
IBM Global Security Kit: Secure Sockets Layer Introduction and iKeyman User's Guide i

IBM Global Security Kit

Secure Sockets Layer
Introduction and
iKeyman User's Guide

for version 7

Note

Before using this information and the product it supports, read the information in
Appendix. Notices.

Edition August 9, 2006

This edition applies to iKeyman version 7 and to all subsequent releases and
modifications until otherwise indicated in new editions.

Copyright International Business Machines Corporation 2006 All rights
reserved.
US Government Users Restricted Rights -- Use, duplication or disclosure restricted
by GSA ADP Schedule Contract with IBM Corp.

IBM Global Security Kit: Secure Sockets Layer Introduction and iKeyman User's Guide ii

Contents
PREFACE.. IV

HOW THIS BOOK IS ORGANIZED... IV
CONTACTING SOFTWARE SUPPORT.. IV
CONVENTIONS USED IN THIS BOOK.. IV

Operating system differences.. iv
Typeface conventions ... v

SECURE SOCKETS LAYER OVERVIEW...1
DIGITAL CERTIFICATES ...1

Format of digital certificates ...2
Security considerations for digital certificates ..3
Certificate authorities and trust hierarchies..3
Uses for digital certificates in Internet applications ...4
Digital certificates and certificate requests...6

HOW SSL WORKS ...6
The SSL handshake ..6
Digital certificates and trust chains with SSL..9
SSL with global server certificates ..9

MANAGING DIGITAL CERTIFICATES WITH IKEYMAN............................11

STARTING IKEYMAN ...11
CREATING A KEY DATABASE...12
CREATING A SELF-SIGNED DIGITAL CERTIFICATE FOR TESTING14
ADDING A CA ROOT DIGITAL CERTIFICATE ...15
DELETING A CA ROOT DIGITAL CERTIFICATE..16
COPYING CERTIFICATES FROM ONE KEY DATABASE TO ANOTHER16

Scenario 1: ...17
Scenario 2: ...17
Scenario 4: ...21

REQUESTING A DIGITAL CERTIFICATE ...27
RECEIVING A DIGITAL CERTIFICATE ..28
DELETING A DIGITAL CERTIFICATE..29
SETTING A NEW DEFAULT KEY (CMS ONLY)...29
CHANGING A DATABASE PASSWORD ...31
USING IKEYMAN TO MANAGE SMART CARDS ..31

Managing digital certificates on a smart card ..32
Requesting a digital certificate for a smart card...33
Adding a digital certificate to a smart card...33
Opening Cryptographic Tokens using IBM JSSE..34
Opening Cryptographic Tokens using MS CryptoAPI...35

STORING THE ENCRYPTED DATABASE PASSWORD IN A STASH FILE............................35
ENABLING FIPS MODE..35
EXAMPLE IKEYMAN USAGE SCENARIOS ..35

Scenario 1: ...35
Scenario 2 ..36
Scenario 3 ..38

USING THE IKEYCMD COMMAND LINE INTERFACE39

IBM Global Security Kit: Secure Sockets Layer Introduction and iKeyman User's Guide iii

ENVIRONMENT SET UP FOR IKEYCMD COMMAND LINE INTERFACE39
IKEYCMD COMMAND LINE SYNTAX..41
ERROR CODE RETURNS..43
USER INTERFACE TASK REFERENCE...43
SUPPORTING NO PASSWORD ..44
CREATING A NEW KEY DATABASE...45

Setting the database password...47
Changing the database password ..47
Display the expiry of a database password ...48

CREATING A NEW KEY PAIR AND CERTIFICATE REQUEST...48
CREATING A SELF-SIGNED CERTIFICATE..49
EXPORTING KEYS ..51
IMPORTING KEYS...51
LISTING CAS...52
OPENING A KEY DATABASE ...52
RECEIVING A CA-SIGNED CERTIFICATE...53
SHOWING THE DEFAULT KEY IN A KEY DATABASE ..54
LISTING EXPIRED CERTIFICATES...54
SHOWING THE ENTIRE CERTIFICATE ..55
STORING A CA CERTIFICATE...55
STORING THE ENCRYPTED DATABASE PASSWORD IN A STASH FILE............................55
MANAGING A DIGITAL CERTIFICATE ON A SMART CARD..56

Managing the Microsoft Certificate Store ...58
Managing the Java Key Store ..59

IKEYCMD COMMAND LINE PARAMETER OVERVIEW..60
IKEYCMD COMMAND LINE OPTIONS OVERVIEW ...62
COMMAND LINE INVOCATION FOR CMS KEY DATABASE ONLY.................................65
CRYPTOGRAPHIC COMMAND LINE INVOCATION (CMS IMPLEMENTATION)65
CRYPTOGRAPHIC COMMAND LINE INVOCATION (IBM JSSE IMPLEMENTATION).......67
PKCS11 CRYPTOGRAPHIC COMMAND LINE INVOCATION (MICROSOFT CRYPTOAPI
IMPLEMENTATION)..68
MICROSOFT CERTIFICATE STORE COMMAND LINE INVOCATION68
COMMAND LINE INVOCATION FOR ALL TYPES OF KEY STORE (CMS, JKS, JCEKS,
PKCS12) ..69
USER PROPERTIES FILE..70

GSKIT IKEYMAN SUPPORT FOR ACCESSIBILITY.......................................71

GSKIT IKEYMAN PROPERTIES ...72

APPENDICES. ...73

ERROR CODES ..74

IKEYMAN PROPERTY KEYS...81

TABLE HEADING KEY ..81
PROGRAM PROPERTIES ..81
SYSTEM PROPERTIES ...92

NOTICES..96
TRADEMARKS ...98

IBM Global Security Kit: Secure Sockets Layer Introduction and iKeyman User's Guide iv

Preface
This book is intended for network or system security administrators who install,
administer, and use Secure Socket Layer (SSL) based systems. This book assumes
the reader is familiar with their network architecture and e-business applications.

How this book is organized

This book contains the following chapters:

• Secure sockets layer overview provides an overview of SSL and digital
certificates.

• Managing digital certificates with iKeyman describes the iKeyman utility,
which is a tool you can use to manage your digital certificates. Also included
in this chapter are example situations in which iKeyman can be used to
manage certificates.

• Using the IKEYCMD Command Line Interface describes the IKEYCMD
command line interface.

• GSKit iKeyman support for accessibility describes accessibility features.

Contacting software support

Before contacting IBM Tivoli Software Support with a problem, refer to the IBM
Tivoli Software Support site by clicking the Tivoli support link at the following
Web site: http://www.ibm.com/software/support/

If you need additional help, contact software support by using the methods described
in the IBM Software Support Guide at the following Web site:
http://techsupport.services.ibm.com/guides/handbook.html

The guide provides the following information:

• Registration and eligibility requirements for receiving support
• Telephone numbers, depending on the country in which you are located
• A list of information you should gather before contacting customer support

Conventions used in this book

This reference uses several conventions for special terms and actions and for
operating system-dependent commands and paths.

Operating system differences

This book uses the UNIX(TM) convention for specifying environment variables and
for directory notation. When using the Windows(TM) command line, replace
$variable with %variable% for environment variables and replace each forward
slash (/) with a backslash (\) in directory paths. If you are using the bash shell on a
Windows system, you can use the UNIX conventions.

http://www.ibm.com/software/support/
http://techsupport.services.ibm.com/guides/handbook.html

IBM Global Security Kit: Secure Sockets Layer Introduction and iKeyman User's Guide v

Typeface conventions

The following typeface conventions are used in this reference:

Bold
Lowercase commands or mixed case commands that are difficult to
distinguish from surrounding text, keywords, parameters, options, names of
Java(TM) classes, and objects are in bold.

Italic
Variables, titles of publications, and special words or phrases that are
emphasized are in italic.

Monospace
Code examples, command lines, screen output, file and directory names that
are difficult to distinguish from surrounding text, system messages, text that
the user must type, and values for arguments or command options are in
monospace.

IBM Global Security Kit: Secure Sockets Layer Introduction and iKeyman User's Guide 1

Secure sockets layer overview
Privacy and security are concepts that are more critical than ever in today's
electronic business environment.

Every business professional needs to be concerned about security over open
communication networks, such as the Internet. It is not enough to have a secure Web
site; you also need to have secure communication between Web sites --
communication that cannot be monitored by outside parties. Both you and your
users need to be confident that you have a secure environment in which to conduct
your business.

Such secure communication requires encryption, and encryption is what the Secure
Sockets Layer (SSL) provides; security for data communication connections.

SSL was developed jointly by Netscape(R) Communications and RSA(R) Data
Security. Many companies worldwide have adopted the SSL communication
protocol. For instance, many financial transactions on the Internet, including online
banking, are now conducted using SSL.

This chapter consists of two sections:

• Digital certificates
• How SSL works

Digital certificates

Digital certificates allow unique identification of an entity; they are, in essence,
electronic ID cards issued by trusted parties. Digital certificates allow a user to
verify to whom a certificate is issued as well as the issuer of the certificate.

Digital certificates are the vehicle that SSL uses for public-key cryptography.
Public-key cryptography uses two different cryptographic keys: a private key and a
public key. Public-key cryptography is also known as asymmetric cryptography,
because you can encrypt information with one key and decrypt it with the
complement key from a given public-private key pair.

Public-private key pairs are simply long strings of data that act as keys to a user's
encryption scheme. The user keeps the private key in a secure place (for example,
encrypted on a computer's hard drive) and provides the public key to anyone with
whom the user wants to communicate. The private key is used to digitally sign all
secure communications sent from the user; the public key is used by the recipient to
verify the sender's signature.

Public-key cryptography is built on trust; the recipient of a public key needs to have
confidence that the key really belongs to the sender and not to an impostor. Digital
certificates provide that confidence.

IBM Global Security Kit: Secure Sockets Layer Introduction and iKeyman User's Guide 2

A digital certificate serves two purposes: it establishes the owner's identity, and it
makes the owner's public key available. A digital certificate is issued by a trusted
authority--a certificate authority (CA)--and it is issued only for a limited time. When
its expiration date passes, the digital certificate must be replaced.

Format of digital certificates

The digital certificate contains specific pieces of information about the identity of
the certificate owner and about the certificate authority, these being:

• The owner's distinguished name. A distinguished name is the combination of
the owner's common name and its context (position) in the directory tree. In
the simple directory tree shown in Figure 1, for example, LaurenA is the
owner's common name (CN), the organization unit (OU) is Engnring and the
Organization (O) is XYZCorp; therefore, the distinguished name is:

.CN=LaurenA.OU=Engnring.O=XYZCorp

• The owner's public key.
• The date the digital certificate was issued.
• The date the digital certificate expires.
• The issuer's distinguished name. This is the distinguished name of the issuing

CA.
• The issuer's digital signature.

Figure 1. A simple directory tree

Figure 2 shows the layout of a typical digital certificate.

IBM Global Security Kit: Secure Sockets Layer Introduction and iKeyman User's Guide 3

Figure 2. Simplified layout of a digital certificate

Security considerations for digital certificates

If you send your digital certificate containing your public key to someone else, what
keeps that person from misusing your digital certificate and posing as you? The
answer is your private key.

A digital certificate alone can never be proof of anyone's identity. The digital
certificate just allows you to verify the identity of the digital certificate owner by
providing the public key that is needed to check the digital certificate owner's digital
signature. Therefore, the digital certificate owner must protect the private key that
belongs to the public key in the digital certificate. If the private key is stolen, the
thief can pose as the legitimate owner of the digital certificate. Without the private
key, a digital certificate cannot be misused.

Certificate authorities and trust hierarchies

Trust is a very important concept in digital certificates. Each organization or user
must determine which CAs can be accepted as trustworthy.

A user of a security service requiring knowledge of a public key generally needs to
obtain and validate a digital certificate containing the required public key. Receiving
a digital certificate from a remote party does not give the receiver any assurance
about the authenticity of the digital certificate. To verify that the digital certificate is
authentic, the receiver needs the public key of the certificate authority that issued the
digital certificate.

If the public key user does not already hold an assured copy of the public key of the
certificate authority that signed the digital certificate, then the user might need an
additional digital certificate to obtain that public key. In general, a chain of multiple
digital certificates might be needed, comprising a digital certificate of the public key

IBM Global Security Kit: Secure Sockets Layer Introduction and iKeyman User's Guide 4

owner (the end entity) signed by one CA, and optionally one or more additional
digital certificates of CAs signed by other CAs. Figure 3 shows a chain of trust.

Figure 3. Chain of trust -- CAs signing CA digital certificates up to the root CA

Note that many applications that send a subject's digital certificate to a receiver send
not only that digital certificate, but also send all the CA digital certificates necessary
to verify the initial digital certificate up to the root CA.

The chain of trust begins at the root CA. The root CA's digital certificate is self-
signed; that is, the certificate authority uses its own private key to sign the digital
certificate. The public key used to verify the signature is the public key in the digital
certificate itself. To establish a chain of trust, the public-key user must have received
the digital certificate of the root CA in one of the following ways:

• On a diskette received by registered mail or picked up in person.
• Pre-loaded with software received from a reliable source or downloaded from

an authenticated server.

Uses for digital certificates in Internet applications

Applications using public-key cryptography systems for key exchange or digital
signatures need to use digital certificates to obtain the needed public keys. Internet
applications of this kind are numerous. Following are brief descriptions of a few of
the commonly used Internet applications that use public-key cryptography:

IBM Global Security Kit: Secure Sockets Layer Introduction and iKeyman User's Guide 5

SSL
A protocol that provides privacy and integrity for communications. This
protocol is used by

• Web servers to provide security for connections between Web servers
and Web browsers,

• LDAP to provide security for connections between LDAP clients and
LDAP servers,

• Host-on-Demand V2 to provide security for connections between the
client and the host system.

Additional applications based on this protocol are in development.

SSL uses digital certificates for key exchange, server authentication, and
optionally, client authentication.

Client Authentication
Client authentication is an option in SSL that requires a server to authenticate
a client's digital certificate before allowing the client to log on or access
certain resources. The server requests and authenticates the client's digital
certificate during the SSL handshake. At that time the server can also
determine whether it trusts the CA that issued the digital certificate to the
client.

Secure Electronic Mail
Many electronic mail systems, using standards such as Privacy Enhanced Mail
(PEM) or Secure/Multipurpose Internet Mail Extensions (S/MIME) for secure
electronic mail, use digital certificates for digital signatures and for the
exchange of keys to encrypt and decrypt messages.

Virtual Private Networks (VPNs)
Virtual private networks, also called secure tunnels, can be set up between
firewalls to enable protected connections between secure networks over
insecure communication links. All traffic destined to these networks is
encrypted between the firewalls.

The protocols used in tunneling follow the IP Security (IPsec) standard. For
the key exchange between partner firewalls, the Internet key exchange (IKE)
standard, previously known as ISAKMP/Oakley, has been defined.

The standards also allow for a secure, encrypted connection between a remote
client (for example, an employee working from home) and a secure host or
network.

Secure Electronic Transaction (SET)
SET is a standard designed for secure credit card payments using insecure
networks, for example, the Internet. Digital certificates are used for card
holders (electronic credit cards) and merchants. The use of digital certificates
in SET allows for secure, private connections between card holders,
merchants, and banks. The transactions created are secure and indisputable,

IBM Global Security Kit: Secure Sockets Layer Introduction and iKeyman User's Guide 6

and they cannot be forged. The merchants receive no credit card information
that can be misused or stolen.

Digital certificates and certificate requests

Simplified, a signed digital certificate contains the owner's distinguished
name, the owner's public key, the certificate authority's (issuer's) distinguished
name, and the signature of the certificate authority.

A self-signed digital certificate contains the owner's distinguished name, the
owner's public key, and the owner's own signature over these fields.

A root CA's digital certificate is an example of a self-signed digital certificate.
You can also create your own self-signed digital certificates to use when
developing and testing a server product. See Creating a self-signed digital
certificate for testing for details.

A certificate request that is sent to a certificate authority to be signed contains
the owner's (requester's) distinguished name, the owner's public key, and the
owner's own signature. The certificate authority verifies the owner's signature
with the public key in the digital certificate to ensure tat:

• The certificate request was not corrupted in transit between the
requester and the CA.

• The private key used to generate the request matches the public key in
the certificate request.

The CA is also responsible for some level of identification verification. This
can range from very little proof to absolute assurance of the owner's identity,
the later being most important is financial systems.

How SSL works

SSL is a protocol that provides privacy and integrity between two communicating
applications using TCP/IP. The Hypertext Transfer Protocol (HTTP) for the World
Wide Web uses SSL for secure communications.

The data going back and forth between client and server is encrypted using a
symmetric algorithm such as DES or RC4. A public-key algorithm--usually RSA--is
used for the exchange of the encryption keys and for digital signatures. The
algorithm uses the public key in the server's digital certificate. With the server's
digital certificate, the client can also verify the server's identity. Versions 1 and 2 of
the SSL protocol provide only server authentication. Version 3 adds client
authentication, using both client and server digital certificates.

The SSL handshake

IBM Global Security Kit: Secure Sockets Layer Introduction and iKeyman User's Guide 7

A HTTP-based SSL connection is always initiated by the client using a URL starting
with https:// instead of with http://. At the beginning of an SSL session, an SSL
handshake is performed. This handshake produces the cryptographic parameters of
the session. A simplified overview of how the SSL handshake is processed is shown
in the diagram below.

The client sends a client "hello" message that lists the cryptographic capabilities
of the client (sorted in client preference order), such as the version of SSL,
the cipher suites supported by the client, and the data compression methods
supported by the client. The message also contains a 28-byte random
number.

The server responds with a server "hello" message that contains the
cryptographic method (cipher suite) and the data compression method
selected by the server, the session ID, and another random number.

Note:

IBM Global Security Kit: Secure Sockets Layer Introduction and iKeyman User's Guide 8

The client and the server must support at least one common cipher suite,
or else the handshake fails. The server generally chooses the strongest
common cipher suite.

The server sends its digital certificate. (In this example, the server uses X.509
V3 digital certificates with SSL.)

If the server uses SSL V3, and if the server application (for example, the
Web server) requires a digital certificate for client authentication, the server
sends a "digital certificate request" message. In the "digital certificate
request" message, the server sends a list of the types of digital certificates
supported and the distinguished names of acceptable certificate authorities.

The server sends a server "hello done" message and waits for a client response.

Upon receipt of the server "hello done" message, the client (the Web browser)
verifies the validity of the server's digital certificate and checks that the
server's "hello" parameters are acceptable.

If the server requested a client digital certificate, the client sends a digital
certificate, or if no suitable digital certificate is available, the client sends a
"no digital certificate" alert. This alert is only a warning, but the server
application can fail the session if client authentication is mandatory.

The client sends a "client key exchange" message. This message contains the
pre-master secret, a 46-byte random number used in the generation of the
symmetric encryption keys and the message authentication code (MAC)
keys, encrypted with the public key of the server.

If the client sent a digital certificate to the server, the client sends a "digital
certificate verify" message signed with the client's private key. By verifying
the signature of this message, the server can explicitly verify the ownership
of the client digital certificate.

Note:

An additional process to verify the server digital certificate is not
necessary. If the server does not have the private key that belongs to the
digital certificate, it cannot decrypt the pre-master secret and create the
correct keys for the symmetric encryption algorithm, and the handshake
fails.

The client uses a series of cryptographic operations to convert the pre-master
secret into a master secret, from which all key material required for
encryption and message authentication is derived. Then the client sends a
"change cipher spec" message to make the server switch to the newly
negotiated cipher suite. The next message sent by the client (the "finished"
message) is the first message encrypted with this cipher method and keys.

IBM Global Security Kit: Secure Sockets Layer Introduction and iKeyman User's Guide 9

The server responds with a "change cipher spec" and a "finished" message of its
own.

The SSL handshake ends, and encrypted application data can be sent.

Digital certificates and trust chains with SSL

Secure Sockets Layer V3 can use server digital certificates as well as client digital
certificates. As previously explained, server digital certificates are mandatory for an
SSL session, while client digital certificates are optional, depending on client
authentication requirements.

The public key infrastructure (PKI) used by SSL allows for any number of root
certificate authorities. An organization or end user must decide for itself which CAs
it will accept as being trusted. To be able to verify the server digital certificates,
client Web browsers require possession of the root CA digital certificates used by
servers. Popular Web browsers usually come with a key ring where a number of CA
digital certificates, called trusted roots, are already installed. This list can be edited,
and the digital certificates of untrusted CAs can be deleted.

If an SSL session is about to be established with a server that sends a digital
certificate whose root CA digital certificate is not in the key ring, the browser
displays a warning window and presents options either to import the digital
certificate or to abort the session. To avoid this situation, import the root CA digital
certificate from a Web page or use a JavaScript(TM) program that imports the digital
certificate.

If client authentication is used, the Web server requires possession of the root CA
digital certificates used by clients. Because it is not possible to import root CA
digital certificates into the server application dynamically, all root CA digital
certificates that are not part of the server key ring at delivery time must be installed
using the iKeyman utility before any client digital certificates are issued by these
CAs. For more information on iKeyman, see Managing digital certificates with
iKeyman.

SSL with global server certificates

When an SSL session is established between the international version of Netscape
Navigator(R)/Communicator(R) V4, Microsoft Internet Explorer(TM) V4, IBM SSL-
enabled client applications, or client applications written using the SSL Toolkit and
a Web server equipped with a global server certificate, a normal SSL handshake
(described in The SSL Handshake) is performed initially. Usually, the Web server
and the Web browser settle on the cipher suite,
SSL_RSA_EXPORT_WITH_RC4_40_MD5. They use 512-bit RSA keys for key
exchange, RC4 with 40-bit keys for encryption, and MD5 for message
authentication.

During the handshake, the browser receives and verifies the server digital certificate
and realizes that this digital certificate authorizes stronger encryption. Remember
that the browser sends the list of cryptographic suites it supports with the "client

IBM Global Security Kit: Secure Sockets Layer Introduction and iKeyman User's Guide 10

hello" message before the server sends its digital certificate. At this point, the
browser has no knowledge of the server's global server certificate.

The first handshake is completed with the "change cipher specification" and
"finished" messages from both client and server. At this point, the client initiates
another SSL handshake. This time, in the "client hello" message, the client includes
the strong cryptographic suites such as:

SSL_RSA_WITH_RC4_128_MD5 (1024-bit RSA keys for key exchange, RC4
with 128-bit keys for encryption, and MD5 for message authentication).

SSL_RSA_WITH_3DES_EDE_CBC_SHA (1024-bit RSA keys for key
exchange, triple DES with 168-bit keys for encryption, and SHA-1 for
message authentication).

After the second handshake is completed, one of the stronger cryptographic suites is
used. This double handshake is also known as the SSL step-up protocol. Actually, all
application data exchanged in the SSL session are encrypted with the stronger
encryption protocol. Compared to the use of a United States browser, the only
drawback is the higher overhead of performing an SSL handshake twice.

IBM Global Security Kit: Secure Sockets Layer Introduction and iKeyman User's Guide 11

Managing digital certificates with
iKeyman
The iKeyman utility is a tool you can use to manage your digital certificates. With
iKeyman, you can:

Create a new key database

Create a test digital certificate,

Add CA roots to your database,

Copy certificates from one database to another,

Request and receive a digital certificate from a CA,

Set default keys,

Change passwords.

You can also use the iKeyman utility to perform many of these functions for digital
certificates on a smart card.

The iKeyman utility is automatically installed with the SSL Toolkit.

Towards the end of this chapter, Example iKeyman usage scenarios provides some
real-world examples of iKeyman usage which you might find aids understanding of
the utility.

Starting iKeyman

There are three packages for iKeyman version 7:

• GSKit iKeyman for GSKit users,
• GSKit Java-only iKeyman for Java-only users, and
• JDK iKeyman (shipped with IBM JDK 1.4.1) for Java-only users.

To start GSKit iKeyman:

1. Complete the installation steps and setting environment values as described in
your product documentation.

2. Invoke iKeyman with the following:

Windows:
Click the iKeyman shortcut from the Startup menu.

UNIX:
To invoke iKeyman on 32-bit installations, type:

IBM Global Security Kit: Secure Sockets Layer Introduction and iKeyman User's Guide 12

 gsk7ikm
To invoke iKeyman on 64-bit installations, type:
 gsk7ikm_64

To start GSKit Java-only iKeyman:

1. Complete installation steps and setting environment values as described in
your product documentation.

2. Change directory to the location where the iKeyman classes files were
extracted. For example:

cd /usr/local/ibm/gsk7/classes

3. Invoke iKeyman with the following command:

$JAVA_HOME/bin/java -classpath gsk7cls.jar
com.ibm.gsk.ikeyman.Ikeyman

To start JDK iKeyman:

1. Complete installation steps and setting environment values as described in
your product documentation.

2. Invoke iKeyman with the following command:

$JAVA_HOME/bin/java com.ibm.gsk.ikeyman.Ikeyman
Note:

If, as described in the Installation Guide, you are using IBM JDK 1.4.1 and
JAVA_HOME/jre/lib/ext/gskikm.jar exists, IBM JDK 1.4.1 iKeyman is run
regardless of how iKeyman is started. If you are unsure which version of
iKeyman you are running, check the About window under the Help menu for
the version details. If it shows Version 7.0.0.0 or Version 6.0.0.0, you are
running IBM JDK iKeyman.

Creating a key database

A key database enables a client application to connect to trusted servers. A trusted
server has digital certificates signed by the same CA as your digital certificates.

To create a CMS key database file, follow these steps:

1. Start iKeyman. The IBM Key Management window is displayed.
2. Click Key Database File -> New. The New window is displayed.

Figure 4. New Key Database File window

IBM Global Security Kit: Secure Sockets Layer Introduction and iKeyman User's Guide 13

3. Select CMS in the Key database type field.
4. Type a File Name, such as key.kdb.
5. Accept the default value for the Location field, or choose a new location.
6. Click OK. The Password Prompt window is displayed..

Figure 5. Password Prompt window

7. Enter a password in the Password field, and confirm it again in the Confirm
Password field. Click OK.

8. A confirmation window is displayed, verifying that you have created a key
database. Click OK.

After successful key database creation, the IBM Key Management window is
displayed which should now reflect your new CMS key database file (for example,
C:\Program Files\ibm\gsk\bin\key.kdb), and your signer digital certificates.

The following signer digital certificates are provided with iKeyman:

• VeriSign Class 2 OnSite Individual CA
• VeriSign International Server CA -- Class 3

IBM Global Security Kit: Secure Sockets Layer Introduction and iKeyman User's Guide 14

• VeriSign Class 3 Public Primary Certification Authority -- G2
• VeriSign Class 2 Public Primary Certification Authority -- G2
• VeriSign Class 1 Public Primary Certification Authority -- G2
• VeriSign Class 1 CA Individual Subscriber-Persona Not Validated
• VeriSign Class 1 Public Primary Certification Authority
• VeriSign Class 2 Public Primary Certification Authority
• VeriSign Class 3 Public Primary Certification Authority
• Thawte Personal Premium CA
• Thawte Personal Freemail CA
• Thawte Personal Basic CA
• Thawte Premium Server CA
• Thawte Server CA
• RSA Secure Server Certification Authority

These signer digital certificates enable your clients to connect to servers that have
valid digital certificates from these signers.

Now that a key database has been created, you can use it on your client and connect
to a server that has a valid digital certificate from one of the signers.

If you need to use a signer digital certificate that is not on the list above, you need to
request it from the CA and add it to your key database (see Adding a CA root digital
certificate).

Creating a self-signed digital certificate for testing

When developing a production application, you might want to wait until testing is
complete before purchasing a true digital certificate. With iKeyman, you can create
a self-signed digital certificate to use for testing purposes. A self-signed digital
certificate is a temporary digital certificate issued to yourself, with yourself as the
CA.

Note:
Do not release a production application with a self-signed digital certificate; no
browser or client will be able to recognize or communicate with your server.

To create a self-signed digital certificate in a key database:

1. Start iKeyman. The IBM Key Management window is displayed.
2. Click Key Database File -> Open. The Open window is displayed.
3. Select the key database file where you want to add the self-signed digital

certificate. Click Open. The Password Prompt window is displayed.
4. Enter the key database password and click OK. The IBM Key Management

window is displayed. The title bar shows the name of the key database file
you selected, indicating that the file is open and ready.

5. Select Personal Certificates from the pulldown list.
6. Click New Self-Signed. The Create New Self-Signed Certificate window is

displayed.

IBM Global Security Kit: Secure Sockets Layer Introduction and iKeyman User's Guide 15

Figure 6. Create New Self-Signed Certificate window

7. Type a Key Label, such as keytest, for the self-signed digital certificate.
8. Type a Common Name and Organization, and select a Country. For the

remaining fields, either accept the default values, or enter new values.
9. Click OK. The IBM Key Management window is displayed. The Personal

Certificates field shows the name of the self-signed digital certificate you
created.

The default validity period for new self-signed digital certificates is 365 days. The
minimum is 1 day. The maximum is 7300 days (twenty years).

Adding a CA root digital certificate

Once a root digital certificate has been received from a CA, it should be added to
your database.

Note:
Most root digital certificates have the extension .arm; for example, cert.arm.

To add a CA root digital certificate to a database:

1. Start iKeyman. The IBM Key Management window is displayed.
2. Click Key Database File -> Open. The Open window is displayed.
3. Select the key database file where you want to add the CA root digital

certificate and click Open. The Password Prompt window is displayed.
4. Enter the key database password and click OK. The IBM Key Management

window is displayed. The title bar shows the name of the selected key
database file, indicating that the file is open and ready.

5. Select Signer Certificates from the pulldown list.
6. Click Add. The Add CA's Certificate from a File window is displayed.
7. Click Data type and select a data type, such as Base64-encoded ASCII data.
8. Type a Certificate file name and Location for the CA root digital certificate,

or click Browse to select the name and location.

IBM Global Security Kit: Secure Sockets Layer Introduction and iKeyman User's Guide 16

9. Click OK. The Enter a Label window is displayed.
10. Type a label for the CA root digital certificate; for example, VeriSign Test

CA Root Certificate. Click OK. The IBM Key Management window is
displayed.

The Signer Certificates field now shows the label of the newly added CA
root digital certificate.

Deleting a CA root digital certificate

If you no longer want to support one of the signers in your signer digital certificate
list, you need to delete the CA root digital certificate.

Note:
Create a backup copy of the CA root digital certificate by extracting it from
iKeyman. This is a precaution in case you need to re-create the CA root.

To delete a CA root digital certificate from a database:

1. Start iKeyman. The IBM Key Management window is displayed.
2. Click Key Database File -> Open. The Open window is displayed.
3. Select the key database file from which the CA root digital certificate will be

deleted. Click Open. The Password Prompt window is displayed.
4. Enter the key database password and click OK. The IBM Key Management

window is displayed. The title bar shows the name of the key database file
you selected indicating that the file is open and ready.

5. Select Signer Certificates from the pulldown list.
6. Select the CA root digital certificate you want to delete and click Delete. The

Confirm window is displayed. Click Yes.
7. The IBM Key Management window is displayed. The label of the CA root

digital certificate you just deleted should no longer appear in the Signer
Certificates field.

Copying certificates from one key database to another

When setting up a private trust network or using self-signed certificates for testing
purposes, you might find it necessary to extract a certificate from a database and add
it to another database as a signer certificate. There are two scenarios. The first
scenario extracts a personal, or signer certificate from one database and adds it to
another as a signer certificate. The second scenario exports a personal certificate
from a source database and imports it to a target database as a personal certificate.

The tasks involved in achieving these scenarios are detailed in the following
sections.

IBM Global Security Kit: Secure Sockets Layer Introduction and iKeyman User's Guide 17

Scenario 1:

To extract a certificate from a source key database:

1. Start iKeyman. The IBM Key Management window is displayed.
2. Click Key Database File -> Open. The Open window is displayed.
3. Select the source key database. This is the database that contains certificate

you want to add to another database as a signer certificate. Click Open. The
Password Prompt window is displayed.

4. Enter the key database password and click OK. The IBM Key Management
window is displayed. The title bar shows the name of the selected key
database file, indicating that the file is open and ready.

5. Select the type of certificate you want to export: Personal, or Signer.
6. Select the certificate that you want to add to another database.
7. If you selected Personal, click Extract Certificate. If you selected Signer

click Extract. The Extract a Certificate to a File window is displayed.
8. Click Data type and select a data type, such as Base64-encoded ASCII data.

The data type needs to match the data type of the certificate stored in the
certificate file. The iKeyman tool supports Base64-encoded ASCII files and
binary DER-encoded certificates.

9. Type the certificate file name and location where you want to store the
certificate, or click Browse to select the name and location.

10. Click OK. The certificate is written to the specified file, and the IBM Key
Management window is displayed. This completes the first part of the
scenario.

11. The second part involves adding a certificate as a signer certificate to the
target database. From the IBM Key Management window, click Key
Database File -> Open. The Open window is displayed.

12. Select the key database that will receive the certificate extracted in the above
steps. Click Open. The Password Prompt window is displayed.

13. Enter the key database password and click OK. The IBM Key Management
window is displayed. The title bar shows the name of the selected key
database file, indicating that the file is open and ready.

14. Select the type of certificate you would like to add: Signer.
15. Click Add. The Add CA's Certificate from a File window is displayed.
16. Type the certificate file name used when you extracted the certificate in step

9 above.
17. The Enter a Label window is displayed.
18. Specify a name for the certificate. Click OK. The certificate is added to the

target database.

Scenario 2:

In the previous scenario, a personal, or signer certificate was extracted from a source
database and added to a target database as a signer certificate. This scenario exports
a personal certificate from a source database and imports it to a target database as a
personal certificate.

To export a personal certificate from a source key database:

IBM Global Security Kit: Secure Sockets Layer Introduction and iKeyman User's Guide 18

1. Start iKeyman. The IBM Key Management window is displayed.
2. Click Key Database File -> Open. The Open window is displayed.
3. Select the source key database containing the personal certificate to be

extracted. Click Open. The Password Prompt window is displayed.
4. Enter the key database password and click OK. The IBM Key Management

window is displayed. The title bar shows the name of the selected key
database file, indicating that the file is open and ready.

5. Select Personal Certificates from the pulldown list.
6. Select the personal certificate you want to export.
7. Click Export/Import to transfer keys between the current database and a

PKCS#12 file or another database. The Export/Import Key window is
displayed.

8. Select Export Key from Choose Action Type.
9. Select Key File Type (for example, PKCS12 file) from the pulldown to

export list.
10. Type the name of the file (for example, copy.p12) to create for the exported

certificate, or click Browse to select the file name and location, and click
OK. The Password Prompt window is displayed.

11. Enter a password for the certificate file, confirm the password, and click
OK. The certificate is now exported from the (source) database. This
completes the first part of the scenario.

Note:PKCS#12 files should be considered temporary and deleted after use.

12. The second part of the scenario involves importing a personal certificate to
the target key database. To begin, start iKeyman. The IBM Key
Management window is displayed.

13. Click Key Database File -> Open. The Open window is displayed.
14. Select the target key database for importing the certificate. Click Open. The

Password Prompt window is displayed.
15. Enter the key database password and click OK. The IBM Key Management

window is displayed. The title bar shows the name of the selected key
database file, indicating that the file is open and ready.

16. Select Personal Certificates from the pulldown list.
17. If the target key database has no personal certificate, click Import to import

keys from a PKCS#12 file or other database. The Import Key window is
displayed. If target key database has one or more personal certificates, do the
following:

o Click Export/Import key. The Export/Import key window is
displayed.

o Select Import from Choose Action Type.

18. Select the same key file type that you specified from the export. For more
information, see step 9.

19. Type the name of the file containing the certificate you exported, or click
Browse to select the name and location. For more information, see step 10.
Click OK. The Password Prompt window is displayed.

20. Specify the same password that you specified when you exported the
certificate. For more information, see step 11. Click OK.

IBM Global Security Kit: Secure Sockets Layer Introduction and iKeyman User's Guide 19

Figure 7. Select from Key Label List window

21. The Select from Key Label List window is displayed. From the list of
certificate labels displayed select those you wish to import. Be sure to
include any signer certificates that might be necessary to form a trust chain
for any personal certificates you are importing. These will not be necessary if
they are already in the target key database. Click OK.

Figure 8. Change Labels window

IBM Global Security Kit: Secure Sockets Layer Introduction and iKeyman User's Guide 20

22. The Change Labels window will be displayed. This window allows the
labels of certificates being imported to be changed if for example, a
certificate with the same label already exists in the target key database.
Changing certificate labels has no effect on trust chain validation.

Figure 9. Change Labels window with new label entered

23. To change a label select the required label from the Select a label to
change: entry panel. The label will be replicated into the Enter a new label:
entry line. Replace the label text with that of the new label and click Apply.

Figure 10. Change Labels window with new label applied

IBM Global Security Kit: Secure Sockets Layer Introduction and iKeyman User's Guide 21

24. The text in the Enter a new label: entry line is replicated back into the
Select a label to change: panel replacing the originally selected label and so
relabelling the corresponding certificate.

25. When all required relabelling is done click OK. The Change Labels
window is now removed and the original IBM Key Management window
reappears with the Personal Certificates and Signer Certificates panels
updated with the correctly labeled certificates.

The certificate is now imported to the (target) database.

Scenario 4:

In the previous scenario, a personal, or signer certificate was imported into a key
database from another key database with the certificate being relabeled in the
process. In this scenario the special case of importing from a Microsoft pfx file is
considered.

This is special because a pfx file may contain two certificates relating to the same
key. One is a personal or site certificate (contains both a public and private key).
The other is a signer certificate (contains only a public key). These certificates
cannot co-exist in the same CMS keystore so only one or the other can be imported.
As well the “friendly name” or label is attached to only the signer certificate. The
personal certificate is identified by a system generated Unique User Identifier or
UUID.

This scenario involves the import of a personal certificate from a pfx file while
labeling it with the “friendly name” previously assigned to the signer certificate. The
trust chain signer certificates should already be added to the target key database.

To import a personal certificate from a source pfx key database:

Note:PKCS#12 files should be considered temporary and deleted after use.

1. The scenario involves importing a personal certificate to the target key
database. To begin, start iKeyman. The IBM Key Management window is
displayed.

2. Click Key Database File -> Open. The Open window is displayed.
3. Select a key database type of PKCS12.
4. Select the pfx key database that is intended for import. Click Open. The

Password Prompt window is displayed.

IBM Global Security Kit: Secure Sockets Layer Introduction and iKeyman User's Guide 22

Figure 11. Personal Certificates in PFX keystore

5. Enter the key database password and click OK. The IBM Key Management
window is displayed. The title bar shows the name of the selected pfx key
database file, indicating that the file is open and ready.

IBM Global Security Kit: Secure Sockets Layer Introduction and iKeyman User's Guide 23

Figure 12. Signer Certificates in PFX keystore

6. Select Signer Certificates from the pulldown list. The “friendly name” of the
required certificate should be displayed as a label in the Signer Certificates
panel.

7. Select the label entry and click Delete to remove the signer certificate. The
Confirm dialog box is displayed.

8. Click Yes. The dialog box is removed and the selected label is no longer
displayed in the Signer Certificates panel.

9. Click Key Database File -> Open. The Open window is displayed.
10. Select the target key CMS database which the pfx file is being imported into.

Click Open. The Password Prompt window is displayed.

IBM Global Security Kit: Secure Sockets Layer Introduction and iKeyman User's Guide 24

Figure 13. Personal Certificates in CMS key database before import

11. Enter the key database password and click OK. The IBM Key Management
window is displayed. The title bar shows the name of the selected key
database file, indicating that the file is open and ready.

12. Select Personal Certificates from the pulldown list
13. Click Import to import keys from the pfx key database. The Import Key

window is displayed.:

o Click Export/Import key. The Export/Import key window is
displayed.

o Select Import from Choose Action Type.

14. Select the PKCS12 file.
15. Enter the name of the pfx file as used in Step 4.. Click OK. The Password

Prompt window is displayed.
16. Specify the same password that you specified when you deleted the signer

certificate.. Click OK.

IBM Global Security Kit: Secure Sockets Layer Introduction and iKeyman User's Guide 25

Figure 14. Change Labels window

17. The Change Labels window will be displayed as there should be only a single
certificate available for import. The label of the certificate should be a UUID
which has a format “{xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx}”

Figure 15. Change Labels window with new label entered

18. To change the label select the UUID from the Select a label to change: entry
panel. The label will be replicated into the Enter a new label: entry line.
Replace the label text with that of the “friendly name” that was deleted in Step
7 and click Apply.

IBM Global Security Kit: Secure Sockets Layer Introduction and iKeyman User's Guide 26

Figure 16. Change Labels window with new label applied

19. The text in the Enter a new label: entry line is replicated back into the Select
a label to change: panel replacing the originally selected label and so
relabelling the personal certificate with the required “friendly name”.

Figure 17. Personal Certificates in CMS key database after import

IBM Global Security Kit: Secure Sockets Layer Introduction and iKeyman User's Guide 27

20. Click OK. The Change Labels window is now removed and the original IBM
Key Management window reappears with the Personal Certificates and
Signer Certificates panels updated with the correctly labeled personal
certificate.

21. The pfx personal certificate is now imported to the (target) database.

Requesting a digital certificate

A digital certificate is required to run SSL-enabled server code and might be
required for client applications. To acquire a digital certificate, generate a request
using iKeyman and submit the request to a CA. The CA will verify your identity and
send you a digital certificate.

To request a digital certificate for a key database:

1. Start iKeyman. The IBM Key Management window is displayed.
2. Click Key Database File -> Open. The Open window is displayed.
3. Select the key database file to generate the request and click Open. The

Password Prompt window is displayed.
4. Enter the key database password and click OK. The IBM Key Management

window is displayed. The title bar shows the name of the selected key
database file, indicating that the file is open and ready.

5. Select Personal Certificate Requests from the pulldown list.
6. Click New. The Create New Key and Certificate Request window is

displayed.

IBM Global Security Kit: Secure Sockets Layer Introduction and iKeyman User's Guide 28

Figure 18.7. Create New Key and Certificate Request window

7. Enter a Key Label for the digital certificate request, for example, Production
Certificate for MyWeb at My Company.

8. Type a Common Name and Organization, and select a Country. For the
remaining fields, either accept the default values, or type or select new
values.

9. At the bottom of the window, type a name for the file, such as certreq.arm.
10. Click OK. A confirmation window is displayed, verifying that you have

created a request for a new digital certificate.
11. Click OK. The IBM Key Management window is displayed. The Personal

Certificate Requests field shows the key label of the new digital certificate
request you created.

12. Send the file to a CA to request a new digital certificate, or cut and paste the
request into the request form on the CA's Web site.

Receiving a digital certificate

Once the CA sends you a new digital certificate, you need to add it to the key
database you used to generate the request.

To receive a digital certificate into a key database, follow these steps:

1. Start iKeyman. The IBM Key Management window is displayed.
2. Click Key Database File -> Open. The Open window is displayed.
3. Select the key database file you used to generate the request. Click Open. The

Password Prompt window is displayed.

IBM Global Security Kit: Secure Sockets Layer Introduction and iKeyman User's Guide 29

4. Enter the key database password and click OK. The IBM Key Management
window is displayed. The title bar shows the name of the selected key
database file, indicating that the file is open and ready.

5. Select Personal Certificates from the pulldown list.
6. Click Receive. The Receive Certificate from a File window is displayed.
7. Click Data type and select the data type of the new digital certificate, such as

Base64-encoded ASCII data. If the CA sends the certificate as part of an e-
mail message, then you might need to cut and paste the certificate into a
separate file.

8. Type the Certificate file name and Location for the new digital certificate, or
click Browse to select the name and location.

9. Click OK. The Enter a Label window is displayed.
10. Type a label, such as Production Certificate for MyWeb at My

Company, for the new digital certificate and click OK. The IBM Key
Management window is displayed. The Personal Certificates field shows
the label of the new digital certificate.

Deleting a digital certificate

If you no longer need one of your digital certificates, you'll want to delete it from
your database.

Note:
Before deleting a digital certificate, create a backup copy in case you later want
to re-create it.

To delete a digital certificate from a key database:

1. Start iKeyman. The IBM Key Management window is displayed.
2. Click Key Database File -> Open. The Open window is displayed.
3. Select the key database file from which to delete the digital certificate and

click Open. The Password Prompt window is displayed.
4. Enter the key database password and click OK. The IBM Key Management

window is displayed. The title bar shows the name of the selected key
database file, indicating that the file is open and ready.

5. Select Personal Certificates from the pulldown list.
6. Select the digital certificate you want to delete and click Delete. The Confirm

window is displayed.
7. Click Yes. The IBM Key Management window is displayed. The label of the

digital certificate you just deleted should no longer appear in the Personal
Certificates field.

Setting a new default key (CMS only)

To make it easy to configure an SSL application, the iKeyman utility lets you
specify a default digital certificate. This certificate is used when the key database
contains more than one Personal Certificate entry. You might have more than one
digital certificate in a database if you started using a self-signed digital certificate in
the application (for testing) while waiting for the official digital certificate from your
chosen CA.

IBM Global Security Kit: Secure Sockets Layer Introduction and iKeyman User's Guide 30

After receiving the official digital certificate from the CA, you can leave the self-
signed digital certificate in the database and begin using the CA-issued digital
certificate by making it the default digital certificate. The default digital certificate is
indicated by an asterisk (*) in front of the entry label.

Note:
Do not release a production application with a self-signed digital certificate; no
browser or client will be able to recognize or communicate with your server.

The first digital certificate that is received or created as self-signed is marked as the
default digital certificate. Each time a new digital certificate is received or a self-
signed digital certificate is created, you are given the option to make the new
certificate the default. The digital certificate specified as the default can be changed
at any time.

To change the default digital certificate in a key database:

1. Start iKeyman. The IBM Key Management window is displayed.
2. Click Key Database File -> Open. The Open window is displayed.
3. Select the key database file which holds the default digital certificate and click

Open. The Password Prompt window is displayed.
4. Enter the key database password and click OK. The IBM Key Management

window is displayed. The title bar shows the name of the selected key
database file, indicating that the file is open and ready.

5. Select Personal Certificates from the pulldown list. The default digital
certificate is indicated by an asterisk (*) in front of the entry label.

6. Select the digital certificate you want to set as the default digital certificate and
click View/Edit, or double-click on the entry. The Key Information
window is displayed for the digital certificate entry, as shown in Figure 8.

IBM Global Security Kit: Secure Sockets Layer Introduction and iKeyman User's Guide 31

Figure 19.8. Key Information window

7. Select Set the certificate as the default and click OK. The IBM Key
Management window is displayed. The label of the digital certificate you
just set as the default is identified with an asterisk (*) in front of the entry.

Changing a database password

To change a key database password:

1. Start iKeyman. The IBM Key Management window is displayed.
2. Click Key Database File -> Open. The Open window is displayed.
3. Select the key database file requiring the change of password. Click Open.

The Password Prompt window is displayed.
4. Enter the current key database password and click OK. The IBM Key

Management window is displayed. The title bar shows the name of the
selected key database file, indicating that the file is open and ready.

5. Click Key Database File -> Change Password. The Change Password
window is displayed.

6. Type a new password in the Password field, and type it again in the Confirm
Password field.

7. Click OK. A message in the status bar indicates that the request completed
successfully.

Using iKeyman to manage smart cards

The iKeyman utility allows you to manage digital certificates on a smart card; that
is, on any PKCS11 cryptographic token. Before using iKeyman, you will need to

IBM Global Security Kit: Secure Sockets Layer Introduction and iKeyman User's Guide 32

configure the module name for managing your smart card. There are two ways to do
this:

1. From a property file
a. Copy the ikmuser.sample file that is shipped with the SSL Toolkit (in

the classes directory) to a file called ikmuser.properties (also in the
classes directory).

b. Edit the ikmuser.properties file and set the
DEFAULT_CRYPTOGRAPHIC_MODULE property to the name of the
module for managing your smart card. For example:

DEFAULT_CRYPTOGRAPHIC_MODULE=C:\\Winnt\\System32\\W32pk2
ig.dll

The module is normally installed on your system when you install the
software for your smart card. The above .dll is used here as an
example only.

c. Save the ikmuser.properties file.

The above configuration steps need only be performed once. Every
time the iKeyman utility is started, it will read the contents of your
ikmuser.properties file.

2. From iKeyman GUI

You can input the module name directly from the iKeyman GUI.

When the module name has been set in the ikmuser.properties file, this name will
always be shown as a default in the GUI panel. You can change the name if it is not
the preferred module name.

Note:
If using IBM JSSE, edit the java.security file in your JDK environment to
set the IBM JCE to be a higher priority than CMS.

Managing digital certificates on a smart card

To manage digital certificates on your smart card:

1. Click Key Database File -> Open, select CMS Cryptographic Token as the
key database type, and ensure that the module name is correct. Click OK.

2. The Open Cryptographic Token window is displayed, an example of which
for CMS cryptographic token support is displayed, as shown in Figure 9.
You are required to enter information such as the password.

IBM Global Security Kit: Secure Sockets Layer Introduction and iKeyman User's Guide 33

Figure 20.9. Open Cryptographic Token window

Some smart cards have limited capacity, and are unable to hold the signer
certificates required to receive or import a personal certificate. If this
restriction applies to your smart card, you may open a secondary key
database (which is supported by CMS only), in addition to the smart card.
The secondary key database serves as a container for the signer certificates
associated with receiving and importing personal certificates onto your smart
card. If your smart card has sufficient capacity, you may not need to open a
secondary key database.

Requesting a digital certificate for a smart card

The steps for requesting a digital certificate for a smart card are the same as those
for requesting a digital certificate for a key database. Clicking Key Database ->
Open and select CMS Cryptographic Token for the key database type. After
specifying the module name and password for the smart card, proceed with the steps
as specified in Requesting a digital certificate.

Adding a digital certificate to a smart card

After the CA sends you a new digital certificate, you need to add it to the same
smart card for which you generated the request.

To add a digital certificate to a smart card:

1. Click Key Database File -> Open,

IBM Global Security Kit: Secure Sockets Layer Introduction and iKeyman User's Guide 34

2. Select CMS Cryptographic Token for the key database type, specify the
module name, and click OK.

At this point that you may need to open a secondary key database, if your
smart card does not have the capacity to hold the signer certificate(s)
associated with the request.

3. Once you have opened the cryptographic token and (optionally) a secondary
key database, proceed with the steps as if you had opened a key database --
Receiving a digital certificate.

Opening Cryptographic Tokens using IBM JSSE

The examples above deal with opening a cryptographic token using CMS. To open
the cryptographic token using IBM JSSE, do the following:

1. Edit the java.security file in your JDK environment to set the IBM JCE to
be a higher priority than CMS.

2. Click Key Database File then Open, select Java Cryptographic Token and
make sure the module name is correct. The open window is displayed as
shown in Figure 10 below:

Figure 21.. Opening a Key Database File using IBM JSSE

3. Click the OK button. The following screen is displayed:

Figure 22.11. Selecting slot number of cryptographic token

4. Enter the slot number and press OK.
5. You are then presented with a password dialog box for the cryptographic

token. Enter the Smart Card PIN number and click OK.

IBM Global Security Kit: Secure Sockets Layer Introduction and iKeyman User's Guide 35

Opening Cryptographic Tokens using MS CryptoAPI

To open the cryptographic token using MS CryptoAPI:

1. Click the Key Database File -> Open.
2. Select CMS Cryptographic Token and ensure the module name is correct.

Enter the cryptographic service provider and click OK.
3. A password window is displayed. Enter the password for the cryptographic

token.

Storing the encrypted database password in a stash file

For a secure network connection, store the encrypted database password in a stash
file. To do this:

1. Start iKeyman. The IBM Key Management window is displayed.
2. Select Key Database File -> Stash File. An information dialog is displayed

advising that the password was stashed and its location. Click OK.

Enabling FIPS mode

 To use FIPS certified cryptography the following steps should be taken.

1. Ensure the JVM being used has been enabled to support FIPS cryptography .
To do this review and revise the JVM configuration as discussed in the
Environment Requirements and Configuration section of Global Security Kit
Install and Packaging Guid, Version 7.

2. Modify the appropriate properties file to add the following properties

a. DEFAULT_FIPS_MODE_PROCESSING=ON
b. DEFAULT_CRYPTOGRAPHIC_BASE_LIBRARY=ICC
c. DEFAULT_SIGNATURE_ALGORITHM=SHA1_WITH_RSA

Note: Property (c) may be excluded altogether from the file in which case the default
will be selected according to the value of property (a). If
DEFAULT_FIPS_MODE_PROCESSING is set to “off” then the default algorithm
is “MD5_WITH_RSA”. If on then the default will be “SHA1_WITH_RSA”.

Example iKeyman usage scenarios

This section presents some usage scenarios that demonstrate how a typical user may
prepare the necessary PKI keystores to SSL enable their application.

Scenario 1:

Kay, a Systems Administrator at Anchor Shipbuilders has been asked to enable SSL
communication between their public Web site and customer browsers. To do this,
Kay must obtain a PKI certificate for her company. Kay has been told that she may
purchase this certificate from Harry's Web Certificates. Harry's Web Certificates'

IBM Global Security Kit: Secure Sockets Layer Introduction and iKeyman User's Guide 36

own public certificate is signed by Verisign's root certificate. In order to create a
CMS certificate keystore for use in her SSL installation, Kay must:

• Create a CMS keystore.
• Obtain the Verisign root certificate.
• Obtain Harry's Web Certificates' certificate.
• Obtain a certificate for her company.
• Add the Verisign's root certificate, Harry's Web Certificates certificate, and

her newly obtained certificate to the keystore.
• Configure her Web server to use her newly created certificate in the CMS key

store (this is application specific and beyond the scope of this scenario).

The steps taken are:

1. Kay follows the instructions in, Creating a key database, to create a new CMS
keystore. Once complete, Kay notices that the Verisign root certificate is
already present in the the new keystore (iKeyman ships various root
certificates for customer convenience). If this was not the case then Kay
would need to obtain the Verisign root certificate from Verisign and follow
the instructions in Adding a CA root digital certificate to add it to her newly
created keystore.

2. Kay visits the Harry's Web Certificates' Web site and downloads their public
certificate as an *.arm file. She then follows the instructions in Adding a CA
root digital certificate to add it to her newly created keystore.

3. Following the instructions in Requesting a digital certificate Kay creates a
certificate request and sends it to Harry's Web Certificates for signing.
Sometime later her newly signed certificate is returned and she follows the
instructions in Receiving a digital certificate to add her company's new
certificate to the keystore.

4. Kay wishes to ensure that her new certificate is the default one used by her
Web installation. She reads the section Setting a new default key (CMS only)
and ensures that her new certificate is the default.

5. Kay consults her Web server documentation to determine how to enable it for
SSL.

6. Kay devises a plan to periodically examine the expiry status of the certificates
in her keystore. The expiry dates of certificates can be determined using the
command detailed in Listing Expired Certificates.

Scenario 2

Rob works for a small company that wishes to evaluate the benefits of using SSL to
secure the network traffic between their main test servers and the company LDAP
server. Rob has been told that for this evaluation he must not spend any money on
certificates and that the keystore he creates must be as small as possible. Rob
discovers that for the evaluation he can use a self-signed certificate. He realizes
though, and informs his employer, that the self-signed certificate will be for
evaluation testing only and should they proceed into production they must purchase
a certificate from a reliable Certificate Authority.

In order to create a CMS certificate keystore for use in the evaluation Rob must:

IBM Global Security Kit: Secure Sockets Layer Introduction and iKeyman User's Guide 37

• Create a CMS keystore.
• Create a self-signed certificate.
• Take steps to minimize the size of the keystore.

The steps taken are:

1. Rob follows the instructions in Creating a key database to create a new CMS
keystore.

2. Rob follows the instructions in Creating a self-signed digital certificate for
testing.

3. Rob follows the instructions in Deleting a CA root digital certificate to delete
all the Signer certificates in the keystore. Rob now knows that he has a
minimum size keystore to use in his evaluation.

4. Rob uses his newly created keystore during his evaluation.
5. Rob includes as part of his evaluation a plan to periodically examine the

expiry status of certificates in their keystores. Certificates about to expire in
a given number of days can be listed by following the instructions in Listing
Expired Certificates.

IBM Global Security Kit: Secure Sockets Layer Introduction and iKeyman User's Guide 38

Scenario 3

Jan works for a medium-size company that has just purchased another smaller
organization. Jan has been asked to import the certificates from the smaller
company's OpenSSL keystore into the company standard CMS format. Jan decides
to create a new CMS keystore and add the certificates from the OpenSSL store to it.
Jan does not like to use a GUI tool and decides to use the IKEYCMD command line
tool to perform the operation. In order to import the OpenSSL certificates into a new
CMS keystore Jan must:

• Create a new CMS keystore.
• Add the root certificate from OpenSSL.
• Export the certificates from the OpenSSL key store.
• Import the OpenSSL certificates into the CMS keystore.

The steps taken are:

1. Jan creates the new CMS keystore using the command:

gsk7cmd -keydb -create -db test.kdb -pw jjj -type cms

2. Jan adds the test root certificate from OpenSSL. This must be done before
other certificates can be added (command entered as one line):

3. gsk7cmd -cert -add -db test.kdb -pw jjj -label
OpenSSLroot -format binary -trust enable -file
OpenSSLrootca.crt

4. Jan exports the OpenSSL Server pem files to a pkcs12 file using OpenSSL
(command entered as one line):

5. openssl pkcs12 -export -in OpenSSL_server_cert.pem -inkey
OpenSSL_server_key.pem -out test.p12

6. Jan imports the pkcs12 file (command entered as one line):
7. gsk7cmd -cert -import -file test.p12 -pw jjj -type pkcs12

-target test.kdb -target_pw jjj -target_type cms

8. Jan devises a plan to periodically examine the expiry status of the certificates
in her keystore. The expiry dates of certificates can be determined using the
command detailed in Listing Expired Certificates.

IBM Global Security Kit: Secure Sockets Layer Introduction and iKeyman User's Guide 39

Using the IKEYCMD Command Line
Interface
IKEYCMD is a tool, in addition to iKeyman, that can be used to manage keys,
certificates and certificate requests. It is functionally similar to iKeyman though it
employs command line syntax and doesn't use a graphical user interface. It can be
called from native shell scripts and programs for applications that prefer to add
custom interfaces to certificate and key management tasks. It can create all types of
key database files that iKeyman currently supports. It can create certificate requests,
import CA signed certificates and manage self-signed certificates. It is Java-based
and supported on all of the platforms that the SSL toolkit supports.

Use IKEYCMD for configuration tasks related to public-private key creation and
management. You cannot use IKEYCMD for configuration options that update the
server configuration file, httpd.conf. For options that update the server configuration
file, you must use the IBM Administration Server.

IKEYCMD uses the Java language and native command line invocation, enabling
IKEYMAN task scripting.

Environment set up for IKEYCMD command line interface

IKEYMAN can be run with the gsk7cmd command (a UNIX script, or Windows
executable, which invokes the Java virtual machine with the correct parameters).
Alternatively, you can use the Java command to run the class directly.

The preferred way of using the IKEYMAN command line interface is to use
gsk7cmd. To run IKEYCMD using gsk7cmd, set up environmental variables as
follows:

1. Set your PATH to the location of your Java or JRE executable:

UNIX
export PATH=/opt/IBMJava/bin:/usr/local/ibm/gsk7/bin:$PATH

Windows
Right click on My Computer. Select Properties. Click on the Advanced tab.
Click on the Environment Variables button. In the System Variables section,
create the new entry:
JAVA_HOME=C:\Program Files\IBM\Java
and modify the existing PATH entry:
PATH=<existingentries>;C:\Program Files\IBM\GSK7\bin;C:\Program
 Files\IBM\Java\bin;

Once completed, gsk7cmd should run from any directory. To run a gsk7cmd
command, use the following syntax:

gsk7cmd command

IBM Global Security Kit: Secure Sockets Layer Introduction and iKeyman User's Guide 40

(where command is the required command name).

2. To run IKEYCMD by specifying the class directly, set up environment
variables to use the IKEYCMD command line interface as follows:

a. Set your PATH to the location of your Java or JRE executable:

UNIX
export PATH=/opt/IBMJava/bin:$PATH

Windows
Right click on My Computer. Select Properties. Click on the Advanced tab.
Click on the Environment Variables button. In the System variables section,
edit the entry:
PATH=<existingentries>;C:\Program Files\IBM\Java\bin;C:\Program
 Files\IBM\GSK7\bin;C:\Program Files\IBM\GSK7\lib;

b. Set the following CLASSPATH environment variable:

UNIX
Entered as one line:
export
CLASSPATH=/usr/local/ibm/gsk7/classes/cfwk.zip:/usr/local/ibm
 /gsk7/classes/gsk7cls.jar:$CLASSPATH
Note:

Depending on your UNIX you may require more settings in
CLASSPATH environment variable. If necessary, look at the gsk7cmd
script to determine these.

Windows
Right click on My Computer. Select Properties. Click on the Advanced tab.
Click on the Environment Variables button. In the System variables section,
create the new entry (entered as one line):
CLASSPATH=C:\Program Files\IBM\GSK7\classes\cfwk.zip;C:\Program
Files\IBM\GSK7\classes\gsk7cls.jar;<existingentries>

Once completed, IKEYCMD should run from any directory. To run an IKEYCMD
command, use the following syntax:

 java com.ibm.gsk.ikeyman.ikeycmd command
Notes:

1. You can substitute jre for java, depending on whether you are using a JRE or
JDK. For example:

jre com.ibm.gsk.ikeyman.ikeycmd <command>

2. If, as described in the Installation Manual, you are using IBM JDK 1.4.1 and
the gskikm.jar has not been removed from the IBM JDK directory tree you
will always use the IBM JDK Ikeyman (no matter how you setup your path
or CLASSPATH). This is because a different version of Ikeyman is
packaged with IBM JDK 1.4.1.

3. The setup above assumes you are using the 32-bit version of the Java VM and
SSL Toolkit. If installed, the 64-bit version of the Ikeyman command line

IBM Global Security Kit: Secure Sockets Layer Introduction and iKeyman User's Guide 41

interface can be invoked using gsk7cmd_64, but the environment variables
need to include the path to the 64-bit libraries and executables.

IKEYCMD command line syntax

The syntax of the Java CLI is:

gsk7cmd [-Dikeycmd.properties=<properties_file>] <object> <action>
[options]

where:

-Dikeycmd.properties
Specifies the name of an optional properties file to use for this Java
invocation. A default properties file, ikeycmd.properties, is provided as a
sample file that can be modified and used by any Java application.
Note: Properties in this file override those in the ikminit.properties file.

object
Is one of the following:
-keydb
Actions taken on the key database (either a CMS key database file, a WebDB
keyring file, or SSLight class)
-version
Displays version information for IKEYCMD
-cert
Actions taken on a certificate
-certreq
Actions taken on a certificate request
-help
Displays help for the IKEYCMD invocations

action
The specific action to be taken on the object, and options are the options, both
required and optional, specified for the object and action pair. For a complete
set of options, see IKEYCMD command line options overview. For a
complete set of actions allowed for a given object, see IKEYCMD command
line parameter overview.
Note:

The object and action keywords are positional and must be in the
specified order. However, options are not positional and can be in any
order, provided that they are specified as an option and operand pair.

-cert
Actions taken on a certificate

-certreq
Actions taken on a certificate request

-Dikeycmd.properties
Specifies the name of an optional properties file to use for this Java
invocation. A default properties file, ikeycmd.properties, is provided as a
sample file that can be modified and used by any Java application.

-help

IBM Global Security Kit: Secure Sockets Layer Introduction and iKeyman User's Guide 42

Displays help for the IKEYCMD invocations

IBM Global Security Kit: Secure Sockets Layer Introduction and iKeyman User's Guide 43

Error code returns

By default the command line interface returns a boolean result - 0 or true for success
and 1 or false for failure. If a more detailed result is required then the option “-
usereasoncode” may be included in any command line option string. This option
causes the command line to return a multi-valued result – 0 or true for success and
an integer in the range 1-255 for failure. The interpretation of this value is described
in the Error Codes Appendix.

This return code can be accessed from a shell by entering the following –

For Unix: echo $?

For Windows: echo %ERRORLEVEL%

User interface task reference

IKEYCMD command line interface tasks are summarized in the following table:

IKEYMAN and IKEYCMD task For instructions, see:

Supporting no password Supporting no password

Create a new key database and specify the
database password Creating a new key database

Create a new key pair and certificate
request

Creating a new key pair and certificate
request

Create a self-signed certificate Creating a self-signed certificate

Export a key to another database or
PKCS12 file Exporting keys

Import a key from another database or
PKCS12 file Importing keys

List certificate authorities (CAs) and
certificate requests Listing CAs

IBM Global Security Kit: Secure Sockets Layer Introduction and iKeyman User's Guide 44

IKEYMAN and IKEYCMD task For instructions, see:

Open a key database Opening a key database

Receive a CA-signed certificate into a key
database Receiving a CA-signed certificate

Managing a digital certificate on a smart
card

Managing a digital certificate on a smart
card

Show the default key in a key database Showing the default key in a key database

Listing expired certificates Listing Expired Certificates

Showing the entire certificate Showing the entire certificate

Store the root certificate of a CA Storing a CA certificate

Store the encrypted database password in
a stash file

Storing the encrypted database password
in a stash file

Supporting no password

The Certificate Management System (CMS) key database supports no-password
operation. That is, the -pw parameter can be optional. You can specify this
information using the -Dikeycmd.properties file. If you want to create a CMS key
database without a password, you must add
DEFAULT_CMS_PASSWORD_REQUIRED=false to your ikeycmd.properties file and
type the following on one line:

gsk7cmd -Dikeycmd.properties=<properties file> -keydb
 -create -db <filename> -type cms -expire <days> -stash

where:

-create
Creates the database.

-db <filename>
Name of the database.

IBM Global Security Kit: Secure Sockets Layer Introduction and iKeyman User's Guide 45

-expire <days>
Days before password expires. This parameter is only valid for CMS key
databases.

-keydb
Specifies the command is for the key database.

<properties file>
Contains the information if the -pw parameter is needed. For a CMS key
database, use DEFAULT_CMS_PASSWORD_REQUIRED.

-stash
Stashes the password for the key database. When the -stash option is specified
during the key database creation, the password is stashed in a file with a
filename built as follows: <filename of key database>.sth

This parameter is only valid for CMS key databases. For example, if the
database being created is named keydb.kdb, the stash filename is keydb.sth.

Note:
Stashing the password is required for the IBM HTTP Server.

-type cms
The "no password" operation is only supported with CMS.
Note:

IBM HTTP Server only handles a CMS key database.

Creating a new key database

A key database is a file that the server uses to store one or more key pairs and
certificates. You can use one key database for all your key pairs and certificates, or
create multiple databases.

To create a new key database using the IKEYCMD command line interface, enter
the following command (as one line):

gsk7cmd -keydb -create -db <filename> -pw <password> -type
 <cms | jks | jceks | pks12> -expire <days> -stash

where:

-db <filename>
Name of the database.

-expire <days>
Days before password expires. This parameter is only valid for CMS key
databases.

-keydb
Specifies the command is for the key database.

-pw <password>
The password to access the key database.

-type <cms | jks | jceks | pkcsk>
The database type.
Note:

IBM HTTP Server only handles a CMS key database.

IBM Global Security Kit: Secure Sockets Layer Introduction and iKeyman User's Guide 46

-stash
Stashes the password for the key database. When the -stash option is specified
during the key database creation, the password is stashed in a file with a
filename built as follows: <filename_of_key_database>.sth

This parameter is only valid for CMS key databases. For example, if the
database being created is named keydb.kdb, the stash filename is keydb.sth.

Note:
Stashing the password is required for the IBM HTTP Server.

IBM Global Security Kit: Secure Sockets Layer Introduction and iKeyman User's Guide 47

Setting the database password

When you create a new key database, you specify a key database password. This
password protects the private key. The private key is the only key that can sign
documents or decrypt messages encrypted with the public key. It is good practice to
change the key database password frequently.

Use the following guidelines when specifying the password:

• The password must be from the U.S. English character set.
• The password should be at least six characters and contain at least two

nonconsecutive numbers. Make sure the password does not consist of
publicly obtainable information about you, such as the initials and birth date
for you, your partner, or children.

• Stash the password.

Note:
For IBM HTTP Server, keep track of expiration dates for the password. If the
password expires, a message is written to the error log. The server will start,
but there will not be a secure network connection if the password has expired.

Changing the database password

To change the database password, type (as one line):

gsk7cmd -keydb -changepw -db <filename>.kdb -pw <password> -new_pw
 <new_password> -expire <days> -stash

where:

-db <filename>
Name of the database.

-changepw
Changes the password.

-keydb
Specifies the command is for the key database

-new_pw <new_password>
New key database password; this password must be different than the old
password and this password cannot be a NULL string.

-pw <password>
The password to access the key database.

-expire <days>
Days before password expires. This parameter is only valid for CMS key
databases.

-stash
Stashes the password for the key database. This parameter is only valid for
CMS key databases.
Note:

Stashing the password is required for the IBM HTTP Server.

IBM Global Security Kit: Secure Sockets Layer Introduction and iKeyman User's Guide 48

Display the expiry of a database password

To display the expiry date of a password for a CMS key database, type (as one line):

gsk7cmd -keydb -expiry -db <filename>.kdb -pw <password>

where:

-keydb
Specifies the command is for the key database

-expiry

Request to display the date that the password will expire.

-db <filename>
Name of the database.

-pw <password>
The password to access the key database.

IMPORTANT: This option is only supported for CMS key databases. An expiry of 0
means that the password associated with the key database does not expire.

Creating a new key pair and certificate request

To create a public-private key pair and certificate request:

1. Enter the following command (as one line):

gsk7cmd -certreq -create -db <filename> -pw <password> -label
<label>
 -dn <distinguished_name> -size <1024 | 512 | 2048> -file
<filename> -san_dnsname <DNS name value>[,<DNS name value>] –
san_emailaddr <email address value>[,<email address value>] –
san_ipaddr <IP address value>[,<IP address value>]

where:

-certreq
Specifies a certificate request

-create
Specifies a create action

-db <filename>
Name of the database

-pw <password>
The password to access the key database

-label <label>
Label attached to certificate or certificate request

-dn <distinguished_name>

IBM Global Security Kit: Secure Sockets Layer Introduction and iKeyman User's Guide 49

Enter an X.500 distinguished name. This is input as a quoted string of the
following format (only CN is required): CN=common_name, O=organization,
OU=organization_unit, L=location, ST=state, province, C=country. For
example: "CN=weblinux.raleigh.ibm.com,O=ibm,OU=IBM HTTP
Server,L=RTP,ST=NC,C=US"

-size <1024 | 512 | 2048>
Key size of 512, 1024 or 2048

-file <filename>
Name of file where the certificate request will be stored

-san_* <subject alternate name attribute value> [,<subject alternate name
attribute value>]

These options are only valid if the line
DEFAULT_SUBJECT_ALTERNATE_NAME_SUPPORT =true is entered in the
ikminit.properties file. The * can have the following values
dnsname : The value must be formatted using the “preferred name syntax”
according to RFC 1034. An example is “test.mine.ibm.com”.
emailaddr : The value must be formatted as an “addr-spec” according to RFC
822. An example is myname@test.mine.ibm.com.
ipaddr : The value is a string representing an IP address formatted according
to RFC 1338 and RFC 1519. An example is “192.168.100.112”

The values of these options are accumulated into a Subject Alternate Name
extended attribute which is itself accumulated into an extendedRequest
attribute. The resulting attribute is added to the certificate request.
Note: It is not mandatory that a signing CA recognise the extendedRequest
attribute or its contents. If it is ignored then the Subject Alternate Name
extended attribute will not appear in the signed certificate.

2. Verify that the certificate was successfully created.
a. View the contents of the certificate request file you created.
b. Make sure the key database recorded the certificate request:

gsk7cmd -certreq -list -db <filename> -pw <password>

You should see the label listed that you just created.

3. Send the newly created file to a certificate authority.

Creating a self-signed certificate

It usually takes two to three weeks to get a certificate from a well-known CA. While
waiting for an issued certificate, use IKEYMAN to create a self-signed server
certificate to enable SSL sessions between clients and the server. Use this procedure
if you are acting as your own CA for a private Web network.

To create a self-signed certificate, enter the following command (as one line):

gsk7cmd -cert -create -db <filename> -pw <password> -size <1024 |
512 | 2048> -dn
 <distinguished name> -label <label> -default_cert <yes | no> -
expire <days> -san_dnsname <DNS name value>[,<DNS name value>] –

mailto:myname@test.mine.ibm.com

IBM Global Security Kit: Secure Sockets Layer Introduction and iKeyman User's Guide 50

san_emailaddr <email address value>[,<email address value>] –
san_ipaddr <IP address value>[,<IP address value>] [-ca <true |
false]

where:

-cert
Specifies a self-signed certificate.

-create
Specifies a create action.

-db <filename>
Name of the database.

-pw <password>
The password to access the key database.

-dn <distinguished name>
Enter an X.500 distinguished name. This is input as a quoted string of the
following format (only CN is required): CN=common_name, O=organization,
OU=organization_unit, L=location, ST=state, province, C=country. For
example: "CN=weblinux.raleigh.ibm.com,O=ibm,OU=IBM HTTP
Server,L=RTP,ST=NC,C=US"

-label <label>
A descriptive comment used to identify the key and certificate in the database.

-size
Key size 512, 1024, or 2048

-default_cert <yes | no>
Whether this is the default certificate in the key database.

-expire <days>
The default validity period for new self-signed digital certificates is 365 days.
The minimum is 1 day. The maximum is 7300 days (twenty years).

 -san_* <subject alternate name attribute value> [,<subject alternate name
attribute value>]

These options are only valid if the line
DEFAULT_SUBJECT_ALTERNATE_NAME_SUPPORT =true is entered in the
ikminit.properties file. The * can have the following values
dnsname : The value must be formatted using the “preferred name syntax”
according to RFC 1034. An example is “test.mine.ibm.com”.
emailaddr : The value must be formatted as an “addr-spec” according to RFC
822. An example is “myname@test.mine.ibm.com”.
ipaddr : The value is a string representing an IP address formatted according
to RFC 1338 and RFC 1519. An example is “192.168.100.112”.

The values of these options are accumulated into the Subject Alternate Name
extended attribute of the generated certificate. If the options are not used then
this extended attribute is not added to the certificate.

-ca <true | false>
Add the Basic Constraint extension to the self-signed certificate. The
extension will be added with a CA:true and PathLen:<max int> if the value
passed is true or not added at all if the value passed is false.

mailto:myname@test.mine.ibm.com

IBM Global Security Kit: Secure Sockets Layer Introduction and iKeyman User's Guide 51

Exporting keys

To export keys to another key database, or to export keys to a PKCS12 file, enter the
following command:

gsk7cmd -cert -export -db <filename> -pw <password> -label <label>
 -type <cms | jks | jceks | pkcs12> -target <filename> -
target_pw <password>
 -target_type <cms | jks | jceks | pkcs12>

where:

-cert
Specifies a personal certificate.

-export
Specifies an export action.

-db <filename>
Name of the database.

-pw <password>
The password to access the key database.

-label <label>
Label attached to the certificate.

-target <filename>
Destination file or database. If the target_type is JKS, CMS or JCEKS, the
database specified here must exist.

-target_pw
Password for the target key database.

-target_type <cms | jks | jceks | pkcs12>
The type of database specified by the -target operand.

-type <cms | jks | jceks | pkcs12>
The type of database key.

Importing keys

To import certificates from another key database, enter the following command:

gsk7cmd -cert -import -db|-file> <filename>
-pw <password> -label <label>] [> -type <cms | JKS | JCEKS | pkcs12>
-new_label <label>
-target <filename> -target_pw <password> -target_type <cms | JKS |
JCEKS | pkcs12>] [-pfx]

where:

-cert
Specifies a certificate.

-import
Specifies an import action.

-db <filename>
Name of the database.(defaults to CMS type)

 -file <filename>

IBM Global Security Kit: Secure Sockets Layer Introduction and iKeyman User's Guide 52

 Name of the database (defaults to PKCS12 type)
-pw <password>

The password to access the key database.
-label <label>

Label attached to the certificate.
-new_label <label>

Re-labels certificate in target key database.
-type <cms | JKS | JCEKS | pkcs12>

Type of the database.
-target <filename>

Destination database.
-target_pw <password>

Password for the key database if -target specifies a key database.
-target_type <cms | JKS | JCEKS | pkcs12>

Type of the database specified by -target operand.
-pfx

Imported file in Microsoft .pfx format. PKCS12 files generated from a
Microsoft KeyStore often contain a keypair object and a signer certificate
object both with the same public key. Only the signer certificate has a friendly
name. With this option only the keypair object will be imported to the target
keystore and it will be labeled with the friendly name from the signer
certificate. An attempt to import both objects will fail since a given key can
only be represented once in a CMS keystore.

To import all keys from a PKCS12 file, enter the following command:

gsk7cmd -cert -import -file <filename> -pw <password> -type pkcs12 –
-target -pfx
 <filename> -target_pw <password> -target_type <cms | JKS |
JCEKS | pkcs12>

If the source file has been created from a Microsoft Certificate Store then the –pfx
parameter may be added.

To import a specific key from any keystore to another keystore, enter the following:

gsk7cmd –cert –import –db <filename> -pw <password> -type <cms | JKS
| JCEKS | PKCS12> -label <source label> -target <filename> -
target_pw <password> -target_type <cms | JKS | JCEKS | PKCS12>

If the certificate is to be relabeled in the target keystore then the –new_label
<target_label> parameter may be added to the line.

Listing CAs

To display a list of trusted CAs in a key database (command should be entered as
one line):

gsk7cmd -cert -list CA -db <dbname> -pw <password> -type <cms | jks
| jceks | pkcs12>

Opening a key database

IBM Global Security Kit: Secure Sockets Layer Introduction and iKeyman User's Guide 53

There is no explicit opening of a key database. For each command, database and
password options are specified and these specifications provide the information
needed to operate in a key database.

Receiving a CA-signed certificate

Use this procedure to receive an electronically mailed certificate from a certificate
authority (CA), designated as a trusted CA on your server. By default, the following
CA certificates are stored in the key database and marked as trusted CA certificates:

• Verisign Class 2 OnSite Individual CA
• Verisign International Server CA -- Class 3
• VeriSign Class 1 Public Primary CA -- G2
• VeriSign Class 2 Public Primary CA -- G2
• VeriSign Class 3 Public Primary CA -- G2
• VeriSign Class 1 CA Individual Subscriber-Persona Not Validated
• VeriSign Class 2 CA Individual Subscriber-Persona Not Validated
• VeriSign Class 3 CA Individual Subscriber-Persona Not Validated
• RSA Secure Server CA (from RSA)
• Thawte Personal Basic CA
• Thawte Personal Freemail CA
• Thawte Personal Premium CA
• Thawte Premium Server CA
• Thawte Server CA

The Certificate Authority may send more than one certificate. In addition to the
certificate for your server, the CA may also send additional Signing certificates or
Intermediate CA Certificates. For example, Verisign includes an Intermediate CA
Certificate when sending a Global Server ID certificate. Before receiving the server
certificate, receive any additional Intermediate CA certificates. Follow the
instructions in Storing a CA certificate to receive Intermediate CA Certificates.

Note:
If the CA who issues your CA-signed certificate is not a trusted CA in the key
database, you must first store the CA certificate and designate the CA as a
trusted CA. Then you can receive your CA-signed certificate into the database.
You cannot receive a CA-signed certificate from a CA who is not a trusted CA.
For instructions, see 1Storing a CA certificate .

To receive the CA-signed certificate into a key database, enter the following
command (as one line):

gsk7cmd -cert -receive -file <filename> -db <filename> -pw
<password>
 -format <ascii | binary> -label <label> -default_cert <yes |
no>

where:

-cert
Specifies a self-signed certificate.

IBM Global Security Kit: Secure Sockets Layer Introduction and iKeyman User's Guide 54

-receive
Specifies a receive action.

-file <filename>
File containing the CA certificate

-db <filename>
Name of the database.

-pw <password>
The password to access the key database.

-format <ascii | binary>
Certificate Authority might provide CA Certificate in either ASCII or binary
format.

-default_cert <yes | no>
Whether this is the default certificate in the key database.

-label <label>
Label attached to a CA certificate.

-trust
Indicates whether this CA can be trusted. Use enable options when receiving a
CA certificate.

Showing the default key in a key database

To display the default key entry, enter the following command:

gsk7cmd -cert -getdefault -db <dbname> -pw <password>

Listing Expired Certificates

To display a list of certificates in a key database and their expiry dates:

gsk7cmd -cert -list -expiry <days> -db <filename> -pw <paswsword> -
type <type>

where:

-cert
Indicates the operation applies to a certificate.

-list <all | personal | CA | site>
Specifies a list action, default is to list all certificates

-expiry <days>
Indicates that validity dates should be displayed. Specifying the number of
days is optional, though when used will result in displaying all certificates that
expire within that amount of days. To list certificates that have already
expired, enter the value 0.

-db <filename>
Name of the key database. Used when you want to list certificate for a specific
key database.

-pw <password>
The password to access the key database.

-type <cms | JKS | JCEKS | pkcs12>
The type of database.

IBM Global Security Kit: Secure Sockets Layer Introduction and iKeyman User's Guide 55

Showing the entire certificate

To display the entire key entry, type the following on one line:

gsk7cmd -cert -details -showOID -db <filename> -pw <password> -label
<label>

where:

-cert
Indicates the operation applies to a certificate.

-details
Displays the entire key entry.

-showOID
Displays the entire certificate or certificate request.

-db <filename>
Name of the database.

-pw <password>
The password to access the key database.

-label <label>
Label attached to the certificate or certificate request.

Storing a CA certificate

To store a certificate from a CA who is not a trusted CA:

gsk7cmd -cert -add -db <filename>.kdb -pw <password>
 -label <label> -format <ascii | binary> -trust <enable
|disable>
 -file <filename>

where:

-add
Specifies an add action.

-cert
Indicates the operation applies to a certificate.

-db <filename>
Name of the database.

-file <filename>
File containing the CA certificate.

-format <ascii | binary>
Certificate Authorities might supply a binary or an ASCII file.

-label <label>
Label attached to certificate or certificate request.

-pw <password>
The password to access the key database.

-trust <enable | disable>
Indicate whether this CA can be trusted. Should be Yes.

Storing the encrypted database password in a stash file

IBM Global Security Kit: Secure Sockets Layer Introduction and iKeyman User's Guide 56

For a secure network connection, store the CMS encrypted database password in a
stash file. To store the password when creating a CMS database:

gsk7cmd -keydb -create -db <path_to_db>/<db_name> -pw <password> -
type cms
 -expire <days> -stash

To store the password after a CMS database has been created:

gsk7cmd -keydb -stashpw -db <db_name> -pw <password>

Managing a digital certificate on a smart card

The iKeyman CLI allows you to manage digital certificates on a smart card (or more
generically, on a PKCS11 cryptographic device). To do so from either CMS, IBM
JSSE, or Microsoft CryptoAPI, you must first perform the following steps to inform
the iKeyman CLI of the name of the module for managing your smart card:

1. Edit the java.security file in your JDK environment with one of the
following settings stored in the $JAVA_HOME/jre/lib/security/ directory:

o security.provider.1=sun.security.provider.Sun -- versions greater than
JDK 1.3.1

o security.provider.2=com.ibm.spi.IBMCMSProvider
o security.provider.3=com.ibm.crypto.provider.IBMJCE

2. Edit the ikeycmd.properties file to set the
DEFAULT_CRYPTOGRAPHIC_MODULE property to the name of the
module for managing your smart card. For example:

DEFAULT_CRYPTOGRAPHIC_MODULE=C:\\Winnt\\System32\\W32pk2ig.dll

The module is normally installed on your system when you install the
software for your smart card. The .dll in the above example is used here for
illustration only and may differ from that for your system.

3. Save the ikeycmd.properties file
4. Use the following for PKCS11 related operations:

-crypto <module_name> -tokenlabel <token_label> -pw <password>

For example, to display the certificate contained on your PKCS11 cryptographic
device, type:

gsk7cmd -Dikeycmd.properties=<propertiesfile> -cert -list all -
crypto <module_name>
 -tokenlabel <token_label> -pw <password>

where:

-cert
Indicates the operation applies to a certificate.

-crypto <module_name>

IBM Global Security Kit: Secure Sockets Layer Introduction and iKeyman User's Guide 57

Specifies PKCS11 cryptographic device usage, where <module_name> is the
name of the module to manage your smart card. Optional if specified in the
ikmcmd.properties file.

-list all
Displays the certificate.

-pw <password>
The password for this PKCS11 cryptographic device.

-tokenlabel <token_label>
The PKCS11 cryptographic device token label.

If you want to open a cryptographic hardware device using IBM JSSE
implementation, do the following:

1. Edit the java.security file in your JDK environment with one of the
following settings stored in the $JAVA_HOME/jre/lib/security/ directory:

o security.provider.1=sun.security.provider.Sun -- JDK 1.3.1 only
o security.provider.2=com.ibm.crypto.provider.IBMJCE
o security.provider.3=com.ibm.spi.IBMCMSProvider

That is, set the IBM JCE to be a higher priority than CMS in the
java.security file.

2. Edit the ikeycmd.properties file to set the
DEFAULT_CRYPTOGRAPHIC_MODULE property to the name of the
module for managing your smart card. For example:

DEFAULT_CRYPTOGRAPHIC_MODULE=C:\\Winnt\\System32\\W32pk2ig.dll

The module is normally installed on your system when you install the
software for your smart card. The .dll in the above example is used here for
illustration only and may differ from that for your system.

3. Save the ikeycmd.properties file.
4. Use the following for PKCS11 related operations:

-crypto <module_name> -relativeSlotNumber <slot_number> -pw
<password>

For example, to display the certificate contained on your PKCS11 cryptographic
device, type:

gsk7cmd -Dikeycmd.properties=<propertiesfile> -cert -list all -
crypto <module_name>
 -relativeSlotNumber <slot_number> -pw <password>

where:

-cert
Indicates the operation applies to a certificate

-crypto <module_name>

IBM Global Security Kit: Secure Sockets Layer Introduction and iKeyman User's Guide 58

Specifies PKCS11 cryptographic device usage, where <module_name> is the
name of the module to manage your smart card. Optional if specified in the
ikmcmd.properties file.

-list all
Displays the certificate

-pw <password>
The password for this PKCS11 cryptographic device

-relativeSlotNumber <slot_number>
The PKCS11 cryptographic device relative slot number

If you want to open a cryptographic hardware device using MS CryptoAPI, do the
following:

1. Edit the ikeycmd.properties file. Set the cryptographic service provider
(CSP) name to the DEFAULT_CRYPTOGRAPHIC_MODULE property.
For example:

DEFAULT_CRYPTOGRAPHIC_MODULE=Schlumberger Cryptographic
Service Provider

The CSP is normally installed on your system when you install the software
for your smart card.

2. Save the ikeycmd.properties file.
3. Use the following to display the certificate contained on your cryptographic

device:
4. gsk7cmd -Dikeycmd.properties=<propertiesfile> -cert -list all

 -crypto <CSP_module_name

where:

-cert
Indicates the operation applies to a certificate.

-crypto <CSP_module_name>
Specifies the cryptographic service provider (CSP) name.

-list all
Displays the certificate.

Managing the Microsoft Certificate Store

The iKeyman CLI allows you to manage the Microsoft Certificate Store, which is
supported only on Windows 2000 with Service Pack 2 or later. To work on
Microsoft Certificate Store, use -db MSCertificateStore. A password (-pw) is NOT
needed in -db MSCertificateStore related operations.

For example, to view the details of a certificate stored in Microsoft Certificate Store,
type the following on one line:

gsk7cmd -cert -details -db MSCertificateStore -label <label>

IBM Global Security Kit: Secure Sockets Layer Introduction and iKeyman User's Guide 59

where:

-cert
Specifies certificate information.

-details
Specifies verbose mode.

-db MSCertificateStore
Specifies Microsoft Certificate Store.

-label <label>
The label of the certificate used in the operation.

Managing the Java Key Store

The iKeyman CLI supports various key store providers that register in the
java.security registry. For example, if you have the following settings in your
java.security registry, you will be able to use JKS, JCEKS, PKCS12, and CMS

• security.provider.1=sun.security.provider.Sun -- versions greater than JDK
1.3.1

• security.provider.2=com.ibm.crypto.provider.IBMJCE
• security.provider.3=com.ibm.spi.IBMCMSProvider

Note:

The following functions are for a CMS key store only:

Table 1. CMS key store functions

Functions Key words

Stash the password of a key
database into a file

-keydb -stashpw
-stash

Setting/getting default personal
certificates

-cert -setdefault
-cert -getdefault
default_cert <no | yes>

IBM Global Security Kit: Secure Sockets Layer Introduction and iKeyman User's Guide 60

Table 1. CMS key store functions

Functions Key words

Setting trusted certificate -cert -modify
-trust <enable | disable>

Setting expiration time for
password -expire <days>

No password support -pw <password>

IKEYCMD command line parameter overview

The following table describes each action that can be performed on a specified
object.

Object Action Description

-keydb -changepw Change the password for a key database

 -convert Convert the key database from one format to
another

 -create Create a key database

 -delete Delete the key database

 -stashpw Stash the password of a key database into a
file

 -expiry Display the expiry date of the password
associated with a key database

IBM Global Security Kit: Secure Sockets Layer Introduction and iKeyman User's Guide 61

Object Action Description

-cert -add Add a CA certificate from a file into a key
database

 -create Create a self-signed certificate

 -delete Delete a CA certificate

 -details List the detailed information for a specific
certificate

 -export
Export a personal certificate and its associated
private key from a key database into a
PKCS#12 file, or to another key database

 -extract Extract a certificate from a key database

 -getdefault Get the default personal certificate

 -import Import a certificate from a key database or
PKCS#12 file

 -list List all certificates

 -modify
Modify a certificate (NOTE: Currently, the
only field that can be modified is the
Certificate Trust field)

 -receive Receive a certificate from a file into a key
database

 -setdefault Set the default personal certificate

IBM Global Security Kit: Secure Sockets Layer Introduction and iKeyman User's Guide 62

Object Action Description

 -sign
Sign a certificate stored in a file with a
certificate stored in a key database and store
the resulting signed certificate in a file

-certreq -create Create a certificate request

 -delete Delete a certificate request from a certificate
request database

 -details List the detailed information of a specific
certificate request

 -extract Extract a certificate request from a certificate
request database into a file

 -list List all certificate requsts in the certificate
request database

 -recreate Recreate a certificate request

 -crypto
Indicate a PKCS11 cryptographic device
operation. The value after -crypto can be
optional if specified in the properties file.

-help Display help information for the IKEYCMD
command

-version Display IKEYCMD version information

IKEYCMD command line options overview

The following table shows each option that can be present on the command line. The
options are listed as a complete group. However, their use is dependent on the object
and action specified on the command line.

IBM Global Security Kit: Secure Sockets Layer Introduction and iKeyman User's Guide 63

Option Description

-db Fully qualified path name of a key database

-default_cert Sets a certificate to be used as the default certificate for client
authentication (yes or no). Default is no.

-dn
X.500 distinguished name. Input as a quoted string of the following
format (only CN is required): "CN=Jane Doe,O=IBM,OU=Java
Development,L=Endicott, ST=NY,ZIP=13760,C=country"

-encryption Strength of encryption used in certificate export command (strong
or weak). Default is strong.

-expire
Expiration time of either a certificate or a database password (in
days). Defaults are: 365 days for a certificate and 60 days for a
database password. Duration is 0 to 7300 (20 years).

-file File name of a certificate or certificate request (depending on
specified object)

-format Format of a certificate (either ascii for Base64_encoded ASCII or
binary for Binary DER data). Default is ascii.

-label Label attached to a certificate or certificate request

-new_format New format of key database

-new_label A new certificate label or alias to replace an existing label

-new_pw New database password

-old_format Old format of key database

IBM Global Security Kit: Secure Sockets Layer Introduction and iKeyman User's Guide 64

Option Description

-pfx Interpret the PKCS12 file as a Microsoft pfx variant

-pw Password for the key database or PKCS#12 file. See Creating a
new key database.

-size Key size (512, 1024, or 2048). Default is 1024.

-stash Indicator to stash the key database password to a file. If specified,
the password will be stashed in a file.

-san_dnsname
Add one or more DNS names to the Subject Alternate Name
attribute. Must be in “preferred name syntax” according to RFC
1034.

-san_emailaddr Add one or more email addresses to the Subject Alternate Name
attribute. Must be an “addr-spec” as defined in RFC 822

-san_ipaddr .Add one or more IP addresses to the Subject Alternate Name
attribute. Must be a string according to RFC 1338 and RFC 1519.

-secondaryDB Secondary key database support for PKCS11 device operations

-secondaryDBpw Password for the secondary key database support for PKCS11
device operations

-showOID Display the entire certificate or certificate request

-target Destination file or database

-target_pw Password for the key database if -target specifies a key database.
See Creating a new key database.

IBM Global Security Kit: Secure Sockets Layer Introduction and iKeyman User's Guide 65

Option Description

-target_type Type of database specified by -target operand (see -type).

-tokenlabel Label of a PKCS11 cryptographic device

-trust Trust status of a CA certificate (enable or disable). Default is
enable.

-type

Type of database. Allowable values are:

• cms (indicates a CMS key database),
• jce (indicates Sun's proprietary Java Cryptography

Extension),
• jceks (indicates Sun's proprietary Java Cryptography

Extension Key Store),
• pkcs12 (indicates a PKCS#12 file).

-usereasoncode Return a multi-valued error code if the command fails or 0 if it is
successful.

-x509version Version of X.509 certificate to create (1, 2 or 3). Default is 3.

Command line invocation for CMS key database only

The following is a list of each of the command line invocations, with the optional
parameters specified in italics. All commands are entered as one line.

Note:

For simplicity, the actual Java invocation, gsk7cmd, is omitted from each of the
command invocations.

-keydb -changepw -db <filename> -pw <password> -new_pw
<new_password>
-stash -expire <days>
-keydb -create -db <filename> -pw <password> -type <cms>
-expire <days> -stash
-keydb -stashpw -db <filename> -pw <password>
-cert -getdefault -db <filename> -pw <password>
-cert -modify -db <filename> -pw <password> -label <label>
-trust <enable | disable>
-cert -setdefault -db <filename> -pw <password> -label <label>

Cryptographic command line invocation (CMS implementation)

IBM Global Security Kit: Secure Sockets Layer Introduction and iKeyman User's Guide 66

The following is a list of each of the command line invocations, with the optional
parameters specified in italics. All commands are entered as one line.

Note:

For simplicity, the actual Java invocation, gsk7cmd, is omitted from each of the
command invocations.

-keydb -changepw -crypto <module_name>
-tokenlabel <token_label> -pw <password> -new_pw <new_password>
-cert -add -crypto <module_name> -tokenlabel <token_label> -pw
<password>
-label <label> -file <filename> -format <ascii | binary>
-cert -create -crypto <module_name> -tokenlabel <token_label> -pw
<password>
-label <label> -dn <distinguished_name> -size <1024 | 512 | 2048>
-x509version <3 | 1 | 2> -default_cert <no | yes> -expire <days>
-cert -delete -crypto <module_name> -tokenlabel <token_label> -pw
<password>
-label <label>
-cert -details -crypto <module_name> -tokenlabel <token_label>
-pw <password> -label <label>
-cert -details -showOID -crypto <module_name> -tokenlabel
<token_label>
-pw <password> -label <label>
-cert -extract -crypto <module_name> -tokenlabel <token_label> -pw
<password>
-label <label> -target <filename> -format <ascii | binary>

The next command imports a certificate to a cryptographic device with secondary
key database support.

-cert -import -db <filename> -pw <password> -label <label>
-type <cms> -crypto <module_name> -tokenlabel <token_label>
-pw <password> -secondaryDB <filename> -secondaryDBpw <password>

The next command imports a PKCS12 certificate to a cryptographic device with
secondary key database support.

-cert -import -file <filename> -pw <password>
-type <pkcs12> -crypto <module_name> -tokenlabel <token_label>
-pw <password> -secondaryDB <filename> -secondaryDBpw <password>
-cert -list <all | personal | CA> -crypto <module_name>
-tokenlabel <token_label> -pw <password>
-cert -receive -file <filename> -crypto <module_name> -tokenlabel
<token_label>
-pw <password> -secondaryDB <filename> -secondaryDBpw <password>
-format <ascii | binary>
-certreq -create -crypto <module_name> -tokenlabel <token_label>
-pw <password> -label <label> -dn <distinguished_name>
-size <1024 | 512 | 2048> -file <filename>
-certreq -delete -crypto <module_name> -tokenlabel <token_label>
-pw <password> -label <label>
-certreq -details -crypto <module_name> -tokenlabel <token_label>
-pw <password> -label <label>
-certreq -details -showOID -crypto <module_name> -tokenlabel
<token_label>
-pw <password> -label <label>

IBM Global Security Kit: Secure Sockets Layer Introduction and iKeyman User's Guide 67

-certreq -extract -crypto <module_name> -tokenlabel <token_label>
-pw <password> -label <label> -target <filename>
-certreq -list -crypto <module_name> -tokenlabel <token_label>
-pw <password>

Cryptographic command line invocation (IBM JSSE implementation)

The following is a list of each of the command line invocations, with the optional
parameters specified in italics. All commands are entered as one line.

Note:

For simplicity, the actual Java invocation, gsk7cmd, is omitted from each of the
command invocations.

-keydb -list
-cert -add -crypto <module_name> -relativeSlotNumber <slot_number>
-pw <password> -label <label> -file <filename> -format <ascii |
binary>
-cert -create -crypto <module_name> -relativeSlotNumber
<slot_number>
-pw <password> -label <label> -dn <distinguished_name>
-size <1024 | 512 | 2048> -x509version <3 | 1 | 2>
-cert -delete -crypto <module_name> -relativeSlotNumber
<slot_number>
-pw <password> -label <label>
-cert -details -crypto <module_name> -relativeSlotNumber
<slot_number>
-pw <password> -label <label>
-cert -details -showOID -crypto <module_name> -relativeSlotNumber
<slot_number>
-pw <password> -label <label>
-cert -extract -crypto <module_name> -relativeSlotNumber
<slot_number>
-pw <password> -label <label> -target <filename>-format <ascii |
binary>
-cert -import -db <filename> -pw <password> -label <label>
-type <pkcs12 | cms | JKS | JCEKS> -crypto <module_name>
-relativeSlotNumber <slot_number> -pw <password>
-cert -list <all | personal | CA> -crypto <module_name>
-relativeSlotNumber <slot_number> -pw <password>
-cert -receive -file <filename> -crypto <module_name>
-relativeSlotNumber <slot_number> -pw <password>
-format <ascii | binary>
-certreq -create -crypto <module_name> -relativeSlotNumber
<slot_number>
-pw <password> -label <label> -dn <distinguished_name>
-size <1024 | 512 | 2048> -file <filename>
-certreq -delete -crypto <module_name> -relativeSlotNumber
<slot_number>
-pw <password> -label <label>
-certreq -details -crypto <module_name> -relativeSlotNumber
<slot_number>
-pw <password> -label <label>
-certreq -details -showOID -crypto <module_name> -relativeSlotNumber
<slot_number>
-pw <password> -label <label>

IBM Global Security Kit: Secure Sockets Layer Introduction and iKeyman User's Guide 68

-certreq -list -crypto <module_name> -relativeSlotNumber
<slot_number>
-pw <password>

PKCS11 cryptographic command line invocation (Microsoft CryptoAPI
implementation)

The following is a list of each of the command line invocations, with the optional
parameters specified in italics. All commands are entered as one line.

Note:

For simplicity, the actual Java invocation, gsk7cmd, is omitted from each of the
command invocations.

-cert -add -crypto <CSP_module_name> -label <label>
-file <filename> -format <ascii | binary>
-cert -create -crypto <CSP_module_name>
-label <label> -dn <distinguished_name> -size <1024 | 512 | 2048>
-x509version <3 | 1 | 2> -expire <days>
-cert -delete -crypto <CSP_module_name> -label <label>
-cert -details -crypto <CSP_module_name> -label <label>
-cert -details -showOID -crypto <CSP_module_name> -label <label>
-cert -extract -crypto <CSP_module_name> -label <label>
-target <filename> -format <ascii | binary>

Note:

In the next command, -label is not needed for a PKCS12 key database.

-cert -import -db <filename> -pw <password> -label <label>
-type <pkcs12 | cms | JKS | JCEKS> -crypto <CSP_module_name>
-cert -list <all | personal | CA> -crypto <CSP_module_name>

Microsoft Certificate Store command line invocation

The following is a list of each of the command line invocations, with the optional
parameters specified in italics. All commands are entered as one line.

Note:

For simplicity, the actual Java invocation, gsk7cmd, is omitted from each of the
command invocations.

-cert -add -db MSCertificateStore -label <label> -file <filename>
-format <ascii | binary>
-cert -create -db MSCertificateStore -label <label> -dn
<distinguished_name>
-size <1024 | 512 | 2048> -x509version <3 | 1 | 2> -expire <days>
-cert -delete -db MSCertificateStore -label <label>
-cert -details -db MSCertificateStore -label <label>
-cert -details -showOID -db MSCertificateStore -label <label>
-cert -export -db MSCertificateStore -label <label>

IBM Global Security Kit: Secure Sockets Layer Introduction and iKeyman User's Guide 69

-target <filename> -target_pw <password> -target_type <cms | jks |
jceks | pkcs12>
-cert -extract -db MSCertificateStore -label <label>
-target <filename> -format <ascii | binary>
-cert -import -db <filename> -pw <password> -label <label>
-type <cms | JKS | JCEKS> -target MSCertificateStore
-cert -import -file <filename> -pw <password>
-type <pkcs12> -target MSCertificateStore
-cert -list <all | personal | CA> -db MSCertificateStore

Command line invocation for all types of key store (CMS, JKS, JCEKS,
PKCS12)

The following is a list of each of the command line invocations, with the optional
parameters specified in italics. All commands are entered as one line.

Note:

For simplicity, the actual Java invocation, gsk7cmd, is omitted from each of the
command invocations.

-keydb -changepw -db <filename> -pw <password> -newpw <new_password>

Note:

The following is only valid for CMS key databases:

-keydb -changepw -db <filename> -pw <password> -newpw
 <new_password> -expire <days>

-keydb -convert -db <filename> -pw <password>
-old_format <cms | JKS | JCEKS | pkcs12> -new_format <cms | JKS |
JCEKS | pkcs12>
-keydb -create -db <filename> -pw <password> -type <cms | JKS |
JCEKS | pkcs12>
-keydb -delete -db <filename> -pw <password>
-cert -add -db <filename> -pw <password> -label <label>
-file <filename> -format <ascii | binary>
-cert -create -db <filename> -pw <password> -label <label>
-dn <distinguished_name> -size <1024 | 512 | 2048> -x509version <3
| 1 | 2>
-expire <days> -san_dnsname <DNS name value>[,<DNS name value>] –
san_emailaddr <email address value>[,<email address value>] –
san_ipaddr <IP address value>[,<IP address value>]
-cert -delete -db <filename> -pw <password> -label <label>
-cert -details -db <filename> -pw <password> -label <label>
-cert -export -db <filename> -pw <password> -label <label>
-type <cms | JKS | JCEKS | pkcs12> -target <filename>
-target_pw <password> -target_type <cms | JKS | JCEKS | pkcs12>
-cert -extract -db <filename> -pw <password> -label <label>
-target <filename> -format <ascii | binary>
-cert -import -db <filename> -pw <password> -label <label>
-type <cms | JKS | JCEKS> -target <filename> -target_pw <password>
-target_type <cms | JKS | JCEKS | pkcs12>
-cert -import -file <filename> -pw <password>
-type <pkcs12> -target <filename> -target_pw <password>

IBM Global Security Kit: Secure Sockets Layer Introduction and iKeyman User's Guide 70

-cert -list <all | personal | CA> -db <filename>
-pw <password> -type <cms | JKS | JCEKS | pkcs12>
-cert -receive -file <filename> -db <filename>
-pw <password> -format <ascii | binary>
-certreq -create -db <filename> -pw <password>
-label <label> -dn <distinguished_name> -size <1024 | 512 | 2048> -
file <filename> -san_dnsname <DNS name value>[,<DNS name value>] –
san_emailaddr <email address value>[,<email address value>] –
san_ipaddr <IP address value>[,<IP address value>]
-certreq -delete -db <filename> -pw <password> -label <label>
-certreq -details -db <filename> -pw <password> -label <label>
-certreq -extract -db <filename>
-pw <password> -label <label> -target <filename>
-certreq -list -db <filename> -pw <password>
-certreq -recreate -db <filename>
-pw <password> -label <label> -target <filename>

User properties file

In order to eliminate some of the typing on the Java CLI invocations, user properties
can be specified in a properties file. The properties file can be specified on the Java
command line invocation via the -Dikeycmd.properties=<filename> Java option. A
sample properties file, ikeycmd.properties, is supplied as a sample to enable Java
applications to modify default settings for their application.

IBM Global Security Kit: Secure Sockets Layer Introduction and iKeyman User's Guide 71

GSKit iKeyman support for
accessibility
To accommodate individuals who have disabilities so they can use IBM products,
important accessibility features and functions must be included in our products so
they are either directly accessible or compatible with assistive technology. The IBM
Accessibility Center and Sun Microsystems' Accessibility Group have combined
efforts to design and build next-generation accessibility into the Java application.
Follow the checklist at http://www-3.ibm.com/able/accessjava.html to make a Java2
application accessible. iKeyman is one of the products that currently comply with
the accessibility support initiative.

Note:

Current Java accessibility support is completely featured on the Windows
platform only.

Features include the following:

• For the usability accessibility support:

Users are able to operate iKeyman with the keyboard only, using the
following:

[Tab]
Key to move focus forward

[Shift]+[Tab]
Keys to move focus backward

[Space]
Key to trigger action

[up arrow]
Key to move selectable item(s) up

[down arrow]
Key to move selectable item(s) down

• For the visual effect accessibility support:
1. Modify the platform setting for colors and fonts. For example, on the

Windows platform, modify the system color and font settings in
Display properties on the Control Panel.

2. Enable accessibility support. Select View -> Windows Look and Feel.
The appearance of an iKeyman display will adopt the current system
color and fonts.

IBM Global Security Kit: Secure Sockets Layer Introduction and iKeyman User's Guide 72

GSKit iKeyman properties
To allow customization of some operational settings and to enable/disable some
functionality a system of properties files has been provided. The default set of
properties files installed with GSKit is usually sufficient for most users of Ikeyman.

There are 3 types of property file identified by their names.

1. ikminit.properties – there can be only one instance of this file and it must be
in the directory <GSKit install path>/gsk7/classes . This file is provided as part
of the initial installation of GSKit.

2. ikmuser.properties – this file contains properties which are local to a
particular use of iKeyman. There can be many versions of this file. To use a
version it must be present in the working directory of iKeyman. The working
directory is the directory in which gsk7cmd or gsk7ikm are started. For example
this might be a user’s home directory. A sample file renamed as
ikmuser.sample is provided as part of the initial installation of GSKit.

3. -Dikeycmd.properties option – the value of this option is a filename-path which
is the properties file. This file is discussed further in the paragraph User
properties file in this document. Note that this option is only applicable to the
command line version of iKeyman.

The order of searching files for a property is (3), (2), (1).

IBM Global Security Kit: Secure Sockets Layer Introduction and iKeyman User's Guide 73

Appendices.

IBM Global Security Kit: Secure Sockets Layer Introduction and iKeyman User's Guide 74

Error Codes
 The following codes are returned by the gsk7cmd command when used with the “-
usereasoncode” option. The following terms are used in the description –

a. Internal – would only be caused by a software error. Contact your normal support
channel.

b. Not used – Obsolete, should never appear.

Name return

codes
Description

 OK 0 No error
 KEYDB 1 Internal - mode action

invalid
 CERTIFICATE 2 Internal - mode action

invalid
 CERTREQUEST 3 Internal - mode action

invalid
 CREATEDB 4 Invalid parameter in –keydb

action.
 CHANGEPW 5 Invalid parameter in –keydb

action
 STASHPW 6 Invalid parameter in –keydb

action
 CONVERT 7 Invalid parameter in –keydb

action
 DELETEDB 8 Invalid parameter in –keydb

action
 RECREATE 9 Invalid parameter in –certreq

action
 LISTCERT 10 Invalid parameter in -cert

action
 DETAILSCERT 11 Invalid parameter in -cert

action
 EXPORT 12 Invalid parameter in –cert

action
 IMPORT 13 Invalid parameter in –cert

action
 EXTRACTCERT 14 Invalid parameter in -cert

action
 RECEIVE 15 Invalid parameter in -cert

action
 SIGN 16 Invalid parameter in –cert

action
 ADD 17 Invalid parameter in –cert

action
 MODIFY 18 Invalid parameter in -cert

action
 SETDEFAULT 19 Invalid parameter in –cert

action
 GETDEFAULT 20 Invalid parameter in -cert

IBM Global Security Kit: Secure Sockets Layer Introduction and iKeyman User's Guide 75

action
 HELP 21 Internal - mode action

invalid
 VERSION 22 Internal - mode action

invalid
 CREATECERT 23 Invalid parameter in –cert

action
 CREATEREQ 24 Invalid parameter in –certreq

action
 DELETECERT 25 Invalid parameter in –cert

action
 DELETEREQ 26 Invalid parameter in –certreq

action
 LISTREQ 27 Invalid parameter in –certreq

action
 DETAILSREQ 28 Invalid parameter in –certreq

action
 EXTRACTREQ 29 Invalid parameter in –certreq

action
 LISTKEYDB 30 Invalid parameter in –keydb

action
 GENERAL_IO_EXCEPTION_ERROR 185 Internal - non-specific io

error
 GSKKM_ERR_CMN_KEYDB_OPEN 186 Internal - should never

occur. Attemp to create a
KeyStoreManager object failed
unexpectedly

 GSKKM_ERR_CMN_PASSWORD_NULL 187 Internal - null or no
password provided when
opening a non PKCS11 keystore

 GSKKM_ERR_FILENAME_NULL 188 Internal - attempt to create
a new key database with a
null filename

GSKKM_ERR_CMN_KEYDB_GET_KEY_BY_L
ABEL

189 Internal - general error in
getting key by label.

GSKKM_ERR_CMN_KEYDB_NEW_SSCERT

190 Error creating self-signed
certificate.

GSKKM_ERR_DATABASE_DUPLICATE_KEY
_LABEL

191 Certificate label already
exists in target keystore for
a. creation of self-signed
certificate. The label
already exists so use another
one
b. importing certificates.
Use the –relabel option to
change the label in the
target keystore.
c. exporting certificates
Change the conflicting label
in the target keystore.

 GSKKM_ERR_CRYPTO 192 Error initialising or
creating a cryptographic
token keystore.

 GENERAL_EXCEPTION_ERROR 193 Internal - non-specific error

GENERAL_KEYSTORE_MANAGER_ERROR

194 Internal - error using
KeyStoreManager object

IBM Global Security Kit: Secure Sockets Layer Introduction and iKeyman User's Guide 76

 NO_KEYSTORE_OP_ERROR 195 Internal - operator for
keystore was null

 GENERAL_KEYSTORE_ERROR 196 Error using KeyDatabase
object

 MISSING_RESOURCE_FILE 197 Internal error – the language
bundle containing the gui
strings for Ikeyman could not
be found nor could the
default messages

 FILE_IO_ERROR 198 Could not close the log. (by
default ikmgdbg.log) file for
some reason.

 MISSING_FILE_ERROR 199 The log file(by default
ikmgdbg.log) could not be
accessed. It does not exist
or does not have write
permissions.

 MISSING_RESOURCE_ERROR 200 Internal error - The language
bundle(“ikmerr”) containing
the error messages for
Ikeyman and ikeycmd could not
be found nor could the
default messages.

 NULL_PASSWORD_SPECIFIED 201 Not Used
 INVALID_ALT_NAME_OPTION 202 An invalid Subject

Alternative Name type was
provided. Only email, ipAddr
and dnsName are recognised.

SUBJECT_ALT_NAME_NOT_SUPPORTED

203 “DEFAULT_SUBJECT_ALTERNATE_NA
ME_SUPPORT" in properties
file is false and -san_*
parameter was provided.
Uncomment the corresponding
line in the properties file(
by default
ikminit.properties)

 NO_ALT_NAME_SPECIFIED 204 No value provided for -san_*
parameter

 NOPWD_KDB 205 Password parameter not
required for this file type
so –stashpw invalid. Reenter
the command without the –
stashpw option.

GSKKM_ERR_CRYPTOGRAPHIC_TOKEN_NO
T_SUPPORT

206 Internal - should never occur

 GSKKM_CLI_WIN2K_SUPPORT 207 MSCertificate Store only
supported on W2K SP2 and
later. Upgrade your version
of Windows and retry.

GSKKM_CLI_MICROSOFT_INVALID_OPER
ATION

208 These operations are not
valid for MSCP
1. any -keydb actions. The MS
Certificate Store is integral
to the Windows OS.
2. any certreq actions. The
Microsoft Certificate Store
does not hold certificate

IBM Global Security Kit: Secure Sockets Layer Introduction and iKeyman User's Guide 77

requests.
 NOT_SUPPORTED_PARAMETER 209 A command line parameter is

not supported in the contect
of the other parameters.
1. -secondaryDBFile when Java
cryptotoken used in "cert
import . The secondary
keystore is not supported by
the Java PKCS11 provider.
2. -keydb -changepw not
allowed on Java Cryptographic
token. The Java PKCS11
provider does not support
changing the PIN on a token.
3. -certreq -extract not
allowed for JAVA
cryptographic token
5. -expire only allowed for
CMS keystore type. Password
expiry is only provided by
the IBM CMS Keystore type. U
must provide your own
password aging capability for
other types.
6. -stash only allowed for
CMS keystore type. Stash
files are not supported by
Java keystores providers. You
must provide your own
password hiding capability.
7. -trust valid only for CMS.
The –trust option is only
supported by the CMS
keystore.
8. -pfx and non-PKCS12 file
as source keystore. Use a
PKCS12 formatted file as the
source for the import.
9. -pfx and -label value
provided. The PFX option only
applies when an entire
keystore is being imported.
Delete the –label option and
retry.

 CMN_INVALID_FILE_NAME 210 File name specified does not
exist (keydb delete). Check
the spelling of the file name
or path and that the
permissions along the path
supply the correct access.

 NO_CRYPTOKI_LABEL_SPECIFIED 211 1. No cryptographic token
label provided for CMS crypto
token. You must supply the
token name with the –
tokenlabel option.
 2. No relative slot number
was provided for Java crypto
token. You must supply the
hardware slot number where

IBM Global Security Kit: Secure Sockets Layer Introduction and iKeyman User's Guide 78

the token is inserted using
the –relativeSlotNumber
option.

NO_CRYPTOKI_MODULENAME_SPECIFIED

212 No Cryptographic module name
either parameter or property
was provided even though one
was required – a token label
was provided. Add the file
path of the cryptographic
device driver using the –
crypto option.

 NOPWD_PW_TARGETKDB_HASNO_PWD 213 Password is not required for
this db type of target db.
Remove the –pw option and
retry.

GSKKM_CLI_PARAMETER_NOT_REQUIRED

214 Parameter not meaningful in
the context other options

 NOPWD_PW_NOT_REQUIRED_NEW 215 Password provided for
MSCertificateStore keydb.
Remove the –pw option and
reenter the command.

 NATIVE_NOT_ENABLED 216 Not Used
 LABEL_NULL 217 Internal - label value

present but is null - has
length 0.

 NO_ENCRYP_SPECIFIED 218 No value provided for -
encryption parameter

 NO_TARGET_PASSWORD_SPECIFIED 219 No value provided for -
target_pw parameter

 NO_TRUST_STATUS_SPECIFIED 220 No value specified for –trust
parameter

 NO_CERT_FORMAT_SPECIFIED 221 No value provided for -format
parameter.

NO_DEFAULT_CERT_VALUE_SPECIFIED

222 No value provided for -
default_cert parameter

 NO_X509_VER_SPECIFIED 223 No value supplied for –
x509version parameter

 NO_KEY_SIZE_SPECIFIED 224 No value for -size parameter
 NO_NEW_DB_FORMAT_SPECIFIED 225 No keystore type value

provided for -new_format
parameter

 NO_OLD_DB_FORMAT_SPECIFIED 226 No keystore type value
provided for -old_format
option in convert

 NO_NEW_PASSWORD_SPECIFIED 227 No -new_pw value provided for
-changepw action

 NO_EXPIRE_DAYS_SPECIFIED 228 No time interval provided for
–expire parameter

 NO_DB_TYPE_SPECIFIED 229 No keystore type was provided
and the type could not be
deduced from the keystore
name.

NO_CERTIFICATE_ACTION_SPECIFIED

230 Internal – no certificate
action detected

NO_CERTREQUEST_ACTION_SPECIFIED

231 Internal – no certificate
request action detected

 NO_KEYDB_ACTION_SPECIFIED 232 Internal – no keydb action

IBM Global Security Kit: Secure Sockets Layer Introduction and iKeyman User's Guide 79

detected
 WEBDB_NOT_SUPPORTED 233 Not used - WEBDB database

supported only for "-keydb -
convert"

 NO_FILE_SPECIFIED 234 No file specified for
1."certreq create" –an
external filepath is required
to write the certificate
request to.
2. "cert sign" or "cert add”.
An external file path is
required which contains the
certificate to be added or
signed.

 NO_LABEL_SPECIFIED 235 Label parameter required for
“cert” or “certreq” actions.
Add the –label option to
specify the certificate being
acted on.

 NO_TARGET_SPECIFIED 236 No value provided for -
target_pw parameter

 NO_PASSWORD_SPECIFIED 237 No password value specified
for –pw option

 NO_DB_NAME_SPECIFIED 238 No default keystore name was
found and no name was
provided as a parameter.
Reenter the command using the
–db option.

 INVALID_VERSION 239 Version value must be one of
1, 2 or 3

 NEED_REQUIRED_OPTIONS 240 The required common name
field is empty.

 INVALID_ENCRYPTION 241 Not used -encryption strength
must strong or weak

 NO_PARAMS 242 Internal - no arguments from
command line

 INVALID_TRUST 243 Invalid trust parameter value
(enable or disable)

 INVALID_LIST_OPTION 244 Not used - replaced by
LISTCERT

 INVALID_TYPE 245 A valid key store type is
required for -type or -
target_type parameters

 BAD_KEY_SIZE 246 Key -size value could not be
parsed into an integer

 INVALID_EXPIRE 247 Certificate days to expire
less than 1

 INVALID_FORMAT 248 Format value not a valid file
format (ascii or binary)

 TOO_MANY_OPTIONS 249 Too many options on command
line for this operation

 INVALID_OPTION 250 Value for “default_cert”
parameter must be yes or no

 BAD_CERTIFICATE_ACTION 251 Invalid -certificate action
 BAD_CERTREQUEST_ACTION 252 Invalid -certificate request

action
 BAD_KEYDB_ACTION 253 Invalid -keydb command action

IBM Global Security Kit: Secure Sockets Layer Introduction and iKeyman User's Guide 80

 BAD_MODE 254 Unidentified mode entered.
 ERROR 255 Not Used

IBM Global Security Kit: Secure Sockets Layer Introduction and iKeyman User's Guide 81

Ikeyman property keys
Table heading key

Key name

The text value of the property key. Case is significant.
A “*” indicates the key can be used in a IKEYCMD User
properties file.
A “+” indicates the key is only used by the IKEYCMD
program.

Default value The value which is assumed if this property is not
explicitly stated.

Distribution value The value of this property in the ikminit.properties file
distributed with GSKit.

Possible values
The range of possible values. Case is not significant for
values. For boolean properties usually “true” is the only
specified value. Any other string is interpreted as “false”.

Use A description of the purpose of the property and the
meaning of different values.

Program properties

The following program properties are listed in ikminit.properties and are read by Ikeyman but are not
used
DEFAULT_KEYDB_LOCATION_WEBDB
DEFAULT_KEYDB_LOCATION_SSLIGHT
DEFAULT_KEYDB_LOCATION_SSLINK
DEFAULT_KEYDB_LOCATION_CDSA
DEFAULT_KEYDB_LOCATION_BERKELEY
DEFAULT_PKCS12_GUI_POPUPS
DEFAULT_PKCS12_EXPORT_VERSION
DEFAULT_1_BROWSER_ITERATION_COUNT
DEFAULT_1_BROWSER_ENC_ALGORITHM
DEFAULT_2_IKEYMAN_ITERATION_COUNT
DEFAULT_2_IKEYMAN_ENC_ALGORITHM
DEFAULT_PKCS12_ENCODE_TYPE
DEFAULT_SSLIGHT_EXTRACT_FILE_LOCATION
DEFAULT_SSLIGHT_EXTRACT_FILE_NAME
DEFAULT_SSLIGHT_PACKAGE_NAME
DEFAULT_SSLIGHT_PASSWORD_REQUIRED
DEFAULT_WEBDB_PASSWORD_REQUIRED
DEFAULT_SSLIGHT_CREATE_EMPTY
DEFAULT_KEYDB_NAME_EXT_WEBDB
DEFAULT_KEYDB_NAME_EXT_SSLIGHT
DEFAULT_KEYDB_NAME_EXT_SSLINK
DEFAULT_KEYDB_NAME_EXT_CDSA
DEFAULT_KEYDB_NAME_EXT_BERKELEY
 DEFAULT_KEYDB_NAME_WEBDB
DEFAULT_KEYDB_NAME_SSLIGHT
DEFAULT_KEYDB_NAME_SSLINK
DEFAULT_KEYDB_NAME_CDSA
DEFAULT_KEYDB_NAME_BERKELEY
 DEFAULT_PEM_FILE_NAME_EXT

IBM Global Security Kit: Secure Sockets Layer Introduction and iKeyman User's Guide 82

DEFAULT_CERTIFICATE_NAME_PEM
DEFAULT_CERTIFICATE_REQUEST_KEY_SIZE
DEFUALT_CERTIFICATE_ENCRYPTION

*Key name DEFAULT_FILE_LOCATION
Default value User’s current working directory
Distribution value -
Possible values Any accessible directory

Use

This is the default directory for any keystore or file which
is not allocated a location through another property.
gsk7cmd will use this value to store non-keystore files ie
gsk7cmd -cert -extract -db test.kdb -label test
-target test -format ascii but gsk7ikm will use the
default keystore location

*Key name DEFAULT_KEYDB_LOCATION_CMS
Default value DEFAULT_FILE_LOCATION
Distribution value “.”
Possible values Any accessible directory

Use

This is the default directory for any keystore of type CMS.
This does not work with gsk7cmd except with the -keydb
-create. Similar for other keystore types. This does not
work with gsk?cmd except with the -keydb -create.
Similar for other keystore types.

*Key name DEFAULT_KEYDB_NAME_CMS
Default value “key”
Distribution value “key”

Possible values Any valid filename root for the platform. The filename
extension should be left off.

Use

This is the default name for any keystore of type CMS.
There is no way of requesting the default named keystore
using gsk?cmd. ie -db <filename> is always required.
This holds for all keystore types

*Key name DEFAULT_KEYDB_NAME_EXT_CMS
Default value “.kdb”
Distribution value “.kdb”

IBM Global Security Kit: Secure Sockets Layer Introduction and iKeyman User's Guide 83

Possible values Any valid filename extension for the platform. The “.”
separator is mandatory.

Use

This is the default extension for any keystore of type
CMS. This string will be appended to the filename. This
default extension is not reliably used in gsk7cmd except
with the -keydb modifier ie -keydb -create. This holds
for all keystore types

Key name USE_LAST_OPENED_LOCATION_CMS
Default value “true”
Distribution value “true”
Possible values “true” or “false”.

Use

When used with “gsk7ikm” it will cause any directory
entered in response to a “New” or “Open” form to become
the new cms default directory for the duration of execution
otherwise the default value is reused.

*Key name DEFAULT_CMS_PASSWORD_REQUIRED
Default value “true”
Distribution value -
Possible values “true” or “false”.

Use

When “false” it allows a CMS keystore to be created and
subsequently accessed without a password. If the -pw
option is included with the -keydb -create action then
the keydb is created with that password

*Key name DEFAULT_PASSWORD_STASHING_STATE
Default value “false”
Distribution value -
Possible values “true” or “false”

Use
If true then the check box to
stash the password in a password dialog will always be
checked by default. Only valid for CMS.

*Key name DEFAULT_JKS_FILE_LOCATION
Default value DEFAULT_FILE_LOCATION
Distribution value “.”
Possible values Any accessible directory
Use This is the default directory for any keystore of type JKS

IBM Global Security Kit: Secure Sockets Layer Introduction and iKeyman User's Guide 84

*Key name DEFAULT_JKS_FILE_NAME
Default value “key”
Distribution value “key”
Possible values Any valid root filename for the platform..
Use This is the default name for any keystore of type JKS

*Key name DEFAULT_JKS_FILE_NAME_EXT
Default value “.jks”
Distribution value “.jks”

Possible values Any valid filename extension for the platform. The “.”
separator is mandatory.

Use
This is the default extension for any keystore of type jks.
This string will be appended to any filename entered
without an extension.

Key name USE_LAST_OPENED_LOCATION_JKS
Default value “true”
Distribution value “true”
Possible values “true” or “false”.

Use

When used with “gsk7ikm” it will cause any directory
entered in response to a “New” or “Open” form to become
the new jks default directory for the duration of execution
otherwise the default value is reused.

*Key name DEFAULT_JCEKS_FILE_LOCATION
Default value DEFAULT_FILE_LOCATION
Distribution value “.”
Possible values Any accessible directory
Use This is the default directory for any keystore of type JCK

*Key name DEFAULT_JCEKS_FILE_NAME
Default value “key”
Distribution value “key”
Possible values Any valid root filename for the platform.
Use This is the default name for any keystore of type JCEKS

*Key name DEFAULT_JCEKS_FILE_NAME_EXT
Default value “.jck”

IBM Global Security Kit: Secure Sockets Layer Introduction and iKeyman User's Guide 85

Distribution value “.jck”

Possible values Any valid filename extension for the platform. The “.”
separator is mandatory.

Use
This is the default extension for any keystore of type
JCEKS. This string will be appended to any filename
entered without an extension.

Key name USE_LAST_OPENED_LOCATION_JCEKS
Default value “true”
Distribution value “true”
Possible values “true” or “false”.

Use

When used with “gsk7ikm” it will cause any directory
entered in response to a “New” or “Open” form to become
the new default jck directory for the duration of execution
otherwise the default value is reused.

*Key name DEFAULT_PKCS12_FILE_LOCATION
Default value DEFAULT_FILE_LOCATION
Distribution value “.”
Possible values Any accessible directory

Use This is the default directory for any keystore of type
pkcs12

*Key name DEFAULT_PKCS12_FILE_NAME
Default value “key”
Distribution value “key”
Possible values Any valid root filename for the platform.
Use This is the default name for any keystore of type P12

*Key name DEFAULT_PKCS12_FILE_NAME_EXT
Default value “.p12”
Distribution value “.p12”

Possible values Any valid filename extension for the platform. The “.”
separator is mandatory.

Use
This is the default extension for any keystore of type P12.
This string will be appended to any filename entered
without an extension when the determined type is PKCS12

Key name USE_LAST_OPENED_LOCATION_PKCS12

IBM Global Security Kit: Secure Sockets Layer Introduction and iKeyman User's Guide 86

Default value “true”
Distribution value “true”
Possible values “true” or “false”.

Use

When used with “gsk7ikm” it will cause any directory
entered in response to a “New” or “Open” form to become
the new pkcs12 default directory for the duration of
execution otherwise the default value is reused.

+*Key name DEFAULT_KEYDB_TYPE
Default value 1 (CMS)
Distribution value -
Possible values 1 or 8 (PKCS12)

Use

Sets up a default keystore type. Looks like this has not
been updated to deal with the Java keystore types. Really
only works for -keydb -create. Did not work for -cert -list
for example.

+*Key name DEFAULT_KEYDB_PASSWORD_EXPIRE
Default value 60
Distribution value -
Possible values Integer > 0

Use The default keystore password lifetime in days. Only valid
for CMS keystores

+*Key name DEFAULT_CMS_PASSWORD
Default value -
Distribution value -
Possible values Any valid string

Use The default password for a CMS keystore. Only seems to
work when creating a keystore.

+*Key name DEFAULT_PKCS12_PASSWORD
Default value -

Distribution value -
Possible values Any valid string
Use The default password for a PKCS12 keystore

+*Key name DEFAULT_CERTIFICATE_EXPIRE

IBM Global Security Kit: Secure Sockets Layer Introduction and iKeyman User's Guide 87

Default value 365
Distribution value -
Possible values Any integer > 0

Use The default certificate lifetime in days for self-signed
certificates. CMS keystore only.

+*Key name DEFAULT_CERTIFICATE_FORMAT
Default value “true”
Distribution value -

Possible values “false” or any other valid string/format

Use
If set false then default is binary mode format otherwise is
ascii (b64) mode for self-signed certificates which are
being extracted – CMS keystore only.

+*Key name DEFAULT_CERTIFICATE_TRUST
Default value “true”
Distribution value -

Possible values “true” or “false”

Use If set to enable then any added CA certificates are marked
as trusted by default otherwise they are not trusted.

+*Key name DEFAULT_CERTIFICATE_KEYSIZE
Default value 1024
Distribution value -

Possible values 512, 1024, 2048

Use The default keysize for self-signed certificates or
certificate requests. CMS type keystore only.

+*Key name DEFAULT_CERTIFICATE_DEFAULT
Default value “false”
Distribution value -

Possible values “true” or any other valid string/format

Use If set then the created selfsigned cert will be set as the
default certificate. Only applicable to CMS types.

IBM Global Security Kit: Secure Sockets Layer Introduction and iKeyman User's Guide 88

+*Key name DEFAULT_CERTIFICATE_LIST_OPTION
Default value “all”
Distribution value -

Possible values “all”, “CA”, “personal”

Use The default option for the –cert –list action.

*Key name DEFAULT_BASE64_FILE_NAME_EXT
Default value “.arm”
Distribution value -
Possible values Any valid file extension for the platform

Use

Used as the file extension wherever a base64 formatted
file is specified. Does not override an existing extension.
Didn't work with -cert -extract. or gsk?ikm. Caused
"Invalid file" error when file using defaultfile name in
gsk?ikm

*Key name DEFAULT_DER_FILE_NAME_EXT
Default value “.der”
Distribution value -
Possible values Any valid file extension for the platform

Use

Used as the file extension wherever a binary formatted file
is specified. Does not override an existing extension.
Didn't work with -cert -extract. or gsk?ikm. Caused
"Invalid file" error when file using defaultfile name in
gsk?ikm

Key name DEFAULT_CERTREQ_FILE_NAME
Default value “certreq.arm”
Distribution value -
Possible values Any valid file name for the platform

Use

If no extension provided then the value of
DEFAULT_BASE64_FILE_NAME_EXT will be
appended. This is the default name for the certificate
request file. Only relevant in gsk?ikm.

*Key name DEFAULT_CERTIFICATE_NAME_ARM
Default value “cert.arm”

IBM Global Security Kit: Secure Sockets Layer Introduction and iKeyman User's Guide 89

Distribution value -
Possible values Any valid file name for the platform

Use The default file name for a certificate being extracted in
b64 mode. Only relevant in gsk?ikm.

*Key name DEFAULT_CERTIFICATE_NAME_DER
Default value “cert.der”
Distribution value -
Possible values Any valid file name for the platform

Use The default file name for a certificate being extracted in
binary mode. Only relevant in gsk?ikm.

Key name DEFAULT_CRYPTOGRAPHIC_TOKEN_SECONDAR
Y_KEYDB

Default value -
Distribution value -
Possible values Any valid directory/file name for the platform

Use
The default directory path and filename of a CMS keystore
to be used
as a secondary keystore to a cryptotoken.

*Key name DEFAULT_CRYPTOGRAPHIC_MODULE
Default value -
Distribution value -
Possible values Any valid directory/file name for the platform

Use
The directory path and filename of a vendor specific
PKCS11 dll which will interface to a cryptographic
device.

Key name DEFAULT_FIPS_MODE_PROCESSING
Default value “off”
Distribution value -
Possible values “on” or “off”

Use

If set on then attempts to do FIPS compliant cryptography.
Requires the properties
DEFAULT_SIGNATURE_ALGORITHM to be set to
“SHA1_WITH_RSA” or to be left to default and
DEFAULT_CRYPTOGRAPHIC_BASE_LIBRARY set
to “ICC”

IBM Global Security Kit: Secure Sockets Layer Introduction and iKeyman User's Guide 90

Key name DEFAULT_CRYPTOGRAPHIC_BASE_LIBRARY
Default value SYSTEM_DEFAULT
Distribution value -
Possible values “RSA” or “ICC”

Use

Determines the binary library to be loaded which will
provide the cryptographic routines for the CMS security
provider. If this is allowed to default then the underlying
JNI binary libraries will load their default library. Either
way the “ICC” library is the only library which is FIPS
compliant. The “RSA” library is the RSA BSAFE library.

Key name DEFAULT_SIGNATURE_ALGORITHM

Default value
“SHA1_WITH_RSA” if the property
DEFAULT_FIPS_MODE_PROCESSING set to “on”.
otherwise “MD5_WITH_RSA”

Distribution value -

Possible values

“MD5_WITH_RSA”,
“SHA1_WITH_RSA”,
“SHA224_WITH_RSA”,
“SHA256_WITH_RSA”,
“SHA384_WITH_RSA”, or
“SHA512_WITH_RSA”

Notes:
• On JRE 1.4.2 the longer SHA algorithms only work

for CMS certificates (i.e. not for CMS certificate
requests or any other key store formats)

• On JRE 5.0 all algorithms work for certificates and
certificate requests for all key store formats, with the
exception of SHA224, which is only available for
CMS certificates.

• Whenever an unavailable algorithm is set in this
setting, the default value SHA1_WITH_RSA will be
used instead.

Use The algorithm to be used to sign a self-signed certificate or
certificate request

Key name VIEW_HIDDEN_FILES
Default value “false”
Distribution value -
Possible values “true” or any other string is false

Use If true then platform specific hidden files will be visible
during browsing.

IBM Global Security Kit: Secure Sockets Layer Introduction and iKeyman User's Guide 91

Key name DEFAULT_SUBJECT_ALTERNATIVE_NAME_SUPP
ORT

Default value “false”
Distribution value -
Possible values “true” or “false”

Use
Allows the entry of Subject Alternate Name attributes as
extentions in self-signed certs and as extension requests in
certificate requests

Key name DEFAULT_ENGLISH_ERROR_MESSAGE
Default value “false”
Distribution value -
Possible values “true” or “false”

Use
If true forces the locale for the display of error messages
to “English” otherwise the default locale for the JVM is
used.

Key name DEFAULT_LOGGING
Default value -
Distribution value “false”
Possible values “true” or any other string is false
Use If true then logging is turned on..

Key name DEFAULT_LOGGING_FILTER
Default value -
Distribution value “ALL”

Possible values

“ALL” – log everything
“INFO” – log everything except tracing
“WARN” – log warning and error messages
“ERROR” – log only error messages

Use Determines the level of logging message to be allowed
into the log.

Key name DEFAULT_LOGGING_FILE
Default value -
Distribution value -
Possible values Any valid platform path/filename
Use Logging messages are written to this file.

IBM Global Security Kit: Secure Sockets Layer Introduction and iKeyman User's Guide 92

Key name DEFAULT_SSCERT_BASIC_CONSTRAINTS1
Default value -
Distribution value -
Possible values “true” or “false”

Use

Add the Basic Constraint extension to a self-signed
certificate on creation. The extension will be added with a
CA:true and PathLen:<max int> if set to “true” or not
added at all if set to “false”.

System properties

The following system properties are accessed but never used.
keyman.docpath - supplied in ikmguiw.cpp, the Windows version of gsk?ikm
keyman.helpClassName

These properties may be entered on the command line using the –D<key
name>=<key value> syntax. Note that not all properties are applicable to both the
command line and GUI versions of iKeyman.

Key name keyman.fix.jfc.mouse.retarget
Default value “false”
Possible values “true”, any other string

Use

If true then a work-around for a JDK bug that causes
mouseEventTarget to be lost in certain circumstances.
Used in internal Unix scripts gsk?cmd and gsk?ikm. A
holdover from early JDKs (pre 1.3)

Key name gskit.lib
Default value -
Possible values A library suffix to be appended to the jni library root name

Use

If present this suffix is used to allow specification of a
special library extension if the inbuilt extension checking
is not enough. Used internally in gsk7cmd_64 and
gsk7ikm_64 for Linux on 64 bit Intel and AMD platforms.

Key name IKEYMAN_JNI_GCC_VERSION
Default value -

Possible values A version suffix to be appended to the “_gcc” suffix to the
jni library root name.

1 Only available for version 7.0.3.20 and onwards

IBM Global Security Kit: Secure Sockets Layer Introduction and iKeyman User's Guide 93

Use

If present this version is appended to the suffix which is
appended to the jni library root. If not present then the
“_gcc” suffix is not appended either. Used internally in
Unix scripts gsk7cmd_gcc295, gsk7ikm_gcc295.

Key name keyman.lang
Default value Default locale for this JVM

Possible values A locale in format <ISO Language Code>_<ISO Country
Code>

Use If present this locale overrides the default locale for this
JVM

Key name keyman.verbose
Default value “false”
Possible values “true”, any other valid string

Use
If present this enables verbose output during startup –
doesn’t appear to do anything. Used internally in Unix
scripts gsk?cmd and gsk?ikm

Key name keyman.debug
Default value “false”
Possible values “true”, any other string

Use

If set to “true” then debug tracing is enabled. Trace will be
written to 3 files – ikmcdbg.log, ikmjdbg.log and
ikmgdbg.log. The file name ikmgdbg.log may be
replaced with the value of the
keyman.debugDumpFileName property defined below.

Key name keyman.debugDumpFileName
Default value “ikmgdbg.log”
Possible values Any valid platform path/filename
Use Logging messages are written to this file.

Key name keyman.jnitracing
Default value “off”
Possible values “on”, any other string

IBM Global Security Kit: Secure Sockets Layer Introduction and iKeyman User's Guide 94

Use

If set to “on” then jni tracing is enabled. Jni tracing is a
trace generated by the non-Java libraries which implement
the CMS, MS Certificate Store and CMS PKCS11
keystores.

Key name ikeycmd.properties
Default value -
Possible values Any valid platform path/filename
Use Loads the contents of the file as system properties

Key name initPropertyFile
Default value <GSK Install path>”/gsk7/classes/ikminit.properties”

Possible values Any valid filename. “.properties” will be appended if not
already present.

Use Loads initial properties from this file

Key name userPropertyFile
Default value “ikmuser.properties”

Possible values Any valid filename. “.properties” will be appended if not
already present.

Use
Loads user properties from this file. This file is treated not
quite the same as the "real" ikmuser.properties file. More
like the ikeycmd.properties file.

Key name guiPropertyFile
Default value -
Possible values Any valid platform path/filename

Use
Loads the contents of the file as a gui messages resource
bundle. Overrides the locale specific resource bundle
ikmgui. Only works with gsk?ikm not gsk?cmd.

Key name errPropertyFile
Default value -
Possible values Any valid platform path/filename

Use
Loads the contents of the file as an error messages
resource bundle. Overrides the locale specific resource
bundle ikmerr. Only works with gsk?ikm not gsk?cmd.

IBM Global Security Kit: Secure Sockets Layer Introduction and iKeyman User's Guide 95

Key name keyman.useDosPrompt
Default value “false”
Possible values “true”, any other string is false

Use
When true the iKeyman startup window is not displayed.
iKeyman starts up directly into the “IBM Key
Management” window.

Key name keyman.timer
Default value “off”
Possible values “on”, any other string is off

Use If set on displays the startup elapsed time in the debug log
(ikmgdbg.log)if this is enabled.

Key name keyman.javaOnly
Default value “false”
Possible values “true”, any other string

Use When true iKeyman will not support the CMS, MS
Certificate Store or CMS PKCS11 keystore types

Key name keyman.keydatabase
Default value -

Possible values Any valid platform path/filename. Must be the name of a
keystore with a valid type extension.

Use When present iKeyman will start with the provided
keystore ready to open. A password will still be required.

IBM Global Security Kit: Secure Sockets Layer Introduction and iKeyman User's Guide 96

Notices
This information was developed for products and services offered in the U.S.A. IBM
may not offer the products, services, or features discussed in this document in other
countries. Consult your local IBM representative for information on the products
and services currently available in your area. Any reference to an IBM product,
program, or service is not intended to state or imply that only that IBM product,
program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used
instead. However, it is the user's responsibility to evaluate and verify the operation
of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement
may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this publication
at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM Global Security Kit: Secure Sockets Layer Introduction and iKeyman User's Guide 97

IBM may use or distribute any of the information you supply in any way it believes
appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs
and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact:

IBM Corporation
2Z4A/101
11400 Burnet Road
Austin, TX 78758
U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled environment.
Therefore, the results obtained in other operating environments may vary
significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those
products, their published announcements or other publicly available sources. IBM
has not tested those products and cannot confirm the accuracy of performance,
compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those
products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

This information is for planning purposes only. The information herein is subject to
change before the products described become available.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

If you are viewing this information softcopy, the photographs and color illustrations
may not appear.

IBM Global Security Kit: Secure Sockets Layer Introduction and iKeyman User's Guide 98

Trademarks

The following terms are trademarks or registered trademarks of International
Business Machines Corporation in the United States, other countries, or both:

AIX
DB2
IBM
IBM(logo)
OS/390
SecureWay
Tivoli
Tivoli (logo)
Universal Database
WebSphere
z/OS
zSeries

Microsoft and Windows are trademarks of Microsoft Corporation in the United
States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other company, product, and service names may be trademarks or service marks of
others.

	 Contents
	Preface
	How this book is organized
	Contacting software support
	Conventions used in this book
	Operating system differences
	Typeface conventions

	
	Secure sockets layer overview
	Digital certificates
	Format of digital certificates
	Security considerations for digital certificates
	Certificate authorities and trust hierarchies
	Uses for digital certificates in Internet applications
	Digital certificates and certificate requests

	How SSL works
	The SSL handshake
	Digital certificates and trust chains with SSL
	SSL with global server certificates

	Managing digital certificates with iKeyman
	Starting iKeyman
	Creating a key database
	Creating a self-signed digital certificate for testing
	Adding a CA root digital certificate
	Deleting a CA root digital certificate
	Copying certificates from one key database to another
	 Scenario 1:
	Scenario 2:
	Scenario 4:

	Requesting a digital certificate
	Receiving a digital certificate
	Deleting a digital certificate
	Setting a new default key (CMS only)
	Changing a database password
	Using iKeyman to manage smart cards
	Managing digital certificates on a smart card
	Requesting a digital certificate for a smart card
	Adding a digital certificate to a smart card
	Opening Cryptographic Tokens using IBM JSSE
	Opening Cryptographic Tokens using MS CryptoAPI

	Storing the encrypted database password in a stash file
	Enabling FIPS mode
	Example iKeyman usage scenarios
	Scenario 1:
	Scenario 2
	 Scenario 3

	Using the IKEYCMD Command Line Interface
	Environment set up for IKEYCMD command line interface
	IKEYCMD command line syntax
	 Error code returns
	User interface task reference
	Supporting no password
	Creating a new key database
	 Setting the database password
	Changing the database password
	Display the expiry of a database password

	Creating a new key pair and certificate request
	Creating a self-signed certificate
	Exporting keys
	Importing keys
	Listing CAs
	Opening a key database
	Receiving a CA-signed certificate
	Showing the default key in a key database
	Listing Expired Certificates
	Showing the entire certificate
	Storing a CA certificate
	Storing the encrypted database password in a stash file
	Managing a digital certificate on a smart card
	Managing the Microsoft Certificate Store
	Managing the Java Key Store

	IKEYCMD command line parameter overview
	IKEYCMD command line options overview
	Command line invocation for CMS key database only
	Cryptographic command line invocation (CMS implementation)
	Cryptographic command line invocation (IBM JSSE implementation)
	PKCS11 cryptographic command line invocation (Microsoft CryptoAPI implementation)
	Microsoft Certificate Store command line invocation
	Command line invocation for all types of key store (CMS, JKS, JCEKS, PKCS12)
	User properties file

	GSKit iKeyman support for accessibility
	GSKit iKeyman properties
	Appendices.
	Error Codes
	Ikeyman property keys
	Table heading key
	Program properties
	
	System properties

	Notices
	Trademarks

