authentication with Windows – in this case, the SPNEGO TAI is working

properly.

v The user is accessing a service defined on the same machine upon which the client is running (local

host). Microsoft Internet Explorer resolves the host name of the URL to http://localhostsomeURL

instead of a fully qualified name.

v The SPN is not found in the Active Directory. The SPN must be of the format HTTP/server.realm.com.

The command to add the SPN is

setspn –a HTTP/server.realm.com userid

If the SPN is defined incorrectly as HTTP/server.realm.com@REALM.COM with the addition of @REALM.COM,

then delete the user, redefine the user, and redefine the SPN.

Problem: Credential Delegation is not working:

Chapter 6. Tuning the application serving environment 93

An invalid option is detected. When trace is turned on, the following message is displayed:

com.ibm.security.krb5.KrbException, status code: 101 message: Invalid option in

ticket request

Cause: The Kerberos configuration file is not properly configured.

Solution: Ensure that neither renewable, nor proxiable are set to true.

Problem: Unable to get SSO working using RC4-HMAC encryption.:

When trace is turned on, you get the following message in the trace:

com.ibm.security.krb5.internal.crypto.KrbCryptoException, status code: 0

 message: Checksum error; received checksum does not match computed checksum

Cause: RC4-HMAC encryption is not supported with a Microsoft Windows 2000 Kerberos key distribution

center (KDC). To confirm this condition, examine the trace and identify where the exception is thrown. The

content of the incoming ticket should be visible in the trace. Although the incoming ticket is encrypted, the

SPN for the service is readable. If a Microsoft Windows 2000 KDC is used and the system is configured to

use RC4-HMAC, the string representing the ticket for userid@REALM (instead of the expected

HTTP/hostname.realm@REALM) is displayed. For example, this is beginning of the ticket received from a

Microsoft Windows 2000 KDC:

0000: 01 00 6e 82 04 7f 30 82 04 7b a0 03 02 01 05 a1 ..n...0.........

0010: 03 02 01 0e a2 07 03 05 00 20 00 00 00 a3 82 03

0020: a5 61 82 03 a1 30 82 03 9d a0 03 02 01 05 a1 0a .a...0..........

0030: 1b 08 45 50 46 44 2e 4e 45 54 a2 18 30 16 a0 03 ...REALM.COM.0..

0040: 02 01 01 a1 0f 30 0d 1b 0b 65 70 66 64 77 61 73 0...userid

0050: 75 6e 69 74 a3 82 03 6e 30 82 03 6a a0 03 02 01 .a.f...n0..j....

The realm is REALM.COM. The service name is userid. A correctly formed ticket for the same SPN is:

0000: 01 00 6e 82 04 56 30 82 04 52 a0 03 02 01 05 a1 ..n..V0..R......

0010: 03 02 01 0e a2 07 03 05 00 20 00 00 00 a3 82 03

0020: 82 61 82 03 7e 30 82 03 7a a0 03 02 01 05 a1 0a .a...0..z.......

0030: 1b 08 45 50 46 44 2e 4e 45 54 a2 2a 30 28 a0 03 ..REALM.COM.0...

0040: 02 01 02 a1 21 30 1f 1b 04 48 54 54 50 1b 17 75 0...HTTP..u

0050: 73 31 30 6b 65 70 66 77 61 73 73 30 31 2e 65 70 serid.realm.com.

0060: 66 64 2e 6e 65 74 a3 82 03 39 30 82 03 35 a0 03 ...n.....90..5..

Solution: To correct the problem, either use the Single data encryption standard (DES) or use a Microsoft

Windows 2003 Server for a KDC. Remember to regenerate the SPN, and the Kerberos keytab file.

Problem: User receives the following message when accessing a protected URL through the

SPNEGO SSO:

Bad Request

Your browser sent a request that this server could not understand.

Size of request header field exceeds server limit.

Authorization: Negotiate YII......

Cause: This message is generated by the Apache/IBM HTTP Server. This server is indicating that the

authorization header returned by the user’s browser is too large. The long string that follows the word

Negotiate (in the error message above) is the SPNEGO token. This SPNEGO token is a wrapper of the

Microsoft Windows Kerberos token. Microsoft Windows includes the user’s PAC information in the

Kerberos token. The more security groups that the user belongs to, the more PAC information is inserted

in the Kerberos token, and the larger the SPNEGO becomes. IBM HTTP Server 2.0 (also Apache 2.0 and

IBM HTTP Server 6.0) limit the size of any acceptable HTTP header to be 8K. In Microsoft Windows

domains having many groups, and with user membership in many groups, the size of the user’s SPNEGO

token may exceed the 8K limit.

94 Tuning guide

Solution: If possible, reduce the number of security groups the user is a member of. IBM HTTP Server

2.0.47 cumulative fix PK01070 allows for HTTP header sizes up to and beyond the Microsoft limit of 12K.

WebSphere Application Server Version 6.0 users can obtain this fix in fixpack 6.0.0.2.

Note: Non-Apache based Web servers may require differing solutions.

Problem: Even with JGSS tracing disabled, some KRB_DBG_KDC messages appear in the

SystemOut.log:

Cause: While most of the JGSS tracing is controlled by the com.ibm.security.jgss.debug property, a small

set of messages are controlled by the com.ibm.security.krb5.Krb5Debug property. The

com.ibm.security.krb5.Krb5Debug property has a default value to put some messages to the

SystemOut.log.

Solution: To remove all KRB_DBG_KDC messages from the SystemOut.log, set the JVM property as

follows:

-Dcom.ibm.security.krb5.Krb5Debug=none

.

Problem: HTTP Post parameters are lost during interaction with the SPNEGO TAI, when stepping

down to userid/password login.:

Cause: The Microsoft Internet Explorer maintains state during a user’s request. If a request was given the

response of an ″HTTP 401 Authenticate Negotiate″, and the browser responds with a NTLM token

obtained through a userid/password challenge, the browser resubmits the request. If this second request is

given a response of an HTML page containing a redirection to the same URL but with new arguments (via

Javascript) then the browser does not resubmit the POST parameters. To avoid this problem, it is critical to

NOT perform the automatic redirection. If the user clicks on a link, the problem does not occur. See

section 5.2 Client Returns NTLM Token to SPNEGO Challenge for a resolution to the problem,

Solution: The browser responds to the Authenticate/Negotiate challenge with an NTLM token, not an

SPNEGO token. The SPNEGO TAI sees the NTLM, and returns back a HTTP 403 response, along with

the HTML page. When the browser runs the Javascript redirTimer function, any POST of GET parameters

that were present on the original request are lost.

By leveraging the SPN<id>.NTLMTokenReceivedPage property, an appropriate message page can be

returned to the user. The default message that is returned (in the absence of a user defined property) is:

"<html><head><title>An NTLM Token was Received.</title></head>"

 + "<body>Your browser configuration is correct, but you have not logged into

 a supported Windows Domain."

 + "<p>Please login to the application using the normal login page.</html>";

Using the SPN<id>.NTLMTokenReceivedPage property, you can customize the exact response. It is critical

that the returned HTML not perform a redirection.

When the SPNEGO TAI has been configured to use the shipped default HTTPHeaderFilter class as the

SPN<id>.filterClass, then the SPN<id>.filter can be used to allow the second request to flow directly to the

normal WebSphere Application Server security mechanism. In this way, the user experiences the normal

authentication mechanism.

An example of such a configuration follows. The required SPNEGO TAI properties necessary and the

HTML file content are presented.

Chapter 6. Tuning the application serving environment 95

Table 6. SPNEGO TAI properties and HTML

SPNEGO TAI Property Name HTML File Content

com.ibm.ws.security.spnego.SPN1.hostName server.wasteched30.torolab.ibm.com

com.ibm.ws.security.spnego.SPN1.filterClass com.ibm.ws.security.spnego.HTTPHeaderFilter

com.ibm.ws.security.spnego.SPN1.filter request-url!=noSPNEGO

com.ibm.ws.security.spnego.SPN1.NTLMTokenReceivedPage File:///C:/temp/NTLM.html

Note: Observe that the filter property instructs the SPNEGO TAI to NOT intercept any HTTP request that

contains the string “noSPNEGO”.

Here is an example of a generating a helpful response.

<html>

<head>

<title>NTLM Authentication Received </title>

<script language="javascript">

 var purl=""+document.location;

if (purl.indexOf("noSPNEGO")<0) {

 if(purl.indexOf(’?’)>=0) purl+="&noSPNEGO";

 else purl+="?noSPNEGO";

 }

</script>

</head>

<body>

<p>An NTLM token was retrieved in response to the SPNEGO challenge. It is likely that

you are not logged into a Windows domain.

Click on the following link to get the requested website.

<script language="javascript">

 document.write("");

 document.write("Open the same page using the normal authentication

 mechanism.");

 document.write("
");

</script>

You will not automatically be redirected.

</body>

</html>

Object Request Broker

Object Request Broker tuning guidelines

Use the guidelines in this document any time the Object Request Broker (ORB) is used in a workload.

The ORB is used whenever enterprise beans are accessed through a remote interface. If you experience

particularly high or low CPU consumption, you might have a problem with the value of one of the following

parameters. Examine these core tuning parameters for every application deployment.

Thread pool adjustments:

Size

Tune the size of the ORB thread pool according to your workload. Avoid suspending threads because they

have no work ready to process. If threads do not have work ready to process, CPU time is consumed by

calling the Object.wait method, performing a context switch. Tune the thread pool size such that the length

of time that the threads wait is short enough to prevent them from being destroyed because they are idle

too long.

The thread pool size is dependent on your workload and system. In typical configurations, applications

need 10 or fewer threads per processor.

96 Tuning guide

However, if your application is performing a very slow backend request, like a request to a database

system, a server thread blocks waiting for the backend request to complete. With backend requests, CPU

use is fairly low. In this case, increasing the load does not increase CPU use or throughput. Your thread

dumps indicate that nearly all the threads are in a call out to the backend resource. In this case, consider

increasing the number of threads per processor until throughput improves and thread dumps show that the

threads are in other areas of the run time besides the backend call. You should adjust the number of

threads only if your backend resource is tuned correctly.

The Allow thread allocation beyond maximum thread size parameter also affects thread pool size, but

do not use this parameter unless your back end stops for long periods of time, causing the blocking of all

the run-time threads waiting for the backend system instead of processing other work that does not involve

the backend system.

You can adjust the thread pool size settings in the administrative console. Click Servers > Application

servers > server_name > Container services > ORB service > Thread pool. You can adjust the

minimum and maximum number of threads. See Thread pool settings for more information.

Pass by reference:

Specifies how the ORB passes parameters. If enabled, the ORB passes parameters by reference instead

of by value, to avoid making an object copy. If you do not enable the pass by reference option, a copy of

the parameter passes rather than the parameter object itself. This can be expensive because the ORB

must first make a copy of each parameter object.

 You can use this option only when the Enterprise JavaBeans (EJB) client and the EJB are on the same

classloader. This requirement means that the EJB client and the EJB must be deployed in the same EAR

file.

If the Enterprise JavaBeans (EJB) client and server are installed in the same WebSphere Application

Server instance, and the client and server use remote interfaces, enabling the pass by reference option

can improve performance up to 50%. The pass by reference option helps performance only where

non-primitive object types are passed as parameters. Therefore, int and floats are always copied,

regardless of the call model.

Important: Enable this property with caution because unexpected behavior can occur. If an object

reference is modified by the callee, the caller’s object is modified as well, since they are the

same object.

If you use command-line scripting, the full name of this system property is

com.ibm.CORBA.iiop.noLocalCopies.

 Data type Boolean

Default Not enabled (false)

The use of this option for enterprise beans with remote interfaces violates Enterprise JavaBeans (EJB)

Specification, Version 2.0 (see section 5.4). Object references passed to Enterprise JavaBeans (EJB)

methods or to EJB home methods are not copied and can be subject to corruption.

Consider the following example:

Iterator iterator = collection.iterator();

MyPrimaryKey pk = new MyPrimaryKey();

while (iterator.hasNext()) {

 pk.id = (String) iterator.next();

 MyEJB myEJB = myEJBHome.findByPrimaryKey(pk);

}

Chapter 6. Tuning the application serving environment 97

In this example, a reference to the same MyPrimaryKey object passes into WebSphere Application Server

with a different ID value each time. Running this code with pass by reference enabled causes a problem

within the application server because multiple enterprise beans are referencing the same MyPrimaryKey

object. To avoid this problem, set the com.ibm.websphere.ejbcontainer.allowPrimaryKeyMutation system

property to true when the pass by reference option is enabled. Setting the pass by reference option to

true causes the EJB container to make a local copy of the PrimaryKey object. As a result, however, a

small portion of the performance advantage of setting the pass by reference option is lost.

As a general rule, any application code that passes an object reference as a parameter to an enterprise

bean method or to an EJB home method must be scrutinized to determine if passing that object reference

results in loss of data integrity or in other problems.

After examining your code, you can enable the pass by reference option by setting the

com.ibm.CORBA.iiop.noLocalCopies system property to true. You can also enable the pass by reference

option in the administrative console. Click Servers > Application servers > server_name > Container

services > ORB Service and select Pass by reference.

Fragment size: The ORB separates messages into fragments to send over the ORB connection. You

can configure this fragment size through the com.ibm.CORBA.FragmentSize parameter.

To determine and change the size of the messages that transfer over the ORB and the number of required

fragments, perform the following steps:

1. In the administrative console, enable ORB tracing in the ORB Properties page. See Object Request

Broker service settings for more information.

2. Enable ORBRas tracing from the logging and tracing page.

3. Increase the trace file sizes because tracing can generate a lot of data.

4. Restart the server and run at least one iteration (preferably several) of the case that you are

measuring.

5. Look at the traceable file and do a search for Fragment to follow: Yes.

This message indicates that the ORB transmitted a fragment, but it still has at least one remaining

fragment to send before the entire message arrives. A Fragment to follow: No value indicates that the

particular fragment is the last in the entire message. This fragment can also be the first, if the message

fit entirely into one fragment.

If you go to the spot where Fragment to follow: Yes is located, you find a block that looks similar to the

following example:

 Fragment to follow: Yes

Message size: 4988 (0x137C)

--

Request ID: 1411

This example indicates that the amount of data in the fragment is 4988 bytes and the Request ID is

1411. If you search for all occurrences of Request ID: 1411, you can see the number of fragments that

are used to send that particular message. If you add all the associated message sizes, you have the

total size of the message that is being sent through the ORB.

6. You can configure the fragment size by setting the com.ibm.CORBA.FragmentSize property. See

Object Request Broker custom properties for more information.

Interceptors: Interceptors are ORB extensions that can set up the context before the ORB runs a

request. For example, the context might include transactions or activity sessions to import. If the client

creates a transaction, and then flows the transaction context to the server, then the server imports the

transaction context onto the server request through the interceptors.

98 Tuning guide

Most clients do not start transactions or activity sessions, so most systems can benefit from removing the

interceptors that are not required.

To remove the interceptors, manually edit the server.xml file and remove the interceptor lines that are not

needed from the ORB section.

Connection Cache Adjustments: Depending on an application server’s workload, and throughput or

response-time requirements, you might need to adjust the size of the ORB’s connection cache. Each entry

in the connection cache is an object that represents a distinct TCP/IP socket endpoint, identified by the

hostname or TCP/IP address, and the port number used by the ORB to send a GIOP request or a GIOP

reply to the remote target endpoint. The purpose of the connection cache is to minimize the time required

to establish a connection by reusing ORB connection objects for subsequent requests or replies. (The

same TCP/IP socket is used for the request and corresponding reply.)

For each application server, the number of entries in the connection cache relates directly to the number of

concurrent ORB connections. These connections consist of both the inbound requests made from remote

clients and outbound requests made by the application server. When the server-side ORB receives a

connection request, it uses an existing connection from an entry in the cache, or establishes a new

connection and adds an entry for that connection to the cache.

The ORB Connection cache maximum and Connection cache minimum properties are used to control the

maximum and minimum number of entries in the connection cache at a given time. When the number of

entries reaches the value specified for the Connection cache maximum property, and a new connection is

needed, the ORB creates the requested connection, adds an entry to the cache and searches for and

attempts to remove up to five inactive connection entries from the cache. Because the new connection is

added before inactive entries are removed, it is possible for the number of cache entries to temporarily

exceed the value specified for the Connection cache maximum property.

An ORB connection is considered inactive if the TCP/IP socket stream is not in use and there are no

GIOP replies pending for any requests made on that connection. As the application workload diminishes,

the ORB closes the connections and removes the entries for these connections from the cache. The ORB

continues to remove entries from the cache until the number of remaining entries is at or below the value

specified for the Connection cache maximum property. The number of cache entries is never less then the

value specified for the Connection cache minimum property, which must be at least five connections less

than the value specified for the Connection cache maximum property.

Adjustments to the connection cache in the client-side ORB are usually not necessary because only a

small number of connections are made on that side.

JNI Reader Threads: By default, the ORB uses a Java thread for processing each inbound connection

request it receives. As the number of concurrent requests increases, the storage consumed by a large

number of reader threads increases and can become a bottleneck in resource-constrained environments.

Eventually, the number of Java threads created can cause out-of-memory exceptions if the number of

concurrent requests exceeds the system’s available resources.

To help address this potential problem, you can configure the ORB to use JNI reader threads where a

finite number of reader threads, implemented using native OS threads instead of Java threads, are created

during ORB initialization. JNI reader threads rely on the native OS TCP/IP asynchronous mechanism that

enables a single native OS thread to handle I/O events from multiple sockets at the same time. The ORB

manages the use of the JNI reader threads and assigns one of the available threads to handle the

connection request, using a round-robin algorithm. Ordinarily, JNI reader threads should only be configured

when using Java threads is too memory-intensive for your application environment.

The number of JNI reader threads you should allocate for an ORB depends on many factors and varies

significantly from one environment to another, depending on available system resources and workload

requirements. The following potential benefits might be achieved if you use JNI threads:

Chapter 6. Tuning the application serving environment 99

v Because a fixed number of threads is allocated, memory usage is reduced. This reduction provides

significant benefit in environments with unusually large and sustained client-request workloads.

v The time needed to dynamically create and destroy Java threads is eliminated because a fixed number

of JNI threads is created and allocated during ORB initialization.

v Each JNI thread can handle up to 1024 socket connections and interacts directly with the asynchronous

I/O native OS mechanism, which might provide enhanced performance of network I/O processing.

Learn about WebSphere programming extensions

Use this section as a starting point to investigate the WebSphere programming model extensions for

enhancing your application development and deployment.

See Learn about WebSphere applications: Overview and new features for a brief description of each

WebSphere extension.

In addition, now your applications can use the Eclipse extension framework. Your applications are

extensible as soon as you define an extension point and provide the extension processing code for the

extensible area of the application. You can also plug an application into another extensible application by

defining an extension that adheres to the target extension point requirements. The extension point can find

the newly added extension dynamically and the new function is seamlessly integrated in the existing

application. It works on a cross Java 2 Platform, Enterprise Edition (J2EE) module basis.

The application extension registry uses the Eclipse plug-in descriptor format and application programming

interfaces (APIs) as the standard extensibility mechanism for WebSphere applications. Developers that

build WebSphere application modules can use WebSphere Application Server extensions to implement

Eclipse tools and to provide plug-in modules to contribute functionality such as actions, tasks, menu items,

and links at predefined extension points in the WebSphere application. For more information about this

feature, see Application extension registry.

Application profiling

Application profiling performance considerations:

Application profiling enables assembly configuration techniques that improve your application run time,

performance and scalability. You can configure tasks that identify incoming requests, identify access

intents determining concurrency and other data access characteristics, and profiles that map the tasks to

the access intents.

 The capability to configure the application server can improve performance, efficiency and scalability, while

reducing development and maintenance costs. The application profiling service has no tuning parameters,

other than a checkbox for disabling the service if the service is not necessary. However, the overhead for

the application profile service is small and should not be disabled, or unpredictable results can occur.

Access intents enable you to specify data access characteristics. The WebSphere runtime environment

uses these hints to optimize the access to the data, by setting the appropriate isolation level and

concurrency. Various access intent hints can be grouped together in an access intent policy.

In WebSphere Application Server, it is recommended that you configure bean level access intent for

loading a given bean. Application profiling enables you to configure multiple access intent policies on the

entity bean, if desired. Some callers can load a bean with the intent to read data, while others can load the

bean for update. The capability to configure the application server can improve performance, efficiency,

and scalability, while reducing development and maintenance costs.

Access intents enable the EJB container to be configured providing optimal performance based on the

specific type of enterprise bean used. Various access intent hints can be specified declaratively at

100 Tuning guide

deployment time to indicate to WebSphere resources, such as the container and persistence manager, to

provide the appropriate access intent services for every EJB request.

The application profiling service improves overall entity bean performance and throughput by fine tuning

the run time behavior. The application profiling service enables EJB optimizations to be customized for

multiple user access patterns without resorting to ″worst case″ choices, such as pessimistic update on a

bean accessed with the findByPrimaryKey method, regardless of whether the client needs it for read or for

an update.

Application profiling provides the capability to define the following hierarchy: Container-Managed Tasks >

Application Profiles > Access Intent Policies > Access Intent Overrides. Container-managed tasks

identify units of work (UOW) and are associated with a method or a set of methods. When a method

associated with the task is invoked, the task name is propagated with the request. For example, a UOW

refers to a unique path within the application that can correspond to a transaction or ActivitySession. The

name of the task is assigned declaratively to a J2EE client or servlet, or to the method of an enterprise

bean. The task name identifies the starting point of a call graph or subgraph; the task name flows from the

starting point of the graph downstream on all subsequent IIOP requests, identifying each subsequent

invocation along the graph as belonging to the configured task. As a best practice, wherever a UOW

starts, for example, a transaction or an ActivitySession, assign a task to that starting point.

The application profile service associates the propagated tasks with access intent policies. When a bean is

loaded and data is retrieved, the characteristics used for the retrieval of the data are dictated by the

application profile. The application profile configures the access intent policy and the overrides that should

be used to access data for a specific task.

Access intent policies determine how beans are loaded for specific tasks and how data is accessed during

the transaction. The access intent policy is a named group of access intent hints. The hints can be used,

depending on the characteristics of the database and resource manager. Various access intent hints

applied to the data access operation govern data integrity. The general rule is, the more data integrity, the

more overhead. More overhead causes lower throughput and the opportunity for simultaneous data access

from multiple clients.

If specified, access intent overrides provide further configuration for the access intent policy.

Best practices

Application profiling is effective in a variety of different scenarios. The following are example situations

where application profiling is useful

v The same bean is loaded with different data access patterns

The same bean or set of beans can be reused across applications, but each of those applications has

differing requirements for the bean or for beans within the invocation graph. One application can require

that beans be loaded for update, while another application requires beans be loaded for read only.

Application profiling enables deploy time configuration for beans to distinguish between EJB loading

requirements.

v Different clients have different data access requirements

The same bean or set of beans can be used for different types of client requests. When those clients

have different requirements for the bean, or for beans within the invocation graph, application profiling

can be used to tailor the bean loading characteristics to the requirements of the client. One client can

require beans be loaded for update, while another client requires beans be loaded for read only.

Application profiling enables deploy time configuration for beans to distinguish between EJB loading

requirements.

Monitoring tools

You can use the Tivoli Performance Viewer, database and logs as monitoring tools.

Chapter 6. Tuning the application serving environment 101

You can use the Tivoli Performance Viewer to monitor various metrics associated with beans in an

application profiling configuration. The following sections describe at a high level the Tivoli Performance

Viewer metrics that reflect changes when access intents and application profiling are used:

v Collection scope

The enterprise beans group contains EJB life cycle information, either a cumulative value for a group of

beans, or for specific beans. You can monitor this information to determine the difference between using

the ActivitySession scope versus the transaction scope. For the transaction scope, depending on how

the container transactions are defined, activates and passivates can be associated with method

invocations. The application could use the ActivitySession scope to reduce the frequency of activates

and passivates. For more information, see ″Using the ActivitySession service.″

v Collection increment

The enterprise beans group contains EJB life cycle information, either a cumulative value for a group of

beans, or for specific beans. You can monitor Num Activates to watch the number of enterprise beans

activated for a particular findByPrimaryKey operation. For example, if the collection increment is set to

10, rather than the default 25, the Num Activates value shows 25 for the initial findByPrimaryKey, before

any result set iterator runs. If the number of activates rarely exceeds the collection increment, consider

reducing the collection increment setting.

v Resource manager prefetch increment

The resource manager prefetch increment is a hint acted upon by the database engine to depend upon

the database. The Tivoli Performance Viewer does not have a metric available to show the effect of the

resource manager prefetch increment setting.

v Read ahead hint

The enterprise beans group contains EJB life cycle information, either a cumulative value for a group of

beans, or for specific beans. You can monitor Num Activates to watch the number of enterprise beans

activated for a particular request. If a read ahead association is not in use, the Num Activates value

shows a lower initial number. If a read ahead association is in use, the Num Activates value represents

the number of activates for the entire call graph.

Database tools are helpful in monitoring the different bean loading characteristics that introduce

contention and concurrency issues. These issues can be solved by application profiling, or can be made

worse by the misapplication of access intent policies.

Database tools are useful for monitoring locking and contention characteristics, such as locks, deadlocks

and connections open. For example, for locks the DB2 Snapshot Monitor can show statistics for lock waits,

lock time-outs and lock escalations. If excessive lock waits and time-outs are occurring, application

profiling can define specific client tasks that require a more string level of locking, and other client tasks

that do not require locking. Or, a different access intent policy with less restrictive locking could be applied.

After applying this configuration change, the snapshot monitor shows less locking behavior. Refer to

information about the database you are using on how to monitor for locking and contention.

The application server logs can be monitored for information about rollbacks, deadlocks, and other data

access or transaction characteristics that can degrade performance or cause the application to fail.

Dynamic cache

Managing cache entries stored on a disk:

Use this page to set Java virtual machine (JVM) custom properties to maintain cache entries that are

saved to disk.

 Steps for this task

You can set the custom properties globally to affect all cache instances, or you can set the custom

property on a single cache instance. In most cases, set the properties on the individual cache instances.

102 Tuning guide

To set the custom properties on the default cache instance, use the global option. If you set the same

property both globally and on a cache instance, the value that is set on the cache instance overrides the

global value.

To configure the custom properties on a single object cache instance or servlet cache instance, perform

the following steps:

1. In the administrative console, click one of the following paths:

v To configure a servlet cache instance, click Resources > Cache instances > Servlet cache

instances > servlet_cache_instance_name > Custom properties > New.

v To configure an object cache instance, click Resources > Cache instances > Object cache

instances > object_cache_instance_name > Custom properties > New.

2. Type the name of the custom property. When configuring these custom properties on a single cache

instance, you do not use the full property path. For example, type explictBufferLimitOnStop to

configure the com.ibm.ws.cache.CacheConfig.explictBufferLimitOnStop custom property.

3. Type a valid value for the property in the Value field.

4. Save the property and restart WebSphere Application Server.

To configure the custom property globally across all configured cache instances, perform the following

steps:

1. In the administrative console, click Servers > Application servers > server_name > Java and

process management > Process definition > Java virtual machine > Custom properties > New.

2. Type the name of the custom property (for example,

com.ibm.ws.cache.CacheConfig.explictBufferLimitOnStop) in the Name field.

3. Type a valid value for the property in the Value field.

4. Save the property and restart WebSphere Application Server.

com.ibm.ws.cache.CacheConfig.htodCleanupFrequency

Use this property to change the amount of time between disk cache cleanup.

Important: Setting this custom property manually is deprecated for V6.1. Therefore, you should use the

administrative console to set this property. To set this property in the administrative console,

click one of the following paths:

v To configure a servlet cache instance, click Resources > Cache instances > Servlet

cache instances > servlet_cache_instance_name.

v To configure an object cache instance, click Resources > Cache instances > Object

cache instances > object_cache_instance_name.

Then:

1. Under Disk Cache setting, select the Enable disk offload field if it is not already selected.

2. Under Performance Settings, select Balanced performance and balanced memory usage

or Custom.

3. In the Disk cache cleanup frequency field, specify an appropriate length of time, in

minutes.

By default, the disk cache cleanup is scheduled to run at midnight to remove expired cache entries and

cache entries that have not been accessed in the past 24 hours. However, if you have thousands of cache

entries that might expire within one or two hours, the files that are in the disk cache can grow large and

become unmanageable. Use the com.ibm.ws.cache.CacheConfig.htodCleanupFrequency custom property

to change the time interval between disk cache cleanup.

Chapter 6. Tuning the application serving environment 103

Units minutes

For example, a value of 60 means 60 minutes between

each disk cache cleanup.

Default 0

The disk cache cleanup occurs at midnight every 24

hours.

com.ibm.ws.cache.CacheConfig.htodDelayOffloadEntriesLimit

Use this property to specify the number of different cache IDs that can be saved in memory for the

dependency ID and template buffers. Consider increasing this value if you have a lot of memory in your

server and you want to increase the performance of your disk cache.

Important: Setting this custom property manually is deprecated for V6.1. Therefore, you should use the

administrative console to set this property. To set this property in the administrative console,

click one of the following paths:

v To configure a servlet cache instance, click Resources > Cache instances > Servlet

cache instances > servlet_cache_instance_name.

v To configure an object cache instance, click Resources > Cache instances > Object

cache instances > object_cache_instance_name.

Then:

1. Under Disk Cache setting, select the Enable disk offload field, if it is not already selected.

2. Under Disk Cache settings, select Limit disk cache size in entries, if it is not already

selected.

3. In the Disk cache size field, specify the number of cache IDs that can be saved in memory

for the dependency ID and template buffers.

 Units number of cache IDs

For example, a value of 1000 means that each

dependency ID or template ID can have up to 1000

different cache IDs in memory.

Default 1000

Minimum 100

Tune the delay offload function

Use these properties to tune the delay offload function for the disk cache.

Important: Setting these custom properties manually is deprecated for V6.1. You should use the

administrative console to set these properties. The individual property descriptions include

information on how to use the administrative console to set these properties.

The delay offload function uses extra memory buffers for dependency IDs and templates to delay the disk

offload and minimize the input and output operations. However, if most of your cache IDs are longer than

100 bytes, the delay offload function might use too much memory. Use any combination of the following

properties to tune your configuration:

v To increase or decrease the in-memory limit of cache IDs for dependency ID and template buffers, use

the com.ibm.ws.cache.CacheConfig.htodDelayOffloadEntriesLimit custom property.

104 Tuning guide

v To disable the disk cache delay offload function, use the

com.ibm.ws.cache.CacheConfig.htodDelayOffload custom property. Disabling this property saves all

cache entries to disk immediately after removing them from the memory cache.

com.ibm.ws.cache.CacheConfig.explictBufferLimitOnStop

Use this custom property when the flush-to-disk-on-stop feature is enabled. When the server is stopping,

offloads are limited to the value specified for this property, pending removal of entries in the explicit

invalidation buffer. If this property is set to 0, there is no limit to the number of offloads that can occur.

Only positive integers are accepted as values for this property. If the number of entries in the explicit

invalidation buffer is greater then the specified limit, all of the disk files for this specified cache instance

are deleted after the server stops.

Important: You cannot use the administrative console to set this property.

Tuning dynamic cache with the cache monitor:

Use this task to interpret cache monitor statistics to improve the performance of the dynamic cache

service.

 Verify that dynamic cache is enabled and that the cache monitor application is installed on your application

server. See Displaying cache information to configure the cache monitor application.

Use the cache monitor to watch cache hits versus misses. By comparing these two values, you can

determine how much dynamic cache is helping your application, and if you can take any additional steps

to further improve performance and decrease the cost of processing for your application server.

1. Start cache monitor and click on Cache Statistics. You can view the following cache statistics:

 Cache statistic Description

Cache Size The maximum number of entries that the cache can hold.

Used Entries The number of cache entries used.

Cache Hits The number of request responses that are served from

the cache.

Cache Misses The number of request responses that are cacheable but

cannot be served from the cache.

LRU Evictions The number of cache entries removed to make room for

new cache entries.

Explicit Removals The number of cache entries removed or invalidated from

the cache based on cache policies or were deleted from

the cache through the cache monitor.

2. You can also view the following cache configuration values:

 Cache configuration value Description

Default priority Specifies the default priority for all cache entries. Lower

priority entries are moved from the cache before higher

priority entries when the cache is full. You can specify the

priority for individual cache entries in the cache policy.

Servlet Caching Enabled If servlet caching is enabled, results from servlets and

JavaServer Pages (JSP) files are cached. See Configuring

servlet caching for more information.

Disk Offload Enabled Specifies if entries that are being removed from the cache

are saved to disk. See Configuring dynamic cache disk

offload for more information.

Chapter 6. Tuning the application serving environment 105

3. Wait for the application server to add data to the cache. You want the number of used cache entries in

the cache monitor to be as high as it can go. When the number of used entries is at its highest, the

cache can serve responses to as many requests as possible.

4. When the cache has a high number of used entries, reset the statistics. Watch the number of cache

hits versus cache misses. If the number of hits is far greater than the number of misses, your cache

configuration is optimal. You do not need to take any further actions. If you find a higher number of

misses with a lower number of hits, the application server is working hard to generate responses

instead of serving the request using a cached value. The application server might be making database

queries, or running logic to respond to the requests.

5. If you have a large number of cache misses, increase the number of cache hits by improving the

probability that a request can be served from the cache. To improve the number of cache hits, you can

increase the cache size or configure additional cache policies. See Dynamic cache service settings to

increase the cache size and Configuring cacheable objects with the cachespec.xml file for information

about configuring cache policies.

By using the cache monitor application, you optimized the performance of the dynamic cache service.

See Task overview: Using the dynamic cache service to improve performance for more information about

the dynamic cache.

Dynamic cache MBean statistics:

The dynamic cache service provides an MBean interface to access cache statistics.

 Access cache statistics with the MBean interface, using JACL

v Obtain the MBean identifier with the queryNames command, for example:

$AdminControl queryNames type=DynaCache,* // Returns a list of the available dynamic cache MBeans

Select your dynamic cache MBean and run the following command:

set mbean <dynamic_cache_mbean>

v Retrieve the names of the available cache statistics:

$AdminControl invoke $mbean getCacheStatisticNames

v Retrieve the names of the available cache instances:

$AdminControl invoke $mbean getCacheInstanceNames

v Retrieve all of the available cache statistics for the base cache instance:

$AdminControl invoke $mbean getAllCacheStatistics

v Retrieve all of the available cache statistics for the named cache instance:

$AdminControl invoke $mbean getAllCacheStatistics "services/cache/servletInstance_4"

v Retrieve cache statistics that are specified by the names array for the base cache instance:

$AdminControl invoke $mbean getCacheStatistics

 {"DiskCacheSizeInMB ObjectsReadFromDisk4000K RemoteObjectMisses"}

Note: This command should all be entered on one line. It is broken here for printing purposes.

v Retrieve cache statistics that are specified by the names array for the named cache instance:

$AdminControl invoke $mbean getCacheStatistics

 {services/cache/servletInstance_4 "ExplicitInvalidationsLocal CacheHits"}

Note: This command should all be entered on one line. It is broken here for printing purposes.

Accessing dynamic cache PMI counters:

The dynamic cache statistics interface is defined as WSDynamicCacheStats under the

com\ibm\websphere\pmi\stat package.

106 Tuning guide

Dynamic cache statistics are structured as follows in the Performance Monitoring Infrastructure (PMI) tree:

__Dynamic Caching+

 |

 |__<Servlet: instance_1>

 |__Templates+

 |__<template_1>

 |__<template_2>

 |__Disk+

 |__<Disk Offload Enabled>

 |

 |__<Object: instance_2>

 |__Object Cache+

 |__<Counters>

+ indicates logical group

StatDescriptor locates and accesses particular statistics in the PMI tree. For example:

1. StatDescriptor to represent statistics for cache servlet: instance_1 templates group template_1: new

StatDescriptor (new String[] {WSDynamicCacheStats.NAME, ″Servlet: instance1″,

WSDynamicCacheStats.TEMPLATE_GROUP, ″template_1″});

2. StatDescriptor to represent statistics for cache servlet: instance_1 disk group Disk Offload Enabled:

new StatDescriptor (new String[] {WSDynamicCacheStats.NAME, ″Servlet: instance_1″,

WSDynamicCacheStats.DISK_GROUP, WSDynamicCacheStats.DISK_OFFLOAD_ENABLED});

3. StatDescriptor to represent statistics for cache object: instance2 object cache group Counters: new

StatDescriptor (new String[] {WSDynamicCacheStats.NAME, ″Object: instance_2″,

WSDynamicCacheStats.OBJECT_GROUP, WSDynamicCacheStats.OBJECT_COUNTERS});

Important: Cache instance names are prepended with cache type (″Servlet: ″ or ″Object: ″).

Counter definitions for Servlet Cache

 Name of PMI statistics Path Description Version

WSDynamicCacheStats.

MaxInMemoryCache

EntryCount

WSDynamicCacheStats.NAME

- “Servlet: instance_1“

The maximum number of

in-memory cache entries.

5.0 and later

WSDynamicCacheStats.

InMemoryCache EntryCount

WSDynamicCacheStats.NAME

- “Servlet: instance_1“

The current number of

in-memory cache entries

5.0 and later

WSDynamicCacheStats.

HitsIn MemoryCount

WSDynamicCacheStats.NAME

- “Servlet:

cache_instance_1“ -

WSDynamicCacheStats.

TEMPLATE_GROUP

-“Template_1”

The number of requests for

cacheable objects that are

served from memory.

5.0 and later

WSDynamicCacheStats.

HitsOnDiskCount

WSDynamicCacheStats.NAME

- “Servlet:

cache_instance_1“ -

WSDynamicCacheStats.

TEMPLATE_GROUP

-“Template_1”

The number of requests for

cacheable objects that are

served from disk.

5.0 and later

WSDynamicCacheStats.

ExplicitInvalidationCount

WSDynamicCacheStats.NAME

- “Servlet:

cache_instance_1“ -

WSDynamicCacheStats.

TEMPLATE_GROUP

-“Template_1”

The number of explicit

invalidations.

5.0 and later

Chapter 6. Tuning the application serving environment 107

Name of PMI statistics Path Description Version

WSDynamicCacheStats.

LruInvalidationCount

WSDynamicCacheStats.NAME

- “Servlet:

cache_instance_1“ -

WSDynamicCacheStats.

TEMPLATE_GROUP

-“Template_1

The number of cache

entries that are removed

from memory by a Least

Recently Used (LRU)

algorithm. instance.

5.0 and later

WSDynamicCacheStats.

TimeoutInvalidationCount

WSDynamicCacheStats.NAME

- “Servlet:

cache_instance_1“ -

WSDynamicCacheStats.

TEMPLATE_GROUP

-“Template_1”

The number of cache

entries that are removed

from memory and disk

because their timeout has

expired.

5.0 and later

WSDynamicCacheStats.

InMemoryAndDisk

CacheEntryCount

WSDynamicCacheStats.NAME

- “Servlet:

cache_instance_1“ -

WSDynamicCacheStats.

TEMPLATE_GROUP

-“Template_1”

The current number of used

cache entries in memory

and disk.

5.0 and later

WSDynamicCacheStats.

RemoteHitCount

WSDynamicCacheStats.NAME

- “Servlet:

cache_instance_1“ -

WSDynamicCacheStats.

TEMPLATE_GROUP

-“Template_1”

The number of requests for

cacheable objects that are

served from other Java

virtual machines within the

replication domain.

5.0 and later

WSDynamicCacheStats.

MissCount

WSDynamicCacheStats.NAME

- “Servlet:

cache_instance_1“ -

WSDynamicCacheStats.

TEMPLATE_GROUP

-“Template_1”

The number of requests for

cacheable objects that were

not found in the cache.

5.0 and later

WSDynamicCacheStats.

ClientRequestCount

WSDynamicCacheStats.NAME

- “Servlet:

cache_instance_1“ -

WSDynamicCacheStats.

TEMPLATE_GROUP

-“Template_1”

The number of requests for

cacheable objects that are

generated by applications

running on this application

server.

5.0 and later

WSDynamicCacheStats.

DistributedRequestCount

WSDynamicCacheStats.NAME

- “Servlet:

cache_instance_1“ -

WSDynamicCacheStats.

TEMPLATE_GROUP

-“Template_1”

The number of requests for

cacheable objects that are

generated by cooperating

caches in this replication

domain.

5.0 and later

WSDynamicCacheStats.

ExplicitMemory

InvalidationCount

WSDynamicCacheStats.NAME

- “Servlet:

cache_instance_1“ -

WSDynamicCacheStats.

TEMPLATE_GROUP

-“Template_1”

The number of explicit

invalidations resulting in the

removal of an entry from

memory.

5.0 and later

WSDynamicCacheStats.

ExplicitDisk

InvalidationCount

WSDynamicCacheStats.NAME

- “Servlet:

cache_instance_1“ -

WSDynamicCacheStats.

TEMPLATE_GROUP

-“Template_1”

The number of explicit

invalidations resulting in the

removal of an entry from

disk.

5.0 and later

108 Tuning guide

Name of PMI statistics Path Description Version

WSDynamicCacheStats.

LocalExplicit

InvalidationCount

WSDynamicCacheStats.NAME

- “Servlet:

cache_instance_1“ -

WSDynamicCacheStats.

TEMPLATE_GROUP

-“Template_1”

The number of explicit

invalidations generated

locally, either

programmatically or by a

cache policy.

5.0 and later

WSDynamicCacheStats.

RemoteExplicit

InvalidationCount

WSDynamicCacheStats.NAME

- “Servlet:

cache_instance_1“ -

WSDynamicCacheStats.

TEMPLATE_GROUP

-“Template_1”

The number of explicit

invalidations received from

a cooperating Java virtual

machine in this replication

domain.

5.0 and later

WSDynamicCacheStats.

RemoteCreationCount

WSDynamicCacheStats.NAME

- “Servlet:

cache_instance_1“ -

WSDynamicCacheStats.

TEMPLATE_GROUP

-“Template_1”

The number of cache

entries that are received

from cooperating dynamic

caches.

5.0 and later

 Name of PMI statistics Path Description Version

WSDynamicCacheStats.

ObjectsOnDisk

WSDynamicCacheStats.NAME

- “Servlet:

cache_instance_1“ -

WSDynamicCacheStats.

DISK_GROUP -“

WSDynamicCacheStats.

DISK_OFFLOAD_ENABLED

The current number of

cache entries on disk.

6.1

WSDynamicCacheStats.

HitsOnDisk

WSDynamicCacheStats.NAME

- “Servlet:

cache_instance_1“ -

WSDynamicCacheStats.

DISK_GROUP -“

WSDynamicCacheStats.

DISK_OFFLOAD_ENABLED

The number of requests for

cacheable objects that are

served from disk.

6.1

WSDynamicCacheStats.

ExplicitInvalidations

FromDisk

WSDynamicCacheStats.NAME

- “Servlet:

cache_instance_1“ -

WSDynamicCacheStats.

DISK_GROUP -“

WSDynamicCacheStats.

DISK_OFFLOAD_ENABLED

The number of explicit

invalidations resulting in the

removal of entries from

disk.

6.1

WSDynamicCacheStats.

TimeoutInvalidations

FromDisk

WSDynamicCacheStats.NAME

- “Servlet:

cache_instance_1“ -

WSDynamicCacheStats.

DISK_GROUP -“

WSDynamicCacheStats.

DISK_OFFLOAD_ENABLED

The number of disk

timeouts.

6.1

WSDynamicCacheStats

PendingRemoval FromDisk

WSDynamicCacheStats.NAME

- “Servlet:

cache_instance_1“ -

WSDynamicCacheStats.

DISK_GROUP -“

WSDynamicCacheStats.

DISK_OFFLOAD_ENABLED

The current number of

pending entries that are to

be removed from disk.

6.1

Chapter 6. Tuning the application serving environment 109

Name of PMI statistics Path Description Version

WSDynamicCacheStats.

DependencyIdsOnDisk

WSDynamicCacheStats.NAME

- “Servlet:

cache_instance_1“ -

WSDynamicCacheStats.

DISK_GROUP -“

WSDynamicCacheStats.

DISK_OFFLOAD_ENABLED

The current number of

dependency ID that are on

disk.

6.1

WSDynamicCacheStats.

DependencyIdsBuffered

ForDisk

WSDynamicCacheStats.NAME

- “Servlet:

cache_instance_1“ -

WSDynamicCacheStats.

DISK_GROUP -“

WSDynamicCacheStats.

DISK_OFFLOAD_ENABLED

The current number of

dependency IDs that are

buffered for the disk.

6.1

WSDynamicCacheStats.

DependencyIds

OffloadedToDisk

WSDynamicCacheStats.NAME

- “Servlet:

cache_instance_1“ -

WSDynamicCacheStats.

DISK_GROUP -“

WSDynamicCacheStats.

DISK_OFFLOAD_ENABLED

The number of dependency

IDs that are offloaded to

disk.

6.1

WSDynamicCacheStats.

DependencyIdBased

InvalidationsFromDisk

WSDynamicCacheStats.NAME

- “Servlet:

cache_instance_1“ -

WSDynamicCacheStats.

DISK_GROUP -“

WSDynamicCacheStats.

DISK_OFFLOAD_ENABLED

The number of dependency

ID-based invalidations.

6.1

WSDynamicCacheStats.

TemplatesOnDisk

WSDynamicCacheStats.NAME

- “Servlet:

cache_instance_1“ -

WSDynamicCacheStats.

DISK_GROUP -“

WSDynamicCacheStats.

DISK_OFFLOAD_ENABLED

The current number of

templates that are on disk.

6.1

WSDynamicCacheStats.

TemplatesBuffered ForDisk

WSDynamicCacheStats.NAME

- “Servlet:

cache_instance_1“ -

WSDynamicCacheStats.

DISK_GROUP -“

WSDynamicCacheStats.

DISK_OFFLOAD_ENABLED

The current number of

templates that are buffered

for the disk.

6.1

WSDynamicCacheStats.

TemplatesOffloaded ToDisk

WSDynamicCacheStats.NAME

- “Servlet:

cache_instance_1“ -

WSDynamicCacheStats.

DISK_GROUP -“

WSDynamicCacheStats.

DISK_OFFLOAD_ENABLED

The number of templates

that are offloaded to disk.

6.1

WSDynamicCacheStats.

TemplateBased

InvalidationsFromDisk

WSDynamicCacheStats.NAME

- “Servlet:

cache_instance_1“ -

WSDynamicCacheStats.

DISK_GROUP -“

WSDynamicCacheStats.

DISK_OFFLOAD_ENABLED

The number of

template-based

invalidations.

6.1

110 Tuning guide

Name of PMI statistics Path Description Version

WSDynamicCacheStats.

GarbageCollector

InvalidationsFromDisk

WSDynamicCacheStats.NAME

- “Servlet:

cache_instance_1“ -

WSDynamicCacheStats.

DISK_GROUP -“

WSDynamicCacheStats.

DISK_OFFLOAD_ENABLED

The number of garbage

collector invalidations

resulting in the removal of

entries from disk cache due

to high threshold has been

reached.

6.1

WSDynamicCacheStats.

OverflowInvalidations

FromDisk

WSDynamicCacheStats.NAME

- “Servlet:

cache_instance_1 “ -

WSDynamicCacheStats.

DISK_GROUP -“

WSDynamicCacheStats.

DISK_OFFLOAD_ENABLED

The number of invalidations

resulting in the removal of

entries from disk due to

exceeding the disk cache

size or disk cache size in

GB limit.

6.1

Counter definitions for Object Cache

 Name of PMI Statistics Path Description Version

WSDynamicCacheStats.

MaxInMemoryCache

EntryCount

WSDynamicCacheStats.NAME

- “Object: instance_2“

The maximum number of

in-memory cache entries.

5.0 and later

WSDynamicCacheStats.

InMemoryCache EntryCount

WSDynamicCacheStats.NAME

- “Object: instance_2“

The current number of

in-memory cache entries

5.0 and later

WSDynamicCacheStats.

HitsInMemoryCount

WSDynamicCacheStats.NAME

- “Object:

cache_instance_2“ -

WSDynamicCacheStats.OBJECT_GROUP

- WSDynamicCacheStats

OBJECT_COUNTERS

The number of requests for

cacheable objects that are

served from memory.

5.0 and later

WSDynamicCacheStats.

HitsOnDiskCount

WSDynamicCacheStats.NAME

- “Object:

cache_instance_2“ -

WSDynamicCacheStats.

OBJECT_GROUP -

WSDynamicCacheStats

OBJECT_COUNTERS

The number of requests for

cacheable objects that are

served from disk.

5.0 and later

WSDynamicCacheStats.

ExplicitInvalidationCount

WSDynamicCacheStats.NAME

- “Object:

cache_instance_2“ -

WSDynamicCacheStats.

OBJECT_GROUP -

WSDynamicCacheStats

OBJECT_COUNTERS

The number of explicit

invalidations.

5.0 and later

WSDynamicCacheStats.

LruInvalidationCount

WSDynamicCacheStats.NAME

- “Object:

cache_instance_2“ -

WSDynamicCacheStats.

OBJECT_GROUP -

WSDynamicCacheStats

OBJECT_COUNTERS

The number of cache

entries that are removed

from memory by a Least

Recently Used (LRU)

algorithm. instance.

5.0 and later

Chapter 6. Tuning the application serving environment 111

Name of PMI Statistics Path Description Version

WSDynamicCacheStats.

TimeoutInvalidation Count

WSDynamicCacheStats.NAME

- “Object:

cache_instance_2“ -

WSDynamicCacheStats.

OBJECT_GROUP -

WSDynamicCacheStats

OBJECT_COUNTERS

The number of cache

entries that are removed

from memory and disk

because their timeout has

expired.

5.0 and later

WSDynamicCacheStats.

InMemoryAndDisk

CacheEntryCount

WSDynamicCacheStats.NAME

- “Object:

cache_instance_2“ -

WSDynamicCacheStats.

OBJECT_GROUP -

WSDynamicCacheStats

OBJECT_COUNTERS

The current number of used

cache entries in memory

and disk.

5.0 and later

WSDynamicCacheStats.

RemoteHitCount

WSDynamicCacheStats.NAME

- “Object:

cache_instance_2“ -

WSDynamicCacheStats.

OBJECT_GROUP -

WSDynamicCacheStats

OBJECT_COUNTERS

The number of requests for

cacheable objects that are

served from other Java

virtual machines within the

replication domain.

5.0 and later

WSDynamicCacheStats.

MissCount

WSDynamicCacheStats.NAME

- “Object:

cache_instance_2“ -

WSDynamicCacheStats.

OBJECT_GROUP -

WSDynamicCacheStats

OBJECT_COUNTERS

The number of requests for

cacheable objects that were

not found in the cache.

5.0 and later

WSDynamicCacheStats.

ClientRequestCount

WSDynamicCacheStats.NAME

- “Object:

cache_instance_2“ -

WSDynamicCacheStats.

OBJECT_GROUP -

WSDynamicCacheStats

OBJECT_COUNTERS

The number of requests for

cacheable objects that are

generated by applications

running on this application

server.

5.0 and later

WSDynamicCacheStats.

DistributedRequest Count

WSDynamicCacheStats.NAME

- “Object:

cache_instance_2“ -

WSDynamicCacheStats.

OBJECT_GROUP -

WSDynamicCacheStats

OBJECT_COUNTERS

The number of requests for

cacheable objects that are

generated by cooperating

caches in this replication

domain.

5.0 and later

WSDynamicCacheStats.

ExplicitMemory

InvalidationCount

WSDynamicCacheStats.NAME

- “Object:

cache_instance_2“ -

WSDynamicCacheStats.

OBJECT_GROUP -

WSDynamicCacheStats

OBJECT_COUNTERS

The number of explicit

invalidations resulting in the

removal of an entry from

memory.

5.0 and later

WSDynamicCacheStats.

ExplicitDisk

InvalidationCount

WSDynamicCacheStats.NAME

- “Object:

cache_instance_2“ -

WSDynamicCacheStats.

OBJECT_GROUP -

WSDynamicCacheStats

OBJECT_COUNTERS

The number of explicit

invalidations resulting in the

removal of an entry from

disk.

5.0 and later

112 Tuning guide

Name of PMI Statistics Path Description Version

WSDynamicCacheStats.

LocalExplicit

InvalidationCount

WSDynamicCacheStats.NAME

- “Object:

cache_instance_2“ -

WSDynamicCacheStats.

OBJECT_GROUP -

WSDynamicCacheStats

OBJECT_COUNTERS

The number of explicit

invalidations generated

locally, either

programmatically or by a

cache policy.

5.0 and later

WSDynamicCacheStats.

RemoteExplicit

InvalidationCount

WSDynamicCacheStats.NAME

- “Object:

cache_instance_2“ -

WSDynamicCacheStats.

OBJECT_GROUP -

WSDynamicCacheStats

OBJECT_COUNTERS

The number of explicit

invalidations received from

a cooperating Java virtual

machine in this replication

domain.

5.0 and later

WSDynamicCacheStats.

RemoteCreationCount

WSDynamicCacheStats.NAME

- “Object:

cache_instance_2“ -

WSDynamicCacheStats.

OBJECT_GROUP -

WSDynamicCacheStats

OBJECT_COUNTERS

The number of cache

entries that are received

from cooperating dynamic

caches.

5.0 and later

 Name of PMI statistics Path Description Version

WSDynamicCacheStats.

ObjectsOnDisk

WSDynamicCacheStats.NAME

- “Object:

cache_instance_2“ -

WSDynamicCacheStats.

DISK_GROUP -“

WSDynamicCacheStats.

DISK_OFFLOAD_ENABLED

The current number of

cache entries on disk.

6.1

WSDynamicCacheStats.

HitsOnDisk

WSDynamicCacheStats.NAME

- “Object:

cache_instance_2“ -

WSDynamicCacheStats.

DISK_GROUP -“

WSDynamicCacheStats.

DISK_OFFLOAD_ENABLED

The number of requests for

cacheable objects that are

served from disk.

6.1

WSDynamicCacheStats.

ExplicitInvalidations

FromDisk

WSDynamicCacheStats.NAME

- “Object:

cache_instance_2“ -

WSDynamicCacheStats.

DISK_GROUP -“

WSDynamicCacheStats.

DISK_OFFLOAD_ENABLED

The number of explicit

invalidations resulting in the

removal of entries from

disk.

6.1

WSDynamicCacheStats.

TimeoutInvalidations

FromDisk

WSDynamicCacheStats.NAME

- “Object:

cache_instance_2“ -

WSDynamicCacheStats.

DISK_GROUP -“

WSDynamicCacheStats.

DISK_OFFLOAD_ENABLED

The number of disk

timeouts.

6.1

Chapter 6. Tuning the application serving environment 113

Name of PMI statistics Path Description Version

WSDynamicCacheStats

PendingRemoval FromDisk

WSDynamicCacheStats.NAME

- “Object:

cache_instance_2“ -

WSDynamicCacheStats.

DISK_GROUP -“

WSDynamicCacheStats.

DISK_OFFLOAD_ENABLED

The current number of

pending entries that are to

be removed from disk.

6.1

WSDynamicCacheStats.

DependencyIdsOnDisk

WSDynamicCacheStats.NAME

- “Object:

cache_instance_2“ -

WSDynamicCacheStats.

DISK_GROUP -“

WSDynamicCacheStats.

DISK_OFFLOAD_ENABLED

The current number of

dependency ID that are on

disk.

6.1

WSDynamicCacheStats.

DependencyIds

BufferedForDisk

WSDynamicCacheStats.NAME

- “Object:

cache_instance_2“ -

WSDynamicCacheStats.

DISK_GROUP -“

WSDynamicCacheStats.

DISK_OFFLOAD_ENABLED

The current number of

dependency IDs that are

buffered for the disk.

6.1

WSDynamicCacheStats.

DependencyIds

OffloadedToDisk

WSDynamicCacheStats.NAME

- “Object:

cache_instance_2“ -

WSDynamicCacheStats.

DISK_GROUP -“

WSDynamicCacheStats.

DISK_OFFLOAD_ENABLED

The number of dependency

IDs that are offloaded to

disk.

6.1

WSDynamicCacheStats.

DependencyIdBased

InvalidationsFromDisk

WSDynamicCacheStats.NAME

- “Object:

cache_instance_2“ -

WSDynamicCacheStats.

DISK_GROUP -“

WSDynamicCacheStats.DISK_

OFFLOAD_ENABLED

The number of dependency

ID-based invalidations.

6.1

WSDynamicCacheStats.

TemplatesOnDisk

WSDynamicCacheStats.NAME

- “Object:

cache_instance_2“ -

WSDynamicCacheStats.

DISK_GROUP -“

WSDynamicCacheStats.

DISK_OFFLOAD_ENABLED

The current number of

templates that are on disk.

6.1

WSDynamicCacheStats.

TemplatesBuffered ForDisk

WSDynamicCacheStats.NAME

- “Object:

cache_instance_2“ -

WSDynamicCacheStats.

DISK_GROUP / -“

WSDynamicCacheStats.

DISK_OFFLOAD_ENABLED

The current number of

templates that are buffered

for the disk.

6.1

WSDynamicCacheStats.

TemplatesOffloaded ToDisk

WSDynamicCacheStats.NAME

- “Object:

cache_instance_2“ -

WSDynamicCacheStats.

DISK_GROUP -“

WSDynamicCacheStats.

DISK_OFFLOAD_ENABLED

The number of templates

that are offloaded to disk.

6.1

114 Tuning guide

Name of PMI statistics Path Description Version

WSDynamicCacheStats.

TemplateBasedInvalidations

FromDisk

WSDynamicCacheStats.NAME

- “Object:

cache_instance_2“ -

WSDynamicCacheStats.

DISK_GROUP -“

WSDynamicCacheStats.

DISK_OFFLOAD_ENABLED

The number of

template-based

invalidations.

6.1

WSDynamicCacheStats.

GarbageCollector

InvalidationsFromDisk

WSDynamicCacheStats.NAME

- “Object:

cache_instance_2“ -

WSDynamicCacheStats.

DISK_GROUP -“

WSDynamicCacheStats.

DISK_OFFLOAD_ENABLED

The number of garbage

collector invalidations

resulting in the removal of

entries from disk cache due

to high threshold has been

reached.

6.1

WSDynamicCacheStats.

OverflowInvalidations

FromDisk

WSDynamicCacheStats.NAME

- “Object:

cache_instance_2“ -

WSDynamicCacheStats.

DISK_GROUP -“

WSDynamicCacheStats.

DISK_OFFLOAD_ENABLED

The number of invalidations

resulting in the removal of

entries from disk due to

exceeding the disk cache

size or disk cache size in

GB limit.

6.1

Work area

Work area service performance considerations: The work area service is designed to address

complex data passing patterns that can quickly grow beyond convenient maintenance. A work area is a

note pad that is accessible to any client that is capable of looking up Java Naming Directory Interface

(JNDI). After a work area is established, data can be placed there for future use in any subsequent

method calls to both remote and local resources.

You can utilize a work area when a large number of methods require common information or if information

is only needed by a method that is significantly further down the call graph. The former avoids the need for

complex parameter passing models where the number of arguments passed becomes excessive and hard

to maintain. You can improve application function by placing the information in a work area and

subsequently accessing it independently in each method, eliminating the need to pass these parameters

from method to method. The latter case also avoids unnecessary parameter passing and helps to improve

performance by reducing the cost of marshalling and de-marshalling these parameters over the Object

Request Broker (ORB) when they are only needed occasionally throughout the call graph.

When attempting to maximize performance by using a work area, cache the UserWorkArea partition that is

retrieved from JNDI wherever it is accessed. You can reduce the time spent looking up information in JNDI

by retrieving it once and keeping a reference for the future. JNDI lookup takes time and can be costly.

Additional caching mechanisms available to a user-defined partition are defined by the configuration

property, ″Deferred Attribute Serialization″. This mechanism attempts to minimize the number of

serialization and deserialization calls. See Work area partition service for further explanation of this

configuration attribute.

The maxSendSize and maxReceiveSize configuration parameters can affect the performance of the work

area. Setting these two values to 0 (zero) effectively turns off the policing of the size of context that can be

sent in a work area. This action can enhance performance, depending on the number of nested work

areas an application uses. In applications that use only one work area, the performance enhancement

might be negligible. In applications that have a large number of nested work areas, there might be a

performance enhancement. However, a user must note that by turning off this policing it is possible that an

extremely large amount of data might be sent to a server.

Chapter 6. Tuning the application serving environment 115

Performance is degraded if you use a work area as a direct replacement to passing a single parameter

over a single method call. The reason is that you incur more overhead than just passing that parameter

between method calls. Although the degradation is usually within acceptable tolerances and scales

similarly to passing parameters with regard to object size, consider degradation a potential problem before

utilizing the service. As with most functional services, intelligent use of the work areas yields the best

results.

The work area service is a tool to simplify the job of passing information from resource to resource, and in

some cases can improve performance by reducing the overhead that is associated with a parameter

passing when the information is only sparsely accessed within the call graph. Caching the instance

retrieved from JNDI is important to effectively maximize performance during runtime.

116 Tuning guide

Chapter 7. Troubleshooting performance

This topic illustrates that solving a performance problem is an iterative process and shows how to

troubleshoot performance problems.

Solving a performance problem is frequently an iterative process of:

v Measuring system performance and collecting performance data

v Locating a bottleneck

v Eliminating a bottleneck

This process is often iterative because when one bottleneck is removed the performance is now

constrained by some other part of the system. For example, replacing slow hard disks with faster ones

might shift the bottleneck to the CPU of a system.

Measuring system performance and collecting performance data

Begin by choosing a benchmark, a standard set of operations to run. This benchmark exercises those

application functions experiencing performance problems. Complex systems frequently need a warm-up

period to cache objects, optimize code paths, and so on. System performance during the warm-up period

is usually much slower than after the warm-up period. The benchmark must be able to generate work that

warms up the system prior to recording the measurements that are used for performance analysis.

Depending on the system complexity, a warm-up period can range from a few thousand transactions to

longer than 30 minutes.

If the performance problem under investigation only occurs when a large number of clients use the

system, then the benchmark must also simulate multiple users. Another key requirement is that the

benchmark must be able to produce repeatable results. If the results vary more than a few percent from

one run to another, consider the possibility that the initial state of the system might not be the same for

each run, or the measurements are made during the warm-up period, or that the system is running

additional workloads.

Several tools facilitate benchmark development. The tools range from tools that simply invoke a URL to

script-based products that can interact with dynamic data generated by the application. IBM Rational has

tools that can generate complex interactions with the system under test and simulate thousands of users.

Producing a useful benchmark requires effort and needs to be part of the development process. Do not

wait until an application goes into production to determine how to measure performance.

The benchmark records throughput and response time results in a form to allow graphing and other

analysis techniques. The performance data that is provided by WebSphere Application Server

Performance Monitoring Infrastructure (PMI) helps to monitor and tune the application server performance.

Request metrics is another sources of performance data that is provided by WebSphere Application

Server. Request metrics allows a request to be timed at WebSphere Application Server component

boundaries, enabling a determination of the time that is spent in each major component.

Locating a bottleneck

Consult the following scenarios and suggested solutions:

v Scenario: Poor performance occurs with only a single user.

Suggested solution: Utilize request metrics to determine how much each component is contributing to

the overall response time. Focus on the component accounting for the most time. Use Tivoli

Performance Viewer to check for resource consumption, including frequency of garbage collections. You

might need code profiling tools to isolate the problem to a specific method.

v Scenario: Poor performance only occurs with multiple users.

© Copyright IBM Corp. 2006 117

Suggested solution: Check to determine if any systems have high CPU, network or disk utilization and

address those. For clustered configurations, check for uneven loading across cluster members.

v Scenario: None of the systems seems to have a CPU, memory, network, or disk constraint but

performance problems occur with multiple users.

Suggested solutions:

– Check that work is reaching the system under test. Ensure that some external device does not limit

the amount of work reaching the system. Tivoli Performance Viewer helps determine the number of

requests in the system.

– A thread dump might reveal a bottleneck at a synchronized method or a large number of threads

waiting for a resource.

– Make sure that enough threads are available to process the work both in IBM HTTP Server,

database, and the application servers. Conversely, too many threads can increase resource

contention and reduce throughput.

– Monitor garbage collections with Tivoli Performance Viewer or the verbosegc option of your Java

virtual machine. Excessive garbage collection can limit throughput.

Eliminating a bottleneck

Consider the following methods to eliminate a bottleneck:

v Reduce the demand

v Increase resources

v Improve workload distribution

v Reduce synchronization

Reducing the demand for resources can be accomplished in several ways. Caching can greatly reduce the

use of system resources by returning a previously cached response, thereby avoiding the work needed to

construct the original response. Caching is supported at several points in the following systems:

v IBM HTTP Server

v Command

v Enterprise bean

v Operating system

Application code profiling can lead to a reduction in the CPU demand by pointing out hot spots you can

optimize. IBM Rational and other companies have tools to perform code profiling. An analysis of the

application might reveal areas where some work might be reduced for some types of transactions.

Change tuning parameters to increase some resources, for example, the number of file handles, while

other resources might need a hardware change, for example, more or faster CPUs, or additional

application servers. Key tuning parameters are described for each major WebSphere Application Server

component to facilitate solving performance problems. Also, the performance advisors can provide advice

on tuning a production system under a real or simulated load.

Workload distribution can affect performance when some resources are underutilized and others are

overloaded. WebSphere Application Server workload management functions provide several ways to

determine how the work is distributed. Workload distribution applies to both a single server and

configurations with multiple servers and nodes.

See workload management.

Some critical sections of the application and server code require synchronization to prevent multiple

threads from running this code simultaneously and leading to incorrect results. Synchronization preserves

correctness, but it can also reduce throughput when several threads must wait for one thread to exit the

critical section. When several threads are waiting to enter a critical section, a thread dump shows these

118 Tuning guide

threads waiting in the same procedure. Synchronization can often be reduced by: changing the code to

only use synchronization when necessary; reducing the path length of the synchronized code; or reducing

the frequency of invoking the synchronized code.

Additional references

WebSphere Application Server V6 Scalability and Performance Handbook

WebSphere Application Server Performance Web site

All SPEC jAppServer2004 Results Published by SPEC.

Chapter 7. Troubleshooting performance 119

http://www.redbooks.ibm.com/abstracts/sg246392.html?Open
http://www-306.ibm.com/software/webservers/appserv/was/performance.html
http://www.spec.org/jAppServer2004/results/jAppServer2004.html

120 Tuning guide

Appendix. Directory conventions

References in product information to app_server_root, profile_root, and other directories infer specific

default directory locations. This topic describes the conventions in use for WebSphere Application Server

Network Deployment.

These file paths are default locations. You can install the product and other components in any directory

where you have write access. You can create profiles in any valid directory where you have write access.

Multiple installations of WebSphere Application Server Network Deployment products or components, of

course, require multiple locations.

app_server_root - the install_root for WebSphere Application Server

The default installation root directory for WebSphere Application Server Network Deployment is the

/QIBM/ProdData/WebSphere/AppServer/V61/ND directory.

profile_root

The default directory for a profile named profile_name for WebSphere Application Server Network

Deployment is the /QIBM/UserData/WebSphere/AppServer/V61/ND/profiles/profile_name directory.

app_server_user_data_root - the user_data_root for WebSphere Application Server

The default user data directory for WebSphere Application Server Network Deployment is the

/QIBM/UserData/WebSphere/AppServer/V61/ND directory.

plugins_root

The default installation root directory for Web server plug-ins is the /QIBM/ProdData/WebSphere/
Plugins/V61/webserver directory.

plugins_user_data_root

The default Web server plug-ins user data root is the /QIBM/UserData/WebSphere/Plugins/V61/
webserver directory.

plugins_profile_root

The default Web server plug-ins profile root is the /QIBM/UserData/WebSphere/Plugins/V61/
webserver/profiles/profile_name directory.

app_client_root

The default installation root directory for the J2EE WebSphere Application Client is the

/QIBM/ProdData/WebSphere/AppClient/V61/client directory.

app_client_user_data_root

The default J2EE WebSphere Application Client user data root is the /QIBM/UserData/WebSphere/
AppClient/V61/client directory.

app_client_profile_root

The default J2EE WebSphere Application Client profile root is the /QIBM/UserData/WebSphere/
AppClient/V61/client/profiles/profile_name directory.

web_server_root

The default web server path is /www/web_server_name.

shared_product_library

The shared product library, which contains all of the objects shared by all Version 6.1 installations

on the system, is QWAS61. This library contains objects such as the product definition, the

subsystem description, the job description, and the job queue.

product_library

The product library, which contains program and service program objects (similar to .exe, .dll, .so

objects for Windows, Linux, and UNIX operating system platforms), is: QWAS61x where x is A, B,

C, ... For the default installation, the value is QWAS61A.

© Copyright IBM Corp. 2006 121

product_lib

The product library that contains the service program objects for the web server plugins. For the

default Web Server Plugins install, this is QWAS61A. If you install the Web Server Plugins multiple

times, the product_lib is QWAS61c, where c is B, C, D, ... The plugins_install_root/properties/
product.properties contains the value for the product library..

cip_app_server_root

The default installation root directory is the /QIBM/ProdData/WebSphere/AppServer/V61/ND/cip/
cip_uid directory for a customized installation package (CIP) produced by the Installation Factory.

 A CIP is a WebSphere Application Server Network Deployment product bundled with optional

maintenance packages, an optional configuration archive, one or more optional enterprise archive

files, and other optional files and scripts.

cip_user_data_root

The default user data root directory is the /QIBM/UserData/WebSphere/AppServer/V61/ND/cip/
cip_uid directory for a customized installation package (CIP) produced by the Installation Factory.

cip_profile_root

The default profile root directory is the /QIBM/UserData/WebSphere/AppServer/V61/ND/cip/cip_uid/
profiles/profile_name directory for a customized installation package (CIP) produced by the

Installation Factory.

122 Tuning guide

Notices

References in this publication to IBM products, programs, or services do not imply that IBM intends to

make these available in all countries in which IBM operates. Any reference to an IBM product, program, or

service is not intended to state or imply that only IBM’s product, program, or service may be used. Any

functionally equivalent product, program, or service that does not infringe any of IBM’s intellectual property

rights may be used instead of the IBM product, program, or service. Evaluation and verification of

operation in conjunction with other products, except those expressly designated by IBM, is the user’s

responsibility.

IBM may have patents or pending patent applications covering subject matter in this document. The

furnishing of this document does not give you any license to these patents. You can send license inquiries,

in writing, to:

 IBM Director of Intellectual Property & Licensing

 IBM Corporation

 North Castle Drive

 Armonk, NY 10504-1785

 USA

© Copyright IBM Corp. 2006 123

124 Tuning guide

Trademarks and service marks

For trademark attribution, visit the IBM Terms of Use Web site (http://www.ibm.com/legal/us/).

© Copyright IBM Corp. 2006 125

http://www.ibm.com/legal/us/

	Contents
	How to send your comments
	Chapter 1. Overview and new features for tuning performance
	Tuning parameter hot list

	Chapter 2. How do I tune performance?
	Chapter 3. Planning for performance
	Application design consideration

	Chapter 4. Taking advantage of performance functions
	Chapter 5. Obtaining advice from the advisors
	Why you want to use the performance advisors
	Performance advisor types and purposes
	Performance and Diagnostic Advisor
	Diagnostic alerts

	Tivoli Performance Viewer advisor

	Using the Performance and Diagnostic Advisor
	Performance and Diagnostic Advisor configuration settings
	Enable Performance and Diagnostic Advisor Framework
	Enable automatic heap dump collection
	Calculation Interval
	Maximum warning sequence
	Number of processors
	Minimum CPU For Working System
	CPU Saturated

	Advice configuration settings
	Advice name
	Advice applied to component
	Advice type
	Performance impact
	Advice status

	Viewing the Performance and Diagnostic Advisor recommendations
	Enabling the lightweight memory leak detection
	Lightweight memory leak detection

	Generating and analyzing heap dump

	Using the performance advisor in Tivoli Performance Viewer
	Performance advisor report in Tivoli Performance Viewer
	Message
	Performance data in the upper panel

	Heap monitor
	Heap monitor default operation
	Activating the heap monitor

	Chapter 6. Tuning the application serving environment
	Tuning parameter hot list
	Tuning TCP/IP buffer sizes
	Tuning Java virtual machines
	Tuning transport channel services
	Checking hardware configuration and settings
	Tuning operating systems
	Tuning i5/OS systems

	Tuning Web servers
	Tuning WebSphere applications
	Web applications
	Session management tuning

	EJB applications
	EJB Container tuning

	Web services
	Tuning Web services security for Version 6.1 applications
	Tuning Web services security for Version 5.x applications

	Setting tuning properties of a messaging engine
	Messaging engine failover between v6 and v6.1
	Tuning and problem solving for messaging engine data stores
	Tuning the JDBC data source of a messaging engine
	Controlling the memory buffers used by a messaging engine
	Increasing the number of data store tables to relieve concurrency bottleneck
	Diagnosing problems with your data store configuration
	Avoiding failover problems when you use DB2 v8.2 with HADR as your data store
	One-phase commit optimization tuning

	Setting tuning properties for a mediation
	Enabling CMP entity beans and messaging engine data stores to share database connections
	Tuning service integration technologies
	Tuning the SIBWS
	Including SOAP header schemas in the SDO repository

	Setting tuning properties for service integration
	Setting tuning properties of a messaging engine
	Controlling the memory buffers used by a messaging engine
	Tuning the JDBC data source of a messaging engine

	Data access resources
	EJB Container tuning
	Database performance tuning
	DB2 Universal Database performance tips

	Security
	Security cache properties
	Tuning, hardening, and maintaining
	SPNEGO trust association interceptor (TAI) troubleshooting tips

	Object Request Broker
	Object Request Broker tuning guidelines

	Learn about WebSphere programming extensions
	Application profiling
	Dynamic cache
	Work area

	Chapter 7. Troubleshooting performance
	Appendix. Directory conventions
	Notices
	Trademarks and service marks

