
WebSphere® Application Server for z/OS, Version 6.1

Troubleshooting and support

GA22-7964-04

���

Note

Before using this information, be sure to read the general information under “Notices” on page 457.

Compilation date: May 11, 2006

© Copyright International Business Machines Corporation 2006. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

How to send your comments . ix

Chapter 1. Overview and new features for troubleshooting 1

What is new for troubleshooters . 2

Troubleshooting by component . 7

A client program does not work . 7

Client exceptions - debugging tips . 7

Java Message Service (JMS) support problems . 8

Chapter 2. How do I troubleshoot? . 9

Chapter 3. Debugging applications . 11

Attaching WebSphere Studio Application Developer to a remote debug session 12

Unit testing with DB2 . 12

Chapter 4. Add logging and tracing to your application 13

Log and trace with Java logging . 13

Loggers . 14

Log handlers . 15

Log levels . 16

Log filters . 17

Log formatters . 17

Logging properties for an application . 17

Sample security policy for logging . 18

Using loggers in an application . 19

Configuring applications to use Jakarta Commons Logging 30

Jakarta Commons Logging . 31

Configurations for the WebSphere Application Server logger 34

Programming with the JRas framework . 36

JRas logging toolkit . 37

JRas Extensions . 38

JRas messages and trace event types . 46

Instrumenting an application with JRas extensions 49

Logging messages and trace data for Java server applications 55

Message location best practices . 55

System performance when logging messages and trace data 56

Issuing application messages in the MVS master console 56

Configuring logging properties using the administrative console 56

Log level settings . 57

HTTP error and NCSA access log settings . 59

The Common Base Event in WebSphere Application Server 60

Types of problem determination events . 61

The structure of the Common Base Event . 62

Sample Common Base Event instance . 71

Sample Common Base Event template . 72

Component identification for problem determination 72

Logging Common Base Events in WebSphere Application Server 73

Chapter 5. Diagnosing problems (using diagnosis tools) 85

Troubleshooting class loaders . 85

Class loading exceptions . 88

Class loader viewer service settings . 92

Enterprise application topology . 93

© Copyright IBM Corp. 2006 iii

Class loader viewer settings . 93

Search settings . 95

Problem determination skills . 96

Choosing diagnosis tools and controls . 96

Updating the CFRM policy . 98

Using RMF . 99

Collecting job-related information with the System Management Facility (SMF) 100

Troubleshooting using WebSphere variables . 126

Best practices for maintaining the run-time environment 127

Best practices for using system controls . 127

Performance diagnosis information . 128

Diagnosing problems with message logs . 128

Viewing JVM logs . 130

JVM log interpretation . 130

Process logs . 130

Setting up the error log . 131

Viewing the service log . 131

Message reference . 134

Displaying WebSphere Application Server work . 134

Choosing diagnostic information sources . 138

CEEDUMPs in the job log . 139

SVC dumps . 139

Formatting CTRACE data with an IPCS dialog . 140

Viewing error log contents through the Log Browse Utility (BBORBLOG) 143

z/OS display command . 146

Hexadecimal conversion of Java error codes . 147

SYSPRINT output, STDOUT and STDERR streams in an HFS File 147

Managing operator message routing . 148

Error Dump and Cleanup interface . 149

Configuring the hang detection policy . 150

Hung threads in J2EE applications . 151

Hang detection policy of a running server . 152

Working with trace . 153

Enabling trace on client and standalone applications 153

Tracing and logging configuration . 154

Enabling trace at server startup . 156

Enabling trace on a running server . 157

Diagnostic trace service settings . 157

Select a server to configure logging and tracing . 159

Log and trace settings . 159

Setting up component trace (CTRACE) . 159

Automation and recovery scenarios and guidelines . 163

APPC automation and recovery scenarios . 163

WLM automation and recovery scenarios . 164

RACF automation and recovery scenarios . 164

RRS automation and recovery scenarios . 165

UNIX System Services automation and recovery scenarios 166

TCP/IP automation and recovery scenarios . 166

DB2 automation and recovery scenarios . 167

CICS automation and recovery scenarios . 167

IMS automation and recovery scenarios . 168

LDAP automation and recovery scenarios . 169

WebSphere Application Server for z/OS (Daemon) automation and recovery scenarios 170

Web server (servlet) automation and recovery scenarios 170

Working with troubleshooting tools . 171

Configuring first failure data capture log file purges 171

iv Troubleshooting and support

Types of configuration variables . 172

Output destinations and characteristics . 172

Trace control settings . 173

Dump control settings . 174

Timeout values - controlling behavior . 175

Getting IBM Support Assistant . 181

Diagnosing out-of-memory errors and Java heap memory leaks 181

IBM service call preparation . 183

IPCS VERBEXIT subcommand to display diagnostic data 183

Trace controls for IBM service . 185

Dump controls for IBM service . 188

Troubleshooting help from IBM . 188

Diagnosing and fixing problems: Resources for learning 189

Debugging Service details . 190

Enable service at server startup . 190

JVM debug port . 190

JVM debug arguments . 190

Debug class filters . 190

Configuration problem settings . 190

Configuration document validation . 191

Enable Cross validation . 191

Configuration Problems . 191

Scope . 191

Message . 191

Explanation . 191

User action . 191

Target Object . 191

Severity . 191

Local URI . 192

Full URI . 192

Validator classname . 192

Runtime events . 192

Message details . 192

Showlog commands for Common Base Events . 193

Working with Diagnostic Providers . 193

Diagnostic Providers . 194

Creating a Diagnostic Provider . 199

Associating a Diagnostic Provider ID with a logger 208

Using Diagnostic Providers from wsadmin scripts 208

Viewing the run time configuration of a component using Diagnostic Providers 210

Viewing the run time state data or configuring the state data collection specifications for a

Diagnostic Provider . 211

Running a self diagnostic on a Diagnostic Provider 215

Chapter 6. Web applications . 219

Web module or application server stops processing requests 219

Errors starting an application . 219

A Web resource does not display . 223

JavaServer Pages troubleshooting tips . 224

Web container troubleshooting tips . 227

Troubleshooting tips for Web application deployment 228

HTTP session manager troubleshooting tips . 229

Problems creating or using HTTP sessions . 230

Chapter 7. SIP applications . 235

Tracing a SIP container . 235

Contents v

Chapter 8. EJB applications . 237

Unit testing with DB2 . 237

Access intent exceptions . 237

Frequently asked questions: Access intent . 238

Troubleshooting tips for EJBDEPLOY relationships . 239

Enterprise bean and EJB container troubleshooting tips 240

Error in client log: Missing jar file . 240

Cannot access an enterprise bean from a servlet, a JSP file, a stand-alone program, or another client 240

Important file for message-driven beans . 243

Chapter 9. Client applications . 245

A client program does not work . 245

Client exceptions - debugging tips . 245

Application client troubleshooting tips . 246

Chapter 10. Web services . 251

SYSPRINT output, STDOUT and STDERR streams in an HFS File 251

Troubleshooting Web services . 251

Troubleshooting Web services command-line tools 251

Troubleshooting Web services compiled bindings 256

Troubleshooting the run time for a Web services client 256

Troubleshooting serialization and deserialization in Web services 259

Troubleshooting authentication and authorization for Web services security based on the Web

Services for Java 2 Platform, Enterprise Edition (J2EE) specification 260

Tracing SOAP messages with tcpmon . 261

Web services security troubleshooting tips . 262

Tips for troubleshooting the Web Services Invocation Framework 267

Trace and logging for WSIF . 271

WSIF (Web Services Invocation Framework) messages 271

WSIF - Known restrictions . 272

UDDI registry troubleshooting . 274

Turning on UDDI registry trace . 274

Common causes of errors in the UDDI registry . 274

Reporting problems with the UDDI registry . 275

Chapter 11. Resolving in-doubt transactions . 277

Chapter 12. Learning about file stores . 279

File stores . 279

File store configuration attributes . 279

File store high availability considerations . 280

Exclusive access to file store . 281

Chapter 13. Messaging engine failover between v6 and v6.1 283

Chapter 14. Tuning and problem solving for messaging engine data stores 285

Diagnosing problems with data store exclusive access locks 285

Fixing storage allocation error caused by DB2 Universal JDBC Driver on z/OS 286

Diagnosing problems with your data store configuration 287

Avoiding failover problems when you use DB2 v8.2 with HADR as your data store 287

One-phase commit optimization tuning . 287

Chapter 15. Listing messages on a message point 289

Chapter 16. Deleting messages on a message point 291

vi Troubleshooting and support

Chapter 17. Resolving locked messages on a message point 293

Chapter 18. Troubleshooting service integration technologies 295

Tips for troubleshooting service integration messaging 296

Tips for troubleshooting bus members . 301

Tips for troubleshooting the default messaging provider 302

Tips for troubleshooting mediations . 303

Tips for troubleshooting service integration bus security 304

Tips for troubleshooting the SIBWS . 306

Tips for troubleshooting the Web services gateway . 311

Tips for troubleshooting WS-Notification . 317

Tips for troubleshooting WebSphere MQ link . 323

Troubleshooting service integration message problems 324

Understanding why best effort messages are being discarded 325

Investigating why a queue is full . 325

Investigating why a topic space is full . 326

Investigating why point-to-point messages are not arriving 328

Investigating why point-to-point messages are not being consumed 333

Investigating why publish/subscribe messages are not arriving at a subscription 340

Chapter 19. Data access resources . 347

Unit testing with DB2 . 347

Provider coexistence considerations . 347

Connection and connection pool statistics . 347

Example: Connection factory lookup . 349

Vendor-specific data sources minimum required settings 351

Example: Using the Java Management Extensions API to create a JDBC driver and data source for

container-managed persistence . 372

Example: Using the Java Management Extensions API to create a JDBC driver and data source for

bean-managed persistence, session beans, or servlets 376

Chapter 20. Messaging resources . 381

Java Message Service (JMS) support problems . 381

Important file for message-driven beans . 381

Troubleshooting WebSphere messaging . 381

Troubleshooting WebSphere MQ messaging . 382

Troubleshooting message-driven beans . 388

Chapter 21. Mail, URLs, and other J2EE resources 391

Enabling debugger for a mail session . 391

Chapter 22. Security . 393

Troubleshooting security configurations . 393

Security components troubleshooting tips . 393

Errors when trying to configure or enable security 404

Errors after enabling security . 405

Access problems after enabling security . 410

Errors after configuring or enabling Secure Sockets Layer 413

Single sign-on configuration troubleshooting tips . 416

Authorization provider troubleshooting tips . 418

SPNEGO trust association interceptor (TAI) troubleshooting tips 423

Chapter 23. Naming and directory . 429

Troubleshooting name space problems . 429

Naming service troubleshooting tips . 429

Contents vii

Cannot look up an object hosted by WebSphere Application Server from a servlet, JSP file, or

other client . 430

dumpNameSpace tool . 433

Example: Invoking the name space dump tool . 435

Name space dump utility for java:, local: and server name spaces 436

Example: Invoking the name space dump utility for java: and local: name spaces 438

Name space dump sample output . 438

Chapter 24. Object Request Broker . 441

Object request broker component troubleshooting tips 441

Chapter 25. Transactions . 443

Troubleshooting transactions . 443

Tips for troubleshooting transactions . 443

Transaction service exceptions . 444

Exceptions thrown for transactions involving both single- and two-phase commit resources 445

Chapter 26. Learn about WebSphere programming extensions 447

ActivitySessions . 447

Troubleshooting ActivitySessions . 447

Application profiling . 447

Application profiling exceptions . 447

Dynamic cache . 448

Troubleshooting the dynamic cache service . 448

Internationalization . 451

Internationalization service errors . 451

Appendix. Directory conventions . 455

Notices . 457

Trademarks and service marks . 459

viii Troubleshooting and support

How to send your comments

Your feedback is important in helping to provide the most accurate and highest quality information.

v To send comments on articles in the WebSphere Application Server Information Center

1. Display the article in your Web browser and scroll to the end of the article.

2. Click on the Feedback link at the bottom of the article, and a separate window containing an e-mail

form appears.

3. Fill out the e-mail form as instructed, and click on Submit feedback .

v To send comments on PDF books, you can e-mail your comments to: wasdoc@us.ibm.com or fax

them to 919-254-0206.

Be sure to include the document name and number, the WebSphere Application Server version you are

using, and, if applicable, the specific page, table, or figure number on which you are commenting.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information

in any way it believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 2006 ix

x Troubleshooting and support

Chapter 1. Overview and new features for troubleshooting

Use the links provided in this topic to learn about troubleshooting and problem determination capabilities.

“What is new for troubleshooters” on page 2

 This topic provides an overview of new and changed features in troubleshooting tools and support.

Chapter 5, “Diagnosing problems (using diagnosis tools),” on page 85

 This topic provides a place to start your search for troubleshooting information.

Troubleshooting overview

Troubleshooting is the process of finding and eliminating the cause of a problem. Whenever you have a

problem with your IBM software, the troubleshooting process begins as soon as you ask yourself what

happened? A basic troubleshooting strategy at a high level involves:

1. Recording the symptoms.

2. Recreating the problem.

3. Eliminating possible causes.

4. Using diagnostic tools.

Recording the symptoms of the problem

Depending on the type of problem you have, whether it be with your application, your server, or your tools,

you might receive a message that indicates something is wrong. Always record the error message that you

see. As simple as this sounds, error messages sometimes contain codes that might make more sense as

you investigate your problem further. You might also receive multiple error messages that look similar but

have subtle differences. By recording the details of each one, you can learn more about where your

problem exists.

Recreating the problem

Think back to what steps you were doing that led you to this problem. Try those steps again to see if you

can easily recreate this problem. If you have a consistently repeatable test case, you will have an easier

time determining what solutions are necessary.

v How did you first notice the problem?

v Did you do anything different that made you notice the problem?

v Is the process that is causing the problem a new procedure, or has it worked successfully before?

v If this worked before what has changed? The change can refer to any type of change made to the

system, ranging from adding new hardware or software, to configuration changes to existing software.

v What was the first symptom of the problem you witnessed? Were there other symptoms occurring

around that point of time?

v Does the same problem occur elsewhere? Is only one machine experiencing the problem or are multiple

machines experiencing the same problem?

v What messages are being generated that could indicate what the problem is?

Eliminating possible causes

Narrow the scope of your problem by eliminating components that are not causing the problem. By using a

process of elimination, you can simplify your problem and avoid wasting time in areas that are not culprits.

Consult the information in this product and other available resources to help you with your elimination

process.

© Copyright IBM Corp. 2006 1

v Has anyone else experienced this problem? Read the information about searching knowledge bases in

the information center.

v Is there a fix you can download? Refer to the information center for information about obtaining fixes.

v You can use the WebSphere Application Server Troubleshooting Guide to help you work through the

cause of a problem.

Using diagnostic tools

As a more advanced task, there are various tools that you can use to analyze and diagnose problems with

your system. To learn how to use these tools see Chapter 5, “Diagnosing problems (using diagnosis

tools),” on page 85.

What is new for troubleshooters

This version provides many new features for troubleshooting and servicing the product, with a focus on the

ability to automatically detect and recover from problems.

 New in Version 6.1! indicates new features or changes implemented at the Version 6.1 level. Unmarked items are

Version 6.0 improvements that apply also to Version 6.1, which should interest anyone migrating to Version 6.1 from

Version 5.x.

For more detailed information about features that are being replaced or removed in this or future releases,

see the Deprecated and removed features section in the Migrating, coexisting, and interoperating PDF

book.

Tools and data capture

 Improved ability to manage recovery from failure To prevent the assignment of new work to an application

server that is going through its transaction recovery

process, restart the application server in recovery mode.

For more details, see the topic, Restarting an application

server in recovery mode located in the Administering

applications and their environment PDF book.

Easier and faster problem determination with diagnostic

providers

New in Version 6.1! Diagnostic Providers expose

information about running components, enabling

administrators to more easily debug problems related to

the components. You can detect problems faster and

access more information for determining and solving

problems.

v Some logged messages contain diagnostic provider IDs

(DPIDs), enabling administrators or administrative

programs to target requests for information to the

components that logged a message.

v Using the administration console, administrators can

work with diagnostic providers to dump configuration

data, dump state information, or execute any self

diagnostic tests that the corresponding component

offers.

v Diagnostic provider management APIs are provided to

enable programmatic access to diagnostic provider

function.

See “Working with Diagnostic Providers” on page 193.

2 Troubleshooting and support

IBM Support Assistant The IBM Support Assistant (ISA) provides a natural,

look-here-first facility for issue resolution. It provides a

single point of access to problem determination tools and

externally available Support resources for the products

you choose. It guides you through exploring and resolving

your immediate issue. You can:

v Search multiple IBM and non-IBM locations for the most

pertinent support information

v Find and run serviceability tools easily.

v Obtain quick access to appropriate IBM resources such

as product pages, support pages and news groups

v Open a service request electronically if you end up

needing one.

See “Getting IBM Support Assistant” on page 181.

New troubleshooting technology on the Support site v MustGather: Read first for all WebSphere Application

Server products

v Mustgather: Read first for WebSphere Application

Server for z/OS

v Troubleshooting Guide for WebSphere Application

Server

More diagnostic data is captured when failures occur The first failure data capture (FFDC) feature preserves the

information that is generated from a processing failure and

returns control to the affected engines. The captured data

is saved in a log file for analyzing the problem. FFDC is

intended primarily for use by IBM Service.

See “Configuring first failure data capture log file purges”

on page 171.

Class Loader Viewer Class loaders find and load class files. For a deployed

application to run properly, the class loaders that affect the

application and its modules must be configured so that the

application can find the files and resources that it needs.

Diagnosing problems with class loaders can be

complicated and time-consuming. To help you diagnose

and fix problems more quickly, use the administrative

console Class Loader Viewer to examine class loaders

and the classes loaded by each class loader.

See “Troubleshooting class loaders” on page 85.

The troubleshooting documentation includes extensive support information, including the ability to search

live, Web-based support resources by using the customized query fields in the ″Web search″ page.

Chapter 1. Overview and new features: Troubleshooting 3

http://www.ibm.com/support/docview.wss?rs=180&context=SSEQTP&uid=swg21145599
http://www.ibm.com/support/docview.wss?rs=180&context=SSEQTP&uid=swg21145599
http://www.ibm.com/support/docview.wss?rs=404&context=SS7K4U&uid=swg21176043
http://www.ibm.com/support/docview.wss?rs=404&context=SS7K4U&uid=swg21176043
http://www.ibm.com/support/docview.wss?rs=180&context=SSEQTP&uid=swg27005324
http://www.ibm.com/support/docview.wss?rs=180&context=SSEQTP&uid=swg27005324

Messages

 Improved message text, new message IDs Messages for key product components used during

installation, migration, and initial configuration have been

improved. Additional components have messages now.

Message IDs will be changing in a future release. In the

meantime, you can configure the application server to use

the new message IDs to help prepare any tooling you may

have that is reliant on message IDs. The Troubleshooter

reference: Messages reference section provides a

mapping of Version 5.1.x to Version 6.0.x message IDs.

The article “Changing the message IDs used in log files”

on page 25 explains how to make your application server

use the new message IDs. In addition, the article

“Converting log files to use IBM unique Message IDs” on

page 26 explains a command to create a log file with new

message IDs based on a log file with the older message

IDs. This command is provided to ease migration to the

new message IDs,

New in Version 6.1! Further work was performed to

ensure messages and their component message IDs now

correspond to IBM software standards, enabling better

results when you use problem determination tools.

Message documentation is improved to ensure messages

are meaningful and explanatory.

Events

 Common Base Events describe system situations Common Base Events are data structures used to

describe situations that occur in the system. Common

Base Events are used for various purposes, including

representing things such as business events, configuration

events, error events, and so on. The WebSphere

Application Server now uses Common Base Events as the

internal representation of logged messages.

Common Base Events are logged via JSR47 and as such

can be received and operated on from JSR47 Handlers.

Handlers which are not programmed to the Common Base

Event specification will also be able to consume these

events as CommonBaseEventLogRecords. Handlers

which are programmed to the Common Base Event

specification can take advantage of fields within the

Common Base Events.

See “The Common Base Event in WebSphere Application

Server” on page 60.

Programming to Common Base Event infrastructure New in Version 6.1! Developers can make use of the

Common Base Event infrastructure for logging and to

ensure that the events generated are consistent with

events generated by the WebSphere runtime, whether or

not the developer has chosen to use templates (event

factory template or event templates).

See “The Common Base Event in WebSphere Application

Server” on page 60.

4 Troubleshooting and support

Memory leak detection

 More support for troubleshooting memory leak problems

To help you analyze memory leak problems when memory

leak detection occurs, some automated heap dump

generation support is available.

For details on automated heap dumps, see the chapter,

Enabling automated heap dump generation in the Tuning

performance PDF book.

WebSphere Application Server has implemented a

lightweight memory leak detection mechanism that runs

within the WebSphere Runtime Performance Advisor

framework. This mechanism is designed to provide early

detection of memory problems in test and production

environments. This framework is not designed to provide

analysis of the source of the problem, but rather to

provide notification and help generating the information

that is required to use analysis tools. The mechanism only

detects memory leaks in the Java heap and does not

detect native leaks.

For more information on detecting memory leaks, refer to

the chapter, Starting the lightweight memory leak detection

in the Tuning performance PDF book.

Memory leak detection enhancements Recreating memory leaks in a test environment is often

difficult. To alleviate the problems associated with

reproducing memory leaks in test environments,

WebSphere Application Server uses light weight memory

leak detection that is designed to run in production

systems with minimal performance overhead. This

functionality provides early notification of memory leaks,

allowing time to diagnose the problem or arrange

contingencies before it becomes critical.

New in Version 6.1! Memory leak detection has been

improved with new features that provide better support for

memory leak diagnosis and troubleshooting.

The Diagnostic Provider Interface provides users with the

ability to perform a self diagnostic test that checks for any

suspicious memory leaks. This self diagnostic allows

problem determination tools to check the status of a

memory leak without constantly monitoring WebSphere

Application Server for notifications. In addition, new

memory leak detection logic has been added to support

detection with unbounded heaps. This feature provides

more robust early notification for all platforms, even while

the Java heap is still expanding.

WebSphere Application Server for z/OS now includes

multi-servant support for memory leak detection.

For more information on detecting memory leaks, refer to

the chapter, Starting the lightweight memory leak detection

in the Tuning performance PDF book.

Chapter 1. Overview and new features: Troubleshooting 5

Logging

 JRAS is deprecated The JRAS API is deprecated. Users are directed to use

the JSR47 logging infrastructure instead.

For more detailed information about features that are

being replaced or removed in this or future releases, see

the Deprecated and removed features section in the

Migrating, coexisting, and interoperating PDF book.

Support for Jakarta Commons Logging is added Jakarta Commons Logging provides a simple logging

interface and thin wrappers for several logging systems.

WebSphere Application Server version 6.0.2 supports

Jakarta Commons Logging by providing a logger, a thin

wrapper for the WebSphere Application Server logging

facility. The logger can handle both Java Logging (JSR47)

and Common Base Event logging objects.

The WebSphere Application Server support for Jakarta

Commons Logging does not change interfaces defined by

Jakarta Commons Logging.

See “Configuring applications to use Jakarta Commons

Logging” on page 30.

Thread names can be included in logs Thread name has been added to the Advanced log format

and Log analyzer trace format. The Log analyzer trace

format preserves trace information in the same format as

produced by Showlog tool. The advanced log format is

available as an output format for the trace log and system

out log. The thread name is now included in this format to

enable easier correlation with other types of diagnostic

data. The log analyzer format is available as an output

format for the trace log. The thread name is now included

in this format to enable easier correlation with other types

of diagnostic data.

Java logging framework from JSR47 is exploited In J2SE 1.4, the Java logging framework was introduced

via JSR47. In WebSphere Application Server, messages

and trace logged to both JRAS and JSR47 logging APIs

are passed into the JSR47 logging infrastructure. This

allows JSR47 Handlers connected to the root JSR47

Logger to receive all WebSphere Application Server log

content. JSR47 and JRAS Logger levels can be controlled

via the admin console troubleshooting section.

WebSphere Application Server also builds its logs from

the JSR47 framework by connecting its Handlers to the

root Logger.

The JSR47 Logging infrastructure allows for flexible

pluggability of custom Handlers into the logging

infrastructure to enable custom logs. By appropriate

configuration, the Handlers can receive WebSphere

Application Server’s logged events, and events logged to

Loggers instantiated by your applications.

See “Log and trace with Java logging” on page 13.

6 Troubleshooting and support

http://jakarta.apache.org/commons/
http://jcp.org/en/jsr/detail?id=47
http://www-128.ibm.com/developerworks/webservices/library/ws-cbe/

Troubleshooting by component

Use this page to help resolve a problem within a particular component.

1. Use WebSphere Application Server tracing and logging to help you identify and resolve problems.

2. Determine which component needs troubleshooting.

3. Select the appropriate link from this page and follow the troubleshooting steps.

A client program does not work

What kind of problem are you seeing?

ActiveX client fails to display ASP files, or WebSphere Application Server

resources (JSP files, servlet, or HTML pages) or both

A possible cause of this problem is that both IIS for serving Active Server Pages (ASP) files and an HTTP

server that supports WebSphere Application Server (such as IBM HTTP Server) are deployed on the same

host. This deployment leads to misdirected HTTP traffic if both servers are listening on the same port

(such as the default port 80).

To resolve this problem, either:

v Open the IIS administrative panel, and edit the properties of the default Web server to change the port

number to a value other than 80

v Install IIS and the HTTP server on separate servers.

For current information available from IBM Support on known problems and their resolution, see the IBM

Support page.

IBM Support has documents that can save you time gathering information needed to resolve this problem.

Before opening a PMR, see the IBM Support page.

Client exceptions - debugging tips

This article provides debugging tips for working with client exception errors.

Start with the client and work your way backward to find the problem. When tracing exceptions back to the

original problem, be aware that the RMI/IIOP protocol requires that some exceptions undergo conversion

from one type to another as the exception passes through the runtime. Usually this transformation is

between CORBA::SystemExceptions and RMI RemoteExceptions. Pay special attention to the

CORBA::SystemException minor codes which indicate that a type transformation has occurred.

 Caused by: System exception (thrown by runtime) User exception (thrown by application code)

Look for: v CEEDUMPs in controller (region) or

servant (region). These dumps indicate

that the runtime had an error

v JRAS error log entries, which can narrow

the error down the exception to a specific

function within the runtime

v CEEDUMPs

v JRAS error log entries and traces

Chapter 1. Overview and new features: Troubleshooting 7

http://www-1.ibm.com/support/search.wss?tc=SSEQTP&tc1=SSC3NAD&rs=180
http://www-1.ibm.com/support/search.wss?tc=SSEQTP&tc1=SSC3NAD&rs=180
http://www-1.ibm.com/support/search.wss?tc=SSEQTP&tc1=SSC3NAD&rs=180&q=mustgather

Actions: v Look at the minor code that is listed.

v Look for fixes that address similar

symptoms or minor codes.

v System exceptions usually represent the

detection of an unexpected error, and

therefore (unless directed by the

documentation of the minor code) will often

require IBM assistance to identify the

problem.

v Look at your application for any sign of

error.

v Look for system failures, such as a

system exception in the controller (region).

If you find a system exception, follow the

steps to the left for diagnosing a system

exception.

Java Message Service (JMS) support problems

You might encounter JMS-related errors in the WebSphere Application Server for z/OS environment. To

debug these errors, use any of the various WebSphere console settings that controls the type of trace

data collected.

If you encounter a JMS-related error you can use these settings to manage trace data to debug the

problem:

com.ibm.ejs.*=all=enabled

Turns on all container tracing

com.ibm.ejs.j2c.*=all=enabled

Turns on all tracing for connector support in WebSphere Application Server for z/OS

Messaging=all=enabled

Collects trace data for the JMS and Message-driven bean (MDB) components of WebSphere

Application Server for z/OS

If your installation configures WebSphere MQ to provide Java Message Service (JMS) support, you might

need to use specific MQ tools for diagnosis:

v WebSphere variable JMSApi=all=enabled, which turns on all tracing for applications that use the JMS

application programming interface (API).

v MQSC commands, which allow you to display information and perform other operations.

v The CSQUTIL utility program, which helps you to perform backup, restoration, and reorganization tasks,

and to issue WebSphere MQ commands.

For more information about these diagnostic tools, refer to WebSphere MQ books, which are available

through the Web site:

http://www.ibm.com/software/ts/mqseries/library/

The most useful for diagnostic information are:

v WebSphere MQ for z/OS Problem Determination, GC34-6054

v WebSphere MQ for z/OS Messages and Codes, SC34-6056

v WebSphere MQ Script (MQSC) Command Reference, SC34-6055

v WebSphere MQ for z/OS System Administration Guide, SC34-6053

All of these publications can be accessed from the IBM Publications Center.

8 Troubleshooting and support

http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi

Chapter 2. How do I troubleshoot?

Use this page as a reference of the tutorials included in the WebSphere Application Server, Version 6.1

Information Center. In the information center, hold your cursor over the task icon to see a description of

the task. The task preview feature is unavailable for Mozilla Web browsers.

 Set traces and

logs

|

For more detailed

information on

enabling traces by

using scripting,

see the

Troubleshooting

with scripting

chapter in the

Administering

applications and

their environment

PDF book.

 Work with

message logs

Detailed steps Show me

 Detect hung

threads

Detailed steps

 Detect product

configuration file

problems

Detailed steps

 Troubleshoot

problems that

occur during a

task

Detailed steps

 Debug

WebSphere

applications

during

development

Detailed steps

 Add tracing and

logging to your

applications

Detailed steps

 Collect details

for IBM Support

Detailed steps

 Using JSR47 for

logging

Detailed steps

© Copyright IBM Corp. 2006 9

ftp://ftp.software.ibm.com/software/eod/WAS_6-0/PD/Simulations//WASv6_Logging_Tracing.viewlet/WASv6_Logging_Tracing_viewlet_swf.html

Using JSR47 for

logging: Writing

a handler

Detailed steps

 Using JSR47 for

logging: Writing

a formatter

Detailed steps

 Using JSR47 for

logging: Writing

a filter

Detailed steps

 Using JSR47 for

logging:

Configuring

access logs

Detailed steps

 Using Common

Base Events for

logging

Detailed steps

 Creating

Common Base

Events

Detailed steps

Legend for ″How do I?...″ links

 Detailed steps Show me Tell me Guide me Teach me

Refer to the detailed

steps and reference

Watch a brief

multimedia

demonstration

View the presentation

for an overview

Be led through the

console pages

Perform the tutorial

with sample code

Approximate time:

Varies

Approximate time: 3

to 5 minutes

Approximate time:

10 minutes+

Approximate time:

1/2 hour+

Approximate time: 1

hour+

10 Troubleshooting and support

Chapter 3. Debugging applications

To debug your application, you must use a development environment like Application Server Toolkit or

Rational Application Developer to create a Java project. You must then import the program that you want

to debug into the project. By following the steps below, you can import the WebSphere Application Server

examples into a Java project.

Two debugging styles are available:

v Step-by-step debugging mode prompts you whenever the server calls a method on a Web object. A

dialog lets you step into the method or skip it. In the dialog, you can turn off step-by-step mode when

you are finished using it.

v Breakpoints debugging mode lets you debug specific parts of programs. Add breakpoints to the part of

the code that you must debug and run the program until one of the breakpoints is encountered.

Breakpoints actually work with both styles of debugging. Step-by-step mode just lets you see which Web

objects are being called without having to set up breakpoints ahead of time.

You do not need to import an entire program into your project. However, if you do not import all of your

program into the project, some of the source might not compile. You can still debug the project. Most

features of the debugger work, including breakpoints, stepping, and viewing and modifying variables. You

must import any source that you want to set breakpoints in.

The inspect and display features in the source view do not work if the source has build errors. These

features let you select an expression in the source view and evaluate it.

 1. Create a Java Project by opening the New Project dialog.

 2. Select Java from the left side of the dialog and Java Project in the right side of the dialog.

 3. Click Next and specify a name for the project, for example, WASExamples.

 4. Click Finish to create the project.

 5. Select the new project, choose File > Import > File System, then Next to open the import file

system dialog.

 6. Browse the directory for files.

Go to the following directory: app_server_root/installedApps/node_name/DefaultApplication.ear/
DefaultWebApplication.war.

 7. Select DefaultWebApplication.war in the left side of the Import dialog and then click Finish. This

imports the JavaServer Pages files and Java source for the examples into your project.

 8. Add any JAR files needed to build to the Java Build Path.

Select Properties from the right-click menu. Choose the Java Build Path node and then select the

Libraries tab. Click Add External JARs to add the following JAR files:

v app_server_root/installedApps/node_name/DefaultApplication.ear/Increment.jar.

When you have added this JAR file, select it and use the Attach Source function to attach the

Increment.jar file because it contains both the source and class files.

v app_server_root/lib/j2ee.jar

v app_server_root/lib/pagelist.jar

v app_server_root/lib/webcontainer.jar

Click OK when you have added all of the JARs.

 9. You can set some breakpoints in the source at this time if you like, however, it is not necessary as

step-by-step mode will prompt you whenever the server calls a method on a Web object.

Step-by-step mode is explained in more detail below.

10. To start debugging, you need to start the WebSphere Application Server in debug mode and make

note of the JVM debug port. The default value of the JVM debug port is 7777.

© Copyright IBM Corp. 2006 11

11. When the server is started, switch to the debug perspective by selecting Window > Open

Perspective > Debug. You can also enable the debug launch in the Java Perspective by choosing

Window > Customize Perspective and selecting the Debug and Launch checkboxes in the Other

category.

12. Select the workbench toolbar Debug pushbutton and then select WebSphere Application Server

Debug from the list of launch configurations. Click the New pushbutton to create a new configuration.

13. Give your configuration a name and select the project to debug (your new WASExamples project).

Change the port number if you did not start the server on the default port (7777).

14. Click Debug to start debugging.

15. Load one of the examples in your browser. For example: http://your.server.name:9080/hitcount

Attaching WebSphere Studio Application Developer to a remote debug

session

The steps below describe how to attach WebSphere Studio Application Developer to a remote debug

session on WebSphere Application Server for z/OS.

Remote debugging can prove useful when the program you are debugging behaves differently on a z/OS

system than on your local system.

1. Enable the debug engine on WebSphere Application Server for z/OS using the adminstrative console.

See “Debugging Service details” on page 190.

2. Import the java source code you wish to debug into WebSphere Studio Application Developer and set

breakpoints. See the WebSphere Studio Application Developer information center at

http://publib.boulder.ibm.com/infocenter/wsphelp/ for instructions on setting breakpoints.

3. Open a WebSphere Studio Application Developer debug perspective and create a debug session

configuration.

4. Attach WebSphere Studio Application Developer to the WebSphere Application Server for z/OS debug

runtime. See ″Connecting to a remote VM with the remote Java application launch configuration″ in the

WebSphere Studio Application Developer information center at http://publib.boulder.ibm.com/
infocenter/wsphelp/

5. Execute the java code in WebSphere Application Server for z/OS to hit the breakpoints set in

WebSphere Studio Application Developer.

6. Use WebSphere Studio Application Developer debugger controls and features to debug the application.

Unit testing with DB2

These steps describe how to setup a unit test environment that would allow you to develop and unit test

code with DB2 z/OS to support Container Managed Persistence (CMP) development and access DB2 test

data that resides on z/OS.

When using DB2 z/OS to support Container Managed Persistence (CMP) development and access DB2

test data that resides on z/OS, you should establish a testing environment to develop and unit test the

code. Perform the steps below to setup a test environment:

1. Configure DB2 Distributed Data Facility (DDF) on z/OS to allow remote TCP/IP connections from your

WebSphere Studio Application Developer workstation. See the DB2 Information Center for information

on DDF.

2. Install the DB2 Client Configuration Assistant on the workstation where WebSphere Studio Application

Developer is installed. The DB2 Client Configuration Assistant is shipped with DB2.

3. Use the DB2 Client Configuration Assistant to define a DB2 alias.

4. Use the DB2 alias you defined to access the DB2 subsystem on z/OS using the DB2 Distributed Data

Facility (DDF).

12 Troubleshooting and support

http://publib.boulder.ibm.com/infocenter/db2help/index.jsp

Chapter 4. Add logging and tracing to your application

You can add logging and tracing to applications to help analyze performance and diagnose problems in

WebSphere Application Server.

Deprecation: The JRas framework that is described in this information center is deprecated. However, you

can achieve the same results using Java logging.

Designers and developers of applications that run with or under WebSphere Application Server, such as

servlets, JavaServer Pages (JSP) files , enterprise beans, client applications, and their supporting classes,

might find it useful to use Java logging for generating their application logging.

This approach has advantages over adding System.out.println statements to your code:

v Your messages are displayed in the WebSphere Application Server standard log files, using a standard

message format with additional data, such as a date and time stamp that are added automatically.

v You can more easily correlate problems and events in your own application to problems and events that

are associated with WebSphere Application Server components.

v You can take advantage of the WebSphere Application Server log file management features.

Application

code

Application

code

com.xyz.abc.def

(Logger)

com.xyz.abc.ghi

(Logger)

com.xyz.abc

(Logger)

root

(Logger)

User Handler1

(Handler)

Output

device

User Handler2

(Handler)

Output

device

WebSphere

Application

Server handlers

Output

device

com.ibm.ws

(Logger)

com.ibm.ws.xyz

(Logger)

Service

broker

Applications

WebSphere Application Server

Applications

WebSphere

Application

code

JRAS API

(deprecated)

Anonymous

(Logger)

Application Server

1. To use Java logging, configure properties using the administrative console.

2. Customize the properties to meet your logging needs. For example, enable or disable a particular log,

specify the number of logs to be kept, and specify a format for log output.

3. Restart the application server after making static configuration changes.

Log and trace with Java logging

Java logging is the logging toolkit that is provided by the java.util.logging package. Java logging provides a

standard logging API for your applications.

The application server redirects the system streams at the server startup. There is no way to allow the

application to output logging to the console because the system streams can not be obtained by the

application. If you would like to use console to monitor the application without using the console handler,

you can either monitor the SystemOut.log file, or monitor a file created by another file handler.

© Copyright IBM Corp. 2006 13

Note: The application server uses Java logging internally and therefore certain restrictions apply for using

system streams with this logging API by applications. During server startup, the standard output and

error streams are replaced with special streams that write to the logging infrastructure, in order to

include the output of the system streams in the log files. Because of this, applications can not

usejava.util.logging.ConsoleHandler, or any handler writing to System.err or System.out

streams, attached to the root logger. If the user does attache the handler to the root logger, an

infinite loop is created within the logging infrastructure, leading to stack overflow and server crash.

If the use of a handler that writes to system streams is necessary, attach it to a non-root logger so

that it does not publish log records to parent handlers. The data written to the system streams is

then formatted and written to the corresponding system stream log file. To monitor what is being

written system streams, the configured log files (SystemOut.log and SystemErr.log by default) can

be monitored.

Developing, deploying and maintaining applications are complex tasks. When an application encounters an

unexpected condition, it might not be able to complete a requested operation. You might want the

application to inform the administrator that the operation failed and tell the administrator why the operation

failed. This information enables the administrator to take the proper corrective action. Application

developers might need to gather detailed information that relates to the path of a running application to

determine the root cause of a failure that is due to a code bug. The facilities that are used for these

purposes are typically referred to as logging and tracing.

Message logging (messages) and diagnostic trace (trace) are conceptually similar, but do have important

differences. These differences are important for application developers to understand to use these tools

properly. The following operational definitions of messages and trace are provided.

Message

A message entry is an informational record that is intended for end users, systems administrators,

and support personnel to view. The text of the message must be clear, concise, and interpretable

by an end user. Messages are typically localized and displayed in the national language of the end

user. Although the destination and lifetime of messages might be configurable, enable some level

of message logging in normal system operation. Use message logging judiciously because of

performance considerations and the size of the message repository.

Trace A trace entry is an information record that is intended for service engineers or developers to use.

As such, a trace record might be considerably more complex, verbose, and detailed than a

message entry. Localization support is typically not used for trace entries. Trace entries can be

fairly inscrutable, understandable only by the appropriate developer or service personnel. It is

assumed that trace entries are not written during normal runtime operation, but can be enabled as

needed to gather diagnostic information.

v To use Java logging, see “Configuring logging properties using the administrative console” on page 56

v See the Java documentation for the java.util.logging class for a full description of the syntax and the

construction of logging methods.

Loggers

Loggers are used by applications and runtime components to capture message and trace events.

When situations occur that are significant either due to a change in state, for example when a server

completes startup or because a potential problem is detected, such as a timeout waiting for a resource, a

message is written to the logs. Trace events are logged in debugging scenarios, where a developer needs

a clear view of what is occurring in each component to understand what might be going wrong. Logged

events are often the only events available when a problem is first detected, and are used during both

problem recovery and problem resolution.

Loggers are organized hierarchically. Each logger can have zero or more child loggers.

14 Troubleshooting and support

Loggers can be associated with a resource bundle. If specified, the resource bundle is used by the logger

to localize messages that are logged to the logger. If the resource bundle is not specified, a logger uses

the same resource bundle as its parent.

You can configure loggers with a level. If specified, the level is compared by the logger to incoming

events. The events that are less severe than the level set for the logger are ignored by the logger. If the

level is not specified, a logger takes on the level that is used by its parent. The default level for loggers is

Level.INFO.

Loggers can have zero or more attached handlers. If supplied, all events that are logged to the logger are

passed to the attached handlers. Handlers write events to output destinations such as log files or network

sockets. When a logger finishes passing a logged event to all of the handlers that are attached to that

logger, the logger passes the event to the handlers that are attached to the parents of the logger. This

process stops if a parent logger is configured not to use its parent handlers. Handlers in WebSphere

Application Server are attached to the root logger. Set the useParentHandlers logger property to false to

prevent the logger from writing events to handlers that are higher in the hierarchy.

Loggers can have a filter. If supplied, the filter is invoked for each incoming event to tell the logger whether

or not to ignore it.

Applications interact directly with loggers to log events. To obtain or create a logger, a call is made to the

Logger.getLogger method with a name for the logger. Typically, the logger name is either the package

qualified class name or the name of the package that the logger is used by. The hierarchical logger

namespace is automatically created by using the dots in the logger name. For example, the

com.ibm.websphere.ras logger has a com.ibm.websphere parent logger, which has a com.ibm parent. The

parent at the top of the hierarchy is referred to as the root logger. This root logger is created during

initialization. The root logger is the parent of the com logger.

Loggers are structured in a hierarchy. Every logger, except the root logger, has one parent. Each logger

can also have 0 or more children. A logger inherits log handlers, resource bundle names, and event

filtering settings from its parent in the hierarchy. The logger hierarchy is managed by the LogManager

function.

Loggers create log records. A log record is the container object for the data of an event. This object is

used by filters, handlers, and formatters in the logging infrastructure.

The logger provides several sets of methods for generating log messages. Some log methods take only a

level and enough information to construct a message. Other, more complex logp (log precise) methods

support the caller in passing class name and method name attributes, in addition to the level and message

information. The logrb (log with resource bundle) methods add the capability of specifying a resource

bundle as well as the level, message information, class name, and method name. Using methods such as

severe, warning, fine, finer, and finest you can log a message at a particular level. For more information on

logging and how to use it in your applications read “Using loggers in an application” on page 19. For a

complete list of methods, see the java.util.logging documentation at http://java.sun.com/j2se/.

Log handlers

Log handlers write log record objects to output devices like log files, sockets, and notification mechanisms.

Loggers can have zero or more attached handlers. All objects that are logged to the logger are passed to

the attached handlers, if handlers are supplied.

You can configure handlers with a level. The handler compares the level that is specified in the logged

object to the level that is specified for the handler. If the level of the logged object is less severe than the

level set in the handler, the object is ignored by the handler. The default level for handlers is ALL.

Chapter 4. Add logging and tracing to your application 15

http://java.sun.com/j2se/1.4.2/docs/api/java/util/logging/Logger.html

Handlers can have a filter. If a filter is supplied, the filter is invoked for each incoming object to tell the

handler whether or not to ignore it.

Handlers can have a formatter. If a formatter is supplied, the formatter controls how the logged objects are

formatted. For example, the formatter can decide to first include the time stamp, followed by a string

representation of the level, followed by the message that is included in the logged object. The handler

writes this formatted representation to the output device. Read “java.util.logging custom formatters” on

page 28 for information on using a custom formatter in your applications.

Both loggers and handlers can have levels and filters, and a logged object must pass all of these elements

to be output. For example, you can set the logger level to FINE, but if the handler level is set at

WARNING, only WARNING level messages are displayed in the output for that handler. Conversely, if your

log handler is set to output all messages (level=All), but the logger level is set to WARNING, the logger

never sends messages lower than WARNING to the log handler.

Log levels

Levels control which events are processed by Java logging. WebSphere Application Server controls the

levels of all loggers in the system.

The level value is set from configuration data when the logger is created and can be changed at run time

from the administrative console. If a level is not set in the configuration data, a level is obtained by

proceeding up the hierarchy until a parent with a level value is found. You can also set a level for each

handler to indicate which events are published to an output device. When you change the level for a

logger in the administrative console, the change is propagated to the children of the logger.

Levels are cumulative; a logger can process logged objects at the level that is set for the logger, and at all

levels above the set level. Valid levels are:

 Level Content / Significance

Off No events are logged.

Fatal Task cannot continue and component cannot function.

Severe Task cannot continue, but component can still function

Warning Potential error or impending error

Audit Significant event affecting server state or resources

Info General information outlining overall task progress

Config Configuration change or status

Detail General information detailing subtask progress

Fine Trace information - General trace + method entry / exit /

return values

Finer Trace information - Detailed trace

Finest Trace information - A more detailed trace - Includes all

the detail that is needed to debug problems

All All events are logged. If you create custom levels, All

includes your custom levels, and can provide a more

detailed trace than Finest.

For instructions on how to set logging levels, see “Configuring logging properties using the administrative

console” on page 56

16 Troubleshooting and support

Note: Trace information, which includes events at the Fine, Finer and Finest levels, can be written only to

the trace log. Therefore, if you do not enable diagnostic trace, setting the log detail level to Fine,

Finer, or Finest does not effect the logged data.

Log filters

Log filters help control more detailed logging settings that are not handled by usual log level settings.

A filter provides an optional, secondary control over what is logged, beyond the control that is provided by

setting the level. Applications can apply a filter mechanism to control logging output through the logging

APIs. An example of filter usage is to suppress all the events with a particular message key.

A filter is attached to a logger or log handler using the appropriate setFilter method. Read “java.util.logging

custom filters” on page 28 for information on implementing custom filters. For a complete list of filter

methods, see the java.util.logging documentation at http://java.sun.com/j2se/

Log formatters

Log formatters format log messages so they can be used by various log handlers.

Handlers can be configured with a log formatter that knows how to format log records. The event, which is

represented by the log record object, is passed to the appropriate formatter by the handler. The formatter

returns formatted output to the handler, which writes the output to the output device.

The formatter is responsible for rendering the event for output. This formatter uses the resource bundle

that is specified in the event to look up the message in the appropriate language.

Formatters are attached to handlers using the setFormatter method.

You can find the java.util.logging documentation at http://java.sun.com/j2se/.

Logging properties for an application

Use the Logger.properties file to set logger attributes for specific loggers.

The properties file is loaded the first time that the Logger.getLogger(logger_name) method is called within

an application.

Important: The name of the Logger.properties file is case sensitive. Use a capital ″L″ in the file name.

When an application calls the Logger.getLogger method for the first time, all the available logger properties

files are loaded. Applications can provide Logger.properties files in:

v the META-INF directory of the Java archive (JAR) file for the application

v directories included in the class path of an application module

v directories included in the application class path

The properties file contains two categories of parameters, logger control and logger data:

v Logger control information

– Minimum localization level: The minimum LogRecord level for which localization is attempted

– Group: The logical group that this component belongs to

– Event factory: The Common Base Event template file to use with the event factory. The naming

convention for this template is the fully qualified component name, with a file extension of

.event.xml. For example, a template that applies to the com.ibm.compXYZ package is called

com.ibm.compXYZ.event.xml.

v Logger data information

Chapter 4. Add logging and tracing to your application 17

http://java.sun.com/j2se/1.4.2/docs/api/java/util/logging/Logger.html
http://java.sun.com/j2se/1.4.2/docs/api/java/util/logging/Logger.html

– Product name

– Organization name

– Component name

– Extensions and additional properties

Syntax of the Logger.properties file

Use the following syntax to set logger properties:

<logger base name>.<property>=value

where:

logger base name is the starting part of the logger name to which the property applies. All loggers with

names starting with this string have the property applied.

property is one of the following properties:

v organization

v product

v component

v minimum_localization_level

v group

v eventfactory

Sample Logger.properties file

In the following sample, the com.ibm.xyz.MyEventFactory event factory is used by any loggers in the

com.ibm.websphere.abc package or any sub packages that do not override this value in their configuration

file.

com.ibm.websphere.abc.eventfactory=com.ibm.xyz.MyEventFactory

Group Logger.properties file

In the following example, the group is MyTraceGroup and the components are com.ibm.stuff and

com.ibm.morestuff:

com.ibm.stuff.group=MyTraceGroup

com.ibm.morestuff.group=MyTraceGroup

Sample security policy for logging

Set up a security policy to allow your applications to modify logging and handler properties.

The sample security policy that follows grants access to the file system and runtime classes. Include this

security policy, with the entry permission java.util.logging.LoggingPermission "control", in the

META-INF directory of your application if you want your applications to programmatically alter controlled

properties of loggers and handlers. The META-INF file is located in the following locations for the different

module types:

 EJB projects ejbModule/META-INF/MANIFEST.MF

Application client projects appClientModule/META-INF/MANIFEST.MF

Dynamic Web projects WebContent/META-INF/MANIFEST.MF

Connector projects connectorModule/META-INF/MANIFEST.MF

18 Troubleshooting and support

Below is a sample security policy that grants permission to modify logging properties:

//

//

// WebSphere Application Server Security Policy

//

//

//

// Allow all access to the file system and runtime classes

//

grant codeBase "file:${application}" {

 permission java.util.logging.LoggingPermission "control";

};

Using loggers in an application

This topic describes how to use Java logging within an application.

To create an application using Java logging, perform the following steps:

1. Create the necessary handler, formatter, and filter classes if you need your own log files.

2. If localized messages are used by the application, create a resource bundle, as described in “Creating

log resource bundles and message files” on page 23.

3. In the application code, get a reference to a logger instance, as described in “Using a logger.”

4. Insert the appropriate message and trace logging statements in the application, as described in “Using

a logger.”

Using a logger

You can use Java logging to log messages and add tracing.

Use WsLevel.DETAIL level and above for messages, and lower levels for trace. The WebSphere

Application Server Extension API (the com.ibm.websphere.logging package) contains the WsLevel class.

For messages use:

WsLevel.FATAL

Level.SEVERE

Level.WARNING

WsLevel.AUDIT

Level.INFO

Level.CONFIG

WsLevel.DETAIL

For trace use:

Level.FINE

Level.FINER

Level.FINEST

1. Use the logp method instead of the log or the logrb method. The logp method accepts parameters for

class name and method name. The log and logrb methods will generally try to infer this information,

but the performance penalty is prohibitive.

2. Avoid using the logrb method. This method leads to inefficient caching of resource bundles and poor

performance.

3. Use the isLoggable method to avoid creating data for a logging call that does not get logged. For

example:

if (logger.isLoggable(Level.FINEST)) {

 String s = dumpComponentState(); // some expensive to compute method

 logger.logp(Level.FINEST, className, methodName, "componentX state

dump:\n{0}", s);

 }

Chapter 4. Add logging and tracing to your application 19

The following sample applies to localized messages:

// note - generally avoid use of FINE, FINER, FINEST levels for messages to be consistent with

// WebSphere Application Server

String componentName = "com.ibm.websphere.componentX";

String resourceBundleName = "com.ibm.websphere.componentX.Messages";

Logger logger = Logger.getLogger(componentName, resourceBundleName);

// "Convenience" methods - not generally recommended due to lack of class

/ method names

// - cannot specify message substitution parameters

// - cannot specify class and method names

if (logger.isLoggable(Level.SEVERE))

 logger.severe("MSG_KEY_01");

if (logger.isLoggable(Level.WARNING))

 logger.warning("MSG_KEY_01");

if (logger.isLoggable(Level.INFO))

 logger.info("MSG_KEY_01");

if (logger.isLoggable(Level.CONFIG))

 logger.config("MSG_KEY_01");

// log methods are not generally used due to lack of class and method

names

// - enable use of WebSphere Application Server-specific levels

// - enable use of message substitution parameters

// - cannot specify class and method names

if (logger.isLoggable(WsLevel.FATAL))

 logger.log(WsLevel.FATAL, "MSG_KEY_01", "parameter 1");

if (logger.isLoggable(Level.SEVERE))

 logger.log(Level.SEVERE, "MSG_KEY_01", "parameter 1");

if (logger.isLoggable(Level.WARNING))

 logger.log(Level.WARNING, "MSG_KEY_01", "parameter 1");

if (logger.isLoggable(WsLevel.AUDIT))

 logger.log(WsLevel.AUDIT, "MSG_KEY_01", "parameter 1");

if (logger.isLoggable(Level.INFO))

 logger.log(Level.INFO, "MSG_KEY_01", "parameter 1");

if (logger.isLoggable(Level.CONFIG))

 logger.log(Level.CONFIG, "MSG_KEY_01", "parameter 1");

if (logger.isLoggable(WsLevel.DETAIL))

 logger.log(WsLevel.DETAIL, "MSG_KEY_01", "parameter 1");

// logp methods are the way to log

// - enable use of WebSphere Application Server-specific levels

// - enable use of message substitution parameters

// - enable use of class and method names

if (logger.isLoggable(WsLevel.FATAL))

 logger.logp(WsLevel.FATAL, className, methodName, "MSG_KEY_01",

"parameter 1");

if (logger.isLoggable(Level.SEVERE))

 logger.logp(Level.SEVERE, className, methodName, "MSG_KEY_01",

"parameter 1");

if (logger.isLoggable(Level.WARNING))

 logger.logp(Level.WARNING, className, methodName, "MSG_KEY_01",

"parameter 1");

20 Troubleshooting and support

if (logger.isLoggable(WsLevel.AUDIT))

 logger.logp(WsLevel.AUDIT, className, methodName, "MSG_KEY_01",

"parameter 1");

if (logger.isLoggable(Level.INFO))

 logger.logp(Level.INFO, className, methodName, "MSG_KEY_01",

"parameter 1");

if (logger.isLoggable(Level.CONFIG))

 logger.logp(Level.CONFIG, className, methodName, "MSG_KEY_01",

"parameter 1");

if (logger.isLoggable(WsLevel.DETAIL))

 logger.logp(WsLevel.DETAIL, className, methodName, "MSG_KEY_01",

"parameter 1");

// logrb methods are not generally used due to diminished performance

of switching resource bundles dynamically

// - enable use of WebSphere Application Server-specific levels

// - enable use of message substitution parameters

// - enable use of class and method names

String resourceBundleNameSpecial =

"com.ibm.websphere.componentX.MessagesSpecial";

if (logger.isLoggable(WsLevel.FATAL))

 logger.logrb(WsLevel.FATAL, className, methodName, resourceBundleNameSpecial,

"MSG_KEY_01", "parameter 1");

if (logger.isLoggable(Level.SEVERE))

 logger.logrb(Level.SEVERE, className, methodName, resourceBundleNameSpecial,

"MSG_KEY_01", "parameter 1");

if (logger.isLoggable(Level.WARNING))

 logger.logrb(Level.WARNING, className, methodName, resourceBundleNameSpecial,

"MSG_KEY_01", "parameter 1");

if (logger.isLoggable(WsLevel.AUDIT))

 logger.logrb(WsLevel.AUDIT, className, methodName, resourceBundleNameSpecial,

"MSG_KEY_01", "parameter 1");

if (logger.isLoggable(Level.INFO))

 logger.logrb(Level.INFO, className, methodName, resourceBundleNameSpecial,

"MSG_KEY_01", "parameter 1");

if (logger.isLoggable(Level.CONFIG))

 logger.logrb(Level.CONFIG, className, methodName, resourceBundleNameSpecial,

"MSG_KEY_01", "parameter 1");

if (logger.isLoggable(WsLevel.DETAIL))

 logger.logrb(WsLevel.DETAIL, className, methodName, resourceBundleNameSpecial,

"MSG_KEY_01", "parameter 1");

For trace, or content that is not localized, the following sample applies:

// note - generally avoid use of FATAL, SEVERE, WARNING, AUDIT,

// INFO, CONFIG, DETAIL levels for trace

// to be consistent with WebSphere Application Server

String componentName = "com.ibm.websphere.componentX";

Logger logger = Logger.getLogger(componentName);

// Entering / Exiting methods are used for non trivial methods

if (logger.isLoggable(Level.FINER))

 logger.entering(className, methodName);

Chapter 4. Add logging and tracing to your application 21

if (logger.isLoggable(Level.FINER))

 logger.entering(className, methodName, "method param1");

if (logger.isLoggable(Level.FINER))

 logger.exiting(className, methodName);

if (logger.isLoggable(Level.FINER))

 logger.exiting(className, methodName, "method result");

// Throwing method is not generally used due to lack of message - use

logp with a throwable parameter instead

if (logger.isLoggable(Level.FINER))

 logger.throwing(className, methodName, throwable);

// Convenience methods are not generally used due to lack of class

/ method names

// - cannot specify message substitution parameters

// - cannot specify class and method names

if (logger.isLoggable(Level.FINE))

 logger.fine("This is my trace");

if (logger.isLoggable(Level.FINER))

 logger.finer("This is my trace");

if (logger.isLoggable(Level.FINEST))

 logger.finest("This is my trace");

// log methods are not generally used due to lack of class and

method names

// - enable use of WebSphere Application Server-specific levels

// - enable use of message substitution parameters

// - cannot specify class and method names

if (logger.isLoggable(Level.FINE))

 logger.log(Level.FINE, "This is my trace", "parameter 1");

if (logger.isLoggable(Level.FINER))

 logger.log(Level.FINER, "This is my trace", "parameter 1");

if (logger.isLoggable(Level.FINEST))

 logger.log(Level.FINEST, "This is my trace", "parameter 1");

// logp methods are the recommended way to log

// - enable use of WebSphere Application Server-specific levels

// - enable use of message substitution parameters

// - enable use of class and method names

if (logger.isLoggable(Level.FINE))

 logger.logp(Level.FINE, className, methodName, "This is my trace",

"parameter 1");

if (logger.isLoggable(Level.FINER))

 logger.logp(Level.FINER, className, methodName, "This is my trace",

"parameter 1");

if (logger.isLoggable(Level.FINEST))

 logger.logp(Level.FINEST, className, methodName, "This is my trace",

"parameter 1");

// logrb methods are not applicable for trace logging because no localization

is involved

22 Troubleshooting and support

Logger hierarchy

WebSphere Application Server handlers are attached to the Java root logger, which is at the top of the

logger hierarchy. As a result, any request from anywhere in the logger tree can be processed by

WebSphere Application Server handlers.

With WebSphere Application Server, you can configure the system to do the following:

v Forward all application logging requests to the WebSphere Application Server handlers. This behavior is

the default.

v Forward all application logging requests to your own custom handlers. Set the useParentHandlers

option to false on one of your custom loggers, and then attach your handlers to that logger.

v Forward all application logging requests to both WebSphere Application Server handlers, and your

custom handlers, but do not forward WebSphere Application Server logging requests to your custom

handlers. Set the useParentHandlers option to true on one of your non-root custom loggers, and then

attach your handlers to that logger.True is the default setting.

v Forward all WebSphere Application Server logging requests to both WebSphere Application Server

handlers, and your custom handlers. WebSphere Application Server logging requests are always

forwarded to WebSphere Application Server handlers. To forward WebSphere Application Server

requests to your custom handlers, attach your custom handlers to the Java root logger, so that they are

at the same level in the hierarchy as the WebSphere Application Server handlers.

The following example shows how these requirements can be met using the Java logging infrastructure.

Application

code

Application

code

com.xyz.abc.def

(Logger)

com.xyz.abc.ghi

(Logger)

com.xyz.abc

(Logger)

root

(Logger)

User Handler1

(Handler)

Output

device

User Handler2

(Handler)

Output

device

WebSphere

Application

Server handlers

Output

device

com.ibm.ws

(Logger)

com.ibm.ws.xyz

(Logger)

Service

broker

Applications

WebSphere Application Server

Applications

WebSphere

Application

code

JRAS API

(deprecated)

Anonymous

(Logger)

Application Server

Creating log resource bundles and message files

Every method that accepts messages localizes those messages. The mechanism for providing localized

messages is the resource bundle support provided by the IBM Developer Kit, Java Technology Edition. If

you are not familiar with resource bundles as implemented by the Developer Kit, you can get more

information from various texts, or by reading the API documentation for the java.util.ResourceBundle,

java.util.ListResourceBundle and java.util.PropertyResourceBundle classes, as well as the

java.text.MessageFormat class.

The PropertyResourceBundle class is the preferred mechanism to use.

You can forward messages that are written to the internal WebSphere Application Server logs to other

processes for display. For example, messages that are displayed on the administrative console, which can

Chapter 4. Add logging and tracing to your application 23

be running in a different location than the server process, can be localized using the late binding process.

Late binding means that WebSphere Application Server does not localize messages when they are logged,

but defers localization to the process that displays the message.

To properly localize the message, the displaying process must have access to the resource bundle where

the message text is stored. You must package the resource bundle separately from the application, and

install it in a location where the viewing process can access it.

By default, the WebSphere Application Server runtime localizes all the messages when they are logged.

This localization eliminates the need to pass a .jar file to the application, unless you need to localize in a

different location. However, you can use the early binding technique to localize messages as they log. An

application that uses early binding must localize the message before logging it. The application looks up

the localized text in the resource bundle and formats the message. Use the early binding technique to

package the application resource bundles with the application.

To create a resource bundle, perform the following steps.

1. Create a text properties file that lists message keys and the corresponding messages. The properties

file must have the following characteristics:

v Each property in the file is terminated with a line-termination character.

v If a line contains white space only, or if the first non-white space character of the line is the pound

sign symbol (#) or exclamation mark (!), the line is ignored. The # and ! characters can therefore be

used to put comments into the file.

v Each line in the file, unless it is a comment or consists of white space only, denotes a single

property. A backslash (\) is treated as the line-continuation character.

v The syntax for a property file consists of a key, a separator, and an element. Valid separators

include the equal sign (=), colon (:), and white space ().

v The key consists of all characters on the line from the first non-white space character to the first

separator. Separator characters can be included in the key by escaping them with a backslash (\),

but doing this process is not recommended, because escaping characters is error prone and

confusing. Instead, use a valid separator character that does not display in any keys in the

properties file.

v White space after the key and separator is ignored until the first non-white space character is

encountered. All characters remaining before the line-termination character define the element.

See the Java documentation for the java.util.Properties class for a full description of the syntax and the

construction of properties files.

2. Translate the file into localized versions of the file with language-specific file names. For example, a

file named DefaultMessages.properties can be translated into DefaultMessages_de.properties for

German and DefaultMessages_ja.properties for Japanese.

3. When the translated resource bundles are available, put the bundle in a directory that is part of the

application class path.

4. When a message logger is obtained from the log manager, configure it to use a particular resource

bundle. Messages logged with the Logger API use this resource bundle when message localization is

performed. At run time, the user locale setting determines the properties file from which to extract the

message that is specified by a message key, ensuring that the message is delivered in the correct

language.

5. If the message loggers msg method is called, a resource bundle name must be explicitly provided.

The application locates the resource bundle based on the file location relative to any directory in the class

path. For instance, if the DefaultMessages.properties property resource bundle is located in the

baseDir/subDir1/subDir2/resources directory and baseDir is in the class path, the name

subdir1.subdir2.resources.DefaultMessage is passed to the message logger to identify the resource

bundle.

Resource bundle logging:

24 Troubleshooting and support

You can create resource bundles in several ways. The best and easiest way is to create a properties file

that supports a properties resource bundle. This sample shows how to create such a properties file.

 Resource bundle sample

For this sample, four localizable messages are provided. The properties file is created and the key-value

pairs are inserted. All the normal properties file conventions and rules apply to this file. In addition, the

creator must be aware of other restrictions that are imposed on the values by the Java MessageFormat

class. For example, apostrophes must be escaped or they cause a problem. Avoid the use of non-portable

characters. WebSphere Application Server does not support the use of extended formatting conventions

that the MessageFormat class supports, such as {1, date} or {0,number, integer}.

Assume that the base directory for the application that uses this resource bundle is baseDir and that this

directory is in the class path. Assume that the properties file is stored in the subdirectory baseDir that is

not in the class path (for example, baseDir/subDir1/subDir2/resources). To allow the messages file to

resolve, the subDir1.subDir2.resources.DefaultMessage name is used to identify the property resource

bundle and is passed to the message logger.

For this sample, the properties file is named DefaultMessages.properties.

Contents of the DefaultMessages.properties file

MSG_KEY_00=A message with no substitution parameters.

MSG_KEY_01=A message with one substitution parameter: parm1={0}

MSG_KEY_02=A message with two substitution parameters: parm1={0}, parm2 = {1}

MSG_KEY_03=A message with three parameter: parm1={0}, parm2 = {1}, parm3={2}

When the DefaultMessages.properties file is created, the file can be sent to a translation center where

the localized versions are generated.

Changing the message IDs used in log files

You can change the default format for message IDs in server logs by setting the

com.ibm.websphere.logging.messageId.version system property.

In new releases of WebSphere Application Server logging files will be formatted according to a

standardized system, but the default runtime behavior is still configured to use the older format, In new

releases of WebSphere Application Server the message IDs written to log files will be changed to ensure

they do not conflict with other IBM products. The default runtime behavior is still configured to use the

older message IDs, deprecated in Version 6.1.

The following is a sample of an entry in a trace.log file using a default message ID. Note that the message

ID is PMON0001A

[1/26/05 10:17:12:529 EST] 0000000a PMIImpl A PMON0001A: PMI is enabled

A sample of the same entry using a new message ID follows. Note that the message ID is CWPMI0001A.

All new WebSphere Application Server message IDs begin with ’CW’.

[1/26/05 10:17:12:529 EST] 0000000a PMIImpl A CWPMI0001A: PMI is enabled.

If you are using a logging tool that uses the new standardized format, you might want to change the

default configuration settings to format the logging output appropriately. You will need to change the

configuration for each JVM in the cell if you want the output formatting to be the same across application

servers.

To configure logging files to be formatted according to the new system, use the following command in the

wsadmin utility:

set jvmEntry [$AdminConfig list JavaVirtualMachine]

$AdminConfig create Property $jvmEntry {{name com.ibm.websphere.logging.messageId.version} {value 6} {required false}}

Chapter 4. Add logging and tracing to your application 25

Note: You must restart the application server for the changes to take effect. Also, remember to do this for

each JVM in the cell for consistent output formatting.

Message IDs written to log files will now be compliant with the new standard.

Converting log files to use IBM unique Message IDs:

The convertlog command creates a new log file with either new or old message IDs substituted in place of

the message IDs in the source file.

 Prior to Version 6.x, components were assigned message IDs that are not necessarily unique across IBM

software products. In Version 6.0, a system property was provided to map the message IDs in output logs

to a set of IBM unique message IDs (all WebSphere Application Server message IDs now start with CW)

that do not conflict with other IBM software products. The default runtime behavior still uses the old

message IDs.

To facilitate the migration of logging tools that are reliant on the old message IDs, the convertlog command

is provided to convert the message IDs of log entries from the old standard to the new standard, or the

new standard back to the old. By default, the software is configured to use the old message IDs when

logging, but you can change the default output with the com.ibm.websphere.logging.messageId.version

system property. Read “Changing the message IDs used in log files” on page 25 for more information.

Use the convertlog command to convert the log output:

convertlog <source file name> <destination file name> [options]

 options: -newMessageFormat convert message IDs to CCCCCnnnnS format

 (cannot be used with -m5)

 -oldMessageFormat convert message IDs to CCCCnnnnS format

 (cannot be used with -m6)

After using the convertlog command you have a new file with message IDs in the chosen format.

convertlog command:

The convertlog command is used to convert the message IDs in log entries from the old standard to the

new standard, or the new standard back to the old.

 Previous versions of WebSphere Application Server used message IDs that are deprecated in WebSphere

Application Server Version 6.1. To facilitate the migration of tools based on the old message IDs, the

convertlog command is implemented to translate log files from one message ID standard to the other.

Use the convertlog command as follows:

convertlog <source file name> <destination file name> [options]

 options: -newMessageFormat convert message IDs to CCCCCnnnnS format

 (cannot be used with -m5)

 -oldMessageFormat convert message IDs to CCCCnnnnS format

 (cannot be used with -m6)

MessageConverter class:

The com.ibm.websphere.logging.MessageConverter class provides a method to convert a message ID at

the front of a String into either a new message ID or an old message ID. The direction of the conversion is

controlled with the conversionType argument.

 Use the MessageConverter class with log analysis tools to convert message IDs from earlier versions of

WebSphere Application Server into the corresponding message IDs that are used in later releases, or to

revert message IDs to an earlier format. See the article “Message reference” on page 134 for list of

message ID mappings.

26 Troubleshooting and support

Method

public static java.lang.String convert(java.lang.String in, short conversionType)

Parameters

Use the following parameters with the MessageConverter class:

 Parameter Name Description

in The message to convert. The method assumes the

message ID is the first part of the supplied message with

no leading white space.

conversionType CONVERSION_TYPE_WASV5_TO_WASV6

CONVERSION_TYPE_WASV6_TO_WASV5

java.util.logging custom log handlers

There may be occasions when you want to propagate log records to your own log handlers rather than

participate in integrated logging.

To use a stand-alone log handler, set the useParentHandlers flag to false in your application.

The mechanism for creating a customer handler is the Handler class support that is provided by the IBM

Developer Kit, Java Technology Edition. If you are not familiar with handlers, as implemented by the

Developer Kit, you can get more information from various texts, or by reading the API documentation for

the java.util.logging API.

The following sample shows a custom handler:

import java.io.FileOutputStream;

import java.io.PrintWriter;

import java.util.logging.Handler;

import java.util.logging.LogRecord;

/**

 * MyCustomHandler outputs contents to a specified file

 */

public class MyCustomHandler extends Handler {

 FileOutputStream fileOutputStream;

 PrintWriter printWriter;

 public MyCustomHandler(String filename) {

 super();

 // check input parameter

 if (filename == null)

 filename = "mylogfile.txt";

 try {

 // initialize the file

 fileOutputStream = new FileOutputStream(filename);

 printWriter = new PrintWriter(fileOutputStream);

 }

 catch (Exception e) {

 // implement exception handling...

 }

 }

 /* (non-API documentation)

 * @see java.util.logging.Handler#publish(java.util.logging.LogRecord)

 */

Chapter 4. Add logging and tracing to your application 27

public void publish(LogRecord record) {

 // ensure that this log record should be logged by this Handler

 if (!isLoggable(record))

 return;

 // Output the formatted data to the file

 printWriter.println(getFormatter().format(record));

 }

 /* (non-API documentation)

 * @see java.util.logging.Handler#flush()

 */

 public void flush() {

 printWriter.flush();

 }

 /* (non-API documentation)

 * @see java.util.logging.Handler#close()

 */

 public void close() throws SecurityException {

 printWriter.close();

 }

}

java.util.logging custom filters

A custom filter provides optional, secondary control over what is logged, beyond the control that is

provided by the level.

The mechanism for creating a customer filter is the Filter interface support that is provided by the IBM

Developer Kit, Java Technology Edition. If you are not familiar with filters, as implemented by the

Developer Kit, you can get more information from various texts, or by reading the API documentation the

for java.util.logging API.

The following example shows a custom filter:

import java.util.Vector;

import java.util.logging.Filter;

import java.util.logging.LogRecord;

/**

 * MyCustomFilter rejects any log records whose Level is not contained in the

 * configured list of Levels.

 */

public class MyCustomFilter implements Filter {

 private Vector acceptableLevels;

 public MyCustomFilter(Vector acceptableLevels) {

 super();

 this.acceptableLevels = acceptableLevels;

 }

 /* (non-API documentation)

 * @see java.util.logging.Filter#isLoggable(java.util.logging.LogRecord)

 */

 public boolean isLoggable(LogRecord record) {

 return (acceptableLevels.contains(record.getLevel()));

 }

}

java.util.logging custom formatters

A formatter formats events. Handlers are associated with one or more formatters.

28 Troubleshooting and support

The mechanism for creating a customer formatter is the Formatter class support that is provided by the

IBM Developer Kit, Java Technology Edition. If you are not familiar with formatters, as implemented by the

Developer Kit, you can get more information from various texts, or by reading the API documentation for

the java.util.logging API.

The following example shows a custom formatter:

import java.util.Date;

import java.util.logging.Formatter;

import java.util.logging.LogRecord;

/**

 * MyCustomFormatter formats the LogRecord as follows:

 * date level localized message with parameters

 */

public class MyCustomFormatter extends Formatter {

 public MyCustomFormatter() {

 super();

 }

 public String format(LogRecord record) {

 // Create a StringBuffer to contain the formatted record

 // start with the date.

 StringBuffer sb = new StringBuffer();

 // Get the date from the LogRecord and add it to the buffer

 Date date = new Date(record.getMillis());

 sb.append(date.toString());

 sb.append(" ");

 // Get the level name and add it to the buffer

 sb.append(record.getLevel().getName());

 sb.append(" ");

 // Get the formatted message (includes localization

 // and substitution of paramters) and add it to the buffer

 sb.append(formatMessage(record));

 return sb.toString();

 }

}

Custom handlers, filters, and formatters

In some cases you might want to have your own custom log files. Adding custom handlers, filters, and

formatters enables you to customize your logging environment beyond what can be achieved by the

configuration of the default WebSphere Application Server logging infrastructure.

The following example demonstrates how to add a new handler to process requests to the

com.myCompany subtree of loggers (see “Logger hierarchy” on page 23). The main method in this sample

gives an example of how to use the newly configured logger.

import java.util.Vector;

import java.util.logging.Filter;

import java.util.logging.Formatter;

import java.util.logging.Handler;

import java.util.logging.Level;

import java.util.logging.Logger;

public class MyCustomLogging {

 public MyCustomLogging() {

 super();

 }

Chapter 4. Add logging and tracing to your application 29

public static void initializeLogging() {

 // Get the logger that you want to attach a custom Handler to

 String defaultResourceBundleName = "com.myCompany.Messages";

 Logger logger = Logger.getLogger("com.myCompany", defaultResourceBundleName);

 // Set up a custom Handler (see MyCustomHandler example)

 Handler handler = new MyCustomHandler("MyOutputFile.log");

 // Set up a custom Filter (see MyCustomFilter example)

 Vector acceptableLevels = new Vector();

 acceptableLevels.add(Level.INFO);

 acceptableLevels.add(Level.SEVERE);

 Filter filter = new MyCustomFilter(acceptableLevels);

 // Set up a custom Formatter (see MyCustomFormatter example)

 Formatter formatter = new MyCustomFormatter();

 // Connect the filter and formatter to the handler

 handler.setFilter(filter);

 handler.setFormatter(formatter);

 // Connect the handler to the logger

 logger.addHandler(handler);

 // avoid sending events logged to com.myCompany showing up in WebSphere

 // Application Server logs

 logger.setUseParentHandlers(false);

 }

 public static void main(String[] args) {

 initializeLogging();

 Logger logger = Logger.getLogger("com.myCompany");

 logger.info("This is a test INFO message");

 logger.warning("This is a test WARNING message");

 logger.logp(Level.SEVERE, "MyCustomLogging", "main", "This is a test SEVERE message");

 }

}

When the above program is run, the output of the program is written to the MyOutputFile.log file. The

content of the log is in the expected log file, as controlled by the custom handler, and is formatted as

defined by the custom formatter. The warning message is filtered out, as specified by the configuration of

the custom filter. The output is as follows:

C:\>type MyOutputFile.log

Sat Sep 04 11:21:19 EDT 2004 INFO This is a test INFO message

Sat Sep 04 11:21:19 EDT 2004 SEVERE This is a test SEVERE message

Configuring applications to use Jakarta Commons Logging

Jakarta Commons Logging provides a simple logging interface and thin wrappers for several logging

systems. WebSphere Application Server supports Jakarta Commons Logging by providing a logger. The

support does not change interfaces defined by Jakarta Commons Logging.

The WebSphere Application Server logger is a thin wrapper for the WebSphere Application Server logging

facility. The logger name is com.ibm.websphere.commons.logging.WsJDK14Logger. The logger can handle

logging objects defined by either of the following:

v Java Logging found in Java Specification Request 47: Logging API Specification

v Common Base Event

30 Troubleshooting and support

http://jcp.org/en/jsr/detail?id=47
http://www-128.ibm.com/developerworks/webservices/library/ws-cbe/

A logging object is an object that holds logging entry information.

To better understand Jakarta Commons Logging, read Jakarta Commons and the specifications for Java

Logging and for Common Base Event. To better understand use of the WebSphere Application Server

logger, read “Jakarta Commons Logging.”

WebSphere Application Server provides the Jakarta Commons Logging binary distribution in its libraries

directory. By default, the product uses the Jakarta Commons Logging LogFactory implementation and

JDK14Logger.

For an application to use the WebSphere Application Server logger, the application must provide its own

configuration for the logger. To configure an application to use the WebSphere Application Server logger,

complete the steps that follow.

1. Examine “Configurations for the WebSphere Application Server logger” on page 34 and determine

which configuration best suits your application.

2. Change your application configuration as needed to enable use of the WebSphere Application Server

logger.

After the application starts, Jakarta Commons Logging routes the application’s logging output to the

WebSphere Application Server logger.

Jakarta Commons Logging

Jakarta Commons Logging provides a simple logging interface and thin wrappers for several logging

systems. The logging interface enables application logging to be simple and independent of the logging

system that the application uses. You can change the logging implementation for a deployed application

without having to change the application logging code. However, the simplicity of the logging interface

prevents the application from leveraging all the functionality of the logging systems.

This topic provides the following information about Jakarta Commons Logging in WebSphere Application

Server:

v “Support for Jakarta Commons Logging”

v “Benefits of support for Jakarta Commons Logging”

v “Overview of the process for using Jakarta Commons Logging” on page 32

v “Classes used to obtain a logger factory and logger” on page 32

v “Logger level configuration and mapping” on page 33

Support for Jakarta Commons Logging

WebSphere Application Server supports Jakarta Commons Logging by providing a logger, a thin wrapper

for the WebSphere Application Server logging facility. The logger can handle both Java Logging (JSR-47)

and Common Base Event logging objects. A logging object is an object that holds logging entry

information.

The WebSphere Application Server support for Jakarta Commons Logging does not change interfaces

defined by Jakarta Commons Logging.

Benefits of support for Jakarta Commons Logging

The WebSphere Application Server support for Jakarta Commons Logging provides the following benefits:

v WebSphere Application Server is pre-configured to use Jakarta Commons Logging.

All of the functionality of Jakarta Commons Logging is provided for any application or WebSphere

Application Server component. Logging calls are routed by default to the underlying WebSphere

Application Server logging facility.

v A logger that uses the WebSphere Application Server logging facility.

Chapter 4. Add logging and tracing to your application 31

http://jakarta.apache.org/commons/
http://jakarta.apache.org/commons/
http://jcp.org/en/jsr/detail?id=47
http://www-128.ibm.com/developerworks/webservices/library/ws-cbe/

Applications and components can pass both Java Logging and Common Base Event logging objects to

the WebSphere Application Server logger without conversion to strings, providing applications with

enhanced logging. Further, Jakarta Commons Logging Logger levels are integrated into WebSphere

Application Server administrative facilities.

Overview of the process for using Jakarta Commons Logging

Logging with Jakarta Commons Logging consists of the steps that follow. “Configurations for the

WebSphere Application Server logger” on page 34 provides details on configuring your application to use

the WebSphere Application Server logger.

1. Obtain an instance of a logger factory.

To obtain a logger factory, use Jakarta Commons Logging code. You can configure the code to meet

your needs. In WebSphere Application Server, Jakarta Commons Logging is configured by default to

instantiate the Jakarta Commons Logging default logger factory. Applications or WebSphere Application

Server components can provide their own configuration if they use a different logger factory

implementation. Applications can use more than one factory.

2. Obtain an instance of a logger.

To obtain a logger, use code implemented by a logger factory. Configuration of the code is

implementation specific.

The WebSphere Application Server logger implements the methods defined in the logging interface.

The logging methods take at least one argument, which can be any Java object. The WebSphere

Application Server logger, the WsJDK14Logger logger described in “Classes used to obtain a logger

factory and logger,” handles the following objects passed into the following logging methods:

CommonBaseEvent

Wrapped into CommonBaseEventLogRecord

CommonBaseEventLogRecord

Passed without change

LogRecord

Passed without change

Other objects

Converted to String

Applications or WebSphere Application Server components can provide their own configuration if they

use an implementation of a logger that is not specific to WebSphere Application Server. An application

must know what factory is being used in order to configure it.

3. Start your application. Jakarta Commons Logging routes the application’s logging output to the

designated logger

Classes used to obtain a logger factory and logger

 Class name Description

LogFactory LogFactory is a Jakarta Commons Logging class that implements initialization logic. LogFactory

is an abstract class that every logger factory implementation has to extend. It provides static

methods for obtaining:

v An instance of a factory class

v Instances of a logger, using an instance of the factory class

LogFactory provides methods for obtaining instances of loggers, although these methods

delegate the logger instantiation and configuration to an instance of a logger factory class.

Logger factories, once instantiated, are cached on a per context class loader basis. The

instances in a cache can be released. This functionality is designed for platform container

implementations rather than for applications.

32 Troubleshooting and support

Class name Description

LogFactoryImpl LogFactoryImpl is a Jakarta Commons Logging concrete class that implements the default

logger factory using methods in LogFactory. To use Java Logging, there must always be at least

one instance of a logger factory class, even if the application has not explicitly obtained one. If

the configuration does not name a logger factory class, LogFactoryImpl is used as the default.

Log Log is a Jakarta Commons Logging interface for loggers. Commons logging loggers have to

implement the Log interface. Because the goal of Jakarta Commons Logging is to wrapper any

logging system, the Log interface defines a small set of common logging methods. In

WebSphere Application Server, WsJDK14Logger implements the Log interface.

Logger instantiation and configuration is specific to every logger factory. Logging in WebSphere

Application Server uses the default logger factory provided in Jakarta Commons Logging, which

keeps instantiated loggers in cache, on a per class loader context basis.

WsJDK14Logger WsJDK14Logger is a WebSphere Application Server class that provides a Jakarta Commons

Logging logger by implementing the Log interface. The WsJDK14Logger logger differs from the

Java Logging logger in that the WsJDK14Logger logger enables Java Logging or Common Base

Event objects to be passed over without converting them into String objects. This prevents any

information loss the conversion to String might cause as well as allows the logging output to be

more descriptive and precise. In contrast, the Java Logginglogger that is provided in Jakarta

Commons Logging converts objects passed into the logging calls to String objects before

passing them over to the underlying Java Logging.

Logger level configuration and mapping

Because Jakarta Commons Logging loggers are thin wrappers for specific logging systems, the loggers do

not have their own level, but use the level of the logger from the underlying logging system. Although the

underlying system can provide methods for changing level, there are no methods for changing level

defined on the Log interface, which all Jakarta Commons Logging logger must implement.

WsJDK14Logger uses the level of its underlying Java Logging logger.

Following table shows, on the left, the mapping of Jakarta Commons Logging levels within

WsJDK14Logger to levels in the WebSphere Application Server implementation of Java Logging. On the

right, it shows the levels defined in Java Logging and the level mapping in the Jakarta Commons Logging

JDK14Logger to the Java Logging levels.

WsJDK14Logger

Java Logging in WebSphere

Application Server Java Logging JDK14Logger

Fatal Fatal

Error Severe Severe Fatal, Error

Warning Warning Warning Warning

Audit

Info Info Info Info

Config Config

Detail

Debug Fine Fine Debug

Finer Finer

Trace Finest Finest Trace

The WsJDK14Logger level is synchronized with the underlying Java Logging logger level. WebSphere

Application Server administration controls the WsJDK14Logger level.

Chapter 4. Add logging and tracing to your application 33

Configurations for the WebSphere Application Server logger

This topic describes several ways to configure an application to use the WebSphere Application Server

logger.

The type of configuration that best suits an application depends upon the following:

v Whether the class loader order setting for the application is Classes loaded with parent class loader

first (Parent First) or Classes loaded with application class loader first (Parent Last), you can

set the class loader delegation mode on a console page. For more details about class load order and

delegation, consult the class loading chapter in the Developing and deploying applications PDF book

v Whether Jakarta Commons Logging is bundled with the application configuration

v Whether Jakarta Commons Logging is provided within the application

The following tables describe the conditions required to enable an application to use the WebSphere

Application Server logger.

Class loader mode is Parent First and Jakarta Commons Logging is bundled with the application

 Jakarta Commons Logging

configuration

LogFactory

instance Log instance Comments

The application provides the

configuration by either of the

following:

v The properties file

commons-logging.properties in

the application classpath is not

read by the LogFactory

because the parent class

loader finds the WebSphere

properties file first.

v The class name is read from

the file

META-INF/services/

org.apache.commons

.logging.LogFactory

The log factory

used is the

LogFactory

implementation

specified in the

WebSphere

Application Server

default

configuration,

unless the

configuration is

provided in a

META-INF file of

the application or

module.

The log used is either

of the following:

v The Log

implementation

specified in the

WebSphere

Application Server

default configuration

v An application-
specific

Log implementation if

an application-specific

LogFactory that

instantiates a different

Log implementation is

used.

The application parent class loader

is the first class loader to load the

Jakarta Commons Logging code. The

WebSphere bundle that supports

Jakarta Commons Logging provides

the LogFactory static code that looks

up the LogFactory configuration

attributes.

For the static LogFactory code to

instantiate the LogFactory instance

specified in the application

configuration, the LogFactory instance

must be on the classpath of the parent

class loader.

Not provided by the application The log factory

used is the

LogFactory

implementation

specified in the

WebSphere default

configuration.

The log used is the

Log implementation

specified in the

WebSphere default

configuration.

The Jakarta Commons Logging

bundled with the application is not

used.

Class loader mode is Parent First and Jakarta Commons Logging is not bundled with the

application

34 Troubleshooting and support

Jakarta Commons Logging

configuration

LogFactory

instance Log instance Comments

The application provides the

configuration by either of the

following:

v The properties file

commons-logging.properties in

the application classpath is not

read by the LogFactory

because the parent class

loader finds the WebSphere

Application Server properties

file first.

v The class name is read from

the file

META-INF/services/

org.apache.commons

.logging.LogFactory

The log factory

used is the

LogFactory

implementation

specified in the

WebSphere

Application Server

default

configuration,

unless the

configuration is

provided in a

META-INF file of

the application or

module.

The log used is either

of the following:

v The Log

implementation

specified in the

WebSphere

Application Server

default configuration

v An

application-specific

Log implementation if

an application-specific

LogFactory that

instantiates a different

Log implementation is

used.

The application parent class loader

is the first class loader to load the

Jakarta Commons Logging code. The

WebSphere bundle that supports

Jakarta Commons Logging provides

the LogFactory static code that looks

up the LogFactory configuration

attributes.

For the static LogFactory code to

instantiate the LogFactory instance

specified in the application

configuration, the LogFactory instance

must be on the classpath of the parent

class loader.

Not provided by the application The log factory

used is the

LogFactory

implementation

specified in the

WebSphere

Application Server

default

configuration.

The log used is the

Log implementation

specified in the

WebSphere

Application Server

default configuration.

Same as in the previous row

Class loader mode is Parent Last and Jakarta Commons Logging is bundled with the application

 Jakarta Commons Logging

configuration

LogFactory

instance Log instance Comments

The application provides the

configuration by either of the

following:

v The properties file

commons-logging.properties in

the application classpath is

read by the LogFactory

because the parent class

loader finds the WebSphere

Application Server properties

file first.

v The class name is read from

the file

META-INF/services/

org.apache.commons

.logging.LogFactory

The log factory

used is either of

the following:

v The default

Jakarta Commons

Logging

LogFactory

v The LogFactory

specified in the

application

configuration

The log used is the

Log implementation

specified in the

application

configuration.

If the log factory used

is the default Jakarta

Commons Logging

LogFactory, the Log

implementation must

be on the classpath

of the application

class loader.

The application class loader is the

first class loader to load the Jakarta

Commons Logging code. The

application bundle that supports

Jakarta Commons Logging provides

the LogFactory static code that looks

up the LogFactory configuration

attributes.

For the static LogFactory code to

instantiate the LogFactory instance

specified in the application

configuration, the LogFactory instance

must be on the classpath of the

application class loader.

Chapter 4. Add logging and tracing to your application 35

Jakarta Commons Logging

configuration

LogFactory

instance Log instance Comments

Not provided by the application The log factory

used is the

LogFactory

implementation

specified in the

WebSphere

Application Server

default

configuration.

The log used is the

Log implementation

specified in the

WebSphere

Application Server

default configuration.

Class loader mode is Parent Last and Jakarta Commons Logging is not bundled with the

application

 Jakarta Commons Logging

configuration

LogFactory

instance Log instance Comments

The application provides the

configuration by either of the

following:

v The properties file

commons-logging.properties in

the application classpath is

read by the LogFactory

because the parent class

loader finds the WebSphere

properties file first.

v The class name is read from

the file

META-INF/services/

org.apache.commons

.logging.LogFactory

The log factory

used is either of

the following:

v The default

Jakarta Commons

Logging

LogFactory

v The LogFactory

specified in the

application

configuration

The log used is the

Log implementation

specified in the

application

configuration.

If the log factory used

is the default Jakarta

Commons Logging

LogFactory, the Log

implementation must

be on the classpath

of the application

class loader.

There is no Jakarta Commons Logging

code at the application class loader.

Thus, the WebSphere bundle that

supports Jakarta Commons Logging

provides the LogFactory static code

that looks up the LogFactory

configuration attributes.

For the static LogFactory code to

instantiate the LogFactory instance

specified in the application

configuration, the LogFactory instance

must be on the classpath of the parent

class loader.

Not provided by the application The log factory

used is the

LogFactory

implementation

specified in the

WebSphere

Application Server

default

configuration.

The log used is the

Log implementation

specified in the

WebSphere

Application Server

default configuration.

Programming with the JRas framework

Use the JRas extensions to incorporate message logging and diagnostic trace into WebSphere Application

Server applications.

The JRas framework that is described in this task and its sub-tasks is deprecated. However, you can

achieve similar results using Java logging.

The JRas extensions allow message logging and diagnostic trace to work with WebSphere Application

Server applications. They are based on the stand-alone JRas logging toolkit.

1. Retrieve a reference to the JRas manager.

2. Retrieve message and trace loggers by using methods on the returned manager.

36 Troubleshooting and support

3. Call the appropriate methods on the returned message and trace loggers to create message and trace

entries, as appropriate.

JRas logging toolkit

The JRas logging toolkit provides diagnostic information to help the administrator diagnose problems or

tune application performance.

Deprecated: The JRas framework that is described in this task and its sub-tasks is deprecated. However,

you can achieve similar results using Java logging.

Developing, deploying, and maintaining applications are complex tasks. For example, when a running

application encounters an unexpected condition, it might not be able to complete a requested operation. In

such a case, you might want the application to inform the administrator that the operation failed and

provide information. This action enables the administrator to take the proper corrective action. Those who

develop or maintain applications might need to gather detailed information relating to the path of a running

application to determine the root cause of a failure that is due to a code bug. The facilities that are used

for these purposes are typically referred to as message logging and diagnostic trace.

Message logging (messages) and diagnostic trace (trace) are conceptually quite similar, but do have

important differences. It is important for application developers to understand these differences to use

these tools properly. To start with, the following operational definitions of messages and trace are provided.

Message

A message entry is an informational record that is intended for end users, systems administrators

and support personnel to view. The text of the message must be clear, concise, and interpretable.

Messages are typically localized, meaning that they display in the national language of the end

user. Although the destination and lifetime of messages might be configurable, some level of

message logging is always enabled in normal system operation. Message logging must be used

judiciously due to both performance considerations and the size of the message repository.

Trace A trace entry is an information record that is intended for service engineers or developers to use.

This trace record might be considerably more complex, verbose, and detailed than a message

entry. Localization support is typically not used for trace entries. Trace entries can be fairly

inscrutable, understandable only by the appropriate developer or service personnel. It is assumed

that trace entries are not written during normal runtime operation, but might be enabled as needed

to gather diagnostic information.

WebSphere Application Server provides a message logging and diagnostic trace API that applications can

use. This API is based on the stand-alone JRas logging toolkit, which was developed by IBM. The

stand-alone JRas logging toolkit is a collection of interfaces and classes that provide message logging and

diagnostic trace primitives. These primitives are not tied to any particular product or platform. The

stand-alone JRas logging toolkit provides a limited amount of support, which is typically referred to as

systems management support, including log file configuration support based on property files.

As designed, the stand-alone JRas logging toolkit does not contain the support that is required for

integration into the WebSphere Application Server run time or for use in a Java 2 Platform, Enterprise

Edition (J2EE) environment. To overcome these limitations, WebSphere Application Server provides a set

of extension classes to address these shortcomings. This collection of extension classes is referred to as

the JRas extensions. The JRas extensions do not modify the interfaces that are introduced by the

stand-alone JRas logging toolkit, but provide the appropriate implementation classes. The conceptual

structure that is introduced by the stand-alone JRas logging toolkit is described in the following section. It

is equally applicable to the JRas extensions.

JRas concepts

The section contains a basic overview of important concepts and constructs that are introduced by the

stand-alone JRas logging toolkit. This information is not an exhaustive overview of the capabilities of this

Chapter 4. Add logging and tracing to your application 37

logging toolkit, nor is it intended as a detailed discussion of usage or programming paradigms. More

detailed information, including code examples, is available in JRas extensions and its subtopics, including

in the API documentation for the various interfaces and classes that make up the logging toolkit.

Event types

The stand-alone JRas logging toolkit defines a set of event types for messages and a set of event

types for trace. Examples of message types include informational, warning, and error. Examples of

trace types include entry, exit, and trace.

Event classes

The stand-alone JRas logging toolkit defines both message and trace event classes.

Loggers

A logger is the primary object with which the user code interacts. Two types of loggers are defined:

message loggers and trace loggers. The set of methods on message loggers and trace loggers

are different because they provide different functionality. Message loggers create message records

only and trace loggers create trace records only. Both types of loggers contain masks that indicate

which categories of events the logger processes and which to ignore. Although every JRas logger

is defined to contain both a message and trace mask, the message logger uses only the message

mask and the trace logger uses the trace mask only. For example, by setting a message logger

message mask to the appropriate state, it can be configured to process only error messages and

ignore informational and warning messages. Changing the trace mask state of a message logger

has no effect.

 A logger contains one or more handlers to which it forwards events for further processing. When

the user calls a method on the logger, the logger compares the event type that is specified by the

caller to its current mask value. If the specified type passes the mask check, the logger creates an

event object to capture the information relating to the event that passed to the logger method. This

information can include information, such as the names of the class and method which logs the

event, a message, and parameters to log, among others. When the logger creates the event

object, it forwards the event to all handlers currently registered with the logger.

 Methods that are used within the logging infrastructure do not make calls to the logger method.

When an application uses an object that extends a thread class, implements the hashCode

method, and makes a call to the logging infrastructure from that method, the result is a recursive

loop.

Handlers

A handler provides an abstraction over an output device or event consumer. An example is a file

handler, which knows how to write an event to a file. The handler also contains a mask that is

used to further restrict the categories of events the handler processes. For example, a message

logger might be configured to pass both warning and error events, but a handler attached to the

message logger might be configured to pass error events only. Handlers also include formatters,

which the handler invokes to format the data in the passed event before it is written to the output

device.

Formatters

Handlers are configured with formatters, which know how to format events of certain types. A

handler can contain multiple formatters, each of which knows how to format a specific class of

event. The event object is passed to the appropriate formatter by the handler. The formatter

returns formatted output to the handler, which then writes it to the output device.

JRas Extensions

JRas extensions is the collection of implementation classes that support JRas integration into the

WebSphere Application Server environment.

JRas extensions

The JRas framework described in this task and its sub-tasks is deprecated. However, you can achieve

similar results using Java logging.

38 Troubleshooting and support

The stand-alone JRas logging toolkit defines interfaces and provides a variety of concrete classes that

implement these interfaces. Because the stand-alone JRas logging toolkit is developed as a general

purpose toolkit, the implementation classes do not contain the configuration interfaces and methods that

are necessary for use in the WebSphere Application Server product. In addition, many of the

implementation classes are not written appropriately for use in a Java 2 Platform, Enterprise Edition

(J2EE) environment. To overcome these shortcomings, WebSphere Application Server provides the

appropriate implementation classes that support integration into the WebSphere Application Server

environment. The collection of these implementation classes is referred to as the JRas extensions.

Usage model

You can use the JRas extensions in three distinct operational modes:

Integrated

In this mode, message and trace records are written only to logs that are defined and maintained

by the WebSphere Application Server run time. This mode is the default mode of operation and is

equivalent to the WebSphere Application Server V4.0 mode of operation.

stand-alone

In this mode, message and trace records are written solely to stand-alone logs that are defined

and maintained by the user. You control which categories of events are written to which logs, and

the format in which entries are written. You are responsible for configuration and maintenance of

the logs. Message and trace entries are not written to WebSphere Application Server runtime logs.

Combined

In this mode, message and trace records are written to both WebSphere Application Server

runtime logs and to stand-alone logs that you must define, control, and maintain. You can use

filtering controls to determine which categories of messages and trace are written to which logs.

The JRas extensions are specifically targeted to an integrated mode of operation. The integrated mode of

operation can be appropriate for some usage scenarios, but many scenarios are not adequately addressed

by these extensions. Many usage scenarios require a stand-alone or combined mode of operation instead.

A set of user extension points are defined that support JRas extensions in either a stand-alone or

combined mode of operations.

JRas extension classes

WebSphere Application Server provides a base set of implementation classes that are collectively referred

to as the JRas extensions. Many of these classes provide the appropriate implementations of loggers,

handlers, and formatters for use in a WebSphere Application Server environment.

The JRas framework described in this task and its sub-tasks is deprecated. However, you can achieve

similar results using Java logging.

The collection of JRas classes is targeted at an integrated mode of operation. If you choose to use the

JRas extensions in either stand-alone or combined mode, you can reuse the logger and manager class

that are provided by the extensions, but you must provide your own implementations of handlers and

formatters.

WebSphere Application Server message and trace loggers

The message and trace loggers that are provided by the stand-alone JRas logging toolkit cannot be

directly used in the WebSphere Application Server environment. The JRas extensions provide the

appropriate logger implementation classes. Instances of these message and trace logger classes are

obtained directly and exclusively from the WebSphere Application Server Manager class. You cannot

directly instantiate message and trace loggers. Obtaining loggers in any manner other than directly from

the Manager class is not allowed and directly violates the programming model.

The message and trace logger instances that are obtained from the WebSphere Application Server

Manager class are subclasses of the RASMessageLogger and RASTraceLogger classes that are provided

Chapter 4. Add logging and tracing to your application 39

by the stand-alone JRas logging toolkit. The RASMessageLogger and RASTraceLogger classes define the

set of methods that are directly available. Public methods that are introduced by the JRas extensions

logger subclasses cannot be called directly by user code because it is a violation of the programming

model.

Loggers are named objects and are identified by name. When the Manager class is called to obtain a

logger, the caller is required to specify a name for the logger. The Manager class maintains a

name-to-logger instance mapping. Only one instance of a named logger is ever created within the lifetime

of a process. The first call to the Manager class with a particular name results in the logger, which is

configured by the Manager class. The Manager class caches a reference to the instance, then returns it to

the caller. Subsequent calls to the Manager class that specify the same name result in a returned

reference to the cached logger. Separate namespaces are maintained for message and trace loggers. You

can use a single name obtain both a message logger and a trace logger from the Manager, without

ambiguity, and without causing a namespace collision.

In general, loggers have no predefined granularity or scope. A single logger can be used to instrument an

entire application. You might determine that having a logger per class is more effective, or the appropriate

granularity might be somewhere in between. Partitioning an application into logging domains is determined

by the application writer.

The WebSphere Application Server logger classes that are obtained from the Manager class are

thread-safe. Although the loggers provided as part of the stand-alone JRas logging toolkit implement the

serializable interface, loggers are not serializable. Loggers are stateful objects, tied to a Java virtual

machine instance and are not serializable. Attempting to serialize a logger is a violation of the

programming model.

Personal or individual logger subclasses are not supported in a WebSphere Application Server

environment.

WebSphere Application Server handlers

WebSphere Application Server provides the appropriate handler class that is used to write message and

trace events to the WebSphere Application Server run time logs. You cannot configure the WebSphere

Application Server handler to write to any other destination. The creation of a WebSphere Application

Server handler is a restricted operation and is not available to user code. Every logger that is obtained

from the Manager comes preconfigured with an instance of this handler already installed. You can remove

the WebSphere Application Server handler from a logger when you want to run in stand-alone mode.

When you remove it, you cannot add the WebSphere Application Server handler again to the logger from

which it is removed or any other logger. Also, you cannot directly call any method on the WebSphere

Application Server handler. Attempting to create an instance of the WebSphere Application Server handler,

to call methods on the WebSphere Application Server handler or to add a WebSphere Application Server

handler to a logger by user code is a violation of the programming model.

WebSphere Application Server formatters

The WebSphere Application Server handler comes preconfigured with the appropriate formatter for data

that is written to WebSphere Application Server logs. The creation of a WebSphere Application Server

formatter is a restricted operation and not available to user code. No mechanism exists that allows the

user to obtain a reference to a formatter installed in a WebSphere Application Server handler, or to change

the formatter a WebSphere Application Server handler is configured to use.

WebSphere Application Server manager

WebSphere Application Server provides a Manager class in the com.ibm.websphere.ras package. All

message and trace loggers must be obtained from this Manager class. A reference to the Manager class is

obtained by calling the static Manager.getManager method. Message loggers are obtained by calling the

40 Troubleshooting and support

createRASMessageLogger method on the Manager class. Trace loggers are obtained by calling the

createRASTraceLogger method on the Manager class.

The manager also supports a group abstraction that is useful when dealing with trace loggers. The group

abstraction supports multiple, unrelated trace loggers to register as part of a named entity called a group.

WebSphere Application Server provides the appropriate systems management facilities to manipulate the

trace setting of a group, similar to the way the trace settings of an individual trace logger work.

For example, suppose component A consists of 10 classes. Suppose each class is configured to use a

separate trace logger. All 10 trace loggers in the component are registered as members of the same

group, for example, Component_A_Group. You can turn on trace for a single class, or you can turn on

trace for all 10 classes in a single operation using the group name, if you want a component trace. Group

names are maintained within the namespace for trace loggers.

JRas framework (deprecated)

Because the JRas extensions classes do not provide the flexibility and behavior that are required for many

scenarios, a variety of extension points are defined. You can write your own implementation classes to

obtain the required behavior.

Deprecated: The JRas framework described in this topic is deprecated. However, you can achieve similar

results using Java logging.

In general, the JRas extensions require you to call the Manager class to obtain a message logger or trace

logger. No provision is made for you to provide your own message or trace logger subclasses. In general,

user-provided extensions cannot be used to affect the integrated mode of operation. The behavior of the

integrated mode of operation is solely determined by the WebSphere Application Server run time and the

JRas extensions classes.

Handlers

The stand-alone JRas logging toolkit defines the RASIHandler interface. All handlers must implement this

interface. You can write your own handler classes that implement the RASIHandler interface. Directly

create instances of user-defined handlers and add them to the loggers that are obtained from the Manager

class.

The stand-alone JRas logging toolkit provides several handler implementation classes. These handler

classes are inappropriate for use in the Java 2 Platform, Enterprise Edition (J2EE) environment. You

cannot directly use or subclass any of the Handler classes that are provided by the stand-alone JRas

logging toolkit. Doing so is a violation of the programming model.

Formatters

The stand-alone JRas logging toolkit defines the RASIFormatter interface. All formatters must implement

this interface. You can write your own formatter classes that implement the RASIFormatter interface. You

can add these classes to a user-defined handler only. WebSphere Application Server handlers cannot be

configured to use user-defined formatters. Instead, directly create instances of your formatters and add

them to the your handlers appropriately.

As with handlers, the stand-alone JRas logging toolkit provides several formatter implementation classes.

Direct use of these formatter classes is not supported.

Message event types

The stand-alone JRas toolkit defines message event types in the RASIMessageEvent interface. In

addition, the WebSphere Application Server reserves a range of message event types for future use. The

RASIMessageEvent interface defines three types, with values of 0x01, 0x02, and 0x04. The values 0x08

Chapter 4. Add logging and tracing to your application 41

through 0x8000 are reserved for future use. You can provide your own message event types by extending

this interface appropriately. User-defined message types must have a value of 0x1000 or greater.

Message loggers that are retrieved from the Manager class have their message masks set to pass or

process all message event types defined in the RASIMessageEvent interface. To process user-defined

message types, you must manually set the message logger mask to the appropriate state by user code

after the message logger is obtained from the Manager class. WebSphere Application Server does not

provide any built-in systems management support for managing message types.

Message event objects

The stand-alone JRas toolkit provides a RASMessageEvent implementation class. When a message

logging method is called on the message logger, and the message type is currently enabled, the logger

creates and distributes an event of this class to all handlers that are currently registered with that logger.

You can provide your own message event classes, but they must implement the RASIEvent interface. You

must directly create instances of such user-defined message event classes. When it is created, pass your

message event to the message logger by calling the message logger’s fireRASEvent method directly.

WebSphere Application Server message loggers cannot directly create instances of user-defined types in

response to calling a logging method (msg.message) on the logger. In addition, instances of user-defined

message types are never processed by the WebSphere Application Server handler. You cannot create

instances of the RASMessageEvent class directly.

Trace event types

The stand-alone JRas toolkit defines trace event types in the RASITraceEvent interface. You can provide

your own trace event types by extending this interface appropriately. In such a case, you must ensure that

the values for the user-defined trace event types do not collide with the values of the types that are

defined in the RASITraceEvent interface.

Trace loggers that are retrieved from the Manager class typically have their trace masks set to reject all

types. A different starting state can be specified by using WebSphere Application Server systems

management facilities. In addition, you can change the state of the trace mask for a logger at run-time,

using WebSphere Application Server systems management facilities.

To process user-defined trace types, the trace logger mask must be manually set to the appropriate state

by user code. WebSphere Application Server systems management facilities cannot be used to manage

user-defined trace types, either at start time or run time.

Trace event objects

The stand-alone JRas toolkit provides a RASTraceEvent implementation class. When a trace logging

method is called on the WebSphere Application Server trace logger and the type is currently enabled, the

logger creates and distributes an event of this class to all the handlers that are currently registered with

that logger.

You can provide your own trace event classes. Such trace event classes must implement the RASIEvent

interface. You must create instances of such user-defined event classes directly. When it is created, pass

the trace event to the trace logger by calling the trace logger’s fireRASEvent method directly. WebSphere

Application Server trace loggers cannot directly create instances of user-defined types in response to

calling a trace method (entry, exit, trace) on the trace logger. In addition, instances of user-defined trace

types are never processed by the WebSphere Application Server handler. You cannot create instances of

the RASTraceEvent class directly.

42 Troubleshooting and support

User defined types, user defined events and WebSphere Application Server

By definition, the WebSphere Application Server handler processed user-defined message or trace types,

or user-defined message or trace event classes. Message and trace entries of either a user-defined type

or user-defined event class cannot be written to the WebSphere Application Server run-time logs.

JRas programming interfaces for logging (deprecated):

The JRas framework described in this task and its sub-tasks is deprecated. However, you can achieve

similar results using Java logging.

 General considerations

You can configure the WebSphere Application Server to use Java 2 security to restrict access to protected

resources such as the file system and sockets. Because user-written extensions typically access such

protected resources, user-written extensions must contain the appropriate security checking calls, using

AccessController doPrivileged calls. In addition, the user-written extensions must contain the appropriate

policy file. In general, locating user-written extensions in a separate package is a good practice. It is your

responsibility to restrict access to the user-written extensions appropriately.

Writing a handler

User-written handlers must implement the RASIHandler interface. The RASIHandler interface extends the

RASIMaskChangeGenerator interface, which extends the RASIObject interface. A short discussion of the

methods that are introduced by each of these interfaces follows, along with implementation pointers. For

more in-depth information on any of the particular interfaces or methods, see the corresponding product

API documentation.

RASIObject interface

The RASIObject interface is the base interface for stand-alone JRas logging toolkit classes that are

stateful or configurable, such as loggers, handlers, and formatters.

v The stand-alone JRas logging tookit supports rudimentary properties-file based configuration. To

implement this configuration support, the configuration state is stored as a set of key-value pairs in a

properties file. The public Hashtable getConfig and public void setConfig(Hashtable ht) methods are

used to get and set the configuration state. The JRas extensions do not support properties-based

configuration. Implement these methods as no-operations. You can implement your own

properties-based configuration using these methods.

v Loggers, handlers, and formatters can be named objects. For example, the JRas extensions require the

user to provide a name for the loggers that are retrieved from the manager. You can name your

handlers. The public String getName and public void setName(String name) methods are provided to

get or set the name field. The JRas extensions currently do not call these methods on user handlers.

You can implement these methods as you want, including as no operations.

v Loggers, handlers, and formatters can also contain a description field. The public String getDescription

and public void setDescription(String desc) methods can be used to get or set the description field. The

JRas extensions currently do not use the description field. You can implement these methods as you

want, including as no operations.

v The public String getGroup method is provided for use by the RASManager interface. Since the JRas

extensions provide their own Manager class, this method is never called. Implement this as a

no-operation.

RASIMaskChangeGenerator interface

The RASIMaskChangeGenerator interface is the interface that defines the implementation methods for

filtering of events based on a mask state. It is currently implemented by both loggers and handlers. By

definition, an object that implements this interface contains both a message mask and a trace mask,

Chapter 4. Add logging and tracing to your application 43

although both need not be used. For example, message loggers contain a trace mask, but the trace mask

is never used because the message logger never generates trace events. Handlers, however, can actively

use both mask values. For example, a single handler can handle both message and trace events.

v The public long getMessageMask and public void setMessageMask(long mask) methods are used to

get or set the value of the message mask. The public long getTraceMask and public void

setTraceMask(long mask) methods are used to get or set the value of the trace mask.

In addition, this interface introduces the concept of calling back to interested parties when a mask changes

state. The callback object must implement the RASIMaskChangeListener interface.

v The public void addMaskChangeListener(RASIMaskChangeListener listener) and public void

removeMaskChangeListener(RASIMaskChangeListener listener) methods are used to add or remove

listeners to the handler. The public Enumeration getMaskChangeListeners method returns an

enumeration over the list of currently registered listeners. The public void

fireMaskChangedEvent(RASMaskChangeEvent mc) method is used to call back all the registered

listeners to inform them of a mask change event.

For efficiency reasons, the JRas extensions message and trace loggers implement the

RASIMaskChangeListener interface. The logger implementations maintain a composite mask in addition to

the logger mask. The logger composite mask is formed by logically or’ing the appropriate masks of all

handlers that are registered to that logger, then and’ing the result with the logger mask. For example, the

message logger composite mask is formed by or’ing the message masks of all handlers that are registered

with that logger, then and’ing the result with the logger message mask.

All handlers are required to properly implement these methods. In addition, when a user handler is

instantiated, the logger that is added must be registered with the handler; use the addMaskChangeListener

method. When either the message mask or trace mask of the handler is changed, the logger must be

called back to inform it of the mask change. With this process, the logger can dynamically maintain the

composite mask.

The RASMaskChangedEvent class is defined by the stand-alone JRas logging toolkit. Direct use of that

class by user code is supported in this context.

In addition, the RASIMaskChangeGenerator interface introduces the concept of caching the names of all

message and trace event classes that the implementing object process. The intent of these methods is to

support a management program such as a graphical user interface to retrieve the list of names, introspect

the classes to determine the event types that they might possibly process and display the results. The

JRas extensions do not ever call these methods, so they can be implemented as no operations.

v The public void addMessageEventClass(String name) and public void

removeMessageEventClass(String name) methodscan be called to add or remove a message event

class name from the list. The method public Enumeration getMessageEventClasses returns an

enumeration over the list of message event class names. Similarly, the public void

addTraceEventClass(String name) and public void removeTraceEventClass(String name) methods can

be called to add or remove a trace event class name from the list. The public Enumeration

getTraceEventClasses method returns an enumeration over the list of trace event class names.

RASIHandler interface

The RASIHandler interface introduces the methods that are specific to the behavior of a handler.

The RASIHandler interface, as provided by the stand-alone JRas logging toolkit, supports handlers that

run in either a synchronous or asynchronous mode. In asynchronous mode, events are typically queued by

the calling thread and then written by a worker thread. Because spawning of threads is not supported in

the WebSphere Application Server environment, it is expected that handlers do not queue or batch events,

although this activity is not expressly prohibited.

44 Troubleshooting and support

v The public int getMaximumQueueSize() and public void setMaximumQueueSize(int size) methods

create IllegalStateException exceptions to manage the maximum queue size. The public int

getQueueSize method is provided to query the actual queue size.

v The public int getRetryInterval and public void setRetryInterval(int interval) methods support the notion

of error retry, which implies some type of queueing.

v The public void addFormatter(RASIFormatter formatter), public void removeFormatter(RASIFormatter

formatter) and public Enumeration getFormatters methods are provided to manage the list of formatters

that the handler can be configured with. Different formatters can be provided for different event classes,

if appropriate.

v The public void openDevice, public void closeDevice and public void stop methods are provided to

manage the underlying device that the handler abstracts.

v The public void logEvent(RASIEvent event) and public void writeEvent(RASIEvent event) methods are

provided to pass events to the handler for processing.

Writing a formatter

User-written formatters must implement the RASIFormatter interface. The RASIFormatter interface extends

the RASIObject interface. The implementation of the RASIObject interface is the same for both handlers

and formatters. A short discussion of the methods that are introduced by the RASIFormatter interface

follows. For more in-depth information on the methods introduced by this interface, see the corresponding

product API documentation.

RASIFormatter interface

v The public void setDefault(boolean flag) and public boolean isDefault methods are used by the concrete

RASHandler classes that are provided by the stand-alone JRas logging toolkit to determine if a

particular formatter is the default formatter. Because these RASHandler classes must never be used in

a WebSphere Application Server environment, the semantic significance of these methods can be

determined by the user.

v The public void addEventClass(String name), public void removeEventClass(String name) and public

Enumeration getEventClasses methods are provided to determine which event classes a formatter can

use to format. You can provide the appropriate implementations.

v The public String format(RASIEvent event) method is called by handler objects and returns a formatted

String representation of the event.

Programming model summary

The programming model that is described in this section builds upon and summarizes some of the

concepts already introduced. This section also formalizes usage requirements and restrictions. Use of the

WebSphere Application Server JRas extensions in a manner that does not conform to the following

programming guidelines is prohibited.

Deprecated: The JRas framework described in this task and its sub-tasks is deprecated. However, you

can achieve similar results using Java logging.

You can use the WebSphere Application Server JRas extensions in three distinct operational modes. The

programming models concepts and restrictions apply equally across all modes of operation.

v You must not use implementation classes that are provided by the stand-alone JRas logging toolkit

directly, unless specifically noted otherwise. Direct usage of those classes is not supported. IBM

Support provides no diagnostic aid or bug fixes relating to the direct use of classes that are provided by

the stand-alone JRas logging toolkit.

v You must obtain message and trace loggers directly from the Manager class. You cannot directly

instantiate loggers.

v You cannot replace the WebSphere Application Server message and trace logger classes.

v You must guarantee that the logger names that are passed to the Manager class are unique, and follow

the documented naming constraints. When a logger is obtained from the Manager class, you must not

attempt to change the name of the logger by calling the setName method.

Chapter 4. Add logging and tracing to your application 45

v Named loggers can be used more than once. For any given name, the first call to the Manager class

results in the Manager class creating a logger that is associated with that name. Subsequent calls to the

Manager class that specify the same name result in a returned reference to the existing logger.

v The Manager class maintains a hierarchical namespace for loggers. Use a dot-separated, fully qualified

class name to identify any logger. Other than dots or periods, logger names cannot contain any

punctuation characters, such as an asterisk (*), a comma (.), an equals sign (=), a colon (:), or quotes.

v Group names must comply with the same naming restrictions as logger names.

v The loggers returned from the Manager class are subclasses of the RASMessageLogger and the

RASTraceLogger classes that are provided by the stand-alone JRas logging toolkit. You can call any

public method that is defined by the RASMessageLogger and RASTraceLogger classes. You cannot call

any public method that is introduced by the provided subclasses.

v If you want to operate in either stand-alone or combined mode, you must provide your own Handler

and Formatter subclasses. You cannot use the Handler and Formatter classes that are provided by the

stand-alone JRas logging toolkit. User written handlers and formatters must conform to the documented

guidelines.

v Loggers that are obtained from the Manager class come with a WebSphere Application Server handler

installed. This handler writes message and trace records to logs that are defined by the WebSphere

Application Server run time. Manage these logs using the provided systems management interfaces.

v You can programmatically add and remove user-defined handlers from a logger at any time. Multiple

additions and removals of user defined handlers are supported. You are responsible for creating an

instance of the handler to add, configuring the handler by setting the handler mask value and formatter

appropriately, then adding the handler to the logger using the addHandler method. You are responsible

for programmatically updating the masks of user-defined handlers, as appropriate.

v You might get a reference to the handler that is installed within a logger by calling the getHandlers

method on the logger and processing the results. You must not call any methods on the handler that are

obtained in this way. You can remove the WebSphere Application Server handler from the logger by

calling the logger removeHandler method, passing in the reference to the WebSphere Application

Server handler. When removed, the WebSphere Application Server handler cannot be added again to

the logger.

v You can define your own message type. The behavior of user-defined message types and restrictions

on their definitions is discussed in Extending the JRas framework.

v You can define your own message event classes. The use of user-defined message event classes is

discussed in Extending the JRas framework.

v You can define your own trace types. The behavior of user-defined trace types and restrictions on your

definitions is discussed in Extending the JRas framework.

v You can define your own trace event classes. The use of user-defined trace event classes is discussed

in Extending the JRas framework.

v You must programmatically maintain the bits in the message and trace logger masks that correspond to

any user-defined types. If WebSphere Application Server facilities are used to manage the predefined

types, these updates must not modify the state of any of the bits that correspond to those types. If you

are assuming ownership responsibility for the predefined types, then you can change all bits of the

masks.

JRas messages and trace event types

This topic describes JRas message and trace event types.

Event types

The JRas framework described in this task and its sub-tasks is deprecated. However, you can achieve

similar results using Java logging.

The base message and trace event types that are defined by the stand-alone JRas logging toolkit are not

the same as the native types that are recognized by the WebSphere Application Server run-time. Instead,

the basic JRas types are mapped onto the native types. This mapping can vary by platform or edition. The

mapping is discussed in the following section.

46 Troubleshooting and support

Platform message event types

The message event types that are recognized and processed by the WebSphere Application Server

runtime are defined in the RASIMessageEvent interface that is provided by the stand-alone JRas logging

toolkit. These message types are mapped onto the native message types, as follows.

 WebSphere Application Server native type JRas RASIMessageEvent type

Audit TYPE_INFO, TYPE_INFORMATION

Warning TYPE_WARN, TYPE_WARNING

Error TYPE_ERR, TYPE_ERROR

Application developers can use JRas to issue an MVS WTO (write to operator) message by using a JRas

RASIMessageEvent type of TYPE_INFO or TYPE_INFORMATION to issue a WebSphere Application

Server for z/OS Audit trace. A WebSphere Application Server for z/OS Audit trace maps to an MVS route

code 11 WTO.

Platform trace event types

The trace event types that are recognized and processed by the WebSphere Application Server run time

are defined in the RASITraceEvent interface that is provided by the stand-alone JRas logging toolkit. The

RASITraceEvent interface provides a rich and complex set of types. This interface defines both a simple

set of levels, as well as a set of enumerated types.

v For a user who prefers a simple set of levels, the RASITraceEvent interface provides TYPE_LEVEL1,

TYPE_LEVEL2, and TYPE_LEVEL3. The implementations provide support for this set of levels. The levels

are hierarchical, enabling level 2 also enables level 1, enabling level 3 also enables levels 1 and 2.

v For users who prefer a more complex set of values that can be OR’d together, the RASITraceEvent

interface provides TYPE_API, TYPE_CALLBACK, TYPE_ENTRY_EXIT, TYPE_ERROR_EXC, TYPE_MISC_DATA,

TYPE_OBJ_CREATE, TYPE_OBJ_DELETE, TYPE_PRIVATE, TYPE_PUBLIC, TYPE_STATIC, and TYPE_SVC.

The trace event types are mapped onto the native trace types as follows:

Mapping WebSphere Application Server trace types to the JRas RASITraceEvent level types.

 WebSphere Application Server native type JRas RASITraceEvent level type

Event TYPE_LEVEL1

EntryExit TYPE_LEVEL2

Debug TYPE_LEVEL3

Mapping WebSphere Application Server trace types to the JRas RASITraceEvent enumerated types.

 WebSphere Application Server native type JRas RASITraceEvent enumerated types

Event TYPE_ERROR_EXC, TYPE_SVC, TYPE_OBJ_CREATE,

TYPE_OBJ_DELETE

EntryExit TYPE_ENTRY_EXIT, TYPE_API, TYPE_CALLBACK,

TYPE_PRIVATE, TYPE_PUBLIC, TYPE_STATIC

Debug TYPE_MISC_DATA

For simplicity, it is recommended that one or the other of the tracing type methodologies is used

consistently throughout the application. If you decide to use the non-level types, choose one type from

each category and use those types consistently throughout the application, to avoid confusion.

Chapter 4. Add logging and tracing to your application 47

Message and trace parameters

The various message logging and trace method signatures accept the Object, Object[] and Throwable

parameter types. WebSphere Application Server processes and formats the various parameter types as

follows:

Primitives

Primitives, such as int and long are not recognized as subclasses of Object type and cannot be

directly passed to one of these methods. A primitive value must be transformed to a proper Object

type (Integer, Long) before passing as a parameter.

Object

The toString method is called on the object and the resulting String is displayed. Implement the

toString method appropriately for any object that is passed to a message logging or trace method.

It is the responsibility of the caller to guarantee that the toString method does not display

confidential data such as passwords in clear text, and does not cause infinite recursion.

Object[]

The Object[] type is provided for the case when more than one parameter is passed to a message

logging or trace method. The toString method is called on each Object in the array. Nested arrays

are not handled, that is none of the elements in the Object array belong in an array.

Throwable

The stack trace of the Throwable type is retrieved and displayed.

Array of primitives

An array of primitive, for example, byte[], int[], is recognized as an Object, but is treated

somewhat as a second cousin of Object by Java code. In general, avoid arrays of primitives, if

possible. If arrays of primitives are passed, the results are indeterminate and can change,

depending on the type of array passed, the API used to pass the array, and the release of the

product. For consistent results, user code needs to preprocess and format the primitive array into

some type of String form before passing it to the method. If such preprocessing is not performed,

the following problems can result:

v [B@924586a0b - This message is deciphered as a byte array at location X. This message is

typically returned when an array is passed as a member of an Object[] type and results from

calling the toString method on the byte[] type.

v Illegal trace argument : array of long. This response is typically returned when an array of

primitives is passed to a method taking an Object.

v 01040703: The hex representation of an array of bytes. Typically this problem can occur when a

byte array is passed to a method taking a single Object. This behavior is subject to change and

cannot be relied on.

v ″1″ ″2″: The String representation of the members of an int[] type formed by converting each

element to an integer and calling the toString method on the integers. This behavior is subject

to change and cannot be relied on.

v [Ljava.lang.Object;@9136fa0b : An array of objects. Typically this response is seen when an

array containing nested arrays is passed.

Controlling message logging

Writing a message to a WebSphere Application Server log requires that the message type passes three

levels of filtering or screening:

1. The message event type must be one of the message event types that is defined in the

RASIMessageEvent interface.

2. Logging of that message event type must be enabled by the state of the message logger mask.

3. The message event type must pass any filtering criteria that is established by the WebSphere

Application Server run-time.

When a WebSphere Application Server logger is obtained from the Manager class, the initial setting of the

mask forwards all native message event types to the WebSphere Application Server handler. It is possible

to control what messages get logged by programmatically setting the state of the message logger mask.

48 Troubleshooting and support

Some editions of the product support user specified message filter levels for a server process. When such

a filter level is set, only messages at the specified severity levels are written to WebSphere Application

Server. Message types that pass the mask check of the message logger can be filtered out by WebSphere

Application Server.

Control tracing

Each edition of the product provides a mechanism for enabling or disabling trace. The various editions can

support static trace enablement (trace settings are specified before the server is started), dynamic trace

enablement (trace settings for a running server process can be dynamically modified), or both.

Writing a trace record to a WebSphere Application Server requires that the trace type passes three levels

of filtering or screening:

1. The trace event type must be one of the trace event types that is defined in the RASITraceEvent

interface.

2. Logging of that trace event type must be enabled by the state of the trace logger mask.

3. The trace event type must pass any filtering criteria that is established by the WebSphere Application

Server run-time.

When a logger is obtained from the Manager class, the initial setting of the mask is to suppress all trace

types. The exception to this rule is the case where the WebSphere Application Server run time supports

static trace enablement and a non-default startup trace state for that trace logger is specified. Unlike

message loggers, the WebSphere Application Server can dynamically modify the trace mask state of a

trace logger. WebSphere Application Server only modifies the portion of the trace logger mask that

corresponds to the values that are defined in the RASITraceEvent interface. WebSphere Application

Server does not modify undefined bits of the mask that might be in use for user-defined types.

When the dynamic trace enablement feature that is available on some platforms is used, the trace state

change is reflected both in the application server run time and the trace mask of the trace logger. If user

code programmatically changes the bits in the trace mask corresponding to the values that are defined by

in the RASITraceEvent interface, the mask state of the trace logger and the run time state become

unsynchronized and unexpected results occur. Therefore, programmatically changing the bits of the mask

corresponding to the values that are defined in the RASITraceEvent interface is not supported.

Instrumenting an application with JRas extensions

You can create an application using JRas extensions.

The JRas framework that is described in this task and its sub-tasks is deprecated. However, you can

achieve similar results using Java logging.

To create an application using the WebSphere Application Server JRas extensions, perform the following

steps:

1. Determine the mode for the extensions: integrated, stand-alone, or combined.

2. If the extensions are used in either stand-alone or combined mode, create the necessary handler and

formatter classes.

3. If localized messages are used by the application, create a resource bundle.

4. In the application code, get a reference to the Manager class and create the manager and logger

instances.

5. Insert the appropriate message and trace logging statements in the application.

Creating JRas resource bundles and message files

The WebSphere Application Server message logger provides the message and msg methods so the user

can log localized messages. In addition, the message logger provides the textMessage method to log

messages that are not localized. Applications can use either or both, as appropriate.

Chapter 4. Add logging and tracing to your application 49

The JRas framework that is described in this task and its sub-tasks is deprecated. However, you can

achieve similar results using Java logging.

The mechanism for providing localized messages is the resource bundle support that is provided by the

IBM Developer Kit, Java Technology Edition. If you are not familiar with resource bundles as implemented

by the Developer Kit, you can get more information from various texts, or by reading the API

documentation for the java.util.ResourceBundle, java.util.ListResourceBundle and

java.util.PropertyResourceBundle classes, as well as the java.text.MessageFormat class.

The PropertyResourceBundle class is the preferred mechanism to use. In addition, note that the JRas

extensions do not support the extended formatting options such as {1, date} or {0, number, integer} that

are provided by the MessageFormat class.

You can forward messages that are written to the internal WebSphere Application Server logs to other

processes for display. For example, messages that are displayed on the administrative console, which can

be running in a different location than the server process, can be localized using the late binding process.

Late binding means that WebSphere Application Server does not localize messages when they are logged,

but defers localization to the process that displays the message.

To properly localize the message, the displaying process must have access to the resource bundle where

the message text is stored. You must package the resource bundle separately from the application, and

install it in a location where the viewing process can access it. If you do not want to take these steps, you

can use the early binding technique to localize messages as they are logged.

The two techniques are described as follows:

Early binding

The application must localize the message before logging it. The application looks up the localized

text in the resource bundle and formats the message. When formatting is complete, the application

logs the message using the textMessage method. Use this technique to package the application

resource bundles with the application.

Late binding

The application can choose to have the WebSphere Application Server run time localize the

message in the process where it displays. Using this technique, the resource bundles are

packaged in a stand-alone .jar file, separately from the application. You must then install the

resource bundle .jar file on every machine in the installation from which an administrative console

or log viewing program might be run. You must install the .jar file in a directory that is part of the

extensions class path. In addition, if you forward logs to IBM service, you must also forward the

.jar file that contains the resource bundles.

To create a resource bundle, perform the following steps.

1. Create a text properties file that lists message keys and the corresponding messages. The properties

file must have the following characteristics:

v Each property in the file is terminated with a line-termination character.

v If a line contains only white space, or if the first non-white space character of the line is the number

sign symbol (#) or exclamation mark (!), the line is ignored. The # and ! characters can therefore be

used to put comments into the file.

v Each line in the file, unless it is a comment or consists only of white space, denotes a single

property. A backslash (\) is treated as the line-continuation character.

v The syntax for a property file consists of a key, a separator, and an element. Valid separators

include the equal sign (=), colon (:), and white space ().

v The key consists of all characters on the line from the first non-white space character to the first

separator. Separator characters can be included in the key by escaping them with a backslash (\),

but using this approach is not recommended because escaping characters is error prone and

confusing. Instead, use a valid separator character that does not display in any keys in the

properties file.

50 Troubleshooting and support

v White space after the key and separator is ignored until the first non-white space character is

encountered. All characters that remain before the line-termination character define the element.

See the Java documentation for the java.util.Properties class for a full description of the syntax and

construction of properties files.

2. Translate the file into localized versions of the file with language-specific file names for example, the

DefaultMessages.properties file can be translated into DefaultMessages_de.properties for German

and DefaultMessages_ja.properties for Japanese.

3. When the translated resource bundles are available, write them to a system-managed persistent

storage medium. Resource bundles are used to convert the messages into the requested national

language and locale.

4. When a message logger is obtained from the JRas manager, configure the logger to use a particular

resource bundle. Messages logged through the message API use this resource bundle when message

localization is performed. At run time, the user’s locale setting is used to determine the properties file

from which to extract the message that is specified by a message key, ensuring that the message is

delivered in the correct language.

5. If the message loggers msg method is called, explicitly identify a resource bundle name.

The application locates the resource bundle based on the file location relative to any directory in the class

path. For instance, if the DefaultMessages.properties property resource bundle is in the

baseDir/subDir1/subDir2/resources directory and baseDir is in the class path, the name

subdir1.subdir2.resources.DefaultMessage is passed to the message logger to identify the resource

bundle.

JRas resource bundles:

You can create resource bundles in several ways. The best and easiest way is to create a properties file

that supports a PropertiesResourceBundle resource bundle. This sample shows how to create such a

properties file.

 Resource bundle sample

The JRas framework described in this task and its sub-tasks is deprecated. However, you can achieve

similar results using Java logging.

For this sample, four localizable messages are provided. The properties file is created and the key-value

pairs are inserted into it. All the normal properties files conventions and rules apply to this file. In addition,

the creator must be aware of other restrictions that are imposed on the values by the Java

MessageFormat class. For example, apostrophes must be escaped or they cause a problem. Avoid the

use of non-portable characters. WebSphere Application Server does not support the use of extended

formatting conventions that the MessageFormat class supports, such as {1, date} or {0, number, integer}.

Assume that the base directory for the application that uses this resource bundle is baseDir and that this

directory is in the class path. Assume that the properties file is stored in the subdirectory baseDir that is

not in the class path (baseDir/subDir1/subDir2/resources). To allow the messages file to resolve, the

subDir1.subDir2.resources.DefaultMessage name is used to identify the PropertyResourceBundle resource

bundle and is passed to the message logger.

For this sample, the properties file is named DefaultMessages.properties:

Contents of the DefaultMessages.properties file

MSG_KEY_00=A message with no substitution parameters.

MSG_KEY_01=A message with one substitution parameter: parm1={0}

MSG_KEY_02=A message with two substitution parameters: parm1={0}, parm2 = {1}

MSG_KEY_03=A message with three substitution parameters: parm1={0}, parm2 = {1}, parm3={2}

Chapter 4. Add logging and tracing to your application 51

When the DefaultMessages.properties file is created, the file can be sent to a translation center where

the localized versions are generated.

JRas manager and logger instances

You can use the JRas extensions in integrated, stand-alone, or combined mode. Configuration of the

application varies depending on the mode of operation, but use of the loggers to log message or trace

entries is identical in all modes of operation.

Deprecated: The JRas framework described in this task and its sub-tasks is deprecated. However, you

can achieve similar results using Java logging.

Integrated mode is the default mode of operation. In this mode, message and trace events are sent to the

WebSphere Application Server logs.

In the combined mode, message and trace events are logged to both WebSphere Application Server and

user-defined logs.

In the stand-alone mode, message and trace events are logged only to user-defined logs.

Using the message and trace loggers

Regardless of the mode of operation, the use of message and trace loggers is the same.

Using a message logger

The message logger is configured to use the DefaultMessages resource bundle. Message keys must be

passed to the message loggers if the loggers are using the message API.

msgLogger.message(RASIMessageEvent.TYPE_WARNING, this,

 methodName, "MSG_KEY_00");

... msgLogger.message(RASIMessageEvent.TYPE_WARN, this,

 methodName, "MSG_KEY_01", "some string");

If message loggers use the msg API, you can specify a new resource bundle name.

msgLogger.msg(RASIMessageEvent.TYPE_ERR, this, methodName,

 "ALT_MSG_KEY_00", "alternateMessageFile");

You can also log a text message. If you are using the textMessage API, no message formatting is done.

msgLogger.textMessage(RASIMessageEvent.TYPE_INFO, this, methodName,"String and Integer",

"A String", new Integer(5));

Using a trace logger

Because trace is normally disabled, guard trace methods for performance reasons.

private void methodX(int x, String y, Foo z)

{

 // trace an entry point. Use the guard to make sure tracing is enabled.

Do this checking before you gather parameters to trace.

 if (trcLogger.isLoggable(RASITraceEvent.TYPE_ENTRY_EXIT) {

 // I want to trace three parameters, package them up in an Object[]

 Object[] parms = {new Integer(x), y, z};

 trcLogger.entry(RASITraceEvent.TYPE_ENTRY_EXIT, this, "methodX", parms);

 }

... logic

 // a debug or verbose trace point

 if (trcLogger.isLoggable(RASITraceEvent.TYPE_MISC_DATA) {

 trcLogger.trace(RASITraceEvent.TYPE_MISC_DATA, this, "methodX" "reached here");

 }

 ...

 // Another classification of trace event. An important state change is

52 Troubleshooting and support

detected, so a different trace type is used.

 if (trcLogger.isLoggable(RASITraceEvent.TYPE_SVC) {

 trcLogger.trace(RASITraceEvent.TYPE_SVC, this, "methodX", "an important event");

 }

 ...

 // ready to exit method, trace. No return value to trace

 if (trcLogger.isLoggable(RASITraceEvent.TYPE_ENTRY_EXIT)) {

 trcLogger.exit(RASITraceEvent.TYPE_ENTRY_EXIT, this, "methodX");

 }

}

Setting up for integrated JRas operation

Use JRas operations in integrated mode to send trace events and logging messages to only WebSphere

Application Server logs.

The JRas framework described in this task and its sub-tasks is deprecated. However, you can achieve

similar results using Java logging.

In the integrated mode of operation, message and trace events are sent to WebSphere Application Server

logs. This approach is the default mode of operation.

1. Import the requisite JRas extensions classes:

import com.ibm.ras.*;

import com.ibm.websphere.ras.*;

2. Declare logger references:

private RASMessageLogger msgLogger = null;

private RASTraceLogger trcLogger = null;

3. Obtain a reference to the Manager class and create the loggers. Because loggers are named

singletons, you can do this activity in a variety of places. One logical candidate for enterprise beans is

the ejbCreate method. For example, for the myTestBean enterprise bean, place the following code in

the ejbCreate method:

com.ibm.websphere.ras.Manager mgr = com.ibm.websphere.ras.Manager.getManager();

msgLogger = mgr.createRASMessageLogger("Acme", "WidgetCounter", "RasTest",

 myTestBean.class.getName());

// Configure the message logger to use the message file that is created

// for this application.

msgLogger.setMessageFile("acme.widgets.DefaultMessages");

trcLogger = mgr.createRASTraceLogger("Acme", "Widgets", "RasTest",

 myTestBean.class.getName());

mgr.addLoggerToGroup(trcLogger, groupName);

Setting up for combined JRas operation

Use JRas operation in combined mode to output trace data and logging messages to both WebSphere

Application Server and user-defined logs.

The JRas framework described in this task and its sub-tasks is deprecated. However, you can achieve

similar results using Java logging.

In combined mode, messages and trace are logged to both WebSphere Application Server logs and

user-defined logs. The following sample assumes that:

v You wrote a user-defined handler named SimpleFileHandler and a user-defined formatter named

SimpleFormatter.

v You are not using user-defined types or events.

1. Import the requisite JRas extensions classes:

import com.ibm.ras.*;

import com.ibm.websphere.ras.*;

Chapter 4. Add logging and tracing to your application 53

2. Import the user handler and formatter:

import com.ibm.ws.ras.test.user.*;

3. Declare the logger references:

private RASMessageLogger msgLogger = null;

 private RASTraceLogger trcLogger = null;

4. Obtain a reference to the Manager class, create the loggers, and add the user handlers. Because

loggers are named singletons, you can obtain a reference to the loggers in a number of places. One

logical candidate for enterprise beans is the ejbCreate method. Make sure that multiple instances of

the same user handler are not accidentally inserted into the same logger. Your initialization code must

support this approach. The following sample is a message logger sample. The procedure for a trace

logger is similar.

com.ibm.websphere.ras.Manager mgr = com.ibm.websphere.ras.Manager.getManager();

 msgLogger = mgr.createRASMessageLogger("Acme", "WidgetCounter", "RasTest",

 myTestBean.class.getName());

 // Configure the message logger to use the message file defined

 // in the ResourceBundle sample.

 msgLogger.setMessageFile("acme.widgets.DefaultMessages");

 // Create the user handler and formatter. Configure the formatter,

 // then add it to the handler.

 RASIHandler handler = new SimpleFileHandler("myHandler", "FileName");

 RASIFormatter formatter = new SimpleFormatter("simple formatter");

 formatter.addEventClass("com.ibm.ras.RASMessageEvent");

 handler.addFormatter(formatter);

 // Add the Handler to the logger. Add the logger to the list of the

 //handlers listeners, then set the handlers

 // mask, which updates the loggers composite mask appropriately.

 // WARNING - there is an order dependency here that must be followed.

 msgLogger.addHandler(handler);

 handler.addMaskChangeListener(msgLogger);

 handler.setMessageMask(RASIMessageEvent.DEFAULT_MESSAGE_MASK);

Setting up for stand-alone JRas operation

You can configure JRas operations to output trace data and logging messages to only user-defined

locations.

The JRas framework described in this task and its sub-tasks is deprecated. However, you can achieve

similar results using Java logging.

In stand-alone mode, messages and traces are logged only to user-defined logs. The following sample

assumes that:

v You have a user-defined handler named SimpleFileHandler and a user-defined formatter named

SimpleFormatter.

v You are not using user-defined types of events.

1. Import the requisite JRas extensions classes:

import com.ibm.ras.*;

import com.ibm.websphere.ras.*;

2. Import the user handler and formatter:

import com.ibm.ws.ras.test.user.*;

3. Declare the logger references:

private RASMessageLogger msgLogger = null;

 private RASTraceLogger trcLogger = null;

4. Obtain a reference to the Manager class, create the loggers, and add the user handlers. Because

loggers are named singletons, you can obtain a reference to the loggers in a number of places. One

logical candidate for enterprise beans is the ejbCreate method. Make sure that multiple instances of

54 Troubleshooting and support

the same user handler are not accidentally inserted into the same logger. Your initialization code must

support this approach. The following sample is a message logger sample. The procedure for a trace

logger is similar.

com.ibm.websphere.ras.Manager mgr = com.ibm.websphere.ras.Manager.getManager();

 msgLogger = mgr.createRASMessageLogger("Acme", "WidgetCounter", "RasTest",

 myTestBean.class.getName());

 // Configure the message logger to use the message file that is defined in

 //the ResourceBundle sample.

 msgLogger.setMessageFile("acme.widgets.DefaultMessages");

 // Get a reference to the Handler and remove it from the logger.

 RASIHandler aHandler = null;

 Enumeration enum = msgLogger.getHandlers();

 while (enum.hasMoreElements()) {

 aHandler = (RASIHandler)enum.nextElement();

 if (aHandler instanceof WsHandler)

 msgLogger.removeHandler(wsHandler);

 }

 // Create the user handler and formatter. Configure the formatter,

 // then add it to the handler.

 RASIHandler handler = new SimpleFileHandler("myHandler", "FileName");

 RASIFormatter formatter = new SimpleFormatter("simple formatter");

 formatter.addEventClass("com.ibm.ras.RASMessageEvent");

 handler.addFormatter(formatter);

 // Add the Handler to the logger. Add the logger to the list of the

 // handlers listeners, then set the handlers

 // mask, which will update the loggers composite mask appropriately.

 // WARNING - there is an order dependency here that must be followed.

 msgLogger.addHandler(handler);

 handler.addMaskChangeListener(msgLogger);

 handler.setMessageMask(RASIMessageEvent.DEFAULT_MESSAGE_MASK);

Logging messages and trace data for Java server applications

By using the WebSphere Application Server for z/OS support for logging application messages and trace

data, you can improve the reliability, availability, and serviceability of any Java application that runs in a

WebSphere Application Server for z/OS server. Through this support, your Java application’s messages

can appear on the MVS master console, in the error log stream, or in the component trace (CTRACE)

data set for WebSphere Application Server for z/OS. Your application’s trace entries can appear in the

same CTRACE data set.

1. Determine where to issue the log messages. Read “Message location best practices” for tips on which

tools to use.

2. Configure logging in the MVS master console, the error log stream, or the CTRACE data set.

Message location best practices

Use this information for configuring messaging locations.

You might want to issue messages to the MVS master console to report serious error conditions for

mission-critical applications. Through the master console, an operator can receive and, if necessary, take

action in response to a message that indicates the status of an application. In addition, by directing

messages to the master console, you can trigger automation packages to take action for specific

conditions or events related to your application’s processing.

Any messages that your application issues to the console also appear in either the error log stream or the

CTRACE data set for WebSphere Application Server for z/OS, depending on the message type. Logging

the messages in these system resources can help you more easily diagnose errors related to your

Chapter 4. Add logging and tracing to your application 55

application’s processing. Similarly, issuing requests to log trace data in the CTRACE data set is another

method of recording error conditions or collecting application data for diagnostic purposes.

System performance when logging messages and trace data

Using message logging and trace data can affect system performance depending on your system

configuration.

You can select the amount and types of trace data to be collected, which provides you with the ability to

either run your application with minimal tracing when performance is a priority, or run your application with

detailed tracing when you need to recreate a problem and collect additional diagnostic information.

The error log stream, the CTRACE data set for WebSphere Application Server for z/OS, and the master

console are primarily intended for monitoring or recording diagnostic data for system components and

critical applications. Depending on your installation’s configuration, directing application messages and

data to these resources might have an adverse affect on system performance. For example, if you send

application data to the CTRACE data set, trace entries in that data set might wrap more quickly, which

means you might lose some critical diagnostic data because the system writes new entries over existing

ones when wrapping occurs. Use this logging support judiciously.

Note: You can only use WebSphere Application Server for z/OS support for logging messages and trace

data for Java applications, not for Java applets.

Issuing application messages in the MVS master console

The JRas framework described in this task and its sub-tasks is deprecated. However, you can achieve

similar results using Java logging.

With the WebSphere Application Server for z/OS reliability, availability, and serviceability support for Java

(JRas) framework, you can issue messages from your Java application to the MVS master console. You

might want to issue messages to the master console to report serious error conditions for mission-critical

applications, or to trigger automation packages.

The messages your application issues also appear in either the error log stream or the component trace

(CTRACE) data set that WebSphere Application Server for z/OS uses.

Logging the messages is another method of recording error conditions or collecting application data for

diagnostic purposes.

WebSphere Application Server for z/OS provides code that creates and manages a message logger, which

processes your application’s messages. WebSphere Application Server for z/OS creates only one

message logger for each unique organization, product, or component, so that you can more easily identify

the messages recorded in the error log stream or CTRACE data set for a specific application. The

message logger runs in the Java virtual machine (JVM) for the WebSphere Application Server for z/OS

server in which your Java application will run.

To use a message logger, in your Java application:

1. Define the message logger.

2. Drive the method to instruct WebSphere Application Server for z/OS to create the message logger.

3. Code messages at appropriate points in your application.

Configuring logging properties using the administrative console

Use this task to browse or change the properties of Java logging.

56 Troubleshooting and support

Before applications can log diagnostic information, you need to specify how you want the server to handle

log output, and what level of logging you require. Using the administrative console, you can:

v Enable or disable a particular log, specify where log files are stored and how many log files are kept.

v Specify the level of detail in a log, and specify a format for log output.

v Set a log level for each logger.

You can change the log configuration statically or dynamically. Static configuration changes affect

applications when you start or restart the application server. Dynamic or run time configuration changes

apply immediately.

When a log is created, the level value for that log is set from the configuration data. If no configuration

data is available for a particular log name, the level for that log is obtained from the parent of the log. If no

configuration data exists for the parent log, the parent of that log is checked, and so on up the tree, until a

log with a non-null level value is found. When you change the level of a log, the change is propagated to

the children of the log, which recursively propagates the change to their children, as necessary.

To configure loggers and log handlers for Java logging, use the administrative console to complete the

following steps:

1. Set the logging levels for your logs:

a. In the navigation pane, click Servers > Application Servers.

b. Click the name of the server that you want to work with.

c. Under Troubleshooting, click Logging and tracing.

d. Click Change Log Detail levels.

e. To make a static change to the configuration, click the Configuration tab. A list of well-known

components, packages, and groups is displayed. To change the configuration dynamically, click the

Runtime tab. The list of components, packages, and groups displays all the components that are

currently registered on the running server.

f. Select a component, package, or group to set a logging level.

g. Click Apply.

h. Click OK.

2. To have static configuration changes take effect, stop then restart the application server.

Log level settings

Use this topic to configure and manage log level settings.

Using log levels you can control which events are processed by Java logging. When you change the level

for a logger, the change is propagated to the children of the logger.

Change Log Detail Levels

 Enter a log detail level that specifies the components, packages, or groups to trace. The log detail

level string must conform to the specific grammar described in this topic. You can enter the log

detail level string directly, or generate it using the graphical trace interface.

 If you select the Configuration tab, a static list of well-known components, packages, and groups is

displayed. This list might not be exhaustive.

 If you select the Runtime tab, the list of components, packages, and group are displayed with all

the components that are registered on the running application server and in the static list.

 The format of the log detail level specification is:

<component> = <level>

Chapter 4. Add logging and tracing to your application 57

where <component> is the component for which to set a log detail level, and <level> is one of the

valid logger levels (off, fatal, severe, warning, audit, info, config, detail, fine, finer, finest, all).

Separate multiple log detail level specifications with colons (:).

 Components correspond to Java packages and classes, or to collections of Java packages. Use

an asterisk (*) as a wildcard to indicate components that include all the classes in all the packages

that are contained by the specified component. For example:

* Specifies all traceable code running in the application server, including the product system

code and customer code.

com.ibm.ws.*

Specifies all classes with the package name beginning with com.ibm.ws.

com.ibm.ws.classloader.JarClassLoader

Specifies the JarClassLoader class only.

 An error can occur when setting a log detail level specification from the administrative console if

selections are made from both the Groups and Components lists. In some cases, the selection

made from one list is lost when adding a selection from the other list. To work around this

problem, enter the log detail level specification directly into the log detail level entry field.

Select a component or group to set a log detail level. The table following lists the valid levels for

application servers at WebSphere Application Server Version 6 and later, and the valid logging and trace

levels for earlier versions:

 Version 6 logging level Logging level before

Version 6

Trace level before Version

6

Content / Significance

Off Off All disabled* Logging is turned off.

* In Version 6, a trace level

of All disabled turns off

trace, but does not turn off

logging. Logging is enabled

from the Info level.

Fatal Fatal - Task cannot continue and

component, application, and

server cannot function.

Severe Error - Task cannot continue but

component, application, and

server can still function.

This level can also indicate

an impending fatal error.

Warning Warning - Potential error or impending

error. This level can also

indicate a progressive

failure (for example, the

potential leaking of

resources).

Audit Audit - Significant event affecting

server state or resources

Info Info - General information

outlining overall task

progress

Config - - Configuration change or

status

58 Troubleshooting and support

Detail - - General information

detailing subtask progress

Fine - Event Trace information - General

trace + method entry, exit,

and return values

Finer - Entry/Exit Trace information - Detailed

trace

Finest - Debug Trace information - A more

detailed trace that includes

all the detail that is needed

to debug problems

All All enabled All events are logged. If you

create custom levels, All

includes those levels, and

can provide a more detailed

trace than finest.

When you enable a logging level in Version 6.0 or above, you are also enabling all of the levels with

higher severity. For example, if you set the logging level to warning on your Version 6.x application server,

then warning, severe and fatal events are processed.

Trace information, which are events at the Fine, Finer and Finest levels, can be written only to the trace

log. Therefore, if you do not enable diagnostic trace, setting the log detail level to Fine, Finer, or Finest will

not have an effect on the data that is logged.

HTTP error and NCSA access log settings

Use this page to configure an HTTP error log and National Center for Supercomputing Applications

(NCSA) access logs for an HTTP transport channel. The HTTP error log contains HTTP errors. The level

of error logging that occurs is dependent on the value that is selected for the Error log level field.

To view this administrative console page, click Application servers > server name > HTTP error and

NCSA access logging.

On a z/OS platform, HTTP error and NCSA access logging is done in the controller.

The NCSA access log contains a record of all inbound client requests that the HTTP transport channel

handles. All of the messages that are contained in these logs are in NCSA format.

After you configure the HTTP error log and the NCSA access logs, make sure that the Enable NCSA

access logging field is selected for the HTTP channels for which you want logging to occur. To view the

settings for an HTTP channel, click Servers > Application Servers > server > Web Container Transport

Chains > HTTP Inbound Channel.

Enable service at server startup

When selected, either an NCSA access log or an HTTP error log, or both are initialized when the server

starts.

Enable access logging

When selected, a record of inbound client requests that the HTTP transport channel handles is kept in the

NCSA access log.

Access log file path

Indicates the directory path and name of the NCSA access log. Standard variable substitutions, such as

$(SERVER_LOG_ROOT), can be used when specifying the directory path.

Chapter 4. Add logging and tracing to your application 59

On the z/OS platform, you should use a server-specific variable, such as $(SERVER_LOG_ROOT), to

prevent log file name collisions.

Access log maximum size

Indicates the maximum size, in megabytes, of the NCSA access log file. When this size is reached, the

logfile_name.1 archive log is created. However, every time that the original log file overflows this archive

file, the file is overwritten with the most current version of the original log file.

NCSA access log format

Indicates that the NCSA format is used when logging client access information. If Common is selected, the

log entries contain the requested resource and a few other pieces of information, but does not contain

referral, user agent, or cookie information. If Combined is selected, referral, user agent, and or cookie

information is included.

Enable error logging

When selected, HTTP errors that occur while the HTTP channel processes client requests are recorded in

the HTTP error log.

Error log file path

Indicates the directory path and the name of the HTTP error log. Standard variable substitutions, such as

$(SERVER_LOG_ROOT), can be used when specifying the directory path.

On the z/OS platform, you should use a server-specific variable, such as $(SERVER_LOG_ROOT), to

prevent log file name collisions.

Error log maximum size

Indicates the maximum size, in megabytes, of the HTTP error log file. When this size is reached, the

logfile_name.1 archive log is created. However, every time that the original log file overflows this archive

file, this file is overwritten with the most current version of the original log file.

Error log level

Indicates the type of error messages that are included in the HTTP error log.

You can select:

Critical

Only critical failures that stop the Application Server from functioning properly are logged.

Error The errors that occur in response to clients are logged. These errors require Application Server

administrator intervention if they result from server configuration settings.

Warning

Information on general errors, such as socket exceptions that occur while handling client requests,

are logged. These errors do not typically require Application Server administrator intervention.

Information

The status of the various tasks that are performed while handling client requests is logged.

Debug

More verbose task status information is logged. This level of logging is not intended to replace

RAS logging for debugging problems, but does provide a steady status report on the progress of

individual client requests. If this level of logging is selected, you must specify a large enough log

file size in the Error log maximum size field to contain all of the information that is logged.

The Common Base Event in WebSphere Application Server

This topic describes how WebSphere Application Server takes advantage of the Common Base Events.

60 Troubleshooting and support

An application creates an event object whenever something happens that either needs to be recorded for

later analysis or which might require the trigger of additional work. An event is a structured notification that

reports information that is related to a situation. An event reports three kinds of information:

v The situation: What happened

v The identity of the affected component: For example, the server that shut down

v The identity of the component that is reporting the situation, which might be the same as the affected

component

The application that creates the event object is called the event source. Event sources can use a common

structure for the event. The accepted standard for such a structure is called the Common Base Event. The

Common Base Event is an XML document that is defined as part of the autonomic computing initiative.

The Common Base Event defines common fields, the values they can take, and the exact meanings of

these values.

The Common Base Event model is a standard that defines a common representation of events that is

intended for use by enterprise management and business applications. This standard, which is developed

by the IBM Autonomic Computing Architecture Board, supports encoding of logging, tracing, management,

and business events using a common XML-based format. This format makes it possible to correlate

different types of events that originate from different applications. For more information about the Common

Base Event model, see the Common Base Event specification (Canonical Situation Data Format: The

Common Base Event V1.0.1). The common event infrastructure currently supports Version 1.0.1 of the

specification.

The basic concept behind the Common Base Event model is the situation. A situation can be anything that

happens anywhere in the computing infrastructure, such as a server shutdown, a disk-drive failure, or a

failed user login. The Common Base Event model defines a set of standard situation types that

accommodate most of the situations that might arise (for example, StartSituation and CreateSituation).

The Common Base Event contains all of the information that is needed by the consumers to understand

the event. This information includes data about the runtime environment, the business environment, and

the instance of the application object that created the event.

For complete details on the Common Base Event format, see the XML schema that is included in the

Common Base Event specification document, at ftp://www6.software.ibm.com/software/developer/library/
ac-toolkitdg.pdf .

Types of problem determination events

Problem determination involves multiple types of data, including at least two different classes of event

data, log events, and diagnostic events.

Log events, which are also referred to as message events, are typically emitted by components of a

business application during normal deployment and operations. Log events might identify problems, but

these events are also normally available and emitted while an application and its components are in

production mode. The target audience for log and message events is users and administrators of the

application and the components that make up the application. Log events are normally the only events

available when a problem is first detected, and are typically used during both problem recovery and

problem resolution.

Diagnostic events, which are commonly referred to as trace events, are used to capture internal diagnostic

information about a component, and are usually not emitted or available during normal deployment and

operation. The target audience for diagnostic events is the developers of the components that make up the

business application. Diagnostic events are typically used when trying to resolve problems within a

component, such as a software failure, but are sometimes used to diagnose other problems, especially

when the information provided by the log events is not sufficient to resolve the problem. Diagnostic events

are typically used when trying to resolve a problem.

Chapter 4. Add logging and tracing to your application 61

ftp://www6.software.ibm.com/software/developer/library/ac-toolkitdg.pdf
ftp://www6.software.ibm.com/software/developer/library/ac-toolkitdg.pdf

A Common Base Event is a common structure for an event. It defines common fields, the values that

these fields can take, and the exact meanings of these values for an event. Common Base Events are

primarily used to represent log events.

The structure of the Common Base Event

A Common Base Event is a common structure for an event. It defines common fields, the values that

these fields can take, and the exact meanings of these values for an event.

The Common Base Event contains several structural elements. These elements include:

v Common header information

v Component identification, both source and reporter

v Situation information

v Message data

v Extended data

v Context data

v Associated events and association engine

Each of these structural elements has its own embedded elements and attributes.

The following table presents a summary of all the fields in the Common Base Event and their usage

requirements for problem determination events. This table shows whether a particular element or attribute

is required, recommended, optional, prohibited, or discouraged for log events, and the base specification.

 Field name Log events Base specification

Version Required Required

creationTime Required Required

severity Required Optional

Msg Required Optional

sourceComponentId* Required Required

sourceComponentId.location Required Required

sourceComponentId.locationType Required Required

sourceComponentId.component Required Required

sourceComponentId.subComponent Required Required

sourceComponentId.componentIdType Required Required

sourceComponentId.componentType Required Required

sourceComponentId.application Recommended Optional

sourceComponentId.instanceId Recommended Optional

sourceComponentId.processId Recommended Optional

sourceComponentId.threadId Recommended Optional

sourceComponentId.executionEnvironment Optional Optional

situation* Required Required

situation.categoryName Required Required

situation.situationType* Required Required

situation.situationType.reasoningScope Required Required

situation.situationType.(specific Situation Type elements) Required Required

msgDataElement* Recommended Optional

62 Troubleshooting and support

msgDataElement .msgId Recommended Optional

msgDataElement .msgIdType Recommended Optional

msgDataElement .msgCatalogId Recommended Optional

msgDataElement .msgCatalogTokens Recommended Optional

msgDataElement .msgCatalog Recommended Optional

msgDataElement .msgCatalogType Recommended Optional

msgDataElement .msgLocale Recommended Optional

extensionName Recommended Optional

localInstanceId Optional Optional

globalInstanceId Optional Optional

priority Discouraged Optional

repeatCount Optional Optional

elapsedTime Optional Optional

sequenceNumber Optional Optional

reporterComponentId* Optional Optional

reporterComponentId.location Required (2) Required (2)

reporterComponentId.locationType Required (2) Required (2)

reporterComponentId.component Required (2) Required (2)

reporterComponentId.subComponent Required (2) Required (2)

reporterComponentId.componentIdType Required (2) Required (2)

reporterComponentId.componentType Required (2) Required (2)

reporterComponentId.instanceId Optional Optional

reporterComponentId.processId Optional Optional

reporterComponentId.threadId Optional Optional

reporterComponentId.application Optional Optional

reporterComponentId.executionEnvironment Optional Optional

extendedDataElements* Note 3 Optional

contextDataElements* Note 4 Optional

associatedEvents* Note 5 Optional

Notes:

v Items followed by an asterisk (*) are elements that consist of sub elements and attributes. The fields in

those elements are listed in the table directly following the parent element name.

v Some of the elements are optional, but when included, they include sub elements and attributes that are

required. For example, the reporterComponentId element has a ComponentIdentification type. The

component attribute in ComponentIdentification is required. Therefore, the

reporterComponentId.component attribute is required, but only when the reporterComponentId parent

element is included.

v The extendedDataElements element can be included multiple times to supply extended data

information. See the Extended data section for more information on required and recommended

extended data element values.

v The contextDataElements element can be included multiple times to supply context data information.

v The associatedEvents element can be included multiple times to supply correlation data. No

recommended uses of this element exist for the producers of problem determination data, and the use

of this element is discouraged.

Chapter 4. Add logging and tracing to your application 63

Common header information

This topic provides additional information about how to format and use these fields for problem

determination events, which can be used to clarify and extend the information provided in the other

documents.

The Common Base Event specification [CBE101] provides information on the required format of these

fields and the Common Base Event Developer’s Guide [CBEBASE] provides general usage guidelines.

The common header information in the Common Base Event includes the following information about an

event:

v Version: The version of this Common Base Event

v creationTime: The date and time when the event generated

v Severity and priority: The severity of the condition (situation) that is identified by the event

v extensionName: The type of event that was captured

v localInstanceId and globalInstanceId: Identifiers that can be used to quickly identify a specific event

within a set of events

v repeatCount and elapsedTime: Information that supports a system to efficiently report multiple events of

the same type, by consolidating those events into a single event

v sequenceNumber: Sequence information that supports a system to order a set of events in other ways

than time of capture

severity

All problem determination events must provide an indication as to the relative severity of the condition

(situation) being reported by providing appropriate values for the severity field in the Common Base

Event. The severity field is required for problem determination events. This field is more restrictive than

the base specification for the Common Base Event, which lists this field as optional because effective

and efficient problem determination requires the ability to quickly identify the information that is needed

to resolve a problem as well as prioritize the problems that need addressing. Typically, the following

values are used for problem determination events:

 10 Information Log information events, normal

conditions, and events that are

supplied to clarify operations, for

example, state transitions, operational

changes. These events typically do

not require administrator action or

intervention.

20 Harmless Similar to information events, but are

used to capture audit items, such as

state transitions or operational

changes. These events typically do

not require administrator action or

intervention.

30 Warning Warnings typically represent

recoverable errors, for example a

failure that the system can correct.

These events can require

administrator action or intervention.

64 Troubleshooting and support

40 Minor Minor errors describe events that

represent an unrecoverable error

within a component. The failure

affects the component ability to

service some requests. The business

application can continue to perform its

normal functions, but its overall

operation might be degraded. These

events require administrator action or

intervention to address the condition.

50 Critical Critical errors describe events that

represent an unrecoverable error

within a component. The failure

significantly affects the component

ability to service most requests. The

business application can continue

most, but not all of its normal

functions and its overall operation

might be degraded. These events

require administrator action or

intervention to address the condition.

60 Fatal Fatal errors describe events that

represent an unrecoverable error

within a component. The failure

usually results in the complete failure

of the component. The business

application can continue some normal

functions, but its overall operation

might be degraded. These events

require administrator action or

intervention to address the condition.

msg

Refer to “Message data” on page 69 for information on this attribute.

priority

The use of the priority field is discouraged for problem determination events. The severity field is

typically used to communicate and evaluate the importance of problem determination events. Use the

priority field to enhance the information that is provided in the severity field, that is. prioritize events of

the same severity.

extensionName

The extensionName field is used to communicate the type of event that is reported, for example, what

general class of events is being reported. In many cases this field provides an indication of what

additional data you can expect with the event, for example, optional data values.

repeatCount

The repeatCount field is valid for problem determination events, but is not typically used or supplied by

the event producers. This field is used for data reduction and consolidation by event management and

analysis systems.

elapsedTime

The elapsedTime field is valid for problem determination events, but is not typically used or supplied

by the event producers. This field is used for data reduction and consolidation by event management

and analysis systems.

sequenceNumber

The sequenceNumber field is valid for problem determination events. It is typically used only by event

Chapter 4. Add logging and tracing to your application 65

producers when the granularity of the event time stamp (the creationTime field) is not sufficient in

ordering events. The sequenceNumber field is typically used to sequence events that have the same

time stamp value.

 Event management and analysis systems can use the sequenceNumber field for a number of reasons,

including providing alternative sequencing, not necessarily based on a time stamp. The

recommendations here are provided primarily for event producers.

Component identification for source and reporter

The component identification fields in the Common Base Event are used to indicate which component in

the system is experiencing the condition that is described by the event (the sourceComponentID) and

which component emitted the event (the reporterComponentID). Typically, these components are the

same, in which case only the sourceComponentID is supplied. Some notes and scenarios on when to use

these two elements in the Common Base Event:

v The sourceComponentID is always used to identify the component experiencing the condition that is

described by the event.

v The reporterComponentID is used to identify the component that actually produced and emitted the

event. This element is typically used only within events that are emitted by a component that is

monitoring another component and providing operational information regarding that component. The

monitoring component (for example, a Tivoli agent or hardware device driver) is identified by the

reporterComponentID and the component being monitored (for example, a monitored server or

hardware device) is identified by the sourceComponentID.

A potential misuse of the reporterComponentID is to identify a component that provides event

conversion or management services for a component, for example, identifying an adapter that

transforms the events that are captured by a component into Common Base Event format. The event

conversion function is considered an extension of the component and not identified separately.

The information that is used to identify a component in the system is the same, regardless of whether it is

the source component or reporter component:

 location locationType Component location Identifies the location of the

component.

component componentType Component name Identifies the asset name of the

component, as well as the type of

component.

subcomponent Subcomponent name Identifies a specific part or

subcomponent of a component, for

example a software module or

hardware part.

application Business application name Identifies the business application or

process the component is a part of

and provides services for.

instanceId Operational instance Identifies the operational instance of a

component, that is the actual running

instance of the component.

processId threadId Operational instance Identifies the operational instance of a

component within the context of a

software operating system, that is he

operating system process and thread

running when the event was

produced.

66 Troubleshooting and support

executionEnvironment Operational instance Component

location

Provides additional information about

the operational instance of a

component or its location by

identifying the name of the

environment hosting the operational

instance of the component, for

example the operating system name

for a software application, the

application server name for a Java 2

Platform, Enterprise Edition (J2EE)

application, or the hardware server

type for a hardware part.

The Common Base Event specification [CBE101] provides information on the required format of these

fields and the Common Base Event Developer’s Guide [CBEBASE] provides general usage guidelines.

This section provides additional information about how to format and use some of these fields for problem

determination events, which can be used to clarify and extend the information that is provided in the other

documents.

Component

The Component field in a problem determination event is used to identify the manageable asset that is

associated with the event. A manageable asset is open for interpretation, but a good working definition

is a manageable asset represents a hardware or software component that can be separately obtained

or developed, deployed, managed, and serviced. Examples of typical component names are:

v IBM eServer xSeries model x330

v IBM WebSphere Application Server version 5.1 (5.1 is the version number)

v Microsoft Windows 2000

v The name of an internally developed software application for a component

subComponent

The Subcomponent field in a problem determination event identifies the specific part of a component

that is associated with the event. The subcomponent name is typically not a manageable asset, but

provides internal diagnostic information when diagnosing an internal defect within a component, that is

What part failed? Examples of typical subcomponents and their names are:

v Intel Pentium processor within a server system (Intel Pentium IV Processor)

v the enterprise bean container within a Web application server (enterprise bean container)

v the task manager within an operating system (Linux Kernel Task Manager)

v the name of a Java class and method (myclass.mycompany.com or

myclass.mycompany.com.methodname).

The format of a subcomponent name is determined by the component, but use the convention shown

previously for naming a Java class or the combination of a Java class and method is followed. The

subcomponent field is required in the Common Base Event.

componentIdType

The componentIdType field is required by the Common Base Event specification, but provides minimal

value for problem determination events. For problem determination events, the use of the application

value is discouraged. The componentIdType field identifies the type of component; the application is

identified by the application field.

application

The application field is listed as an optional value within the Common Base Event specification, but

provide it within problem determination events whenever it this value is available. The only reason this

field is not required for problem determination events is that instances exist where the issuing

component might not be aware of the overall business application.

Chapter 4. Add logging and tracing to your application 67

instanceId

The instanceId field is listed as an optional value within the Common Base Event specification, but

provide this value within problem determination events whenever it is available.

 Always provide the instanceID when a software component is identified and identify the operational

instance of the component (for example, which operation instance of an installed software image is

actually associated with the event). Provide this value for hardware components when these

components support the concept of operational instances.

 The format of the supplied value is defined by the component, but must be a value that an analysis

system can use (either human or programmatic) to identify the specific running instance of the

identified component. Examples include:

v cell, node, server name for the IBM WebSphere Application Server

v deployed EAR file name for a Java enterprise bean

v serial number for a hardware processor

processId

The processId field is listed as an optional value within the Common Base Event specification, but

provide this value for problem determination events whenever it is available and applicable. Always

provide this value for software-generated events, and identify the operating system process that is

associated with the component that is identified in the event. Match the format of the thread ID with

the format of the operating system (or other running environment, such as a Java virtual machine).

This field is typically not applicable or used for events that are emitted by hardware (for example,

firmware).

threadId

The threadId field is listed as an optional value within the Common Base Event specification, but

provide this value for problem determination events whenever it is available and applicable. Always

provide for software-generated events, and identify the active operating system thread when the event

was detected or issued. A notable exception to this recommendation is some operating systems or

running environments do not support threads. Match the format of the thread ID with the format of the

operating system (or other running environment, such as a Java virtual machine). This field is typically

not applicable or used for events that are emitted by hardware (for example, firmware).

executionEnvironment

The executionEnvironment field, when used, identifies the immediate running environment that is used by

the component being identified. Some examples are:

v the operating system name when the component is a native software application.

v the operating system/Java virtual machine name when the component is a Java 2 Platform, Standard

Edition (J2SE) application.

v the Web server name when the component is a servlet.

v the portal server name when the component is a portlet.

v the application server name when the component is an enterprise bean.

The Common Base Event specification [CBE101] provides information on the required format of these

fields and the Common Base Event Developer’s Guide [CBEBASE] provides general usage guidelines.

Situation information

The situation information is used to classify the condition that is reported by an event into a common set of

situations.

The Common Base Event specification [CBE101] provides information on the set of situations defined for

the Common Base Event, with the values and formats that are used to describe these situations. The

Common Base Event Developer’s Guide [CBEBASE] provides general usage guidelines.

Consider the following points regarding situation information for problem determination events:

68 Troubleshooting and support

v Whenever possible, use the situation categorizations and qualifiers that are described in the base

Common Base Event specification. Avoid using your own situation definitions as much as possible.

v Not all messages and logs can be classified using the situation definitions that are supplied in the base

Common Base Event specification. You can use the OtherSituation categorization to provide your own

situation information, but the recommended course of action for problem determination events is to use

the ReportSituation categorization, with reportCategory=Log.

v Warning events can be confusing. A warning event (that is an event with severity=warning) typically

indicates a recoverable failure, but the situation settings can be interpreted as unrecoverable failures

(for example ConnectSituation, successDisposition=UNSUCCESSFUL). Use the appropriate situation

categorization so the severity setting indicates the severity of the situation, that is whether the

component recovered from the failure.

v The recommended setting for the reasoningScope value is EXTERNAL for all message events.

Message data

All problem determination Common Base Events must provide human readable text that describes the

specific reported event within the msg field of the Common Base Event.

The text that is associated with events representing actual messages or log entries is expected to be

translated and localized. Include the msgDataElement element in the Common Base Event whenever

internationalized text is provided in the event. This element provides information about how the message

text is created and how to interpret it. This information is particularly invaluable when trying to interpret the

event programmatically or when trying to interpret the message independent of the locale or language that

is used to format the message text.

Prerequisite: Understand the concepts that are associated with creating internationalized messages. A

good source of education on these concepts is provided by the documentation that is associated with

internationalization of Java information and the usage of resource bundles within the Java language.

The msgDataElement element in the Common Base Event includes the following information about the

value of the msg field that is provided with an event:

v The locale of the supplied message text, which identifies how the locale-independent fields within the

message are formatted, as well as the language of the message (msgLocale).

v A locale-independent identifier that is associated with the message that can be used to interpret the

message independent of the message language, message locale, and message format (msgId and

msgIdType).

v Information on how a translated message is created, including:

– The identifier that is used to retrieve the message template (msgCatalogId).

– The name and type of message catalog that are used to retrieve the message template (msgCatalog

and msgCatalogType).

– Any locale-independent information that is inserted into the message template to create the final

message (msgCatalogTokens).

The Common Base Event specification [CBE101] provides information on the required format of these

fields and the Common Base Event Developer’s Guide [CBEBASE] provides general usage guidelines.

This section provides additional information about how to format and use these fields for problem

determination events.

msg

All message, log, and trace events must provide a human-readable message in the msg field of the

Common Base Event. The msg field is required for problem determination events, both log events and

diagnostic events. This field is more restrictive than the base specification for the Common Base

Event, which lists this field as optional; effective and efficient problem determination requires the ability

to quickly identify the reported condition. The format and usage of this message is component-specific,

but use the following general guidelines:

v Expect the message text that is supplied with messages and log events to be internationalized.

Chapter 4. Add logging and tracing to your application 69

v Provide the locale of the supplied message text with the msgLocale field in the msgDataElement

element of the Common Base Event.

v Provide additional information regarding the format and construction of internationalized messages

whenever possible, using the msgDataElement element of the Common Base Event.

msgLocale

Provide the message locale whenever message text is provided within the Common Base Event, as is

the case with all problem determination events. The msgLocale field is listed as an optional value

within the Common Base Event specification, but provide this information within problem determination

events whenever possible. The reason this field is not required for problem determination events is

that instances exist where the locale information is not provided or available when formatting the

Common Base Event.

msgId and msgIdType

Several companies include a locale-independent identifier within internationalized message text that

you can use to interpret the described condition by the message text, independent of the message.

For example, most messages issued by IBM software look like IEE890I WTO Buffers in console

backup storage = 1024, where a unique, locale-independent identifier IEE890I precedes the translated

message text. This identifier provides a way to uniquely detect and identify a message independent of

location and language. This detection is invaluable for locale-independent and programmatic analysis.

 The msgId field is listed as an optional value within the Common Base Event specification, but it must

be provided within problem determination events whenever this identifier is included in the message

text. Likewise, the msgIdType field is listed as an optional value within the Common Base Event

specification, but it must be provided within problem determination events whenever a value is

supplied for msgId. Do not supply these fields when the message text is not translated or localized, for

example, for trace events.

msgCatalogId

The msgCatalogId field is listed as an optional value within the Common Base Event specification, but

provide this value whenever the Common Base Event includes localized or translated message text,

for example when providing problem determination events that represent issued messages or log

events. This field is not required for problem determination events because not all problem

determination events include translated message text Some cases exist where the value is not

provided or available when formatting the Common Base Event. Do not supply this field when the

message text is not translated or localized, for example, for trace events.

msgCatalogTokens

The msgCatalogTokens field is listed as an optional value within the Common Base Event

specification, but provide this value whenever the Common Base Event includes localized or translated

message text, for example when providing problem determination events that represent issued

messages or log events. This field is not required for problem determination events because not all

problem determination events include translated message text, and cases exist where the value is not

provided or available when formatting the Common Base Event. This value contains the list of

locale-independent values or message tokens that are inserted into the localized message text when

creating a translated message.

 These values are difficult to extract from a translated message without knowing the translated

message template that is used to create the message. Do not supply this field when the message text

is not translated or localized

 The Common Base Event provides several mechanisms for providing additional data about an event,

including this field, extended data elements, and extensions to the schema. Always use the

msgCatalogTokens field to supply the list of message tokens that is included in the message text

associated with an event. These values can also be supplied in other parts of the Common Base

Event, but they must be included in this field.

msgCatalog and msgCatalogType

The msgCatalog and msgCatalogType fields are listed as optional values within the Common Base

Event specification, but provide this value whenever the Common Base Event includes localized or

70 Troubleshooting and support

translated message text, for example when providing problem determination events that represent

issued messages or log events. These fields are not required for problem determination events

because not all problem determination events include translated message text, and cases exist where

the values are not provided or available when formatting the Common Base Event. Do not complete

these fields when the message text has is not translated or localized, for example, for trace events.

Extended data

The Common Base Event provides several methods for including this additional data, including extending

the Common Base Event schema or supplying one or more ExtendedDataElement elements within the

Common Base Event, which is the preferred approach.

The base information that is included in a Common Base Event might not be sufficient to represent all of

the information captured by a component when creating a problem determination event.

Use an ExtendedDataElement element to represent a single data item. A Common Base Event can

contain more than one of these elements, essentially one for each additional data item. A hint to the

number and type of ExtendedDataElement elements is supplied by the extensionName value, but this

information is only a hint. The usage of the attributes in the ExtendedDataElement element for problem

determination events is the same as those for any other Common Base Event.

Sample Common Base Event instance

This XML document is an example of a Common Base Event instance that is generated by a WebSphere

Application Server application.

Use the following example for reference:

<CommonBaseEvent creationTime="2004-09-18T04:03:28.484Z"

 globalInstanceId="myhost:1095479647062:1899"

 msg="WSVR0024I: Server server1 stopped"

 severity="10"

 version="1.0.1">

 ... several extendedDataElements for WebSphere Application Server internal use only ...

<sourceComponentId component="com.ibm.ws.runtime.component.ServerCollaborator"

 componentIdType="Unknown"

 executionEnvironment="Windows 2000[x86]#5.0"

 instanceId="myhost\myhost\server1"

 location="myhost"

 locationType="Hostname"

 processId="1095479647062"

 subComponent="Unknown"

 threadId="Alarm : 0"

 componentType="http://www.ibm.com/namespaces/autonomic/WebSphereApplicationServer"/>

 <msgDataElement msgLocale="en_US">

 <msgCatalogTokens value="server1"/>

 <msgId>WSVR0024I< /msgId>

 <msgCatalogId>WSVR0024I< /msgCatalogId>

 <msgCatalog>com.ibm.ws.runtime.runtime< /msgCatalog>

 </msgDataElement>

 <situation categoryName="ReportSituation">

 <situationType xsi:type="ReportSituation" reasoningScope="EXTERNAL" reportCategory="LOG"/>

 </situation>

</CommonBaseEvent>

A number of extendedDataElement elements in the XML are used by WebSphere Application Server, but

are not for application use because these elements might change.

Chapter 4. Add logging and tracing to your application 71

The CommonBaseEvent element defines the Common Base Event instance. This element has a set of

attributes that are common for all Common Base Events. This set includes the extensionName attribute,

which defines the type or class of the Common Base Event instance, the creation time, severity, and

priority.

Nested within the CommonBaseEvent element are elements giving more detail about the situation. The

first of these elements is the situation element. This classification is standardized.

The CommonBaseEvent element also includes the sourceComponentId and the (optional)

reporterComponentId elements. The sourceComponentId element describes where the situation occurred;

the reporterComponentId describes where the situation is detected. If the sourceComponentId and the

reporterComponentId elements are the same, the reporterComponentId element is omitted.

The attributes of both the sourceComponentId and the reporterComponentId elements are the same. They

identify the component type, name, operating system, and network location. The content of these attributes

provides vertical correlation of the stack of IT resources that are active when the Common Base Event is

created.

Also included in the CommonBaseEvent element are contextDataElements elements that describe the

context in which the situation occurred. This context correlates Common Base Event instances that are

part of the same work. This correlation is called horizontal correlation because an instance of a particular

context type correlates events at the same level of abstraction, for example at the business level, the

application level, or at the middleware level.

FExtended data elements contain additional data that is used to describe a situation. In this example, an

extended data element is added by WebSphere Application Server to describe the Java 2 Platform,

Enterprise Edition (J2EE) component that generated the Common Base Event instance and some

application data.

Sample Common Base Event template

The content handler uses template information to fill in blanks in the Common Base Event when the

Common Base Event complete method is called.

Components that use the WebSphere Application Server event factory home can include a Common Base

Event template XML file to provide data to populate Common Base Events. Information that is already

supplied in the event is not overridden if the same field is supplied in the template.

The following example illustrates a Common Base Event template:

<?xml version="1.0" encoding="UTF-8"?>

<TemplateEvent

 version="1.0.1"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:noNamespaceSchemaLocation="templateEvent.xsd">

 <CommonBaseEvent

 <sourceComponentId application="My Application" component="com.ibm.componentX"/>

 <extendedDataElements name="Sample ExtendedDataElement name" type="string">

 <values>Sample ExtendedDataElement value</values>

 </extendedDataElements>

 </CommonBaseEvent>

</TemplateEvent>

Component identification for problem determination

This topic describes types of problem determination events.

72 Troubleshooting and support

A business application is made up of multiple components. A component can be made up of several

internal subcomponents. Consistent application of these concepts is critical for effective problem

determination of a business application; all of the parts of the application must use the same concepts and

assumptions when creating and formatting events. Use the following definitions and examples when

creating Common Base Events for problem determination.

Business application

A business application is the business logic and business data that is used to address a set of specific

business requirements. A business application consists of several components of multiple types,

combined in a unique manner by an enterprise, to provide the functions and resources that are

needed to address those requirements. The primary creator and manager of a business application is

the enterprise, and each enterprise or company creates unique business applications. Examples of

business applications are the Payroll Application for the ACME Corporation and the Inventory

Application for Spacely Sprockets.

Components

A business application is created and managed by the enterprise as a set of components.

Components are deployable assets, which are developed either by the enterprise or a vendor, and

managed by the enterprise. A component might be created by the enterprise, typically for use within a

specific business application. For example, the ACME Corporation might create a set of enterprise

beans to represent the business logic that is required by their Payroll Application. A component might

also be an asset that is produced by a vendor and acquired by an enterprise. Examples of these

components are hardware products, such as IBM eServers or Sun Solaris systems, or software

products, such as IBM WebSphere Application Server, Oracle Database Servers.

Subcomponents

A specific component, depending on its complexity, might consist of several subcomponents. For

example, the IBM WebSphere Application Server consists of many subcomponents, such as the

enterprise bean container and the servlet engine. Subcomponent information is typically used only by

the creator of the component to service the component, and as such are not separately deployable or

manageable resources in the enterprise. The enterprise might deploy a change or update to a

subcomponent, but only upon guidance from the component vendor and as part of the vendor’s

component. For example, a software fix for the enterprise bean container of the IBM WebSphere

Application Server is packaged and deployed as a software update to the IBM WebSphere Application

Server. Replacement of the processor in an IBM eServer is deployed as a physical part, but only as a

part of the original deployed component, the IBM eServer.

Logging Common Base Events in WebSphere Application Server

This topic describes how WebSphere Application Server takes advantage of the Common Base Events.

WebSphere Application Server uses Common Base Events within its logging framework. Common Base

Events can be created explicitly and then logged through the Java logging API, or can be created implicitly

by using the Java logging API directly. For Common Base Event creation, the application server

environment provides a Common Base Event factory with a content handler that provides both runtime

data and template data for Common Base Events.

Logging with Common Base Event API and the Java logging API

In cases where the events that are generated by the Java logging API are insufficient to describe the

event that needs capturing, you can create Common Base Events with the Common Base Event factory

APIs.

When you create a Common Base Event, you can add data to the Common Base Event before it is

logged. The following diagram illustrates how application code can create and log Common Base Events:

Chapter 4. Add logging and tracing to your application 73

Application
code EventFactory

ContentHandler

Runtime data

CBE
XML

template

Logger

Handler

Output
device

CommonBaseEventLogRecord

CommonBaseEvent

WebSphere Application Server is configured to use an event factory that automatically populates

WebSphere Application Server-specific information into the Common Base Events that it generates. In

general, it is good practice to create events using the WebSphere Application Server default Common

Base Event factory because this approach ensures consistency of Common Base Event content across

events. However, you can create and use other Common Base Event factories.

v Application code invokes the createCommonBaseEvent method on the EventFactory class to create a

CommonBaseEvent.

v Application code wraps CommonBaseEvent event in a CommonBaseEventLogRecord record, and adds

event-specific data.

v Application code calls the CommonBaseEvent event complete method.

v The CommonBaseEvent event invokes the ContentHandler completeEvent method.

v The ContentHandler handler adds XML template data to the CommonBaseEvent event. Not all

ContentHandler handlers support templates.

v The ContentHandler handler adds runtime data to the CommonBaseEvent event.

v Application code passes the CommonBaseEventLogRecord record to the logger using the Logger.log

method.

v Logger passes CommonBaseEventLogRecord record to Handlers.

v Handlers format data and write to the output device.

After completing all the above steps you will have a Common Base event based on your configuration

settings.

Common Base Event content handler:

Content handlers populate data into Common Base Events when the Common Base Event complete

method is invoked. You can associate content handlers with Common Base Event templates, which

provide default information to transfer into each Common Base Event. Content handlers might also provide

any other information that is relevant to completing the population of the Common Base Event, such as

appropriate runtime defaults.

The use of content handlers ensures consistency of field use in the Common Base Event within a

component or within a set of components that share the same runtime. For example, some content

handlers support the specification of a template. If used consistently across a component, this template

ensures that all events for that component have the same template information filled in. Similarly, some

74 Troubleshooting and support

content handlers can also supply runtime information to their associated Common Base Events. If

consistently used throughout the entire runtime, runtime information ensures that all events use runtime

data in a similar way.

The event factory home that is used in the WebSphere Application Server runtime is associated with a

content handler that both reads from a template, and supplies runtime data. Have components use Event

Factories that are obtained from this event factory home with their own templates, to produce consistency

between application events and server events.

More details can be found in“Creating custom Common Base Event content handlers” or the API

documentation for org.eclipse.hyades.logging.events.cbe.ContentHandler at www.eclipse.org/hyades.

Creating custom Common Base Event content handlers:

Create a custom Common Base Event content handler or template to automate configuration or values for

specific events.

 A content handler is an object that automatically sets the property values of each event based on any

arbitrary policies that you want to use.

The following content handler classes were added to WebSphere Application Server to facilitate the use of

the Common Base Event infrastructure:

 Class Name Description

WsContentHandlerImpl This provides an implementation of

org.eclipse.hyades.logging.events.cbe.ContentHandler specifically for use in

the WebSphere Application Server environment. This content handler

completes Common Base Events using information from the WebSphere

Application Server runtime, and it uses the same content handler as is used

internally by the WebSphere Application Server when completing Common

Base Events for logging.

WsTemplateContentHandlerImpl This provides the same function as WsContentHandlerImpl, but it extends

the org.eclipse.hyades.logging.events.cbe.impl.TemplateContentHandlerImpl

class to enable the use of a Common Base Event template. Template

content takes precedence in cases where the template data specifies values

for the same Common Base Event fields as does the

WsContentHandlerImpl.

In some situations, you might want some event property data set automatically for every event that you

create. This automation is a way to fill in certain standard values that do not change, such as the

application name, or to set some properties based on information that is available from the runtime

environment, like creation time or thread information. You can set property data automatically by creating a

content handler.

v Use the following code sample to implement the CustomContentHandler class:

public class CustomContentHandler extends WsContentHandlerImpl {

 public CustomContentHandler() {

 super();

 // TODO Custom initialization code goes here

 }

 public void completeEvent(CommonBaseEvent cbe) throws CompletionException {

 // following code will add WAS content to the Content Base Event

 super.completeEvent(cbe);

 // TODO Custom content can be added to the Content Base Event here

 }

}

Chapter 4. Add logging and tracing to your application 75

http://www.eclipse.org/hyades

v The following shows how to implement the CustomTemplateContentHandler class:

public class CustomTemplateContentHandler extends WsTemplateContentHandlerImpl {

 public CustomTemplateContentHandler() {

 super();

 // TODO Custom initialization code goes here

 }

 public void completeEvent(CommonBaseEvent cbe) throws CompletionException {

 // following code will add WAS content to the Content Base Event

 super.completeEvent(cbe);

 // TODO Custom content can be added to the Content Base Event here

 }

}

You now have a content handler or a custom content handler template based on the settings that you

specified.

Common Base Event factory home:

Event Factory homes provide Event Factory instantiation that is based on a unique factory name.

 Event Factory home implementations are tightly coupled with content handlers that are used to populate

Common Base Events with template or default data. Event Factory instances are maintained by the

associated Event Factory home, based on their unique name. For example, when application code

requests a named Event Factory, the newly created Event Factory instance is returned and persisted for

future requests for that named Event Factory. An abstract Event Factory home class provides the

implementation for the APIs in the Event Factory home interface. Implementers extend the abstract Event

Factory home class and implement the createContentHandler API to create a typed content handler that is

based on the type of Event Factory home implementation.

In WebSphere Application Server, the default Event Factory home that is obtained with a call to

EventFactoryContext.getInstance.getEventFactoryHome method is associated with a ContentHandler

handler capable of supplying both event template information, as well as WebSphere Application Server

runtime default information.

More details can be found in the API documentation for

org.eclipse.hyades.logging.events.cbe.EventFactoryHome at www.eclipse.org/hyades.

Creating custom Common Base Event factory homes:

Use custom Common Base Event factory homes to control configuration and implementation of unique

Event Factories.

 Event Factory Homes create and provide homes for Event Factory instances. Each Event Factory Home

has a Content Handler. This Content Handler is assigned to every Event Factory the Event Factory Home

creates. In turn, when a Common Base Event is created, the Content Handler from the Event Factory is

assigned to it. Event Factory instances are maintained by the associated Event Factory Home, based on

their unique name. For example, when application code requests a named Event Factory, the newly

created Event Factory instance is returned and persisted for future requests for that named Event Factory.

The following classes were added to facilitate the use of Event Factory homes for logging Common Base

Events:

 Class Name Description

76 Troubleshooting and support

WsEventFactoryHomeImpl This class extends the

org.eclipse.hyades.logging.events.cbe.impl.AbstractEventFactoryHome class.

This Event Factory Home returns Event Factory instances associated with the

WsContentHandlerImpl Content Handler. The WsContentHandlerImpl is the

Content Handler used by the WebSphere Application Server by default when no

Event Factory template is in use.

WsTemplateEventFactory

HomeImpl

This class extends the

org.eclipse.hyades.logging.events.cbe.impl.EventXMLFileEventFactoryHomeImpl

class. This Event Factory Home returns Event Factory instances associated with

the WsTemplateContentHandlerImpl Content Handler. The

WsTemplateContentHandlerImpl is the Content Handler used by the WebSphere

Application Server when an Event Factory template is required.

Custom event factory homes support the use of Common Base Event for logging in WebSphere

Application Server and make logging easy and consistent between the WebSphere Application Server

runtime and the exploiters of this API. The CustomEventFactoryHome and

CustomTemplateEventFactoryHome classes will be used to obtain an event factory. These classes are

there to make sure the correct content handler is being used with a particular event factory. The

CustomEventFactoryHelper class is an example of how the infrastructure provider can hide the factory

selection details from infrastructure users, using their own set of parameters to decide which the

appropriate event factory is.

v The following code samples provide examples of how to implement and use the

CustomEventFactoryHome class.

1. Implementation of the CustomEventFactoryHome class is as follows:

public class CustomEventFactoryHome extends AbstractEventFactoryHome {

 public CustomEventFactoryHome() {

 super();

 // TODO Custom intialization code goes here

 }

 public ContentHandler createContentHandler(String arg0) {

 // Always use custom content handler

 return resolveContentHandler();

 }

 public ContentHandler resolveContentHandler() {

 // Always use custom content handler

 return new CustomContentHandler();

 }

}

2. The following is an example of how to use the CustomEventFactoryHome class:

// get the event factory

 EventFactory eventFactory=(new CustomEventFactoryHome()).getEventFactory("XYZ");

 // create an event - call appropriate method

 eventFactory.createCommonBaseEvent();

 // log event ...

v For the CustomTemplateEventFactoryHome class you can use the following code for implementation

and use:

1. Implement the CustomTemplateEventFactoryHome class by using this code:

public class CustomTemplateEventFactoryHome extends

 EventXMLFileEventFactoryHomeImpl {

 public CustomTemplateEventFactoryHome() {

 super();

 // TODO Custom intialization code goes here

 }

Chapter 4. Add logging and tracing to your application 77

public ContentHandler createContentHandler(String arg0) {

 // Always use custom content handler

 return resolveContentHandler();

 }

 public ContentHandler resolveContentHandler() {

 // Always use custom content handler

 return new CustomTemplateContentHandler();

 }

}

2. Use the CustomTemplateEventFactoryHome class by following this sample code:

// get the event factory

 EventFactory eventFactory=(new

 CustomTemplateEventFactoryHome()).getEventFactory("XYZ");

 // create an event - call appropriate method

 eventFactory.createCommonBaseEvent();

 // log event ...

v The CustomEventFactoryHelper class can be implemented and used by following the code below:

1. Implement the custom CustomEventFactoryHelper class using this code:

public class CustomTemplateEventFactoryHome extends

 EventXMLFileEventFactoryHomeImpl {

 public CustomTemplateEventFactoryHome() {

 super();

 // TODO Custom intialization code goes here

 }

 public ContentHandler createContentHandler(String arg0) {

 // Always use custom content handler

 return resolveContentHandler();

 }

 public ContentHandler resolveContentHandler() {

 // Always use custom content handler

 return new CustomTemplateContentHandler();

 }

}

Figure 4 CustomTemplateEventFactoryHome class

public class CustomEventFactoryHelper {

 // name of the event factory to use

 public static final String FACTORY_NAME="XYZ";

 public static EventFactory getEventFactory(String param1, String param2) {

 EventFactory factory=null;

 switch (resolveFactory(param1,param2)) {

 case 1:

 factory=(new CustomEventFactoryHome()).getEventFactory(FACTORY_NAME);

 break;

 case 2:

 factory=(new

 CustomTemplateEventFactoryHome()).getEventFactory(FACTORY_NAME);

 break;

 default:

 // Add default for event factory

 break;

 }

 return factory;

 }

 private static int resolveFactory(String param1, String param2) {

 int factory=0;

78 Troubleshooting and support

// Add code here to resolve which factory to use

 return factory;

 }

}

2. To use the CustomEventFactoryHelper class, use the following code:

// get the event factory

 EventFactory eventFactory=

 CustomEventFactoryHelper.getEventFactory("param1","param2","param3");

 // create an event - call appropriate method

 eventFactory.createCommonBaseEvent();

 // log event ...

Use the information provided here to implement a custom content factory home and the associated

classes based on the settings that you specify.

Common Base Event factory context:

The event factory context provides a service to look up event factory homes. Retrieve the event factory

context using a call to the EventFactoryContext.getInstance method.

 Using this class, you can look up the event factory homes by name, and avoid the need to include the

typed home in code. The EventFactoryHome name must be located on the class path to be found. The

EventFactoryContext context also stores an EventFactoryHome name as a default, which can be obtained

with a call to the EventFactoryContext.getInstance.getEventFactoryHome method.

In WebSphere Application Server, the EventFactoryContext context is configured with a default

EventFactoryHome name which is associated to a ContentHandler handler that is capable of supplying

both event template information, as well as WebSphere Application Server runtime default information.

More details can be found in the API documentation for

org.eclipse.hyades.logging.events.cbe.EventFactory at www.eclipse.org/hyades.

Common Base Event factory:

Use event factories to create Common Base Events and complete event properties with associated

content handlers.

 Content handlers populate data into Common Base Events when the Common Base Event invokes the

complete method. All event properties set by the application code have priority over all properties that are

specified by the content handler. Event factory implementations are tightly coupled with the content

handler instance, which is associated with the event factory when the event factory is instantiated. Factory

instances can be retrieved only from their associated event factory home. Event factory instances are

retrieved and maintained based on unique names. Event factory names are hierarchical; they are

represented using the standard Java dot-delimited, name-space naming conventions.

More details can be found in the API documentation for

org.eclipse.hyades.logging.events.cbe.EventFactory at www.eclipse.org/hyades.

java.util.logging -- Java logging programming interface

The java.util.logging.Logger class provides a variety of methods with which data can be logged.

In the WebSphere Application Server, the Java logging API (java.util.logging) automatically creates

Common Base Events for events that are logged at the WsLevel.DETAIL level or above (including

WsLevel.DETAIL, Level.CONFIG, Level.INFO, WsLevel.AUDIT, Level.WARNING, Level.SEVERE, and

WsLevel.FATAL). These Common Base Events are created using the event factory that is associated with

the logger to which the message is logged. If no event factory is specified, WebSphere Application Server

uses a default event factory which automatically fills in WebSphere Application Server-specific information.

Chapter 4. Add logging and tracing to your application 79

The WebSphere Application Server uses a special implementation of the java.util.logging.Logger class that

automatically creates Common Base Events for the following methods:

v config

v info

v warning

v severe

v log: All variants except log(LogRecord) when used with the WsLevel.DETAIL level or more severe levels

v logp: When used with the WsLevel.DETAIL level or more severe levels

v logrb: When used with the WsLevel.DETAIL level or more severe levels

The WebSphere Application Server logger implementation is used only for named loggers for example,

loggers that are instantiated with calls, such as Logger.getLogger(″com.xyz.SomeLoggerName″). Loggers

instantiated with calls to the Logger.getAnonymousLogger and Logger.getLogger, or Logger.global

methods do not use the WebSphere Application Server implementation, and do not automatically create

Common Base Events for logging requests made to them. Log records that are logged directly with the

Logger.log(LogRecord) method are not automatically converted by WebSphere Application Server loggers

into Common Base Events.

The following diagram illustrates how application code can log Common Base Events:

Application
code

EventFactory
ContentHandler

Runtime Data

CBE
XML

template

Logger

Handler

Output
device

CommonBaseEventLogRecord

CommonBaseEvent

The Java logging API processing of named loggers and message-level events proceeds as follows:

 1. Application code invokes the named logger (WsLevel.DETAIL or above) with event-specific data.

 2. The logger creates a Common Base Event using the createCommonBaseEvent method on the event

factory that is associated with the logger.

 3. The logger creates a Common Base Event using the event factory associated to the logger.

 4. The logger wraps the common base event in a CommonBaseEventLogRecord record, and adds

event-specific data.

 5. The logger calls the Common Base Event complete method.

 6. The Common Base Event invokes the ContentHandler completeEvent method.

 7. The content handler adds XML template data to the Common Base Event (including for example, the

component name). Not all content handlers support templates.

 8. The content handler adds runtime data to the Common Base Event (including for example, the

current thread name).

 9. The logger passes the CommonBaseEventLogRecord record to the handlers.

10. The handlers format data and write to the output device.

80 Troubleshooting and support

Logger.properties file

Use the Logger.properties file to set logger attributes for your component.

The properties file is loaded the first time the Logger.getLogger(loggername) method is called within an

application. The Logger.properties file must be either on the WebSphere Application Server class path, or

the context class path.

The logging subsystem uses Common Base Events to represent all the messages in the WebSphere

Application Server activity.log file. You can specify your own event factory template to be used with your

loggers. Use the eventfactory property in your Logger.properties file. See “Sample Common Base Event

template” on page 72 for details on the Common Base Event template.

By convention, the name of the event factory template file should be the fully qualified package name of

the package using the template. The name of the file must end with the .event.xml extension. For

example, a valid event factory template file name for the com.abc.somepackage package is:

com.abc.somepackage.event.xml

When you specify the property value for the eventfactory property in the Logger.properties file, include the

full path name with no leading slash relative to the root of your class path entry. Do not include the

.event.xml extension.

For example, if the template files from the example above are located in the com/abc/templates directory,

the valid value for the eventfactory property is:

com/abc/templates/com.abc.somepackage

Finally, if this event factory template file is used by the com.abc.somepackage.SomeClass logger, then the

following entry will appear in the Logger.properties file:

com.abc.somepackage.SomeClass.eventfactory=com/abc/templates/com.abc.somepackage

Generate Common Base Event content with the default event factory

A default Common Base Event content handler populates Common Base Events with WebSphere

Application Server runtime information. This content handler can also use a Common Base Event template

to populate Common Base Events.

The default content handler is used when the server creates CommonBaseEventLogRecords as would be

the case in the following example:

// Get a named logger

Logger logger = Logger.getLogger("com.ibm.someLogger");

// Log to the logger -- implicitly the default content handler

// will be associated with the CommonBaseEvent contained in the

// CommonBaseEventLogRecord. logger.warning("MSG_KEY_001");

To specify a Common Base Event template in the above case, a Logger.properties file would need to be

provided with an eventfactory entry for com.ibm.someLogger. If a valid template is found on the classpath,

then the Logger’s event factory will use the specified template’s content in addition to the WebSphere

Application Server runtime information when populating Common Base Events. If the template is not found

on the classpath, or is invalid, then the Logger’s event factory will only use the WebSphere Application

Server runtime information when populating Common Base Events.

The default content handler is also associated with the event factory home supplied in the global event

factory context. This is convenient for creating Common Base Events that need to be populated with

content similar to that generated from the WebSphere Application Server:

// Request the event factory from the global event factory home

EventFactory eventFactory = EventFactoryContext.getInstance().getEventFactoryHome().getEventFactory(templateName);

// Create a Common Base Event

Chapter 4. Add logging and tracing to your application 81

CommonBaseEvent commonBaseEvent = eventFactory.createCommonBaseEvent();

// Complete the Common Base Event using content from the template (if specified above)

// and the server runtime information.

eventFactory.getContentHandler().completeEvent(commonBaseEvent);

In the above example, if the template referenced by templateName is found on the classpath, and the

template is valid, then the event factory home will return an event factory which uses a content handler

that combines the template’s content with the WebSphere Application Server runtime information when

populating Common Base Events. If the template is not found on the classpath, or is invalid, then the

event factory home will return an event factory which uses a content handler that uses only the

WebSphere Application Server runtime information when populating Common Base Events.

The default content handler populates Common Base Events in the server environment with the following

runtime information:

CommonBaseEvent.globalInstanceId

Value: The unique_record_id

 Set this value only if the CommonBaseEvent.globalInstanceId value is null before the

completeEvent method is called.

CommonBaseEvent.msg

Value: A localized message that is based on the MsgDataElement element.

 Set this value only if the CommonBaseEvent.msg message is null before the completeEvent

method is called.

CommonBaseEvent.severity

Value: Set based on the value of level set on the CommonBaseEventLogRecord record, if level >=

Level.SEVERE, set to 50; if level >= Level.WARNING, set to 30; the default is set to 10.

 Set this value only if the CommonBaseEvent.severity value is null before the completeEvent

method is called.

CommonBaseEvent.ComponentIdentification.component

Value:Set based on the LoggerName value that is set on the CommonBaseEventLogRecord

record.

 Set this value only if the CommonBaseEvent.ComponentIdentification.component is null before the

completeEvent method is called.

CommonBaseEvent.ComponentIdentification.componentIdType

Value: ″Unknown″

 Set this value only if the CommonBaseEvent.ComponentIdentification.componentIdType value is

null before the completeEvent method is called.

CommonBaseEvent.ComponentIdentification.executionEnvironment

Value: OSname[OSarch]#OSversion

 Set this value only if the CommonBaseEvent.ComponentIdentification.executionEnvironment value

is null before the completeEvent method is called.

CommonBaseEvent.ComponentIdentification.instanceId

Value: cellName\nodeName\serverName

 Set this value only if the CommonBaseEvent.ComponentIdentification.instanceId value is null

before the completeEvent method is called. Set only in a server environment because this value is

ignored in a client application.

CommonBaseEvent.ComponentIdentification.location

Value:The host name

82 Troubleshooting and support

Set this value only if both the CommonBaseEvent.ComponentIdentification.location and the

CommonBaseEvent.ComponentIdentification.locationType values are null before the

completeEvent method is called.

CommonBaseEvent.ComponentIdentification.locationType

Value: The host name

 Set this value only if both the CommonBaseEvent.ComponentIdentification.location and the

CommonBaseEvent.ComponentIdentification.locationType values are null before the

completeEvent method is called.

CommonBaseEvent.ComponentIdentification.processId

Value: An internally generated representation of the process number.

 Set this value only if the CommonBaseEvent.ComponentIdentification.processId value is null

before the completeEvent method is called

CommonBaseEvent.ComponentIdentification.subComponent

Value: Set based on values of the sourceClassName and the sourceMethodName names that are

set on the sourceClassName.sourceMethodName name of the CommonBaseEventLogRecord

record.

 Set this value only if the CommonBaseEvent.ComponentIdentification.subComponent values is null

before the completeEvent method is called and both the sourceClassName and the

sourceMethodName names are set.

CommonBaseEvent.ComponentIdentification.threadId

Value: Set to the value of the Java Virtual Machine (JVM) thread name.

 Set this value only if the CommonBaseEvent.ComponentIdentification.threadId values is null before

the completeEvent value is called.

CommonBaseEvent.ComponentIdentification.componentType

Value: http://www.ibm.com/namespaces/autonomic/WebSphereApplicationServer

 Set this value only if the CommonBaseEvent.ComponentIdentification.componentType values is

null before the completeEvent method is called.

CommonBaseEvent.MsgDataElement.msgLocale

Value: Set based on the default locale of the JVM.

 Set this value only if the CommonBaseEvent.msg value is null before the completeEvent method

is called.

CommonBaseEvent.Situation.categoryName

Value: ReportSituation

 Set this value only if the CommonBaseEvent.Situation value is null before the completeEvent

method is called.

CommonBaseEvent.Situation.situationType.type

Value: ReportSituation

 Set this value only if the CommonBaseEvent.Situation value is null before the completeEvent

method is called.

CommonBaseEvent.Situation.situationType.reasoningScope

Value: EXTERNAL

 Set this value only if the CommonBaseEvent.Situation value is null before the completeEvent

method is called.

CommonBaseEvent.Situation.situationType.reportCategory

Value: LOG

Chapter 4. Add logging and tracing to your application 83

Set this value only if the CommonBaseEvent.Situation value is null before the completeEvent

method is called.

The sourceComponentIdentification value is populated if no reporterComponentIdentification ID exists

when the completeEvent method is invoked on the content handler. Otherwise, the

reporterComponentIdentification ID is populated instead.

Best practices for logging Common Base Events in WebSphere Application Server

The following practices ensure consistent use of Common Base Events within your components, and

between your components and WebSphere Application Server components.

Follow these guidelines:

v Use a different logger for each component. Sharing loggers across components gets in the way of

associating loggers with component-specific information.

v Associate loggers with event templates that specify source component identification. This association

ensures that the source of all events created with the logger is properly identified.

v Use the same template for directly created Common Base Events (events created using the Common

Base Event factories) and indirectly created Common Base Events (events created using the Java

logging API) within the same component.

v Avoid calling the complete method on Common Base Events until you are finished adding data to the

Common Base Event and are ready to log it. This approach ensures that any decisions made by the

content handler based on data already in the event are made using the final data.

The following sample Logger.properties file entry demonstrates how to associate the

com.ibm.componentX logger with the com.ibm.componentX event factory:

com.ibm.componentX.eventfactory=com.ibm.componentX

The following sample code demonstrates the use of the same event factory setting for direct (Part 1) and

indirect (Part 2) Common Base Event logging:

<?xml version="1.0" encoding="UTF-8"?>

<TemplateEvent

 version="1.0.1"

 xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance

 xsi:noNamespaceSchemaLocation="templateEvent.xsd">

 <CommonBaseEvent

 <sourceComponentId application="My application" component="com.ibm.componentX"/>

 <extendedDataElements CommonBaseEventname="Sample ExtendedDataElement name" type="string">

 <values>Sample ExtendedDataElement value</values>

 </extendedDataElements>

 < /CommonBaseEvent>

< /TemplateEvent>

84 Troubleshooting and support

Chapter 5. Diagnosing problems (using diagnosis tools)

The purpose of this section is to aid you in understanding why your enterprise application, application

server, or WebSphere Application Server is not working and to help you resolve the problem. Unlike

performance tuning which focuses on solving problems associated with slow processes and un-optimized

performance, problem determination focuses on finding solutions to functional problems.

 1. For tips on how to investigate common kinds of problems based on the component that is causing the

problem, see Troubleshooting by component.

 2. If deploying or running an application results in exceptions such as ClassNotFoundException, use the

Class Loader Viewer to diagnose problems with class loaders.

 3. If you already have an error message and want to quickly look up its explanation and recommended

response, look up the message by expanding the Messages section of the Information Center under

Reference > Troubleshooter > Messages.

 4. For help in knowing where to find error and warning messages, interpreting messages, and

configuring log files, see Working with message logs.

 5. Difficult problems can require the use of tracing, which exposes the low-level flow of control and

interactions between components. For help in understanding and using traces, see Working with

trace.

 6. For help in viewing diagnostic information like dumps, error logs and CTRACE information, see

Viewing diagnostic information

 7. To learn how to work with Diagnostic Providers, see Working with Diagnostic Providers..

 8. To find out how to look up documented problems, common mistakes, WebSphere Application Server

prerequisites, and other problem-determination information on the WebSphere Application Server

public Web site, or to obtain technical support from IBM, see Obtaining help from IBM.

 9. The IBM developer kits: Diagnosis documentation describes debugging techniques and the diagnostic

tools that are available to help you solve problems with Java. It also gives guidance on how to submit

problems to IBM. You can find the guide at http://www.ibm.com/developerworks/java/jdk/diagnosis/.

10. For current information available from IBM Support on known problems and their resolution, see the

IBM Support page. For last minute updates, limitations, and known problems, refer to the Release

notes section.

11. IBM Support has documents that can save you time gathering information needed to resolve this

problem. Before opening a PMR, see the Must gather documents page for information to gather to

send to IBM Support.

Troubleshooting class loaders

Class loaders find and load class files. For a deployed application to run properly, the class loaders that

affect the application and its modules must be configured so that the application can find the files and

resources that it needs. Diagnosing problems with class loaders can be complicated and time-consuming.

To diagnose and fix the problems more quickly, use the administrative console Class Loader Viewer to

examine class loaders and the classes loaded by each class loader.

This topic assumes that you have installed an application on a server supported by WebSphere

Application Server and you want to examine class loaders used by the application or its modules. The

modules can be Web modules (.war files) or enterprise bean (EJB) modules (.jar files). The Class Loader

Viewer enables you to examine class loaders in a runtime environment.

This topic also assumes that you have enabled the class loader viewer service. Click Servers >

Application servers > server_name > Class Loader Viewer Service, enable the service and restart the

server.

© Copyright IBM Corp. 2006 85

http://www.ibm.com/developerworks/java/jdk/diagnosis/
http://www.ibm.com/developerworks/java/jdk/diagnosis/
http://www.ibm.com/support/
http://www-1.ibm.com/support/search.wss?rs=180&q=mustgather

The runtime environment of WebSphere Application Server uses the following class loaders to find and

load new classes for an application in the following order:

1. The bootstrap, extensions, and CLASSPATH class loaders created by the Java virtual machine

2. A WebSphere extensions class loader

3. One or more application module class loaders that load elements of enterprise applications running in

the server

4. Zero or more Web module class loaders

Java class loaders

WebSphere extensions
class loader

Application module class loader Application module class loader

Web module class loader Web module class loader

Each class loader is a child of the previous class loader. That is, the application module class loaders are

children of the WebSphere extensions class loader, which is a child of the CLASSPATH Java class loader.

Whenever a class needs to be loaded, the class loader usually delegates the request to its parent class

loader. If none of the parent class loaders can find the class, the original class loader attempts to load the

class. Requests can only go to a parent class loader; they cannot go to a child class loader. After a class

is loaded by a class loader, any new classes that it tries to load reuse the same class loader or go up the

precedence list until the class is found.

If the class loaders that load the artifacts of an application are not configured properly, the JVM might

throw a class loading exception when starting or running that application. “Class loading exceptions” on

page 88 describes the types of exceptions caused by improperly configured class loaders and suggests

ways to use the Class Loader Viewer to correct configurations of class loaders. The types of exceptions

include:

v ClassCastException

v ClassNotFoundException

v NoClassDefFoundException

v UnsatisfiedLinkError

The steps that follow describe generally how to use the Class Loader Viewer to examine class loaders and

correct problems with application or class loader configurations.

v Examine a tree view that lists all installed applications and their modules. The modules can be Web

modules (.war files) or EJB modules (.jar files).

Click Troubleshooting > Class Loader Viewer to access the Enterprise Applications Topology page.

v Examine the class loader delegation hierarchy.

On the Enterprise Applications Topology page, select a module to access the Class Loader Viewer

page. The page lists the class loaders visible to Web and EJB modules in an installed enterprise

application. This page helps you to determine which class loaders loaded files of a module and to

diagnose problems with class loaders.

The delegation hierarchy is determined by the class loader delegation mode, or class loader order,

specified for an application or Web module. The mode value can be either Classes loaded with parent

class loader first or Classes loaded with application class loader first. Refer to the Configure

class loaders step for more information.

v Export information on class loaders.

86 Troubleshooting and support

1. On the Class Loader Viewer page, click Export.

2. Select to open a browser or editor on the class loader information or to save the information to disk

in XML format.

3. Click OK, and specify any additional information requested by the system.

v Display information about class loaders visible to the module in an HTML table format.

On the Class Loader Viewer page, click Table View. The Table View page displays the following

information:

 Class loader attribute Description

Delegation Indicates whether the class loader delegates the loading of the module to its parent class

loader. A value of true implies that the class loader of the parent application is being used

(Parent first or Classes loaded with parent class loader first). A value of false

implies that the module class loader is being used (Parent last or Classes loaded with

application class loader first). Refer to the Configure class loaders step for more

information.

Classpath Lists the paths over which the class loader searches for classes and resources.

Classes Lists the names of classes loaded in the JVM by this class loader.

The Table View option does not return a value when out-of-memory errors are generated. The

out-of-memory errors might be related to a memory leak. To examine information about class loaders in

a table, resolve the out-of-memory problem, and then click Table View again.

v Search class loaders.

On the Class Loader Viewer page, click Search to access the Search page, on which you can search

class loaders for the following:

– Specific strings

– Specific .jar files

– The names of files in a specific directory

– The names of files loaded by a specific class loader

The search is case-sensitive. “Class loading exceptions” on page 88 describes several uses of the

Search page.

v Configure class loaders. You can configure class loaders for the following:

– All applications installed on a specific server.

– A specific application

– A specific Web module

–

Note: For detailed information about server, application, and Web class loaders, see the chapter on

class loading in the Developing and deploying applications PDF book.

Class loader configuration determines which class loader loads the classes and resource files for an

application or Web module. Application and WAR module class loader configuration settings include

Class loader order and WAR class loader policy.

A Class loader order value can be either Classes loaded with parent class loader first or Classes

loaded with application class loader first. The default is Classes loaded with parent class

loader first. A class loader with the Classes loaded with parent class loader first mode

delegates loading a class or resource to its immediate parent class loader before searching its

classpath.

When troubleshooting class loading problems, you might need to override classes visible to a parent

class loader. To override such classes with those specific to an application, set the Class loader order

to Classes loaded with application class loader first on the class loader that contains the

application classes on its classpath. An application can override classes visible to a parent class loader,

but doing so can result in a ClassCastException or UnsatisfiedLinkError if there is a mixed use of

overridden classes and non-overridden classes.

Chapter 5. Diagnosing problems (using diagnosis tools) 87

For example, under default class loader policies, a Web module has its own Web module (WAR) class

loader to load its artifacts, which are typically in the WEB-INF/classes and WEB-INF/lib directories. An

application module class loader is the immediate parent of this WAR class loader. To ensure that the

Web module class loader searches these paths for a particular class or resource first, before delegating

the load operation to the application module class loader, set the Class loader order of the Web

module to Classes loaded with application class loader first.

Class loader policies determine the structure of the application and WAR module class loaders. Under

the default policies, every running application EAR has its own application module class loader, and

every Web module has its own WAR module class loader. The default policies ensure J2EE compliance

regarding visibility and isolation among application artifacts. Changing the default policies is not

suggested when troubleshooting class loading problems.

If you continue to have class loader problems, refer to “Class loading exceptions” and to the class loading

chapter of the Developing and deploying applications PDF book.

Class loading exceptions

What kind of class-loading error do you see when you develop an application or start an installed

application?

v “ClassCastException”

v “ClassNotFoundException” on page 89

v “NoClassDefFoundException” on page 91

v “UnsatisfiedLinkError” on page 91

ClassCastException

A class cast exception results when the following conditions exist and can be corrected by the following

actions:

v The type of the source object is not an instance of the target class (type).

v The class loader that loaded the source object (class) is different from the class loader that loaded the

target class.

v The application fails to perform or improperly performs a narrow operation.

The type of the source object is not an instance of the target class (type).

This is the typical class cast exception. You can diagnose whether the source object of a cast

statement is not an instance of the target class (type) by examining the class signature of the

source object class, then verifying that it does not contain the target class in its ancestry and the

source object class is different than the target class. You can obtain class information by inserting

a simple print statement in your code. For example:

System.out.println(source.getClass().getName() + “:” + target.getClass().getName());

Or use a javap command. For example:

javap java.util.HashMap

Compiled from "HashMap.java"

public class java.util.HashMap extends java.util.AbstractMap

 implements java.util.Map,java.lang.Cloneable,java.io.Serializable {

The class loader that loaded the source object (class) is different from the class loader that loaded

the target class.

Assuming that the type of the source object is an instance of the target class, a class cast

exception occurs when the class loader that loaded the source object’s class is different that the

class loader that loaded the target class. This condition might occur when the target class is

visible on the classpaths of more than one class loader in the WAS runtime environment. To

correct this problem, use the Search and Search by Class Name console pages used to diagnose

problems with class loaders:

1. Click Troubleshooting > Class Loader Viewer > module_name > Search to access the

Search page.

88 Troubleshooting and support

2. For Search String, type the name of the class that is loaded by two class loaders.

3. For Search Type, select Class/Package.

4. Click OK. The Search by Class Name page is displayed, listing all class loaders that load the

class.

If there is more than one class loader listed, then the target class was loaded by more than

one class loader. Because the source object is an instance of the target class, the class loader

that loaded the source object class is different from the class loader that loaded the target

class.

5. Return to the Class Loader Viewer page and examine the classpath to determine why two

different class loaders load the class.

6. Correct your code so that the class is visible only to the appropriate class loader.

The application fails to perform or improperly performs a narrow operation.

A class cast exception can occur because, when the application is resolving a remote enterprise

bean (EJB) object, the application code does not perform a narrow operation as required. The

application must perform a narrow operation after looking up a remote object. Examine the

application and determine whether it looks up a remote object and, if so, the result of the lookup is

submitted to a narrow method.

 The narrow method must be invoked according to the EJB 2.0 programming model. In particular,

the target class submitted to the narrow method must be the exact, most derived interface of the

EJB. This also causes a class cast exception in the WAS runtime environment. Examine the

application and determine whether the target class submitted to the narrow method is a

super-interface of the EJB that is specified, not the exact EJB type; if so, modify the application to

invoke narrow with the exact EJB interface.

 Lastly, if a class cast exception occurs during a narrow operation, verify that the narrow method is

being applied to the result of a remote EJB lookup, not to a local EJB. A narrow is not used for

local lookups. Examine the application or module deployment descriptor to ensure that the object

being narrowed is not a local object.

ClassNotFoundException

A class not found exception results when the following conditions exist and can be corrected by the

following actions:

v The class is not visible on the logical classpath of the context class loader.

v The application incorrectly uses a class loader API.

v A dependent class is not visible.

The class is not visible on the logical classpath of the context class loader.

The class not found is not in the logical class path of the class loader associated with the current

thread. The logical classpath is the accumulation of all classpaths searched when a load operation

is invoked on a class loader. To correct this problem, use the Search page to search by class

name and by Java archive (JAR) name:

1. Click Troubleshooting > Class Loader Viewer > module_name > Search to access the class

loader Search page.

2. For Search String, type the name of the class that is not found.

3. For Search Type, select Class/Package.

4. Click OK. The Search by Class Name page is displayed, listing all class loaders that load the

class.

5. Examine the page to see if the class exists in the list.

6. If the class is not in the list, return to the Search page. For Search String, type the name of

the .jar file for the class; for Search Type, select JAR/Directory.

7. Click OK. The Search by Path page is displayed, listing all directories that hold the JAR file.

Chapter 5. Diagnosing problems (using diagnosis tools) 89

If the JAR file is not in the list, the class likely is not in the logical class path, not readable or an

alternate class is already loaded. Move the class to a location that enables it to be loaded.

The application incorrectly uses a class loader API.

An application can obtain an instance of a class loader and call either the loadClass method on

that class loader, or it can call Class.forName(class_name, initialize, class_loader) with that class

loader. The application may be incorrectly using the class loader application programming interface

(API). For example, the class name is incorrect, the class is not visible on the logical classpath of

that class loader, or the wrong class loader was engaged.

 To correct this problem, determine whether the class exists and whether the application is properly

using the class loader API. Follow the steps in The class is not visible on the logical classpath of

the context class loader to determine whether the class is loaded. If the class has not been

loaded, attempt to correct the application and see if the class loads. If the class is in the class

path with proper permission and is not being overridden by another factory class, examine the API

used to load the class.

1. Click Troubleshooting > Class Loader Viewer > module_name > Search to access the class

loader Search page.

2. For Search String, type the name of the class.

3. For Search Type, select Class/Package.

4. Click OK. The Search by Class Name page is displayed, listing all class loaders that load the

class.

5. Examine the page to see if the class exists in the list.

6. If the class is in the list and a ClassNotFound exception was thrown, then the .jar file or class

is not in the correct context or a wrong API call in the current context was used.

If the class is not in the list, return to the Search page and do the following:

a. Search for the class that generated the exception; that is, the class calling Class.forName.

b. See which class loader loads the class.

c. Determine whether the class loader has access or can load the class not found by

evaluating the class path of the class loader.

A dependent class is not visible.

When a class loader clsldr loads a class cls, the Java virtual machine (JVM) invokes clsldr to load

the classes on which cls depends. Dependent classes must be visible on the logical classpath of

clsldr, otherwise an exception occurs. This condition typically occurs when users make

WebSphere Application Server classes visible to JVM, or make application classes visible to the

JVM or to the WebSphere extensions class loader. For example:

v Class A depends on Class B.

v Class A is visible to the WebSphere extensions class loader.

v Class B is visible on the local classpath of a WAR module class loader, not the WebSphere

extensions class loader classpath.

When the JVM loads class A using the WebSphere extensions class loader, it then attempts to

load Class B using the same class loader and ultimately creates a class not found exception.

 To correct this problem:

1. Make the application-specific classes visible to the appropriate application class loader.

2. Search for the class not found (Class B).

3. If Class B is in the proper location, search for the class that loads the dependent class (Class

A) in the Class Load Viewer.

4. If the class is loaded and a ClassNotFound exception was thrown, then the .jar file or class is

not in proper context or the wrong API call in the current context was used.

If no class was found, do the following:

a. Search for the class that generated the exception; that is, the class calling Class.forName.

b. See which class loader loads the class.

90 Troubleshooting and support

c. Determine whether the class loader has access or can load the class not found by

evaluating the class path of the class loader.
5. Ensure that the caller class (Class B) is visible to the JVM or WebSphere extensions class

loader.

NoClassDefFoundException

A no class definition found exception results when the following conditions exist and can be corrected by

the following actions:

The class is not in the logical class path.

Refer to “ClassNotFoundException” on page 89 for information.

The class cannot load.

There are various reasons for a class not loading. The reasons include: failure to load the

dependent class, the dependent class has a bad format, or the version number of a class.

UnsatisfiedLinkError

A linkage error results when the following conditions exist and can be corrected by the following actions:

v A user action caused the error.

v System.mapLibraryName returns the wrong library file.

v The native library is already loaded.

v A dependent native library was used.

A user action caused the error.

 Several user actions can result in a linkage error:

A library extension name is incorrect for the platform.

System.loadLibrary is passed an incorrect parameter.

The library is not visible.

As a best practice, use the JVM class loader to find or load native libraries. WebSphere

Application Server prints the Java library path (java.library.path) when starting up. If the

JVM class loader is intended to load the library, verify that the path containing the native

library file is in the Java library path. If not, append the path to the platform-specific native

library environment variable or to the java.library.path system property of the server

process definition.

 In general, the Java virtual machine invokes findLibrary() on the class loader xxx that

loads the class that calls System.loadLibrary(). If xxx.findLibrary() fails, the Java virtual

machine attempts to find the library using the JVM class loader, which searches the JVM

library path. If the library cannot be found, the Java virtual machine creates an

UnsatisfiedLinkError exception.

 Thus, if a WebSphere class loader is intended to find a native library myNativeLib, the

library must be visible on the nativelibpath of the class loader that loads the class that

calls System.loadLibrary(myNativeLib). This practice is necessary or desirable in the

following situation:

v Native libraries for data source providers must be visible on the nativelibpath of the

WebSphere extensions class loader. In this case, add the path containing the native

library to the Native Lib Path setting of the data source provider configuration.

v Shared libraries have a Native Library Path in their configuration. Because shared

libraries enable the versioning of application-specific libraries, consider specifying the

paths to any native libraries used by the shared library code in the shared library

configuration.

Chapter 5. Diagnosing problems (using diagnosis tools) 91

Ensure that the correct WebSphere class loader loads the class that calls

System.loadLibrary() and that the native library is visible on the Native Library Path

setting.

The native library is already loaded.

This condition can result from either of the following errors:

User error

Check for multiple calls to System.loadLibrary and remove any extraneous calls.

Error when an application restarts

Invoke System.loadLibrary() within the static initialization of a class within a server-scoped

shared library:

1. Remove all instances of the System.loadLibrary(MyNativeLib) call from the application

source code.

2. Create a new class named LibLoader that calls System.loadLibrary(MyNativeLib)

within a static block. For example:

public class LibLoader {

 static {System.loadLibrary(MyNativeLib);}

 public LibLoader();

}

3. Create a server-scoped shared library.

a. Create a shared library, set its scope to server, and name it MySharedLib.

b. Go to the settings page for the shared library.

c. Set Classpath to the path containing the class LibLoader.

d. Set Native Library Path to the path containing the native library MyNativeLib.

e. Create a class loader on the server hosting the application.

f. Associate MySharedLib to the new server class loader. Refer to step 2 in the

Associating shared libraries with servers section of the Administering applications

and their environment PDF book.
4. Save your changes.

5. Redeploy the application and rerun the scenario.

For more information about invoking, creating, and managing shared libraries, read

Managing shared libraries in the Administering applications and their environment PDF

book.

 Classes within server-scoped libraries are loaded once for each server lifecycle, ensuring

that the native library required by the application is loaded once for each Java virtual

machine, regardless of the application’s life cycle.

A dependent native library was used.

Dependent native libraries must be found or loaded by the JVM class loader. That is, if a native

library NL is dependent on another native library, DNL, the JVM class loader must find DNL on the

Java library path. This is because the JVM runs native code when loading NL; when it encounters

the dependency on DNL, the JVM native code can call only to the JVM class loader to resolve the

dependency. A WebSphere class loader cannot load a dependent native library.

 Modify the platform-specific environment variable defining the Java library path (LIBPATH) to

include the path containing the unresolved native library.

Class loader viewer service settings

Use this page to configure the server to start the class loader viewer service when the server starts. The

Class Loader Viewer helps you diagnose problems with class loaders.

To view this administrative console page, click Servers > Application servers > Class Loader Viewer

Service.

92 Troubleshooting and support

Class loaders find and load class files. For a deployed application to run properly, the class loaders that

affect the application and its modules must be configured so that the application can find the files and

resources that it needs. Diagnosing problems with class loaders can be complicated and time-consuming.

To diagnose and fix the problems more quickly, enable the class loader viewer service on this page and

then use the console Class Loader Viewer to examine class loaders and the classes loaded by each class

loader. Click Troubleshooting > Class Loader Viewer to access the Class Loader Viewer in the console.

Enable service at server startup

Specifies whether or not the server attempts to start the class loader viewer service when the server

starts.

The default is not to start the class loader viewer service.

Enterprise application topology

Use this page to see where modules reside in a topology of enterprise applications. Knowing where a

module resides helps you to determine which class loader loaded a module and to diagnose problems with

class loaders.

To view this administrative console page, click Troubleshooting > Class Loader Viewer. This page lists

all installed applications and their modules in a tree view. The modules can be Web modules (.war files) or

enterprise bean (EJB) modules (.jar files).

When deploying an application to a server or starting an application, you might encounter problems related

to class loaders. Use the console pages accessed from this page to troubleshoot errors such as the

following:

v ClassCastException

v ClassNotFoundException

v NoClassDefFoundException

v UnsatisfiedLinkError

You can use the Class Loader Viewer console pages without having to restart or manipulate the

application.

Enterprise Applications Topology

Displays a tree hierarchy of applications installed on a server and lists the module files in the class paths

of the applications.

Expand the hierarchy for an application to see what Web modules (.war files) and EJB modules (.jar

files) are in the application class path.

Click on a module name to examine the class loaders of the module.

Class loader viewer settings

Use this page to examine the class loaders visible to a Web module (.war file) or enterprise bean (.ejb

file) in an installed enterprise application. This page helps you to determine which class loaders loaded

files of a module and to diagnose problems with class loaders.

To view this administrative console page, click Troubleshooting > Class Loader Viewer > module_name.

The module is currently running on all nodes and servers listed.

Chapter 5. Diagnosing problems (using diagnosis tools) 93

To learn more about classes used by the module and their class loaders, click a button:

 Button Resulting action

Export Opens a dialog that enables you to view or save the Class Loader information on this page in an

XML file.

Table View Displays the View page, which provides information about class loaders visible to the module in

an HTML table format for each class loader. Such information includes:

Delegation

Whether the class loader delegates a load operation to its immediate parent before

searching its local classpath for a class or resource

Classpath

The local classpath, which includes the paths over which the class loader searches for

classes and resources, excluding the classpaths of any parent class loaders.

Classes

The names of classes loaded by the class loader

Search Displays the Search page, on which you can search class loaders for the following:

v Specific strings

v Specific .jar files

v The names of files in a specific directory

v The names of files loaded by a specific class loader

Class Loader

Displays a tree hierarchy of class loaders that affect the loading of classes used by the Web or EJB

module.

Expand the hierarchy of class loaders to view the following:

v Class loader names

v Arrows that point upwards beside class loader names, indicating that requests can go to a parent class

loader only and not go to a child class loader

v The names of classes that are loaded by a class loader

v The paths of property files and .jar files used by the classes

The following class loaders might be in the hierarchy:

 Class loader name Description

JDK Extension Loader The JDK extensions class loader is a composite class loader that is

comprised of the Java virtual machine (JVM) bootstrap class loader, the

JVM extensions class loader and the JVM system classloader, which load

the core SDK classes and resources as well as classes and resources

visible on the JVM classpath.

WAS Extension Class Loader The WAS Extension Class Loader loads the WebSphere Application Server

classes, standalone resource classes, custom service classes, and custom

registry classes. At bootstrap, this class loader uses the ws.ext.dirs system

property to determine the path that is used to load classes. Each directory

in the ws.ext.dirs class path and every .jar file or .zip file in these

directories is added to the class path used by this class loader.

WAS Compound Class Loader The WAS Compound Class Loaders load classes and resources of

application (EAR) modules, Web (WAR) modules, and server-associated

shared libraries. Under default class loader policies, an instance of a WAS

Compound Class Loader exists for each running EAR and WAR module

and for each class loader defined in the server configuration.

Click on Classes to view a list of classes loaded by a class loader.

94 Troubleshooting and support

The Class Loader Viewer service must be enabled to view the list of classes.

Search settings

Use this page to search for information about class loaders visible to a Web module (.war file) or

enterprise bean (.ejb file) in an installed enterprise application. This page helps you diagnose problems

with class loaders.

To view this administrative console page, click Troubleshooting > Class Loader Viewer > module_name

> Search.

On the Search page, you can search class loaders for the following:

v Specific strings

v Specific .jar files

v The names of files in a specific directory

v The names of files loaded by a specific class loader

Search type

Specifies the type of items in which to search for the string.

 Search type Instructions and resulting action

Class/Package In the Search term(s) field, type a class name or package name. After you select this search

type and click Go, the program searches class loaders for a class or package name. The

program displays a list of classes and packages that have the string in their name.

JAR/Directory In the Search term(s) field, type a .jar file name or directory name. After you select this

search type and click Go, the program searches class loaders for a .jar file or directory

name. The program displays a list of .jar files that have the string in their name and of all

files in directories that have the string in their name.

Search term(s)

Specifies the string to be found in the items searched.

The search is case-sensitive. If the search string is classname, the string ClassName is not found.

The search matches the entire string. If the search type is Jar/Directory and the search string is

C:/WebSphere/AppServerd0603.185/java/jre/lib/ext/CmpCrmf.jar, the entire path of the JAR file is

matched. If the search type is Jar/Directory and the search string is Cmp, the string Cmp is not found.

The search supports limited regular expressions. It supports the wildcard characters asterisk (*), question

mark (?), and percent sign (%). The wildcard characters * and % match zero or more characters; ? matches

exactly one character.

 Search string Resulting matches

Cmp Items that have Cmp in their name

Cmp.jar Items that have Cmp in their name and that end in .jar

%Cmp% Items that have Cmp in their name

%Cmp%.jar Items that have Cmp in their name and that end in .jar

*Cmp?rmf.jar Items that have a name with any characters before Cmp, then any one character,

and then rmf.jar

The search supports full regular expressions if the value for the search string starts and ends with a

forward slash (/).

Chapter 5. Diagnosing problems (using diagnosis tools) 95

Search string Resulting matches

/.*Cmp.*/ Items that contain any character before and after Cmp in their name

/.*Cmp.*\.jar/ Items that have Cmp in their name and that end in .jar

/.*Cmp?rmf\.jar/ Items that have a name with any characters before Cmp, then any one character,

and then rmf.jar

/.*\d\.jar/ Items with a name that ends in a number followed by .jar

Problem determination skills

In a large-scale enterprise system such as the WebSphere Application Server for z/OS environment,

diagnosis might require a variety of skills to progress from a symptom to fixing the underlying cause of that

symptom.

Because WebSphere Application Server for z/OS exploits many of the qualities and services that are

unique to the z/OS operating system, diagnosing system-related problems might require skills in the

following areas:

v Parallel sysplex

v TCP/IP

v Security Server (RACF) or the equivalent

v Database systems such as DB2 Universal Database for z/OS

v UNIX Systems Services

You can find information for many of these topics in the publications available through the z/OS library

Web site.

Similarly, diagnosing application-related problems might require a variety of skills because of the variety of

application components that WebSphere Application Server for z/OS supports. Programmers who

diagnose application problems in the WebSphere Application Server for z/OS environment need some

familiarity with the following:

v The roles defined in the Sun Microsystems Java 2 Enterprise Edition Specification V1.3.

v The programming models and specifications for application components (Enterprise beans, Web

applications, and client programs) supported in the J2EE 1.3 environment.

v The process of assembling, deploying, installing, and running server applications and clients in the

WebSphere Application Server for z/OS environment.

v Various tools such as the WebSphere Application Server for z/OS error log, and the job logs for

programs running on z/OS.

Choosing diagnosis tools and controls

Below is a description of the types of tools and controls you can use for diagnosing and managing

problems in your WebSphere environment.

WebSphere uses a variety of different tools and server controls to help you collect specific types of data to

determine where your servers are encountering problems. To efficiently use these tools you need to be

aware of the different functions each can provide and what type of information will be available from each.

When your applications or servers are experiencing problems that may be originating from different

sources, use the tools below to collect data and information on processes in your environment. Each tool

has functions specific to different parts of WebSphere, and they can be used in concert to help you better

diagnose your problems.

Use the following z/OS tools to access and work with diagnostic information.

v z/OS console

96 Troubleshooting and support

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/

The console displays configuration errors that cause the termination of the WebSphere Application

Server for z/OS address spaces. Whatever goes to the console also goes to SYSLOG.

v System log (SYSLOG)

SYSLOG is the repository for all messages that have appeared on the operator console. It also contains

warning and informational messages that might be helpful after a failure has occurred.

v Job log

The job log contains errors and warnings (non-termination) that are related to configuration. Anything

that goes to the console and SYSLOG automatically goes to the job log.

v System output (SYSOUT)

SYSOUT is a batch log that usually contains diagnostic data from the Java Virtual Machine (JVM) that

runs in the servant (region). Any messages written to stderr will end up in SYSOUT. In addition,

SYSOUT might contain error messages that usually appear in the log stream, but were redirected to

SYSOUT because the log stream was not available.

v Error log

The error log contains messages issued through Java logging and JRas support, if any. In addition, the

error log usually contains messages intended for IBM use only; these are messages that support

actions, problems, or issues that are usually externalized through additional messages in other sources.

When you work with IBM service, you might be asked to supply the error log so that service personnel

can use these support messages to diagnose the problem.

Note: You must update the CFRM policy before using log streams that are CF-resident, such as the

WebSphere error log and RRS logs. See Updating the CFRM policy for details.

v SYSPRINT

SYSPRINT contains component trace (CTRACE) output for clients, and for servants when WebSphere

Application Server for z/OS is configured to use SYSPRINT rather than CTRACE buffers and data sets.

v Component trace (CTRACE) data set

CTRACE data sets contain diagnostic trace entries for various processes, depending on the trace

options configured for WebSphere Application Server for z/OS.

v Logrec

When an error occurs, the system records information about the error in the logrec data set or the

logrec log stream. The information provides you with a history of all hardware failures, selected software

errors, and selected system conditions.

v Transaction XA Partner Log

This log is used for recovery of XA resources. When an application accesses XA resources, WebSphere

Application Server stores information about the resource to enable XA transaction recovery. For

instructions on how to use the Customization dialog to configure the Transaction XA Partner Log see

Customization Dialog variables: Stand-alone application server cell. For instructions on how to change

the location of the Transaction XA Partner Log, see Transaction service settings.

v SDSF

Use the SDSF DA panel to see how many application server address spaces are active, and observe at

the CPU%, ECPU% and SIO rate. Use the ″ENC″ panel to see the enclaves running and what service

classes they are running under.

v RMF

See “Using RMF” on page 99 for instructions on starting and using RMF to monitor your transactions.

v MODIFY command

See Example: Getting help for the modify command for instructions on using the z/OS modify command

to display information about WebSphere Application Server for z/OS servers or servants (regions).

To find additional information about these tools, and about the process of diagnosing problems on z/OS,

use the z/OS Web Library to access the following books:

v z/OS MVS Diagnosis: Procedures, GA22-7587 helps you diagnose problems in the MVS operating

system, its subsystems, its components, and in applications running under the system.

Chapter 5. Diagnosing problems (using diagnosis tools) 97

http://www-1.ibm.com/servers/eserver/zseries/zos/bkserv/

v z/OS MVS Diagnosis: Tools and Service Aids, GA22-7589 provides detailed information about tools and

service aids that can help you diagnose problems. This book contains a guide on how to select the

appropriate tool or service aid for your purposes, and also provides an overview of all the tools and

service aids available.

Updating the CFRM policy

You must update the coupling facility resource management (CFRM) policy before using log streams that

are CF-resident, such as the WebSphere Application Server error log and RRS logs. If you have the

source for the current active CFRM policy, update the source and use the IXCMIAPU Administrative Data

utility to generate the new policy. If you do not have the source for the current active CFRM policy, rebuild

the source from the active CFRM policy:

1. Find the active policy by issuing the command: D XCF,POL You will get output similar to this (partial

display):

D XCF,POL

 IXC364I 10.57.49 DISPLAY XCF 061

 . . .

 TYPE: CFRM

 POLNAME: POLCF1N1

 STARTED: 03/14/2003 11:32:22

 LAST UPDATED: 03/14/2003 11:31:52

 . . .

2. List the active CFRM Policy’s structure definitions by using the Administrative Data utility:

//STEP1 EXEC PGM=IXCMIAPU

//SYSPRINT DD SYSOUT=*

//SYSABEND DD SYSOUT=*

//SYSIN DD *

DATA TYPE(CFRM) REPORT(YES)

/*

3. Extract the definitions for the ACTIVE policy only. Using the SYSPRINT from the above utility job, edit

the output with the following steps so it can be used to define a new policy in the next job:

a. Extract the definitions for the ACTIVE policy only.

b. Delete the heading lines.

c. Add the new structure definition using the BBOWCFRM member of the target CNTL dataset as a

model.

d. Copy it into a FB-LRECL(80) dataset to be used as SYSIN for the following job.

4. Use the Administrative Data utility to update the CFRM policy. The policy name can be the same as

the ACTIVE CFRM policy or a new name. If you use the active policy name, REPLACE(YES) must be

specified on the DEFINE control statement.

//STEP20 EXEC PGM=IXCMIAPU

//SYSPRINT DD SYSOUT=*

//SYSABEND DD SYSOUT=*

//SYSIN DD *

 DATA TYPE(CFRM) REPORT(YES)

 DEFINE POLICY NAME(POLCF1N1) REPLACE(YES)

 CF NAME(CF1LPAR) DUMPSPACE(5000) PARTITION(0E) CPCID(00)

 TYPE(009672) MFG(IBM) PLANT(02) SEQUENCE(000000051205)

 CF NAME(CF2LPAR) DUMPSPACE(5000) PARTITION(0F) CPCID(00)

 TYPE(009672) MFG(IBM) PLANT(02) SEQUENCE(000000051205)

 STRUCTURE NAME(CTS130_DFHLOG) SIZE(24000) INITSIZE(12000)

 REBUILDPERCENT(1) PREFLIST(CF1LPAR, CF2LPAR)

 . . .

 <== Insert your new structure definitions here

5. Activate the new policy by issuing the following MVS Command:

98 Troubleshooting and support

SETXCF START,POLICY,TYPE=CFRM,POLNAME=POLCF1N1

Using RMF

RMF can usually be started with the simple ’S RMF’ command from the MVS console.

The Monitor III data gatherer can be started after RMF with the ’F RMF,S III’ modify command. To use the

RMF Monitor 3 display, go to the ″Sysplex Summary″ display as follows:

1. Type RMF on ISPF command line.

2. Type 3 to see Monitor III choices.

3. Type S to get Sysplex reports.

4. Type 1 to see the Sysplex Summary report. You can scroll back and forth in time with PF10 and PF11,

or over-type the time field. Look at the transactions in the WebSphere Application Server service and

reporting class and note the Average Response time, Transactions per second, and Performance

Index. You may also explore further in RMF Monitor III to see the ″System Information″ report.

Here is a typical RMF procedure:

//RMF PROC

//IEFPROC EXEC PGM=ERBMFMFC,REGION=0M,PARM=’MEMBER(XS)’

//IEFPARM DD DDNAME=IEFRDER

//IEFRDER DD DSN=SYS1.PARMLIB,DISP=SHR

The following is a copy of the PARMLIB member ERBRMFXS: (parmeters beginning with a /* are not used

in this example but may be useful to you.

 CPU /* COLLECT CPU STATISTICS */

 CHAN /* COLLECT CHANNEL STATISTICS */

 CYCLE(1000) /* SAMPLE AT 1 TIME / SECOND */

 DEVICE(NOCHRDR) /* NO CHARACTER RDR DEV STATS */

 DEVICE(COMM) /* ADDED COMM FOR 37X5 */

 DEVICE(DASD) /* COLLECT DIRECT ACCESS DEVICE */

 /* STATISTICS */

 DEVICE(NOGRAPH) /* NO GRAPHICS DEVICE STATISTICS */

 DEVICE(NOTAPE) /* NO TAPE DEVICE STATISTICS */

 DEVICE(NOUNITR) /* NO UNIT RECORD DEVICE STATS */

 ENQ(SUMMARY) /* ENQ REPORTING */

 INTERVAL(15M) /* REPORT AT 15 MIN INTERVALS */

 IOQ(DASD) /* I/O Q’ING FOR DEV IN LOG CU */

 IOQ(COMM) /* I/O Q’ING FOR DEV IN LOG CU */

 NOVSTOR /* NO RMF 3.2 AND LATER REL */

 OPTIONS /* OPERATOR MAY CHG RMF OPTIONS */

 PAGING /* COLLECT PAGING STATISTICS */

 PAGESP /* COLLECT PAGE/SWAP DATASET STAT*/

 RECORD /* RECORD INTO SMF DATASET */

 NOSTOP /* STOP AFTER 90 MINUTES */

 SYNC(SMF) /* INTERVAL SYNCED WITH SMF */

 SYSOUT(H) /* SYSOUT CLASS OF OUTPUT REPORT */

 WKLD(PERIOD,SYSTEM) /* COLLECT WORKLOAD MANAGER

 STATISTICS AND REPORT AT THE

 PERIOD LEVEL + TOTAL LINE */

 TRACE(CCVUTILP)

Chapter 5. Diagnosing problems (using diagnosis tools) 99

Collecting job-related information with the System Management

Facility (SMF)

SMF can be enabled to collect and record system and job-related information on the WebSphere for z/OS

system. This information can be used to bill users, report system reliability, analyze your configuration,

schedule work, identify system resource usage, and perform other performance-related tasks that your

organization may require.

You can enable SMF recording for:

v Capacity planning, to determine:

– How many transactions have run?

– What is the average and maximum completion time for methods running on each server?

– How many clients are attached to each server instance? Of these clients, how many are active?

v Application profiling:

– To show an application broken down into its component parts.

– To provide timing information on the application’s component parts.

v Error reporting:

– To detect and record soft failures (those that are generated through an exception or those that are

performance-related).

– To use this error information to trigger an event that will cause an action to occur once a threshold

has been reached.

v Read the article “Enabling SMF recording” for information on enabling SMF type 120 records.

v Read “Viewing the output data set” on page 102 for steps on viewing the data you record.

v Read “Disabling SMF recording for WebSphere Application Server” on page 104 for steps on disabling

SMF data collection.

Enabling SMF recording

Use this page to enable SMF recording for WebSphere Application Server and select SMF type 120

records for output to the SMF data sets.

For an overview of SMF recording, see Chapter 1 of z/OS MVS System Management Facilities

(SA22-7630).

1. Use the WebSphere Application Server administrative console to enable properties for specific record

types (see “Using the WebSphere Application Server administrative console to enable properties for

specific SMF record types” for details).

2. Edit the SMFPRMxx parmlib member and update the SYS or SUBSYS(STC,...) statement to include

the type 120 record. SUBSYS(STC,EXITS(IEFU29,IEFACTRT),INTERVAL(SMF,SYNC),

TYPE(0,30,70:79,88,89,120,245))

3. Use the SET command to indicate which SMF parmlib member the system should use. You must issue

the SET command before you start WebSphere Application Server. If you issue the command after the

application server has started, SMF type 120 records will not be collected.

4. Format the output data set.

You have successfully enabled SMF recording when the SMF data is recorded in the data set which is

specified in SMFPRMxx.

Using the WebSphere Application Server administrative console to enable properties for specific

SMF record types:

Use this page to view or set SMF record properties using the WebSphere Application Server administrative

console.

100 Troubleshooting and support

http://publibz.boulder.ibm.com/epubs/pdf/iea2g233.pdf
http://publibz.boulder.ibm.com/epubs/pdf/iea2g233.pdf

Ensure that you have proper access to the administrative console.

To enable SMF you must first use the WebSphere Application Server administrative console to enable

properties for specific record types.

1. To view or set properties using the WebSphere Application Server administrative console, click Server

> Application Servers in the navigation tree. The application servers page appears.

2. Click the application server name in the Name column of the application server collection table. The

configuration panel of the application server selected appears.

3. On the configuration panel, click on Server Infrastructure > Java and Process Management >

Process Definition > Control > Environment Entries.

4. To enable SMF type 120 records, click New, and specify one or more of the following properties:

v name = server_SMF_server_activity_enabled = 1 (or server_SMF_server_activity_enabled = true)

v name = server_SMF_server_interval_enabled = 1 (or true)

v name = server_SMF_container_activity_enabled = 1 (or true)

v name = server_SMF_container_interval_enabled = 1 (or true)

v name = server_SMF_interval_length, value=n, where n is the interval, in seconds, that the system

will use to write records for a server instance. Set this value to 0 to use the default SMF recording

interval.

5. Click OK or Apply.

6. Save the changes and make sure a file sync is performed before restarting the servers.

7. For the changes to take effect, restart the application server.

You have successfully activated SMF recording for WebSphere Application Server when SMF type 120

records are being recorded.

Editing the SMFPRMxx parmlib member:

Use this page to edit the SMFPRMxx parmlib member and enable SMF recording for WebSphere

Application Server for z/OS.

 Make a working copy of the sample PARMLIB member SMFPRMYL.

Follow these steps to edit the SMFPRMxx parmlib member and enable SMF recording for WebSphere

Application Server:

1. Insert an ACTIVE statement to indicate SMF recording. See z/OS MVS Initialization and Tuning Guide

for more information.

2. Insert a SYS statement to indicate the types of SMF records you want the system to create. For

example, use SYS(TYPE(120:120)) to select WebSphere Application Server type 120 records only.

Keep the number of selected record types small to minimize the performance impact.

3. You can specify the interval in which you want the Server and Container interval records created (if no

interval was specified in administrative console for the server or container definition) using the INTVAL

(mm) statement in the SMFPRMxx parmlib member . The default SMF recording interval is 30 minutes.

See z/OS MVS Initialization and Tuning Reference for more information.

The server and container interval records will use either:

v The value specified in the server/container definition as specified in the administrative console

v The interval specified in the SMF parmlib member (from the SMF product settings) if you specify a

length of 0.

Writing records to DASD:

You can configure WebSphere Application Server for z/OS to write records to DASD locations.

Chapter 5. Diagnosing problems (using diagnosis tools) 101

Make sure you have your modified PARMLIB member SMFPRMxx.

Follow this step to start writing records to DASD:

Issue the following command: t smf=xx where xx is the suffix of the SMF parmlib member (SMFPRMxx).

See z/OS MVS System Management Facilities (SMF), SA22-7630 for more information.

Writing records to DASD has been completed successfully when the data is recorded in the data set which

is specified in SMFPRMxx.

Formatting the output data set

Use this page to format the SMF recording output data set into a readable format for printing to the screen

or other output device.

Make sure SMF recording is running.

Perform the following steps to format the SMF recording output data set into a readable format for printing

to the screen or other output device:

1. Switch the SMF data sets by entering i smf from the MVS console to switch the SMF data sets.

2. Run the SMF Dump program (IFASMFDP) to create a sequential data set from the raw dump. A

sample JCL is shown in z/OS MVS System Management Facilities (SMF), SA22-7630.

You have successfully formatted the output data set when SMFDUMP ends with return code 0.

Viewing the output data set

Use the Java SMF Record Interpreter to view the output data set from the WebSphere Application Server

for z/OS UNIX environment.

The data set should be viewed using a program that can display record type 120.

The Java SMF Record Interpreter is provided in the form of a JAR file named bbomsmfv.jar. To use it from

the WebSphere Application Server for z/OS UNIX environment:

1. Verify that the JAVA_HOME environment variable refers to the current Java installation:

JAVA_HOME=../usr/bin/java/J1.3. This must be at least Java 1.3 since this release is the first to

implicitly contain the necessary record support needed by the interpreter.

2. Download the SMF Record Interpreter from the WebSphere Application Server for z/OS Web site at:

http://www6.software.ibm.com/dl/websphere20/zosos390-p .

3. Copy the bbomsmfv.jar file to your tools directory. Be sure that any edits made to the file in the future

are made to both copies of the file, or just run from the installation directory in the first place.

4. To interpret SMF data from a cataloged WebSphere Application Server for z/OS sequential file named

″USER.SMFDATA″ (which was previously created using the IFASMFDP utility as described above),

run: java -cp bbomsmfv.jar com.ibm.ws390.sm.smfview.Interpreter ″USER.SMFDATA″. It is implicit in

the Java command parameterization that your current working directory is the tools directory. If this is

not the case, you receive a NoClassDefFoundError on com.ibm.ws390.sm.smfview.Interpreter

message. Java does not generate a diagnostic when it does not find the bbomsmfv.jar file in the

current directory.

The SMF ViewTool is successfully installed and invoked when you do not receive any Java error

messages after the invocation and the Browser output is shown on the screen.

Example of SMF Browser output:

Example of SMF Browser output

102 Troubleshooting and support

http://www6.software.ibm.com/dl/websphere20/zosos390-p

The SMF Browser available on the WebSphere for z/OS download site is able to display record type 120.

To download the SMF Browser go to: http://www6.software.ibm.com/dl/websphere20/zosos390-p. For

further information on the SMF Browser, download the browser package and read the associated

documentation.

The following example shows sample output from the SMF Browser. The example features subtype 7 and

subtype 8, in that order.

Record#: 14;

 Type: 120; Size: 820; Date: Fri Nov 23 04:54:17 EST 2001;

 SystemID: SY1; SubsystemID: WAS; Flag: 94;

 Subtype: 7 (WEB CONTAINER ACTIVITY);

Triplets: 4;

Triplet #: 1; offset: 76; length: 32; count: 1;

Triplet #: 2; offset: 108; length: 140; count: 1;

Triplet #: 3; offset: 264; length: 556; count: 1;

Triplet #: 1; Type: ProductSection;

 Version: 1; Codeset: Unicode; Endian: 1; TimeStampFormat: 1 (S390STCK64);

 IndexOfThisRecord: 1; Total # records: 1; Total # triplets: 4;

Triplet #: 2; Type: WebContainerActivitySection;

 HostName : PLEX1;

 ServerName : BBOASR4;

 ServerInstanceName: BBOASR4A;

 WlmEnclaveToken * 00000020 00000242 -------- --------

 * ^... * p1047

 ActivityID * b6c7a7b7 14e9bc85 000000b0 00000007

 * 0926306b -------- -------- --------

 *,............ *Cp1047

 ActivityStartTime * b6c7a7b7 14e9bc85 40404040 40404040 *

 ActivityStopTime * b6c7a7b7 53a8a645 40404040 40404040 *

Triplet #: 3; Type: HttpSessionManagerActivitySection;

 # http sessions created: 0; # http sessions invalidated: 0;

 # http sessions active: 0;

Average session life time: 0 [sec*10**-3];

 Triplet #: 4; Type: WebApplicationActivitySection;

 Name: PolicyIVP-localhost_1;

 # Servlets: 1;

 Triplet #: 4.1; offset: 272; length: 284; count: 1;

 Triplet #: 4.1; Type: ServletActivitySection;

 Name: SimpleFileServlet;

 ResponseTime: 48 [sec*10**-3];

 # errors: 0;

 Loaded by this request: 0;

 Loaded since (raw): ea54948e0d;

 Loaded since: Thu Nov 22 10:02:49 EST 2001;

Record#: 72;

 Type: 120; Size: 1744; Date: Fri Nov 23 05:01:02 EST 2001;

 SystemID: SY1; SubsystemID: WAS; Flag: 94;

 Subtype: 8 (WEB CONTAINER INTERVAL);

 # Triplets: 4;

 Triplet #: 1; offset: 76; length: 32; count: 1;

 Triplet #: 2; offset: 108; length: 112; count: 1;

 Triplet #: 3; offset: 264; length: 1480; count: 1;

 Triplet #: 1; Type: ProductSection;

 Version: 1; Codeset: Unicode; Endian: 1; TimeStampFormat: 1 (S390STCK64);

 IndexOfThisRecord: 1; Total # records: 1; Total # triplets: 4;

 Triplet #: 2; Type: WebContainerIntervalSection;

 HostName : PLEX1;

 ServerName : BBOASR4;

 ServerInstanceName: BBOASR4A;

 SampleStartTime * b6c7a6fd 655c0604 40404040 40404040 *

 SampleStopTime * b6c7a939 9a0e614c 40404040 40404040 *

Triplet #: 3; Type: HttpSessionManagerIntervalSection;

 http sessions #created: 1; #invalidated: 0;

 http sessions #active: 0; Min #active: 0; Max #active: 0;

 Average session life time: 0;

Chapter 5. Diagnosing problems (using diagnosis tools) 103

Average session invalidate time: 0;

 http sessions #finalized: 0; #tracked: 0;

 http sessions #min live: 0; #max live: 0;

 Triplet #: 4; Type: WebApplicationIntervalSection;

 Name: PolicyIVP-localhost_1;

 # Servlets loaded: 0;

 # Servlets: 4;

 Triplet #: 4.1; offset: 312; length: 292; count: 1;

 Triplet #: 4.2; offset: 604; length: 292; count: 1;

 Triplet #: 4.3; offset: 896; length: 292; count: 1;

 Triplet #: 4.4; offset: 1188; length: 292; count: 1;

 Triplet #: 4.1; Type: ServletIntervalSection;

 Name: SimpleFileServlet;

 # requests: 6;

 AverageResponseTime: 764 [sec*10**-3];

 MinimumResponseTime: 18 [sec*10**-3];

 MaximumResponseTime: 4133 [sec*10**-3];

 # errors: 0;

 Loaded since (raw): ea54948e0d;

 Loaded since: Thu Nov 22 10:02:49 EST 2001;

 Triplet #: 4.2; Type: ServletIntervalSection;

 Name: Was40Ivp;

 # requests: 4;

 AverageResponseTime: 4664 [sec*10**-3];

 MinimumResponseTime: 1584 [sec*10**-3];

 MaximumResponseTime: 12572 [sec*10**-3];

 # errors: 0;

 Loaded since (raw): ea58a1509e;

 Loaded since: Fri Nov 23 04:55:14 EST 2001;

 Triplet #: 4.3; Type: ServletIntervalSection;

 Name: /cebit.jsp;

 # requests: 1;

 AverageResponseTime: 204 [sec*10**-3];

 MinimumResponseTime: 204 [sec*10**-3];

 MaximumResponseTime: 204 [sec*10**-3];

 # errors: 0;

 Loaded since (raw): ea58a24a69;

 Loaded since: Fri Nov 23 04:56:18 EST 2001;

 Triplet #: 4.4; Type: ServletIntervalSection;

 Name: JSP 1.1 Processor;

 # requests: 1;

 AverageResponseTime: 482 [sec*10**-3];

 MinimumResponseTime: 482 [sec*10**-3];

 MaximumResponseTime: 482 [sec*10**-3];

 # errors: 0;

 Loaded since (raw): ea54948b66;

 Loaded since: Thu Nov 22 10:02:48 EST 2001;

Disabling SMF recording for WebSphere Application Server

This information describes how to disable SMF recording for WebSphere Application Server for z/OS.

Ensure that you have proper access to the administrative console.

SMF recording can be enabled for WebSphere Application Server, and for z/OS. The following steps

describe how to disable SMF recording for WebSphere Application Server:

1. Click Server>Application Servers in the navigation tree. The application servers page appears.

2. Click the application server name in the Name column of the application server collection table. The

configuration panel of the application server selected appears.

3. On the configuration panel, under the Additional Properties section, click on Custom Properties.

4. To disable SMF type 120 records, set the following properties to false:

v name = server_SMF_server_activity_enabled = 0 (or server_SMF_server_activity_enabled = false)

v name = server_SMF_server_interval_enabled = 0 (or false)

104 Troubleshooting and support

v name = server_SMF_container_activity_enabled = 0 (or false)

v name = server_SMF_container_interval_enabled = 0 (or false)

Alternatively, you could delete the SMF related properties. However, it will be easier for you to enable

SMF recording later if you keep the properties in place and just change their values to false.

5. Click OK or Apply.

6. Save the changes and make sure a file sync is performed before restarting the servers.

7. For the changes to take effect, restart the application server.

You have successfully disabled SMF recording for WebSphere Application Server when SMF records of

records type 120 are no longer being recorded.

Disabling SMF recording for the entire MVS system

Use this page to disable SMF recording for your MVS System (z/OS).

Make sure that you have your own working copy of SMFPRMxx and SMF is running.

SMF recording can be enabled for WebSphere Application Server and for z/OS. The following steps

describe how to disable SMF recording for your MVS System (z/OS):

Edit the SMFPRMxx parmlib member and set SMFPRMxx to ″NOACTIVE″ which will disable the writing of

SMF records to DASD. Use the SET command to activate that SMF parmlib member on the MVS system.

SMF recording has successfully been disabled for the whole MVS system when SMF records for z/OS and

WebSphere Application Server are no longer being written to DASD.

Using SMF type 80 - preparing for audit support

SMF type 80 requires some preparation in order to be fully utilized in a WebSphere environment.

As WebSphere Application Server becomes more capable of authentication and setting or changing the

identity on a thread, so arises the need for the ability to audit these changes. Along with this also comes

the need to audit the accompanying authorization requests made through EJBRoles checking, intending to

produce audit records that include the original authenticated identity. This auditing in WebSphere

Application Server is managed not through WebSphere Application Server itself, but through its External

Security Manager (RACF or equivalent), where the SMF records are cut.

In order to take advantage of auditing in WebSphere Application Server, you need to set up SMF and

RACF and have both running.

1. Set up SMF for audit support. For information on setting up and starting SMF, see z/OS MVS System

Management Facilities (SMF), SA22-7630

2. Enable auditing for the EJB Roles by setting the RACF AUDIT attribute. This will set up RACF for

auditing in WebSphere Application Server. You can turn on auditing for the ADMIN and PAYROLL

classes with the following command:

 RALTER EJBROLE (ADMIN,PAYROLL) AUDIT(ALL)

v Alternately, you could modify the RACFROLE job to put the AUDIT information there.

v For more information and additional parameters for the AUDIT attribute, see the z/OS Security

Server RACF Auditor’s Guide.

Audit support:

This file gives an overview of how to use audit support.

 Auditing is performed using SMF records issued by RACF or an equivalent External Security Manager.

This means that SMF audit records are cut as part of the WebSphere Application Server use of SAF

interfaces such as IRRSIA00 (to manage ACEEs) and the RACROUTE macro.

Chapter 5. Diagnosing problems (using diagnosis tools) 105

The table below lists the various security authentication mechanisms and the corresponding data that is

written to each part of the ACEE X500NAME field (this data is also in the RACO and SMF records). The

information under ″Service Name″ is the constant string that is included in the ″Issuer’s Distinguished

Name″ field of X500NAME. The information under ″Authenticated Identity″ is the principal that is recorded

in the ″Subject’s Distinguished Name″ field.

 Table 1. Security authentication mechanisms and the corresponding data that is written to each part of the ACEE

X500NAME field

Authentication

mechanism

Service name Authenticated identity

Custom Registry WebSphere Custom Registry Custom registry principal name

Kerberos Kerberos for WebSphere Application

Server

Kerberos principal, in the ″DCE″ format used for

extracting the corresponding MVS userid using

IRRSIM00 (/.../realm/principal)

RunAs Rolename WebSphere Role Name Role name

RunAs Server WebSphere Server Credential MVS userid

Trust Interceptor WebSphere Authorized Login MVS userid

RunAs Userid/Password WebSphere Userid/Password MVS Userid

In addition to tracking by MVS userid, events need to be traced to an originating userid. This is especially

true for originating userids that are not MVS-based, such as EJB Roles, Kerberos principals, and Custom

Registry principals.

SMF settings

Configure SMF records to collect job information to tune application server performance.

Here is a sample SMFPRMxx member that will create interval records every 2 minutes, and record the

following SMF record types:

v 30 - Address space

v 70-79 - RMF

v 82 - Crypto

v 88-90 - System Logger, Usage & System Data

v 101 - DB2

v 110 - CICS

v 120 - WebSphere

ACTIVE /*ACTIVE SMF RECORDING*/

 DSNAME(&SYSNAME..MAN1, &SYSNAME..MAN2) /*TWO MAN DATASETS */

 LISTDSN /* LIST DATA SET STATUS AT IPL*/

 NOPROMPT /* DON’T PROMPT THE OPERATOR */

 INTVAL(02) /* SMF GLOBAL RECORDING INTERVAL */

 SYNCVAL(00) /* GLOBAL SYNC VALUE */

 MAXDORM(3000) /* WRITE AN IDLE BUFFER AFTER 30 MIN*/

 STATUS(010000) /* WRITE SMF STATS AFTER 1 HOUR*/

 SID(&SYSNAME(1:4)) /* USE SYSNAME AS SID */

 SUBSYS(STC,INTERVAL(SMF,SYNC),

 TYPE(0,30,70:79,88:90,101,110,120))

Set the SMF recording interval to 2 minutes by using the ’SET SMF=xx’ command to activate the

SMFPRMxx member from SYSx.PARMLIB. Use the ’D SMF,O’ command to display the parameters in

effect.

Use a tool like WSWS to simulate an application stress load.

While the transactions are running, switch to SDSF and RMF to observe the transactions.

106 Troubleshooting and support

Overview of SMF record type 120

Information resulting from the SMF data gathering process for WebSphere Application Server for z/OS is

held in SMF record type 120.

This information is typically presented with the help of an SMF data viewing tool. This record format

description is intended to enable your tool providers to design an SMF data viewing tool. Your system

administrators will use an SMF data viewing tool with a description presented by your tool provider, since it

requires them to make proper selections that limit the amount of presentation data. For example, they

might want to view a specific time frame and only specific containers, classes, and methods. They may

also occasionally need to refer to the record descriptions.

Two types of SMF records can be produced: activity records and interval records.

v Activity records are gathered as each activity within a server is completed. An activity is a logical unit of

business function. It can be a server or user-initiated transaction.

v Interval records consist of data gathered at installation-specified intervals and provide capacity planning

and reliability information.

Six records can be produced:

v the Server Activity record: Subtype 1

v the Server Interval record: Subtype 3

v the J2EE Container Activity Record: Subtype 5

v the J2EE Container Interval Record: Subtype 6

v the WebContainer Activity record: Subtype 7

v the WebContainer Interval record: Subtype 8

For additional information about using SMF records, see z/OS MVS System Management Facilities (SMF),

SA22-7630.

Viewing records with the SMF Browser

The SMF Browser available on the WebSphere for z/OS download site is able to display record type 120.

To download the SMF Browser go to: http://www6.software.ibm.com/dl/websphere20/zosos390-p. For

further information on the SMF Browser, download the browser package and read the associated

documentation.

Record Type 120 (78) - WebSphere Application Server performance statistics:

WebSphere Application Server writes record type 120 to collect WebSphere Application Server

performance statistics.

 For more information about SMF record types, see z/OS MVS System Management Facilities (SMF).

All subtypes of the record type 120 have the following format:

v Standard header section

v Individual header extension for subtype x

v Product section

v Subtype-specific sections listed below.

Record type 120 has the following subtypes:

v Subtype 1: Server activity record

– Server activity section (one section per record):

Contains information about each activity that occurred within one server.

– Communication session section (zero, one, or multiple sections per record):

Chapter 5. Diagnosing problems (using diagnosis tools) 107

http://www6.software.ibm.com/dl/websphere20/zosos390-p

Contains information about each communication session.

– JVM heap section (zero, one, or multiple sections per record):

Contains information about the heap in a server region.
v Subtype 3: Server interval record

– Server interval section (one section per record):

Contains aggregated information about all activities that occurred within the specified server interval.

– Server region section (zero, one, or multiple sections per record):

Contains information about server regions in the specified interval.
v Subtype 5: J2EE container activity record

– J2EE container activity section (one section per record):

Contains information about each activity that occurred within one J2EE container.

– Bean section (multiple (0..n) sections per record):

Contains information about all beans involved in this activity.

– Bean method section (multiple (0..n) sections per bean section):

Contains information about all methods of this bean involved in this activity.
v Subtype 6: J2EE container interval record

– J2EE container interval section (one section per record):

Contains aggregated information about all activities that occurred within one J2EE container in the

specified interval.

– Bean section (multiple (0..n) sections per record, see subtype 5):

Contains information about all beans involved in this activity in the specified interval.

– Bean method section (multiple (0..n) sections per bean section, see subtype 5):

Contains information about all methods of this class involved in this activity in the specified interval.
v Subtype 7: WebContainer activity record (Version 2)

– WebContainer activity section (one section per record):

Contains information about each activity that occurred within one WebContainer.

– HttpSessionManager activity section (one section per record):

Contains information about all sessions involved in this activity.

– WebApplication section (multiple (0..n) sections per record):

Contains information about all WebApplications involved in this activity.

– Servlet section (multiple (0..n) sections per WebApplication section):

Contains information about all Servlets involved in this activity.
v Subtype 8: WebContainer interval record (Version 2)

– WebContainer interval section (one section per record):

Contains information about each activity that occurred within one WebContainer.

– HttpSessionManager section (one section per record):

Contains information about all sessions involved in this activity.

– WebApplication section (multiple (0..n) sections per record):

Contains information about all WebApplications involved in this activity.

– Servlet section (multiple (0..n) sections per WebApplication section):

Contains information about all Servlets involved in this activity.

Triplets:

You can use triplets to build self-describing SMF records that contain various types of data sections and a

varying number of each of these sections.

 All data sections are described by triplets that consist of:

1. An offset that specifies the start position of the data

2. A length that describes the length of the section

3. A count that describes how many instances of the section are included in this record.

108 Troubleshooting and support

The two triplets that describe the product section and the general record information section (for example,

the section describing the container itself in a container activity record) are located at fixed positions within

the record. This allows one to start evaluating the record right after having evaluated the record header.

SMF record splitting:

Since most of the WebSphere Application Server SMF records are used to describe variable-length data

structures (for example, there might be hundreds of classes by container and hundreds of methods by

class), the SMF records may be larger than the maximum record size supported by SMF (32KB). In this

case, the logical records need to be split into several physical records.

 Each of those physical records needs to be self-describing and self-contained. Self-describing indicates

what we described in the paragraph on triplets before; it is a purely mechanical structure to help read a

record. Self-contained indicates that, even if we have only a subset of the physical records at hand that

together describe the original logical record, we need to be able to evaluate these records, combine the

information stored in them, and set an ’incomplete’ flag. This is required since, as we break up a logical

record into physical records and write them to SMF one after the other, SMF might decide that only the

first few physical records fit into the primary SMF dump dataset whereas the remaining physical records

are written into an alternate SMF dump dataset. At the time when a formatted SMF dump dataset is

evaluated, we may not assume that all physical records that make up one logical record are present. For

example, self-containedness of a physical container activity record means that it contains the description of

the container, but not necessarily all of its classes.

We use a similar splitting mechanism like the one that is currently used in the RMF product. Note that in

the case of container records (subtype 2 and 4), we cannot assume that records will be split at a class

boundary, but we must consider the case when the methods that belong to one class also need to be split

over multiple physical records.

Note: The section length numbers used throughout the following diagrams are only for demonstrative

purposes. In particular, the arrows indicating 32K boundaries or the total length of the records are

placed at random. You can fit many more classes and methods into a physical record than

suggested by the diagrams.

Record environment and mapping:

This page provides information on record environments and record mapping.

 Record environment

The following conditions exist for the generation of this record:

v

Macro SMFWTM (record exit: IEFU83)

Mode Task

Addressing mode

31-bit

Record mapping

For a description of the common SMF record header fields and the triplet fields (offset/length/number), if

applicable, that locate the other sections on the record, see Header/Self-defining section.

For a description of triplets, see Using Triplets and MVS System Management Facilities (SMF)″

(SA22-7630).

Header/self-defining section:

Chapter 5. Diagnosing problems (using diagnosis tools) 109

http://publibz.boulder.ibm.com/epubs/pdf/iea2g232.pdf
http://publibz.boulder.ibm.com/epubs/pdf/iea2g232.pdf

These tables describe the header/self-defining section of an SMF record.

 Offset (decimal) Offset

(hexadecimal)

Name Length Format Description

0 0 SM120LEN 2 binary Record length. This field and the

next field (total of four bytes) form

the RDW (record descriptor word).

See ″Standard SMF record

header″ in MVS System

Management Facilities (SMF)″

(SA22-7630), for a detailed

description.

2 2 SM120SEG 2 binary Segment descriptor (see record

length field)

4 4 SM120FLG 1 binary Bit meaning when set

0: New SMF record format

1: Subtypes used

2: Reserved

3-6: Version indicators*

7: Reserved

*See ″Standard SMF record

header″ in MVS System

Management Facilities (SMF)″

(SA22-7630), for a detailed

description.

5 5 SM120RTY 1 binary Record type 120(X’78’)

6 6 SM120TME 4 binary Time since midnight, in hundredths

of a second, that the record was

moved into the SMF buffer.

10 A SM120DTE 4 packed Date when the record was moved

into the SMF buffer, in the form 0

cyydddF. See ″Standard SMF

record header″ in MVS System

Management Facilities (SMF)″

(SA22-7630), for a detailed

description.

14 E SM120SID 4 EBCDIC System identification (from the

SMFPRMxx SID parameter)

18 12 SM120SSI 4 EBCDIC Subsystem identification from

SUBSYS parameter

22 16 SM120RST 2 binary Record subtype:

1: Server activity

2: Container activity

3: Server interval

4: Container interval.

5: J2EE container activity

6: J2EE container interval

7: WebContainer activity

8: WebContainer interval

110 Troubleshooting and support

http://publibz.boulder.ibm.com/epubs/pdf/iea2g232.pdf
http://publibz.boulder.ibm.com/epubs/pdf/iea2g232.pdf
http://publibz.boulder.ibm.com/epubs/pdf/iea2g232.pdf
http://publibz.boulder.ibm.com/epubs/pdf/iea2g232.pdf
http://publibz.boulder.ibm.com/epubs/pdf/iea2g232.pdf
http://publibz.boulder.ibm.com/epubs/pdf/iea2g232.pdf
http://publibz.boulder.ibm.com/epubs/pdf/iea2g232.pdf
http://publibz.boulder.ibm.com/epubs/pdf/iea2g232.pdf
http://publibz.boulder.ibm.com/epubs/pdf/iea2g232.pdf

24 18 SM120TRN 4 binary Number of triplets in this record. A

triplet is a set of three SMF fields

(offset/length/number values) that

defines a section of the record.

The offset is the offset from the

RDW.

Subtypes:

1: Value is equal to the number of

sessions +2

2 and 4: Value is equal to the

number of classes +2.

28 1C SM120PRS 4 binary Offset to product section from

RDW.

32 20 SM120PRL 4 binary Length of product section.

36 24 SM120PRN 4 binary Number of product sections.

 Individual header extension for subtype 1

40 28 SM120SAS 4 binary Offset to server activity section

from RDW

44 2C SM120SAL 4 binary Length of server activity section

48 30 SM120SAN 4 binary Number of server activity sections

52 34 SM120CSS 4 binary Offset to communication session

section from RDW

56 38 SM120CSL 4 binary Length of communication session

section

60 3C SM120CSN 4 binary Number of communication session

sections

64 40 SM120JHS 4 binary Offset to JVM heap section from

RDW

68 44 SM120JHL 4 binary Length of JVM heap section

72 48 SM120JHN 4 binary Number of jvm heap sections

 Individual header extension for subtype 3

40 28 SM120SIS 4 binary Offset to server interval section

from RDW

44 2C SM120SIL 4 binary Length of server interval section

48 30 SM120SIN 4 binary Number of server interval sections

The following triplet appears 0-n times; once for each server region section.

52 34 SM120SRS 4 binary Offset to server region section from

RDW

56 38 SM120SRL 4 binary Length of server region section

60 3C SM120SRN 4 binary Number of server region sections

 Individual header extension for subtype 5

40 28 SM120JA1 4 binary Offset to J2EE container activity

section from RDW

44 2C SM120JA2 4 binary Length of J2EE container activity

section

48 30 SM120JA3 4 binary Number of J2EE container activity

sections

 The following triplet appears 0-n times; once for each bean section.

Chapter 5. Diagnosing problems (using diagnosis tools) 111

52 34 SM120JAS 4 binary Offset to bean section from RDW

56 38 SM120JAL 4 binary Length of bean section

60 3C SM120JAN 4 binary Number of bean sections

 Individual header extension for subtype 6

40 28 SM120JI1 4 binary Offset to J2EE container interval

section from RDW

44 2C SM120JI2 4 binary Length of J2EE container interval

section

48 30 SM120JI3 4 binary Number of J2EE container interval

sections

 The following triplet appears 0-n times; once for each bean section.

52 34 SM120JIS 4 binary Offset to bean section from RDW

56 38 SM120JIL 4 binary Length of bean section

60 3C SM120JIN 4 binary Number of bean sections

Individual header extension for subtype 7

40 28 SM120WA1 4 binary Offset to WebContainer activity

section from RDW.

44 2C SM120WA2 4 binary Length of WebContainer activity

section.

48 30 SM120WA3 4 binary Number of WebContainer activity

sections.

52 34 SM120WA4 4 binary Offset to HttpSessionManager

activity section from RDW.

56 38 SM120WA5 4 binary Length of HttpSessionManager

activity section.

60 3C SM120WA6 4 binary Number of HttpSessionManager

activity sections.

The following triplet appears 0-n times, once for each WebApplication section.

64 40 SM120WA7 4 binary Offset to WebApplication section

from RDW.

68 44 SM120WA8 4 binary Length of WebApplication section.

72 48 SM120WA9 4 binary Number of WebApplication

sections.

Individual header extension for subtype 8

40 28 SM120WI1 4 binary Offset to WebContainer interval

section from RDW.

44 2C SM120WI2 4 binary Length of WebContainer interval

section.

48 30 SM120WI3 4 binary Number of WebContainer interval

sections.

52 34 SM120WI4 4 binary Offset to HttpSessionManager

interval section from RDW.

56 38 SM120WI5 4 binary Length of HttpSessionManager

interval section.

60 3C SM120WI6 4 binary Number of HttpSessionManager

interval sections.

The following triplet appears 0-n times, once for each WebApplication section.

64 40 SM120WI7 4 binary Offset to WebApplication section

from RDW.

112 Troubleshooting and support

68 44 SM120WI8 4 binary Length of WebApplication section.

72 48 SM120WI9 4 binary Number of WebApplication

sections.

Product section:

This section includes the header/self-defining and product sections.

 Product section

 Offset Offset Name Length Format Description

0 0 SM120MFV 4 binary CB SMF version

4 4 SM120COD 8 EBCDIC Character codeset in which

strings in the SMF record are

encoded

12 C SM120END 4 binary Encode of numbers in the SMF

record

16 10 SM120TSF 4 binary Encoding of timestamps:

1: S390STCK64: The time

values are encoded in 64-bit

S/390 Store Clock format.

 Reassembly information.

20 14 SM120IXR 4 binary Index of this record

24 18 SM120NRC 4 binary Total number of records

28 1C SM120NTR 4 binary Total number of triplets

Subtype 1: Server activity record:

The server activity SMF record is used to record activity that is running inside a WebSphere Application

Server for z/OS. This record can be used to perform basic charge-back accounting and to profile your

applications to determine, in detail, what is happening inside the WebSphere Application Server

transaction server.

 A single record is created for each activity that is run inside a server or server instance. If the activity runs

in multiple servers, then a record is written for each server.

You can activate this record through the administrative console by setting

server_SMF_server_activity_enabled=1 (or server_SMF_server_activity_enabled=true). See “Using

the WebSphere Application Server administrative console to enable properties for specific SMF record

types” on page 100 for instructions.

Server activity record schema

This section includes Subtype 1: Server activity record.

Server activity section

The Server activity section contains information about each activity that occurred within one server.

 Offset (decimal) Offset (hexadecimal) Name Length Format Description

0 0 SM120HNM 64 EBCDIC WebSphere Application Server for z/OS transaction

server host name

Chapter 5. Diagnosing problems (using diagnosis tools) 113

64 40 SM120SNA 8 EBCDIC WebSphere Application Server for z/OS transaction

server name

72 48 SM120INA 8 EBCDIC WebSphere Application Server for z/OS transaction

server instance name

80 50 SM120SNM 4 binary Total number of server servants that were involved

to process this activity. If applicable, up to the first

five server servant address space IDs are listed

within the next five fields.

84 54 SM120SR1 4 binary The specific WebSphere Application Server for

z/OS transaction server instance server servant

where the request ran

88 58 SM120SR2 4 binary The specific WebSphere Application Server for

z/OS transaction server instance server servant

where the request ran

92 5C SM120SR3 4 binary The specific WebSphere Application Server for

z/OS transaction server instance server servant

where the request ran

96 60 SM120SR4 4 binary The specific WebSphere Application Server for

z/OS transaction server instance server servant

where the request ran

100 64 SM120SR5 4 binary The specific WebSphere Application Server for

z/OS transaction server instance server servant

where the request ran

104 68 SM120CRE 8 EBCDIC The user credentials under which the activity

began. Due to deferred security authentication, the

user credentials assigned to the request when it

first reaches the server will often be the

unauthenticated guest ID, and not the ID of the

authenticated user that submitted the request.

112 70 SM120ATY 4 binary Type of activity that this record references:

1: Method request: This record refers to a method

request that is not part of a global transaction.

2: Transaction: This record refers to a transaction.

116 74 SM120AID 20 HEX Identity of the activity

136 88 SM120WLM 8 HEX WLM enclave token

144 90 SM120AST 16 S390STCK Activity start time

160 A0 SM120AET 16 S390STCK Activity stop time

176 B0 SM120NIM 4 binary Number of input methods

180 B4 SM120NGT 4 binary Number of global transactions that were started in

the server servant

184 B8 SM120NLT 4 binary Number of local transactions that were started in

the server servant

188 BC SM120J2E 4 binary J2EE server

192 C0 SM120CEL 8 EBCDIC WebSphere Application Server for z/OS cell name

200 C8 SM120NOD 8 EBCDIC WebSphere Application Server for z/OS node name

208 D0 SM120WCP 8 binary Total CPU time accumulated by the WLM enclave.

TOD clock format (bit 51 = microseconds).

Communications session section

There are zero, one, or multiple sections per record. The Communications session section contains

information about each communication session.

 Offset (decimal) Offset (hexadecimal) Name Length Format Description

0 0 SM120CSH 8 HEX Communications session handle

114 Troubleshooting and support

8 8 SM120CSA 64 EBCDIC Communications session address

72 48 SM120CSO 4 binary Communications session optimization

1: Local communications session: The session is

a local OS/390 optimized communications

session.

2: Remote communications session: The session

is a remote communications session.

3: Remote encrypted (SSL)

4: Remote within sysplex.

5: HTTP session.

6: HTTP encrypted session.

7. Message-driven bean session

76 4C SM120SDR 4 binary Data received; the number of bytes received by

the server.

’FFFFFFFF’X indicates the 4-byte field is too

small. Use SM120CDR, an 8-byte field, instead.

80 50 SM120SDT 4 binary Data transferred; the number of bytes transferred

from the server back to the client.

’FFFFFFFF’X indicates the 4-byte field is too

small. Use SM120CDT, an 8-byte field, instead.

84 54 SM120CDR 8 binary Data received; the number of bytes received by

the server.

92 5C SM120CDT 8 binary Data transferred; the number of bytes transferred

from the server back to the client.

JVM Heap section

There are zero, one, or multiple sections per record. The JVM heap section contains information about the

heap in each server servant.

The information in the JVM heap section comes from the QueryGCStatus() JNI function.

 Offset (decimal) Offset (hexadecimal) Name Length Format Description

0 0 SM120JHA 4 binary Servant address space ID

4 4 SM120JHH 4 binary The heap for which the following data applies.

8 8 SM120JHC 4 binary The total number of allocation failures on this

heap or, if querying shared storage, the subpool

identifier. A negative value indicates the

information is for the shared memory page pool.

12 C SM120JHF 8 binary The total number of free bytes in the

heap/subpool/page pool.

20 14 SM120JHT 8 binary The total number of bytes in the heap, subpool,

or page pool.

Subtype 3: Server interval record:

The purpose of the server interval SMF record is to record activity that is running inside a WebSphere

Application Server for z/OS. This record is produced at regular intervals and is an aggregate of the work

that ran inside the server instance during the interval.

Chapter 5. Diagnosing problems (using diagnosis tools) 115

A single record is created for each server instance that has interval recording active during the interval. If a

server has multiple server instances, then a record for each server instance is written and the records

must be merged after processing to get a complete view of the work that ran inside the server.

You can activate this record through the administrative console by setting

server_SMF_server_interval_enabled=1 (or server_SMF_server_interval_enabled=true). You can

specify an interval through the administrative console by setting server_SMF_interval_length=n, where n is

the desired number of seconds.

Server interval record schema

This section includes Subtype 3: Server interval record.

Server interval section

The server interval section contains information about each activity that occurred within one server.

 Offset (decimal) Offset

(hexadecimal)

Name Length Format Description

0 0 SM120HN2 64 EBCDIC WebSphere Application Server for z/OS

transaction server host name

64 40 SM120SNI 8 EBCDIC WebSphere Application Server for z/OS

transaction server name

72 48 SM120INI 8 EBCDIC WebSphere Application Server for z/OS

transaction server instance name

80 50 SM120SST 16 S390STCK Time that the sample began in the server

96 60 SM120SET 16 S390STCK Time that the sample ended

112 70 SM120NG2 4 binary Number of global transactions that have run

through the server instance during the interval

that have been initiated by the server instance

during the interval

116 74 SM120NL2 4 binary Number of local transactions that have been

initiated by the server instance during the

interval

120 78 SM120NCS 4 binary Reserved

124 7C SM120NCA 4 binary The number of communications sessions that

have been active during the interval

128 80 SM120NLS 4 binary Reserved

132 84 SM120NLA 4 binary Number of active local communication sessions

that have been attached and active within the

server instance during the interval

136 88 SM120NRS 4 binary Reserved

140 8C SM120NRA 4 binary Number of active remote communication

sessions that have been attached and active

within the server instance during the interval

144 90 SM120BTS 4 binary Number of bytes that have been transferred to

the server from all attached clients

’FFFFFFFF’X indicates the 4-byte field is too

small. Use SM120ITS, an 8-byte field, instead.

148 94 SM120BFS 4 binary Number of bytes that have been sent from the

server to all attached clients

’FFFFFFFF’X indicates the 4-byte field is too

small. Use SM120IFS, an 8-byte field, instead.

152 98 SM120BTL 4 binary Number of bytes that have been transferred to

the server from all locally attached clients

’FFFFFFFF’X indicates the 4-byte field is too

small. Use SM120ITL, an 8-byte field, instead.

116 Troubleshooting and support

156 9C SM120BFL 4 binary Number of bytes that have been transferred

from the server to all locally attached clients

’FFFFFFFF’X indicates the 4-byte field is too

small. Use SM120IFL, an 8-byte field, instead.

160 A0 SM120BTR 4 binary Number of bytes that have been transferred to

the server from all remotely attached clients

’FFFFFFFF’X indicates the 4-byte field is too

small. Use SM120ITR, an 8-byte field, instead.

164 A4 SM120BFR 4 binary Number of bytes that have been transferred

from the server to all remotely attached clients

’FFFFFFFF’X indicates the 4-byte field is too

small. Use SM120IFR, an 8-byte field, instead.

168 A8 SM120J2 4 binary J2EE server.

172 AC SM120CL1 8 EBCDIC WebSphere Application Server for z/OS

transaction server cell name

180 B4 SM120ND1 8 EBCDIC WebSphere Application Server for z/OS

transaction server node name

188 BC SM120NHS 4 binary Reserved

192 C0 SM120NHA 4 binary Number of HTTP communication sessions that

have been attached and active within the server

instance during the interval

196 C4 SM120BTH 4 binary Number of bytes that have been transferred to

the server from all HTTP attached clients

’FFFFFFFF’X indicates the 4-byte field is too

small. Use SM120ITH, an 8-byte field, instead.

200 C8 SM120BFH 4 binary Number of bytes that have been transferred

from the server to all HTTP attached clients

’FFFFFFFF’X indicates the 4-byte field is too

small. Use SM120IFH, an 8-byte field, instead.

204 CC SM120TEC 8 binary Total CPU time accumulated by the WLM

enclaves. TOD clock format (bit 51 =

microseconds).

212 D4 SM120ITS 8 binary Number of bytes that have been transferred to

the server from all attached clients.

220 DC SM120IFS 8 binary Number of bytes that have been sent from the

server to all attached clients

228 E4 SM120ITL 8 binary Number of bytes that have been transferred to

the server from all locally attached clients

236 EC SM120IFL 8 binary Number of bytes that have been transferred

from the server to all locally attached clients

244 F4 SM120ITR 8 binary Number of bytes that have been transferred to

the server from all remotely attached clients

252 FC SM120IFR 8 binary Number of bytes that have been transferred

from the server to all remotely attached clients

260 104 SM120ITH 8 binary Number of bytes that have been transferred to

the server from all HTTP attached clients

268 10C SM120IFH 8 binary Number of bytes that have been transferred

from the server to all HTTP attached clients

276 114 SM120IR1 32 Reserved

Server servant section

There are zero, one, or multiple sections per record. The server servant section contains information about

each server servant in the specified server interval.

Chapter 5. Diagnosing problems (using diagnosis tools) 117

Offset Offset Name Length Format Description

0 0 SM120SSA 4 binary Servant address space ID

4 4 SM120SNT 4 binary Number of triplets.

The following triplet appears 0-n times; once for each heap id section.

8 8 SM120SSO 4 binary Offset to heap id section from the beginning of

this server servant section.

12 C SM120SSL 4 binary Length of heap id section.

16 10 SM120SSN 4 binary Number of heap id sections.

Subtype 3: Heap ID section

There are multiple (0..n) sections per server servant section. The Heap id section contains information

about all heaps of this server servant involved in this activity

 Offset Offset Name Length Format Description

0 0 SM120HIH 4 binary The heap for which the following data applies.

4 4 SM120HIC 4 binary Number of allocation failures on this heap

during the interval.

8 8 SM120HI1 8 binary Minimum number of bytes during the interval.

16 10 SM120HI2 8 binary Maximum number of bytes during the interval.

24 18 SM120HI3 8 binary Average number of bytes during the interval.

32 20 SM120HI4 8 binary Minimum number of free bytes during the

interval.

40 28 SM120HI5 8 binary Maximum number of free bytes during the

interval.

48 30 SM120HI6 8 binary Average number of free bytes during the

interval.

Subtype 5: J2EE container activity record (Version 2):

The purpose of the J2EE container activity SMF record is to record activity within a J2EE container that is

located inside the WebSphere Application Server transaction server.

 This record can be used to perform basic charge-back accounting, application profiling, problem

determination, and capacity planning. A single record is created for each activity that is run within a J2EE

container located inside a WebSphere Application Server transaction server.

You can activate this record through the administrative console by setting

server_SMF_container_activity_enabled=1 (or server_SMF_container_activity_enabled=true) .

J2EE container activity record (Version 2) schema

This section includes Subtype 5: J2EE container activity record (Version 2).

J2EE container activity section

There is one section per record. The J2EE container activity section contains information about each

activity that occurred within one J2EE container.

 Offset Offset Name Length Format Description

118 Troubleshooting and support

0 0 SM120JA4 64 EBCDIC WebSphere Application Server for z/OS transaction

server host name

64 40 SM120JA5 8 EBCDIC WebSphere Application Server for z/OS transaction

server name

72 48 SM120JA6 8 EBCDIC WebSphere Application Server for z/OS transaction

server instance name

80 50 SM120JA7 4 binary The specific WebSphere Application Server for z/OS

transaction server instance server servant where the

request ran

84 54 SM120JA8 512 Unicode WebSphere Application Server for z/OS container

name.

596 254 SM120JA9 8 HEX The WLM enclave token

604 25C SM120JAA 4 binary RESERVED

608 260 SM120JAB 20 HEX The identity of the activity

628 274 SM120CL2 8 EBCDIC Cell

636 27C SM120ND2 8 EBCDIC Node

Bean section

There are multiple sections per record. The bean section contains information about all beans involved in

this activity.

 Offset Offset Name Length Format Description

0 0 SM120JB1 512 Unicode AMCName of the bean activated by the container.

Note: If the length of the AMCName exceeds 256

DBCS characters (512 bytes), the rightmost 256

characters are recorded.

512 200 SM120JB2 60 binary UUID based AMC name

572 23C SM120JB3 4 binary The bean’s type. 2: Stateless session bean. 3:

Stateful session bean. 4: BMP entity bean. 5: CMP

entity bean. 6. Message-driven bean.

576 240 SM120JB4 4 binary RESERVED

580 244 SM120JB5 4 binary RESERVED

584 248 SM120JB6 4 binary RESERVED

588 24C SM120JB7 4 binary The bean’s reentrance policy. 0: Not reentrant within

transaction. 1: Reentrant within transaction.

592 250 SM120JB8 4 binary RESERVED

596 254 SM120JMC 4 binary RESERVED

600 258 SM120JM6 4 binary RESERVED

604 25C SM120JB9 4 binary Number of method triplets in this bean section

The following triplet appears 0-n times; once for each bean method section.

608 260 SM120JBS 4 binary Offset to bean method section from the beginning of

this bean section

612 264 SM120JBL 4 binary Length of bean method section

616 268 SM120JBN 4 binary Number of bean method sections

Bean method section

There are multiple sections per bean section. The bean method section contains information about all

methods of beans involved in this activity.

Chapter 5. Diagnosing problems (using diagnosis tools) 119

Offset Offset Name Length Format Description

0 0 SM120JM1 1,024 Unicode The name of the method including its signature in

its externalized, human-readable form. If the length

of the method exceeds 512 DBCS characters (1024

bytes), the leftmost 512 characters are recorded.

1024 400 SM120JM2 4 binary The number of times the method was invoked

during the activity.

1028 404 SM120JM3 4 binary Average response time. The response time is

measured in milliseconds (the granularity provided

by the JVM - hopefully, it will be equal to 0 in most

cases).

1032 408 SM120JM4 4 binary Maximum response time. The response time is

measured in milliseconds.

1036 40C SM120JM5 4 binary The bean method’s transaction policy. Values from

com.ibm.WebSphere Application Server for

z/OS.csi. TransactionAttribute.java:

0: "TX_NOT_SUPPORTED"

1: "TX_BEAN_MANAGED"

2: "TX_REQUIRED"

3: "TX_SUPPORTS"

4: "TX_REQUIRES_NEW"

5: "TX_MANDATORY"

6: "TX_NEVER"

1040 410 SM120JM8 4 binary RESERVED.

1044 414 SM120JM9 4 binary RESERVED.

1048 418 SM120JMA 512 Unicode List of ejbRoles associated with the method.

Separator character: ″;″ (semicolon). If the length of

the concatenated string exceeds 256 characters

(512 bytes), only its leftmost 256 characters are

recorded.

1560 618 SM120JMB 4 binary RESERVED.

1564 61C SM120JMD 4 binary RESERVED.

1568 620 SM120JME 4 binary ejbLoad: # of invocations

1572 624 SM120JMF 4 binary ejbLoad: avg execution time

1576 628 SM120JMG 4 binary ejbLoad: max execution time

1580 62C SM120JMH 4 binary ejbStore: # of invocations

1584 630 SM120JMI 4 binary ejbStore: avg execution time

1588 634 SM120JMJ 4 binary ejbStore: max execution time

1592 638 SM120JMK 4 binary ejbActivate: # of invocations

1596 63C SM120JML 4 binary ejbActivate: avg execution time

1600 640 SM120JMM 4 binary ejbActivate: max execution time

1604 644 SM120JMN 4 binary ejbPassivate: # of invocations

1608 648 SM120JMO 4 binary ejbPassivate: avg execution time

1612 64C SM120JMP 4 binary ejbPassivate: max execution time

1616 650 SM120JMQ 8 binary Average cpu time in microseconds.

1624 658 SM120JMR 8 binary Minimum cpu time in microseconds.

1632 660 SM120JMS 8 binary Maximum cpu time in microseconds.

Subtype 6: Container interval record (Version 2):

The purpose of the J2EE container interval SMF record is to record activity within a J2EE container that is

located inside the WebSphere Application Server transaction server.

120 Troubleshooting and support

This record is produced at regular intervals and is an aggregate of the activities running inside a J2EE

container during the interval. This record can be used to perform application profiling, problem

determination, and capacity planning.

A single record is created for each active J2EE container located in a WebSphere Application Server

transaction server within the interval being recorded. If there is more than one server instance associated

with a server, a record for the container will exist for each server instance. To get a common view of the

work running in the J2EE container during the interval, you must merge the records after processing.

You can specify an interval through the WebSphere Application Server administrative console by setting

server_SMF_interval_length=n, where n is the desired number of seconds.

You can activate this record by setting server_SMF_container_interval_enabled=1 (or

server_SMF_container_interval_enabled=true) on the administrative console.

Container interval record (Version 2) schema

This section includes Subtype 6: Container interval record (Version 2).

J2EE container interval section

There is one section per record. The J2EE container interval section contains information about each

activity that occurred within one J2EE container in the specified interval.

 Offset (decimal) Offset

(hexadecimal)

Name Length Format Description

0 0 SM120JI4 64 EBCDIC The WebSphere Application Server for z/OS

transaction server host name.

64 40 SM120JI5 8 EBCDIC The WebSphere Application Server for z/OS

transaction server name.

72 48 SM120JI6 8 EBCDIC The WebSphere Application Server for z/OS

transaction server instance name.

80 50 SM120JI7 512 Unicode The WebSphere Application Server for z/OS

container name.

Note: This is hardcoded to ″Default″ for the 4.0.1

time frame.

592 250 SM120JI8 16 S390STCK The time that the sample began in the server.

608 260 SM120JI9 16 S390STCK The time that the sample ended.

624 270 SM120CL3 8 EBCDIC Cell

632 278 SM120ND3 8 EBCDIC Node

Subtype 6: Bean section:

See Subtype 5: Bean section

Subtype 6: Bean method section:

See Subtype 5: Bean method section

Subtype 7: WebContainer activity record (Version 2):

The purpose of the WebContainer activity SMF record is to record activity within a WebContainer running

inside a WebSphere Application Server for z/OS transaction server.

Chapter 5. Diagnosing problems (using diagnosis tools) 121

The Web container is deployed within an EJB and runs within the EJB container. The WebContainer acts

as a Web server handling HTTP sessions and servlets. The EJB container is not aware of the work the

WebContainer does. Instead, the EJB container only records that the EJB has been dispatched.

Meanwhile, the WebContainer gathers the detailed information, such as HTTP sessions, servlets, and their

respective performance data. A single WebContainer Activity record is created for each activity that is run

within a Web container.

WebContainer SMF recording is activated and deactivated along with the activation and deactivation of

SMF recording for the J2EE container.

WebContainer activity record (Version 2) schema

This section includes Subtype 7: WebContainer activity record (Version 2).

WebContainer activity section

There is one section per record. The WebContainer activity section contains information about each

activity that occurred within one web container.

 Offset (decimal) Offset (hexadecimal) Name Length Format Description

0 0 SM120WAA 64 EBCDIC The WebSphere

transaction server host

name.

64 40 SM120WAB 8 EBCDIC The WebSphere

transaction server name.

72 48 SM120WAC 8 EBCDIC The WebSphere

transaction server

instance name.

80 50 SM120WAD 8 HEX The WLM enclave token.

88 58 SM120WAE 20 HEX The identity of the

activity.

108 6C SM120WAF 16 S390STCK The time the activity

began in the server.

124 7C SM120WAG 16 S390STCK The time the activity

ended.

140 8C SM120CL4 8 EBCDIC Cell

148 94 SM120ND4 8 EBCDIC Node

HttpSessionManager section

There is one section per record. The HttpSessionManager section contains information about all (there

may be zero or one) http sessions associated to one single activity.

 Offset Offset Name Length Format Description

0 0 SM120WAH 4 binary ″created Sessions″: Number of

http sessions that were created.

4 4 SM120WAI 4 binary ″invalidatedSessions″: Number of

http session that were invalidated.

8 8 SM120WAJ 4 binary ″activeSessions″: Number of http

sessions that were referenced

during this activity.

12 C SM120WAK 4 binary ″sessionLifeTime″: lifetime of the

session in milliseconds. If

″invalidatedSessions″ > 0, this is

the average lifetime (in

milliseconds) of the invalidated

http session.

122 Troubleshooting and support

WebApplication section

There are multiple (0-n) sections per record. The WebApplication section contains information about all

WebApplications involved in this activity.

 Offset Offset Name Length Format Description

0 0 SM120WAL 256 Unicode The name of the WebApplication.

256 100 SM120WAM 4 binary Number of servlet triplets in this web

application section.

The following triplet appears 0-n times, once for each servlet section.

260 104 SM120WAN 4 binary Offset to servlet section from the

beginning of this WebApplication

section.

264 108 SM120WAO 4 binary Length of servlet section.

268 10C SM120WAP 4 binary Number of servlet sections.

Servlet activity section

There are multiple (0-n) sections per WebApplication section. The Servlet activity section contains

information about each servlet associated with WebApplications involved in this activity.

 Offset Offset Name Length Format Description

0 0 SM120WAQ 256 Unicode The name of the servlet.

256 100 SM120WAR 4 binary ″responseTime″: Response time in

milliseconds.

260 104 SM120WAS 4 binary ″numErrors″: The number of errors that

were encountered during the servlet

execution.

264 108 SM120WAT 4 binary ″loaded″:

0: The servlet did not have to be loaded

as a result of this request.

1: The servlet had to be loaded as the

result of this request.

268 10C SM120WAU 16 EBCDIC ″loadedSince″: Timestamp from

System.currentTimeMillis() when the

servlet was loaded, in HEX format.

Sample: The data as it appears in the

record has the format

e7ef7c577c

, which needs to be converted to a Java

long:

996155348860

. The Java long digits can be converted to

java.util.Date:

Thu Jul 26 15:49:08 GMT+02:00 2001

284 11C SM120CPU 8 binary Cpu time in microseconds.

Subtype 8: WebContainer interval record (Version 2):

The purpose of the WebContainer interval SMF record is to record activity within a WebContainer running

inside a WebSphere Application Server for z/OS transaction server.

Chapter 5. Diagnosing problems (using diagnosis tools) 123

The Web container execution environment consists of an EJB that is deployed into the EJB container. The

WebContainer acts as a Web Server handling HttpSessions and Servlets. The EJB container is not aware

of the purpose of the WebContainer activity record and only records that the EJB has been dispatched,

but does not gather any of the detailed information, such as HttpSessions, Servlets, and their respective

performance data. A single WebContainer record is created for each Web container.

In addition to data that is associated with an individual activity, there are some cases of Web container

work that are performed outside the scope of an individual request. For example, some instances of http

session finalization and http session invalidation are performed asynchronously. In such a case a

WebContainer interval record would record this data

WebContainer SMF recording is activated and deactivated along with the activation and deactivation of

SMF recording for the J2EE container.

WebContainer interval record (Version 2) schema

WebContainer interval record (Version 2) schema.

WebContainer interval section

There is one section per record. The WebContainer interval section contains information about each

activity that occurred within one WebContainer record.

 Offset (decimal) Offset (hexadecimal) Name Length Format Description

0 0 SM120WIA 64 EBCDIC The WebSphere transaction server host

name.

64 40 SM120WIB 8 EBCDIC The WebSphere transaction server

name.

72 48 SM120WIC 8 EBCDIC The WebSphere transaction server

instance name.

80 50 SM120WID 16 S390STCK The time the sample began.

96 60 SM120WIE 16 S390STCK The time the sample ended.

112 70 SM120CL5 8 EBCDIC Cell

120 78 SM120ND5 8 EBCDIC Node

HttpSessionManager section

There is one section per record. The HttpSessionManager section contains information about all (there

may be zero or one) http sessions associated to one single activity.

 Offset Offset Name Length Format Description

0 0 SM120WIF 4 binary ″createdSessions″: Number of http

sessions that were created.

4 4 SM120WIG 4 binary ″invalidatedSessions″: Number of http

sessions that were invalidated.

8 8 SM120WIH 4 binary ″activeSessions″: Current number of http

sessions that are actively referenced in

the server at the end of the interval.

12 C SM120WII 4 binary ″minActiveSessions″: Minimum number of

active http sessions during the interval..

16 10 SM120WIJ 4 binary ″maxActiveSessions″: Maximum number

of active http sessions during the interval.

20 14 SM120WIK 4 binary ″sessionLifeTime″: Average lifetime (in

milliseconds) of invalidated http sessions.

124 Troubleshooting and support

24 18 SM120WIL 4 binary ″sessionInvalidateTime″: Average time (in

milliseconds) that was required to process

the invalidation of http sessions.

28 1C SM120WIM 4 binary ″finalizedSessions″: Number of sessions

that were finalized.

32 20 SM120WIN 4 binary ″liveSessions″: Total number of http

sessions being tracked by the server at

the end of the interval. This includes both

active and inactive sessions.

36 24 SM120WIO 4 binary ″minLiveSessions″: Minimum number of

live http sessions during the interval.

40 28 SM120WIP 4 binary ″maxLiveSessions″: Maximum number of

live http sessions during the interval.

WebApplication interval section

There are multiple (0-n) sections per record. The WebApplication interval section contains information

about all WebApplications involved in this activity.

 Offset Offset Name Length Format Description

0 0 SM120WIQ 256 Unicode The WebApplication name.

256 100 SM120WIR 4 binary ″numLoadedServlets″: Number of

servlets that were loaded.

Note: This value might differ from the

number of servlet sections in this record

since servlets might exist that have

been inactive during the interval.

260 104 SM120WIS 4 binary Number of servlet triplets in this web

application section.

The following triplet appears 0-n times, once for each servlet section.

264 108 SM120WIT 4 binary Offset to servlet section from the

beginning of this WebApplication

section.

268 10C SM120WIU 4 binary Length of the servlet section.

272 110 SM120WIV 4 binary Number of servlet section.

Servlet section

There are multiple (0-n) sections per WebApplication section. The Servlet activity section contains

information about all servlets involved per WebApplication in this activity.

 Offset Offset Name Length Format Description

0 0 SM120WIW 256 Unicode The servlet name.

256 100 SM120WIX 4 binary ″totalRequests″: Number of times the

servlet service was requested during the

interval.

260 104 SM120WIY 4 binary ″responseTime″: Average response time

in milliseconds.

264 108 SM120WIZ 4 binary ″minResponseTime″: Minimum response

time in milliseconds.

268 10C SM120WJ1 4 binary ″maxResponseTime″: Maximum response

time in milliseconds.

272 110 SM120WJ2 4 binary ″numErrors″: The number of errors that

were encountered during servlet

execution.

Chapter 5. Diagnosing problems (using diagnosis tools) 125

276 114 SM120WJ3 16 EBCDIC ″loadedSince″: Timestamp when the

servlet was loaded.

Sample:

Fri May 25 08:42:25 EDT 2001

292 124 SM120WJ4 8 binary Average cpu time in microseconds.

300 12C SM120WJ5 8 binary Minimum cpu time in microseconds.

308 134 SM120WJ6 8 binary Maximum cpu time in microseconds.

Troubleshooting using WebSphere variables

Troubleshooting problems can be performed by changing certain variables in your application environment.

WebSphere Application Server for z/OS provides configuration variables that control server behavior.

v Configuration variables may be set on a cell, node, or server level.

– Variable values set on a cell level apply to all servers in all nodes in the cell, unless a different value

for the same variable is set on a node or server level. Variable settings on a node or server level

override values for the same variable set at the cell level.

– Variables set on a node level apply to all servers in the node, unless a different value for the same

variable is set on the server level. Variable settings on a server level override values for the same

variable set at the node or cell level.

– Variables set on a server level apply only to the specific server, not to any other servers in the same

node or cell.

Note: When you are diagnosing particular problems, you are most likely to alter variable values on a

server level, for a particular server. Specifying variable values on the server level affects both the

controller and servant regions.

v You may use scripting interfaces, instead of the administrative console, to alter configuration variable

values.

v These variables allow you to control:

– Output destinations and characteristics for the error log, and for CTRACE buffers, data sets and the

external writer.

– Trace buffers, data sets, and the content of trace data.

– Types of dumps to be requested.

– Timeout values for system and application behavior.

Depending on the types of problems you encounter, you might need to change the values set for

configuration variables that control WebSphere Application Server behavior. Generally speaking, the

default values are designed for normal operation in a production environment. Other circumstances might

require different values:

v When you first customize and verify WebSphere Application Server for z/OS installation, or

v When you test application workloads in a test environment, or

v when you encounter a problem, and need to collect more diagnostic data.

The following procedure explains how to use the administrative console to change configuration variable

values, commonly known as console settings.

1. Click Environment -> Manage WebSphere Variables in the console navigation tree.

2. On the WebSphere Variables page, select Server as the scope of the variable setting, and click

Apply.

3. On the WebSphere Variables page, click New.

4. On the Variable page, specify a name and value for the variable. So other people can understand

what the variable is used for, also specify a description for the variable. Then click OK.

5. Verify that the variable is shown in the list of variables.

126 Troubleshooting and support

6. Save your configuration.

7. To have the configuration take effect, stop the server and then start the server again.

Best practices for maintaining the run-time environment

Use these guidelines to make sure that WebSphere Application Server for z/OS is customized and

maintained correctly, to support your installation’s application workload.

Checking these basic software and hardware requirements can help you avoid problems with the run-time

environment.

v Check that you have the necessary prerequisite software up and running. Check that they have

the proper authorizations and that the definitions are correct.

v Check for messages that signal potential problems. Look for warning and error messages in the

following sources:

– SYSLOG from other z/OS subsystems and products, such as TCP/IP (especially the DNS, if in use),

RACF, and so on

– WebSphere Application Server for z/OS error log

– SYSPRINT of the WebSphere Application Server for z/OS

– Component trace (CTRACE) output for the server
v Check the ports used by WebSphere Application Server. The ports that are used by WebSphere

Application Server must not be reserved by any other z/OS component.

v Ensure that z/OS has enough DASD space for SVC dumps. You might have to adjust the amount of

space, because it depends on the size of your applications, on the configured Java virtual machine

(JVM) heap size, and on the number of servant regions that might be included in one dump, and so on.

For an SVC dump of one controller and one servant, you can start with a minimum of 512, but might

have to increase the MAXSPACE to 1024 or higher, given the factors listed above.

v Check your general environment. Does your system have enough memory? Insufficient memory

problems can show up as AUX shortages, abends, or exceptions from the WebSphere Application

Server for z/OS run-time. Sometimes the heap size for Language Environment (LE) and for the Java

virtual machine (JVM) needs to be increased. If you are using RRS and DB2, make sure your system

has enough space for archive data sets.

v Make sure all prerequisite fixes have been installed; a quick check for a fix can save hours of

debugging.

For the most current information on fixes and service updates, see:

– The Preventive Service Planning (PSP) buckets for both WebSphere Application Server for z/OS and

JAVA subsets of the WebSphere Application Server for z/OS Upgrade. To obtain a copy of the most

current versions of these PSP buckets, you can either contact the IBM Support Center, use S/390

SoftwareXcel or link to IBMLink.

– The Support Web page of the WebSphere Application Server for z/OS Web site, which contains a

table of the latest authorized program analysis reports (APARs).

With the latest service information, check the following:

– Ensure that all prerequisite PTFs (fixes) have been applied to the system.

– Verify that all PTFs were actually present in the executables that were used at the time of error.

Often, SMP can indicate that a fix is present and installed on the system when, in reality, the

executables that were used at the time of error did not contain the fix.

Best practices for using system controls

Use this information as the best way to configure system controls.

v You have the option of using a z/OS system logger log stream as the WebSphere Application Server

for z/OS error log. The WebSphere variable

 ras_log_logstreamName

identifies which log stream you want to use for the error log; it has no default setting. If you do not use

a log stream, however, messages that usually appear in the error log are directed to server’s job log.

v You have the option of directing trace output to SYSPRINT or buffers. The WebSphere variable

Chapter 5. Diagnosing problems (using diagnosis tools) 127

http://www.ibmlink.ibm.com/
http://www.ibm.com/software/webservers/appserv/zos_os390/support/

ras_trace_outputLocation

controls the location of trace output; its default values are SYSPRINT for client applications, and buffers

to all other processes. Although you can change the default for other processes from buffers to

SYSPRINT, performance is better when you use buffers.

v You can use the Resource Measurement Facility (RMF) to view status information that might indicate

potential problems. WebSphere Application Server for z/OS uses Workload Manager (WLM) services to

report transaction begin-to-end response times and execution delay times, which might indicate that

changes are required for timeout values or tuning controls.

Performance diagnosis information

The following report options are listed here for information. IBM Service may request that you run one or

more of these reports while assisting you with diagnosis. You do not need to collect this data unless it is

requested by IBM Service.

v If you suspect that you are having throughput problems in a particular address space, for example by

looking at some other real-time performance data, IBM Service may need to see a dump of one or more

address spaces. This is done using the following parameters:

 JOBNAME=(<jobname list>)

 SDATA=(LSQA,PSA,SQA,SUM,SWA,TRT,WLM,CSA,RGN)

v If you suspect that the problem could be resulting from GRS latch or ENQ contention, check the RMF

Enqueue Activity Report and enter the console command:

D GRS,CONTENTION

during a time period in which the performance problem is observed.

SYS.BPX.A000.FSLIT.FILESYS.LSN represents HFS latches. Latch sets with a numeric suffix are file

latches, specifically SYS.BPX.A000.FSLIT.FILESYS.LSN.01. If you detect file latch contention, the best

way to determine the exact HFS file causing the problem is with an SVC dump, also collected during a

time period in which contention occurred. You will need to dump one of the OMVS data spaces to get

the file information.

DUMP COMM=(description of problem)

Reply to dump WTO, where serverproc is the name of your WebSphere Server

 address space(s)

JOBNAME=(OMVS,Serverproc),DSPNAME=(’OMVS’.SYSZBPX1,’OMVS’.SYSZBPX2),

SDATA=(CSA,GRSQ,LPA,NUC,PSA,RGN,SQA,TRT,SUM)

v Sometimes USS errors can cause performance problems. The USS Ctrace (SYSOMVS) MIN tracing

option always records OMVS errors. You can take an SVC dump of the OMVS address space (as

described in the previous bullet) and the data spaces and format the SYSOMVS CTRACE. Use IPCS

options 7.2.1, suboption D, component SYSOMVS and the TALLY option (default is FULL). Look for

trace events of errors in the TALLY report.

v To find delays in applications, collect application performance information

– SMF 120 records.

– Jinsight profile

Diagnosing problems with message logs

WebSphere Application Server can write system messages to several general purpose logs, including

JVM, process, and IBM service logs, which can be examined for problem determination.

The JVM logs are created by redirecting the System.out and System.err streams of the JVM to

independent log files. WebSphere Application Server writes formatted messages to the System.out stream.

In addition, applications and other code can write to these streams using the print() and println()

methods defined by the streams. Some Developer Kit built-ins such as the printStackTrace() method on

the Throwable class can also write to these streams. Typically, the System.out log is used to monitor the

128 Troubleshooting and support

health of the running application server. The System.out log can be used for problem determination, but it

is recommended to use the IBM Service log and the advanced capabilities of the Log and Trace Analyzer

instead. The System.err log contains exception stack trace information that is useful when performing

problem analysis.

Important: This Log and Trace Analyzer tool is different from the Log and Trace Analyzer tool available on

the WebSphere® Application Server Toolkit CD-ROM. For information on the WebSphere® Application

Server Toolkit Log and Trace Analyzer, refer to the Detecting and analyzing runtime problems

documentation provided with the WebSphere® Application Server Toolkit.

Because each application server represents a JVM, there is one set of JVM logs for each application

server and all of its applications located by default in the following directory:

v install_root/profiles/profile_name/logs/server_name

In the case of a WebSphere Application Server Network Deployment configuration, JVM logs are also

created for the deployment manager and each node agent because they also represent JVMs.

There is one set of STDOUT and STDERR log streams for each application server and all of its applications.

JVM logs are also created for the deployment manager and each node agent because they also represent

JVMs.

The process logs are created by redirecting the STDOUT and STDERR streams of the process to independent

log files. Native code, including the Java virtual machine (JVM) itself, writes to these files. As a general

rule, WebSphere Application Server does not write to these files. However, these logs can contain

information relating to problems in native code or diagnostic information written by the JVM.

As with JVM logs, there is a set of process logs for each application server, since each JVM is an

operating system process, and in the case of a WebSphere Application Server Network Deployment

configuration, a set of process logs for the deployment manager and each node agent.

The IBM service log contains both the WebSphere Application Server messages that are written to the

System.out stream and some special messages that contain extended service information that is normally

not of interest, but can be important when analyzing problems. There is one service log for all WebSphere

Application Server JVMs on a node, including all application servers. The IBM Service log is maintained in

a binary format and requires a special tool to view. This viewer, the Log and Trace Analyzer, provides

additional diagnostic capabilities. In addition, the binary format provides capabilities that are utilized by IBM

support organizations.

In addition to these general purpose logs, WebSphere Application Server contains other specialized logs

that are specific to a particular component or activity. For example, the HTTP server plug-in maintains a

special log. Normally, these logs are not of interest, but you might be instructed to examine one or more of

these logs while performing specific problem determination procedures. For details on how and when to

view the plug-in log, see the Accessing a Web resource through the application server and bypassing the

HTTP server subsection of the A Web resource does not display topic.

Note: The System.out and STDOUT streams are redirected to the SYSPRINT ddname under z/OS. The

System.err and STDERR streams are redirected to the SYSOUT ddname under z/OS. By default, the

WebSphere Application Server for z/OS cataloged procedures associate these ddnames with print

(SYSOUT=*) data sets, causing message logs to go into WebSphere Application Server job output.

Job output can be viewed with the Spool Display and Search Facility (SDSF) or equivalent

software.

Sometimes server and application problems can be diagnosed by examining log output from the

WebSphere Application Server.

Determine which type of logs you would like to implement:

Chapter 5. Diagnosing problems (using diagnosis tools) 129

v JVM logs

v Process logs

v IBM service logs

Viewing JVM logs

The Java virtual machine (JVM) logs are written as plain text files. Therefore there are no special

requirements to view these logs.

The SystemOut.log and SystemErr.log JVM logs are located in the job logs of the application server.

JVM log interpretation

The JVM logs contain print data written by applications. The application can write this data directly in the

form of System.out.print(), System.err.print(), or other method calls. The application can also write

data indirectly by calling a JVM function, such as an Exception.printStackTrace(). In addition, the

System.out JVM log contains system messages written by the WebSphere Application Server.

If you allow the application server to format the application data, it is printed in the normal z/OS trace

format. If you do not allow the application server to format the application data, the raw text is printed,

which is much harder to analyze.

Format of an error log entry

1| 2005/03/02 17:31:17.641 01 t=8FB718 c=UNK key=S2 (13007002)

2| ThreadId: 0000004e

3| FunctionName: com.ibm.ws.sm.workspace.impl.WorkSpaceManagerImpl

4| SourceId: com.ibm.ws.sm.workspace.impl.WorkSpaceManagerImpl

5| Category: AUDIT

6| ExtendedMessage: BBOO0222I: WKSP0023I: Workspace configuration consistency check is disabled.

 Table 2. Parts of a log stream record

Line number Component Description

1 2005/03/02 17:31:17.641 01 Date / timestamp / 2-digit record

version number

1 t=8FB718 MVS TCB (thread) Address

1 c=UNK Request correlation information

1 key=S2 State/Key (S=Supervisor,P=Problem)

1 (13007002) Trace Point Identifier

2 ThreadId: 0000004e Thread Identifier (TID)

3 FunctionName:

com.ibm.ws.sm.workspace.impl.WorkSpaceManagerImpl

Function name

4 SourceId:

com.ibm.ws.sm.workspace.impl.WorkSpaceManagerImpl

Source Identifier

5 Category: AUDIT Category

6, 7 ExtendedMessage: ... Log message

Process logs

WebSphere Application Server processes contain two output streams that are accessible to native code

running in the process. These streams are the stdout and stderr streams. Native code, including Java

virtual machines (JVM), might write data to these process streams. In addition, JVM provided System.out

and System.err streams can be configured to write their data to these streams also.

130 Troubleshooting and support

By default, the stdout and stderr streams are redirected to log files at application server startup, which

contain text written to the stdout and stderr streams by native modules (.dlls, .exes, UNIX libraries, and

other modules). By default, these files are stored as profile_root/logs/server_name/native_stderr.log and

profile_root/logs/native_stdout.log.

Setting up the error log

WebSphere Application Server for z/OS uses an error log to record error information when an unexpected

condition or failure is detected within the product’s own code. Such unexpected conditions or failures

include:

v Assertion failures

v Unrecoverable error conditions

v Failures related to vital resources, such as memory

v Operating system exceptions

v Programming defects in WebSphere Application Server for z/OS code.

v Because WebSphere Application Server for z/OS is predefined as a z/OS system logger application,

you can use a log stream as the product’s error log. By doing so, you can direct error information to a

coupling facility log stream, which provides sysplex-wide error logging, or to a DASD-only log stream,

which provides single system-only error logging.

v You can set up a common log stream for all WebSphere Application Server for z/OS servers, or

individual log streams for each application server. Local z/OS client ORBs can also log data in log

streams. The system logger APIs are unauthorized, but log stream resources can be protected using

security products such as RACF.

v You can use the WebSphere variable ras_time_local to control whether timestamps in the error log

appear in local time (ras_time_local=0) or Greenwich Mean Time (GMT)(ras_time_local=1), which is

the default.

v When your installation first customizes and verifies WebSphere Application Server for z/OS installation,

you have the option of defining the error log as a log stream. Using the ISPF customization dialog to

configure a base application server node, you can specify log stream characteristics, including sizes.

After verifying installation, you can change the log stream used for normal operations.

v For additional information about z/OS log stream requirements, access the z/OS MVS Setting up a

Sysplex, SA22-7625 available on the z/OS Library Web page

Viewing the service log

Service logs are logs written in a binary format. You cannot view a service log directly using a text editor.

You should never directly edit the service log, as doing so will corrupt the log.

You can view a service log using the Showlog tool to convert the contents of the service log to a text

format that you can then write to a file or dump to the command shell window.

Run the showlog script to view the contents of the service log as described in the following procedure.

1. Open a shell window on the machine where the service log resides.

2. Change the directory to app_server_root/bin where app_server_root is the fully qualified path where

the WebSphere Application Server product is installed.

3. Run the showlog script.

Use the following format:

showlog.sh {-start startDateTime [-end endDateTime] | -interval interval}

[-format CBE-XML-1.0.1] [-encoding encoding] logStreamName

[outputFilename

where:

-start Specifies the start date and time, in yyyy-MM-ddTHH:mm:ss.SSSZ format. Milliseconds and

time zone are optional.

Chapter 5. Diagnosing problems (using diagnosis tools) 131

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/

-end Specifies the end date and time, in yyyy-MM-ddTHH:mm:ss.SSSZ format. Milliseconds and

time zone are optional.

-interval

Specifies the start date as the system date and time minus interval milliseconds, and end date

as the system date and time. Valid values are integers greater than 0.

-format

Specifies the output format. Currently only CBE-XML-1.0.1 format is supported (this complies

with the Common Base Event specification version 1.0.1). If no format is given, showlog

outputs in a tabular format.

-encoding

Specifies the output file encoding, a character encoding supported by the local Java Virtual

Machine .

logStreamName

Is a log file name.

outputFilename

Is optional. If no file name is given, the showlog script creates a default showlog.out filename,

outputFilename is created in the current directory unless it is a fully qualified file name.

The formatted contents of the service log are always written to a file. There are parameters to

showlog.sh which control content and encoding of the output. Enter showlog.sh without parameters for

parameter usage information.

The showlog script can return informational messages containing service names, return codes, and

reason codes. For more information about using the z/OS log stream, or to look up service names,

return codes, and reason codes, refer to z/OS MVS Authorized Assembler Services Reference

ENF-IXG(SA22-7610). Return and reason codes are listed for each service.

Refer to the topic ″Authorization for System Logger Application Programs″ in z/OS MVS Assembler

Services Guide (SA22-7605) for advice on permitting access to the log stream.

4. Run the following showlog script with no parameters to display usage instructions.

showlog.sh

5. Format and write the service log contents to a file.

 showlog service_log_filename output_filename

If the service log is not in the default location, you must fully qualify the service_log_filename

Here are examples of showlog scripts on z/OS systems

v To write all records from the WAS.ERROR.LOG file since July 14, 2004 in log analyzer format into the

myoutput.log file, use the following format:

showlog.sh -start 2004-07-14T00:00:00 WAS.ERROR.LOG myoutput.log

v To write all records from WAS.ERROR.LOG file since July 14, 2004 in Common Base Event XML 1.0.1

format into myoutput.log file, use the following format:

showlog.sh -start 2004-07-14T00:00:00 -format CBE-XML-1.0.1

WAS.ERROR.LOG myoutput.log

v To write all records from WAS.ERROR.LOG file between July 14, 2004 and April 9, 2005 in Common Base

Event XML 1.0.1 format into myoutput.log file, use the following format:

showlog.sh -start 2004-07-14T00:00:00 -end 2005-04-09T00:00:00

-format CBE-XML-1.0.1 WAS.ERROR.LOG myoutput.log

v To write all records from WAS.ERROR.LOG file since December 6, 2004 at 9pm Eastern standard time into

myoutput.log file (the default output file), use the following format:

showlog.sh -start 2004-12-06T21:00:00EST WAS.ERROR.LOG

132 Troubleshooting and support

Generating messages in Common Base Event format

The z/OS logs can be stored in Common Base Event format. This enables the Showlog tool to read the

data in the logstream. In turn, the showlog output can be read by the log and trace analyzer (included as

part of the Application Server Toolkit).

To enable writing of the logstream in Common Base Event format, open the administrative console, and

complete the following steps.

1. Click Application servers → server1 → Process Definition → Control → Java Virtual Machine →

Custom Properties

2. Add a new custom property with name="com.ibm.ws.logging.zOS.errorLog.format" and value

"CBE-XML-1.0.1"

3. Restart your application server for this setting to take effect.

When this property is set to CBE-XML-1.0.1, the messages written to the error logstream are in binary

Common Base Event format. You can then use the showlog script to view the binary Common Base Event

records in the logstream.

Note:

If you enable writing of the logstream in Common Base Event format, the error log is no longer

viewable with the log browse utility. This action changes the format used to write to the logstream

so that only the showlog tool can read it.

Modifying logstream size

If the logstream record size is too small for a message being written to it, you see a message similar to

the following written to your job log:

TRAS0024I: Log entry is of size 5012 bytes which is too large to be added to

log stream which is configured for 4096 byte records. Log entry will not be

logged to the log stream.

The original message is also written to the job log and can be viewed there.

To resolve this issue and ensure your messages fit into your logstream, change the MAXBUFSIZE of the

error log logstream.

The following code shows an example where the sample BBOERRLG job generated by the ISPF

customization dialog is modified to set the MAXBUFSIZE to 8192:

//BBOERRLG JOB (ACCTNO,ROOM),’USER10’,CLASS=A,REGION=0M

//*

//*

//*

//BBORCLGS EXEC PGM=IXCMIAPU

//SYSPRINT DD SYSOUT=*

//SYSIN DD *

 DATA TYPE(LOGR)

 DEFINE LOGSTREAM NAME(WAS.TY5.ERROR.LOG)

 DASDONLY(YES)

 HLQ(LOGGER)

 LS_SIZE(500)

 STG_SIZE(500)

 MAXBUFSIZE(8192)

 AUTODELETE(YES)

 RETPD(1)

 LS_DATACLAS(STANDARD)

Chapter 5. Diagnosing problems (using diagnosis tools) 133

Message reference

Messages logged by application server components and associated IBM products start with a unique

message identifier that indicates the component or application that issued the message.

You can log WebSphere Application Server system messages from a variety of sources, including

application server components and applications. The message identifier can be either 8 or 9 characters in

length and has the form:

CCCC1234X

where:

CCCC is a four character alphabetic component or application identifier.

1234 is a four character numeric identifier used to identify the specific message for that component.

X is an optional alphabetic severity indicator. (I=Informational, W=Warning, E=Error)

To view the messages generated by WebSphere Application Server components, select the Reference

view of the information center navigation and expand Troubleshooter > Messages.

Displaying WebSphere Application Server work

This topic lists parameters that allow you to dynamically change values related to tracing activity for a

server or servant.

You can use either the WebSphere Application Server administrative console or the z/OS MVS console to

accomplish many operator tasks that are related to WebSphere Application Server for z/OS servers.

Entering the z/OS display or modify commands through the MVS console can provide information or

perform tasks that are useful for diagnosing problems. With these commands you can perform the

following actions:

v Use parameters to control WebSphere Application Server for z/OS operations

v Display information about WebSphere Application Server for z/OS servers or servants

v Dynamically change values related to tracing activity for a server or servant.

With the modify command, you can display information about the following:

v Active controllers (servers)

v Servants

v Sessions

v Trace settings

v Java trace

v JVM heap statistics

v Work Elements

v Error Log

1. Display the options on the modify command. You can display the options on the modify command with

the help parameter. For example, the command

f azsr01a,help

generates the following output:

BBOO0178I THE COMMAND MODIFY MAY BE FOLLOWED BY ONE OF THE FOLLOWING KEYWORDS:

BBOO0179I CANCEL - CANCEL THIS CONTROL REGION

BBOO0179I TRACEALL - SET OVERALL TRACE LEVEL

BBOO0179I TRACEBASIC - SET BASIC TRACE COMPONENTS

BBOO0179I TRACEDETAIL - SET DETAILED TRACE COMPONENTS

BBOO0179I TRACESPECIFIC - SET SPECIFIC TRACE POINTS

BBOO0179I TRACEINIT - RESET TO INITIAL TRACE SETTINGS

134 Troubleshooting and support

BBOO0179I TRACENONE - TURN OFF ALL TRACING

BBOO0179I TRACETOSYSPRINT - SEND TRACE OUTPUT TO SYSPRINT (YES/NO)

BBOO0179I DISPLAY - DISPLAY STATUS

BBOO0179I TRACE_EXCLUDE_SPECIFIC - EXCLUDE SPECIFIC TRACE POINTS

BBOO0179I TRACEJAVA - SET JAVA TRACE OPTIONS

BBOO0179I TRACETOTRCFILE - SEND TRACE OUTPUT TO TRCFILE DD CARD (YES/NO)

BBOO0179I MDBSTATS - MDB DETAILED STATISTICS

2. Display the DISPLAY options with the display,help parameter. The command

f azsr01a,display,help

generates the following output:

BBOO0178I THE COMMAND DISPLAY, MAY BE FOLLOWED BY ONE OF THE FOLLOWING KEYWORDS:

BBOO0179I SERVERS - DISPLAY ACTIVE CONTROL PROCESSES

BBOO0179I SERVANTS - DISPLAY SERVANT PROCESSES OWNED BY THIS CONTROL PROCESS

BBOO0179I SESSIONS - DISPLAY INFORMATION ABOUT COMMUNICATIONS SESSIONS

BBOO0179I TRACE - DISPLAY INFORMATION ABOUT TRACE SETTINGS

BBOO0179I JVMHEAP - DISPLAY JVM HEAP STATISTICS

BBOO0179I WORK - DISPLAY WORK ELEMENTS

BBOO0179I ERRLOG - DISPLAY THE LAST 10 ENTRIES IN THE ERROR LOG

BBOO0188I END OF OUTPUT FOR COMMAND DISPLAY,HELP

3. Use the z/OS modifyserver,display,work command to provide to help diagnose problems or display

application server information.

f servername,display,work,display work parameters

where the display work parameters can be one of the following:

HELP

displays the DISPLAY,WORK parameters

CLINFO

Display classification information

 See Classifying z/OS workload for more information.

EJB

EJB requests driven by IIOP: total, current, dispatched and timed out

EJB,SRS

EJB requests driven by IIOP by servant

SERVLET

Servlet requests driven by HTTP: total, current, dispatched and timed out

SERVLET,SRS

Servlet requests by each servant

MDB

Message-driven bean (MDB) requests driven by JMS: total, current, dispatched and timed out

MDB,SRS

MDB requests broken down by servant

ALL

Combines the above for EJBs, servlets, and MDBs

ALL,SRS

EJBs, servants, and MDBs by servant

SUMMARY

total requests, current in progress, and in dispatch for all types

SUMMARY,SRS

total received by each servant, current in dispatch in each servant for all types

Chapter 5. Diagnosing problems (using diagnosis tools) 135

The following examples demonstrate how to use various display,work parameters and the resulting

output:

f azsr01a,display,work,servlet

BBOO0255I TIME OF LAST WORK DISPLAY Wed Dec 3 19:17:54 2003

BBOO0256I TOTAL SERVLET REQUESTS 150670 (DELTA 1654)

BBOO0257I CURRENT SERVLET REQUESTS 1

BBOO0258I SERVLET REQUESTS IN DISPATCH 0

BBOO0267I TOTAL SERVLET TIMEOUTS 0 (DELTA 0)

BBOO0188I END OF OUTPUT FOR COMMAND DISPLAY,WORK,SERVLET

f azsr01a,display,work,servlet,srs

BBOO0255I TIME OF LAST WORK DISPLAY Wed Dec 3 19:18:01 2003

BBOO0259I STC18964: TOTAL SERVLET REQUESTS 152344 (DELTA 1675)

BBOO0260I STC18964: SERVLET REQUESTS IN DISPATCH 0

BBOO0188I END OF OUTPUT FOR COMMAND DISPLAY,WORK,SERVLET,ALL

 (EJB and MDB displays would look the same except for the request type.)

f azsr01a,display,work,summary

BBOO0255I TIME OF LAST WORK DISPLAY Wed Dec 3 19:18:38 2003

BBOO0261I TOTAL REQUESTS TO SERVER 173591 (DELTA 13944)

BBOO0262I TOTAL CURRENT REQUESTS 0

BBOO0263I TOTAL REQUESTS IN DISPATCH 0

BBOO0268I TOTAL TIMED OUT REQUESTS 0 (DELTA 0)

BBOO0188I END OF OUTPUT FOR COMMAND DISPLAY,WORK,SUMMARY

f azsr01a,display,work,summary,srs

BBOO0255I TIME OF LAST WORK DISPLAY Wed Dec 3 19:27:01 2003

BBOO0264I STC18964: TOTAL REQUESTS 173591 (DELTA 0)

BBOO0265I STC18964: TOTAL REQUESTS IN DISPATCH 0

BBOO0188I END OF OUTPUT FOR COMMAND DISPLAY,WORK,SUMMARY,SRS

To display a combination of all information with one command, use the all keyword, as follows:

f azsr01a,display,work,all

BBOO0255I TIME OF LAST WORK DISPLAY Wed Dec 3 19:27:07 2003

BBOO0256I TOTAL EJB REQUESTS 0 (DELTA 0)

BBOO0257I CURRENT EJB REQUESTS 0

BBOO0258I EJB REQUESTS IN DISPATCH 0

BBOO0267I TOTAL EJB TIMEOUTS 0 (DELTA 0)

BBOO0256I TOTAL SERVLET REQUESTS 173591 (DELTA 0)

BBOO0257I CURRENT SERVLET REQUESTS 0

BBOO0258I SERVLET REQUESTS IN DISPATCH 0

BBOO0267I TOTAL SERVLET TIMEOUTS 0 (DELTA 0)

BBOO0256I TOTAL MDB REQUESTS 0 (DELTA 0)

BBOO0257I CURRENT MDB REQUESTS 0

BBOO0258I MDB REQUESTS IN DISPATCH 0

BBOO0267I TOTAL MDB TIMEOUTS 0 (DELTA 0)

BBOO0188I END OF OUTPUT FOR COMMAND DISPLAY,WORK,ALL

f azsr01a,display,work,all,srs

BBOO0255I TIME OF LAST WORK DISPLAY Wed Dec 3 19:30:06 2003

BBOO0259I STC18964: TOTAL EJB REQUESTS 0 (DELTA 0)

BBOO0260I STC18964: EJB REQUESTS IN DISPATCH 0

BBOO0259I STC18964: TOTAL SERVLET REQUESTS 173591 (DELTA 0)

BBOO0260I STC18964: SERVLET REQUESTS IN DISPATCH 0

136 Troubleshooting and support

BBOO0259I STC18964: TOTAL MDB REQUESTS 0 (DELTA 0)

BBOO0260I STC18964: MDB REQUESTS IN DISPATCH 0

BBOO0188I END OF OUTPUT FOR COMMAND DISPLAY,WORK,ALL,SRS

Note: Some points to consider:

v Adding ,HELP at the end displays your choices (for example, DISPLAY,WORK,HELP).

v DISPLAY,WORK produces the same output as DISPLAY,WORK,SUMMARY.

v The Display EJB command displays IIOP requests. So, if you drive an HTTP request that

runs a JSP or servlet that calls an EJB, only the servlet count increments. The counts are by

protocol used to get to the controller.

v When displaying the work by servant, only the total and in dispatch requests display. Without

the SRS keyword, the current requests and time outs are also displayed.

v Everything is not frozen while the numbers are collected. The old data is saved away and

used to calculate the ’delta’ in the next command. (Under a heavy load, the displayed values

and deltas might not add up as you would expect.)

v TOTAL requests display the delta since last DISPLAY,WORK command, but it does not

include the current ″in flight″ requests.

4. Display the contents of the product error log using the DISPLAY,ERRLOG option of the modify

command. The output shows the last ten messages in the error log even if you are not routing them to

a log stream. For example, the following command:

f x5sr01b,display,errlog

generates the following output:

BBOO0266I (STC18876) BossLog: { 0001} 2003/11/25 20:08:55.120 01

SYSTEM=SYSB SERVER=X5SR01B PID=0X010201B2 TID=0X12FB3F00 00000000

c=UNK ./bborjtr.cpp+812 ... BBOO0222I TRAS0017I: The startup trace

state is *=all=disabled.

BBOO0266I (STC18876) BossLog: { 0002} 2003/11/25 20:09:08.255 01

SYSTEM=SYSB SERVER=X5SR01B PID=0X010201B2 TID=0X12FB3F00 00000000

c=UNK ./bborjtr.cpp+812 ... BBOO0222I SECJ0231I: The Security

component’s FFDC Diagnostic Module com.ibm.ws.security.core.SecurityDM

registered successfully: true.

BBOO0266I (STC18876) BossLog: { 0003} 2003/11/25 20:09:09.562 01

SYSTEM=SYSB SERVER=X5SR01B PID=0X010201B2 TID=0X12FB3F00 00000000

c=UNK ./bborjtr.cpp+812 ... BBOO0222I SECJ0212I: WCCM JAAS

configuration information successfully pushed to login provider class.

BBOO0266I (STC18876) BossLog: { 0004} 2003/11/25 20:09:09.573 01

SYSTEM=SYSB SERVER=X5SR01B PID=0X010201B2 TID=0X12FB3F00 00000000

c=UNK ./bborjtr.cpp+812 ... BBOO0222I SECJ0240I: Security service

initialization completed successfully

BBOO0266I (STC18876) BossLog: { 0005} 2003/11/25 20:09:18.304 01

SYSTEM=SYSB SERVER=X5SR01B PID=0X010201B2 TID=0X12FB3F00 00000000

c=UNK ./bborjtr.cpp+812 ... BBOO0223I PMI0023W: Unable to register

PMI module due to duplicate name: SoapConnectorThreadPool

BBOO0266I (STC18876) BossLog: { 0006} 2003/11/25 20:09:29.451 01

SYSTEM=SYSB SERVER=X5SR01B PID=0X010201B2 TID=0X12FB3F00 00000000

c=UNK ./bborjtr.cpp+812 ... BBOO0222I SECJ0243I: Security service

started successfully

BBOO0266I (STC18876) BossLog: { 0007} 2003/11/25 20:09:29.464 01

SYSTEM=SYSB SERVER=X5SR01B PID=0X010201B2 TID=0X12FB3F00 00000000

c=UNK ./bborjtr.cpp+812 ... BBOO0222I SECJ0210I: Security enabled false

BBOO0266I (STC18876) BossLog: { 0008} 2003/11/25 20:09:35.772 01

SYSTEM=SYSB SERVER=X5SR01B PID=0X010201B2 TID=0X12FB3F00 00000000

c=UNK ./bborjtr.cpp+812 ... BBOO0223I PMI0023W: Unable to register PMI

module due to duplicate name: ProcessDiscovery

. . . .

BBOO0188I END OF OUTPUT FOR COMMAND DISPLAY,ERRLOG

5. Dynamically change values related to tracing activity for a server or servant using the z/OS modify

command. Table 1 lists the modify command parameters and the WebSphere variable that provides

Chapter 5. Diagnosing problems (using diagnosis tools) 137

equivalent function.

 Table 3. z/OS modify command parameters and their equivalent WebSphere variables

z/OS modify command

parameter

Equivalent WebSphere variable For more information, see..

TRACEALL ras_trace_defaultTracingLevel Internal tracing tips for WebSphere for

z/OS

TRACEBASIC ras_trace_basic

CAUTION:

Do not change this variable unless

directed by IBM service personnel.

Setting trace controls for IBM service

TRACEDETAIL ras_trace_detail

CAUTION:

Do not change this variable unless

directed by IBM service personnel.

Setting trace controls for IBM service

TRACESPECIFIC ras_trace_specific

CAUTION:

Do not change this variable unless

directed by IBM service personnel.

Setting trace controls for IBM service

TRACE_EXCLUDE_SPECIFIC ras_trace_exclude_specific

CAUTION:

Do not change this variable unless

directed by IBM service personnel.

Setting trace controls for IBM service

TRACEINIT n/a Example: Getting help for the modify

command

TRACENONE n/a Example: Getting help for the modify

command

TRACETOSYSPRINT ras_trace_outputLocation=SYSPRINT Internal tracing tips for WebSphere for

z/OS

TRACETOTRCFILE ras_trace_outputLocation=TRCFILE Internal tracing tips for WebSphere for

z/OS

TRACEJAVA n/a Example: Getting help for the modify

command

Choosing diagnostic information sources

You can use a variety of diagnostic information sources to view application data and troubleshoot

problems.

Troubleshooting problems in a complex server environment can be challenging, considering the many

choices of diagnostic information to analyze and wide variety of potential problem areas. Familiarize

yourself with the different types of diagnostic tools and information provided by WebSphere Application

Server to maximize your efficiency and productivity when you are confronted with a problem.

Read the following topics for information about specific sources of diagnostic data, and the tools or

resources you might need to view or work with that data.

138 Troubleshooting and support

Type of diagnostic tools

or data:

Notes and instructions for use appear in:

CEEDUMPs “CEEDUMPs in the job log”

SVC dumps Viewing SVC dumps

CTRACE and JRas data Viewing CTRACE and JRas data through IPCS

Error log data Viewing error log contents through the Log Browse Utility (BBORBLOG)

z/OS display command Using the z/OS display command

Java minor codes Converting Java minor codes

SYSPRINT Viewing SYSPRINT output, STDOUT and STDERR streams in an HFS File

Message routing Message routing

CEEDUMPs in the job log

An error caught by LE or the Java runtime can result in the production of a CEEDUMP, which is written to

a separate CEEDUMP specification in the job log.

To view the dump contents, select the CEEDUMP portion of the output for the address space. The

’Traceback’ section at the beginning of the dump can be very helpful.

SVC dumps

A SVC dump is a core dump initiated by the operating system generally when a programming exception

occurs. SVC dump processing stores data in dump data sets that you pre-allocate, or that the system

allocates automatically as needed.

Alternatively, you can initiate an SVC dump through the MVS console, to gather diagnostic data for a

’hang’ condition, for example. SVC dumps that you initiate this way are called console dumps.

One example of an abend that could occur is the EC3 abend. WebSphere Application Server for z/OS

requests an SVC dump when a controller terminates a servant (region) with an EC3 abend when timeout

conditions occur.

v Your installation can set parmlib options that determine what to dump, eliminate duplicate dumps, and

so on. WebSphere Application Server for z/OS provides a dump parmlib sample in

 SBBOJCL(BBODMCCB)

.

v The standard SDATA expected in a SVC dump:

 SDATA=(ALLNUC,CSA,GRSQ,LPA,LSQA,PSA,RGN,SQA,SUM,SWA,TRT),end

v If you cannot find an SVC dump for a specific abend, your installation might be using Dump analysis

and elimination (DAE) to suppress the dump. If this is the case, you can change DAE to let the dump

be taken or set a SLIP on the specific abend for a particular job name if the timeout is consistently

happening. For further information, see:

– z/OS MVS Diagnosis: Tools and Service Aids, GA22-7589 for details about using DAE.

– z/OS MVS System Commands, SA22-7627 for details about the SLIP command, which controls

SLIP (serviceability level indication processing), a diagnostic aid that intercepts or traps certain

system events and specifies what action to take. Using the SLIP command, you can set, modify, and

delete SLIP traps.
v When you initiate a console dump:

– When you want an SVC dump of a servant region, also request a dump of the servant’s controller

region.

– Unless you suspect a particular servant region as the source of a problem, dump the controller

region and all of its servant regions.

Chapter 5. Diagnosing problems (using diagnosis tools) 139

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/

v If syslog contains a message indicating that the maxspace limit was reached for this dump, the SVC

dump might be a partial one that might not contain the data you need to diagnose the timeout. This limit

means that the data set used for SVC dump is not large enough, and you have to change the size to

capture a complete dump.

v To view CEEDUMP contents within the SVC dump, use the IPCS verbexit LEDATA, with the

CEEDUMP or NTHREADS options, to format and analyze Language Environment control blocks. For

additional information, see z/OS Language Environment Debugging Guide, GA22-756 for instructions for

using IPCS to format and analyze CEEDUMP contents.

See z/OS MVS Diagnosis: Tools and Service Aids, GA22-7589 for additional information about SVC

dumps.

Formatting CTRACE data with an IPCS dialog

You can set up an IPCS dialog to format applications trace data gathered by WebSphere Application

Server for z/OS.

Once activated, the WebSphere Application Server for z/OS always writes trace data into memory buffers.

The number and size of these buffers is controlled using WebSphere variables. You can get this trace data

from a dump, which may be taken by the system or requested by the operator through DUMP or SLIP

commands.

To view messages or application trace data from Component Trace, you must use the interactive problem

control system (IPCS) to format the data. The source of the trace data can be a dump data set or a trace

data set. When setting up IPCS, your installation may customize IPCS for its users.

IBM recommends providing access to the IPCS dialog through an ISPF panel. If your installation has not

customized IPCS as recommended, you need to start the IPCS dialog. See z/OS MVS IPCS User’s Guide,

SA22-7596 to find out how to start the IPCS dialog.

Perform the following steps to use the IPCS dialog to format application trace data:

1. From the IPCS Primary Option Menu panel, select option 6 (COMMAND).

2. On the IPCS Subcommand Entry panel:

a. Issue the SETDEF subcommand to determine the default values for routing displays.

b. Enter the CTRACE command, with the following required parameters: CTRACE COMP(

cell_short_name)

where cell_short_name is the value specified through the ISPF customization dialog to identify the

location of server configuration files. The name must be 8 or fewer characters and all uppercase.

Note: If you were interested in only JRAS data, you would enter the following:

CTRACE COMP(cell_short_name

)USEREXIT(JRAS)

Specify additional parameters as necessary.

Example: To direct trace data to the terminal only, you would append the NOPRINT and

TERMINAL parameters to the CTRACE command.

Tip: For a complete list of CTRACE command parameters, see z/OS MVS IPCS Commands,

SA22-7594.

3. View your application’s data, basing the method you choose on which one is appropriate for the

location of the data:

 If you directed output to the... Then use the...

IPCS print data set (IPCSPRNT) ISPF/PDF Browse option

Terminal Dump Display Reporter panel

140 Troubleshooting and support

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/

Tips: To navigate through the trace data on the Dump Display Reporter panel, use the commands and

PF keys listed in z/OS MVS IPCS User’s Guide, SA22-7596.

CTRACE enables you to view multiple traces together with the trace data from the various sources

intermixed based on the time stamp. See z/OS MVS IPCS Commands, SA22-7594, for specifics on

using this MERGE subcommand.

Formatting CTRACE data in batch mode with IPCS

You can use the interactive problem control system (IPCS) in batch mode to automate formatting CTRACE

data.

You must create an IPCS dump directory before you can use IPCS in batch mode. When setting up IPCS,

your installation may customize IPCS for its users. This customization can include modifying the

IBM-supplied BLSCDDIR CLIST with default values for creating an IPCS dump directory.

To view messages or application trace data from Component Trace, you must use the interactive problem

control system (IPCS) to format the data. Using IPCS in batch mode is the easiest method of formatting

data, especially if you do not have much experience with using IPCS, TSO/E and ISPF. Through batch

mode, you can use IPCS to format trace data and write it to an MVS data set. Optionally, you may copy

the contents of that data set into an HFS file for viewing.

When your installation has modified the BLSCDDIR CLIST the steps outlined herein will create an IPCS

dump directory.

1. Decide on a fully-qualified data set name for the directory.

2. From the TSO/E command prompt, enter the BLSCDDIR command, specifying the data set name.

For example, to create a dump directory named IBMUSER.DDIR, enter:

%blscddir dsn(’ibmuser.ddir’)

If your installation has not customized IPCS, you might need to alter other BLSCDDIR CLIST parameters.

See the z/OS MVS IPCS User’s Guide, SA22-7596 and z/OS MVS IPCS Commands, SA22-7594 for more

details about using the BLSCDDIR CLIST to create a dump directory.

Perform the following steps to use IPCS in batch mode to format application trace data:

1. Create a file and copy the following sample JCL into it. This JCL invokes IPCS to extract and format

JRAS trace data and write it into an MVS data set, and then uses the TSO/E OPUT command to copy

the formatted data from the MVS data set into an HFS file.

//IBMUSERX JOB ,

// CLASS=J,NOTIFY=&SYSUID,MSGCLASS=H

//IPCS EXEC PGM=IKJEFT01,REGION=4096K,DYNAMNBR=50

//IPCSDDIR DD DSN=IBMUSER.DDIR,DISP=SHR

//IPCSDOC DD SYSOUT=H

//JRASTRC DD DSN=IBMUSER.CB390.CTRACE,DISP=SHR

//IPCSPRNT DD DSN=IBMUSER.IPCS.OUT,DISP=OLD

//SYSTSPRT DD SYSOUT=*

//SYSTSIN DD *

IPCS

DROPDUMP DDNAME(JRASTRC)

PROFILE LINESIZE(80)PAGESIZE(99999999)

SETDEF NOCONFIRM

CTRACE COMP(SYSBBOSS) DDNAME(JRASTRC) FULL PRINT +

 NOTERMINAL

DROPDUMP DDNAME(JRASTRC)

END

/*

//OPUT EXEC PGM=IKJEFT01,REGION=4096K,DYNAMNBR=50

Chapter 5. Diagnosing problems (using diagnosis tools) 141

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/

//SYSTSPRT DD SYSOUT=*

//SYSTSIN DD *

oput ’ibmuser.ipcs.out’ ’/u/ibmuser/ipcs/jrastrace.txt’ TEXT

/*

2. Edit the sample JCL to replace IBMUSER.DDIR with the data set name that you used for the IPCS

dump directory you created.

a. Use the PAGESIZE parameter on the PROFILE statement only if you do not want to print the

output data set.

b. You may replace the HFS file name with the name of an existing HFS file, but you do not have to

do so. The OPUT command processing will create a new HFS file, if the one specified does not

exist, and grants read and write access to that file for your user ID only.

If you do specify an existing HFS file, the OPUT command processing will write over any data that

is already in that file. If you want to know more about the OPUT command, see the z/OS UNIX

System Services Command Reference, SA22-7802.

c. Change the data set name specified on the JRASTRC DD in the example to the name of the data

set containing the CTRACE data.

d. Change the name of the MVS data set on both the JRASTRC DD statement and the OPUT

command in the SYSTSIN stream, as necessary. The formatted output of the JRAS CTRACE data

is first written to the MVS data set specified by the IPCSPRNT DD statement and then (optionally)

copied to the HFS data set. You must either pre-allocate this data set, or change the sample JCL

to allocate the data set. This data set should have a record format of VBA and a record length of

133.

3. Submit the JCL to start the IPCS batch job.

Once you are done you can use a UNIX editor, such as vi, to view your trace data in the HFS file. If you

want to know more about the UNIX editors, see z/OS UNIX System Services User’s Guide, SA22-7801.

CTRACE enables you to view multiple traces together with the trace data from the various sources

intermixed based on the time stamp. See z/OS MVS IPCS Commands, SA22-7594, for specifics on using

this MERGE subcommand.

Sample JCL to display WebSphere for z/OS trace data:

Use this sample JCL to display trace data for WebSphere Application Server for z/OS.

 The following sample shows JCL that displays WebSphere for z/OS trace data.

Note: The JCL uses an IPCS dump directory (in VSAM data set userid.DUMP.DIR) that must be allocated

before you run the JCL. See z/OS MVS IPCS Commands, SA22-7594 , for information about

initializing a dump directory.

//SHOWTRC JOB <job card info>

//JOBLIB DD DISP=SHR,DSN=BBO.SBBOMIG

// DD DISP=SHR,DSN=SYS1.MIGLIB

//PRINTIT EXEC PGM=IKJEFT01,REGION=OM

//IPCSDDIR DD DISP=(OLD,KEEP),DSN=userid.DUMP.DIR

//IPCSPARM DD DISP=SHR,DSN=SYS1.PARMLIB

//SYSTSPRT DD SYSOUT=*

//IPCSTOC DD SYSOUT=*

//IPCSPRNT DD SYSOUT=*

//*---------------------------

//SYSTSIN DD *

IPCS NOPARM

 CTRACE COMP(SYSBBOSS) SUB((subname)) FULL DSN(’dump.data.set’)

/*

The following example shows JCL that displays WebSphere for z/OS trace data for multiple address

spaces.

142 Troubleshooting and support

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/

//SHOWTRC2 JOB <job card info>

//JOBLIB DD DISP=SHR,DSN=BBO.SBBOMIG

// DD DISP=SHR,DSN=SYS1.MIGLIB

//PRINTIT EXEC PGM=IKJEFT01,REGION=OM

//IPCSDDIR DD DISP=(OLD,KEEP),DSN=userid.DUMP.DIR

//IPCSPARM DD DISP=SHR,DSN=SYS1.PARMLIB

//SYSTSPRT DD SYSOUT=*

//IPCSTOC DD SYSOUT=*

//IPCSPRNT DD SYSOUT=*

//*---------------------------

//SYSTSIN DD *

IPCS NOPARM

 MERGE

 CTRACE COMP(SYSBBOSS) SUB((subname)) FULL DSN(’dump.data.set’)

 CTRACE COMP(SYSBBOSS) SUB((subname2)) FULL DSN(’dump.data.set’)

 MERGEEND

/*

ICPS CTRACE command

The CTRACE command specifies the cell from which trace data will be gathered.

Read “Formatting CTRACE data with an IPCS dialog” on page 140 for information on when to use the

CTRACE command with an IPCS dialog. The CTRACE command uses the following syntax:

CTRACE COMP (CELL_SHORT_NAME)

where CELL_SHORT_NAME is the value specified through the ISPF customization dialog to identify the location

of server configuration files. The name must be 8 or fewer characters and all uppercase.

You can also use the IPCS CTRACE command to merge multiple trace entities together such as multiple

WebSphere Application Server for z/OS address space traces, OMVS, and TCPIP. For example code, see

“Sample JCL to display WebSphere for z/OS trace data” on page 142.

IPCS CTRACE subname query

If the trace data set is an SVC dump, the trace subname must also be specified. This subname is the

aggregation of the address space’s jobname with its ASID (address space identifier), in printable

hexadecimal.

An easy way to determine the subname is to query CTRACE for the data using the following IPCS

subcommand:

CTRACE QUERY DSN(’dump.data.set’)

Once you get the subname you can view the WebSphere Application Server for z/OS trace data with the

following IPCS subcommand:

CTRACE COMP(CELL_SHORT_NAME) SUB((subname)) FULL DSN(’dump.data.set’)

where CELL_SHORT_NAME is the value specified through the ISPF customization dialog to identify the

location of server configuration files. The name must be 8 or fewer characters and all uppercase.

Note: The subname parameter is optional for only the trace data set. It is required when viewing the trace

data using the dump data set.

Viewing error log contents through the Log Browse Utility

(BBORBLOG)

You can use the Log Browse Utility (BBORBLOG) to view error log contents for troubleshooting and tuning

purposes.

Chapter 5. Diagnosing problems (using diagnosis tools) 143

You can use the Log Browse Utility (BBORBLOG) to view the error log stream. If you need to look at the

WebSphere Application Server for z/OS error log stream, use ISPF option 6 to enter the command:

1. Use ISPF option 6 to enter the proper command.

 ex ’BBO.SBBOEXEC(BBORBLOG)’ ’BBO.BOSSXXXX’

where the log-stream name is BBO.BOSSXXXX

2. The space allocation and the unit for the allocation are contained within the REXX code. If you keep a

large amount of trace data, the allocation must be made larger.

3. The WebSphere Application Server for z/OS provides an ISPF REXX EXEC named BBORBLOG, that

allows you to browse the error log stream.

4. Save the output.

When you use the BBORBLOG browser, it creates a data set with your user ID followed by the log

stream name. You should rename it if you wish to save your browser output. The contents of the

current view of the log stream will remain until the stream reaches its retention date. The next time you

invoke the browser, however, the current view of the log stream will be deleted (because it uses the

same data set name). The previous data will exist in another record (not the current view) until its

retention date.

Use the following information to determine viewing of the error log:

v By default, the macro formats the error records to fit a 3270 display.

v Timestamps are in Greenwich Mean Time (GMT) unless changed by setting the WebSphere Application

Server variable ras_time_local to 1.

v Message BBOJ0051I, which appears in the job output, can help correlate error-log entries to the proper

job output.

Using the log browse utility (BBORBLOG)

Use the log browse utility (BBORLOG) to view log stream files.

The browser takes two parameters:

 Parameter Description

log stream name The name of the log stream. See the job messages for

the name of the log stream.

format option 80 The default. The log stream record will be formatted

on a lrecl length of 80 characters. Additional lines will be

wrapped.

NOFORMAT Turns off formatting. The error log message

appears as one log message string in the browse file.

View the error log stream output using the BBORBLOG browser. To invoke the browser, go to ISPF option

6 and enter:

’BBO.SBBOEXEC(BBORBLOG)’ ’BBO.BOSSXXXX format option’

Note: In this example, BBORBLOG resides in BBO.SBBOEXEC.

The browser creates a browse data set named ″userid.stream_name ″, which contains the contents of the

log stream. When the browser is executed, it:

1. Allocates a data set called userid.stream_name, which overwrites any duplicate data sets.

2. Populates the data set with the contents of the log stream.

3. Puts the user in ″browse″ mode on the data set.

Important: Each time BBORBLOG is invoked a static file is created which overwrites the existing file. In order

to refresh the file, it is necessary to re-issue BBORBLOG

144 Troubleshooting and support

There are three valid ways (three separate commands to use) to invoke the browser. We will illustrate

each of these using the following example:

Example: If the BBORBLOG member was in a data set named BBO.SBBOEXEC, then you would issue one

of the following depending on your chosen format option:

ex ’BBO.SBBOEXEC(BBORBLOG)’ ’BBO.BOSSXXXX’

ex ’BBO.SBBOEXEC(BBORBLOG)’ ’BBO.BOSSXXXX 80’

ex ’BBO.SBBOEXEC(BBORBLOG)’ ’BBO.BOSSXXXX NOFORMAT’

Tip:: It is easier to invoke the browser if you add the target library (in our example, BBO.SBBOEXEC) to the

SYSEXEC concatenation of the user logon procedure during the WebSphere Application Server for z/OS

installation. If you concatenate the library during installation, you do not have to specify the library

containing the browser REXX exec- you only need to specify BBORBLOG.

Error log stream record output

This article provides two samples of error log stream output and explains the various attributes they

contain.

There are two error log stream records that we will look at:

v Server logstream

v CERR of a server.

Note: The numbers to the left of each sample were added to specify lines-they will not be in the actual

output.

Sample output from a server logstream:

1| 2000/06/01 16:01:06.683 01 SYSTEM=SY1 SERVER=BBOASR1A JobName=BBOASR1S

2| ASID=0X0033 PID=0X0100003C TID=0X24F858A0 0X000004 c=2.1010030

3| ./bbooreq.cpp+4437 ... BBOU0013W The function

4| make_user_exception(IIOP_protocolArea*)+4437 raised a user exception

5| CosNaming::NamingContext::NotFound.

The log stream record output fields from stream BBO.BOSSXXXX are:

 Table 4. Parts table for a server logstream record output

Component Description

line 1: 2000/06/01 16:01:06.683 01 Date / timestamp / 2-digit record version number

line 1: SYSTEM=SY1 System name

line 1: SERVER=BBOASR1A Server name

line 1: JobName=BBOASR1S Jobname

line 2: ASID=0X0033 ASID (address space identifier)

line 2: PID=0X0100003C PID (Process ID)

line 2: TID=0X24F858A0 0X000004 TID (Thread ID)

line 2: c=2.1010030 Request correlation information

line 3: . /bbooreq.cpp+4437 File name & line

line 3: BBOU0013W Log message number

line 3: The function. .. Log message

lines 4-5: make_user_exception...

CosNaming::Naming...

Continuation lines: Continuation of the Log Stream log message

Note: Each field is delimited by a blank.

Chapter 5. Diagnosing problems (using diagnosis tools) 145

Sample output from CERR of a server:

1| BossLog: { 0017} 2000/06/01 15:58:25.557 01 SYSTEM=SY1 SERVER=BBOASR1A

2| PID=0X0100003C TID=0X24F82920 00000000 c=3.C5D02

3| ./bboiroot.cpp+1195 ... BBOU0012W The function IRootHomeImpl::findHome(

4| const char*)+1195 received CORBA system exception CORBA::INTERNAL.

5| Error code is C9C21200.

The CERR job message output fields are:

 Table 5. Parts table for a CERR record output

Component Description

line 1: BossLog: { 0017} BossLog: {entry number}

line 1: 2000/06/01 15:58:25.557 01 Date / timestamp / 2-digit record version number

line 1: SYSTEM=SY1 System name

line 1: SERVER=BBOASR1A Server name

line 2: PID=0X0100003C PID (Process ID)

line 2: TID=0X24F82920 00000000 TID (Thread ID)

line 2: c=3.C5D02 Request correlation information

line 3: . /bboiroot.cpp+1195 File name & line

line 3: BBOU0012W Log message number

line 3: The function IRootHomeImpl::find. .. Log message

lines 4-5: const char*)+1195 received CORBA system

exception CORBA::INTERNAL. Error code is C9C21200.

Continuation lines: Continuation lines of the CERR

job message

v Each field is delimited by a blank.

v The CERR format is found in SYSOUT, not the logger.

Saving your BBORBLOG browser output

When you use the BBORBLOG browser, it creates a data set with your user ID followed by the log stream

name. You should rename it if you wish to save your browser output. The contents of the current view of

the log stream will remain until the stream reaches its retention date. The next time you invoke the

browser, however, the current view of the log stream will be deleted (because it uses the same data set

name). The previous data will exist in another record (not the current view) until its retention date.

z/OS display command

Use either the WebSphere Application Server administrative console or the z/OS MVS console to

accomplish many operations tasks related to WebSphere Application Server for z/OS servers. Entering the

z/OS display or modify commands through the MVS console can provide information or perform tasks that

are useful for diagnosing problems.

The purpose of the DISPLAY command is to display information about the operating system, the jobs and

application programs that are running, the processor, devices that are online and offline, central and

expanded storage, workload management service policy and mode status, and the time of day.

For example, you could use the command

D WLM,APPLENV=*

to verify that WLM is defined and available for your applications.

To display the dynamic WLM application environment, use the command:

146 Troubleshooting and support

D WLM,DYNAPPL=*

You can check the WLM environment for a specific application using the following command:

D WLM,APPLENV=appname

These commands will return information similar to the following:

RESPONSE=SC42

IWM029I 13.09.47 WLM DISPLAY 075

APPLICATION ENVIRONMENT NAME STATE STATE DATA

appname AVAILABLE

ATTRIBUTES:PROC=procname SUBSYSTEM TYPE:CB

For more information on the display command see z/OS MVS System Commands, SA22-7627

Hexadecimal conversion of Java error codes

Occasionally, Java will take an WebSphere Application Server for z/OS error code (C9C2xxxx in

hexadecimal) and convert it to a very large negative number. If you get a very large negative number, try

converting it back to hexadecimal to find the correct code.

To convert the error codes back to hexadecimal you must add 232 to the negative number and convert it

into hexadecimal. This can be done using the OMVS command.

 bc

Example: Suppose you get the error code ″910022649″:

1. Under OMVS, type the command:

bc

2. then type:

obase=16

2^32 - 910022649

quit

The bc program displays C9C22807, which is the hex value that you should look up.

SYSPRINT output, STDOUT and STDERR streams in an HFS File

If you are familiar with UNIX or NT environments, you may be reluctant to use the facilities of SDSF (or

IOF) to view the SYSPRINT or SYSOUT output from your WebSphere Application Server regions. If you

would rather use a familiar editor (such as vi) in a Telnet session to view your output, it is possible to

redirect the SYSPRINT and SYSOUT outputs to files in an HFS.

The JCL below shows how to modify the SYSPRINT DD card in your startup procedure to redirect the

output to an HFS file. The old SYSPRINT DD card has been commented out by preceding it with /*, and a

new SYSPRINT DD card points to a file in the ″/myDir/myServer″ directory, in this case named

was.log.d&LYYMMDD..t&LHHMMSS.log. The extra period between the date and time variables is not a

typographical error, but rather an instance of JCL syntax that is necessary to terminate the first variable.

&LYYMMDD will be replaced with the local date in YYMMDD format and &LHHMMSS will be replaced by

the local time in HHMMSS format. The PATHMODE subparameter sets the file mode to 775 and the

PATHOPTS subparameter OWRONLY opens the file for WRITE access. The sub-parameter OCREAT

indicates that if the file does not already exist, create it.

You can modify the SYSPRINT DD card in either your Servant or Controller startup procedure. In addition,

the SYSOUT DD card can be modified in the same way to redirect the SYSOUT output.

//*YSPRINT DD SYSOUT=*,SPIN=UNALLOC,FREE=CLOSE

//SYSPRINT DD PATHMODE=(SIRWXU,SIRWXG,SIROTH),

// PATHOPTS=(OWRONLY,OCREAT),

// PATH=’/myDir/myServer/was.log.d&LYYMMDD..t&LHHMMSS’

Chapter 5. Diagnosing problems (using diagnosis tools) 147

http://publibz.boulder.ibm.com/epubs/pdf/iea2g141.pdf

Managing operator message routing

Use the improved message routing capabilities of WebSphere Application Server for z/OS to control server

traffic flow.

You can route many of the BBO prefixed error messages to specific datasets instead of having them go to

SYSLOG, which can create a lot of traffic. This is implemented with the use of two environment variables,

ras_default_msg_dd and ras_hardcopy_msg_dd, and the specification of the appropriate DD statement in

your JCL start procedure.

The two new environment variables are documented in Appendix A of the WebSphere Diagnosis book.

The following explains how messages get routed with Websphere Application Server in more detail:

v WTO messages issued by WebSphere Application Server during initialization are sent to hardcopy, but

most can be routed to the data set specified by ras_default_msg_dd (see Setting Output destinations

and characteristics).

v The Java ″Audit″ messages are also sent to hardcopy, but can be routed to the data set specified by

ras_hardcopy_msg_dd. (see Setting Output destinations and characteristics).

v Trace error, service, and fatal messages are sent to the error log specified by the

ras_log_logstreamName. Otherwise, they go to CERR (SYSOUT). Some may also go to hardcopy. At

the W500104 service level, the ras_log_logstreamName environment variable is not set to the error

logstream name in the was.env variables. To set the ras_log_logstreamName environment variable, on

the administrative console select Environment -> Manage WebSphere Variables -> New.

v Early error messages will go to STDERR (SYSOUT) until WebSphere Application Server connects to

the log stream. A WTO (BBOO0153I) is issued telling you how many messages went to STDERR

before you connected to the log stream.

v Trace messages (such as BUFFER, SYSPRINT, and TRCFILE DD) are also routed to

ras_trace_outputLocation.

v System.out.println, System.err.println, Tr.Sysout, stdout (cout), and client output go to SYSPRINT. (see

Viewing SYSPRINT output, STDOUT and STDERR streams in an HFS File

v Tr.Syserr and STDERR (CERR) go to SYSOUT.

To use these message routing variables, you must do two things:

1. Add these parameters to the server definitions using the Administrative Console under Environment ->

Manage WebSphere Variables:

v ras_default_msg_dd =DEFALTDD

v ras_hardcopy_msg_dd =HRDCPYDD

You can set these variables for individual control and servant processes, but it is easier to set them in

the Environment variables for the entire cell. For the Daemon, you must prefix them with ″DAEMON_″

and set them at the cell level:

v DAEMON_ras_default_msg_dd =DEFALTDD

v DAEMON_ras_hardcopy_msg_dd =HRDCPYDD

2. Update the included &Z members in PROCLIB to add these new DD statements:

//* Output DDs

//CEEDUMP DD SYSOUT=*,SPIN=UNALLOC,FREE=CLOSE

//SYSOUT DD SYSOUT=*,SPIN=UNALLOC,FREE=CLOSE

//SYSPRINT DD SYSOUT=*,SPIN=UNALLOC,FREE=CLOSE

//DEFALTDD DD SYSOUT=*,SPIN=UNALLOC,FREE=CLOSE

//HRDCPYDD DD SYSOUT=*,SPIN=UNALLOC,FREE=CLOSE

Note:

v If you specify the new environment variables, but do not specify the DD cards in the procedure,

you will not get an error message indicating that the DD cards are missing and the tracing output

will not be written anywhere.

148 Troubleshooting and support

v If you try to direct the output for multiple streams to the same DD, such as setting both

ras_default_msg_dd and ras_hardcopy_msg_dd to DEFALTDD (or to SYSPRINT,) then the

allocation will fail and output will be sent to the default location (JOBLOG/SYSLOG).

For example, these DD files are used to segregate the messages and keep almost all of them off the

hardcopy console (SYSLOG):

1. JESMSGLG - a few start-up and shut-down messages

2. JESYSMSG - MVS allocation and deallocation messages

3. SYSOUT - a few start-up and shut-down messages

4. SYSPRINT - a few start-up and shut-down messages

5. HRDCPYDD - audit messages that would normally go to SYSLOG

6. DEFALTDD - informational messages that would normally go to SYSLOG

Error Dump and Cleanup interface

The Error Dump and Cleanup (BBORLEXT) interface exists to call WebSphere Application Server for z/OS

in a recovery environment to allow it to request a dump and to clean up its resources.

The interface will:

v Save the function and DLL names of the failing z/OS component into the SDWA.

v Determine whether or not to issue an SDUMP, if relevant to the time-of-failure environment.

v Clean up z/OS internal structures and connections.

Program requirements: This interface must be called from within a WebSphere Application Server for

z/OS location service daemon, controller (region), or servant (region). There are no restrictions against in

which recovery environment, such as an ESTAE or FRR routine, the caller must reside.

General information

 Interface: BALR to BBORLEXT

Address of routine: (ECVT+’234’x)+’20’x

Address mode: AMODE 31, RMODE any

State: Allow problem program state, task mode

Cross memory mode: PASN=HASN=SASN (non-cross memory)

Return codes: No return codes

Function: Clean-up various WebSphere for z/OS resources

and possibly issue an SVC dump for the current

address space

Input register information

The contents of the registers are as follows:

 1 Contains the address of the SDWA

14 Contains the return address

15 Contains the entry point address of BBORLEXT

Chapter 5. Diagnosing problems (using diagnosis tools) 149

Output register information

When control returns to the caller, the contents of the registers are as follows:

 0-1 Used as a work register by the system

2-14 Unchanged

15 Used as a work register by the system

Note: Some callers depend on register contents remaining the same before and after issuing a service. If

the system changes the contents of registers on which the caller depends, the caller must save

them before issuing the service and restore them after the system returns control.

Note: A dump will not occur for X22 abends or for certain reason codes from 0D6, 052, 067, CC3, and

DC3 abends. There may also be other error conditions that will not create a dump.

Example:

Example Here is an example of how to call this routine in assembler:

LA 1,SDWA Load SDWA@ in Reg 1

L 15,(0,16) Load CVT address

L 15,140(,15) Load ECVT address

L 15,564(,15) Load address of z/OS structure

L 15,32(,15) Load address of z/OS routine

BALR 14,15 Invoke z/OS routine

Configuring the hang detection policy

A common error in J2EE applications is a hung thread. A hung thread can result from a simple software

defect (such as an infinite loop) or a more complex cause (for example, a resource deadlock). System

resources, such as CPU time, might be consumed by this hung transaction when threads run unbounded

code paths, such as when the code is running in an infinite loop. Alternately, a system can become

unresponsive even though all resources are idle, as in a deadlock scenario. Unless an end user or a

monitoring tool reports the problem, the system may remain in this degraded state indefinitely.

The hang detection option for WebSphere Application Server is turned on by default. You can configure a

hang detection policy to accommodate your applications and environment so that potential hangs can be

reported, providing earlier detection of failing servers. When a hung thread is detected, WebSphere

Application Server notifies you so that you can troubleshoot the problem.

Using the hang detection policy, you can specify a time that is too long for a unit of work to complete. The

thread monitor checks all managed threads in the system (for example, Web container threads and object

request broker (ORB) threads) . Unmanaged threads, which are threads created by applications, are not

monitored. For more information read “Hung threads in J2EE applications” on page 151.

The thread hang detection option is enabled by default. To adjust the hang detection policy values, or to

disable hang detection completely:

1. From the administrative console, click Servers > Application Servers > server_name

2. Under Server Infrastructure, click Administration > Custom Properties

3. Click New.

4. Add the following properties:

Name: com.ibm.websphere.threadmonitor.interval

Value: The frequency (in seconds) at which managed threads in the selected

 application server will be interrogated.

Default: 180 seconds (three minutes).

150 Troubleshooting and support

Name: com.ibm.websphere.threadmonitor.threshold

Value: The length of time (in seconds) in which a thread can be active

 before it is considered hung. Any thread that is detected as

 active for longer than this length of time is reported as hung.

Default: The default value is 600 seconds (ten minutes).

Name:com.ibm.websphere.threadmonitor.false.alarm.threshold

Value: The number of times (T) that false alarms can occur

 before automatically increasing the threshold. It is possible that a

 thread that is reported as hung eventually completes its work,

 resulting in a false alarm. A large number of these events indicates

 that the threshhold value is too small. The hang detection facility can

 automatically respond to this situation: For every T false alarms, the

 threshold T is increased by a factor of 1.5. Set the value to

 zero (or less) to disable the automatic adjustment.

Default: 100

To disable the hang detection option, set the com.ibm.websphere.threadmonitor.interval property to

less than or equal to zero.

5. Click Apply.

6. Click OK.

7. Save the changes and make sure a file synchronization is performed before restarting the servers.

8. Restart the Application Server for the changes to take effect.

Hung threads in J2EE applications

WebSphere Application Server monitors thread activity and performs diagnostic actions if one has become

inactive.

When WebSphere detects that a thread has been active longer than the time defined by the thread

monitor threshold, the application server takes the following actions:

v Logs a warning in the WebSphere Application Server log that indicates the name of the thread that is

hung and how long it has already been active. The following message is written to the log:

WSVR0605W: Thread threadname has been active for

hangtime and may be hung. There are totalthreads

threads in total in the server that may be hung.

where: threadname is the name that appears in a JVM thread dump, hangtime gives an approximation

of how long the thread has been active and totalthreads gives an overall assessment of the system

threads.

v Issues a Java Management Extensions (JMX) notification. This notification enables third-party tools to

catch the event and take appropriate action, such as triggering a JVM thread dump of the server, or

issuing an electronic page or e-mail. The following JMX notification events are defined in the

com.ibm.websphere.management.NotificationConstants class:

– TYPE_THREAD_MONITOR_THREAD_HUNG This event is triggered by the detection of a

(potentially) hung thread.

– TYPE_THREAD_MONITOR_THREAD_CLEAR This event is triggered if a thread that was previously

reported as hung completes its work. Consult the section on false alarms for more information.

v Triggers changes in the performance monitoring infrastructure (PMI) data counters. These PMI data

counters are used by various tools, such as the Tivoli Performance Viewer, to provide a performance

analysis.

v Triggers changes in the performance monitoring infrastructure (PMI) data counters. These PMI data

counters are used by various tools, such as the Tivoli Performance Viewer (TPV), to provide a

performance analysis.

For additional information about performance monitoring and Tivoli Performance Viewer, see the chapter

Monitoring performance with Tivoli Performance Viewer (TPV) in the Tuning guide PDF book

Chapter 5. Diagnosing problems (using diagnosis tools) 151

False Alarms

If the work actually completes, a second set of messages, notifications and PMI events is produced to

identify the false alarm. The following message is written to the log:

WSVR0606W: Thread threadname was previously reported to be

hung but has completed. It was active for approximately hangtime.

There are totalthreads threads in total in the server that still

may be hung.

where threadname is the name that appears in a JVM thread dump, hangtime gives an approximation of

how long the thread has been active and totalthreads gives an overall assessment of the system threads.

Automatic adjustment of the hang time threshold

If the thread monitor determines that too many false alarms are issued (determined by the number of pairs

of hang and clear messages), it can automatically adjust the threshold. When this adjustment occurs, the

following message is written to the log:

WSVR0607W: Too many thread hangs have been falsely reported. The hang

threshold is now being set to thresholdtime.

where: thresholdtime is the time (in seconds) in which a thread can be active before it is considered hung.

You can prevent WebSphere Application Server from automatically adjusting the hang time threshold. See

“Configuring the hang detection policy” on page 150

Hang detection policy of a running server

The hang detection policy affects how the application server responds to a thread that is not being

processed correctly.

You can adjust the thread monitor settings by using the wsadmin scripting interface. These changes take

effect immediately, but do not persist to the server configuration, and are lost when the server is restarted.

The following script provides an example of how to adjust the properties for the thread monitor using the

wsadmin tool:

Read in the interval, threshold, false alarm from the command line

set interval [lindex $argv 0]

set threshold [lindex $argv 1]

set adjustment [lindex $argv 2]

Get the object name of the server you want to change the values on

set server [$AdminControl completeObjectName "type=Server,*"]

Read in the interval and print to the console

set i [$AdminControl getAttribute $server threadMonitorInterval]

Read in the threshold and print to the console

set t [$AdminControl getAttribute $server threadMonitorThreshold]

Read in the false alarm adjustment threshold and print to the console

set a [$AdminControl getAttribute $server threadMonitorAdjustmentThreshold]

Set the new values using the command line parameters

$AdminControl setAttribute $server threadMonitorInterval ${interval}

$AdminControl setAttribute $server threadMonitorThreshold ${threshold}

$AdminControl setAttribute $server threadMonitorAdjustmentThreshold ${adjustment}

152 Troubleshooting and support

Working with trace

Use trace to obtain detailed information about running the WebSphere Application Server components,

including application servers, clients, and other processes in the environment.

Trace files show the time and sequence of methods called by WebSphere Application Server base

classes, and you can use these files to pinpoint the failure.

Collecting a trace is often requested by IBM technical support personnel. If you are not familiar with the

internal structure of WebSphere Application Server, the trace output might not be meaningful to you.

1. Configure an output destination to which trace data is sent.

2. Enable trace for the appropriate WebSphere Application Server or application components.

3. Run the application or operation to generate the trace data.

4. Analyze the trace data or forward it to the appropriate organization for analysis.

For current information available from IBM Support on known problems and their resolution, see the IBM

Support page.

IBM Support has documents that can save you time gathering information needed to resolve this problem.

Before opening a PMR, see the IBM Support page.

Enabling trace on client and standalone applications

When standalone client applications (such as Java applications which access enterprise beans hosted in

WebSphere Application Server) have problems interacting with WebSphere Application Server, it may be

useful to enable tracing for the application. Enabling trace for client programs will cause the WebSphere

Application Server classes used by those applications, such as naming-service client classes, to generate

trace information. A common troubleshooting technique is to enable tracing on both the application server

and client applications, and match records according to timestamp to try to understand where a problem is

occurring.

1. To enable trace for the WebSphere Application Server classes in a client application, add the system

properties shown in the following example to the startup script or command of the client application.

The location of the output and the classes and detail included in the trace follow the same rules as for

adding trace to WebSphere Application Servers. For example, trace the standalone client application

program named com.ibm.sample.MyClientProgram, you would enter the following command:

java -DtraceSettingsFile=MyTraceSettings.properties

-Djava.util.logging.manager=com.ibm.ws.bootstrap.WsLogManager

-Djava.util.logging.configureByServer=true com.ibm.samples.MyClientProgram

The file identified by filename must be a properties file placed in the classpath of the application client

or stand-alone process. An example file is provided in

v app_server_root/properties/TraceSettings.properties.

You cannot use the -DtraceSettingsFile=TraceSettings.properties property to enable tracing of the

ORB component for thin clients. ORB tracing output for thin clients can be directed by setting

com.ibm.CORBA.Debug.Output = debugOutputFilename parameter in the command line.

The java.util.logging.manager and java.util.logging.configureByServer system properties configure Java

logging to use a WebSphere Application Server-specific LogManager class and to use the

configuration from the file specified by the traceSettingsFile property. The default Java Logging

properties file, located in the Java Runtime Environment (JRE), will not be applied.

2. You can also specify a trace string for writing messages with the Trace String property, Specify a

startup trace specification similar to that available on the server. For your convenience, you can enter

multiple individual trace strings into the trace settings file, one trace string per line.

Chapter 5. Diagnosing problems (using diagnosis tools) 153

http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCMPCN
http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCMPCN
http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCMPEP

Here are the results of using each optional property setting:

v Specify a valid setting for the traceFileName property without a trace string to write messages to the

specified file or System.out only.

v Specify a trace string without a traceFileName property value to generate no output.

v Specify both a valid traceFileName property and a trace string to write both message and trace entries

to the location specified in the traceFileName property.

Tracing and logging configuration

You can configure tracing and logging settings to help diagnose problems or evaluate system

performance.

You can configure the application server to start in a trace-enabled state by setting the appropriate

configuration properties. You can only enable trace for an application client or standalone process at

process startup.

In WebSphere Application Server, V6 and later, a logging infrastructure, extending Java Logging, is used.

This results in the following changes to the configuration of the logging infrastructure in WebSphere

Application Server:

v Loggers defined in Java logging are equivalent to, and configured in the same way as, trace

components introduced in previous versions of WebSphere Application Server. Both are referred to as

″components.″

v Both Java logging levels and WebSphere Application Server levels can be used. The following is a

complete list of valid levels, ordered in ascending order of severity:

 1. all

 2. finest or debug

 3. finer or entryExit

 4. fine or event

 5. detail

 6. config

 7. info

 8. audit

 9. warning

10. severe or error

11. fatal

12. off

v Setting the logging and tracing level for a component to all will enable all the logging for that

component. Setting the logging and tracing level for a component to off will disable all the logging for

that component.

v You can only configure a component to one level. However, configuring a component to a certain level

enables it to perform logging on the configured level and any higher severity level.

v Several levels have equivalent names: finest is equivalent to debug; finer is equivalent to entryExit; fine

is equivalent to event; severe is equivalent to error.

Java Logging does not distinguish between tracing and message logging. However, previous versions of

WebSphere Application Server have made a clear distinction between those kind of messages. In

WebSphere Application Server, V6 and later, the differences between tracing and message logging are as

follows:

v Tracing messages are messages with lower severity (for example, tracing messages are logged on

levels fine, finer, finest, debug, entryExit, or event).

v Tracing messages are generally not localized.

v When tracing is enabled, a much higher volume of messages will be produced.

154 Troubleshooting and support

v Tracing messages provide information for problem determination.

Trace and logging strings

In WebSphere Application Server, V5.1.1 and earlier, trace strings were used for configuring tracing only.

Starting in WebSphere Application Server, Version 6 and later, the ″trace string″ becomes a ″logging

string″; it is used to configure both tracing and message logging.

In WebSphere Application Server, V5.1.1 and earlier, the trace service for all WebSphere Application

Server components is disabled by default. To request a change to the current state of the trace service, a

trace string is passed to the trace service. This trace string encodes the information detailing which level of

trace to enable or disable and for which components.

In all versions of WebSphere Application Server, the tracing for all components is disabled by default. To

change to the current state of the tracing and message logging, a logging string must be constructed and

passed to the server. This logging string specifies what level of trace or logging to enable or disable for

specific components.

You can type in trace strings (or logging strings), or construct them using the administrative console. Trace

and logging strings must conform to a specific grammar.

For WebSphere Application Server, V5.1.1 and earlier, the specification of this grammar is as follows:

TRACESTRING=COMPONENT_TRACE_STRING[:COMPONENT_TRACE_STRING]*

 COMPONENT_TRACE_STRING=COMPONENT_NAME=LEVEL=STATE[,LEVEL=STATE]*

LEVEL = all | entryExit | debug | event

STATE = enabled | disabled

COMPONENT_NAME = COMPONENT | GROUP

For WebSphere Application Server, V6 and later, the previous grammar is supported. However a new

grammar has been added to better represent the underlying infrastructure:

LOGGINGSTRING=COMPONENT_LOGGING_STRING[:COMPONENT_LOGGING_STRING]*

 COMPONENT_TRACE_STRING=COMPONENT_NAME=LEVEL

LEVEL = all | (finest | debug) | (finer | entryExit) | (fine | event)

| detail | config | info | audit | warning | (severe | error) | fatal | off

COMPONENT_NAME = COMPONENT | GROUP

The COMPONENT_NAME is the name of a component or group registered with the trace service logging

infrastructure. Typically, WebSphere Application Server components register using a fully qualified Java

class name, for example com.ibm.servlet.engine.ServletEngine. In addition, you can use a wildcard

character of asterisk (*) to terminate a component name and indicate multiple classes or packages. For

example, use a component name of com.ibm.servlet.* to specify all components whose names begin with

com.ibm.servlet. You can use a wildcard character of asterisk (*) at the end of the component or group

name to make the logging string applicable to all components or groups whose names start with specified

string. For example, a logging string specifying ″com.ibm.servlet.*″ as a component name will be applied

to all components whose names begin with com.ibm.servlet. When an asterisk (*) is used by itself in place

of the component name, the level the string specifies, will be applied to all components.

The following are examples of using an asterisk (*) in logging strings. Note that the asterisk (*) in the

logging string does not need to have a period (.) in front of it. The period (.) can be used anywhere in the

logging string.

Chapter 5. Diagnosing problems (using diagnosis tools) 155

v com.ibm.ejs.ras.*=all - enables tracing for all loggers with names starting with ″com.ibm.ejs.ras.″. If

there is a logger named ″com.ibm.ejs.ras″ it will not have trace enabled.

v com.ibm.ejs.ras*=all - enables tracing for all loggers with names starting with ″com.ibm.ejs.ras″, such

as com.ibm.ejs.ras, com.ibm.ejs.raslogger, com.ibm.ejs.ras.ManagerAdmin

Note:

v In WebSphere Application Server, V5.1.1 and earlier, you could set the level to ″all=disabled″ to

disable tracing. This syntax, beginning with Version 6.0, will result in LEVEL=info; tracing will be

disabled, but logging will be enabled.

v The logging string is processed from left to right. During the processing, part of the logging string

might be modified or removed if the levels they configure are being overridden by another part of

the logging string.

v In WebSphere Application Server, V6 and later, ″info″ is the default level. If the specified

component is not present (*=xxx is not found), *=info is always implied. Any component that is

not matched by the trace string will have its level set to info.

v If the logging string does not start with a component logging string specifying a level for all

components, using the ″*″ in place of component name, one will be added, setting the default

level for all components.

v STATE = enabled | disabled is not needed in Version 6 and later. However, if used, it has the

following effect:

– ″enabled″ sets the logging for the component specified to the level specified

– ″disabled″ sets the logging for the component specified to one level above the level specified.

The following examples illustrate the effect that disabling has on the logging level:

 Logging string Resulting logging level Notes

com.ibm.ejs.ras=debug=disabled com.ibm.ejs.ras=finer debug (version 5) = finest (version 6)

com.ibm.ejs.ras=all=disabled com.ibm.ejs.ras=info ″all=disabled″ will disable tracing;

logging is still enabled.

com.ibm.ejs.ras=fatal=disabled com.ibm.ejs.ras=off

com.ibm.ejs.ras=off=disabled com.ibm.ejs.ras=off off is the highest severity

Examples of legal trace strings include:

 Version 5 syntax Version 6 syntax

com.ibm.ejs.ras.ManagerAdmin=debug=enabled com.ibm.ejs.ras.ManagerAdmin=finest

com.ibm.ejs.ras.ManagerAdmin=all=enabled,event=disabled com.ibm.ejs.ras.ManagerAdmin=detail

com.ibm.ejs.ras.*=all=enabled com.ibm.ejs.ras.*=all

com.ibm.ejs.ras.*=all=enabled:com.ibm.ws.ras=debug=

enabled,entryexit=enabled

com.ibm.ejs.ras.*=all:com.ibm.ws.ras=finer

Enabling trace at server startup

The diagnostic trace configuration settings for a server process determines the initial trace state for a

server process. The configuration settings are read at server startup and used to configure the trace

service. You can also change many of the trace service properties or settings while the server process is

running.

 1. Start the administrative console.

 2. Click Servers > Application Servers > server_name > Troubleshooting > Diagnostic Trace

Service.

 3. Click Configuration.

156 Troubleshooting and support

4. Select the Enable Log check box to enable trace, clear the check box to disable trace.

 5. Select whether to direct trace output to either a file or an in-memory circular buffer.

Note: Different components can produce different amounts of trace output per entry. Naming and

security tracing, for example, produces a much higher trace output than Web container tracing.

Consider the type of data being collected when you configure your memory allocation and

output settings.

 6. If the in-memory circular buffer is selected for the trace output set the size of the buffer, specified in

thousands of entries. This is the maximum number of entries that will be retained in the buffer at any

given time.

 7. If a file is selected for trace output, set the maximum size in megabytes to which the file should be

allowed to grow. When the file reaches this size, the existing file will be closed, renamed, and a new

file with the original name reopened. The new name of the file will be based upon the original name

with a timestamp qualifier added to the name. In addition, specify the number of history files to keep.

 8. Select the desired format for the generated trace.

 9. Save the changed configuration.

10. To enter a trace string to set the trace specification to the desired state:

a. Click Troubleshooting > Logging and Tracing in the console navigation tree.

b. Select a server name.

c. Click Change Log Level Details.

d. If All Components has been enabled, you might want to turn it off, and then enable specific

components.

e. Click a component or group name. For more information see “Log level settings” on page 57 If the

selected server is not running, you will not be able to see individual component in graphic mode.

f. Enter a trace string in the trace string box.

g. Select Apply, then OK.

11. Allow enough time for the nodes to synchronize, and then start the server.

Enabling trace on a running server

You can modify the trace service state that determines which components are being actively traced for a

running server by using the following procedure.

1. Start the administrative console.

2. Click Servers > Application Servers > server_name > Troubleshooting > Diagnostic Trace

Service.

3. Select the Runtime tab.

4. Select the Save runtime changes to configuration as well check box if you want to write your

changes back to the server configuration.

5. Change the existing trace state by changing the trace specification to the desired state.

6. Configure the trace output if a change from the existing one is desired.

7. Click Apply.

Diagnostic trace service settings

To view this page, click the following paths:

v Servers > Application Servers > server_name > Troubleshooting > Diagnostic Trace Service

Enable Log

Enables the log service.

If this option is not selected, the following configuration properties are not passed to the application server

trace service at server startup.

Chapter 5. Diagnosing problems (using diagnosis tools) 157

Trace Output

Specifies where trace output should be written. The trace output can be written directly to an output file, or

stored in memory and written to a file on demand using the Dump button found on the run-time page.

Different components can produce different amounts of trace output per entry. Naming and security

tracing, for example, produces a much higher trace output than Web container tracing. Consider the type

of data being collected when you configure your memory allocation and output settings.

Memory Buffer

Specifies that the trace output should be written to an in-memory circular buffer. If you select this option

you must specify the following parameters:

v Maximum Buffer Size

– Specifies the number of entries, in thousands, that can be cached in the buffer. When this number is

exceeded, older entries are overwritten by new entries.

Trace Output Format

Specifies the format of the trace output.

You can specify one of three levels for trace output:

v Basic (Compatible)

– Preserves only basic trace information. Select this option to minimize the amount of space taken up

by the trace output.

v Advanced

– Preserves more specific trace information. Select this option to see detailed trace information for use

in troubleshooting and problem determination.

v Log analyzer trace format

– Preserves trace information in the same format as produced by Showlog tool.

Runtime tab

Specifies the format of the trace output.

Save changes to configuration

Save changes made on the runtime tab to the trace configuration as well. Select this box to copy run-time

trace changes to the trace configuration settings as well. Saving these changes to the trace configuration

will cause the changes to persist even if the application is restarted.

Trace Output

Specifies where trace output should be written. The trace output can be written directly to an output file, or

stored in memory and written to a file on demand using the Dump button found on the run-time page.

Memory Buffer

Specifies that the trace output should be written to an in-memory circular buffer. If you select this option

you must specify the following parameters:

v Maximum Buffer Size

– Specifies the number of entries, in thousands, that can be cached in the buffer. When this number is

exceeded, older entries are overwritten by new entries.

158 Troubleshooting and support

Select a server to configure logging and tracing

Use this page to select the server for which you want to configure logging and trace settings.

Application Servers

This page lists application servers in the cell and the nodes holding the application servers. If you are

using the Network Deployment product, this panel also shows the status of the application servers. The

status indicates whether a server is running, stopped, or encountering problems.

When you select an application server, a panel is displayed that will allow you to choose which log or trace

task to configure for that application server.

To view this administrative console page, click Troubleshooting > Logs and Trace

Name

Specifies the logical name of the server.

Node

Specifies the name of the node for the application server.

Version

Specifies the version for the application server.

Status

Indicates whether the application server is started or stopped. (Network Deployment only)

Note that if the status is Unavailable, the node agent is not running in that node and you must restart the

node agent before you can start the server.

Log and trace settings

Use this page to view and configure logging and trace settings for the server.

To view this administrative console page, click the following paths:

v Servers > Application Servers > server_name > Troubleshooting > Diagnostic Trace Service

Diagnostic Trace

The diagnostic trace configuration settings for a server process determine the initial trace state for a server

process. The configuration settings are read at server startup and used to configure the trace service. You

can also change many of the trace service properties or settings while the server process is running.

Change Log Level Details

Enter a log detail level that specifies the components, packages, or groups to trace. The log detail level

string must conform to the specific grammar described in this topic. You can enter the log detail level string

directly, or generate it using the graphical trace interface.

Setting up component trace (CTRACE)

WebSphere Application Server for z/OS uses z/OS component trace (CTRACE) facilities to manage the

collection and storage of trace data. CTRACE data is written to address space buffers in private

(pageable) storage, which can be formatted using IPCS if a dump of the address space is taken. CTRACE

data can also be written to trace data sets on disk or tape using an external writer.

Although CTRACE data is primarily output for use by IBM service personnel, using CTRACE capabilities at

your installation allows you to have additional trace data available when a problem first occurs. Because

Chapter 5. Diagnosing problems (using diagnosis tools) 159

CTRACE efficiently uses system resources, you can collect valuable trace data with minimal impact on

performance. For detailed information about the CTRACE facilities, see z/OS MVS Diagnosis: Tools and

Service Aids, GA22-7589.

If you choose to write CTRACE data to trace data sets, you must create an external writer. You can set up

separate trace data sets for each cell or for each WebSphere Application Server for z/OS release, or you

can use a single trace data set for all WebSphere Application Server activity on a particular z/OS system.

To implement a CTRACE data trace, read the following articles on preparing and starting CTRACE in your

application server:

v “Preparing CTRACE controls and resources”

v “Starting CTRACE as part of WebSphere Application Server for z/OS initialization” on page 161

v “Starting CTRACE while WebSphere Application Server for z/OS servers are active” on page 162

v “CTRACE to collect trace data for Java server applications” on page 163

After you read articles you will be able to implement CTRACE data tracing in your applications.

Preparing CTRACE controls and resources

You must prepare CTRACE controls and resources before using it for trace data.

Before you start component trace (CTRACE) activity for WebSphere Application Server for z/OS servers,

you need to make some decisions about CTRACE controls and resources as well as create an external

writer if one is needed for trace data recording.

Perform the following steps to prepare CTRACE controls and resources:

1. Decide whether to write CTRACE data to trace data sets (recommended) or keep CTRACE data in

memory buffers only.

2. If you wish to use trace data sets, perform these steps.

a. Decide whether to create one trace data set for all WebSphere Application Server activity on a

single z/OS system or separate trace data sets for each cell or WebSphere Application Server

release.

Trace data sets cannot be shared between z/OS systems; each system should have its own trace

data sets.

b. Choose names for the trace data sets.

To simplify external writer setup, include the z/OS system name in the data set name.

Recommendation: For a single trace data set for all WebSphere Application Server activity, use

something similar to SYS1.sysname.WAS390.CTRACE.

c. Allocate a trace data set on each z/OS system.

Do not specify DCB parameters RECFM, LRECL, or BLKSIZE; the external writer will allocate them

with record format VB and a system-optimal blocksize and logical record length. For trace data sets

on disk, we recommend a minimum of 10 cylinders (3390). Secondary extents are ignored unless

the NOWRAP option is specified when the external writer is started. For example:

// EXEC PGM=IEFBR14

//TRACE DD DSN=SYS1.MVSS14.WAS390.CTRACE,UNIT=3390,VOL=SER=HPK19A,

// SPACE=(CYL,(20,0)),DISP=(NEW,CATLG)

d. Choose a job name for the external writer.

Recommendation: Use BBOWTR if the same trace data set is to be used for all WebSphere

Application Server activity on each z/OS system.

e. Create the external writer cataloged procedure.

1) Copy member BBOWTR from the WebSphere Application Server for z/OS product data set

SBBOJCL to SYS1.PROCLIB or another procedure library defined to the master scheduler.

2) Rename the procedure to the external writer job name that you chose.

160 Troubleshooting and support

http://publibz.boulder.ibm.com/epubs/pdf/iea2v130.pdf
http://publibz.boulder.ibm.com/epubs/pdf/iea2v130.pdf

3) Customize the cataloged procedure by providing your trace data set name where indicated.

4) If the cataloged procedure will be shared among several z/OS systems, make sure that the

trace data set DD statements point to the appropriate trace data sets on each system.

f. Choose a system user ID under which the external writer started task will run.

This user ID must have read/write access to the trace data sets; you may wish to use an existing

started task user ID such as the default started task user ID for your system. Use the following

RACF command or equivalent to cause the external writer cataloged procedure to run under the

started task user ID:

RDEFINE STARTED external_writer_procname.* STDATA(USER(system_user_ID)) TRACE(YES)

The external writer started task should run with at least as high a dispatching priority as the

WebSphere Application Server address spaces that will use it for tracing.

g. Start the external writer to verify that the steps above were performed correctly.

Enter the following MVS console command:

TRACE CT,WTRSTART=external_writer_procname

3. Create a CTRACE parmlib member.

a. Copy member BBOCTI00 from the WebSphere Application Server for z/OS product data set

SBBOJCL to a data set in your system parmlib concatenation.

b. Rename the parmlib member to CTIBBOxx, where xx is a two-character suffix to be associated

with the external writer.

This is the value that will be specified during WebSphere Application Server for z/OS

customization.

c. Customize the CTIBBOxx parmlib member to indicate whether trace data sets and an external

writer are to be used and, if so, whether the external writer should be started automatically when

WebSphere Application Server activates the CTRACE.

4. If you plan to use separate trace data sets for different WebSphere Application Server cells or

releases, repeat all of these steps while choosing a new external writer name and parmlib member

suffix for each.

CTRACE for WebSphere Application Server is now set up. Use the parmlib member suffix to associate a

particular WebSphere Application Server for z/OS cell with the CTRACE options that you have chosen.

Starting CTRACE as part of WebSphere Application Server for z/OS initialization

You can start CTRACE as part of the initialization process for a WebSphere Application Server for a z/OS

cell using this information.

Make sure that you have properly prepared CTRACE controls and resources as described in “Preparing

CTRACE controls and resources” on page 160.

Perform the following steps to start CTRACE as part of the initialization process for a WebSphere

Application Server for z/OS cell:

1. Start the CTRACE external writer.

v If you want the external writer to write records to the trace data set until the existing extents are full

then overwrite the oldest records, use the following MVS console command:

TRACE CT,WTRSTART=procname

where procname is the name of the cataloged procedure for the CTRACE writer.

v If you want the external writer to fill all primary and secondary extents then terminate, add the

NOWRAP option as in the following example:

TRACE CT,WTRSTART=procname,NOWRAP

Chapter 5. Diagnosing problems (using diagnosis tools) 161

v If the CTIBBOxx member for the cell contains a WTRSTART parameter, then no command is

necessary. If the external writer is not started, WebSphere Application Server will start it

automatically.

2. Start the WebSphere Application Server for z/OS application server using the generated instructions.

3. When you need to collect trace data for analysis, perform these steps.

a. Disconnect WebSphere Application Server for z/OS from CTRACE.

1) Use the following operator command:

TRACE CT,ON,COMP=cell_short_name

2) You will be prompted for additional options. Enter the following reply:

REPLY x,WTR=DISCONNECT,END

b. Stop the CTRACE external writer.

Use the following operator command:

TRACE CT,WTRSTOP=procname

where procname is the name of the cataloged procedure for the CTRACE writer.

Starting CTRACE while WebSphere Application Server for z/OS servers are active

Use this page to start CTRACE when a WebSphere Application Server for z/OS server already is active.

Make sure that you have properly prepared CTRACE controls and resources as described in “Preparing

CTRACE controls and resources” on page 160.

If you start a WebSphere Application Server for z/OS server before starting the CTRACE writer for

WebSphere, the server still gathers data in its trace buffers. This trace data is not available for use unless

you follow this procedure or until a dump of the server address space is taken.

Perform the following steps to start CTRACE when a WebSphere Application Server for z/OS server

already is active:

1. Perform the following tasks.

a. Start the CTRACE external writer.

Use the following operator command:

TRACE CT,WTRSTART=procname

where procname is the name of the cataloged procedure for the CTRACE writer.

b. If necessary, connect WebSphere Application Server for z/OS to a CTRACE writer other than the

one specified in the CTIBBO xx parmlib member.

1) Use this operator command:

TRACE CT,ON,COMP=cell_short_name

2) You will be prompted for additional options. Enter the following reply:

REPLY x,WTR=procname,END

where procname is the name of the cataloged procedure for the CTRACE writer.

The CTRACE external writer begins writing the server’s trace data to the location specified through the

WebSphere variable ras_trace_outputLocation.

2. When you need to collect trace data for analysis, perform these steps.

a. Disconnect WebSphere Application Server for z/OS from CTRACE.

1) Use the following operator command:

TRACE CT,ON,COMP=cell_short_name

2) You will be prompted for additional options. Enter the following reply:

REPLY x,WTR=DISCONNECT,END

162 Troubleshooting and support

b. Stop the CTRACE external writer.

Use the following operator command:

TRACE CT,WTRSTOP=procname

where procname is the name of the cataloged procedure for the CTRACE writer.

CTRACE to collect trace data for Java server applications

Applications that run in WebSphere Application Server for z/OS can use JRas to provide tracing support

that is consistent with WebSphere tracing.

Instrumented applications use the JRas interfaces and classes for logging and tracing; trace data is written

to the same component trace data set as the internal traces issued by the WebSphere Application Server

for z/OS runtime. So you can gather application trace data in the same locations, and use the same

commands to start and stop CTRACE for these JRas applications as you do for WebSphere Application

Server for z/OS server in which the applications are running.

Automation and recovery scenarios and guidelines

The following section provides information on how to monitor and recover WebSphere Application Server

for z/OS and the subsystems it uses.

It provides startup, shutdown, and recovery procedures and scenarios. It also tells you how to determine if

the subsystems are up or down, and tells you where to find more information.

APPC automation and recovery scenarios

This page contains scenarios and information on the automation and recovery of APPC.

 Task APPC automation and recovery scenarios

Startup APPC should be started before WebSphere Application Server for

z/OS. In theory, WebSphere Application Server for z/OS could be

started before APPC, but only as long as no objects get dispatched in

containers that have an IMS APPC LRMI associated with them. If

APPC is not up before WebSphere Application Server for z/OS, and

you want to use an APPC connector to talk to IMS, then you will have

no connectivity. APPC/MVS does not have to be up for CICS. APPC

does not have to be started after VTAM.

Shutdown Reverse the startup procedure. Shutdown WebSphere Application

Server for z/OS, APPC, then VTAM.

Handling in-flight or indoubt transactions if

there is a failure

If you are using APPC for communications and it fails, do the

following:

1. Shutdown all servers with APPC connectivity.

2. Restart APPC (if it totally failed).

3. Restart the WebSphere Application Server for z/OS server.

Note: APPC will resynchronize itself. If your transaction is indoubt,

IMS waits until you restart APPC. IMS relies on RRS for recovery.

RRS will resolve transactions that are in doubt by handshaking with

every subsystem it was communicating with before it went down. If

you are using CICS, note that CICS has its own coordinator.

How to determine if APPC is running Issue the DISPLAY APPC,LU,ALL command. If APPC is not active, it will

say so. In addition, the status of the logical units used by WebSphere

Application Server for z/OS and/or IMS should be active or no APPC

work will be successful.

Chapter 5. Diagnosing problems (using diagnosis tools) 163

Task APPC automation and recovery scenarios

What happens to WebSphere for z/OS if

APPC goes down?

Any objects attempting to use the IMS APPC PAA will not work. The

server region running on behalf of the container attempting to use

APPC will likely get a C9C24C05 error, indicating that an APPC

ALLOCATE request was attempted and failed. Additional APPC error

diagnostic information that helps to pinpoint the APPC problem is

contained in the logs associated with this region.

What happens to other subsystems if APPC

goes down?

Not applicable

Where to find more information v z/OS MVS Planning: Operations

v z/OS MVS Planning: APPC/MVS Management

v z/OS MVS Programming: Resource Recovery

WLM automation and recovery scenarios

This table provides scenarios for automation and recovery of WLM enabled systems.

 Task WLM automation and recovery scenarios

Startup WLM is automatically started by z/OS when you IPL your system.

You do not have to start it.

Shutdown You cannot shutdown WLM.

Handling in-flight and indoubt transactions if

there is a failure

Not applicable

How to determine if WLM is running Not applicable

What happens to WebSphere Application Server

for z/OS if WLM goes down?

Not applicable

What happens to other subsystems if WLM goes

down?

Not applicable

How to handle a catastrophic failure of the

WebSphere Application Server for z/OS server

regions

Following a catastrophic failure of the WebSphere Application

Server for z/OS server regions, you can use one of the following

resume commands, depending on your application environment

type:

v Static application environment:

v wlm,applenv=applenvname,

resume

v Dynamic application environment:

v wlm,dynappl=applenvname,

resume,options

Where to find more information v z/OS MVS Planning: Workload Management

v z/OS MVS Programming: Workload Management Services

RACF automation and recovery scenarios

This table provides scenarios for RACF automation and recovery.

 Task RACF automation and recovery scenarios

Startup If it is installed, RACF is started as a part of IPL.

Shutdown RACF is not shutdown.

Handling in-flight and indoubt transactions if

there is a failure

Not applicable

164 Troubleshooting and support

Task RACF automation and recovery scenarios

How to determine if RACF is running Use the RACF SETROPTS command to display the status of

RACF.

What happens to WebSphere for z/OS if RACF

goes down?

RACF goes into fail safe mode. This means that for every

resource that is accessed, the operator is asked to verify if it is

okay. In general, the system is IPLed if this occurs.

What happens to other subsystems if RACF

goes down?

It depends on the subsystem and how RACF fails.

Where to find more information v z/OS Security Server RACF System Programmer’s Guide

v z/OS Security Server RACF Security Administrator’s Guide

RRS automation and recovery scenarios

Use this table for RRS automation and recovery scenarios.

 Task RRS automation and recovery scenarios

Startup Ensure System Logger has been started before RRS.

Note: RRS will display error messages indicating that System Logger

must be started first if you try to start RRS without starting System

Logger.Ensure RRS is started before WebSphere for z/OS. RRS does

not start by itself. RRS will start automatically only if it was registered

with the Automatic Restart Manager (ARM) and if ARM is running. To

start RRS, issue the start command:

start atrrrs,sub=master

Note: RRS doesn’t restart itself if you issue the cancel command, so

you need to restart it manually if it was canceled or if ARM isn’t

running.

Shutdown Shutdown RRS in the reverse order that you started RRS. Shutdown

WebSphere Application Server for z/OS, then RRS, followed by

System Logger. There is no controlled way to bring down RRS. The

best approach is:

1. Quiesce WebSphere Application Server for z/OS.

2. Shutdown WebSphere Application Server for z/OS.

3. Cancel RRS.

Note: You may want to bring down the DB2 you are using for

WebSphere Application Server for z/OS before canceling RRS.

To cancel RRS, issue the command:

setrrs cancel

Handling in-flight and indoubt transactions if

there is a failure

Refer to the RRS system management panels to display in-flight and

resolve indoubt transactions. You can display the resource managers

on the RM panels in RRS, display all units of recovery (UR), filter the

URs, and then resolve the indoubts. You cannot resolve in-flights. You

can display all RRS-managed transactions.

If you are using the IMS Connector for Java, this process applies only

if IMS Connector for Java, IMS Connect, and the IMS subsystem are

configured locally on the same z/OS system image on which the

WebSphere for z/OS J2EE server runs. The local configuration is the

only configuration in which IMS Connector for Java runs as an

RRS-transactional connector.

Chapter 5. Diagnosing problems (using diagnosis tools) 165

Task RRS automation and recovery scenarios

How to determine if RRS is running Use the display command:

d a,atrrs

atrrs is the name of the default RRS procedure shipped with

WebSphere Application Server for z/OS. Use the procedure name that

you use to start RRS. The address space comes from the procedure.

What happens to WebSphere for z/OS if

RRS goes down?

RRS is a required subsystem, so WebSphere Application Server for

z/OS will not run without it. If RRS goes down, WebSphere Application

Server for z/OS will get fatal errors. You need to get RRS started, then

restart WebSphere Application Server for z/OS.

What happens to other subsystems if RRS

goes down?

RRS is the WebSphere Application Server for z/OS transaction

monitor. If you cancel RRS, you will have problems with any

subsystems using it (for example, WebSphere Application Server for

z/OS, DB2, IMS). You should understand the implications before you

cancel RRS.

Where to find more information z/OS MVS Programming: Resource Recovery

UNIX System Services automation and recovery scenarios

This table provides automation and recovery scenarios for using UNIX System Services.

 Task UNIX System Services automation and recovery scenarios

Startup UNIX System Services is a permanent component of MVS and

is started automatically at IPL time.

Shutdown UNIX System Services does not support a shutdown capability,

so it is always available.

Handling in-flight or indoubt transactions if there is

a failure

The only data that could be considered transactional in nature

is data stored in the HFS.

How to determine if UNIX System Services is

running

UNIX System Services is always available as long as the

system is up and running.

What happens to WebSphere for z/OS if UNIX

System Services goes down?

If UNIX System Services fails, the system must be re-IPLed.

WebSphere Application Server for z/OS will get errors and

terminate.

What happens to other subsystems if UNIX System

Services goes down?

If UNIX System Services fails, the system must be re-IPLed.

Where to find more information z/OS UNIX System Services Planning

TCP/IP automation and recovery scenarios

This table provides automation and recovery scenarios for TCP/IP configurations.

 Task TCP/IP automation and recovery scenarios

Startup TCP/IP must be up before starting WebSphere Application Server for z/OS.

Shutdown Shutdown WebSphere Application Server for z/OS before shutting down

TCP/IP.

Handling inflight or indoubt transactions

if there is a failure

Methods in flight will have their transactions rolled back when the attempt to

send a response to the method fails. Other transactions will wait for a

timeout.

How to determine if TCP/IP is running Use the display command looking for the TCP/IP procedure.

166 Troubleshooting and support

Task TCP/IP automation and recovery scenarios

What happens to WebSphere

Application Server for z/OS if TCP/IP

goes down?

If TCP/IP goes down, then WebSphere Application Server for z/OS on the

system must be restarted. You will get an SVC dump because the socket

layer was destroyed.

What happens to other subsystems if

TCP/IP goes down?

If TCP/IP goes down, sessions break and transactions react as described

above.

Note: WebSphere Application Server for z/OS will not be able to recognize

that TCP/IP is back up. Therefore, WebSphere Application Server for z/OS

must be restarted.

Note: If TCP/IP goes down, you should recycle LDAP before restarting

WebSphere Application Server for z/OS.

DB2 automation and recovery scenarios

This article provides some scenarios for automation and recovery of DB2 resources.

 Task DB2 automation and recovery scenarios

Startup DB2 is started after RRS but before LDAP, NFS, and WebSphere

Application Server for z/OS.

Shutdown Reverse of startup sequence.

Handling in-flight or indoubt transactions if

there is a failure

Use the RRS panels to resolve. See z/OS MVS Programming:

Resource Recovery. The RRS panels are the preferred way to

resolve DB2 indoubts because they allow you to view all resource

managers that have an interest in the transaction. However, you can

also use DB2 to resolve indoubts. You can issue the command:

DISPLAY THREAD(*) TYPE(INDOUBT)

to display DB2 information about the indoubt threads it knows about

(if there are too many, you can go into S.LOG to view the

information). This display will give you a DB2 identifier called a ″nid″.

Copy the nid and paste it into this command:

-RECOVER INDOUBT (RRSAF) ACTION(COMMIT)

 NID(B1D379D17ED6CF900000009401010000)

where the nid is the one that you cut from the display command. You

can issue this command to roll back the transaction:

-RECOVER INDOUBT (RRSAF) ACTION(ABORT)

 NID(B1D379D17ED6CF900000009401010000)

How to determine if DB2 is running Use the display command to display the DB2 address space.

What happens to WebSphere Application

Server for z/OS if DB2 goes down?

WebSphere Application Server for z/OS needs DB2 to run, so it

abends if DB2 goes down. You need to restart the LDAP server, then

restart DB2, and then restart WebSphere Application Server for z/OS.

What happens to other subsystems if DB2

goes down?

Not applicable

Where to find more information See the DB2 books at the following Internet location:http://
www.ibm.com/servers/eserver/zseries/zos/

CICS automation and recovery scenarios

This article explains different scenarios for CICS automation and recovery.

Chapter 5. Diagnosing problems (using diagnosis tools) 167

http://www.ibm.com/servers/eserver/zseries/zos/
http://www.ibm.com/servers/eserver/zseries/zos/

Task CICS automation and recovery scenarios

Startup CICS and any required CICS products, such as CICS Transaction

Gateway, need to be properly installed, initialized, and started

before any work flows to a CICS-enabled WebSphere Application

Server controller.

Shutdown Shutdown the WebSphere Application Server controller that uses

CICS as a backing store, then shut down the CICS service.

Handling in-flight or indoubt transactions if there

is a failure

If there is an error during processing, both CICS and WebSphere

Application Server for z/OS rely on the underlying RRS subsystem

to handle all rollback notifications to the registered interests. In the

case of inflight transactions, RRS will notify all participants that a

rollback is required, and normal rollback processing will occur in

each registered party. In the case of indoubt transactions, it may

be necessary to recycle the WebSphere Application Server for

z/OS Application Control/Server region to release any pending

transaction in CICS.

How to determine if CICS is running This is installation dependent.

What happens to CICS if WebSphere

Application Server for z/OS goes down?

Should WebSphere Application Server for z/OS happen to go

down, one of two situations could occur:

1. If WebSphere Application Server for z/OS and CICS are

currently engaged in a unit of work, then RRS processing as

described above would occur and it may be necessary to

recycle the application control server regions to release

pending transactional work in CICS.

2. If WebSphere Application Server for z/OS and CICS are not

currently engaged in a unit of work, CICS is not affected.

What happens to other subsystems if CICS goes

down?

Not applicable

Where to find more information CICS Operations and Utilities Guide

IMS automation and recovery scenarios

This article provides scenarios for IMS automation and recovery.

 Task IMS automation and recovery scenarios

Startup IMS and any required IMS products, such as IMS Connect, need to be

properly installed, initialized, and started before any work flows to an

IMS-enabled WebSphere for z/OS application control server region are

run.

Shutdown Shutdown the WebSphere Application Server for z/OS application

controller that uses IMS as a backing store, then shutdown the IMS

service

Handling in-flight or indoubt transactions if

there is a failure

If there is an error during processing, both IMS and WebSphere

Application Server for z/OS rely on the underlying RRS subsystem to

handle all rollback notifications to the registered interests. In the case of

inflight transactions, RRS will notify all participants that a rollback is

required and normal rollback processing will occur in each registered

party. In the case of indoubt transactions, it may be necessary to

recycle the WebSphere Application Server for z/OS Application

Control/Server region to release any pending transaction in the IMS

MPRs.

How to determine if IMS is running This is installation-dependent.

168 Troubleshooting and support

Task IMS automation and recovery scenarios

What happens to IMS if WebSphere

Application Server for z/OS goes down?

Should WebSphere Application Server for z/OS happen to go down,

one of two situations could occur:

1. If WebSphere Application Server for z/OS and IMS are currently

engaged in a unit of work, then RRS processing as described

above would occur and it may be necessary to recycle the

application control server regions to release pending transactional

work in the IMS MPR.

2. If WebSphere Application Server for z/OS and IMS are not currently

engaged in a unit of work, IMS is not affected.

What happens to other subsystems if IMS

goes down?

Not applicable

Where to find more information IMS/ESA Operator’s Reference

LDAP automation and recovery scenarios

This table shows scenarios for automating and recovering LDAP systems.

 Task LDAP automation and recovery scenarios

Startup LDAP, as used by WebSphere Application Server for z/OS, is

completely run within the WebSphere Application Server for z/OS

address spaces using something called ″the local backend.″ This

support takes the front side of the LDAP client APIs and the backend

database implementation and runs them completely inside the

WebSphere Application Server for z/OS Naming Server and Interface

Repository. For Naming and IR, OMVS and DB2 must be up before

Naming and IR. To run the LDAP server, TCPIP, OMVS, and DB2 must

all be up before the LDAP server.

Note: There are two LDAP modes supported:

1. Local LDAP backend.

2. Remote LDAP Server. The WebSphere Application Server for z/OS

environment has to be set up correspondingly, and DB2, TCP/IP,

and the remote server have to be up and running before

WebSphere Application Server for z/OS is started.

Shutdown Shutdown Naming and IR, then OMVS and DB2. For the LDAP server,

shutdown the LDAP server, then TCPIP and DB2, and then OMVS.

Handling in-flight or indoubt transactions if

there is a failure

If there is a failure during processing, Naming and IR rely on RRS to

issue a rollback directly to DB2 and, as a result, any work done by the

LDAP code is rolled back along with it. For the LDAP server,

AUTOCOMMIT is set to NO, causing any error to ROLLBACK for that

transaction. This ensures the atomicity characteristic of LDAP

operations.

How to determine if LDAP is running In the case of WebSphere Application Server for z/OS, if Naming and IR

are operating, then LDAP is operating. In the case of the LDAP server,

and a started task is used for the LDAP server, use the SDSF to see if

the started task is running. Examine the output log for the started task

to see if any error messages were displayed. Alternatively, the LDAPSRCH

command (from TSO), or LDAPSEARCH command (from Unix System

Services shell) can be used to perform a simple search to verify that the

LDAP server is running.

What happens to WebSphere Application

Server for z/OS if LDAP goes down?

v In J2EE server regions, the LDAP server must be active since it is a

separate server that no longer runs inside the WebSphere Application

Server for z/OS region. Recycle the JNDI, then restart the J2EE

application servers.

Chapter 5. Diagnosing problems (using diagnosis tools) 169

Task LDAP automation and recovery scenarios

What happens to other subsystems if

LDAP goes down?

Most WebSphere Application Server for z/OS subsystems do not

depend on LDAP, but this may change in the future. In the case of

accessing LDAP through the LDAP server, there is a way to configure

the LDAP server to operate in a sysplex environment such that (using

sysplex-enabled DNS) LDAP requests will be sent to the LDAP server in

the sysplex that is operating (assuming that there is one). As an

alternative, subsystems that want to use LDAP could configure a

backup LDAP server to be contacted in case the primary server is not

accessible. In this case, the application would assume that it could

retrieve all of the same data that it could get from the backup on the

primary which would be handled by some replication mechanism. The

LDAP server currently supports a master/slave replication mechanism,

but you could also try duplicating the sysplex server using DB2 data

sharing.

Where to find more information z/OS Security Server LDAP Server Administration and Use

WebSphere Application Server for z/OS (Daemon) automation and

recovery scenarios

This article provides some scenarios for automation and recovery of WebSphere Application Server for

z/OS.

 Task WebSphere Application Server for z/OS (daemon) automation

and recovery scenarios

Startup See the instructions in the Where to perform WebSphere

Application Server operations topic.

Shutdown See the instructions in the Where to perform WebSphere

Application Server operations topic.

Handling inflight or indoubt transactions if there

is a failure

The daemon is a location agent. If the daemon fails during the

course of a transaction, locate requests to the daemon can fail.

These request failures might be surfaced by the client ORB. If the

client is a WebSphere Application Server for z/OS client running in

a sysplex, the locate request can be routed to another available

daemon in the sysplex, if present.

How to determine if the daemon is running Use the MVS display command.

What happens to WebSphere Application

Server for z/OS if the daemon goes down?

If the daemon goes down, all WebSphere Application Server for

z/OS servers started on the same system also are terminated.

What happens to other subsystems if the

daemon goes down?

Other subsystems continue to work fine. As a general rule, if the

servers on multiple systems are defined in cluster and there is

another one in the sysplex, if the daemon goes down , clients are

not affected.

Web server (servlet) automation and recovery scenarios

This table provides scenarios for Web server (or servlet) automation and recovery.

 Task WebServer automation and recovery scenarios

Startup Web servers have a relationship with WebSphere Application Server for z/OS only in

the sense that a client application program that is written to use WebSphere

Application Server for z/OS facilities may be written as a servlet. Any implications for

ordering of startup will be introduced by the applications. You probably want to have

the WebSphere Application Server for z/OS object servers up and ready before

starting the client application that the web server is hosting.

170 Troubleshooting and support

Task WebServer automation and recovery scenarios

Shutdown There are no dependencies from the product code. Similar to most applications, you

may want to quiesce the clients prior to taking down the target WebSphere Application

Server for z/OS servers. Shut down the web server to stop the port of entry.

Handling in-flight or indoubt

transactions if there is a

failure

Since a web server is stateless, there are no in-flight or indoubt transactions.

How to determine if a web

server is running

Use the z/OS display commands and viewer tools (SDDF) to monitor the Application

Server.

What happens to WebSphere

Application Server for z/OS if

the web server goes down?

WebSphere Application Server for z/OS requires an IBM HTTP J2EE server web

server in order to provide full function servlets. So, if the web server goes down,

applications that require a port of entry (like servlets and SOAP) cannot run.

What happens to other

subsystems if Web Server

goes down?

HTTP only provides information to other subsystems, so they are unaffected if the

web server goes down.

Where to find more

information

z/OS HTTP Server Planning, Installing, and Using

Working with troubleshooting tools

WebSphere Application Server includes a number of troubleshooting tools that are designed to help you

isolate the source of problems. Many of these tools are designed to generate information to be used by

IBM Support, and their output might not be understandable by the customer.

This section only discusses tools that are bundled with the WebSphere Application Server product. A wide

range of tools which address a variety of problems is available from the WebSphere Application Server

Technical Support Web site.

1. Select the appropriate tool for the task. For more information on the capacities of the supplied

troubleshooting tools, see the relevant articles in this section.

2. Run the tool as described in the relevant article.

3. Contact IBM Support for assistance in deciphering the output of the tool. For current information

available from IBM Support on known problems and their resolution, see the IBM Support page. IBM

Support has documents that can save you time gathering information needed to resolve this problem.

For the last minute updates, limitations, and known problems, see the Release notes. Before opening

a PMR, see the Must gather page.

4. Use the IBM Support Assistant to help find and use various IBM Support resources, such as updated

documentation and problem determination tools.

Configuring first failure data capture log file purges

The first failure data capture (FFDC) log file saves information that is generated from a processing failure.

These files are deleted after a maximum number of days has passed. The captured data is saved in a log

file for analyzing the problem.

FFDC is intended primarily for use by IBM Service. FFDC instantly collects events and errors that occur

during the WebSphere Application Server runtime. The information is captured as it occurs and is written

to a log file that can be analyzed by an IBM Service representative. The data is uniquely identified for the

servant region that produced the exception.

The log file purges in seven days by default. You can configure the amount of days between purges if you

are concerned about the amount of disk space used by the FFDC log files. This configuration is done by

modifying the FFDC configuration.

Chapter 5. Diagnosing problems (using diagnosis tools) 171

http://www-306.ibm.com/software/webservers/appserv/was/support/
http://www-1.ibm.com/support/search.wss?rs=180&q=mustgather

The FFDC configuration properties files are located in the properties directory under the WebSphere

Application Server product installation. There are three properties files, but only the ffdcRun.properties file

should be modified. You can set the ExceptionFileMaximumAge property to configure the amount of days

between purging the FFDC log files. The value of the ExceptionFileMaximumAge property must be a

positive number. The FFDC feature does not affect the performance of the WebSphere Application Server

product.

Perform the following steps to configure the number of days between the FFDC log file purges. The value

is in days.

1. Change the value for the ExceptionFileMaximumAge property to the number of days between the

FFDC log file purges. The value of the ExceptionFileMaximumAge property must be a positive number.

The default is seven days. For example, ExceptionFileMaximumAge = 3 sets the default time to three

days. The FFDC log file is purged after three days.

2. Save the ffdcRun.properties file and exit.

The FFDC file management function removes the FFDC log files that have reached the maximum age and

generates a message in the SYSOUT of the server job log.

Types of configuration variables

You can configure a variety of configuration variables to control the behavior of WebSphere Application

Server for z/OS.

These configuration variables allow you to control:

v Output destinations and characteristics for the error log, and for CTRACE buffers, data sets and the

external writer.

v Trace buffers, data sets, and the content of trace data.

v Types of dumps to be requested.

v Timeout values for system and application behavior.

Output destinations and characteristics

Use these variables to control log output destinations and characteristics.

client_ras_logstreamname= name Specifies the name of the log stream for an application client run-time

to use for error information.

Default: If this variable is not specified, the client run-time uses STDERR.

Example:

 client_ras_logstreamname=MY.CLIENT.ERROR.LOG

Tip: Do not put the log stream name in quotes. Log stream names are not data set names.

ras_default_msg_dd= DD_card_name Redirects write-to-operator (WTO) messages that use the default

routing to hardcopy. These messages are redirected to the location identified through the DD card on the

server’s JCL start procedure. These WTO messages are primarily messages that WebSphere Application

Server for z/OS issues during initialization.

Default: No default value is set; WTO messages that use default routing are sent to hardcopy.

Examples:

 ras_default_msg_dd=MSGDD

 ras_default_msg_dd=DFLTLOG

172 Troubleshooting and support

Example of the DFLTLOG DD card on the server’s JCL start procedure:

//DFLTLOG DD SYSOUT=*

ras_hardcopy_msg_dd= DD_card_name Redirects write-to-operator (WTO) messages that WebSphere

Application Server for z/OS routes to hardcopy. These messages are redirected to the location identified

through the DD card on the server’s JCL start procedure. These WTO messages are primarily audit

messages issued from Java code during initialization.

Default: No default value is set; WTO messages that use hardcopy routing are sent to hardcopy.

Example:

 ras_hardcopy_msg_dd=MSGDD

ras_log_logstreamName= name Specifies the log stream for WebSphere Application Server for z/OS to

use for error information during bootstrap processing. If the specified log stream is not found or not

accessible, a message is issued and errors are written to the server’s job log.

Default: If this variable is not specified, WebSphere Application Server for z/OS uses STDERR.

Example:

 ras_log_logstreamName=MY.CB.ERROR.LOG

Tip: Do not put the log stream name in quotes. Log stream names are not data set names.

Trace control settings

The following trace options allow you to capture the information needed to detect problems.

To view or set these options, use the WebSphere Application Server administrative console:

1. Select Environment > Manage WebSphere Variables.

2. Specify the variable name in the name field and specify the setting in the value field. You can also

describe the setting in the description field on this tab.

ras_trace_outputLocation=SYSPRINT | BUFFER | TRCFILE

Specifies where you want trace records to be sent:

v To SYSPRINT

v To a memory buffer (BUFFER), the contents of which are later written to a CTRACE data set

v To a trace data set (TRCFILE) specified on the TRCFILE DD statement in the server’s start

procedure.

For servers, you may specify one or more values, separated by a space. For clients, you may specify

SYSPRINT only.

Defaults:

v For clients, SYSPRINT

v For all other processes, BUFFER

Example: ras_trace_outputLocation=SYSPRINT BUFFER

ras_time_local=0 | 1

Specifies whether timestamps in trace records use Greenwich Mean Time (GMT) or local time. This

variable setting controls timestamp format in the error log, and in traces sent to SYSPRINT or

TRCFILE DD.

 Default: 0 (GMT)

Chapter 5. Diagnosing problems (using diagnosis tools) 173

Example: ras_time_local=1 sets timestamps to local time.

ras_trace_ctraceParms=SUFFIX | MEMBER_NAME

Identifies the CTRACE PARMLIB member. The value can be either:

v A two-character suffix, which is added to the string CTIBBO to form the name of the PARMLIB

member, or

v The fully specified name of the PARMLIB member. A fully specified name must conform to the

naming requirements for a CTRACE PARMLIB member.

If this environment variable is specified and the PARMLIB member is not found, the default PARMLIB

member, CTIBBO00, is used. If neither the specified nor the default PARMLIB member is found,

tracing is defined to CTRACE, but there is no connection to a CTRACE external writer.

Note: The Daemon is the only server that recognizes this environment variable.

Default: 00 (the default PARMLIB member, CTIBBO00)

 Example: ras_trace_ctraceParms=01 identifies PARMLIB member CTIBBO01

ras_trace_BufferCount= n

Specifies the number of trace buffers to allocate. Valid values are 4 through 8.

 Default: 4

 Example: ras_trace_BufferCount=6

ras_trace_BufferSize= n

Specifies the size of a single trace buffer in bytes. You can use the letters K (for kilobytes) or M (for

megabytes). Valid values are 128K through 4M.

 Default: 1M

 Example: ras_trace_BufferSize=2M

Dump control settings

Use these settings to manage the dump control configuration in WebSphere Application Server.

ras_dumpoptions_dumptype= n

Specifies the default dump used by the signal handler. Valid values and their meanings are:

v 0

No dump is generated.

v 1

A ctrace dump is taken.

v 2

A cdump dump is taken.

v 3

A csnap dump is taken.

v 4

A CEE3DMP dump is taken.

CEE3DMP generates a dump of Language Environment and the member language libraries.

Sections of the dump are selectively included, depending on dump options specified, either by

default or through the

 ras_dumpoptions_ledumpoptons

variable. By default, this value passes

 THREAD(ALL) BLOCKS

to CEE3DMP. You can override the default options for CEE3DMP through the

 ras_dumpoptions_ledumpoptons

174 Troubleshooting and support

variable. For more information about CEE3DMP and its options, see z/OS Language

Environment Programming Reference, SA22-7562..

Default: 3

 Example:

 ras_dumpoptions_dumptype=2

ras_dumpoptions_ledumpoptons= options

Specifies dump options to be used with a CEE3DMP. If you want more than one option, separate

each option with a blank. Specifies dump options to be used with a CEE3DMP. If you want more

than one option, separate each option with a blank.

 This WebSphere variable is used only when you specify

 ras_dumpoptions_dumptype=4

. For an explanation of CEE3DMP and valid dump options, see z/OS Language Environment

Programming Reference, SA22-7562.

 Rule: The maximum length of the option string on this environment variable is 255. If the option

string is longer than 255, you receive message BBOM0011W and the CEE3DMP dump options

are set to

 THREAD(ALL) BLOCKS

.

 Default:

 THREAD(ALL) BLOCKS

Example:

 ras_dumpoptions_ledumpoptons=NOTRACEBACK NOFILES

Timeout values - controlling behavior

Timeout variables let you control the amount of time you will allow for various requests to complete. Some

of these variables map to internal variable names. The internal variable names are provided here to aid

you with debugging.

ORB service advanced settings

ORB listener keep alive

This variable defines the value, in seconds, provided to TCP/IP on the SOCK_TCP_KEEPALIVE

option for the IIOP listener. The function of this option is to verify if idle sessions are still valid by

polling the client TCP/IP stack. If the client does not respond, the session is closed. If the client goes

away without notifying the server, it would unnecessarily leave the session active on the server side.

Use this option to clean up these unnecessary sessions.

v If the environment variable is not set, the TCP/IP option is not set.

v Setting the SOCK_TCP_KEEPALIVE option generates network traffic on idle sessions, which can

be undesirable.

Default: 0

 How to specify: Specify this setting in the administrative console using the path Application Servers

> server > Container Services > ORB Service > z/OS additional settings

ORB SSL listener keep alive

This variable defines the value, in seconds, provided to TCP/IP on the SOCK_TCP_KEEPALIVE

option for the IIOP listener. The function of this option is to verify if idle sessions are still valid by

polling the client TCP/IP stack. If the client does not respond, the session is closed. If the client goes

Chapter 5. Diagnosing problems (using diagnosis tools) 175

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/

away without notifying the server, it would unnecessarily leave the session active on the server side.

Use this option to clean up these unnecessary sessions.

v If the environment variable is not set, the TCP/IP option is not set.

v Setting the SOCK_TCP_KEEPALIVE option generates network traffic on idle sessions, which can

be undesirable.

Default: 0

 How to specify: Specify this custom property in the administrative console using the path Application

Servers > server > Container Services > ORB Service > z/OS additional settings

WLM timeout

Specifies the maximum amount of time, in seconds, that WebSphere Application Server for z/OS will

wait for IIOP requests to complete. This time limit includes:

v Time during which the IIOP request waits on the WLM queue until being dispatched to a servant

(region), and

v Time during which an application component, running in the servant, processes the request and

generates a response.

The server generates a failure response if this processing does not complete within the specified time.

Note: This variable setting does not apply for HTTP requests or Scalable Messaging Support; for that

type of work, the value specified through the ConnectionResponseTimeout variable controls the

time allowed for dispatching work to a servant (region).

Default: 300 seconds

 How to specify: Specify this setting in the administrative console using the path Application Servers

> server > Container Services > ORB Service > z/OS additional settings.

 Internal variable name (for debugging purposes): Look for the internal variable name

control_region_wlm_dispatch_timeout in the was.env file or the JES job log.

 Example: WLM timeout=600

Request timeout

Specifies the maximum time, in tenths of seconds, that the client will wait for the response to a client

request. This variable is the only timeout available for remote method dispatches made by clients only,

not by application components within the servant region. Because the sysplex TCP/IP that runs

through the coupling facility does not always tell the client when the other end of the socket is gone,

clients can wait indefinitely for a response unless you set this variable. Setting Request timeout

ensures that the client gets a response within the specified time, even if the response is a

COMM_FAILURE exception.

 Default: 0 (unlimited), which means no time-out value is set

 How to specify: Specify this custom property in the administrative console using the path Application

Servers > server > > Container Services > ORB Service > z/OS additional settings

 Example: Request timeout=20 sets the time to 2 seconds

Transaction service timeout variables

Total Transaction Lifetime Timeout

Specifies the maximum amount of time, in seconds, that the J2EE server will wait for an application

transaction that originated in this server to complete. This default amount of time is given to the

application transaction if it does not set its own timeout value through the

UserTransaction.setTransactionTimeout() method. If the application transaction is not committed or

rolled back within the specified time, the application transaction will be marked for roll-back and will be

allowed to continue running for a grace period of about four minutes. If the application transaction is

committed or rolled back during the grace period, the outcome of the transaction will always be rolled

176 Troubleshooting and support

back. If the application transaction does not complete after the grace period, the controller abnormally

ends the servant (region) in which the application component is running with ABEND EC3

RSN=04130002 or 04130005.

Note: Only the total transaction lifetime timeout and the maximum transaction timeout have grace

periods.

The maximum value is 2147483 seconds (24.85 days). Set this value to zero to disable the function.

 Default: 120 seconds

 How to specify: Specify this setting in the administrative console using the path Application Servers

> server > Container Services > Transaction Service

 Internal variable name (for debugging purposes): Look for the internal variable name

transaction_defaultTimeout in the was.env file or the JES job log.

Maximum Transaction Timeout

Specifies the maximum amount of time, in seconds, that your installation will allow an application to

specify for its transactions to complete. If an application assigns a greater amount of time through the

UserTransaction.setTransactionTimeout() method, the J2EE server overrides the application setting

to the value specified for the Maximum Transaction Timeout variable. If the application does not set its

own time-out value through the current->set_timeout method, the default value set through the

Maximum Transaction Timeout variable applies.

 The maximum value is 2147483 seconds (24.85 days). Set this value to zero to disable the function.

 Default: 300 seconds

 How to specify: Specify this setting in the administrative console using the path Application Servers

> server > Container Services > Transaction Service

 Internal variable name (for debugging purposes): Look for the internal variable name

transaction_maximumTimeout in the was.env file or the JES job log.

transaction_recoveryTimeout

Specifies the time, in minutes, that this controller (region) uses to attempt to resolve in-doubt

transactions before issuing a write-to-operator-with-reply (WTOR) message to the console, requesting

whether it should:

v Stop trying to resolve in-doubt transactions,

v Write transaction-related information to the job log or hard copy log and terminate.

If the operator replies that recovery should continue, the controller (region) will attempt recovery for the

specified amount of time before re-issuing the WTOR message. Once all the transactions are

resolved, the controller region terminates. This variable applies only to controllers in peer restart and

recovery mode.

 Default: 15 minutes

 How to specify: Specify this custom property in the administrative console using the path Servers >

Application Servers > server > Server infrastructure > Administration > Custom Properties >

New. Add the transaction_recoveryTimeout property in the Name field and specify a different value in

the Value field.

 Internal variable name (for debugging purposes): The internal variable name is the same as the

external variable name. Look for transaction_recoveryTimeout in the was.env file or the JES job log.

 Example: transaction_recoveryTimeout=7

Server custom properties

control_region_mdb_request_timeout

Specifies the time, in seconds, that the server will wait for a message driven bean (MDB) request to

Chapter 5. Diagnosing problems (using diagnosis tools) 177

receive a response. If the response is not received within the specified amount of time, the servant

(region) may abend with ABEND EC3 RSN=04130008. Set this value to zero to disable the function.

 Default: 120

 How to specify: Specify this custom property in the administrative console using the path Servers >

Application Servers > server > Server infrastructure > Administration > Custom Properties >

New. Add the control_region_mdb_request_timeout property in the Name field and specify a different

value in the Value field.

 Internal variable name (for debugging purposes): The internal variable name is the same as the

external variable name. Look for control_region_mdb_request_timeout in the was.env file or the JES

job log. See Application server z/OS custom properties for additional information.

 Example: control_region_mdb_request_timeout=180

protocol_http_timeout_output_recovery

Controls the recovery action taken on timeouts for requests received over the HTTP transport.

Specifying ″SERVANT″ allows for the termination of servant (region) when timeouts occur. If an HTTP

request is under dispatch in a servant (region) when its timeout value is reached, the servant (region)

terminates with an ABEND EC3 RSN=04130007. The HTTP request and socket are then cleaned up.

A setting of ″SESSION″ only cleans up the HTTP request and socket. No attempt is made to disrupt

the execution of a dispatched HTTP request within a servant (region). Be careful using this setting as

it may lead to a loss of resources if the dispatched HTTP request loops or hangs.

 Default: SERVANT

 How to specify: Specify this custom property in the administrative console using the path Servers >

Application Servers > server > Server infrastructure > Administration > Custom Properties >

New. Add the protocol_http_timeout_output_recovery property in the Name field and specify a different

value in the Value Field.

 Internal variable name (for debugging purposes): The internal variable name is the same as the

external variable name. Look for protocol_http_timeout_output_recovery in the was.env file or the JES

job log.

 Example: protocol_http_timeout_output_recovery=SERVANT

protocol_https_timeout_output_recovery

Controls the recovery action taken on timeouts for requests received over the HTTP SSL transport.

Specifying ″SERVANT″ allows for the termination of servant (region) when timeouts occur. If an HTTP

SSL request is under dispatch in a servant (region) when its timeout value is reached, the servant

(region) terminates with an ABEND EC3 RSN=04130007. The HTTP SSL request and socket are then

cleaned up. A setting of ″SESSION″ only cleans up the HTTP SSL request and socket. No attempt is

made to disrupt the execution of a dispatched HTTP SSL request within a servant (region). Be careful

using this setting as it may lead to a loss of resources if the dispatched HTTP SSL request loops or

hangs.

 Default: SERVANT

 How to specify: Specify this custom property in the administrative console using the path Servers >

Application Servers > server > Server infrastructure > Administration > Custom Properties >

New. Add the protocol_https_timeout_output_recovery property in the Name field and specify a

different value in the Value field.

 Internal variable name (for debugging purposes): The internal variable name is the same as the

external variable name. Look for protocol_https_timeout_output_recovery in the was.env file or the

JES job log.

 Example: protocol_https_timeout_output_recovery=SESSION

178 Troubleshooting and support

Secure Sockets Layer configuration repertoires

V3 Timeout

Specifies the length of time, in seconds, that a browser can reuse a System SSL Version 3 session ID

without renegotiating encryption keys with the server. The repertoires that you define for a server

require the same V3 timeout value.

 Default: 100

 How to specify: Specify this custom property in the administrative console using the path Security >

SSL Application Servers > New SSL Repertoire

 Internal variable name (for debugging purposes): The following SSL Configuration Repertoire

timeout variables are set internally when you define your SSL repertoires:

v com_ibm_HTTP_claim_ssl_sys_v3_timeout

v com_ibm_DAEMON_claim_ssl_sys_v3_timeout

Look for these internal variables in the was.env file or the JES job log.

Secure Sockets Layer configuration repertoires (deprecated)

System SSL for z/OS has been deprecated in WebSphere Application Server Version 6.1 and any security

scripts based on System SSL will need to be converted to use JSSE security for future releases. For more

information on JSSE security read Secure transports with JSSE and JCE programming interfaces.

V3 Timeout

Specifies the length of time, in seconds, that a browser can reuse a System SSL Version 3 session ID

without renegotiating encryption keys with the server. The repertoires that you define for a server

require the same V3 timeout value.

 Default: 100

 How to specify: Specify this custom property in the administrative console using the path Security >

SSL Application Servers > New SSL Repertoire

 Internal variable name (for debugging purposes): The following SSL Configuration Repertoire

timeout variables are set internally when you define your SSL repertoires:

v com_ibm_HTTP_claim_ssl_sys_v3_timeout

v com_ibm_DAEMON_claim_ssl_sys_v3_timeout

Look for these internal variables in the was.env file or the JES job log.

TCP transport channel timeout properties

Inactivity timeout property

Specifies the amount of time, in seconds, that the TCP transport channel waits for a read or write

request to complete on a socket.

Note: The value specified for this property might be overridden by the wait times established for

channels above this channel. For example, the wait time established for an HTTP transport

channel overrides the value specified for the is property for every operation except the initial

read on a new socket.

Default: 0 seconds

 How to specify: Specify this custom property in the administrative console using the path Servers >

Application Servers > server > Web Container Transport Chains > TCP Inbound Channel.

HTTP transport channel timeout properties

Read timeout property

Specifies the amount of time, in seconds, the HTTP transport channel waits for a read request to

Chapter 5. Diagnosing problems (using diagnosis tools) 179

complete on a socket after the first read request occurs. The read being waited for could be an HTTP

body (such as a POST) or part of the headers if they were not all read as part of the first read request

on the socket.

 Default: 60 seconds

 How to specify: Specify this custom property in the administrative console using the path Servers >

Application Servers > server > Web Container Transport Chains > HTTP Inbound Channel.

Write timeout property

Specifies the amount of time, in seconds, the HTTP transport channel waits for a write request to

complete on a socket. Specifies the amount of time, in seconds, that the HTTP transport channel waits

on a socket for each portion of response data to be transmitted. This timeout usually only occurs in

situations where the writes are lagging behind new requests. This can occur when a client has a low

data rate or the server’s NIC is saturated with I/O.

 Default: 60 seconds

 How to specify: Specify this custom property in the administrative console using the path Servers >

Application Servers > server > Web Container Transport Chains > HTTP Inbound Channel.

Persistent timeout property

Specifies the amount of time, in seconds, that the HTTP transport channel allows a socket to remain

idle between requests.

 Default: 30 seconds

 How to specify: Specify this custom property in the administrative console using the path Servers >

Application Servers > server > Web Container Transport Chains > HTTP Inbound Channel.

HTTP Transport timeout variables

ConnectionIOTimeOut

Sets a maximum amount of time, in seconds, that the J2EE server will wait for the complete HTTP

request to arrive. Set this variable for each of the HTTP transport definitions on the server. You will

need to set this variable for both SSL transport and non-SSL transport. The J2EE server starts the

timer after the connection has been established, and cancels the connection if a complete request

does not arrive within the specified maximum time limit. Specifying a value of zero disables the time

out function.

 Default: 10 seconds

 How to specify: Specify this custom property in the administrative console using the path Application

Servers > server > Web Container > HTTP Transport>host>Custom Properties.

Note: This panel is only available if an HTTP transport is defined for your Application Server

environment. If an HTTP transport is not defined for your environment, you can use the

wsadmin scripting tool to define one. However, it is recommended that you use an HTTP

transport channel instead of an HTTP transport whenever possible.

ConnectionResponseTimeout

Sets a maximum amount of time, in seconds, that the J2EE server will wait for an application

component to respond to an HTTP request. Set this variable for each of the HTTP transport definitions

on the server. You will need to set this variable for both SSL transport and non-SSL transport. If the

response is not received within the specified length of time, the servant (region) might fail with ABEND

EC3 and RSN=04130007. Setting this timer prevents client applications from waiting for a response

from an application component that might be deadlocked, looping, or encountering other processing

problems that cause the application component to hang.

 Default: 120 seconds

 How to specify: Specify this custom property in the administrative console using the path Application

Servers > server > Web Container > HTTP Transport > host> Custom Properties.

180 Troubleshooting and support

Internal variable name (for debugging purposes): If you are debugging a problem in SSL-enabled

transport, look for the internal variable name protocol_https_timeout_output in the was.env file or the

JES job log. If you are debugging a problem in non-SSL transport, look for the internal variable name

protocol_http_timeout_output in the was.env file or the JES job log.

ConnectionKeepAliveTimeout

Specifies the time, in seconds, that the J2EE server will wait for a subsequent request from an HTTP

client on a persistent connection. If another request is not received from the same client within this

time limit, the connection is closed.

 Default: 30 seconds

 How to specify: Specify this custom property in the administrative console using the path Application

Servers > server > Web Container > HTTP Transport > host> Custom Properties.

Getting IBM Support Assistant

IBM® Support Assistant helps you find and use various IBM Support resources, such as updated

documentation and problem determination tools.

IBM Support Assistant is available on the WebSphere Application Server Supplements CD and on the IBM

site at http://www-306.ibm.com/software/support/isa/. IBM Support Assistant offers the following

components to help you with software questions:

v A search component, which helps you access pertinent Support information in multiple locations.

v A support links component, which provides a convenient location to access various Web resources such

as IBM product sites, IBM support sites, and links to IBM news groups.

v A service component, which helps you submit an enhanced problem report that includes key system

data to IBM. The data collector of the service component supports problem-specific data collection.

v A pluggable tools framework, with which you can download and use problem determination and other

support tools.

1. Install the tool. Use the Launchpad from the WebSphere Application Server Supplements CD. If you

cannot use the Launchpad, you can still install IBM Support Assistant by running the appropriate

installation executable file that is located on the CD.

2. Start the tool. The IBM Support Assistant is a Web application that is displayed in the default

system-configured Web browser.

To learn more about how to use IBM Support Assistant, click the Help link in the IBM Support Assistant

window.

Use the Updater tab within IBM Support Assistant to check for updates and pluggable tools, such as

Memory Dump Diagnostic for Java™, that might apply to your product.

Diagnosing out-of-memory errors and Java heap memory leaks

Memory Dump Diagnostic for Java is an offline tool for diagnosing root causes behind memory leaks in the

Java heap. The tool analyzes common formats of memory dumps (heap dumps) from the Java virtual

machine (JVM) in which the WebSphere® Application Server runs. The analysis of memory dumps is

targeted toward identifying data structures within the Java heap that might be root causes of memory

leaks. The analysis also identifies a summarized set of object groups that contribute significantly to the

Java heap footprint of the application. The tool is capable of analyzing very large memory dumps from

production-environment application servers that exhibit out-of-memory issues.

This tool works with the memory dumps that are generated from WebSphere Application Server, not from

the Memory Dump Diagnostic for Java tool. The following dump formats are supported:

v SVC, and IBM Portable Heap Dump (PHD) for WebSphere Application Server installations on the z/OS®

platform.

Chapter 5. Diagnosing problems (using diagnosis tools) 181

http://www-306.ibm.com/software/support/isa/

Memory leaks can occur in Java applications when object references are unintentionally held onto after the

references are no longer needed. This problem prevents the Java garbage collection process from freeing

memory, even though the Java language has a built-in garbage collection mechanism that frees the

programmer from explicit object deallocation responsibilities. Memory leaks are hard to diagnose in large

complex Java applications, because of the large number of objects in the Java heap and because of the

complex relationships between these objects.

Two types of analysis mechanisms are available: single-dump analysis and the comparative analysis of

two dumps. The tool lists suspected data structures and data types and displays contents of the memory

dump in an interactive browser-based Web application. The tool shows footprint analysis results in a

graphical layout of significant sets of data types that have similar ownership structures. The tool shows the

contents of the memory dump in an interactive tree view for browsing and in two table views of objects

and data types, respectively. The tree view enables you to look for all incoming and outgoing references

for each object and to see the location of a container object within each data structure with a suspected

memory leak.

Analyzing memory dumps in an offline fashion provides a low-overhead mechanism for identifying root

causes behind memory leaks. This mechanism is particularly suitable for large applications that are

running in production or in stress-test environments, where memory leaks are often detected first.

1. Install IBM Support Assistant on a computer that is separate from the application server installation to

be analyzed. Use a non-production computer with at least 5 gigabytes (GB) of free disk space, at least

1.5 GB of RAM, and an Intel® processor that runs at 2 GHz or faster, preferably on the Linux®

platform.

2. Enable verbose garbage collection on the application server installation to be analyzed.

Verbose garbage collection information helps to rule out basic configuration issues and memory-leak

issues from fragmentation or native memory leaks. For more information about how to enable verbose

garbage collection on IBM platforms, see IBM developer kits: Diagnosis documentation.

3. Optional: Enable lightweight memory-leak detection in WebSphere Application Server.

Enabling lightweight memory-leak detection can help with early detection of abnormal memory usage

behavior and for automatically triggering heap dumps.

4. Enable the JVM heap dump feature for WebSphere Application Server.

Refer to the documentation that is supplied with the tool when you start from IBM Support Assistant.

5. When the heap dump is available, run the Memory Dump Diagnostic for Java tool.

a. Start IBM Support Assistant.

b. In IBM Support Assistant, select the Tools tab.

c. On the left side, click WebSphere 6.1.

d. On the right side, click Memory Dump Diagnostic for Java.

The possible root causes of memory leaks are identified.

Memory leaks in the Java heap produce java.lang.OutOfMemoryError exceptions in log files. However, not

all out-of-memory errors are caused by Java heap memory leaks. Out-of-memory errors can also be

caused by the following conditions:

v Java heap fragmentation. This fragmentation occurs when no contiguous chunk of free Java heap

space is available from which to allocate Java objects. Various causes for this problem exist, including

the presence of pinned or dosed objects or because of the repeated allocation of large objects.

v Memory leaks in native heap. This problem occurs when a native component, like DB2® connections, is

leaking.

For both of these conditions, the out-of-memory error can occur in spite of large amounts of free Java

heap space. Consequently, the Memory Dump Diagnostic for Java tool might not be effective in

determining root causes in these cases.

182 Troubleshooting and support

http://www-128.ibm.com/developerworks/java/jdk/diagnosis/

IBM service call preparation

When you report a problem to IBM service, you will need to provide as much information as possible to

help service personnel quickly resolve the problem.

The information you might need to send depends, in part, on the type of problem you have encountered,

and includes the following items:

v Job logs for affected address spaces; for example, the controller and any servant regions that the

controller terminated

v Job output for affected address spaces, particularly WebSphere Application Server for z/OS messages

that are written to the JESMSGLG data set

v The system log (SYSLOG), another source of WebSphere Application Server for z/OS messages

v WebSphere Application Server for z/OS error log

v The system logrec data set or log stream

v CTRACE external writer data sets

v SVC dumps, CEEDUMPs, or other types of dumps produced because of the problem.

v The affected server’s environment file, WAS.env, which is located in the HFS:

AppServer/config/cells/cellname/nodes/nodename/servers/servername/was.env

Additionally, IBM service might request you to:

v Provide a description of the circumstances or scenario under which the error occurs.

v Use the VERBEXIT CBDATA subcommand.

v Reset WebSphere variables that are for use only when directed by IBM service.

v Set WebSphere variable values for the location service daemon address space (same as those for

servers, with the prefix “ DAEMON_”).

IPCS VERBEXIT subcommand to display diagnostic data

The interactive problem control system (IPCS) is a tool that provides formatting and analysis support for

dumps and traces produced by WebSphere Application Server for z/OS and the applications that it hosts.

IBM service personnel might request that you use the IPCS subcommand VERBEXIT with theCBDATA verb

name to display dump information for WebSphere Application Server for z/OS. The CBDATA formatters

reside in the SBBOMIG data set, which must be in the link list or LPA.

Entering VERBEXIT CBDATA results in a display of dump contents that can include the following WebSphere

Application Server for z/OS structures:

v Global control blocks

v Address space control blocks

v Task control blocks (TCBs)

v ORB control block

Optional parameters control which of these structures are included in the dump display. If you enter

VERBEXIT CBDATA without any optional parameters, the dump display includes only global control block

contents.

To enter VERBEXIT CBDATA, you may use any of the methods for entering IPCS subcommands on z/OS, as

described in z/OS MVS IPCS User’s Guide, SA22-7596. Use the following syntax: VERBEXIT CBDATA [

’parameter [,parameter]...’]

Valid parameters are:

v GLOBAL(bgvt-address)

Formats and displays cell-level global vector data for the specified address space. This display includes

the following formatted control blocks:

– BGVT address - z/OS Global Vector table

– ASR Table and ASR Table entries - Active Server Resposity information

Chapter 5. Diagnosing problems (using diagnosis tools) 183

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/

v ASID(asid-number)

Formats and displays address space information for the daemon, the controller (region), or the servant

(region). This display includes the following formatted control blocks:

– BACB - z/OS address space control block

– BTRC,TBUFSET,TBUF - z/OS Component trace control blocks

– BOAM,BOAMX - z/OS BOA control blocks

– ACRW queue - Application Controller Work element control blocks

– BTCB queues - z/OS control information

Along with ASID(asid-number), IBM service personnel might direct you to specify one of the following

parameters, to include additional information in the dump display:

– BTCB(btcb_address)

Formats and displays the specified BTCB and ORB information for the WebSphere Application

Server for z/OS TCB.

– COMMDATA

Formats and displays session information.

– CONFIG

Formats and displays configuration information for the address space.

– OBJADDR(object_address) and OBJTYPE(object_type_ID)

Formats and displays information for the specified object of the specified type. IBM service personnel

will provide the values for you to supply for these parameters.

– ORBDATA

Formats and displays ORB information.

– TCB(tcb_address)

Formats and displays request summary information for the specified task.

– TRACEBACK

Formats and displays ORB information.
v SUMMARY

Summarizes information from some of the other CBDATA optional parameters. For example, for the

GLOBAL parameter, specifying SUMMARY produces a list of active servers.

Example: Output from the command ip VERBEXIT CBDATA ’ASID(xx) TCB(yyyyyyyy)’:

command ===> ip VERBX CBDATA ’ASID(xx) TCB(xxxxxxxx)’

********************************* TOP OF DATA *******************************

COMPON=WEBSPHERE Z/OS,COMPID=5655A9801,ISSUER=BBORMCDP,ERRNO=04006006

BBOR0012I Formatting Clssname

 Clssname: 2BE6947E

+0000 D9859496 A385E685 82C39695 A3818995 |RemoteWebContain|................|

+0010 859900 |er. |... |

BBOR0012I Formatting MethodNm

 MethodNm: 2BE69472

+0000 88A3A397 998598A4 85A2A300 00000000 |httprequest.....|.........?......|

BBOR0012I Formatting ComRtInf

 ComRtInf: 2BE69212

+0000 89974081 8484997E F94BF5F6 4BF4F24B |ip addr=9.56.42.|..@....~.K..K..K|

+0010 F1F6F840 979699A3 7EF1F0F8 F500 |168 port=1085. |...@....~..... |

BBOR0026I GMT Time Request was received into CTL region

 TODCLOCK: 00000000

 04/08/2003 12:58:02.926136

BBOR0026I GMT Time Request was Queued to WLM in CTL region

 TODCLOCK: 00000000

 04/08/2003 12:58:02.926263

BBOR0026I GMT Time Request will be Expired (approximated)

 TODCLOCK: 00000000

184 Troubleshooting and support

04/08/2003 13:08:01.663032

BBOR0026I GMT Time Request was received into SR region

 TODCLOCK: 00000000

 04/08/2003 12:58:02.927729

Trace controls for IBM service

Use these settings to view or modify your trace settings.

To view or set your trace settings, use the WebSphere administrative console:

v Click Environment > Manage WebSphere Variables.

v On the Configuration Tab check for any of these variables in the name field and observe the variable

setting in the value field.

v To change or set a variable, specify the variable in the name field and specify the setting in the value

field. You can also describe the setting in the description field on this tab.

Note:

v If you use any level of tracing, including ras_trace_defaultTracingLevel=1, ensure that you set

ras_trace_outputLocation to BUFFER.

ras_trace_defaultTracingLevel=1 will write exceptions to the trace log as well as to the ERROR

log.

v Set the ras_trace_BufferCount=4 and ras_trace_BufferSize=128.

This will get 512KB of storage for the trace buffers (the minimum allowed) and reduce memory

requirements.

v It is best to trace to CTRACE.

If you are tracing to sysprint with ras_trace_defaultTracingLevel=3, you may experience an

almost 100% throughput degradation. If you are tracing to CTRACE, however, you may only

experience a 15% degradation in throughput.

v Make sure you disable JRAS tracing.

To do this, look for the following lines in the trace.dat file pointed to by the JVM properties file:

com.ibm.ejs.*=all=disable

com.ibm.ws390.orb.*=all=disable

Ensure that both lines are set to =disable or delete the two lines altogether.

Note: If ras_trace_outputLocation is set, you may be tracing and not know it.
ras_trace_defaultTracingLevel= n

Specifies the default tracing level for WebSphere Application Server for z/OS.

 Valid values and their meanings are:

 0 No tracing

1 Exception tracing

2 Basic and exception tracing

3 Detailed tracing, including basic and exception tracing

Use this variable together with the ras_trace_basic and ras_trace_detail variables to set tracing

levels for WebSphere Application Server for z/OS subcomponents.Specifies the default tracing

level for WebSphere Application Server for z/OS.

 Default: 1

 Example:

 ras_trace_defaultTracingLevel=2

Chapter 5. Diagnosing problems (using diagnosis tools) 185

ras_trace_basic=n | (n,...)

Specifies tracing overrides for particular WebSphere Application Server for z/OS subcomponents.

 Subcomponents, specified by numbers, receive basic and exception traces. If IBM service directs

you to specify more than one subcomponent, use parentheses and separate the numbers with

commas. IBM service provides the subcomponent numbers and their meanings.

 Other parts of WebSphere Application Server for z/OS receive tracing as specified on the

ras_trace_defaultTracingLevel variable.

Note: Valid values for ras_trace_basic are:

v 0: RAS

v 1: Common Utilities

v 2: COS/Naming

v 3: COMM

v 4: ORB

v 5: IM

v 6: OTS

v 7: Shasta

v 8: Systems Management

v 9: OS/390 Wrappers

v A: Daemon

v B: IR

v C: Test

v D: COS/Query

v E: Security

v F: Externalization

v G: Adapter

v H: Lifecycle

v I: Identity

v J: JRAS (internal tracing--via direction from IBM support)

v K: Reference collections

v L: J2EE

 Default: (no default value)

 Example:

 ras_trace_basic=3

ras_trace_detail=n | (n,...)

Specifies tracing overrides for particular WebSphere Application Server for z/OS subcomponents.

 Subcomponents, specified by numbers, receive detailed traces. If IBM service directs you to

specify more than one subcomponent, use parentheses and separate the numbers with commas.

IBM service provides the subcomponent numbers and their meanings.

 Other parts of WebSphere Application Server for z/OS receive tracing as specified on the

ras_trace_defaultTracingLevel variable.

Note: Valid values for ras_trace_detail are:

v 0: RAS

v 1: Common Utilities

v 2: COS/Naming

v 3: COMM

v 4: ORB

v 5: IM

v 6: OTS

v 7: Shasta

v 8: Systems Management

186 Troubleshooting and support

v 9: OS/390 Wrappers

v A: Daemon

v B: IR

v C: Test

v D: COS/Query

v E: Security

v F: Externalization

v G: Adapter

v H: Lifecycle

v I: Identity

v J: JRAS (internal tracing--via direction from IBM support)

v K: Reference collections

v L: J2EE

 Default: (no default value)

 Examples:

 ras_trace_detail=3

 ras_trace_detail=(3,4)

ras_trace_specific=n | (n,...)

Specifies tracing overrides for specific WebSphere Application Server for z/OS trace points.

 Trace points are specified by 8-digit, hexadecimal numbers. If IBM service directs you to specify

more than one trace point, use parentheses and separate the numbers with commas. You also

can specify a WebSphere variable name by enclosing the name in single quotes. The value of the

WebSphere variable will be handled as if you had specified that value on ras_trace_specific.

 Default: (no default value)

 Examples:

 ras_trace_specific=03004020

 ras_trace_specific=(03004020,04005010)

 ras_trace_specific=’xyz’

[where xyz is an environment variable name]

 ras_trace_specific=(’xyz’,’abc’,03004021)

[where xyz and abc are environment variable names]

ras_trace_exclude_specific=n | (n,...)

Specifies WebSphere Application Server for z/OS trace points to exclude from tracing activity.

 Trace points are specified by 8-digit, hexadecimal numbers. If IBM service directs you to specify

more than one trace point, use parentheses and separate the numbers with commas. You also

can specify a WebSphere variable name by enclosing the name in single quotes. The value of the

WebSphere variable will be handled as if you had specified that value on

ras_trace_exclude_specific.

 Default: (no default value)

 Examples:

 ras_trace_exclude_specific=03004020

 ras_trace_exclude_specific=(03004020,04005010)

 ras_trace_exclude_specific=’xyz’

[where xyz is an environment variable name]

 ras_trace_exclude_specific=(’xyz’,’abc’,03004021)

Chapter 5. Diagnosing problems (using diagnosis tools) 187

[where xyz and abc are environment variable names]

Dump controls for IBM service

Use these controls to gather information that can be used by IBM service.

ras_minorcode_action= value

Determines the default behavior for gathering documentation about system exception minor codes.
CEEDUMP

Captures callback and offsets.

 Tip: It takes time for the system to take CEEDUMPs and this may cause transaction timeouts. For

instance, if the WebSphere variable transaction_defaultTimeout is set to 30 seconds, your

application transaction may time out because processing a CEEDUMP can take longer than 30

seconds. To prevent this from happening, either:

v Increase the transaction timeout value, or

v Code ras_minorcode_action=NODIAGNOSTICDATA and make sure the

ras_trace_minorCodeTraceBacks variable is not specified.
TRACEBACK

Captures Language Environment and z/OS UNIX traceback data.

SVCDUMP

Captures an MVS dump (but will not produce a dump in the client).

NODIAGNOSTICDATA

Specifies that no diagnostic data will be collected, even if CEEDUMP, TRACEBACK, or

SVCDUMP processing occurs because of another WebSphere variable setting. For example, if

you code both of the following variables, traceback processing occurs but none of the traceback

data is collected: ras_minorcode_action=NODIAGNOSTICDATA and

ras_trace_minorCodeTraceBacks=ALL

 Default: NODIAGNOSTICDATA

 Example:

 ras_minorcode_action=SVCDUMP

ras_trace_minorCodeTraceBacks= value

Enables traceback of system exception minor codes. Values are:

ALL|all

Enables traceback for all system exception minor codes.

 Enables traceback of system exception minor codes. Values are:

v minor_code Enables traceback for a specific minor code.

Example: Type

 1234

for minor code

 C9C21234

v (null value) The default. This setting will not cause gathering of a traceback.

Default: (null value)

Example:

 ras_trace_minorCodeTraceBacks=all

Troubleshooting help from IBM

If you are not able to resolve a WebSphere Application Server problem by following the steps described in

the Troubleshooting guide, by looking up error messages in the message reference, or looking for related

documentation on the online help, contact IBM Technical Support.

188 Troubleshooting and support

Purchase of WebSphere Application Server entitles you to one year of telephone support under the

Passport Advantage program. For details on the Passport Advantage program, visit http://www.lotus.com/
services/passport.nsf/WebDocs/Passport_Advantage_Home.

The number for Passport Advantage members to call for WebSphere Application Server support is

1-800-237-5511. Please have the following information available when you call:

v Your Contract or Passport Advantage number.

v Your WebSphere Application Server version and revision level, plus any installed fixes.

v Your operating system name and version.

v Your database type and version.

v Basic topology data: how many machines are running how many application servers, and so on.

v Any error or warning messages related to your problem.

IBM Support has documents that can save you time gathering information needed to resolve this problem.

Before opening a PMR, see the IBM Support page.

Tracing

WebSphere Application Server support engineers might ask you to enable tracing on a particular

component of the product to diagnose a difficult problem.

Consulting

For complex issues such as high availability and integration with legacy systems, education, and help in

getting started quickly with the WebSphere product family, consider using IBM consulting services. To learn

about these services, browse the Web site http://www-1.ibm.com/services/fullservice.html.

Diagnosing and fixing problems: Resources for learning

In addition to the information center, there are several Web-based resources for researching and resolving

problems related to the WebSphere Application Server.

The WebSphere Application Server support page

The official site for providing tools and sharing knowledge about WebSphere Application Server problems

is the WebSphere Application Server support page: http://www.ibm.com/software/webservers/appserv/
support.html. Among the features it provides are:

v A search field for searching the entire support site for documentation and fixes related to a specific

exception, error message, or other problem. Use this search function before contacting IBM Support

directly.

v Solve a problem links take you to specific problems and resolutions documented by WebSphere

Application Server technical support personnel.

v The Download links provide free WebSphere Application Server maintenance upgrades and problem

determination tools.

– fixes are software patches which address specific WebSphere Application Server defects. Selecting a

specific defect from the list in the Fixes by version page takes you to a description of what problem

the fix addresses.

– Fix packs are bundles of multiple fixes, tested together and released as a maintenance upgrade to

WebSphere Application Server. Refresh packs are fix packs that also contain new function. If you

select a fix pack from this page, you are taken to a page describing the target platform, WebSphere

Application Server prerequisite level, and other related information. Selecting the fix list link on that

page displays a list of the fixes which the fix pack includes. If you intend to install a fix which is part

of a fix pack, it is usually better to upgrade to the complete fix pack rather than to just install the

individual fix.

Chapter 5. Diagnosing problems (using diagnosis tools) 189

http://www.lotus.com/services/passport.nsf/WebDocs/Passport_Advantage_Home
http://www.lotus.com/services/passport.nsf/WebDocs/Passport_Advantage_Home
http://www-1.ibm.com/support/docview.wss?rs=180&context=SSEQTP&uid=swg21145599
http://www-1.ibm.com/services/fullservice.html
http://www.ibm.com/software/webservers/appserv/support.html
http://www.ibm.com/software/webservers/appserv/support.html

Accessing WebSphere Application Server support page resources

Some resources on the WebSphere Application Server support page are marked with a key icon. To

access these resources, you must supply a user ID and password, or register if do not already have an ID.

When registering, you are asked for your contract number, which is supplied as part of a WebSphere

Application Server purchase.

WebSphere Developer Domain

The Developer Domains are IBM-supported sites for enabling developers to learn about IBM software

products and how to use them. They contain resources such as articles, tutorials, and links to newsgroups

and user groups. You can reach the WebSphere Developer Domain at http://www7b.software.ibm.com/
wsdd/.

The IBM Support page

IBM Support has documents that can save you time gathering information needed to resolve this problem.

Before opening a PMR, see the Must gather documents for information to gather to send to IBM Support.

Debugging Service details

Use this page to view and modify the settings used by the Debugging Service.

To view this administrative console page, click Servers > Application Servers > server name >

Debugging Service.

The steps below describe how to enable a debug session on WebSphere Application Server. Debugging

can prove useful when your program behaves differently on the application server than on your local

system.

Enable service at server startup

Specifies whether the server will attempt to start the Debug service when the server starts.

JVM debug port

Specifies the port that the Java virtual machine will listen on for debug connections.

JVM debug arguments

Specifies the debugging argument string used to start the JVM in debug mode.

Debug class filters

Specifies an array of classes to ignore during debugging. When running in step-by-step mode, the

debugger will not stop in classes that match a filter entry.

Configuration problem settings

Use this page to identify and view problems that exist in the current configuration.

To view this administrative console page, click Troubleshooting > Configuration Problems in the

console navigation tree.

To view a configuration problem, click Configuration Validation in the console navigation tree, then select

the type of configuration you want to view.

190 Troubleshooting and support

http://www7b.software.ibm.com/wsdd/
http://www7b.software.ibm.com/wsdd/
http://www-1.ibm.com/support/search.wss?rs=180&q=mustgather

Configuration document validation

Use these fields to specify the level of validation to perform on configuration documents.

Maximum

Selecting Maximum: Validate all documents turns on validation for all documents, regardless of

whether or not they are extracted, and regardless of the relationships between the documents.

High Selecting High: Validate extracted, parent, and sibling documents turns on validation for

extracted documents and their parent documents, and turns on validation for the sibling

documents of the documents which have been extracted. For example, if High validation is

selected, and if the server.xml document is extracted, when performing validation, validation is

performed on the three documents: server.xml, node.xml, and cell.xml. and on the two sibling

documents variables.xml and resources.xml within the server1 directory.

Medium

Selecting Medium: Validate extracted and parent documents turns on validation for the

documents which have been extracted by the user interface, and also turns on validation of the

parent documents of the documents which have been extracted. For example, using the partial

directory structure from above, if Medium validation is selected, and if the server.xml document is

extracted, when performing validation, validation is performed on all three of the documents

server.xml, node.xml, and cell.xml.

Low Selecting Low: Validate extracted documents turns on validation for just those documents which

have been extracted by the user interface.

None Selecting None disables validation. No configuration documents are validated.

Enable Cross validation

Enables cross validation of configuration documents. Enabling cross validation enables comparison of

configuration documents for conflicting settings.

Configuration Problems

Displays current configuration problem error messages. Click a message for detailed information about the

problem.

Scope

Sorts the configuration problem list by the configuration file where each error occurs. Click a message for

detailed information about the problem.

Message

Displays the message returned from the validator.

Explanation

A brief explanation of the problem.

User action

Specifies the recommended action to correct the problem.

Target Object

Identifies the configuration object where the validation error occurred.

Severity

Indicates the severity of the configuration error. There are three possible values for severity.

Chapter 5. Diagnosing problems (using diagnosis tools) 191

Error This means that there is a problem with the configuration that might cause partial or complete

failure of server function. This is the most severe warning.

Warning

This means that there is a problem with the configuration that might cause a failure of server

function, or that might cause the server to function in an unexpected manner.

Information

A setting of the configuration that is unexpected and noteworthy, which requires customer

notification. Information is used when the configuration has a value which is probably okay, but

should be double checked by the administrator. This is the least crucial level of severity.

Local URI

Specifies the local URI of the configuration file where the error occurred.

Full URI

Specifies the full URI of the configuration file where the error occurred.

Validator classname

The classname of the validator reporting the problem.

Runtime events

Use the Runtime event pages of the administrative console to view the events published by application

server classes.

To view these administrative console pages, click Troubleshooting. Expand Runtime Messages and click

either Runtime Error, Runtime Warning, or Runtime Information.

Separate pages show error events, warning events, and informational events. Each page displays events

in the same format.

You can adjust the number of messages that appear on the page in the Preferences settings.

Fields on the page include:

Timestamp

When the event occurred.

Message originator

Internal application server class that published the event.

Message

Identifier and short description of the event.

Click a message to view event details.

Message details

Use the Message Details panel of the administrative console to view detailed information about errors,

warnings, and informational messages.

To view these administrative console pages, click Troubleshooting. Expand Runtime Messages and click

either Runtime Error, Runtime Warning, or Runtime Information. Click a message to display this panel.

Each message has the following general property fields:

192 Troubleshooting and support

Message

The message ID and text.

Message type

Error, Warning, or Information.

Explanation

A description of the message.

User action

What you should do about the message.

Message originator

The name of the product class that originated the message.

Souce object type

The name of the component that originated the message.

Timestamp

The date and time that the message originated.

Thread ID

The thread identifier.

Node name

The name of the node of the application server that originated the message.

Server name

The name of the application server process that originated the message.

Diagnostic Provider ID

The Diagnostic Provider ID of the component that originated the message. Click on Configuration

Data, State Data, or Tests to run the corresponding diagnostic action against the originating

component. A Diagnostic Provider ID will not be supplied with all messages.

Showlog commands for Common Base Events

The showlog command converts the service log from binary format into plain text.

Purpose

These showlog commands to produce output in Common Base Event XML format.

v showlog -start startDateTime -format CBE-XML-1.0.1 logStreamName

where:

startDateTime

Specifies the start date and time, in yyyy-MM-ddTHH:mm:ss.SSSZ format. Milliseconds and time

zone are optional.

logStreamName

Is the name of the configured error log stream.

For examples of showlog scripts, see Showlog Script.

Working with Diagnostic Providers

Diagnostic Providers enable you to query the startup configuration, current configuration, and current state

of a diagnostic domain. In addition, Diagnostic Providers can also provide access to any self diagnostic

tests that are available from a diagnostic domain.

Chapter 5. Diagnosing problems (using diagnosis tools) 193

WebSphere Application Server provides a set of facilities to accomplish this. The Diagnostic Provider Utility

is a simple front end in the administration console that presents the available set of Diagnostic Providers

and enables you to work with them.

Learn about Diagnostic Providers

Diagnostic Providers

WebSphere Application Server components can be considered as being divisible into diagnostic domains.

A diagnostic domain refers to a set of classes within the component that share a set of diagnostics. Some

larger components might have multiple diagnostic domains. For example, the Connection Manager

logically consists of multiple data sources and connection factories that each have separate diagnostic

domains

wsadmin
Utility

Diagnostic
Provider

Utility

WebSphere Admin Console

WebSphere Managed Server

WebSphere Managed Server

JMX MBean Server

WAS Component

Diagnostic
Domain

WAS Component

Diagnostic
Domain

Diagnostic
Domain

Diagnostic
Domain

Diagnostic
Provider
MBean

Diagnostic
Provider
MBean

Diagnostic
Provider
MBean

Diagnostic
Provider
MBean

Diagnostic
Service
MBean

This image shows the relationships between the parts that make up the Diagnostic Provider (DP) utility.

Diagnostic Provider MBeans

A single diagnostic domain receives its diagnostic services from a Diagnostic Provider MBean. The

Diagnostic Provider MBean enables you to query the startup configuration, current configuration, and

current state of the diagnostic domain. In addition, Diagnostic Provider MBeans can also provide access to

any self diagnostic tests that are available from the diagnostic domain. Some characteristics of Diagnostic

Provider MBeans include:

v Diagnostic Provider MBeans are Java Management Extensions (JMX) MBeans

v Diagnostic Provider MBeans all implement a DiagnosticProvider interface which includes methods for

configuration dumps, state dumps, and self diagnostic tests

v Diagnostic Provider MBeans provide a way to expose information about running components so

administrators can more easily debug problems related to those components. As with other MBeans

running in WebSphere Application Server, they can be accessed from JMX client code, or through the

wsadmin tool.

Diagnostic Provider Infrastructure

194 Troubleshooting and support

Diagnostic Provider MBeans are efficient at delivering Java object representations of configuration, state,

and self test information. This is good for when programs interact. For human users to access the

information, WebSphere Application Server provides a set of facilities to extend the value of Diagnostic

Provider MBeans.

The Diagnostic Service MBean

provides methods to convert Diagnostic Provider MBean output into human readable formats. The

Diagnostic Service MBean also provides some methods to facilitate looking up the Diagnostic

Provider MBeans on the same server as the Diagnostic Service MBean. For administrators that

want to access diagnostic data from a command line, the wsadmin tool can be used directly with

the Diagnostic Service MBean to get formatted results

The Diagnostic Provider utility

a set of panels included in the WebSphere Application Server administration console through

which administrators can interact with Diagnostic Provider MBeans. The Diagnostic Provider utility

is a simple front end in the administration console that presents the available set of Diagnostic

Provider MBeans present on each managed server, and provides a means to execute and view

the results of configuration dumps, state dumps, and diagnostic self tests.

.

The purpose of Diagnostic Providers

Diagnostic Providers give you more information for quickly discovering and diagnosing system problems.

The following scenario contrasts the experience of a n administrator working with a component that does

not have a Diagnostic Provider to one that does.

When the administrator works with a component that is without a Diagnostic Provider, the events are as

follows:

1. A log entry indicates that a particular component is experiencing a problem.

2. The system administrator sees the log entry through the runtime messages panel.

3. The system administrator cannot tell what is wrong, so calls IBM support for assistance, with a

potentially ill-defined problem.

When the administrator works with a component with a Diagnostic Provider, and the Diagnostic Provider

ID is registered with the component’s logger, the situation changes as follows:

1. A log entry that contains a Diagnostic Provider ID (DPID) indicates that something has gone wrong in a

specific component.

2. The system administrator sees the log entry through the runtime messages panel.

3. The administrator clicks a button on the runtime message panel to execute a state dump or a

configuration dump, or to be taken to the list of component self tests.

4. From the self test, the administrator is warned that the component is configured in a way that could

lead to poor performance or failures.

Furthermore, when the administrator works with a component with a Diagnostic Provider, and the

Diagnostic Provider ID is not registered with the component’s logger, the situation might unfold like this:

1. A log entry which doesn’t contain a DPID indicates that something has gone wrong in a component.

2. The system administrator sees the log entry through the runtime messages panel.

3. The system administrator uses the administrative console to navigate through the available set of

Diagnostic Providers and selects one that sounds appropriate.

4. He runs a configuration dump, a state dump, or a self diagnostic test against the Diagnostic Provider

to collect information about the component.

5. From the state dump, the administrator is able to notice that the component state is not what would be

expected for its workload.

6. The administrator works with the test team to determine which of the flows is causing the state of the

component to diverge from what is expected (as evidenced by repeated execution of the state dump).

Chapter 5. Diagnosing problems (using diagnosis tools) 195

Diagnostic Provider IDs

A Diagnostic Provider ID (DPID) is the unique address of a Diagnostic Provider MBean. Components that

have associated Diagnostic Provider MBeans can include the DPID in their log entries. Diagnostic Provider

IDs are implemented in WebSphere Application Server as Java Management Extensions (JMX) MBean

ObjectNames, and can be used at JMX MBean servers to look up Diagnostic Provider MBeans.

By including the String representation of the DPID in each logged message, the message can be tracked

back to the Diagnostic Provider related to the component. A method is provided to associate Diagnostic

Provider IDs with Loggers (from the java.util.logging logging API).

Runtime
Messages

Utility

Diagnostic
Provider

Utility

WebSphere Admin Console

WebSphere Managed Server WebSphere Managed Server

JMX MBean Server
WAS Component

Diagnostic
Domain

Diagnostic
Provider
MBean
(DPID)

3DPID

2
DPID

4

DPID

5

1

DPID

RasLoggingService
MBean

Log Files

WAS
Logging

Subsystem

The diagram above shows how the use of DPIDs in log entries enables callbacks to the component that

originally created the log entry.

1. Shows the component logging with a DPID included in the log entry.

2. The administrator examines the log entry through the Runtime Messages Utility and notices that the

entry has a link to a Diagnostic Provider.

3. The administrator uses the link to gain access to the relevant MBean in the Diagnostic Provider Utility .

4. The Diagnostic Provider Utility contacts the Diagnostic Provider MBean to ask for more information.

5. The request for more information is sent back to the source of the original log entry.

6. The response from the Diagnostic Provider is provided in the administration console.

Diagnostic Provider configuration dumps, state dumps, and self tests

The Diagnostic Provider (DP) infrastructure allows for a software component or stack product in the

WebSphere Application Server space to expose key information about its configuration, current state, and

current ability to perform operations. The methods that expose this information might be driven as a result

of a message put out by the component (by a logger which automatically includes the Diagnostic Provider

ID in each message), or might be driven as a result of an overall system health-check when an

administrator or automated tool is monitoring the system.

Configuration dumps

A Configuration dump is an operation you can perform on a Diagnostic Provider to list the startup or

current values of the configuration attributes for the DP. The name for each data item in this dump should

reflect its disposition. That is, each item should be called startup-xxx or current-xxx to show whether this is

a startup or current value. The collection of attributes returned from this operation can be thought of as the

payload of the configuration dump. More information about payloads can be found in “Diagnostic Provider

method implementation” on page 202.

You can find several ways to filter the output of a configuration dump in “Diagnostic Provider registered

attributes and registered tests” on page 197.

196 Troubleshooting and support

State dumps

A State dump is similar to a configuration dump, but it differs in two key areas. First, a state dump displays

current information about the operation of a component. An example is a connection pool. A configuration

dump can show DataSource name, the minConnections (configured or current), the maxConnections, the

DataBase name, and so on. A state dump is more likely to show the current connections in use, the high

concurrent use count, the number of times the pool has been expanded, the average time between

requesting a connection and returning it, and so forth.

State dumps can be impacted by the values in the State Collection Specification. This is a dynamic

specification that controls additional data collection that the component can do at runtime. If additional data

is being collected, then a State dump might display more information. The same filters and payload

information that apply to Configuration dumps (see “Diagnostic Provider registered attributes and

registered tests”) apply to State dumps.

Self Diagnostic tests

Self diagnostic tests are non-invasive operations that a Diagnostic Provider exposes. Non-invasive means

that if they modify anything for the test, the conclusion of the test reverses the modification. These tests

give an administrator the option to test simple functions of a component to see if it is able to perform them.

The filters for a self diagnostic test apply to the test itself, not to the output of the test. A typical use of Self

Diagnostic tests could be for a pool manager of some sort to pull an object out of the pool and return it to

the pool to verify that this operation can still be performed, and with acceptable performance.

Diagnostic Provider registered attributes and registered tests

Each Diagnostic Provider (DP) provides a list of state dump attributes, configuration dump attributes, self

tests, and self test attributes. The tests are operations that the DP can perform. The attributes are pieces

of information that are available for collection from a Configuration dump, a State dump, or a specific Self

Diagnostic test.

Each attribute can be seen as a piece of information with a label on it. Each attribute is also considered to

be either registered or not registered. A registered attribute is one that should be available from one

release of WebSphere Application Server to the next. A nonregistered attribute might not be available in its

current form in future releases of the product (no commitment has been made).

When performing a Configuration dump, a State dump, or a Self Diagnostic test, an administrator or

automatic tooling can request only registered values, or all values, depending on the needs of the

administrator or tool. Note that the option of filtering results is only available through the Diagnostic

Provider’s Java Management Extension (JMX) MBean interface, which you can access programmatically

or through the wsadmin tool.

Diagnostic Provider registered attributes and registered tests detail: This article includes a

discussion of the DiagnosticProviderRegistration Extensible Markup Language (XML) file and how it is

used in conjunction with the method signatures to filter the results of calling the various methods.

The DiagnosticProviderRegistration XML file

This XML defines the configuration information, state information, and self diagnostic tests exposed by the

component. In the configuration and state information, the key working unit is referred to as the attribute.

Specification of an attribute is as follows:

<attribute>

 <id><Regular Expression representing the attribute name></id>

 <descriptionKey><MsgKey into a ResourceBundle for localization of the label></descriptionKey>

 <registered>true</registered>

 </attribute>

Chapter 5. Diagnosing problems (using diagnosis tools) 197

The parts are as follows:

ID: The attribute’s name. This name can be expressed with wildcard characters conforming to regular

expression syntax. The registered attribute ID is used in the following places:

v Within Diagnostic Provider configuration dump and state dump methods to determine which

attributes to return.

v In the administration console to match description keys to attributes returned from a request to

a Diagnostic Provider for a configuration dump, state dump, or self diagnostic operation.

As an example, if a configuration dump returns an attribute with ID cachedServlet-MyServlet-
servletPath to the administration console, the administration console could use the descriptionKey

corresponding to the attribute registered as <id>cachedServlet-.*-servletPath</id> when

selecting what description text to put next to this attribute’s name and return values.

descriptionKey:

This is a key into a resourceBundle for localization.

registered:

This is a boolean qualifying whether this attribute will be available from one release of the software

to the next. If registered is true, then this attribute should be available in the next release. If

registered is false, then there is no guarantee that this attribute will continue to exist. Automation

should use some caution when handling non-registered attributes.

Specification of a selfDiagnosticTest is as follows:

<test>

 <id><Regular Expression for the name of the test></id>

 <descriptionKey><MsgKey into a ResourceBundle for localization of the label></descriptionKey>

 <attribute><One or more attributes which will be output from this test></attribute>

</test>

The parts are as follows:

ID: Similar to the ID for the attribute, but in this case, describing the test to be performed instead of

the attribute to be returned.

descriptionKey:

This is a key into a resourceBundle for localization.

Method interfaces

public DiagnosticEvent [] configDump(String aAttributeId, boolean aRegisteredOnly);

public DiagnosticEvent [] stateDump(String aAttributeId, boolean aRegisteredOnly);

These methods invoke the configuration or state dump on the component, and specify a regular

expression filter for the attributes to return as well as filtering the output to include all matching attributes,

or only those attributes which are registered. This enables the administrator or automated software driving

the method to specify a subset of the overall fields (especially important if many attributes are exposed or

if the State Collection Specification increases the amount of data available). The following helper methods

are available to assist with filtering the output.

To take a list of Attributes that are available to return, and filter them:

 public static AttributeInfo [] queryMatchingDPInfoAttributes(String aAttributeId,

 AttributeInfo [] inAttrs, String [] namesToCheck, boolean aRegisteredOnly) {

To take a single Attribute that is available to return, and filter it:

 public static AttributeInfo queryMatchingDPInfoAttributes(String aAttributeId,

 AttributeInfo [] inAttrs, String nameToCheck, boolean aRegisteredOnly) {

To go through a populated set of Attribute Information and remove unneeded parts:

 public static void filterEventPayload(String aAttributeId, HashMap payLoad) {

198 Troubleshooting and support

For details on these messages, please review the API documentation for the DiagnosticProviderHelper

class. The basic concept is that, once the component knows what attributes are able to be returned, the

helper method will determine which of them should be returned based on the regular expression logic and

registration boolean.

The selfDiagnostic Method interface here is similar to that of Configdump and Statedump:

public DiagnosticEvent[] selfDiagnostic(String aTestId, boolean aRegisteredOnly)

The difference is that the first parameter is a regular expression filter for which test to run.

Diagnostic Provider names

In addition to the Diagnostic Provider ID (DPID), each component that implements the Diagnostic Provider

interface must have a Diagnostic Provider Name. While the DPID must be unique within the entire

WebSphere Application Server domain, the Diagnostic Provider Name need only be unique within the Java

Virtual Machine (JVM).

Unlike the Diagnostic Provider ID, which tends to be long and not human-friendly, the Diagnostic Provider

Name should be shorter and easier to read. In addition, by convention it should end in DP. The Diagnostic

Service MBean (see “The simpler interfaces provided by the Diagnostic Service MBean”) can drive

methods on a Diagnostic Provider using its name.

The simpler interfaces provided by the Diagnostic Service MBean

All services for a Diagnostic Provider (DP) are also available through a Java Management Extensions

(JMX) interface known as the Diagnostic Service interface. The Diagnostic Service interface enables

administrators to drive methods against DPs using the Diagnostic Provider Name or Diagnostic Provider

ID. When formatted output is requested of the Diagnostic Service, it is localized to the client Locale. This

makes the Diagnostic Service MBean ideal for clients using an interface where consuming complex Java

objects, such as those returned from the Diagnostic Provider MBeans, is not feasible. An example of such

an interface is the wsadmin tool.

The simpler interfaces provided by the Diagnostic Service MBean detail: The Diagnostic Service

interface provides four signatures for each of the key methods available on the Diagnostic Providers

(configDump, stateDump, and selfDiagnostic) objects. Because these method signatures look so similar,

this example shows it all through the configDump methods. The four Diagnostic Service methods that map

to configDump on a Diagnostic Provider are:

public DiagnosticEvent [] configDump(String aDPName, String aAttributeIdSpec, boolean aRegisteredOnly)

public DiagnosticEvent [] configDumpById(String aDPid, String aAttributeIdSpec, boolean aRegisteredOnly)

public String [] configDumpFormatted(String aDPName, String aAttributeIdSpec,

 boolean aRegisteredOnly, Locale aLocale)

public String [] configDumpFormattedById(String aDPid, String aAttributeIdSpec,

 boolean aRegisteredOnly, Locale aLocale) {

The first two return exactly what the Diagnostic Provider does. The second two methods act as a

pass-through to the actual Diagnostic Provider, but they take the array of Diagnostic Events that the

Diagnostic Provider returns, and convert it into a more easily consumable String array. In addition, these

methods handle localizing the output to the appropriate Locale. Important to note is that the same method

can be driven using the Diagnostic Provider ID, or the Diagnostic Provider Name.

Creating a Diagnostic Provider

To complete this task you must have programming knowledge of your system and the proper authorities to

perform the following steps.

The steps that follow outline a general process for creating Diagnostic Providers (DP).

Chapter 5. Diagnosing problems (using diagnosis tools) 199

1. Determine your diagnostic domain. Look for configuration MBeans that control a similar domain in the

same component. Extending an existing configuration MBean with a DP interface avoids proliferation of

new MBeans and has the benefit that mapping from a diagnostic MBean to a configuration MBean

requires no additional information.

2. Determine what configuration attributes you want to expose. Include information that is used to

configure your component from the configuration MBeans.

3. Determine what state attributes you want to expose. Anything you might want to know about the state

of your component for troubleshooting can go here.

4. Determine what self diagnostic tests you will expose.

5. Determine what test attributes you will return for each self diagnostic.

6. Create your DP registration Extensible Markup Language (XML) file.

7. Create your DP implementation.

a. To see an example, refer to “Implementing a Diagnostic Provider” on page 202 and keep in mind

that most things that a Diagnostic Provider should do are already done for you in the

DiagnosticProviderHelper class.

b. To ensure that you do not collect unwanted data, add hooks in your component code where you

need to collect state data using the DiagnosticConfig object.

c. Add hooks in your component code where you need to store or be able to access configuration

data.

8. Add code to register your DP implementation. Typically, the best place to do this is where your

component is initialized.

9. Add Diagnostic Provider IDs (DPID) to your logged messages. Registering a DPID with a logger

makes that information available in any messages logged with this logger. This enables fast paths in

the DP utility to function on this particular Diagnostic Provider.

a. Register your DPID with your loggers (for any of your loggers that you only want to associate a

single DPID with).

b. When you use multiple DPIDs with the same Logger, you can (instead of registering a single DPID

with a Logger) add DPIDs to individual logging calls in the parm[0] position. Do not put {0} in the

corresponding localized messages. It is bad practice to print the DPID in your messages as this

would be inconsistent with messages from loggers with statically assigned DPIDs.

Conventions for Diagnostic Provider Extensible Markup Language

Some conventions to follow for Diagnostic Provider (DP) Extensible Markup Language (XML) declarations.

These guidelines are to help keep your use of Diagnostic Providers (DP) consistent.

v Include the Document type definition (DTD) for your Diagnostic Provider at the top of every DP

declaration Extensible Markup Language (XML) file.

v Start all names and name segments with lower case. Use camel case for attribute names. That is,

capitalize every initial letter in the name, except the first. For example, traceCollectionSpec.

v Indicate hierarchy with dashes. Dashes work better than dots because attribute names are regular

expressions. For example, traceService-traceCollectionSpec.

v Indicate string dynamic parts to attribute names using an asterisk (*). For example,

vhosts-.*-webgroups-.*-webapps-.*-listeners-filterInvocationListeners

which would match vhosts-someHost-webgroups-someGroup-webapps-someApp-listeners-
filterInvocationListeners

v Indicate numeric dynamic parts to attribute names using [0-9]*. For example,

vhosts-index-[0-9]*

which would match webcontainer-vhosts-index-123

200 Troubleshooting and support

v If you have a general purpose self diagnostic test that can be run without significant performance cost,

name it general.

Some tips for configDump implementation

v configDump should contain information used to define the component’s environment. Some examples

are:

– configuration data set by Java Management Extensions (JMX)

– configuration from system properties, xml files, and property files

– configuration information hard-wired and unchanging in code (such as, if a resource adapter

implements interface X, or has some static final field Y, then those could indicate aspects of

configuration and be included in the configDump).

v configDump should not contain dynamically registered attributes, such as:

– a list of registered loggers (this belongs in stateDump)

– a list of servlets in an application (this belongs in stateDump).

v configDump should be separated into 2 sections -- startup and current.

– All configDump attributes must start with either startup- or current-.

– The startup section details the component’s environment at startup time. Startup configDump

attributes start with startup- .

– The current section details the component’s environment at the moment the configDump is

requested. Current configDump attributes start with current-.

Best practices for configDump

v Group related attributes using an attribute hierarchy (such as, for two attributes about the traceLog:

startup-traceLog-rolloverSize=20, startup-traceLog-maxNumberOfBackupFiles=1)

v For information in the current attribute list that refers to the same thing as a startup attribute, the names

of both current and startup attributes should match.

v If an attribute has no use after startup, only show it in the startup section (for example, a configuration

attribute that contains a file name from which startup data is read).

Tips for choosing a Diagnostic Provider name

To ensure consistency when choosing Diagnostic Provider names to use with your components, you

should consider the guidelines that follow.

Diagnostic Provider name guidelines:

v Names must be unique within a Java Virtual Machine (JVM). One Diagnostic Provider name goes

uniquely with one Diagnostic Provider ID within a server.

v If necessary, names can contain a dynamic element to help with uniqueness. Of course, the dynamic

element should have meaning to the administrator.

v Although not a hard limit, the static part of names should be 16 characters or less.

v The static part of names must follow the class name convention. Start with a capital letter, no spaces,

and capitalize each word in the name.

v The static part of names must end with DP.

v Valid names contain a static part only, or a static part followed by a dash (-), followed by a dynamic

part. Some valid examples:

– ConnMgrDP-instance_specific_stuff

– WebContainerDP

– AdvisorDP

– NodeAgentDP

Chapter 5. Diagnosing problems (using diagnosis tools) 201

Implementing a Diagnostic Provider

This task presumes that you have a programming knowledge of the creation of MBeans. For more

information about the interaction of MBeans with WebSphere Application Server, refer to topic, Creating

and registering standard, dynamic, and open custom MBeans in the Administering applications and their

environment PDF book.

The steps that follow outline a general process for implementing a Diagnostic Provider (DP).

1. Modify the MBean descriptor Extensible Markup Language (XML). To implement a Diagnostic Provider,

you must have an MBean, and the MBean should include this statement in its descriptor XML as a

direct child of the MBean element:

<parentType type="DiagnosticProvider"/>

This defines the operations, attributes, and aggregators necessary for an MBean to be a Diagnostic

Provider. If you do not need to have this DP exist in z/OS Controllers, then this XML inclusion handles

all z/OS specifics for your MBean.

2. Modify the MBean Implementation. Your MBean should already have a class which instantiates it and

registers it with the Java Management Extensions (JMX) server.

The first difference here is that you must define a property in the Properties class that is passed to the

registration (and becomes part of the ObjectName). The property is diagnosticProvider=true and it

can be added with a line of code such as:

 MyProps.setProperty(DiagnosticProvider.DIAGNOSTIC_PROVIDER_KEY, DiagnosticProvider.DIAGNOSTIC_PROVIDER_VALUE) ;

The second difference is that this class should register this Diagnostic Provider with the Diagnostic

Service. A helper method is available to do this:

 DiagnosticProviderHelper.registerMBeanWithDiagnosticService(DiagnosticProviderPName, DiagnosticProviderId) ;

Obviously this must be done after the registration when the ObjectName can be retrieved into the

DiagnosticProviderId string.

3. Implement the Diagnostic Provider methods.

Diagnostic Provider method implementation: To create a Diagnostic Provider (DP), you must have an

MBean, and your MBean should include the following methods in its deployment Extensible Markup

Language (XML) file. This can be accomplished by adding the parentType directive to your existing XML

file (see “Implementing a Diagnostic Provider”), or by including the operations directly into your deployment

XML file. The definitions needed are included in “Diagnostic Provider registered attributes and registered

tests” on page 197. This defines the operations, attributes, and aggregators necessary for an MBean to be

a Diagnostic Provider. The next step is for the MBean to actually implement these methods. The methods

to implement include:

v “getRegisteredDiagnostics”

v “getDiagnosticProviderName” on page 203

v “getDiagnosticProviderID” on page 203

v “configDump” on page 203

v “stateDump” on page 203

v “selfDiagnostic” on page 204

v “localize” on page 204

getRegisteredDiagnostics

This method exposes the registration information for this Diagnostic Provider. It is commonly used by the

DP Utility in the administration console to gather information about Diagnostic Providers that are to be

displayed in the console. This method returns a DiagnosticProviderInfo object that is usually attained by

passing the appropriate XML to a DiagnosticProviderHelper helper class. Here is an example:

202 Troubleshooting and support

public DiagnosticProviderInfo getRegisteredDiagnostics() {

 InputStream regIS= Thread.currentThread().getContextClassLoader().getResourceAsStream(

 "com/ibm/ws/xxx/SampleDP2DiagnosticProvider.xml");

 dpInfo = DiagnosticProviderHelper.loadRegistry(regIS, sDPName) ;

 if (dpInfo == null) {

 sSampleDP2MBeanLogger.logp(Level.WARNING, sThisClass, "getRegisteredDiagnostics",

 "RasDiag.DPInfo.NoGotz") ;

 }

 return dpInfo ;

 }

Notice that the XML is packaged and available in the classpath of the current classloader. The

“Registration XML” on page 205 contains crucial information that the Diagnostic Provider uses to “Populate

the payload” on page 205 and “localize” on page 204 results.

getDiagnosticProviderName

This is usually a pretty simple return of a constant as the following example shows

public String getDiagnosticProviderName() {

 return sDPName;

 }

getDiagnosticProviderID

This is usually a pretty simple return of a Java Management Extensions (JMX) object ID that MBeans can

pull out of the base class method. For example:

public String getDiagnosticProviderId() {

 return getObjectName().toString() ;

 }

configDump

The configDump method enables the Diagnostic Provider to expose the configuration data that was in

place when this Diagnostic Provider started (or the current values of them). The DiagnosticEvent objects

that this method returns include a “Payload” on page 205 that contains the core data. The following is an

excerpt from a configDump method:

public DiagnosticEvent [] configDump(String aAttributeIdSpec, boolean aRegisteredOnly) {

 HashMap cdHash = new HashMap(64) ;

 //

“Populate the payload” on page 205 DiagnosticEvent [] diagnosticEvent = new DiagnosticEvent[1] ;

diagnosticEvent[0] = DiagnosticEventFactory.createConfigDump(getObjectName().toString(),

″ThisClassName″, ″configDump″, cdHash) ; return diagnosticEvent ; }

This returns an array of DiagnosticEvent objects. Normally, configDump and stateDump return only one

object. However, the method accepts an array because on z/OS systems a server can have multiple

servants, and aggregation of the output from the servants is stored in the array.

stateDump

The stateDump method enables the Diagnostic Provider to expose the current state data, or data about

the current operating conditions of the Diagnostic Provider. The data made available can be anything likely

to assist a customer, an IBM support person, or automated tooling in analyzing the health of the

component and problem determination if there is an issue. The amount of data available is impacted by

the State Collection Specification in effect at the time. If the current State Collection Specification involves

the collection of additional data by the Diagnostic Provider, then this additional data can be exposed in the

Chapter 5. Diagnosing problems (using diagnosis tools) 203

stateDump. The DiagnosticEvent objects that this method returns include a “Payload” on page 205 that

contains the core data. The following is an excerpt from a stateDump method:

public DiagnosticEvent [] stateDump(String aAttributeIdSpec, boolean aRegisteredOnly) {

 HashMap sdHash = new HashMap(64) ;

 //

“Populate the payload” on page 205 DiagnosticEvent [] diagnosticEvent = new DiagnosticEvent[1] ;

diagnosticEvent[0] = DiagnosticEventFactory.createStateDump(getObjectName().toString(),

″ThisClassName″, ″stateDump″, sdHash) ; return diagnosticEvent ; }

This returns an array of DiagnosticEvent objects. Normally, configDump and stateDump return only one

object. However, the method accepts an array because on z/OS systems a server can have multiple

servants, and aggregation of the output from the servants is stored in the array.

selfDiagnostic

The selfDiagnostic method enables the Diagnostic Provider to perform certain predefined activities to test

key functionalities of your system. These tests should not have a lasting effect on the system. For

example, if the test is to create a TCP/IP connection to a remote host, the test should also break that

connection before returning its results so that the state of the component is unchanged by the test. The

information returned by the test is determined by the attributes included in the test section of the XML file.

The following is an excerpt from a selfDiagnostic method:

public DiagnosticEvent [] selfDiagnostic(String aAttributeIdSpec, boolean aRegisteredOnly) {

 TestInfo [] testInfo = dpInfo.selfDiagnosticInfo.testInfo ; // Retrieve the test registry information

 Pattern testChecker = Pattern.compile(aAttributeIdSpec) ; // Compile test regexp parm for faster checking

 ArrayList deList = new ArrayList(8) ; // Allocate expandable list of DiagnosticEvents

 for (int i = 0; i < testInfo.length; i++) {

 if (testChecker.matcher(testInfo[i].id).matches()) {

 HashMap deHash = new HashMap(32) ;

 //

“Populate the payload” on page 205

deList.add(DiagnosticEventFactory.createDiagnosticEvent(getObjectName().toString(),

DiagnosticEvent.EVENT_TYPE_SELF_DIAGNOSTIC, DiagnosticEvent.LEVEL_INFO, ″ThisClassName″,

″selfDiagnostic″, dpInfo.resourceBundleName, ″RasDiag.SDP2.createDE3″, // MsgKey for localization //

Parms to incorporate in msg new Object [] { ″OneParm″, ″TwoParm″, ″RedParm″, ″BlueParm″}, deHash)) ;

} } DiagnosticEvent [] diagnosticEvent = new DiagnosticEvent[deList.size()] ; diagnosticEvent =

(DiagnosticEvent [])deList.toArray(diagnosticEvent) ; return diagnosticEvent ; }

This returns an array of DiagnosticEvent objects. In this example, one DiagnosticEvent was created

from each test that matched the parameter regular expression. The Diagnostic Provider is not required to

produce only one per test. The generation of “Payload” on page 205 is similar to that of configDump and

stateDump. Aggregation on multiple z/OS servants for an individual server concatenates the arrays from

each servant.

localize

The DiagnosticEvents that methods return contain payload HashMaps that contain MessageKeys and

ResourceBundles. The final consumer of these events is often not on the server, and thus may not have

the appropriate classpath to resolve this. For this purpose, a callback to the Diagnostic Provider to localize

the variables is done. A helper method, however, makes it a simple method to write, as this example

demonstrates:

public String [] localize(String [] aKeys, Locale aLocale) {

 return DiagnosticProviderHelper.localize(dpInfo.resourceBundleName, aKeys, aLocale) ;

 }

204 Troubleshooting and support

Note that the dpInfo (DiagnosticProviderInfo) object is needed as this object includes a reference to the

ResourceBundle.

Payload

A recurring theme in these methods is the ability to include a payload in return objects. This is a set of

name=value pairs that include the information being exposed by the method. Diagnostic Events returned

from a configDump, stateDump, or selfDiagnostic test are relatively complex Java objects. The majority of

the information that is returned is contained in the DiagnosticData portion of the DiagnosticEvent object.

Each attribute returned by the Diagnostic Provider is stored in an entry in a HashMap. There can be

cascading HashMaps within a single DiagnosticEvent object (if breaking the data down into subGroups

makes sense). Each HashMap entry contains either a reference to a child HashMap, or a

DiagnosticTypedValue (which contains the value, the type of data, and a MsgKey for localization of the

label or /name). The values to be returned should be filtered with:

v The type of method (that is, configDump, stateDump, or selfDiagnostic)

v The AttributeIdSpec sent in to filter the values

v The current State Collection Specification (which can impact the amount of data available).

Populate the payload

The API documentation for DiagnosticProviderHelper.queryMatchingDPInfoAttributes explains how to do

the filtering before retrieving the data. In some cases, it is easier and helps performance for a Diagnostic

Provider to retrieve all data into the Payload and then filter the HashMap after the fact. The

post-population filtering can be done with the method DiagnosticProviderHelper.filterEventPayload. For

information on use of the JavaBean type approach, see the API documentation for the

AttributeBeanInfo.populateMap method.

Registration XML

Registration XML enables much of the information needed by the Diagnostic Provider to be externalized. It

also provides a means of commonizing localization and consumption of the tests (thus aiding automation).

An excerpt of this XML from a sample Diagnostic Provider follows:

<!DOCTYPE diagnosticProvider PUBLIC "RasDiag" "/DiagnosticProvider.dtd">

<diagnosticProvider>

 <resourceBundleName> com.ibm.ws.rasdiag.resources.RasDiagSample</resourceBundleName>

 <state>

 <attribute>

 <id>Leg-Foot</id>

 <descriptionKey>SampleDiagnostic.LegFoot.descriptionKey</descriptionKey>

 <registered>true</registered>

 </attribute>

 <attribute>

 <id>Leg-Ankle</id>

 <descriptionKey>SampleDiagnostic.LegAnkle.descriptionKey</descriptionKey>

 <registered>true</registered>

 </attribute>

 </state>

 <config>

 <attribute>

 <id>Arm-Hand-Size</id>

 <descriptionKey>SampleDiagnostic.HandSize.descriptionKey</descriptionKey>

 <registered>true</registered>

 </attribute>

 <attribute>

 <id>Leg-Foot-Size</id>

 <descriptionKey>SampleDiagnostic.FootSize.descriptionKey</descriptionKey>

 <registered>true</registered>

 </attribute>

 </config>

Chapter 5. Diagnosing problems (using diagnosis tools) 205

<selfDiagnostic>

 <test>

 <id>Kick</id>

 <descriptionKey>SampleDiagnostic.Kick.descriptionKey</descriptionKey>

 <attribute>

 <id>Kick-Pain</id>

 <descriptionKey>SampleDiagnostic.KickPain.descriptionKey</descriptionKey>

 </attribute>

 <attribute>

 <id>Kick-Length</id>

 <descriptionKey>SampleDiagnostic.KickLength.descriptionKey</descriptionKey>

 </attribute>

 </test>

 <test>

 <id>Throw</id>

 <descriptionKey>SampleDiagnostic.Throw.descriptionKey</descriptionKey>

 <attribute>

 <id>Throw-Pain</id>

 <descriptionKey>SampleDiagnostic.ThrowPain.descriptionKey</descriptionKey>

 <registered>true</registered>

 </attribute>

 <attribute>

 <id>Throw-Length</id>

 <descriptionKey>SampleDiagnostic.ThrowLength.descriptionKey</descriptionKey>

 <registered>true</registered>

 </attribute>

 </test>

 </selfDiagnostic>

</diagnosticProvider>

For understanding the storage of this information into a DiagnosticProviderInfo object, see the API

documentation for DiagnosticProviderInfo. For conceptual information about the purpose of the registration

XML, see “Diagnostic Provider registered attributes and registered tests” on page 197.

Diagnostic Provider XML example:

Here is an example of the Diagnostic Provider Extensible Markup Language (XML).

version="6.0"

platform="common"

aggregationHandlerClass="com.ibm.ws.management.component.DiagnosticProviderAggregator"

description="DiagnosticProvider portion of Mbean for inclusion into MBeans implementing this interface">

 <attribute

 description="DiagnosticProviderName (not dependent on runtime, but subset of ObjectName"

 getMethod="getDiagnosticProviderName" name="diagnosticProviderName"

 type="java.lang.String" proxyInvokeType="unicall" proxySetterInvokeType="multicall"/>

 <operation

 description="Get the DiagnosticProvider ID"

 impact="INFO" name="getDiagnosticProviderId" role="operation"

 targetObjectType="objectReference" type="java.lang.String" proxyInvokeType="unicall">

 <signature/>

 </operation>

 <operation

 description="Return the registry information based on type (config/state/selfDiag)."

 impact="INFO" name="getRegisteredDiagnostics" role="operation"

 targetObjectType="objectReference"

 type="com.ibm.wsspi.rasdiag.diagnosticProviderRegistration.DiagnosticProviderInfo"

 proxyInvokeType="unicall">

 <signature/>

 </operation>

 <operation

 description="Dump the configuration information associated with managed resource."

 impact="INFO" name="configDump" role="operation"

 targetObjectType="objectReference" type="[Lcom.ibm.wsspi.rasdiag.DiagnosticEvent;"

 proxyInvokeType="multicall">

 <signature>

206 Troubleshooting and support

<parameter description="Attribute ID to use"

 name="attributeId" type="java.lang.String"/>

 <parameter description="Report on just registered info, or all info"

 name="registeredOnly" type="boolean"/>

 </signature>

 </operation>

 <operation

 description="Dump state information for the managed resource."

 impact="INFO" name="stateDump" role="operation"

 targetObjectType="objectReference" type="[Lcom.ibm.wsspi.rasdiag.DiagnosticEvent;"

 proxyInvokeType="multicall">

 <signature>

 <parameter description="Attribute ID to use"

 name="attributeId" type="java.lang.String"/>

 <parameter description="Report on just registered info, or all info"

 name="registeredOnly" type="boolean"/>

 </signature>

 </operation>

 <operation

 description="Perform diagnostics on the managed resource driven by current diagnostic mode setting."

 impact="ACTION" name="selfDiagnostic" role="operation"

 targetObjectType="objectReference" type="[Lcom.ibm.wsspi.rasdiag.DiagnosticEvent;"

 proxyInvokeType="multicall">

 <signature>

 <parameter description="Test ID to use"

 name="testId" type="java.lang.String"/>

 <parameter description="Report on just registered info, or all info"

 name="registeredOnly" type="boolean"/>

 </signature>

 </operation>

 <operation

 description="localize messages for console display"

 impact="INFO" name="localize" role="operation"

 targetObjectType="objectReference" type="[Ljava.lang.String;"

 proxyInvokeType="unicall">

 <signature>

 <parameter description="Message Keys" name="msgKeys" type="[Ljava.lang.String;"/>

 <parameter description="Locale to use for output" name="locale" type="java.util.Locale"/>

 </signature>

 </operation>

Creating a Diagnostic Provider registration XML file

Programming knowledge of your system and the proper authorities to perform the following steps.

The steps that follow outline a general process for creating a Diagnostic Provider (DP) registration

Extensible Markup Language (XML) file. The registration XML is used to provide information about the

exposed configuration, state, and self diagnostic attributes and tests to the Diagnostic Provider utility. It is

also used to populate objects needed later in the process, to assist in filtering, and to assist in localization.

1. Start with the DP document type definition (DTD). If you are using the helper methods (see the step

called Create your DP implementation in “Creating a Diagnostic Provider” on page 199), you can use

this DOCTYPE line to pick up the common DTD:

<!DOCTYPE diagnosticProvider PUBLIC "RasDiag" "/DiagnosticProvider.dtd">

If you are extending an existing MBean with an existing XML configuration, you might need either to

add the DP XML to an existing DTD, or omit the DP XML entirely. If you omit the DP XML, you will not

be able to validate that your XML file is well formed.

2. Follow the conventions described in “Conventions for Diagnostic Provider Extensible Markup

Language” on page 200 to help keep your XML consistent with other components. You can find an

example of a small DP registration XML file in “Diagnostic Provider method implementation” on page

202.

Chapter 5. Diagnosing problems (using diagnosis tools) 207

Associating a Diagnostic Provider ID with a logger

Components whose diagnostics are managed through a Diagnostic Provider MBean should include the

Diagnostic Provider ID (DPID) in all logged messages. In some cases a single logger always logs with the

same DPID. In those cases, it is appropriate to statically associate the DPID with the logger. In other

cases, a logger might log on behalf of various diagnostic domains. For example, although every data

source has a separate Diagnostic Provider MBean, they all share the same logger. In those cases, the

DPID can be dynamically supplied on each logging call.

Static Assignment

The method below statically assigns a DPID to a logger.

Associate a DPID with a logger:

Logger logger = Logger.getLogger("com.ibm.ws.MyClass");

DiagnosticProviderHelper.addDiagnosticProviderIDtoLogger(logger, dpid);

Dynamic Assignment

DPIDs can be associated with a single log request by including them as the first message parameter,

prefixed with DPID:. To associate a DPID with a single log request using a logger:

Object[] parms = new Object[] { "DPID:" + dpid };

logger.logp(classname, methodname, "MSG0001", parms);

Note that in the dynamic case, the DPID does not need to actually show up in the formatted message.

The two examples below illustrate:

(in resource bundle)

// by not including {0} first parm is not printed in the message.

MSG0001=This message does not include the DPID.

// note - it is not recommended to print the DPID in your message.

MSG0002=This message includes the DPID...it’s value is {0}.

It is recommended that messages not include the DPID in the formatted message. As shown above, this is

done by not including {0} in the message value in the resource bundle.

Using Diagnostic Providers from wsadmin scripts

In addition to enabling Diagnostic Providers (DP) from the administration console, you can also use them

through scripts from the Wsadmin tool. The procedure for doing so follows. For more detailed information

about the Wsadmin tool see the scripting tool chapter in the Administering applications and their

environment PDF book

1. List the MBeans that implement the Diagnostic Provider (DP) interface. Enter

$AdminControl queryNames diagnosticProvider=true,*

And you will see an output that displays all of the Diagnostic Providers in a format like this:

"WebSphere:name=Default Datasource,process=server1,platform=dynamicproxy,node=

 camelhair,JDBCProvider=Derby JDBC Provider,

diagnosticProvider=true,j2eeType=JDBCDataSource,J2EEServer=server1,Server=server1,

 version=6.1.0.0,type=DataSource,

mbeanIdentifier=cells/camelhairCell/nodes/camelhair/servers/server1/resources.xml#

 DataSource_1131113688564,

JDBCResource=Derby JDBC Provider,cell=camelhairCell"

"WebSphere:name=DefaultEJBTimerDataSource,process=server1,platform=dynamicproxy,

 node=camelhair,

JDBCProvider=Derby JDBC Provider (XA),diagnosticProvider=true,j2eeType=

 JDBCDataSource,J2EEServer=server1,Server=server1,version=6.1.0.0,type=DataSource,

 mbeanIdentifier=cells/camelhairCell/nodes/camelhair/servers/server1/

 resources.xml#DataSource_1000001,

208 Troubleshooting and support

JDBCResource=Derby JDBC Provider (XA),cell=camelhairCell"

WebSphere:name=WebcontainerDiagnosticProvider,process=server1,platform=

 dynamicproxy,node=camelhair,diagnosticProvider=true,

version=6.1.0.0,type=WebcontainerEventProvider,mbeanIdentifier=null,

 cell=camelhairCell

2. Capture the ObjectName of your Diagnostic Provider in a variable. This enables you to reference your

Diagnostic Provider more easily, especially in a script. For example, instead of typing all of those lines,

if you want to work with the WebContainer Diagnostic Provider, for example, you can do the following:

v set DP [lindex [$AdminControl queryNames

name=WebcontainerDiagnosticProvider,diagnosticProvider=true,*] 0]

This ObjectName stored in the DP variable can be used on the methods, or you can use the

Diagnostic Provider name as text or a variable.

v Now that you have the ObjectName in a variable, you can get the Diagnostic Provider name in a

variable with the command:

set DPNm [$AdminControl invoke $DS getDiagnosticProviderNameById $DP]

This provides the result:

WebContainerDP

Now the DiagnosticProvider (WebContainer) is addressable by its objectname in variable DP, or by

its DiagnosticProvider name in variable DPNm. If you would prefer, you can hard-code the DPName

WebContainerDP as it is short enough.

3. Save the ObjectName of the DiagnosticService MBean to a variable. For wsadmin, WebSphere

Application Server provides this MBean so that the output of the Diagnostic Provider is more easily

consumable. Enter

set DS [lindex [$AdminControl queryNames name=DiagnosticService,*] 0]

4. Run a configDump. You can run a configDump and capture all attributes with the command:

$AdminControl invoke $DS configDumpFormattedById [list $DP .* true null]

This lists the values that the Diagnostic Provider used at start up (and possible current values). An

excerpt of the configDump output follows.

 Item Concatenated Name Value

customProperties = Null

defaultVirtualHostName = default_host

jvmProps = Null

localeProps = Null

servletCachingEnabled = false

aliases = *:9080;*:80;*:9443;

5. Filter the output of your configDump. You can use configDumpFormatted (leaving off the ById) and

switch $DP for $DPNm or the string WebContainerDP. This example uses $DPNm on this slightly

modified version whereby it only picks up attributes dealing with automation:

$AdminControl invoke $DS configDumpFormatted [list $DPNm .*auto.* true null]

This results in just those attributes that contain auto in them. Full (but strict) regular expression syntax

is allowed:

 Item Concatenated Name Value

autoLoadFiltersEnabled = false

autoRequestEncoding = false

autoResponseEncoding = false

autoLoadFiltersEnabled = false

autoRequestEncoding = false

Chapter 5. Diagnosing problems (using diagnosis tools) 209

Item Concatenated Name Value

autoResponseEncoding = false

The syntax is the same for stateDumps and selfDiagnostics

Viewing the run time configuration of a component using Diagnostic

Providers

You must have sufficient authority to run the action.

You can use the panel associated with this task to navigate to the configuration data that can be used to

check the health of a server runtime component. Runtime components that have associated diagnostic

configuration data can include their Diagnostic Provider ID (DPID) in their log entries. If you know the

DPID, you can enter it directly in the quick link text box. Otherwise, navigate to the desired process by

using the tree view displayed at the bottom of the panel, as shown in the steps below.

1. Start the administration console.

2. From the task bar on the left side of the console, select Troubleshooting.

3. From the task bar on the left side of the console, select Diagnostic Provider.

4. From the task bar on the left side of the console, select Configuration data.

5. Either directly enter a Diagnostic Provider ID in the Quick link using diagnostic provider ID text box,

or select a process (cluster / node / server) from the available processes displayed at the bottom of the

panel under the section title Server selection topology.

6. From the list of available diagnostic providers for the selected process, choose the desired diagnostic

provider name. The configuration data for that diagnostic provider appears.

Configuration data quick link or server selection

Use this panel to select a Diagnostic Provider server for viewing run time configuration data.

To view this administrative console page, click Troubleshooting > Diagnostic Provider > Configuration

data

Quick link using Diagnostic Provider ID: From the Configuration data panel, enter a Diagnostic

Provider ID to go directly to the page for the configuration data for the Diagnostic Provider for the specific

server.

Server selection topology:

Use these folders to select server or cluster for viewing the configuration data for a Diagnostic Provider.

 If you choose a cluster, whatever action you choose is performed on each server in the cluster.

The enterprise applications section shows you the servers that a particular application is running on. If you

select a server from this list, the action is performed on that server, not specifically that application.

Diagnostic Providers (selection)

Use this panel to select a Diagnostic Provider from the selected server or cluster.

The list will contain only Diagnostic Providers registered on the selected server or cluster. Not all

Diagnostic Providers register with every server in the cell.

You can follow several navigation paths to view this administrative console page. For example, click

Troubleshooting > Diagnostic Provider > Tests > select a server or cluster name.

Name:

210 Troubleshooting and support

Choose a diagnostic provider from this list.

 The path you chose to get to this panel determines which panel displays next.

v If you chose Troubleshooting > Diagnostic Provider > Tests, you see a panel that lists all of the

available tests to run on the Diagnostic Provider.

v If you chose Troubleshooting > Diagnostic Provider > State data, you see a panel that shows the

collected state data for the Diagnostic Provider.

v If you chose Troubleshooting > Diagnostic Provider > Configuration data, you see a panel that shows

the configuration data for the Diagnostic Provider.

Configuration data

Use this panel to view the current configuration data for a Diagnostic Provider on a selected server or

cluster. Not necessarily every piece of configuration data appears, but data that can be helpful in problem

determination is shown.

You can follow several navigation paths to view this administrative console page. For example, click

Troubleshooting > Diagnostic Provider > Configuration data > select a server or cluster name > select

a Diagnostic Provider from the list.

The attributes show information that has been configured for the Diagnostic Provider. You can use the

Save button to save the information to a file.

Note: Results from a configuration dump contain names that start with either startup or current. The

startup entries represent data that was read in by the component at server startup time. The current

entries contain data that is current – meaning the value of the attributes in use by the runtime at the

time the configuration dump was requested.

Node:

This is the node name from where the configuration data was collected.

Server:

This is the server name from where the configuration data was collected.

Name:

This is the name of the attribute for the configuration data.

Value:

This is the value of the configuration data.

Description:

This is a description of the configuration data.

Viewing the run time state data or configuring the state data collection

specifications for a Diagnostic Provider

You must have sufficient authority to execute the action.

You can use the panel associated with this task in two ways. You can navigate to the state data that can

be used to check the health of a server runtime component, or you can configure the state data to be

collected for a server. In the server selection topology section, use the view state data radio button to go

to the list of registered diagnostic providers. Use the change state data collection specification radio button

to modify the state collection specification for the runtime components for a server. Runtime components

Chapter 5. Diagnosing problems (using diagnosis tools) 211

that have associated diagnostic state data can include their Diagnostic Provider ID (DPID) in their log

entries. If you know the DPID, you can enter it directly in the quick link text box.

1. Start the administration console.

2. Select Troubleshooting.

3. Select Diagnostic Provider.

4. Select State data.

5. Select the View state data radio button to simply look at the state data, or select the Change state

data collection specification radio button to change the configuration.

6. Either directly enter a Diagnostic Provider ID in the Quick link using diagnostic provider ID text box,

or select a process (cluster / node / server) from the available processes displayed at the bottom of the

panel.

v If you chose the View state data radio button, a panel listing the available Diagnostic Providers

appears. Choose one of the providers by clicking on it. A panel displaying the state data appears.

v If you chose the Change state data collection specification radio button, a panel appears that

contains a list of the available Diagnostic Providers and a text entry block. The state collection

specification for the selected process is managed from this panel. Select one of the available

providers by using the checkbox next to it.

Diagnostic Provider State Collection Specification

In normal operation, most components should work optimally and not store any operational data that is not

needed. There are times, however, when an administrator or automated tool may want a component to

collect more information than normal to help in problem determination. This data could then be exposed

through a State dump. The State Collection specification was created as a syntax for indicating what

additional data the diagnostic providers in the system should retain.

For the syntax of the aCollectionSpec string, refer to the DiagnosticConfigHome API documentation. It is

basically a semicolon (;) separated list of collection specification clauses which are of the form:

 <DiagnosticProviderName regexp>:<AttributeId regexp>=[0|1]

Where the DiagnosticProviderName regular expression will make this clause apply to any Diagnostic

Provider Name that matches that regular expression. The AttributeId regexp and the boolean value (0 for

off, and 1 for on) are stored in the DiagnosticConfig object that each Diagnostic Provider uses. Turning on

or off, and processing the clauses left to right allows relatively complex specification. Any specification that

is not explicitly turned on is considered to be off. This format is explained further in the following

examples.

To turn on tracing for all attributes in the MyDP Diagnostic Provider:

MyDP:.*=1

To turn on tracing for all attributes of all Diagnostic Providers (this will probably impact system

performance):

.*:.*=1

To turn on all tracing for all attributes of all Diagnostic Providers beginning with ConnMgr (for example,

Data Sources):

ConnMgr.*:.*=1

This specification turns on special collection attributes in the MyDP Diagnostic Provider that begin with the

string PoolInfo. If, however, the attribute begins with PoolInfo.Db2Pool, then the collection is off (because

it is read left to right).

MyDP:PoolInfo.*=1;MyDP:PoolInfo.Db2Pool.*=0

212 Troubleshooting and support

It should be noted that State dumps can return important information even in the case where there is no

State Collection Specification turned on for a Diagnostic Provider. Diagnostic Providers frequently have to

keep some state information in order to operate. Anything in this category is available in a State dump

even if there is no special data collection going on. Using the State Collection Specification may increase

the amount of data available.

State Data Quick Link or Server Selection

Use this panel to select a server or cluster to either view collected state data, or to configure state data to

collect for a Diagnostic Provider.

To view this administrative console page, click Troubleshooting > Diagnostic Provider > State data

Quick link using Diagnostic Provider ID:

Enter a Diagnostic Provider ID to go directly to the view page for the collected state data for the

Diagnostic Provider.

Server selection topology:

Use these radio buttons and folders to select a specific server or cluster for viewing of state data or

configuring the specification of state data.

 If you choose a cluster, whatever action you choose is performed on each server in the cluster.

The enterprise applications section shows you the servers that a particular application is running on. If you

select a server from this list, the action is performed on that server, not specifically that application.

View state data

Select this radio button to view the state data for a Diagnostic Provider. Then select the cell or

cluster you want to work with.

Change state data collection settings

Select this radio button to configure the state collection specification for a Diagnostic Provider.

Then select the cluster or managed server you want to work with.

State data

Use this panel to view the current state data for a Diagnostic Provider on a selected server or cluster.

To view this administrative console page, click Troubleshooting > Diagnostic Provider > State data >

select the View state data radio button and then select a server or cluster name > select a Diagnostic

Provider from the list.

The attributes show information that has been collected as part of the enabled state collection specification

for the Diagnostic Provider. You can use the save... button to save the information to a file

Node:

This is the node name from where the state data was collected.

Server:

This is the server name from where the state data was collected.

Name:

This is the name of the state collection specification used to collect the state data.

Value:

Chapter 5. Diagnosing problems (using diagnosis tools) 213

This is the value of the state collection specification used to collect the state data.

Description:

This is a description of the state collection specification used to collect the state data.

Detailed state specification

Use this panel to view the attributes and descriptions of the Diagnostic Provider that you have selected.

To add attributes, select the checkbox next to your chosen diagnostic provider, then select the Add to

specification button.

To remove a diagnostic provider’s sub-component attribute from the state specification, select the

sub-component attribute in the displayed list and then select the Remove from specification button.

When you are done adding or removing a diagnostic provider’s sub-component attributes, select the Done

button.

To view this administrative console page, click Troubleshooting > Diagnostic Provider > State data

>select the View state data radio button and then select a server or cluster name > select a Diagnostic

Provider from the list.

Attribute:

This is the individual state collection specification available for the Diagnostic Provider.

Description:

This is the description of the individual state collection specification item.

Change state specification

Use this panel to add a Diagnostic Provider and its attributes to the specification for collecting state data.

To add a diagnostic provider (DP) and all of its attributes, select the checkbox next to your chosen DP,

then click on the Add to specification button. To add only some of the DP’s attributes, click on the DP

name itself in the list, and a new panel where you can perform this task appears.

To put the state specification into affect, select the Apply or OK button.

To reset the specification to its original state, use the Reset button.

To manually enter a state specification, update the text area with the state specification and use the

Update button.

To view this administrative console page, click Troubleshooting > Diagnostic Provider > State data >

select the Change state data collection specification radio button and then select a server or cluster name

> select a Diagnostic Provider from the list.

Name:

This is a list of available Diagnostic Providers for the server selected.

Modifying the State Collection Specification from wsadmin scripts

In doing problem determination, you might want to begin collecting additional data during normal

processing. This can be accomplished by modifying the State Collection Specification dynamically. This

section illustrates how to do that through the Wsadmin tool. This technique can be used to turn on traces,

as well as to turn off traces. Depending on the usage pattern of the component, the impact should take

214 Troubleshooting and support

affect shortly after it is set. For more information on this tool, see the chapter, Wsadmin tool in the

Administering applications and their environment PDF book.

1. Capture the DiagnosticService ObjectName into a variable. Enter

set DS [lindex [$AdminControl queryNames name=DiagnosticService,*] 0]

2. Use this variable to drive the method to set the specification. Enter

$AdminControl invoke $DS setStateCollectionSpec "SampleDiagnosticProvider:player.*=1;

SampleDiagnosticProvider:defense.*=1"

The specification is of the form DiagnosticProviderName:AttributeId=0|1... (with a semicolon at the

end, multiple sub-specifications can be entered similar to the TraceSpec). The

DiagnosticProviderName and AttributeId can be proper regular expressions.

Running a self diagnostic on a Diagnostic Provider

You must have sufficient authority to execute the action.

You can access a list of predefined diagnostic tests that you can use to check the status of a server

runtime component. Runtime components that have associated diagnostic tests can include their

Diagnostic Provide ID (DPID) in their log entries. If you know the DPID, you can enter it directly in the

quick link text box. Otherwise, navigate to the desired process by using the tree view displayed at the

bottom of the panel.

1. Start the administration console.

2. Select Troubleshooting.

3. Select Diagnostic Provider.

4. Select Tests .

5. Either directly enter a Diagnostic Provider ID in the Quick link using diagnostic provider ID text box,

or select a process (cluster / node / server) from the available processes displayed in the Server

selection topology section.

6. Select the desired self diagnostic test.

7. Read the output messages from the self diagnostic test.

8. Select a self diagnostic test message by clicking on it. The console displays a panel with the attributes

related to the message you chose.

Tests Quick Link or Server Selection

Use this panel to select a Diagnostic Provider server for diagnostic tests.

To view this administrative console page, click Troubleshooting > Diagnostic Provider > Tests.

Quick link using Diagnostic Provider ID:

Enter a Diagnostic Provider ID to go directly to the view page for the collected state data for the

Diagnostic Provider.

Server selection topology:

Use these folders to select server or cluster for viewing the available tests for a Diagnostic Provider.

 If you choose a cluster, whatever action you choose is performed on each server in the cluster.

The enterprise applications section shows you the servers that a particular application is running on. If you

select a server from this list, the action is performed on that server, not specifically that application.

Chapter 5. Diagnosing problems (using diagnosis tools) 215

Test selection

Use this panel to select one of the tests that are available for the chosen Diagnostic Provider on the

chosen server or cluster.

You can follow several navigation paths to view this administrative console page. For example, click

Troubleshooting > Diagnostic Provider > Tests > select a server or cluster name > select a Diagnostic

Provider from the list.

Test identification:

Choosing a test ID causes the test to run. Results of the test are shown on the Test Results panel.

Test description:

A description of the test available to run on the Diagnostic Provider.

Test Results

Use this panel to see the results from the server or cluster members for the selected test.

You can follow several navigation paths to view this administrative console page. For example, click

Troubleshooting > Diagnostic Provider > Tests > select a cluster name > select a Diagnostic Provider

from the list > select a Test identification from the list.

Multiple results can be returned from a test from each server. The results are sorted by Node, then by

Server, then by Severity. You can page through the messages that are returned.

Server:

The name of the server where the test result came back from.

Node:

The name of the node where the test result came back from.

Severity:

The severity of the result from the test run.

Message:

A description of the test result.

 The entries in this column are linked to another panel. If you click on a message, you can see additional

attributes associated with the message.

Test result details

Use this panel to see additional attributes for the selected test result.

To view this administrative console page, click Troubleshooting > Diagnostic Provider > Tests > select

a cluster name > select a Diagnostic Provider from the list > select a Test identification from the list >

select a message.

The attributes show information that helped to diagnose the condition described in the message. You can

use the Save button to save to a file the attributes and the messages to which they correspond.

Name:

216 Troubleshooting and support

The name of the test.

Value:

This is the value of the test result.

Description:

This is a description of the test.

Chapter 5. Diagnosing problems (using diagnosis tools) 217

218 Troubleshooting and support

Chapter 6. Web applications

Web module or application server stops processing requests

Use this information to help determine why a Web module or application server has stopped processing

new requests.

If an application server’s process spontaneously closes, or its Web modules stop responding to new

requests:

v Isolate the problem by installing Web modules on different servers, if possible.

v You can use the Tivoli performance viewer to determine which resources have reached their maximum

capacity, such as Java heap memory (indicating a possible memory leak) and database connections. If

a particular resource appears to have reached its maximum capacity, review the application code for a

possible cause:

– If database connections are used and never freed, ensure that application code performs a close()

on any opened Connection object within a finally{} block.

– If there is a steady increase in servlet engine threads in use, review application synchronized code

blocks for possible deadlock conditions.

– If there is a steady increase in a JVM heap size, review application code for memory leak

opportunities, such as static (class-level) collections, that can cause objects to never get

garbage-collected.

See the Tuning guide PDF for more information about this tool.

v To detect memory leak problems, enable verbose garbage collection on the application server. This

feature adds detailed statements to the JVM error log file of the application server about the amount of

available and in-use memory. To set up verbose garbage collection:

1. Select Servers > Application Servers > server_name > Java and Process Management >

Process Definition > Java Virtual Machine, and enable Verbose Garbage Collection.

2. Stop and restart the application server.

3. Periodically, or after the application server stops, browse the log file for garbage collection

statements. Look for statements beginning with ″allocation failure″. The string indicates that a need

for memory allocation has triggered a JVM garbage collection (freeing of unused memory).

Allocation failures themselves are normal and not necessarily indicative of a problem. The allocation

failure statement is followed by statements showing how many bytes are needed and how many are

allocated.

If there is a steady increase in the total amount of free and used memory (the JVM keeps allocating

more memory for itself), or if the JVM becomes unable to allocate as much memory as it needs

(indicated by the bytes needed statement), there might be a memory leak.
v If an application server’s process spontaneously closes, there will be an SDUMP. See the

Troubleshooting and support PDF for instructions on how to analyze the dump.

IBM Support has documents and tools that can save you time gathering information needed to resolve

problems as described in “Troubleshooting help from IBM” on page 188. Before opening a problem report,

see the Support page:

v http://www.ibm.com/software/webservers/appserv/zos_os390/support/

Errors starting an application

Use this information for troubleshooting problems that occur when starting an application.

What kind of error do you see when you start an application?

v “HTTP server and Application Server are working separately, but requests are not passing from HTTP

server to Application Server” on page 220

v “File serving problems” on page 220

v “Graphics do not appear in the JSP file or servlet output” on page 221

© Copyright IBM Corp. 2006 219

http://www.ibm.com/software/webservers/appserv/zos_os390/support/

v “SRVE0026E: [Servlet Error]-[Unable to compile class for JSP file” on page 221

v “Message like ″Message: /jspname.jsp(9,0) Include: Mandatory attribute page missing″ appears when

attempting to browse JSP file” on page 222

v “The JSP Batch Compiler fails with the message ″Enterprise Application [application name you typed in]

not found.″” on page 222

v “There is a translation problem with non-English browser input” on page 222

v “Scroll bars do not appear around items in the browser window” on page 222

v “Error ″Page cannot be displayed... server not found or DNS error″ appears when attempting to browse

a JavaServer Pages (JSP) file using Internet Explorer” on page 223

v “DeploymentDescriptorLoadException results when starting an application” on page 223

HTTP server and Application Server are working separately, but requests are not

passing from HTTP server to Application Server

If your HTTP server appears to be functioning correctly, and the Application Server also works on its own,

but browser requests sent to the HTTP server for pages are not being served, a problem exists in the

WebSphere Application Server plug-in.

In this case:

1. Determine whether the HTTP server is attempting to serve the requested resource itself, rather than

forwarding it to the WebSphere Application Server.

a. Browse the HTTP server access log (IHS install root/logs/access.log for IBM HTTP Server). It

might indicate that it could not find the file in its own document root directory.

b. Browse the plug-in log file as described below.

2. Refresh the plugin-cfg.xml file that determines which requests sent to the HTTP server are forwarded

to the WebSphere Application Server, and to which Application Server.

Use the console to refresh this file:

v In the WebSphere Application Server administrative console, expand the Environment tree control.

v Click Update WebSphere Plugin.

v Stop and restart the HTTP server.

v Retry the Web request.

3. Browse the plugin_install_root/logs/web_server_name/http_plugin.log file for clues to the problem.

Make sure the timestamps with the most recent plug-in information stanza, which is printed out when

the plug-in is loaded, correspond to the time the Web server started.

4. Turn on plug-in tracing by setting the LogLevel attribute in the plugin-cfg.xml file to Trace and

reloading the request. Browse the plugin_install_root/logs/Web_server_name/http_plugin.log file.

You should be able to see the plug-in attempting to match the request URI with the various URI

definitions for the routes in the plugin-cfg.xml. Check which rules the plug-in is not matching against

and then figure out if you need to add additional ones. If you just recently installed the application you

might need to manually regenerate the plug-in configuration to pick up the new URIs related to the

new application.

For further details on troubleshooting plug-in-related problems, see Webserver plug-in troubleshooting tips

located in the Administering applications and their environment PDF book.

File serving problems

If text output appears on your JSP- or servlet-supported Web page, but image files do not:

v Verify that your files are in the right place: the document root directory of your Web application

WebSphere Application Server follows the J2EE standard, which means that the document root is the

Web_module_name.war directory of your deployed Web application.

Typically this directory will be found in the install_root/installedApps/nodename/appname.ear directory or

install_root/installedApps/nodename/appnameNetwork.ear directory.

220 Troubleshooting and support

If the files are in a subdirectory of the document root, verify that the reference to the file reflects that.

That is, if the invoices.html file is stored in Windows directory Web_module_name.war\invoices, then

links from other pages in the Web application to display it should read ″invoices\invoices.html″, not

″invoices.html″.

v Verify that your Web application is configured to enable file serving (in other words, that it is enabled to

display static resources like image and .html files):

1. Edit the fileServingEnabled property in the deployed Web application ibm-web-ext.xmi

configuration file.

The file typically is found in the install_root/config/cells/nodename or nodenameNetwork/
applications/application_name/deployments/application name/Web_module_name/web-inf

directory.

Graphics do not appear in the JSP file or servlet output

If text output appears on your JSP- or -servlet-supported Web page, but image files do not:

v Verify that your graphic files are in the right place: the document root directory of your Web

application. WebSphere Application Server Version 5 follows the J2EE standard, which means that the

document root is the Web_module_name.war directory of your deployed Web application.

Typically, this directory is found in the install_root/installedApps/nodename/appname.ear directory or

install_root/installedApps/nodename/appnameNetwork.ear directory.

If the graphics files are in a subdirectory of the document root, verify that the reference to the graphic

reflects that; for example, if the banner.gif file is stored in Windows directory Web_module_name.war/
images, the tag to display it should read: , not .

v Verify that your Web application is configured to enable file serving (that is, display of static resources

like image and .html files).

1. Edit the fileServingEnabled property in the deployed Web application ibm-web-ext.xmi

configuration file.

The file typically is found in the install_root/config/cells/nodename or nodenameNetwork/
applications/application_name/deployments/application name/Web_module_name/web-inf

directory.

2. After completing the previous step:

– In the administrative console, expand the Environment tree control .

– Click Update WebSphere Plugin.

– Stop and restart the HTTP server and retry the Web request.

SRVE0026E: [Servlet Error]-[Unable to compile class for JSP file

If this error appears in a browser when trying to access a new or modified .jsp file for the first time, the

most likely cause is that the JSP file Java source failed (was incorrect) during the javac compilation phase.

Check the log files for a compiler error message.

Fix the problem in the JSP source file, save the source and request the JSP file again.

If this error occurs when trying to serve a JSP file that was copied from another system where it ran

successfully, then there is something different about the new server environment that prevents the JSP file

from running. Browse the text of the error for a statement like:

Undefined variable or class name: MyClass

This error indicates that a supporting class or jar file is not copied to the target server, or is not on the

class path. Find the MyClass.class file, and place it on the Web module WEB-INF/classes directory, or

place its containing .jar file in the Web module WEB-INF/lib directory.

Verify that the URL used to access the resource is correct by doing the following:

Chapter 6. Web applications 221

v For a JSP file, html file, or image file: http://host_name/Web_module_context_root/subdir under doc

root, if any/filename.ext. The document root for a Web application is the application_name.WAR

directory of the installed application.

v For servlets served by class name, the URL is http://hostname/Web_module_context_root/servlet/
packageName.className.

Correct the URL in the ″from″ HTML file, servlet or JSP file. An HREF with no leading slash (/) inherits the

calling resource context. For example:

v an HREF in http://[hostname]/myapp/servlet/MyServlet to ″ServletB″ resolves to

″http://hostname/myapp/servlet/ServletB″

v an HREF in http://[hostname]/myapp/servlet/MyServlet to ″servlet/ServletB″ resolves to

″http://hostname/myapp/servlet/servlet/ServletB″ (an error)

v an HREF in http://[hostname]/myapp/servlet/MyServlet to ″/ServletB″ resolves to

″http://hostname/ServletB″ (an error, if ServletB requires the same context root as MyServlet)

Message like ″Message: /jspname.jsp(9,0) Include: Mandatory attribute page

missing″ appears when attempting to browse JSP file

It is probable that the JSP file failed during the translation to Java phase. Specifically, a JSP directive, in

this case an Include statement, was incorrect or referred to a file that could not be found.

To correct this problem, fix the problem in the JSP source, save the source and request the JSP file again.

The JSP Batch Compiler fails with the message ″Enterprise Application

[application name you typed in] not found.″

It is probable that the full enterprise application path and name, starting with the .ear subdirectory that

resides in the applications directory is expected as an argument to the JspBatchCompiler tool, not just

the display name.

For example:

v ″JspBatchCompiler -enterpriseapp.name sampleApp.ear/deployments/sampleApp″ is correct, as

opposed to

v ″JspBatchCompiler -enterpriseapp.name sampleApp″, which is incorrect.

There is a translation problem with non-English browser input

If non-English-character-set browser input cannot be translated after being read by a servlet or JSP file,

ensure that the request parameters are encoded according to the expected character set before reading.

For example, if the site is Chinese, the target .jsp file should have a line:

 req.setCharacterEncoding("gb2312");

before any req.getParameter method calls.

This problem affects servlets and jsp files ported from earlier versions of WebSphere Application Server,

which converted characters automatically based upon the locale of the WebSphere Application Server.

Scroll bars do not appear around items in the browser window

In some browsers, tree or list type items that extend beyond their allotted windows do not have scroll bars

to permit viewing of the entire list.

To correct this problem, right-click on the browser window and click Reload from the menu.

222 Troubleshooting and support

Error ″Page cannot be displayed... server not found or DNS error″ appears when

attempting to browse a JavaServer Pages (JSP) file using Internet Explorer

This error can occur when an HTTP timeout causes the servant to be brought down and restarted. To

correct this problem, increase the ConnectionIOTimeOut value:

1. From the administrative console, select System administration > Deployment manager >

Administration Services > Custom Properties

2. Select ConnectionIOTimeOut.

3. Increase the ConnectionIOTimeOut value.

4. Click OK.

DeploymentDescriptorLoadException results when starting an application

If an application server on which the application is deployed synchronizes configuration with the

deployment manager during server startup, then the application might not start and a

DeploymentDescriptorLoadException might be written to the server SystemErr.log file. Stop and restart the

server, and then try starting the application again.

A Web resource does not display

If you are not able to display a resource in your browser, follow these steps:

1. Verify that your HTTP server is healthy by accessing the URL http://server_name from a browser and

seeing whether the Welcome page appears. This action indicates whether the HTTP server is up and

running, regardless of the state of WebSphere Application Server.

2. If the HTTP server Welcome page does not appear, that is, if you get a browser message like page

cannot be displayed or something similar, try to diagnose your Web server problem.

3. If the HTTP server appears to function, the Application Server might not be serving the target resource.

Try accessing the resource directly through the Application Server instead of through the HTTP server.

If you cannot access the resource directly through the Application Server, Verify that the URL used to

access the resource is correct.

If the URL is incorrect and it is created as a link from another JSP file, servlet, or HTML file, try

correcting it in the browser URL field and reloading, to confirm that the problem is a malformed URL.

Correct the URL in the ″from″ HTML file, servlet or JSP file.

If the URL appears to be correct, but you cannot access the resource directly through the Application

Server, verify the health of the hosting Application Server and Web module:

a. View the hosting Application Server and Web module in the administrative console to verify that

they are up and running.

b. Copy a simple HTML or JSP file (such as SimpleJsp.jsp in the WebSphere Application Server

directory structure) to your Web module document root, and try to access it. If successful, the

problem is with your resource.

View the logs of your Application Server to find out why your resource cannot be found or served .
4. If you can access the resource directly through the Application Server, but not through an HTTP server,

the problem lies with the HTTP plug-in -- the component that communicates between the HTTP server

and the WebSphere Application Server.

5. If the JSP file and the servlet output are served, but not static resources such as .html and image

files, see the steps for enabling file serving.

6. If some kinds of resources display correctly, but you cannot display a servlet by its class name:

v Verify that the servlet is in a directory in the Web module class path, such as in the

/Web_module_name.war/WEB-INF/classes directory.

v Verify that you specify the full class name of the servlet, including its package name, in the URL.

v Verify that ″/servlet″ precedes the class name in the URL. For example, if the root context of a

Web module is ″myapp″, and the servlet is com.mycom.welcomeServlet, then the URL reads:

http://hostname/myapp/servlet/com.mycom.welcomeServlet

Chapter 6. Web applications 223

v For servlets or other resources served by mapped URLs, the URL is http://hostname/Web module

context root/mappedURL.

Accessing a Web resource through the application server and bypassing the HTTP

server

Starting with WebSphere Application Server Version 4.0, you can bypass the HTTP server and access a

Web resource through the application server. It is not recommended to serve a production Web site in this

way, but it provides a good diagnostic tool when it is not clear whether a problem resides in the HTTP

server, WebSphere Application Server, or the HTTP plug-in.

To access a Web resource through the Application Server:

1. Determine the port of the HTTP service in the target application server.

a. In the WebSphere administrative console, click Servers>Manage Application Servers.

b. Select the target server, then under Additional Properties click Web Container.

c. Under the Additional Properties of the Web container, click HTTP Transports. You see the ports

listed for virtual hosts served by the application server.
2. Use the HTTP transport port number of the application server to access the resource from a browser.

For example, if the port is 9080, the URL is http://hostname:9080/myAppContext/myJSP.jsp.

3. If you are still unable to access the resource, verify that the HTTP transport port is in the ″Host Alias″

list:

a. Click Application Servers > Your_ApplicationServer > Web Container > HTTP Transports to

check the Default virtual host and the HTTP transport ports used by this application server.

b. Click Environment > Manage Virtual Hosts > default host > Host Aliases to check if the HTTP

transport port exists. Add an entry if necessary. For example, if the HTTP port for your application

is server is 9080, add a host alias of *:9082.

JavaServer Pages troubleshooting tips

Use this tips to troubleshoot problems with JavaServer Pages.

JavaServer Pages source code shown by the Web server

If you share the document root of the WebSphere Application Server with the Web server document root,

a security exposure can result as the Web server might display the JavaServer Pages (JSP) source file as

plain text.

Problem

You can use the WebSphere Web server plug-in set of rules to determine whether a given request will be

handled by the WebSphere Application Server. When an incoming request fails to match those rules, the

Web server plug-in returns control to the Web server so that the Web server can fulfill the request. In this

case, the unknown host header causes the Web server plug-in to return control to the Web server

because the rules do not indicate that the WebSphere Application Server should handle it. Therefore, the

Web server looks for the request in the Web server document root. Since the JSP source file is stored in

the document root of the Web server, the Web server finds the file and displays it as plain text.

Suggested solution

Move the WebSphere Application Server JSP source file outside of the Web server document root. Then,

when this request comes in with the unknown host header, the plug-in returns control to the Web server

and the JSP source file is not found in the document root. Therefore, the Web server returns a 404 File

Not Found error rather than the JSP source file.

224 Troubleshooting and support

Problems displaying double-byte character set (DBCS) characters when using the

@include directive

JavaServer Pages files that use the @include directive might experience problems when displaying

double-byte character set (DBCS) characters. Some applications that are migrated to WebSphere

Application Server Version 6.0 and above might need to be modified to comply with the JSP 2.0

specification as a result of backwards compatibility issues. The JSP 2.0 specification requires that each

statically included resource must set a page encoding or content type because the character encoding for

each file is determined separately, even if one file includes another using the include directive.

Problems using the JavaServer Pages (JSP) engine

If you are having difficulty using the JavaServer Pages (JSP) engine, try these steps:

1. Determine whether other resources such as .html files or servlets are being requested and displayed

correctly. If they are not, the problem probably lies at a deeper level, such as with the HTTP server.

2. If other resources are being displayed correctly, determine whether the JSP processor has started

normally:

v Browse the logs of the server hosting the JSP files you are trying to access. The following

messages indicate that the JSP processor has started normally:

Extension Processor [class com.ibm.ws.jsp.webcontainerext.JSPExtensionProcessor]

was initialized successfully.

Extension Processor [class com.ibm.ws.jsp.webcontainerext.JSPExtensionProcessor]

has been associated with patterns [*.jsp *.jspx *.jsw *.jsv].

If the JSP processor fails to load, you will see a message such as

No Extension Processor found for handling JSPs.

JSP Processor not defined. Skipping : jspfilename.

in the server log files.
3. If the JSP engine has started normally, the problem may be with the JSP file itself.

v The JSP may have invalid JSP syntax and could not be processed by the JSP Processor. Examine

the server log files of the target application for invalid JSP directive syntax messages. Errors similar

to the following in a browser indicate this kind of problem:

Message: /filename.jsp(2,1)JSPG0076E: Missing required attribute page for jsp

 element jsp:include

This example indicates that line 2, column 1 of the named JavaServer Pages file is missing a

mandatory attribute for the jsp:include action. Similar messages are displayed for other syntax

errors.

v Examine the target application server’s SystemErr.log files for problems with invalid Java syntax.

Errors similar to Message: Unable to compile class for JSP in a browser indicate this kind of

problem.

The error message output from the Javac compiler will be found in the SystemErr.log. It might look

like:

JSPG0091E: An error occurred at line: 2 in the file: /myJsp.jsp

JSPG0093E: Generated servlet error: c:\WASROOT\temp\ ...

test.war_myJsp.java:16: myInt is already defined in com.ibm.ws.jsp20._myJsp

int myInt = 122; String myString = "number is 122"; static int myStaticInt=22;

int myInt=121;

 ^ 1 error

Correct the error in the JSP file and retry the file.

v Examine the target application server’s server log files files for problems with invalid Java syntax.

Errors similar to Message: Unable to compile class for JSP in a browser indicate this kind of

problem.

The error message output from the Javac compiler will be found in the server log files. It might look

like:

Chapter 6. Web applications 225

JSPG0091E: An error occurred at line: 2 in the file: /myJsp.jsp

JSPG0093E: Generated servlet error: c:\WASROOT\temp\ ...

test.war_myJsp.java:16: myInt is already defined in com.ibm.ws.jsp20._myJsp

int myInt = 122; String myString = "number is 122"; static int myStaticInt=22;

int myInt=121;

 ^ 1 error

Correct the error in the JSP file and retry the file.

JavaServer Pages fail to compile when using precompile

 Symptom JavaServer Pages fail to compile during deployment through the administrative console

when precompile is selected.

SystemErr R com.ibm.websphere.management.exception.AdminException:

ADMA0021E: Error in compiling jsps - xyz.war (rc=1)

Problem JavaServer Pages fail to compile during deployment through the administrative console

when precompile is selected when there is a dependency on another Java archive

(JAR) file that is not available on any class path.

Suggested solution You may use wsadmin scripting to precompile JSP files during enterprise application

deployment. However if you want to use the administrative console, then compile all

JSP files before packaging the application.

1. Add the dependent JAR to the deployment manager in a cell environment.

a. Click System Administration > Deployment manager > Java and Process

Management > Process Definition > Java Virtual Machine in the console

navigation.

b. Add fully qualified dependent JAR in class path field.

c. Click OK.

d. Restart deployment manager.

2. Add the dependent JAR to the application server.

a. Click Servers > Application servers > server1 > Java and Process

Management > Process Definition > Java Virtual Machine in the console

navigation.

b. Add fully qualified dependent JAR in class path field.

c. Click OK.

d. Restart application server.

JSPG0089E: Mismatch found between page directive encoding Shift_JIS and xml

prolog encoding UTF-8

 Symptom The following error appears:

JSP Processing Error

HTTP Error Code: 500

Error Message: /test.jsp(2,1) /test.jsp(2,1) JSPG0089E: Mismatch found between

page directive encoding Shift_JIS and xml prolog encoding UTF-8

Problem The pageEncoding attribute in the jsp:directive.page element is not UTF-8.

226 Troubleshooting and support

Suggested solution JavaServer Pages must specify a prolog that matches the encoding specified in the

page directive. For example,

<?xml version="1.0" encoding="Shift_JIS"?>

<jsp:root xmlns:jsp="http://java.sun.com/JSP/Page" version="2.0">

<jsp:directive.page language="java" contentType="text/html";

 charset=Shift_JIS" pageEncoding="Shift_JIS"/>

<jsp:text>XXXXXjsp:text>XXXXX>

</jsp:root>

For additional information, see section JSP.4.1, Page Character Encoding, in the

JavaServer Pages specification and section 4.3.3 and appendix F.1 of the Extensible

Markup Language (XML) specification

If none of these steps solves the problem, check to see if the problem is identified and documented using

the links in Diagnosing and fixing problems: Resources for learning. If you do not see a problem that

resembles yours, or if the information provided does not solve your problem, contact IBM support for

further assistance.

For current information available from IBM Support on known problems and their resolution, see the IBM

Support page. The IBM Support page contains documents that can save you time gathering information

needed to resolve this problem.

Web container troubleshooting tips

If you are having problems starting a Web module, or accessing resources within a particular Web module:

v View the logs for the application server which hosts the problem Web modules, and look for messages

in the JVM output file which indicate that the web module has started successfully. You should see

messages similar to the following:

WebContainer A SRVE0161I: IBM WebSphere Application Server - Web Container.

Copyright IBM Corp. 1998-2002

WebContainer A SRVE0169I: Loading Web Module: [module_name]

ApplicationMg A WSVR0221I: Application started: [application_name]

HttpTransport A SRVE0171I: Transport http is listening on port [port_number]

[server_name] open for e-business in [profile_root]/logs/[server_name]/SystemOut.log

v For specific problems that can cause servlets, HTML files, and JavaServer Pages (JSP) files not to be

served, see Web resource (JSP file, servlet, HTML file, image) does not display .

If application server related calls fail during Servlet.init method, you can either:

v Initialize the servlet manually by making a single request to that servlet in your browser when the server

is ready for e-business instead of starting the servlet upon startup or

v You can choose not to make application server related calls in the servlet’s init method.

If the property to start servlets during application server startup is enabled, part of its startup process calls

the Servlet.init method on its servlets when you start the Web container. Therefore, when the Web

container is starts and calls the init method, other components such as Naming and Work Load

Management may not be fully started yet. As a result, application server related calls may not work since

all of the application server components may not be ready yet. Once the application server is ’ready for

e-business’, it is completely ready.

If none of these steps fixes your problem, check to see if the problem has been identified and documented

by looking at the available online support (hints and tips, tech notes, and fixes). If you don’t find your

problem listed there contact IBM support.

For current information available from IBM Support on known problems and their resolution, see the IBM

Support page.

Chapter 6. Web applications 227

http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCC2GL
http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCC2GL
http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCMPDF
http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCMPDF

IBM Support has documents that can save you time gathering information needed to resolve this problem.

Before opening a PMR, see the IBM Support page.

Troubleshooting tips for Web application deployment

Deployment of a Web application is successful if you can access the application by typing a Uniform

Resource Locator (URL) in a browser, or if you can access the application by following a link.

If you cannot access your application, follow these steps to eliminate some common errors that can occur

during migration or deployment.

Web module does not run in WebSphere Application Server Version 5.x or 6.x

 Symptom Your Web module does not run when you migrate it to Version 5.x or 6.x

Problem In Version 4.x, the classpath setting that affected visibility was Module Visibility Mode.

In Versions 5.x and 6.x, you must use class loader policies to set visibility.

Recommended response Reassemble an existing module, or change the visibility settings in the class loader

policies.

See Class loaders and Class loading for more information.

Welcome page is not visible.

 Symptom You cannot access an application with a Web path of:

 /webapp/myapp

Problem The default welcome page for a Web application is assumed to be index.html. You

cannot access the default page of the myapp application unless it is named index.html.

Recommended response To identify a different welcome page, modify the properties of the Web module during

assembly, see the topic, Assembling Web applications for more information in the

Developing and deploying applications PDF book.

HTML files are not found.

 Symptom Your Web application ran successfully on prior versions, but now you encounter errors

that the welcome page (typically index.html), or referenced HTML files are not found:

Error 404: File not found: Banner.html

Error 404: File not found: HomeContent.html

Problem For security and consistency reasons, Web application URLs are now case-sensitive on

all operating systems.

Suppose the content of the index page is as follows:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 5.0 Frameset//EN">

<HTML>

<TITLE>

Insurance Home Page

</TITLE>

 <frameset rows="18,80">

 <frame src="Banner.html" name="BannerFrame" SCROLLING=NO>

 <frame src="HomeContent.html" name="HomeContentFrame">

 </frameset>

</HTML>

However the actual file names in the \WebSphere\AppServer\installedApps\...

directory where the application is deployed are:

banner.html

homecontent.html

228 Troubleshooting and support

http://www-1.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCMPDF&q=mustgather

Recommended response To correct this problem, modify the index.html file to change the names Banner.html

and HomeContent.html to banner.html and homecontent.html to match the names of

the files in the deployed application.

For current information available from IBM Support on known problems and their resolution, see the IBM

Support page.

IBM Support has documents that can save you time gathering information needed to resolve this problem.

Before opening a PMR, see the IBM Support page.

HTTP session manager troubleshooting tips

This article provides troubleshooting tips for problems creating or using HTTP sessions with your Web

application hosted by WebSphere Application Server.

Here are some steps to take:

v View the logs for the application server which hosts the problem application:

– first, look at messages written while each application is starting. They will be written between the

following two messages:

Starting application: application

.....................

Application started: application

– Within this block, look for any errors or exceptions containing a package name of

com.ibm.ws.webcontainer.httpsession. If none are found, this is an indication that the session

manager started successfully.

– Error ″SRVE0054E: An error occurred while loading session context and Web application″

indicates that SessionManager didn’t start properly for a given application.

– Look within the logs for any Session Manager related messages. These messages will be in the

format SESNxxxxE and SESNxxxxW for errors and warnings, respectively, where xxxx is a number

identifying the precise error. Look up the extended error definitions in the Session Manager message

table.
v See the Best practices for using HTTP Sessions section in the Developing and deploying applications

PDF books for more details.

v Alternatively, a special servlet can be invoked that displays the current configuration and statistics

related to session tracking.

– Servlet name: com.ibm.ws.webcontainer.httpsession.IBMTrackerDebug.

– It can be invoked from any Web module which is enabled to serve by class name. For example,

using default_app, http://localhost:9080/servlet/
com.ibm.ws.webcontainer.httpsession.IBMTrackerDebug.

– If you are viewing the module via the serve-by-class-name feature, be aware that it may be viewable

by anyone who can view the application. You may wish to map a specific, secured URL to the servlet

instead and disable the serve-servlets-by-classname feature.
v If you are using database-based persistent sessions, look for problems related to the data source

the Session Manager relies on to keep session state information. For details on diagnosing database

related problems see the Errors accessing a datasource or connection pool in the Administering

applications and their environment PDF book

Error message SRVE0079E Servlet host not found after you define a port

Error message SRVE0079E can occur after you define the port in WebContainer > HTTP Transports for a

server, indicating that you do not have the port defined in your virtual host definitions. To define the port,

1. On the administrative console, go to Environment > Virtual Hosts > default_host> Host Aliases> New

2. Define the new port on host ″*″

Chapter 6. Web applications 229

http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCR4XA
http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCR4XA
http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCR4XA&q=mustgather

The application server gets EC3 - 04130007 ABENDs

To prevent an EC3 - 04130007 abend from occuring on the application server, change the HTTP Output

timeout value. The custom property ConnectionResponseTimeout specifies the maximum number of

seconds the HTTP port for an individual server can wait when trying to read or write data. For instructions

on how to set ConnectionResponseTimeout, see HTTP transport custom properties section of the

Administering applications and their environment PDF book.

If none of these steps fixes your problem, check to see if the problem has been identified and documented

by looking at the available online support (hints and tips, technotes, and fixes). If you don’t find your

problem listed there contact IBM support.

For current information available from IBM Support on known problems and their resolution, see the IBM

Support page.

IBM Support has documents that can save you time gathering information needed to resolve this problem.

Before opening a PMR, see the IBM Support page.

Problems creating or using HTTP sessions

This article provides troubleshooting information related to creating or using Hypertext Transfer Protocol

(HTTP) sessions.

To view and update the session manager settings discussed here, use the administrative console. Select

the application server that hosts the problem application, then under Additional properties, select Web

Container, then Session manager.

What kind of problem are you having?

v HTTP Sessions are not getting created, or are lost between requests.

v HTTP Sessions are not persistent (session data lost when application server restarts, or not shared

across cluster).

v Session is shared across multiple browsers on same client machine.

v Session is not getting invalidated immediately after specified session timeout interval.

v Unwanted sessions are being created by JavaServer Pages.

v Session data intended for one client is seen by another client.

v A ClassCastException error occurs during failover of a session that contains an Enterprise JavaBeans

(EJB) reference.

HTTP sessions are not getting created, or are lost between requests

By default, the session manager uses cookies to store the session ID on the client between requests.

Unless you intend to avoid cookie-based session tracking, ensure that cookies are flowing between

WebSphere Application Server and the browser:

v Make sure the Enable cookies check box is checked under the Session tracking Mechanism

property.

v Make sure cookies are enabled on the browser you are testing from or from which your users are

accessing the application.

v Check the Cookie domain specified on the SessionManager (to view the or update the cookie settings,

in the Session tracking mechanism->enable cookies property, click Modify).

– For example, if the cookie domain is set as ″.myCom.com″, resources should be accessed using that

domain name. Example: http://www.myCom.com/myapp/servlet/sessionservlet.

– If the domain property is set, make sure it begins with a dot (.). Certain versions of Netscape do not

accept cookies if domain name doesn’t start with a dot. Internet Explorer honors the domain with or

without a dot. For example, if the domain name is set to mycom.com, change it to .mycom.com so

that both Netscape and Internet Explorer honor the cookie.

230 Troubleshooting and support

http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCMPDS
http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCMPDS
http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCMPDS&q=mustgather

Note: When the servers are on different hosts, ensure that session cookies flow to all the servers by

configuring a front-end router such as a Web server with the plug-in or setting the Cookie

domain.
v Check the Cookie path specified on the SessionManager. Check whether the problem URL is

hierarchically below the Cookie path specified. If not correct the Cookie path.

v If the Cookie maximum age property is set, ensure that the client (browser) machine’s date and time is

the same as the server’s, including the time zone. If the client and the server time difference is over the

″Cookie maximum age″ then every access would be a new session, since the cookie will ″expire″ after

the access.

v If you have multiple Web modules within an enterprise application that track sessions:

– If you want to have different session settings among Web modules in an enterprise application,

ensure that each Web module specifies a different cookie name or path, or

– If Web modules within an enterprise application use a common cookie name and path, ensure that

the HTTP session settings, such as Cookie maximum age, are the same for all Web modules.

Otherwise cookie behavior will be unpredictable, and will depend upon which application creates the

session. Note that this does not affect session data, which is maintained separately by Web module.
v Check the cookie flow between browser and server:

1. On the browser, enable ″cookie prompt″. Hit the servlet and make sure cookie is being prompted.

2. Access the session servlet from the browser.

3. The browser will prompt for the cookie; note the jsessionid.

4. Reload the servlet, note down the cookie if a new cookie is sent.

5. Check the session trace and look for the session id and trace the request by the thread. Verify that

the session is stable across Web requests:

– Look for getIHttpsession(...) which is start of session request.

– Look for releaseSesson(..) which is end of servlet request.
v If you are using URL rewriting instead of cookies:

– Ensure there are no static HTML pages on your application’s navigation path.
v If you are using SSL as your session tracking mechanism:

– Ensure that you have SSL enabled on your IBM HTTP Server or iPlanet HTTP server.
v If you are in a clustered (multiple node) environment, ensure that you have session persistence

enabled.

HTTP Sessions are not persistent

If your HTTP sessions are not persistent, that is session data is lost when the application server restarts or

is not shared across the cluster:

v Check the data source.

v Check the session manager’s persistence settings properties:

– If you intend to take advantage of session persistence, verify that Persistence is set to Database.

– If you are using Database-based persistence:

- Check the JNDI name of the data source specified correctly on SessionManager.

- Specify correct userid and password for accessing the database.

Note that these settings have to be checked against the properties of an existing data source in

the administrative console. The session manager does not automatically create a session

database for you.

- The data source should be non-JTA, for example, non XA enabled.

- Check the logs for appropriate database error messages.

- With DB2, for row sizes other than 4k make sure specified row size matches the DB2 page size.

Make sure tablespace name is specified correctly.
– If you are using memory-based persistence (available only in a network deployment environment):

- Review the Memory-to-memory replication section of the Developing and deploying applications

PDF book.

- Review the Internal Replication Domains properties of your session manager.

Chapter 6. Web applications 231

Session is shared across multiple browsers on same client machine

This behavior is browser-dependent. It varies between browser vendors, and also may change according

to whether a browser is launched as a new process or as a subprocess of an existing browser session (for

example by hitting Ctl-N on Windows).

The Cookie maximum age property of the session manager also affects this behavior, if cookies are used

as the session-tracking mechanism. If the maximum age is set to some positive value, all browser

instances share the cookies, which are persisted to file on the client for the specified maximum age time.

Session is not getting invalidated immediately after specified session timeout

interval

The SessionManager invalidation process thread runs every x seconds to invalidate any invalid sessions,

where x is determined based on the session timeout interval specified in the session manager properties.

For the default value of 30 minutes , x is around 300 seconds. In this case, it could take up to 5 minutes

(300 seconds) beyond the timeout threshold of 30 minutes for a particular session to become invalidated.

Unwanted sessions are being created by JavaServer Pages

As required by the JavaServer Pages (JSP) specification, JSP pages by default perform a

request.getSession(true), so that a session is created if none exists for the client. To prevent JSP pages

from creating a new session, set the session scope to false in the .jsp file using the page directive as

follows:

<% @page session="false" %>

Session data intended for one client is seen by another client

In rare situations, usually due to application errors, session data intended for one client might be seen by

another client. This situation is referred to as session data crossover. When the DebugSessionCrossover

custom property is set to true, code is enabled to detect and log instances of session data crossover.

Checks are performed to verify that only the session associated with the request is accessed or

referenced. Messages are logged if any discrepancies are detected. These messages provide a starting

point for debugging this problem. This additional checking is only performed when running on the

WebSphere-managed dispatch thread, not on any user-created threads.

For additional information on how to set this property, see article, Web container custom properties in the

Administering applications and their environment PDF book.

A ClassCastException error occurs during failover of a session that contains an

Enterprise JavaBeans (EJB) reference

If you run WebSphere® Application Server for z/OS® Version 6.0.1 and configure a session manager to

replicate EJB references, a session failover might trigger display of the following exception in the server

region job log:

java.lang.ClassCastException: cannot cast class

 org.omg.stub.java.rmi._Remote_Stub to interface javax.ejb.EJBObject

The log also displays a null pointer exception. The problem results from the session outbound request,

where WebSphere Application Server for z/OS issued a CORBA::COMM_FAILURE exception with a

C9C21355 minor code. This behavior occurs because your application server contains all of the following

configurations:

1. SAF is both the local operating system, as well as the user registry

2. Attribute propagation is enabled

3. An unauthenticated user initiated the session outbound request

232 Troubleshooting and support

To correct this problem apply the APAR PK06777 fix to WebSphere Application Server for z/OS V6.0.1.

You can retain the previously mentioned server configurations.

IBM Support has documents and tools that can save you time gathering information needed to resolve

problems as described in “Troubleshooting help from IBM” on page 188. Before opening a problem report,

see the Support page:

v http://www.ibm.com/software/webservers/appserv/zos_os390/support/

Chapter 6. Web applications 233

http://www.ibm.com/software/webservers/appserv/zos_os390/support/

234 Troubleshooting and support

Chapter 7. SIP applications

Tracing a SIP container

You can trace a Session Initiation Protocol (SIP) container, starting either immediately or after the next

server startup. This tracing writes a record of SIP events to a log file.

Follow these steps to start tracing a SIP container:

1. Open the administrative console. For more information about the console, read the Using the

administrative console chapter of the Administering applications and their environment PDF book.

2. In the administrative console, click Troubleshooting → Logs and trace.

3. Select the name of the server for the SIP container.

4. From the General Properties section, click Diagnostic Trace Service.

5. Under the Additional Properties section, click Change Log Detail Levels

6. Select one of the following options:

 Option Description

Configuration To start tracing after the next server startup

Runtime To start tracing immediately

7. Replace the content of the trace specification with the following code: com.ibm.ws.sip.*=all=enabled.

Note: If you want monitor only specific pieces of SIP containers, expand the com.ibm.ws.sip section

and select the individual items you wish to trace.

8. Make sure that the Enable trace with following specification check box is checked.

9. Click Apply → Save.

When the changes take effect (refer to step 6 above), SIP-level tracing messages appear in

WASProductDir/logs/serverName/trace.log, where WASProductDir is the fully qualified path name of the

directory in which the product is installed and serverName is the name of the specific instance of the

application server that is running the SIP container to be traced. These messages include application load

events as well as SIP request and response parsing and SIP servlet invocation.

© Copyright IBM Corp. 2006 235

236 Troubleshooting and support

Chapter 8. EJB applications

Unit testing with DB2

These steps describe how to setup a unit test environment that would allow you to develop and unit test

code with DB2 z/OS to support Container Managed Persistence (CMP) development and access DB2 test

data that resides on z/OS.

When using DB2 z/OS to support Container Managed Persistence (CMP) development and access DB2

test data that resides on z/OS, you should establish a testing environment to develop and unit test the

code. Perform the steps below to setup a test environment:

1. Configure DB2 Distributed Data Facility (DDF) on z/OS to allow remote TCP/IP connections from your

WebSphere Studio Application Developer workstation. See the DB2 Information Center for information

on DDF.

2. Install the DB2 Client Configuration Assistant on the workstation where WebSphere Studio Application

Developer is installed. The DB2 Client Configuration Assistant is shipped with DB2.

3. Use the DB2 Client Configuration Assistant to define a DB2 alias.

4. Use the DB2 alias you defined to access the DB2 subsystem on z/OS using the DB2 Distributed Data

Facility (DDF).

Access intent exceptions

The exceptions thrown in response to the application of access intent policies are listed.

com.ibm.ws.ejbpersistence.utilpm.PersistenceManagerException

If the method that drives the ejbLoad() method is configured to be read-only but updates are then

made within the transaction that loaded the bean’s state, an exception is thrown during invocation

of the ejbStore() method, and the transaction is rolled back. Likewise, the ejbRemove() method

cannot succeed in a transaction that is set as read-only. If an update hint is applied to methods of

entity beans with bean-managed persistence, the same behavior and exception results. The

forwarded exception object contains the message string PMGR1103E: update instance level read

only bean beanName

 This exception is also thrown if the applied access intent policy cannot be honored because a

finder, ejbSelect, or container-managed relationship (CMR) accessor method returns an inherently

read-only result. The forwarded exception object contains the message string PMGR1001: No such

DataAccessSpec - methodName

 The most common occurrence of this error is when a custom finder that contains a read-only EJB

Query Language (EJB QL) statement is called with an applied access intent of

wsPessimisticUpdate or wsPessimisticUpdate-Exclusive. These policies require the use of a USE

AND KEEP UPDATE LOCKS clause on the SQL SELECT statement to be executed, but a

read-only query cannot support USE AND KEEP UPDATE LOCKS. Other examples of read-only

queries include joins; the use of ORDER BY, GROUP BY, and DISTINCT keywords.

 To eliminate the exception, edit the EJB query so that it does not return an inherently read-only

result or change the access intent policy being applied.

v If an update access is required, change the applied access intent setting to

wsPessimisticUpdate-WeakestLockAtLoad or wsOptimisticUpdate.

v If update access is not truly required, use wsPessimisticRead or wsOptimisticRead.

v If connection sharing between entity beans is required, use wsPessimisticUpdate-
WeakestLockAtLoad or wsPessimisticRead.

com.ibm.websphere.ejb.container.CollectionCannotBeFurtherAccessed

If a lazy collection is driven after it is no longer in scope, and beyond what has already been

locally buffered, a CollectionCannotBeFurtherAccessed exception is thrown.

© Copyright IBM Corp. 2006 237

http://publib.boulder.ibm.com/infocenter/db2help/index.jsp

com.ibm.ws.exception.RuntimeWarning

If an application is configured incorrectly, a run-time warning exception is thrown as the application

starts; startup is ended. You can validate an application’s configuration by choosing the verify

function. Some examples of misconfiguration include:

v A method configured with two different access intent policies

v A method configured with an undefined access intent policy

Frequently asked questions: Access intent

The following frequently asked questions involving access intent are answered.

I have not applied any access intent policies at all. My application runs just fine with a DB2

database, but it fails with an Oracle database with the following message:

com.ibm.ws.ejbpersistence.utilpm.PersistenceManagerException: PMGR1001E: No such

DataAccessSpec :FindAllCustomers. The backend datastore does not support the SQLStatement

needed by this AccessIntent: (pessimistic update-weakestLockAtLoad)(collections: transaction/25)

(resource manager prefetch: 0) (AccessIntentImpl@d23690a). Why?

If you have not configured access intent, all of your data is accessed under the default access intent policy

(wsPessimisticUpdate-WeakestLockAtLoad). On DB2 the weakest lock is share. On Oracle databases,

however, the weakest lock is update; this means that the SQL query must contain a FOR UPDATE clause.

To avoid this problem, try to apply an access intent policy that supports optimistic concurrency.

I am calling a finder method and I get an InconsistentAccessIntentException at run time. Why?

This can occur when you use method-level access intent policies to apply more control over how a bean

instance is loaded. This exception indicates that the entity bean was previously loaded in the same

transaction. This could happen if you called a multifinder method that returned the bean instance with

access intent policy X applied; you are now trying to load the second bean again by calling its

findByPrimaryKey method with access intent Y applied. Both methods must have the same access intent

policy applied.

Likewise, if the entity was loaded once in the transaction using an access intent policy configured on a

finder, you might have called a container-managed relationship (CMR) accessor method that returned the

entity bean configured to load using that entity’s default access intent.

To avoid this problem, ensure that your code does not load the same bean instance twice within the same

transaction with different access intent policies applied. Avoid the use of method-level access intent unless

absolutely necessary.

I have two beans in a container-managed relationship. I call findByPrimaryKey() on the first bean

and then call getBean2(), a CMR accessor method, on the returned instance. At that point, I get an

InconsistentAccessIntentException. Why?

You are probably using read-ahead. When you loaded the first bean, you caused the second bean to be

loaded under the access intent policy applied to the finder method for the first bean. However, you have

configured your CMR accessor method from the first bean to the second with a different access intent

policy. CMR accessor methods are really finder methods in disguise; the run-time environment behaves as

if you were trying to change the access intent for an instance you have already read from persistent store.

To avoid this problem, beans configured in a read-ahead hint are all driven to load with the same access

intent policy as the bean to which the read-ahead hint is applied.

I have a bean with a one-to-many relationship to a second bean. The first bean has a

pessimistic-update intent policy applied. When I try to add an instance of the second bean to the

first bean’s collection, I get an UpdateCannotProceedWithIntegrityException. Why?

238 Troubleshooting and support

The second bean probably has a read intent policy applied. When you add the second bean to the first

bean’s collection, you are not updating the first bean’s state, you are implicitly modifying the second

bean’s state. (The second bean contains a foreign key to the first bean, which is modified.)

To avoid this problem, ensure that both ends of the relationship have an update intent policy applied if you

expect to change the relationship at run time.

Troubleshooting tips for EJBDEPLOY relationships

This article provides troubleshooting information for EJBDEPLOY problems.

DB2 for z/OS Version 7.x

Problems may exist when EJBDeploy creates a data relationship in DB2 for z/OS Version 7.x. EJBDeploy

creates a table with a composite of the two primary keys of the EJBs that are related to each other. If the

composite keys are larger than 254 characters, DB2 for z/OS V7.x will not accept this relationship and the

user will be confronted with errors such as:

DSNT408I SQLCODE = -613, ERROR: THE PRIMARY KEY OR A UNIQUE CONSTRAINT

IS TOO LONG OR HAS TOO MANY COLUMNS

DSNT418I SQLSTATE = 54008 SQLSTATE RETURN CODE

This problem can be seen when the primary keys that are created for the two related beans have primary

keys that are strings. This results in the composite being made up of 2 varchar(250) primary keys for a

total of 500, which is greater than 254 maximum in DB2 for z/OS version 7.x.

Things to consider when utilizing top-down mappings to ensure you do not experience this problem:

v Top-down mappings are a guideline and must be reviewed with the DBA.

v Schemas created ’top-down’ by EJBDeploy are designed only for testing, and as a guideline for the

actual schema required. The use of the ’meet-in-the-middle’ mapping does not present this problem.

v The composite key constraint problem is not experienced when using DB2 V8, which has 2K max key

lengths.

EJBDEPLOY_JVM_OPTIONS

Set the EJBDEPLOY_JVM_OPTIONS property to override Java virtual machine (JVM) options that are passed to

the code that deploys EJBs (ejbdeploy.sh). Set this property in one of the following locations:

deploymentmanager/bin/setupCmdLine.sh or appServerHome/bin/setupCmdLine.sh

For example, the following command increases the heap size of the JVM for ejbdeploy.sh:

export EJBDEPLOY_JVM_OPTIONS="-Xms128m -Xmx512m"

The converter that is defined for the primary key is not invoked on its foreign key

value

The mapping for primary key fields to database columns may use a converter to transform the key values.

If a container-managed persistence (CMP) bean uses a converter to map its primary key, and that bean

has a relationship where the bean at the other end holds a foreign key, the mapping for the foreign key will

not use the converter.

The following errors might occur, indicating that the converter defined for the primary key is not invoked on

its foreign key value. During the run of the ejbDeploy command , you receive the following message:

No type mapping defined for Java datatype1 to Database datatype2

During run time, the application does not find the CMP bean at the other end of the relationship.

Chapter 8. EJB applications 239

To work around this limitation, define your own foreign key in the database table, and create a mapping

that uses the same converter as defined for the primary key on the enterprise beans at the other end of its

relationship.

Enterprise bean and EJB container troubleshooting tips

If you are having problems starting an EJB container, or encounter error messages or exceptions that

appear to be generated on by an EJB container, follow these steps to resolve the problem:

v Use the Administrative Console to verify that the application server which hosts the container is running.

v Browse the logs for the application server which hosts the container. Look for the message server

server_name open for e-business in the server log files. If it does not appear, or if you see the

message problems occurred during startup, browse the server log files for details.

If none of these steps solves the problem, check to see if the problem is identified and documented using

the links in Diagnosing and fixing problems: Resources for learning. If you do not see a problem that

resembles yours, or if the information provided does not solve your problem, contact IBM support for

further assistance.

For current information available from IBM Support on known problems and their resolution, see the IBM

Support page.

IBM Support has documents that can save you time gathering information needed to resolve this problem.

Before opening a PMR, see the IBM Support page.

Error in client log: Missing jar file

The following error message appears in the client log file because a JAR file is missing from the classpath

on the client machine. The Object Request Broker (ORB) needs this file to unmarshal the nested

exception that is part of the EJB exception, returned by the server to the client application. For example, if

the EJB returns a DB2® JCC SQL exception nested inside of the EJB exception that it returns to the client,

the ORB is not able to unmarshal the nested exception if the db2jcc.jar file that contains the DB2 SQL

exception is not in the client classpath.

java.rmi.MarshalException: CORBA MARSHAL 0x4942f89a No; nested exception is:

org.omg.CORBA.MARSHAL: Unable to read value

from underlying bridge : Custom marshaling (4) Sender’s class does not match

local class vmcid: 0x4942f000 minor code: 2202 completed: No*

To avoid this error, include the JAR file that contains the class for the nested exception that is returned in

the EJB exception.

Cannot access an enterprise bean from a servlet, a JSP file, a

stand-alone program, or another client

This article provides troubleshooting tips for problems related to accessing enterprise beans.

What kind of error are you seeing?

v javax.naming.NameNotFoundException: Name name not found in context ″local″ message when

access is attempted

v BeanNotReentrantException is thrown

v CSITransactionRolledbackException / TransactionRolledbackException is thrown

v Call fails, Stack trace beginning EJSContainer E Bean method threw exception [exception_name]

found in JVM log file.

v Call fails, ObjectNotFoundException or ObjectNotFoundLocalException when accessing stateful

session EJB found in JVM log file.

240 Troubleshooting and support

http://www-1.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCMPAH
http://www-1.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCMPAH
http://www-1.ibm.com/support/search.wss?tc=SSEQTP&tc1=SSCMPAH&rs=180&q=mustgather

v Attempt to start CMP EJB module fails with javax.naming.NameNotFoundException:

dataSourceName

v

v Message BBOT0003W is issued

v Symptom: CNTR0001W: A Stateful SessionBean could not be passivated

If the client is remote to the enterprise bean, which means, running in a different application server or as a

stand-alone client, browse the logs of the application server hosting the enterprise bean as well as log files

of the client.

ObjectNotFoundException or ObjectNotFoundLocalException when accessing

stateful session EJB

A possible cause of this problem is that the stateful session bean timed out and was removed by the

container. This event must be addressed in the code, according to the EJB 2.1 specification (available at

http://java.sun.com/products/ejb/docs.html), section 7.6.2, Dealing with exceptions.

Stack trace beginning ″EJSContainer E Bean method threw exception

[exception_name]″ found in JVM log file

If the exception name indicates an exception thrown by an IBM class that begins with ″com.ibm...″, then

search for the exception name within the information center, and in the online help as described below. If

″exception name″ indicates an exception thrown by your application, contact the application developer to

determine the cause.

javax.naming.NameNotFoundException: Name name not found in context ″local″

A possible reason for this exception is that the enterprise bean is not local (not running in the same Java

virtual machine [JVM] or application server) to the client JSP, servlet, Java application, or other enterprise

bean, yet the call is to a ″local″ interface method of the enterprise bean . If access worked in a

development environment but not when deployed to WebSphere Application Server, for example, it might

be that the enterprise bean and its client were in the same JVM in development, but are in separate

processes after deployment.

To resolve this problem, contact the developer of the enterprise bean and determine whether the client call

is to a method in the local interface for the enterprise bean. If so, have the client code changed to call a

remote interface method, or to promote the local method into the remote interface.

References to enterprise beans with local interfaces are bound in a name space local to the server

process with the URL scheme of local:.

BeanNotReentrantException is thrown

This problem can occur because client code (typically a servlet or JSP file) is attempting to call the same

stateful SessionBean from two different client threads. This situation often results when an application

stores the reference to the stateful session bean in a static variable, uses a global (static) JSP variable to

refer to the stateful SessionBean reference, or stores the stateful SessionBean reference in the HTTP

session object. The application then has the client browser issue a new request to the servlet or JSP file

before the previous request has completed.

To resolve this problem, ask the developer of the client code to review the code for these conditions.

Chapter 8. EJB applications 241

http://java.sun.com/products/ejb/docs.html

CSITransactionRolledbackException / TransactionRolledbackException is thrown

An enterprise bean container creates these high-level exceptions to indicate that an enterprise bean call

could not successfully complete. When this exception is thrown, browse the logs to determine the

underlying cause.

Some possible causes include:

v The enterprise bean might throw an exception that was not declared as part of its method signature.

The container is required to roll back the transaction in this case. Common causes of this situation are

where the enterprise bean or code that it calls creates a NullPointerException,

ArrayIndexOutOfBoundsException, or other Java runtime exception, or where a BMP bean encounters a

JDBC error. The resolution is to investigate the enterprise bean code and resolve the underlying

exception, or to add the exception to the problem method signature.

v A transaction might attempt to do additional work after being placed in a ″Marked Rollback″,

″RollingBack″, or ″RolledBack″ state. Transactions cannot continue to do work after they are set to one

of these states. This situation occurs because the transaction has timed out which, often occurs

because of a database deadlock. Work with the application database management tools or

administrator to determine whether database transactions called by the enterprise bean are timing out.

v A transaction might fail on commit due to dangling work from local transactions. The local transaction

encounters some ″dangling work″ during commit. When a local transactions encounters an ″unresolved

action″ the default action is to ″rollback″. You can adjust this action to ″commit″ in an assembly tool.

Open the enterprise bean .jar file (or the EAR file containing the enterprise bean) and select the

Session Beans or Entity Beans object in the component tree on the left. The Unresolved Action property

is on the IBM Extensions tab of the container properties.

Attempt to start EJB module fails with ″javax.naming.NameNotFoundException

dataSourceName_CMP″exception

This problem can occur because:

v When the DataSource resource was configured, container managed persistence was not selected.

– To confirm this problem, in the administrative console, browse the properties of the data source given

in the NameNotFoundException. On the Configuration panel, look for a check box labeled Container

Managed Persistence.

– To correct this problem, select the check box for Container Managed Persistence.
v If container managed persistence is selected, it is possible that the CMP DataSource could not be

bound into the namespace.

– Look for additional naming warnings or errors in the status bar, and in the hosting application server

logs. Check any further naming-exception problems that you find by looking at the topic “Cannot look

up an object hosted by WebSphere Application Server from a servlet, JSP file, or other client” on

page 430.

Message BBOT0003W is issued

Message BBOT0003W indicates a transaction timeout. The timeout might result in the abnormal

termination of the servant where the transaction is running.

v The default timeout value for enterprise bean transactions is 120 seconds. After this time, the

transaction times out and the connection closes.

v If the transaction legitimately takes longer than the specified timeout period, on the administrative

console:

1. Go to Manage Application Servers > server_name

2. Select the Transaction Service properties page

3. Increase the Total transaction lifetime timeout value

4. Save the configuration

242 Troubleshooting and support

Note: z/OS will use the value you set for Total transaction lifetime timeout as the default transaction

timeout setting. If you set a value for this property that is greater than the maximum transaction

timeout value, z/OS will use the maximum transaction timeout value as the default.

Symptom:CNTR0001W: A Stateful SessionBean could not be passivated

This error can occur when a Connection object used in the bean is not closed or nulled out.

To confirm this is the problem, look for an exception stack in the logs for the EJB container that hosts the

enterprise bean, and looks similar to:

StatefulPassi W CNTR0001W:

A Stateful SessionBean could not be passivated: StatefulBeanO

(BeanId(XXX#YYY.jar#ZZZZ),

state = PASSIVATING)

java.io.NotSerializableException: com.ibm.ws.rsadapter.jdbc.WSJdbcConnection

 at java.io.ObjectOutputStream.outputObject((Compiled Code))

 at java.io.ObjectOutputStream.writeObject(ObjectOutputStream.java(Compiled Code))

 at java.io.ObjectOutputStream.outputClassFields((Compiled Code))

 at java.io.ObjectOutputStream.defaultWriteObject((Compiled Code))

 at java.io.ObjectOutputStream.outputObject((Compiled Code))

 at java.io.ObjectOutputStream.writeObject(ObjectOutputStream.java(Compiled Code))

 at com.ibm.ejs.container.passivator.StatefulPassivator.passivate((Compiled Code))

 at com.ibm.ejs.container.StatefulBeanO.passivate((Compiled Code)

 at com.ibm.ejs.container.activator.StatefulASActivationStrategy.atUnitOfWorkEnd

 ((Compiled Code))

 at com.ibm.ejs.container.activator.Activator.unitOfWorkEnd((Compiled Code))

 at com.ibm.ejs.container.ContainerAS.afterCompletion((Compiled Code)

where XXX,YYY,ZZZ is the Bean’s name.

To correct this problem, the application must close all connections and set the reference to null for all

connections. Typically this activity is done in the ejbPassivate() method of the bean. See the enterprise

bean specification mandating this requirement, specifically section 7.4 in the EJB specification Version 2.1.

Also, note that the bean must have code to reacquire these connections when the bean is reactivated.

Otherwise, there are NullPointerExceptions when the application tries to reuse the connections.

Important file for message-driven beans

The server_name-durableSubscriptions.ser file in the WAS_HOME/temp directory is important for the

operation of the WebSphere Application Server messaging service, so should not be deleted.

If you do need to delete the WAS_HOME/temp directory or other files in it, ensure that you preserve the

following file:

server_name-durableSubscriptions.ser

You should not delete this file, because the messaging service uses it to keep track of durable

subscriptions for message-driven beans. If you uninstall an application that contains a

message-driven bean, this file is used to unsubscribe the durable subscription.

Chapter 8. EJB applications 243

244 Troubleshooting and support

Chapter 9. Client applications

A client program does not work

What kind of problem are you seeing?

ActiveX client fails to display ASP files, or WebSphere Application Server

resources (JSP files, servlet, or HTML pages) or both

A possible cause of this problem is that both IIS for serving Active Server Pages (ASP) files and an HTTP

server that supports WebSphere Application Server (such as IBM HTTP Server) are deployed on the same

host. This deployment leads to misdirected HTTP traffic if both servers are listening on the same port

(such as the default port 80).

To resolve this problem, either:

v Open the IIS administrative panel, and edit the properties of the default Web server to change the port

number to a value other than 80

v Install IIS and the HTTP server on separate servers.

For current information available from IBM Support on known problems and their resolution, see the IBM

Support page.

IBM Support has documents that can save you time gathering information needed to resolve this problem.

Before opening a PMR, see the IBM Support page.

Client exceptions - debugging tips

This article provides debugging tips for working with client exception errors.

Start with the client and work your way backward to find the problem. When tracing exceptions back to the

original problem, be aware that the RMI/IIOP protocol requires that some exceptions undergo conversion

from one type to another as the exception passes through the runtime. Usually this transformation is

between CORBA::SystemExceptions and RMI RemoteExceptions. Pay special attention to the

CORBA::SystemException minor codes which indicate that a type transformation has occurred.

 Caused by: System exception (thrown by runtime) User exception (thrown by application code)

Look for: v CEEDUMPs in controller (region) or

servant (region). These dumps indicate

that the runtime had an error

v JRAS error log entries, which can narrow

the error down the exception to a specific

function within the runtime

v CEEDUMPs

v JRAS error log entries and traces

Actions: v Look at the minor code that is listed.

v Look for fixes that address similar

symptoms or minor codes.

v System exceptions usually represent the

detection of an unexpected error, and

therefore (unless directed by the

documentation of the minor code) will often

require IBM assistance to identify the

problem.

v Look at your application for any sign of

error.

v Look for system failures, such as a

system exception in the controller (region).

If you find a system exception, follow the

steps to the left for diagnosing a system

exception.

© Copyright IBM Corp. 2006 245

http://www-1.ibm.com/support/search.wss?tc=SSEQTP&tc1=SSC3NAD&rs=180
http://www-1.ibm.com/support/search.wss?tc=SSEQTP&tc1=SSC3NAD&rs=180
http://www-1.ibm.com/support/search.wss?tc=SSEQTP&tc1=SSC3NAD&rs=180&q=mustgather

Application client troubleshooting tips

This topic provides debugging tips for resolving common Java 2 Platform Enterprise Edition (J2EE)

application client problems. To use this troubleshooting guide, review the trace entries for one of the J2EE

application client exceptions, and then locate the exception in the guide.

Some of the errors in the guide are samples, and the actual error you receive can be different than what is

shown here. You might find it useful to rerun the launchClient command specifying the -CCverbose=true

option. This option provides additional information when the J2EE application client run time is initializing.

Error: java.lang.NoClassDefFoundError

 Explanation This exception is thrown when Java code cannot load the specified class.

Possible causes v Invalid or non-existent class

v Class path problem

v Manifest problem

Recommended

response

Check to determine if the specified class exists in a Java Archive (JAR) file within your

Enterprise Archive (EAR) file. If it does, make sure the path for the class is correct. For

example, if you get the exception:

java.lang.NoClassDefFoundError:

WebSphereSamples.HelloEJB.HelloHome

verify that the HelloHome class exists in one of the JAR files in your EAR file. If it exists,

verify that the path for the class is WebSphereSamples.HelloEJB.

If both the class and path are correct, then it is a class path issue. Most likely, you do not

have the failing class JAR file specified in the client JAR file manifest. To verify this situation,

perform the following steps:

1. Open your EAR file with the Application Server Toolkit or the Rational Web Developer

assembly tool, and select the Application Client.

2. Add the names of the other JAR files in the EAR file to the Classpath field.

This exception is generally caused by a missing Enterprise Java Beans (EJB) module name

from the Classpath field.

If you have multiple JAR files to enter in the Classpath field, be sure to separate the JAR

names with spaces.

If you still have the problem, you have a situation where a class is loaded from the file

system instead of the EAR file. This error is difficult to debug because the offending class is

not the one specified in the exception. Instead, another class is loaded from the file system

before the one specified in the exception. To correct this error, review the class paths

specified with the -CCclasspath option and the class paths configured with the Application

Client Resource Configuration Tool, or the Client Container Resource Configuration Scripting

tool for z/OS. Look for classes that also exist in the EAR file. You must resolve the situation

where one of the classes is found on the file system instead of in the .ear file. Remove

entries from the classpaths, or include the .jar files and classes in the .ear file instead of

referencing them from the file system.

If you use the -CCclasspath parameter or resource classpaths in the Application Client

Resource Configuration Tool, or the Client Container Resource Configuration Scripting tool for

z/OS, and you have configured multiple JAR files or classes, verify they are separated with

the correct character for your operating system. Unlike the Classpath field, these class path

fields use platform-specific separator characters, usually a colon (on operating systems such

as AIX or Linux) or a semi-colon (on Windows systems).

Note: The system class path is not used by the Application Client run time if you use the

launchClient batch or shell files. In this case, the system class path would not cause this

problem. However, if you load the launchClient class directly, you do have to search through

the system class path as well.

246 Troubleshooting and support

Error: com.ibm.websphere.naming.CannotInstantiateObjectException: Exception

occurred while attempting to get an instance of the object for the specified

reference object. [Root exception is javax.naming.NameNotFoundException:

xxxxxxxxxx]

 Explanation This exception occurs when you perform a lookup on an

object that is not installed on the host server. Your

program can look up the name in the local client Java

Naming and Directory Interface (JNDI) name space, but

received a NameNotFoundException exception because it

is not located on the host server. One typical example is

looking up an EJB component that is not installed on the

host server that you access. This exception might also

occur if the JNDI name you configured in your Application

Client module does not match the actual JNDI name of

the resource on the host server.

Possible causes v Incorrect host server invoked

v Resource is not defined

v Resource is not installed

v Application server is not started

v Invalid JNDI configuration

Recommended response If you are accessing the wrong host server, run the

launchClient command again with the -CCBootstrapHost

parameter specifying the correct host server name. If you

are accessing the correct host server, use the product

dumpnamespace command line tool to see a listing of the

host server JNDI name space. If you do not see the failing

object name, the resource is either not installed on the

host server or the appropriate application server is not

started. If you determine the resource is already installed

and started, your JNDI name in your client application

does not match the global JNDI name on the host server.

Use the Application Server Toolkit to compare the JNDI

bindings value of the failing object name in the client

application to the JNDI bindings value of the object in the

host server application. The values must match.

Error: javax.naming.ServiceUnavailableException: A communication failure

occurred while attempting to obtain an initial context using the provider url:

″iiop://[invalidhostname]″. Make sure that the host and port information is correct

and that the server identified by the provider URL is a running name server. If no

port number is specified, the default port number 2809 is used. Other possible

causes include the network environment or workstation network configuration.

Root exception is org.omg.CORBA.INTERNAL: JORB0050E: In

Profile.getIPAddress(), InetAddress.getByName[invalidhostname] threw an

UnknownHostException. minor code: 4942F5B6 completed: Maybe

 Explanation This exception occurs when you specify an invalid host

server name.

Possible causes v Incorrect host server invoked

v Invalid host server name

Recommended response Run the launchClient command again and specify the

correct name of your host server with the

-CCBootstrapHost parameter.

Chapter 9. Client applications 247

Error: javax.naming.CommunicationException: Could not obtain an initial context

due to a communication failure. Since no provider URL was specified, either the

bootrap host and port of an existing ORB was used, or a new ORB instance was

created and initialized with the default bootstrap host of ″localhost″ and the

default bootstrap port of 2809. Make sure the ORB bootstrap host and port resolve

to a running name server. Root exception is org.omg.CORBA.COMM_FAILURE:

WRITE_ERROR_SEND_1 minor code: 49421050 completed: No

 Explanation This exception occurs when you run the launchClient

command to a host server that does not have the

Application Server started. You also receive this exception

when you specify an invalid host server name. This

situation might occur if you do not specify a host server

name when you run the launchClient tool. The default

behavior is for the launchClient tool to run to the local

host, because WebSphere Application Server does not

know the name of your host server. This default behavior

only works when you are running the client on the same

machine with WebSphere Application Server is installed.

Possible causes v Incorrect host server invoked

v Invalid host server name

v Invalid reference to localhost

v Application server is not started

v Invalid bootstrap port

Recommended response If you are not running to the correct host server, run the

launchClient command again and specify the name of

your host server with the -CCBootstrapHost parameter.

Otherwise, start the Application Server on the host server

and run the launchClient command again.

Error: javax.naming.NameNotFoundException: Name comp/env/ejb not found in

context ″java:″

 Explanation This exception is thrown when the Java code cannot

locate the specified name in the local JNDI name space.

Possible causes v No binding information for the specified name

v Binding information for the specified name is incorrect

v Wrong class loader was used to load one of the

program classes

v A resource reference does not include any client

configuration information

v A client container on the deployment manager is trying

to use enterprise extensions (not supported)

Recommended response Open the EAR file with the Application Server Toolkit, and

check the bindings for the failing name. Ensure this

information is correct. If you are using Resource

References, open the EAR file with the Application Client

Resource Configuration Tool, and verify that the Resource

Reference has client configuration information and the

name of the Resource Reference exactly matches the

JNDI name of the client configuration. If the values are

correct, you might have a class loader error. For detailed

information about the configuration tool and opening EAR

files, read the Starting the Application Client Resource

Configuration Tool in the Developing and deploying

applications PDF book.

248 Troubleshooting and support

Error: java.lang.ClassCastException: Unable to load class:

org.omg.stub.WebSphereSamples.HelloEJB._HelloHome_Stub at

com.ibm.rmi.javax.rmi.PortableRemoteObject.narrow(portableRemoteObject.java:269)

 Explanation This exception occurs when the application program

attempts to narrow to the EJB home class and the class

loaders cannot find the EJB client side bindings.

Possible causes v The files, *_Stub.class and _Tie.class, are not in the

EJB .jar file

v Class loader could not find the classes

Recommended response Look at the EJB .jar file located in the .ear file and verify

the class contains the Enterprise Java Beans (EJB) client

side bindings. These are class files with file names that

end in _Stub and _Tie. If the binding classes are in the

EJB .jar file, then you might have a class loader error.

Error: WSCL0210E: The Enterprise archive file [EAR file name] could not be found.

com.ibm.websphere.client.applicationclient.ClientContainerException:

com.ibm.etools.archive.exception.OpenFailureException

 Explanation This error occurs when the application client run time

cannot read the Enterprise Archive (EAR) file.

Possible causes The most likely cause of this error is that the system

cannot find the EAR file cannot be found in the path

specified on the launchClient command.

Recommended response Verify that the path and file name specified on the

launchclient command are correct. If you are running on

the Windows operating system and the path and file name

are correct, use a short version of the path and file name

(8 character file name and 3 character extension).

The launchClient command appears to hang and does not return to the command

line when the client application has finished.

 Explanation When running your application client using the

launchClient command the WebSphere Application

Server run time might need to display the security login

dialog. To display this dialog, WebSphere Application

Server run time creates an Abstract Window Toolkit (AWT)

thread. When your application returns from its main

method to the application client run time, the application

client run time attempts to return to the operating system

and end the Java virtual machine (JVM) code. However,

since there is an AWT thread, the JVM code will not end

until System.exit is called.

Possible causes The JVM code does not end because there is an AWT

thread. Java code requires that System.exit() be called

to end AWT threads.

Recommended response v Modify your application to call System.exit(0) as the

last statement.

v Use the -CCexitVM=true parameter when you call the

launchClient command.

Chapter 9. Client applications 249

The applet client application client fails to launch an HTML browser in Internet

Explorer

 Explanation Applet client applications run only on Windows systems.

When the applet client application runs, the application

output data is displayed in a browser window. If you are

using Internet Explorer with the Windows XP operating

system for Service Pack 2 , then you might get errors

when trying to display output data.

Possible causes The Windows XP operating system for Service Pack 2 has

a security feature that blocks pop-up browser windows

from appearing.

Recommended response v Locate the information bar found under the URL

Address bar in the Internet Explorer pop-up browser

that has been blocked.

v Click the Information Bar to display options that disable

the operating system security feature.

v Select Allow blocked content. You are prompted with

a security window asking you to confirm your selection

to allow blocked content.

v Click Yes.

v The applet client application runs successfully, and the

browser information is displayed appropriately.

Installing the Developer Kit feature downgrades the JRE files from Version 6.0.1 or

Version 6.0.2 to Version 6.0

 Explanation If you select the Developer Kit feature on the Application

Client Version 6.0.0 installer, all the files are installed

under the <client_install_root>/java directory, instead of

leaving the Java Runtime Environment (JRE) files intact.

The JRE files are unexpectedly downgraded to the

Version 6.0.0 level.

Possible causes Selecting the Developer Kit feature on the Application

Client 6.0.0 installer will actually install all files under the

<client_install_root>/java directory rather than leave the

JRE files intact. Therefore, the JRE files are unexpected

downgraded to the 6.0.0 level in the above installation

scenario.

Recommended response Complete the following installation steps to prevent

unexpected downgrading of the JRE files.

IBM Support has documents and tools that can save you time gathering information needed to resolve

problems as described in “Troubleshooting help from IBM” on page 188. Before opening a problem report,

see the Support page:

v http://www.ibm.com/software/webservers/appserv/zos_os390/support/

250 Troubleshooting and support

http://www.ibm.com/software/webservers/appserv/zos_os390/support/

Chapter 10. Web services

SYSPRINT output, STDOUT and STDERR streams in an HFS File

If you are familiar with UNIX or NT environments, you may be reluctant to use the facilities of SDSF (or

IOF) to view the SYSPRINT or SYSOUT output from your WebSphere Application Server regions. If you

would rather use a familiar editor (such as vi) in a Telnet session to view your output, it is possible to

redirect the SYSPRINT and SYSOUT outputs to files in an HFS.

The JCL below shows how to modify the SYSPRINT DD card in your startup procedure to redirect the

output to an HFS file. The old SYSPRINT DD card has been commented out by preceding it with /*, and a

new SYSPRINT DD card points to a file in the ″/myDir/myServer″ directory, in this case named

was.log.d&LYYMMDD..t&LHHMMSS.log. The extra period between the date and time variables is not a

typographical error, but rather an instance of JCL syntax that is necessary to terminate the first variable.

&LYYMMDD will be replaced with the local date in YYMMDD format and &LHHMMSS will be replaced by

the local time in HHMMSS format. The PATHMODE subparameter sets the file mode to 775 and the

PATHOPTS subparameter OWRONLY opens the file for WRITE access. The sub-parameter OCREAT

indicates that if the file does not already exist, create it.

You can modify the SYSPRINT DD card in either your Servant or Controller startup procedure. In addition,

the SYSOUT DD card can be modified in the same way to redirect the SYSOUT output.

//*YSPRINT DD SYSOUT=*,SPIN=UNALLOC,FREE=CLOSE

//SYSPRINT DD PATHMODE=(SIRWXU,SIRWXG,SIROTH),

// PATHOPTS=(OWRONLY,OCREAT),

// PATH=’/myDir/myServer/was.log.d&LYYMMDD..t&LHHMMSS’

Troubleshooting Web services

This topic provides an entry into the topics available to learn about ways that you can troubleshoot Web

services applications.

This topic provides information for you to troubleshoot during different steps of the development, assembly,

deployment, and security processes of a Web service.

Select the Web services topic area that you want to troubleshoot:

v Command-line tools

This topic provides information on troubleshooting the WSDL2Java command-line tool and the

Java2WSDL command-line tool.

v Java compiler errors

This topic discusses troubleshooting compiled bindings of Web services.

v Serialization or deserialization errors

This topic presents problems you might encounter performing serialization and deserialization in Web

services.

v Authentication challenges and authorization failures with Web services security

This topic discusses troubleshooting authentication and authorization when you are securing Web

services.

Troubleshooting Web services command-line tools

This topic discusses troubleshooting the WSDL2Java and Java2WSDL command-line tools that are used

when you develop Web services.

Each section in this topic is a problem that you might experience while using the WSDL2Java or

Java2WSDL tool. A solution is provided to help you troubleshoot the problem.

© Copyright IBM Corp. 2006 251

The .Net client does not reflect a Web service method with Vector-type parameters

The following exception displays when running the .NET client for a Web service:

System.InvalidOperationException: Method AnnuityInteropService.wsListAnnuityByHolder can not be reflected.

System.InvalidOperationException: There was an error reflecting wsListAnnuityByHolderResult.

System.InvalidOperationException: The Form property might not be unqualified when an explicit namespace

property is available.

The problem is exposed when the server-side method returns a Vector and the style of the Web Services

Description Language (WSDL) file is document/literal and the Form is unqualified. The unqualified Form is

always generated for the document/literal style because elementFormDefault=″unqualified″ by default.

A problem exists in the .NET framework that can generate a Web service proxy class that is not valid

when your Web service methods contain certain arrays as parameters. The framework adds an

XmlArrayAttribute attribute to the parameter, and the attribute constructor contains an ″Form=Unqualified″

and a namespace definition. While the attribute is valid, it is not valid to combine these two aspects of the

attribute, causing the System.InvalidOperationException exception.

To avoid this problem, do not use Vector parameters in a Web service method that is deployed into

WebSphere Application Server. Vector parameters in a Web service method do not work with a .Net client

or a Java collection type.

Error with the Endpoint Enabler tool on a Hyper Threading-enabled machine

When you run the Endpoint Enabler tool on a Hyper Threading-enabled machine, an error is reported in

the Tasks view against the Enterprise Application project. The Enterprise Application project cannot be

deleted until you restart the workbench.

This problem can occur if a race condition exists between the automatic build and the Enterprise

JavaBeans (EJB) project validator.

To resolve the problem, turn off the workbench automatic build before running the Endpoint Enabler tool,

and turn it back on afterwards.

Multiprotocol port component restrictions with JSR109 Version 1.0 and 1.1

Java Specification Requests (JSR) 109 specification validation errors occur when deploying an enterprise

archive (EAR) file that contains a WSDL file with http, jms and ejb bindings generated by the

Java2WSDL command-line tool.

The JSR 109 specification requires each port component defined in the webservices.xml deployment

descriptor file to refer to unique <servlet-class> elements in web.xml file for a JavaBeans implementation,

or a unique <session> element in ejb-jar.xml file for an EJB implementation. The servlet and session

EJB are located in the webservices.xml file represented by <servlet-link> or <ejb-link> element.

The WSDL2Java command-line tool maps the ports found in a WSDL file to port components that are in

the generated webservices.xml file. If a single Web service has multiple bindings, in addition to a port for

each of these bindings, the webservices.xml file contains multiple port components that should all point to

the same EJB module(<session>) or JavaBeans (<servlet-class>) implementation. Because of the JSR

109 restrictions, the webservices.xml file is not valid and errors can occur during the deployment process.

The following example displays the error:

Error in <module> : CHKW6030E: Implementation class <class> referred to by port

components<port1> and <port2>. (JSR109 1.0: 7.1.2).

Here is the error with sample data:

252 Troubleshooting and support

Error in WebSvcsInSession20EJB.jar : CHKW6030E: Implementation class WSMultiProtocol

referred to by port components WSMultiProtocolJMS and WSMultiProtocolEJB.(JSR109 1.0: 7.1.2).

You can work around the restriction by creating multiple <session> EJB definitions within the ejb-jar.xml

file that all point to the same implementation class, home interface and remote interface. You can still use

the same classes, but the ejb-jar.xml file <session> definitions that reference the classes and the

interfaces must be duplicated.

The following is an example of the webservices.xml file. Look for the classes and interfaces:

<webservices>

 <webservice-description>

 <webservice-description-name>WSMultiProtocolService</webservice-description-name>

 <wsdl-file>META-INF/wsdl/WSMultiProtocol.wsdl</wsdl-file>

 <jaxrpc-mapping file>META-INF/WSMultiProtocol_mapping.xml</jaxrpc-mapping file>

 <port-component>

 <port-component-name>WSMultiProtocolEjb</port-component-name>

 <wsdl-port>

 <namespaceURI>http://ejb.pli.tc.wssvt.ibm.com</namespaceURI>

 <localpart>WSMultiProtocolEjb</localpart>

 </wsdl-port>

 <service-endpoint-interface>com.ibm.wssvt.tc.pli.ejb.WSMultiProtocol

 </service-endpoint-interface>

 <service-impl-bean>

 <ejb-link>WSMultiProtocol</ejb-link>

 </service-impl-bean>

 </port-component>

 <port-component>

 <port-component-name>WSMultiProtocolJMS</port-component-name>

 <wsdl-port>

 <namespaceURI>http://ejb.pli.tc.wssvt.ibm.com</namespaceURI>

 <localpart>WSMultiProtocolJMS</localpart>

 </wsdlport>

 <service-endpoint-interface>com.ibm.wssvt.tc.pli.ejb.WSMultiProtocol

 </service-endpoint-interface>

 <service-impl-bean>

 <ejb-link>WSMultiProtocol_2</ejb-link>

 </service-impl_bean>

 </port-component>

 <port-component>

 <port-component-name>WSMultiProtocolJMS</port-component-name>

 <wsdl-port>

 <namespaceURI>http://ejb.pli.tc.wssvt.ibm.com</namespaceURI>

 <localpart>WSMultiProtocolJMS</localpart>

 </wsdlport>

 <service-endpoint-interface>com.ibm.wssvt.tc.pli.ejb.WSMultiProtocol

 </service-endpoint-interface>

 <service-impl-bean>

 <ejb-link>WSMultiProtocol_3</ejb-link>

 </service-impl_bean>

 </port-component>

 </webservice-description>

</webservices>

The following is an example of the ejb-jar.xml file. Look for the classes and interfaces, and how they are

duplicated:

<ejb-jar-id="ejb-jar_ID">

 <display-name>WebSvcsInsSession20EJB</display-name>

 <enterprise-beans>

 <session-id="WSMultiProtocol">

 <ejb-name>WSMultiProtocol</ejb-name>

 <home>com.ibm.wssvt.tc.pli.ejb.WSMultiProtocolHome</home>

 <remote>com.ibm.wssvt.tc.pli.ejb.WSMultiProtocol</remote>

 <ejb-class>com.ibm.wssvt.tc.pli.ejb.WSMultiProtocolWebSvcsBean</ejb-class>

 <session-type>Stateless</session-type>

Chapter 10. Web services 253

<transaction-type>Container</transaction-type>

 <ejb-ref-id="EjbRef_1082407586720">

 <description></description>

 <ejb-ref-name>ejb/BeneficiarySession</ejb-ref-name>

 <ejb-ref-type>Session</ejb-ref-type>

 <home>com.ibm.wssvt.tc.pli.ejb.BeneficiarySessionHome</home>

 <remote>com.ibm.wssvt.tc.pli.ejb.BeneficiarySession</remote>

 <ejb-link>PolicySession20EJB.jar#BeneficiarySession</ejb-link>

 </ejb-ref>

 <ejb-ref-id="EjbRef_1082407586790">

 <description></description>

 <ejb-ref-name>ejb/PolicySession</ejb-ref-name>

 <ejb-ref-type>Session</ejb-ref-type>

 <home>com.ibm.wssvt.tc.pli.ejb.PolicySessionHome</home>

 <remote>com.ibm.wssvt.tc.pli.ejb.PolicySession</remote>

 <ejb-link>PolicySession20EJB.jar#PolicySession</ejb-link>

 </ejb-ref>

 <session-id="WSMultiProtocol_2">

 <ejb-name>WSMultiProtocol_2</ejb-name>

 <home>com.ibm.wssvt.tc.pli.ejb.WSMultiProtocolHome</home>

 <remote>com.ibm.wssvt.tc.pli.ejb.WSMultiProtocol</remote>

 <ejb-class>com.ibm.wssvt.tc.pli.ejb.WSMultiProtocolWebSvcsBean</ejb-class>

 <session-type>Stateless</session-type>

 <transaction-type>Container</transaction-type>

 <ejb-ref-id="EjbRef_1082407586720_2">

 <description></description>

 <ejb-ref-name>ejb/BeneficiarySession</ejb-ref-name>

 <ejb-ref-type>Session</ejb-ref-type>

 <home>com.ibm.wssvt.tc.pli.ejb.BeneficiarySessionHome</home>

 <remote>com.ibm.wssvt.tc.pli.ejb.BeneficiarySession</remote>

 <ejb-link>PolicySession20EJB.jar#BeneficiarySession</ejb-link>

 </ejb-ref>

 <ejb-ref-id="EjbRef_1082407586790_2">

 <description></description>

 <ejb-ref-name>ejb/PolicySession</ejb-ref-name>

 <ejb-ref-type>Session</ejb-ref-type>

 <home>com.ibm.wssvt.tc.pli.ejb.PolicySessionHome</home>

 <remote>com.ibm.wssvt.tc.pli.ejb.PolicySession</remote>

 <ejb-link>PolicySession20EJB.jar#PolicySession</ejb-link>

 </ejb-ref>

 <session-id="WSMultiProtocol_3">

 <ejb-name>WSMultiProtocol_3</ejb-name>

 <home>com.ibm.wssvt.tc.pli.ejb.WSMultiProtocolHome</home>

 <remote>com.ibm.wssvt.tc.pli.ejb.WSMultiProtocol</remote>

 <ejb-class>com.ibm.wssvt.tc.pli.ejb.WSMultiProtocolWebSvcsBean</ejb-class>

 <session-type>Stateless</session-type>

 <transaction-type>Container</transaction-type>

 <ejb-ref-id="EjbRef_1082407586790_3">

 <description></description>

 <ejb-ref-name>ejb/BeneficiarySession</ejb-ref-name>

 <ejb-ref-type>Session</ejb-ref-type>

 <home>com.ibm.wssvt.tc.pli.ejb.BeneficiarySessionHome</home>

 <remote>com.ibm.wssvt.tc.pli.ejb.BeneficiarySession</remote>

 <ejb-link>PolicySession20EJB.jar#BeneficiarySession</ejb-link>

 </ejb-ref>

 <ejb-ref-id="EjbRef_1082407586790_3">

 <description></description>

 <ejb-ref-name>ejb/PolicySession</ejb-ref-name>

 <ejb-ref-type>Session</ejb-ref-type>

 <home>com.ibm.wssvt.tc.pli.ejb.PolicySessionHome</home>

 <remote>com.ibm.wssvt.tc.pli.ejb.PolicySession</remote>

254 Troubleshooting and support

<ejb-link>PolicySession20EJB.jar#PolicySession</ejb-link>

 </ejb-ref>

 </session>

Avoiding application errors after uninstalling an interim fix, a fix pack, or a refresh pack

If an application uses functions that are provided by a particular fix and you remove the fix, the application

displays an error message. If you remove a fix, make sure that you retest your applications to check for

errors. Redeploy any applications that display an error message because of the missing fix.

For example, suppose you install a fix pack on WebSphere Application Server and you create the stock

quote Web service, StockQuote. The WSDL2Java command-line tool is used in a deployer role and

generates a ServiceLocator class that extends the AgnosticService class.

If you uninstall the fix pack, the application is using a new Web services class (AgnosticService) that the

version of WebSphere Application Server does not support. The application throws the following error:

java.lang.NoClassDefFoundError:

 Error while defining class:

 com.ibm.ws.wsfvt.test.stockquote.StockQuoteServiceLocator

 This error indicates that the class:

 com.ibm.webservices.multiprotocol.AgnosticService

 could not be located while defining the class:

 com.ibm.ws.wsfvt.test.stockquote.StockQuoteServiceLocator

You need to redeploy the application on the WebSphere Application Server to emit code that does not use

the WebSphere Application Server version that is not supported by the Web services class that you use.

Using a proxy server to access the Internet while running the WSDL2Java command causes your

connection to time out

If you use an environment that requires a proxy server to access the Internet during the run of the

WSDL2Java command, the WSDL2Java command might not find the Internet information because the

proxy server has the potential to time out. For example, if the input WSDL file is located on the Internet

instead of a local drive, and you need to retrieve it from the Internet, the WSDL2Java command fails to

find the file because the proxy server times out.

You can work around this problem by editing the WSDL2Java.bat file when using a Windows operating

system or the WSDL2Java.sh file if you are using a Linux or operating system. These files are located in the

<install_root>/WebSphere/AppServer/bin directory.

If you use a Windows operating system, set your proxy host and port values in the WSDL2Java.bat file as

follows:

PROXY_INFO="-Dproxy.httpHost=yourPproxyHost -Dproxy.httpPort=yourProxyPort

If you use a Linux or operating system, set your proxy host and port values in the WSDL2Java.sh file as

follows:

PROXY_INFO="-Dproxy.httpHost=yourProxyHost -Dproxy.httpPort=yourProxyPort

Emitter failure error occurs when running the WSDL2Java command on a WSDL document

containing a JMS-style endpoint URL

If you run the WSDL2Java command-line tool on a WSDL document that contains a JMS-style endpoint

Web address, for example, jms:/..., the urlprotocols.jar file that contains the custom protocol handler

for the JMS protocol must be in the CLASSPATH variable statement. The error WSWS3099E: Error:

Emitter failure. Invalid endpoint address in port <x> in service <y>: <jms-url-string> is avoided

by making sure the urlprotocols.jar file is in the CLASSPATH variable statement.

Chapter 10. Web services 255

To add the urlprotocols.jar file to the CLASSPATH variable statement:

On Windows platforms, edit the install_root\bin\setupCmdLine.bat file and locate the line that sets the

WAS_CLASSPATH environment variable. Add %install_root%\lib\urlprotocols.jar to the end of the

line that sets the WAS_CLASSPATH environment variable.

On Linux and AIX operating systems, edit the install_root/bin/setupCmdLine.sh file and add

$install_root/lib/urlprotocols.jar to the end of the line that sets the WAS_CLASSPATH environment

variable.

Make sure to use the proper deliminator character for your platform, for example, use a semicolon (;) for

Windows platforms and a colon (:) for Linux and platforms.

Troubleshooting Web services compiled bindings

This topic discusses troubleshooting compiled bindings of Web services that are developed and

implemented based on the Web Services for Java 2 Platform, Enterprise Edition (J2EE) specification

Each section in this topic is a problem that you might experience with compiled bindings for Web services.

A solution is provided to help you troubleshoot the problem.

Context root not recognized when mapping the default XML namespace to a Java

package

When you map the default XML namespace to a Java package the context root is not recognized. If two

namespaces are the same up to the first slash, they map to the same Java package. For example, the

XML namespaces http://www.ibm.com/foo and http://www.ibm.com/bar both map to the www.ibm.com

Java package . Use the -NStoPkg option of the Java2WSDL command to specify the package for the fully

qualified namespace.

Java code to Web Service Description Language (WSDL) mapping cannot be

reversed to the original Java code

If you find that a WSDL file that you created with the Java2WSDL command-line tool cannot be compiled

when regenerated into Java code using the WSDL2Java command-line tool, it is because the Java API for

XML-based remote procedure call (JAX-RPC) mapping from Java code to WSDL is not reversible back to

the original Java code.

To troubleshoot this problem, try specifying the -introspect option to the WSDL2Java command. The

-instrospect option indicates to the WSDL2Java command to look into existing Java classes and gather

information useful in generating artifacts that match the original Java code.

Troubleshooting the run time for a Web services client

This topic discusses troubleshooting Web services clients.

Each section in this topic is a problem that you might experience during the run-time of a Web services

client. A solution is provided to help you troubleshoot the problem.

Running your Web service client with an ibm-jaxrpc-client.jar file in a Solaris

environment can cause an exception

If you use the -jar option, for example, java -jar <java_application>.jar, to specify a Java application

in a Solaris environment, a class not found exception can occur. To avoid an exception, use the

-classpath option instead of the -jar option, for example,

java -jar <your_client_application>.jar, <main_class_file>

256 Troubleshooting and support

.

The problem occurs because the Sun JDK classloading specification is more strict than the IBM JDK

specifications.

You can make one of three changes to avoid an exception:

v Use the -classpath option instead of the -jar option, for example,

java -jar <java_application>.jar, <main_class_file >

.

v Use the -Djava.ext.dirs option with the -jar option, for example,

export WAS_HOME=/opt/IBM/WebSphere/AppServer ${WAS_HOME}/java/jre/bin/java

-Djava.ext.dirs=${WAS_HOME}/runtimes

-jar <your_client_application>.jar, <your_client_application>.args

.

v Modify Class Path in Manifest.MF to include the Java archive (JAR) files that you need, for example,

Class Path: /opt/IBM/WebSphere/AppServer/runtimes/ibm-jaxrpc-client.jar

Resolving DNS causes performance problems when using HTTP to connect to a

service endpoint interface that is not based on a private IP address

The DNS service is often not available when you use HTTP to connect to a service endpoint interface that

is based on a private IP address. Therefore, performance is degraded during the DNS resolution.

This problem occurs when the outbound HTTP connector in the Web service engine attempts to resolve

the host address name and times out.

You can modify the HOSTS file for the targeted IP address to avoid the DNS resolution.

Runtime migration error

If you installed a Web service application that was developed for a WebSphere Application Server version

prior to Version 6, you might get the following exception:

WSWS3701E: Error: An exception was encountered. Use wsdeploy to deploy your application.

This may correct the problem. The exception is <exception data>.

This exception indicates that a problem occurred while running the application that was developed with

tools supported by versions prior to Version 6. A solution to the problem is to uninstall the application, run

the wsdeploy command and redeploy the application.

WebServicesFault exception displays during the application server run time for

certain Web Services Description Language (WSDL) files

A WebServicesFault exception displays during the application server run time for WSDL files that define

operations with document style and literal use, and use the SOAP header to transmit the input data.

If the WSDL files define the operation with document style and literal use, and this operation maps the

input to the SOAP header, the Web services run time fails to find the correct operation for the target

service and the WebServicesFault exception displays.

To solve the problem, change the WSDL files so that the operation does not have input that uses the

SOAP header to transmit the data.

Chapter 10. Web services 257

Increase the value of the ConnectionIOTimeOut parameter to avoid receiving an

exception when hosting Web services on WebSphere Application Server

When hosting Web services on WebSphere Application Server, the following exception displays:

java.net.SocketTimeOutException: Read Timed Out.

A slow network connection between the client and the Web service causes this problem. In such cases,

the HTTP socket might time out before the Web service engine completely reads the SOAP request. In the

majority of cases, a sudden increase in overall network activity causes this problem. The problem can also

occur when the client is accessing the Web service from a slow network connection and when the SOAP

request has a lot of data.

To solve the problem, increase the ConnectionIOTimeOut parameter for the Web container HTTP

transport. The default value is 5 seconds. Increase the value to 30 seconds or greater. Type the following

property name and value:

v Name: ConnectionIOTimeOut

v Value: 30

If the Web service is hosted in a clustered environment, set the property on each application server in the

cluster. If your application server is listening on more than one port number, set the property on all ports.

For more information about setting the value using the administrative console, refer to the HTTP transport

custom properties chapter in the Administering applications and their environment PDF book.

Executing a Web services client application with session persistence turned on or

in a clustered environment might cause a WebServicesFault error

When you execute a Web services client application with session persistence turned on or in a cluster

environment, an error might display because the Web service client attempts to use a connection that has

been closed by the HTTP server. The following is an example of the error:

[mm/dd/yy hh:mm:ss:ttt EST] 0000006e SystemErr R WebServicesFault

 faultCode: {http://schemas.xmlsoap.org/soap/envelope/}Server.generalException

 faultString: java.io.IOException: Connection close: Read failed.Possible end of

stream encountered.

 faultActor: null

 faultDetail:

You can avoid this error by following one of two ways:

v Set the com.ibm.websphere.webservices.http.requestResendEnabled property to true, for example,

com.ibm.websphere.webservices.http.requestResendEnabled=true. When this property is set to true,

the Web services client is programmed to re-send the request if the request has failed. Monitor your

client runtime if you change the property value, because the request might be sent twice.

For example, if your client is a banking application, and you set the

com.ibm.websphere.webservices.http.requestResendEnabled property to true, a transaction might be

posted twice to an account. For more detailed information on configuring this property, read the section,

Configuring additional HTTP transport properties using the JVM custom property panel in the

administrative console in the Developing and deploying applications PDF book.

v If you are using the IBM HTTP Server on an AIX or Linux operating systems, you can set the

MaxSpareThreads property to the same value as the MaxClients property that is located in the

http.conf file. For example, if the MaxClients=600, change the MaxSpareThreads to equal 600

(MaxSpareThreads=600).

The advantage to choosing this way to avoid the error, is that the IBM HTTP Server does not shut down

idle or near-idle connections. The disadvantage to this choice is that the IBM HTTP Server uses excess

resources to keep extra threads available, even during periods of light activity. This choice can only be

done on an AIX or Linux operating system.

258 Troubleshooting and support

Troubleshooting serialization and deserialization in Web services

This topic discusses problems that you can have when you perform serialization and deserialization in

Web services.

Each section in this topic is a problem that you might experience while serializing and deserializing Web

services. A solution is provided to help you troubleshoot the problem.

Time zone information in deserialized java.util.Calendar is not as expected

When the client and server are based on Java code and a java.util.Calendar instance is received, the

time zone in the received java.util.Calendar instance might be different from that of the

java.util.Calendar instance that was sent.

This difference occurs because the java.util.Calendar is encoded as an xsd:dateTime for transmission.

An xsd:dateTime is required to encode the correct time (base time plus or minus a time zone offset), but is

not required to preserve locale information, including the original time zone.

The fact that the time zone for the current locale is not preserved needs to be accounted for when

comparing Calendar instances. The java.util.Calendar class equals method checks that the time zones

are the same when determining equality. Because the time zone in a deserialized Calendar instance might

not match the current locale, use the before and after comparison methods to test that two Calendars refer

to the same date and time as shown in the following examples:

java.util.Calendar c1 = ...// Date and time in time zone 1

java.util.Calendar c2 = ...// Same date and equivalent time, but in time zone 2

// c1 and c2 are not equal because their time zones are different

if (c1.equals (c2)) System.out.println("c1 and c2 are equal");

// but c1 and c2 do compare as "not before and not after" since they represent

the same date and time

if (!c1.after(c2) & !c1.before(c2) {

 System.out.println("c1 and c2 are equivalent");

}

Mixing Web services client and server bindings causes errors

Web Services for Java 2 Platform, Enterprise Edition (J2EE) and the Java API for XML-based remote

procedure call (JAX-RPC) specifications do not support round-trip mapping between Java code and a Web

Services Description Language (WSDL) document for all Java types. For example, you cannot turn or

serialize a Java Date into XML code and then turn it back or deserialize it into a Java Date. This action

deserializes as Java Calendar.

If you have a Java implementation that you create a WSDL document from, and you generate client

bindings from the WSDL document, the client classes can be different from the server classes even

though the client classes have the same package and class names. The Web service client classes must

be kept separate from the Web service server classes. For example, do not place the Web service server

bindings classes in a utility Java archive (JAR) file and then include a Web service client JAR file that

references the same utility JAR file.

If you do not keep the Web services client and server classes separate, a variety of exceptions can occur,

depending on the Java classes used. The following is a sample stack trace error that can occur:

com.ibm.ws.webservices.engine.PivotHandlerWrapper TRAS0014I: The following exception was

loggedjava.lang.NoSuchMethodError: com.ibm.wssvt.acme.websvcs.ExtWSPolicyData:

 method getStartDate()Ljava/util/Date;

not found

at com.ibm.wssvt.acme.websvcs.ExtWSPolicyData_Ser.addElements(ExtWSPolicyData_Ser.java: 210)

at com.ibm.wssvt.acme.websvcs.ExtWSPolicyData_Ser.serialize (ExtWSPolicyData_Swer.java:29)

Chapter 10. Web services 259

at com.ibm.ws.webservices.engine.encoding.SerializationContextImpl.serializeActual

(SerializationContextImpl.java 719)

at com.ibm.ws.webservices.engine.encoding.SerializationContextImpl.serialize

(SerializationContextImpl.java: 463)

The problem is caused by using an interface as shown in the following example for the service endpoint

interface in the service implementation:

package server:

public interface Test_SEI extends java.rmi.Remote {

 public java.util.Calendar getCalendar () throws java.rmi.RemoteException;

 public java.util.Date getDate() throws java.rmi.RemoteException;

}

When this interface is compiled and run through the Java2WSDL command-line tool, the WSDL document

maps the methods as shown in the following example:

<wsdl:message name="getDateResponse">

 <wsdl:part name="getDateReturn" type="xsd:dateTime"/>

</wsdl:message>

<wsdl:message name="getCalendarResponse">

 <wsdl:part name="getCalendarReturn" type="xsd:dateTime"/>

</wsdl:message>

The JAX-RPC mapping implemented by the Java2WSDL tool has mapped both the java.util.Date and

java.util.Calendar instances to the xsd:dateTime XML type . The next step is to use the generated WSDL

file to create a client for the Web service. When you run the WSDL2Java tool on the generated WSDL, the

generated classes include a different version of the server.Test_SEI interface, for example:

package server;

public interface Test_SEI extends java.rmi.Remote {

 public java.util.Calendar getCalendar() throws java.rmi.RemoteException;

 public java.util.Date getDate() throws java.rmi.RemoteException;

}

The client version of the service.Test_SEI interface is different from the server version in that both the

getCalendar and getDate methods return java.util.Calendar. The serialization and deserialization code that

the client expects is the client version of the service endpoint interface. If the server version inadvertently

appears in the client CLASSPATH variable, at either compilation or run time, an error occurs.

In addition to theNoSuchMethod error, the IncompatibleClassChangeError and ClassCastException can

occur. However, almost any run-time exception can occur. The best practice is to be diligent about

separating client Web services bindings classes from server Web services bindings classes. Always place

the client bindings classes and server bindings classes in separate modules. If theses binding classes are

in the same application, place the bindings classes in utility JAR files that are not shared between

modules.

Troubleshooting authentication and authorization for Web services

security based on the Web Services for Java 2 Platform, Enterprise

Edition (J2EE) specification

Web services are developed and implemented based on the Web Services for Java 2 platform, Enterprise

Edition (J2EE) specification. The are several troubleshooting authentication and authorization

considerations when you are securing Web services.

These Web services are developed and implemented based on the Web Services for Java 2 platform,

Enterprise Edition (J2EE) specification. This topic discusses troubleshooting authentication and

authorization issues to consider when you are securing Web services.

260 Troubleshooting and support

Authentication challenge or authorization failure is displayed

You might encounter an authentication challenge or an authorization failure if a thread switch occurs. For

example, an application might create a new thread or a raw socket connection to a servlet might open. A

thread switch is not recommended by the J2EE specification because the security context information is

stored in thread local. When a thread switch occurs, the authenticated identity is not passed from thread

local to the new thread. As a result, WebSphere Application Server considers the identity to be

unauthenticated. If you must create a new thread, you must propagate the security context to the new

thread. However, this process is not supported by WebSphere Application Server.

Web services security enabled application fails to start

When a Web services security-enabled application fails to start, you might receive an error message

similar to the following:

[6/19/03 11:13:02:976 EDT] 421fdaa2 KeyStoreKeyLo E WSEC5156E: An exception

while retrieving the key from KeyStore object:

java.security.UnrecoverableKeyException: Given final block not properly padded

The cause of the problem is that the keypass value or password provided for a particular key in the key

store is invalid. The key store values are specified in the KeyLocators elements of one of following binding

files: ws-security.xml, ibm-webservices-bnd.xmi or ibm-webservicesclient-bnd.xmi. Verify that the

keypass values for keys specified in the KeyLocators elements are correct.

Applications with Web services security enabled cannot interoperate between

WebSphere Application Server Version 6.0.x and Version 5.0.2

Applications with Web services security enabled cannot interoperate between WebSphere Application

Server Version 6.0.x and Version 5.0.2. When applications attempt to interoperate, a ″digest mismatch″

error is displayed. An error exists in the cannonicalization algorithm for XML digital signature, which is

fixed in Version 5.1. For Web services security to interoperate between WebSphere Application Server

Version 6 and Version 5.0.2, you must update your Version 5.0.2 application server. To update your

Version 5.0.2 server, access the WebSphere Application Server Support Web site and download the latest

fix pack for WebSphere Application Server, Version 5.0.2.

Tracing SOAP messages with tcpmon

This topic discusses tracing SOAP messages that request Web services by using the tcpmon tool.

You can use other trace tools to trace SOAP messages, similar to how you can trace Web services

components. For further information, see the Tracing Web services chapter in the Administering

applications and their environment PDF book.

It is not recommended that you use the tcpmon tool in a stressed environment. Tcpmon is only for

monitoring SOAP messages in a lightweight environment.

You can trace SOAP messages exchanged between a client and the server by installing a monitor or

sniffer application to capture the HTTP traffic between the two points. The WebSphere product provides a

utility class, com.ibm.ws.webservices.engine.utils.tcpmon, to trace the SOAP messages. The

com.ibm.ws.webservices.engine.utils.tcpmon class redirects messages from a port, records the

messages, and forwards the messages to another port.

WebSphere Application Server typically listens on port 9080, or port 80 if you are using IBM HTTP Server.

The tcpmon process can be configured to listen on a particular port, such as 9088, while redirecting

messages to another port, such as 9080 or port 80. The client is redirected to use port 9088 to access

Web services.

Chapter 10. Web services 261

http://www.ibm.com/software/webservers/appserv/was/support/

Redirecting an application client to a different port is done by changing the SOAP address in the client

Web Services Description Language (WSDL) file to use port 9088 and then running the wsdeploy

command-line tool on the client enterprise archive (EAR) file to regenerate the service implementation.

Trace SOAP messages in Web services by following the actions listed in the steps for this task section.

1. Set up a development and unmanaged client run-time environment for Web services. For detailed

information about setting up a development and unmanaged run-time environment, consult the

Developing Web services chapter of the Developing and deploying applications PDF book.

2. Run the java -Djava.ext.dirs=%WAS_EXT_DIRS% com.ibm.ws.webservices.engine.utils.tcpmon

command. A window labeled TCPMonitor is displayed.

3. Configure the TCPMonitor to listen on port 9088 and forward messages to port 9080.

a. In the Listen Port # field, enter 9088.

b. Click Listener.

c. In the TargetHostname field, enter localhost.

d. In the Target Port # field, enter 9080.

e. Click Add.

f. Click the Port 9088 tab that displays on the top of the page.

The messages exchanged between the client and server appear in the TCPMonitor Request and

Response pane.

Save the message data and analyze it.

Web services security troubleshooting tips

To troubleshooting Web services security, review the configurations with assembly tools to match the client

and server request and the response configurations.

Troubleshooting Web services security is best done by reviewing the configurations with assembly tools so

that you can match up the client and server request and the response configurations. These configurations

must match. A client request sender configuration must match a server request receiver configuration. For

encryption to successfully occur, the public key of the receiver must be exported to the sender and this

key must be configured properly in the encryption information. For authentication, you must specify the

method used by the client in the login mapping of the server. The following includes a list of generic

troubleshooting steps that you can perform. For more information about the assembly tools, read the

assembly tools section of the Developing and deploying applications PDF book.

Steps for this task

1. Verify that the client security extensions and server security extensions match on each downstream

call for the following senders and receivers:

v Request sender and request receiver

v Response sender and response receiver

2. Verify that when the Add Created Time Stamp option is enabled on the client-side that the server has

the Add Received Time Stamp option configured. You must configure the security extensions with an

assembly tool.

3. Verify that the client security bindings and the server security bindings are correctly configured. When

the client authentication method is signature, make sure that the server has a login mapping. When the

client uses the public key cn=Bob,o=IBM,c=US to encrypt the body, verify that this Subject is a personal

certificate in the server key store so that it can decrypt the body with the private key. You can configure

the security bindings using an assembly tool or the WebSphere Application Server administrative

console.

4. Check the SystemOut.log file in the ${USER_INSTALL_ROOT}/logs/server1 directory (server1 changes

depending upon the server name) for messages that might provide information about the problem.

262 Troubleshooting and support

5. Enable trace for Web services security by using the following trace specification:

com.ibm.xml.soapsec.*=all=enabled:com.ibm.ws.webservices.*=all=enabled:

com.ibm.wsspi.wssecurity.*=all=enabled:com.ibm.ws.security.*=all=enabled: SASRas=all=enabled

Type the previous three lines as one continuous line.

Errors when securing Web services

The following errors might occur when you secure Web services:

v “″CWWSI5061E: The SOAP Body is not signed″ error message displays”

v “″CWWSI5075E: No security token found that satisfies any one of the authentication methods″ error

message displays” on page 264

v “″CWWSI5094E: No UsernameToken of trusted user was found or the login failed for the user while the

TrustMode is BasicAuth″ error message displays” on page 264

v “″CWSCJ0053E: Authorization failed for /UNAUTHENTICATED...″ error message displays” on page 265

v “″WSWS3243I: Info: Mapping Exception to WebServicesFault.″ error message is displayed when you

specify the value type local name and the URI for a token consumer or the token generator” on page

265

v “″Invalid URI: The format of the URI could not be determined″ error message might display when you

use a Microsoft .NET client that accesses a Web service for WebSphere Application Server” on page

266

v “″WSEC6664E: Null is not allowed to PKIXBuilderParameters. The configuration of TrustAnchor and

CertStoreList are not correct″ exception displays” on page 266

v “″WSE567: The incoming Username token must contain both a nonce and a creation time for the replay

detection feature″ Microsoft .NET error displays” on page 267

″CWWSI5061E: The SOAP Body is not signed″ error message displays

Version 5.x application

Solution for 5.x applications only:

This error usually occurs whenever the SOAP security handler does not load properly, and does not sign

the SOAP body not to be signed. The SOAP security handler is typically the first validation that occurs on

the server-side, so a multitude of problems can cause this message to display. The error might be caused

by invalid actor URI configurations. You can configure the actor Universal Resource Identifier (URI) at the

following locations within the assembly tool:

From the Web services client editor within the assembly tool for client configurations:

v Click Security Extensions > Client Service Configuration Details and indicate the actor information

in the ActorURI field.

v Click Security Extensions > Request Sender Configuration section > Details and indicate the actor

information in the Actor field.

From the Web Services Editor within the assembly tool for server configurations:

v Click Security Extensions > Server Service Configuration section. Verify that the actor URI has the

same actor string as the client-side.

v Click Security Extensions > Response Sender Service Configuration Details > Details and indicate

the actor information in the Actor field.

The actor information on both the client and the server must refer to the same string. When the actor fields

on the client and the server match, the request or response is acted upon instead of being forwarded

downstream. The actor fields might be different when you have Web services acting as a gateway to other

Chapter 10. Web services 263

Web services. However, in all other cases, verify that the actor information matches on the client and

server. When the Web services implementation is acting as a gateway and it does not have the same

actor configured as the request passing through the gateway, this Web services implementation does not

process the message from the client. Instead, it sends the request downstream. The downstream process

that contains the correct actor string processes the request. The same situation occurs for the response.

Therefore, it is important that you verify that the appropriate client and server actor fields are

synchronized.

Additionally, the error can appear when you do not specify that the body is signed in the client

configuration. To sign the body part of the message using the Web service client editor in the assembly

tool, click Security Extensions > Request Sender Configuration > Integrity and select the message

parts to sign.

″CWWSI5075E: No security token found that satisfies any one of the

authentication methods″ error message displays Version 5.x application

Solution for 5.x applications only:

Verify that the client and server login configuration information matches in the security extensions. Also,

verify that the client has a valid login binding and that the server has a valid login mapping in the security

bindings. You can check this information by looking at the following locations in the assembly tool:

From the Web services client editor within the assembly tool for client configurations:

v Click Security Extensions > Request Sender Configuration > Login Configuration verify the

authentication method.

v Click Port Binding > Security Request Sender Binding Configuration > Login Binding verify the

authentication method and other parameters.

From the Web Services Editor within the assembly tool for server configurations:

v Click Security Extensions > Request Receiver Service Configuration Details > Login

Configuration and verify the authentication method.

v Click Binding Configurations > Request Receiver Binding Configuration Details > Login Mapping

and verify the authentication method and other parameters.

Also, make sure that the actor URI specified on the client and server matches. You can configure the actor

URI at the following locations within the assembly tool:

From the Web services client editor within the assembly tool for client configurations:

v Click Security Extensions > Client Service Configuration Details and indicate the actor information

in the ActorURI field.

v Click Security Extensions > Request Sender Configuration section > Details and indicate the actor

information in the Actor field.

From the Web services editor within the assembly tool for server configurations:

v Click Security Extensions > Server Service Configuration section. Make sure that the Actor URI

field has the same actor string as the client side.

v Click Security Extensions > Response Sender Service Configuration Details > Details and indicate

the actor information in the Actor field.

″CWWSI5094E: No UsernameToken of trusted user was found or the login failed

for the user while the TrustMode is BasicAuth″ error message displays

Solution:

264 Troubleshooting and support

This situation occurs when you have IDAssertion configured in the login configuration as the authentication

method. On the sending Web service, configure a trusted basic authentication entry in the login binding.

Then, on the server side, verify that the trusted ID evaluator has a property set that contains the user

name of this basic authentication entry. To configure the client for identity assertion, consult the following

topics:

v Configuring the client for identity assertion: specifying the method

v Configuring the client for identity assertion: collecting the authentication method

To configure the server for identity assertion, consult these topics:

v Configuring the server to handle identity assertion authentication

v Configuring the server to validate identity assertion authentication information

Note: These topics about configuring clients and servers for identity assertion are located in the chapter,

Securing Web services for Version 5.x applications using identity assertion authentication in the

Securing applications and their environment PDF book.

″CWSCJ0053E: Authorization failed for /UNAUTHENTICATED...″ error message

displays

The following authorization error occurs with UNAUTHENTICATED as the security name: CWSCJ0053E:

Authorization failed for /UNAUTHENTICATED while invoking (Home)com/ibm/wssvt/tc/pli/ejb/
Beneficiary findBeneficiaryBySsNo(java.lang.String):2 securityName: /UNAUTHENTICATED;accessID:

null is not granted any of the required roles: AgentRole

This situation occurs because a login configuration is not being configured or Web services Security is not

configured from a client to a server. When the request arrives at the server and authentication information

is not received, the UNAUTHENTICATED user is set on the thread. Authorization returns this error if there

are any roles assigned to the resource except for the special ″Everyone″ role, which supports access by

anyone.

If the client successfully authenticates to an Enterprise JavaBeans (EJB) file, but the EJB file calls a

downstream EJB file that is not configured with Web services security or transport security, such as HTTP

user ID and password, an error can occur for this downstream request. Using the assembly tool, verify that

the enterprise archive (EAR) file for both client and server has the correct security extensions and security

bindings. For more information, consult the following topics:

v Configuring the client security bindings using an assembly tool

v Configuring the security bindings on a server acting as a client using the administrative console

v Configuring the server security bindings using an assembly tool

v Configuring the server security bindings using the administrative console

Note: These topics about client and server security bindings are located in the chapter, Securing Web

services for Version 5.x applications using XML digital signature in the Securing applications and

their environment PDF book.

″WSWS3243I: Info: Mapping Exception to WebServicesFault.″ error message is

displayed when you specify the value type local name and the URI for a token

consumer or the token generator

The Value type URI is not required for the following predefined value type local names:

v Username token

v X509 certificate token

v X509 certificates in a PKIPath

v A list of X509 certificates and CRLs in a PKCS#7

Chapter 10. Web services 265

If you specify one of the previous value type local names, do not enter a value for the Value type URI

field.

″Invalid URI: The format of the URI could not be determined″ error message might

display when you use a Microsoft .NET client that accesses a Web service for

WebSphere Application Server

The following exception message might display when you use a Microsoft .NET client that accesses a

Web service for WebSphere Application Server. Within WebSphere Application Server, Web services

security is enabled and uses the ActorURI attribute.

Invalid URI: The format of the URI could not be determined.

Exception type:

System.UriFormatException

at System.Uri.Parse()

at System.Uri..ctor(String uriString, Boolean dontEscape)

at System.Uri..ctor(String uriString)

at Microsoft.Web.Services2.SoapInputFilter.CanProcessHeader(XmlElement header, SoapContext context)

at Microsoft.Web.Services2.Security.SecurityInputFilter.ProcessMessage(SoapEnvelope envelope)

at Microsoft.Web.Services2.Pipeline.ProcessInputMessage(SoapEnvelope envelope)

at Microsoft.Web.Services2.InputStream.GetRawContent()

at Microsoft.Web.Services2.InputStream.get_Length()

at System.Xml.XmlScanner..ctor(TextReader reader, XmlNameTable ntable)

at System.Xml.XmlTextReader..ctor(String url, TextReader input, XmlNameTable nt)

at System.Xml.XmlTextReader..ctor(TextReader input)

at System.Web.Services.Protocols.SoapHttpClientProtocol.ReadResponse(SoapClientMessage message,

WebResponse response, Stream responseStream, Boolean asyncCall)

Solution: This error occurs because Microsoft .NET Web Services Enhancements (WSE) Version 2.0

Service Pack 3 does not support a relative URI value for the ActorURI attribute. WSE Version 2.0 Service

Pack 3 supports an absolute Uniform Resource Identifier (URI) for this attribute only. To work with a

Microsoft .NET client, you must configure this attribute as an absolute URI. An example of an absolute URI

is: abc://myWebService. An example of a relative URI is: myWebService.

To configure ActorURI attribute for use with WebSphere Application Server, use either the Rational

Application Developer (RAD) or the Application Server Toolkit (AST) to complete the following steps:

1. Open the Web Service Editor, click the Extensions tab and expand Server Service Configuration.

2. Enter the full absolute URI in the Actor field.

3. Expand Response Generator Service Configuration Details > Details.

4. Enter the full absolute URI in the Actor field.

″WSEC6664E: Null is not allowed to PKIXBuilderParameters. The configuration of

TrustAnchor and CertStoreList are not correct″ exception displays

Possible cause:

The certificate path setting is not configured properly.

Possible solution:

Configure the certificate path setting by completing the following steps:

1. In the administrative console, click Security > Web services.

2. Under the Default consumer binding heading, click Signing information > configuration_name.

3. Select either the Trust any or Dedicated signing information option.

If you select the Dedicated signing information option, select both a trust anchor and a certificate

store from the configurations that are provided in the drop-down lists.

266 Troubleshooting and support

4. Click OK and Save to the master configuration.

″WSE567: The incoming Username token must contain both a nonce and a

creation time for the replay detection feature″ Microsoft .NET error displays

Scenario:

In this scenario, you have a Web services client for WebSphere Application Server and a Microsoft .NET

Web service. The Microsoft .NET Web service has a ws-security constraint for a username token

configured. The following exception is thrown from the Microsoft .NET server:

WSE567: The incoming username token must contain both a nonce and a creation time for the replay

detection feature.

Cause:

By default, the Microsoft .NET Web service validates the nonce and the timestamp for the username

token. However, it is optional for you to configure the nonce and timestamp properties for a Web service

client that is using WebSphere Application Server.

Solution:

Complete the following steps to add the nonce and timestamp properties for a username token on a Web

service client for WebSphere Application Server. These steps involve an assembly tool such as Rational

Application Developer or the Application Server Toolkit. For more information about assembly tools, read

the assembly tools section of the Developing and deploying applications PDF book.

 1. Open the Web service client deployment descriptor and click the WS-Binding tab.

 2. Expand the Security Request Generator Binding Configuration > Token Generator sections.

 3. Click the name of the username token that you already created and click Edit.

 4. In the Properties section of the Token Generator dialog, click Add.

 5. Enter com.ibm.wsspi.wssecurity.token.username.addNonce in the Name field to provide the name of

the nonce property.

 6. Enter true in the Value field.

 7. Click Add.

 8. Enter com.ibm.wsspi.wssecurity.token.username.addTimestamp in the Name field to provide the

name of the timestamp property.

 9. In the Value field, enter true.

10. Click OK and save the client deployment descriptor.

For more information about configuring token generators, see Configuring token generators with an

assembly tool topic in the Securing applications and their environment PDF book.

Tips for troubleshooting the Web Services Invocation Framework

A set of specific tips to help you troubleshoot problems you experience with the Web Services Invocation

Framework (WSIF).

For information about resolving WebSphere-level problems, see Diagnosing and fixing problems.

To identify and resolve Web Services Invocation Framework (WSIF)-related problems, you can use the

standard WebSphere Application Server trace and logging facilities. If you encounter a problem that you

think might be related to WSIF, you can check for error messages in the WebSphere Application Server

Chapter 10. Web services 267

administrative console, and in the application server stdout.log file. You can also enable the application

server debug trace to provide a detailed exception dump.

A list of the WSIF run-time system messages, with details of what each message means, is provided in

Message reference for WSIF.

A list of the main known restrictions that apply when using WSIF is provided in WSIF - Known restrictions.

Here is a checklist of major WSIF activities, with advice on common problems associated with each

activity:

Create service

 Handcrafted Web Services Description Language (WSDL) can cause numerous problems. To help

ensure that your WSDL is valid, use a tool such as WebSphere Studio Application Developer

(WSAD) to create your Web service. For more details about creating services with WSDL in a

distributed or a z/OS environment, read the WSIF and WSDL chapter of Developing and deploying

applications PDF book.

Define transport mechanism

For the Java Message Service (JMS), check that you have set up the Java Naming and Directory

Interface (JNDI) correctly, and created the necessary connection factories and queues.

 For SOAP, make sure that the deployment descriptor file dds.xml is correct - preferably by creating

it using WebSphere Studio Application Developer (WSAD) or similar tooling.

Create client - Java code

 Follow the correct format for creating a WSIF service, port, operation and message. For examples

of correct code, refer to the Address Book Sample in the Developing and deploying applications

PDF book.

Compile code (client and service)

Check that the build path against code is correct, and that it contains the correct levels of JAR

files.

 Create a valid EAR file for your service in preparation for deployment to a Web server.

Deploy service

When you install and deploy the service EAR file, check carefully any messages given when the

service is deployed.

Server setup and start

 Make sure that the WebSphere Application Server server.policy file (in the /properties

directory) has the correct security settings. For more information about setting up security, see the

Enabling security for WSIF topic in the Securing applications and their environment PDF book.

WSIF setup

 Check that the wsif.properties file is correctly set up. For more information about this file, refer

to the Maintaining the WSIF properties file topic in the Administering applications and their

environment PDF book.

Run client

 Either check that you have defined the class path correctly to include references to your client

classes, WSIF JAR files and any other necessary JAR files, or (preferably) run your client using

the WebSphere Application Server launchClient tool.

 Either check that you have defined the class path correctly to include references to your client

classes, WSIF JAR files and any other necessary JAR files, or (preferably) run your client using

the WebSphere Application Server launch client tool. For more information about this tool, refer to

the Running application clients chapter of the Developing and deploying applications PDF book.

Here is a set of tips to help you troubleshoot commonly-experienced problems:

v “No class definition” errors received when running client code.

v “Cannot find WSDL” error.

268 Troubleshooting and support

http://www.w3.org/TR/2000/NOTE-SOAP-20000508/

v Your Web service EAR file does not install correctly onto the application server.

v There is a permissions problem or security error.

v Using WSIF with multiple clients causes a SOAP parsing error.

v Using the same names for JMS messaging queues and queue connection factories that run on

application servers on different machines can cause JNDI lookup errors.

v A JAX-RPC client running on WebSphere Application Server Version 5 uses SOAP over JMS to invoke

a Web service running on a Version 5 application server. No user ID or password is required on the

target MQ Series queue. After the application server is migrated to Version 6, and using Version 6

default messaging, client requests fail because basic authentication is now enabled.

v The current WSIF default SOAP provider (the IBM Web Service SOAP provider) does not fully

interoperate with services that are running on the former (Apache SOAP) provider.

“No class definition” errors received when running client code.

This problem usually indicates an error in the class path setup. Check that the relevant JAR files are

included.

“Cannot find WSDL” error.

Some likely causes are:

v The application server is not running.

v The server location and port number in the WSDL are not correct.

v The WSDL is badly formed (check the error messages in the application server stdout.log file).

v The application server has not been restarted since the service was installed.

You might also try the following checks:

v Can you load the WSDL into your Web browser from the location specified in the error message?

v Can you load the corresponding WSDL binding files into your Web browser?

Your Web service EAR file does not install correctly onto the application server.

It is likely that the EAR file is badly formed. Verify the installation by completing the following steps:

v For an EJB binding, run the WebSphere Application Server tool \bin\dumpnamespace. This tool lists the

current contents of the JNDI directory.

v For a SOAP over HTTP binding, open the http://pathToServer/WebServiceName/admin/list.jsp page

(if you have the SOAP administration pages installed). This page lists all currently installed Web

services.

v For a SOAP over JMS binding, complete the following checks:

– Check that the queue manager is running.

– Check that the necessary queues are defined.

– Check the JNDI setup.

– Use the “display context” option in the jmsadmin tool to list the current JNDI definitions.

– Check that the Remote Procedure Call (RPC) router is running.

There is a permissions problem or security error.

Check that the WebSphere Application Server server.policy file (in the /properties directory) has the

correct security settings. For more information about setting up security, see the Enabling security for

WSIF topic in the Securing applications and their environment PDF book.

Using WSIF with multiple clients causes a SOAP parsing error.

Before you deploy a Web service to WebSphere Application Server, you must decide on the scope of the

Web service. The deployment descriptor file dds.xml for the Web service includes the following line:

 <isd:provider type="java" scope="Application"

Chapter 10. Web services 269

You can set the Scope attribute to Application or Session. The default setting is Application, and this

value is correct if each request to the Web service does not require objects to be maintained for longer

than a single instance. If Scope is set to Application the objects are not available to another request

during the execution of the single instance, and they are released on completion. If your Web service

needs objects to be maintained for multiple requests, and to be unique within each request, you must set

the scope to Session. If Scope is set to Session, the objects are not available to another request during the

life of the session, and they are released on completion of the session. If scope is set to Application

instead of Session, you might get the following SOAP error:

SOAPException: SOAP-ENV:ClientParsing error, response was:

FWK005 parse may not be called while parsing.;

nested exception is:

[SOAPException: faultCode=SOAP-ENV:Client; msg=Parsing error, response was:

FWK005 parse may not be called while parsing.;

 targetException=org.xml.sax.SAXException:

FWK005 parse may not be called while parsing.]

Using the same names for JMS messaging queues and queue connection factories

that run on application servers on different machines can cause JNDI lookup

errors.

You should not use the same names for messaging queues and queue connection factories that run on

application servers on different machines, because WSIF always looks first for JMS destinations locally,

and only uses the full JNDI reference if it cannot find the destination locally. For example, if you run a Web

service on a remote machine, and have an application server running locally that uses the same names

for the messaging queues and queue connection factories, then WSIF will find and use the local queues

even if the remote JNDI destination is provided in full in the WSDL service definition.

A JAX-RPC client running on WebSphere Application Server Version 5 uses SOAP

over JMS to invoke a Web service running on a Version 5 application server. No

user ID or password is required on the target MQ Series queue. After the

application server is migrated to Version 6, and using Version 6 default

messaging, client requests fail because basic authentication is now enabled.

The problem appears as a log message:

SibMessage W [:] CWSIT0009W: A client request failed in the application server

with endpoint <endpoint_name> in bus <your_bus> with reason: CWSIT0016E:

The user ID null failed authentication in bus <your_bus>.

For the steps to take to resolve the problem, see the following service integration technologies

troubleshooting tip: After you migrate an application server to WebSphere Application Server Version 6,

existing Web services clients can no longer use SOAP over JMS to access services hosted on the

migrated server. This tip can be found in the Tips for troubleshooting service integration bus security

section.

The current WSIF default SOAP provider (the IBM Web Service SOAP provider)

does not fully interoperable with services that are running on the former (Apache

SOAP) provider.

This restriction is due to the fact that the IBM Web Service SOAP provider is designed to interoperate fully

with a JAX-RPC compliant Web service, and Apache SOAP cannot provide such a service. To enable

interoperation, modify either your Web service or the WSIF default SOAP provider. For information about

how to modify your provider, read the chapter WSIF SOAP provider: working with legacy applications in

the Developing and deploying applications PDF book.

270 Troubleshooting and support

Trace and logging for WSIF

The Web Services Invocation Framework (WSIF) offers trace points at the opening and closing of ports,

the invocation of services, and the responses from services. WSIF also includes a SimpleLog utility that

can run trace when you are using WSIF outside of WebSphere Application Server.

If you want to enable trace for the WSIF API within WebSphere Application Server, and have trace, stdout

and stderr for the application server written to a well-known location, see Setting up component trace

(CTRACE).

To trace the WSIF API, you need to specify the following trace string:

wsif=all=enabled

To enable the WSIF SimpleLog utility, through which you can run trace when using WSIF outside of

WebSphere Application Server, complete the following steps:

1. Create a file named commons-logging.properties with the following contents:

org.apache.commons.logging.LogFactory=org.apache.commons.logging.impl.LogFactoryImpl

org.apache.commons.logging.Log=org.apache.commons.logging.impl.SimpleLog

2. Create a file named simplelog.properties with the following contents:

org.apache.commons.logging.simplelog.defaultlog=trace

org.apache.commons.logging.simplelog.showShortLogname=true

org.apache.commons.logging.simplelog.showdatetime=true

3. Put both these files, and the commons-logging.jar file, on the class path.

The SimpleLog utility writes trace to the System.err file.

WSIF (Web Services Invocation Framework) messages

This topic contains a list of the WSIF run-time system messages, with details of what each message

means.

WebSphere system messages are logged from a variety of sources, including application server

components and applications. Messages logged by application server components and associated IBM

products start with a unique message identifier that indicates the component or application that issued the

message.

WSIF0001E: An extension registry was not found for the element type “{0}”

Explanation: Parameters: {0} element type. No extension registry was found for the element type

specified.

 User Response: Add the appropriate extension registry to the port factory in your code.

WSIF0002E: A failure occurred in loading WSDL from “{0}”

Explanation: Parameters: {0} location of the WSDL file. The WSDL file could not be found at the

location specified or did not parse correctly

 User Response: Check that the location of the WSDL file is correct. Check that any network

connections required are available. Check that the WSDL file contains valid WSDL.

WSIF0003W: An error occurred finding pluggable providers: {0}

Explanation: Parameters: {0} specific details about the error. There was a problem locating a

WSIF pluggable provider using the J2SE 1.3 JAR file extensions to support service providers

architecture. The WSIF trace file will contain the full exception details.

 User Response: Verify that a META-INF/services/org.apache.wsif.spi.WSIFProvider file exists in a

provider jar, that each class referenced in the META-INF file exists in the class path, and that each

class implements org.apache.wsif.spi.WSIFProvider. The class in error will be ignored and WSIF

will continue locating other pluggable providers.

WSIF0004E: WSDL contains an operation type “{0}” which is not supported for “{1}”

Explanation: Parameters: {0} name of the operation type specified. {1} name of the portType for

the operation. An operation type which is not supported has been specified in the WSDL.

Chapter 10. Web services 271

User Response: Remove any operations of the unsupported type from the WSDL. If the operation

is required then make sure all messages have been correctly specified for the operation.

WSIF0005E: An error occurred when invoking the method “{1}” . (“{0}”)

Explanation: Parameters: {0} name of communication type. For example EJB or Apache SOAP.

{1} name of the method that failed. An error was encountered when invoking a method on the Web

service using the communication shown in brackets.

 User Response: Check that the method exists on the Web service and that the correct parts have

been added to the operation as described in the WSDL. Network problems might be a cause if the

method is remote and so check any required connections.

WSIF0006W: Multiple WSIFProvider found supporting the same namespace URI “{0}” . Found (“{1}”

) Explanation: Parameters: {0} the namespace URI. {1} a list of the WSIFProvider found.. There

are multiple org.apache.wsif.spi.WSIFProvider classes in the service provider path that support the

same namespace URI.

 User Response: A following WSIF0007I message will be issued notifying which WSIPFProvider

will be used. Which WSIFProvider is chosen is based on settings in the wsif.properties file, or if

not defined in the properties, the last WSIFProvider found will be used. See the wsif.properties file

for more details on how to define which provider should be used to support a namespace URI.

WSIF0007I: Using WSIFProvider “{0}” for namespaceURI “{1}”

Explanation: Parameters: {0} the classname of the WSIFProvider being used. {1} the

namespaceURI the provider will be used to support.. Either a previous WSIF0006W message has

been issued or the SetDynamicWSIFProvider method has been used to override the provider used

to support a namespaceURI.

 User Response: None. See also WSIF0006W.

WSIF0008W: WSIFDefaultCorrelationService removing correlator due to timeout. ID:“{0}”

Explanation: Parameters: {0} the ID of the correlator being removed from the correlation service.

A stored correlator is being removed from the correlation service due to its timeout expiring.

 User Response: Determine why no response has been received for the asynchronous request

within the timeout period. The wsif.asyncrequest.timeout property of the wsif.properties file defines

the length of the timeout period.

WSIF0009I: Using correlation service - “{0}”

Explanation: Parameters: {0} the name of the correlation service being used. This identifies the

name of the correlation service that will be used to process asynchronous requests.

 User Response: None. If a correlation service other than the default WSIF supplied one is

required, ensure that it is correctly registered in the JNDI java:comp/wsif/WSIFCorrelationService

namespace.

WSIF0010E: Exception thrown while processing asynchronous response - “{0}”

Explanation: Parameters: {0} the error message string of the exception. While processing the

response from an executeRequestResponseAsync call an exception was thrown.

 User Response: Use the exception error message string to determine the cause of the error. The

WSIF trace will have more details on the error including the exception stack trace.

WSIF0011I: Preferred port “{0}” was not available

Explanation: Parameters: {0} the user’s preferred port. The preferred port set by the user on

org.apache.wsif.WSIFService is not available

 User Response: None unless this message appears for long periods of time in which case the

user might want to pick a different port as their preferred port.

WSIF - Known restrictions

This topic lists the main known restrictions that apply when using WSIF.

Threading

WSIF is not thread-safe.

272 Troubleshooting and support

External Standards

WSIF supports:

v SOAP Version 1.1 (not 1.2 or later).

v WSDL Version 1.1 (not 1.2 or later).

WSIF does not provide WS-I compliance, and it does not support the Java API for XML-based

Remote Procedure Calls (JAX-RPC) Version 1.1 (or later).

Full schema parsing

WSIF does not support full schema parsing. For example, WSDL references in complex types in

the schema are not handled, and attributes are not handled.

 XML Schema “redefine” elements are not handled and are ignored.

SOAP WSIF does not support:

v SOAP headers that are passed as <parts>.

v Unreferenced attachments in SOAP responses.

v Document Encoded style SOAP messages.

Note: This is not primarily a WSIF restriction. Although you can specify Document Encoded

style in WSDL, it is not generally considered to be a valid option and is not supported by

the Web Services Interoperability Organization (WS-I).

SOAP provider interoperability

The current WSIF default SOAP provider (the IBM Web Service SOAP provider) does not fully

interoperate with services that are running on the former (Apache SOAP) provider. This restriction

is due to the fact that the IBM Web Service SOAP provider is designed to interoperate fully with a

JAX-RPC compliant Web service, and Apache SOAP cannot provide such a service. For

information on how to overcome this restriction, see WSIF SOAP provider: working with legacy

applications.

 WSIF’s support for SOAP faults is restricted to SOAP faults originating from a Web service that

runs using the IBM Web Service SOAP provider.

Note: This is not primarily a WSIF restriction. The current SOAP faults specification does not

prescribe how to encode a SOAP fault so that it maps to a Java exception. Consequently,

each Web service run-time environment currently decides on its own SOAP fault format.

The IBM Web Service SOAP provider can understand its own response SOAP faults, but

not the SOAP faults from another provider.

Type mappings

The current WSIF default SOAP provider (the IBM Web Service SOAP provider) conforms to the

JAX-RPC type mapping rules that were finalized after the former (Apache SOAP) provider was

created. The majority of types are mapped the same way by both providers. The exceptions are:

xsd:date, xsd:dateTime, xsd:hexBinary and xsd:QName. Both client and service need to use the

same mapping rules if any of these four types are used. Below is a table detailing the mapping

rules for these four types:

 XML Data Type Apache SOAP Java Mapping JAX-RPC Java Mapping

xsd:date java.util.Date Not supported

xsd:dateTime Not supported java.util.Calendar

xsd:hexBinary Hexadecimal string byte []

xsd:QName org.apache.soap.util.xml.QName javax.xml.namespace.QName

Arrays and complex types

WSIF does not support general complex types, it only handles complex types that map to Java

Chapter 10. Web services 273

http://www.ws-i.org/

Beans. To use schema complex types, you must write your own custom serializers. The specific

complex type and array support for WSIF outbound invocation of Web services is as follows:

v WSIF supports Java classes generated by WebSphere Studio Application Developer -

Integration Edition (WSAD-IE) message generators (the normal case when WSDL files are

downloaded from somewhere else). The WSAD-IE-based generation happens automatically

when you use the BPEL editor, or the generation actions available on the Enterprise Services

context menu, or the Business Integration toolbar.

v WSIF does not support Java beans generated by other tools, including the base WSAD tool.

v For WSAD-IE generated Java beans, attributes defined in the WSDL do not work. That is to say

that these attributes, although they appear in the Java beans generated to represent the

complex type, do not appear in the SOAP request created by WSIF.

v WSIF does not support arrays when they are a field of a Java bean. That is to say, WSIF only

supports an array that is passed in as a named <part>. If an array is wrappered inside a Java

bean, the array is not serialized in the same way.

Object Serialization

WSIF does not support serialization of objects across different releases.

Asynchronous invocation

WSIF supports synchronous invocation for all providers. For the JMS and the SOAP over JMS

providers, WSIF also supports asynchronous invocation. You should call the supportsAsync()

method before trying to execute an asynchronous operation.

The EJB provider

The target service of the WSIF EJB provider must be a remote-home interface, it cannot be an

EJB local-home interface. In addition, the EJB stub classes must be available on the client class

path.

Running outside WebSphere Application Server

WSIF is not supported for use outside WebSphere Application Server.

UDDI registry troubleshooting

When the UDDI registry is running, it might issue messages to report events or errors. You can use these

messages as your first aid to problem determination. If you need more details about the cause of a

problem, you can turn on tracing for UDDI. See the sub-topics below for information about messages,

trace, and some common errors that you might encounter when setting up or using the UDDI registry.

If you cannot find the cause of a problem using these topics, use other knowledge bases as described in

Searching knowledge bases.

Turning on UDDI registry trace

You can enable tracing of the UDDI registry at several levels of granularity. Please refer to Enabling

tracing and logging for more information about using the administrative console to enable or disable trace;

the component for the UDDI registry is com.ibm.uddi. For example, to enable all UDDI registry tracing,

specify

com.ibm.uddi.*=all

Common causes of errors in the UDDI registry

Below are a few of the common causes of errors that might be found and their suggested solutions.

v The first start of the UDDI application may take some time to complete:

– When you start the UDDI registry application for the first time with a new UDDI registry database, it

must perform UDDI initialization, which occurs automatically for a default UDDI node, or when

274 Troubleshooting and support

requested for a customized UDDI node. UDDI initialization populates the UDDI registry with

pre-defined data and entities, and can therefore take some time to complete. This is expected

behavior. Note that this only occurs on the first start, not subsequent starts, of the UDDI application.

– If you use wsadmin to issue a command to start the UDDI application, then depending on your TCP

timeout settings, this request might time out while waiting for UDDI to complete initialization. The

UDDI initialization and the starting of the UDDI application will continue unaffected by this timeout,

and will complete normally.
v There is a limitation concerning URL rewriting causing JavaScript syntax errors on several Web pages

in the UDDI User Console. Because of this, cookies must be enabled in client browsers, the application

server must have cookies enabled as the session tracking mechanism, and URL rewriting must be

disabled.

v If you are attempting to use a remote DB2 database and are experiencing problems attaching to the

remote system, one of the possible causes might be IP addressing. You should not have this problem if

the remote system is using a static IP address, however if the remote system is using DHCP, the two

systems must be aware of each others subnet mask.

v If you cannot see your UDDI node in the administrative console list of available nodes, check that the

UDDI application is started on the relevant node/server.

v If you are unable to issue UDDI requests; for example, you start the UDDI user console and get errors

when trying to publish or inquire, it is possible that:

1. the database is not currently loaded or configured. Check the output from creating the database.

2. the database is not correctly configured. Check the JDBC provider and datasource definitions are

correct. This can be validated by using the Test Connection button on the administrative console.

3. the UDDI node is not initialized. Check the UDDI node page on the administrative console. If the

entry for the node in question does not show as activated, or deactivated, try to initialize the node

having set any policies or properties first.

4. the UDDI node is currently deactivated, while UDDI runtime settings are being updated. Check the

UDDI node page on the administrative console. If the entry for the node in question shows as

deactivated, then wait for it to change to activated, and then retry the request.

5. there are problems with your DB2 setup. In particular, check that the DB2 bind utility has been run

and that a TEMP database has been defined in the DB2 location. See Using a DB2 Universal JDBC

Driver Provider with WebSphere Application Server for z/OS for more information.
v Ensure that the database name specified when defining the data source is the location name and not

the database name supplied to the createddl.sh script (see Creating a DB2 for z/OS database). For

example ’LOC1’ not ’UDDI30’.

Reporting problems with the UDDI registry

If you report a problem with the UDDI registry component to IBM, supply the following information:

1. A detailed description of the problem. For example, if you were using a UDDI client, describe the client

error seen and the type of client program, and provide details of the request issued. If you were using

the UDDI user interface, describe the exact sequence you followed, and the result.

2. The build date and time of the version you are using. This can be obtained as follows:

v In the app_server_root/profiles/profile_name/installedApps/cell_name subdirectory of the WebSphere

installation location, you will find a subdirectory called UDDI_Registry.node_name.server_name.ear,

where node_name is the name of the node into which the UDDI registry application is installed, and

server_name is the name of the server. Within that subdirectory, you will find a file called version.txt.

Include the contents of this file as part of your information.

v If the UDDI registry has been started with tracing enabled for the UDDI component, you should find

a trace entry in the WebSphere trace log that includes the strings ″UDDIMessageLogger″ and

″UDDI Build :″ followed by the build date and time, and the build system. Also include this

information.
3. Other environment information, such as:

v Platform.

v Database product.

v Whether the database is local or remote, or for Cloudscape, whether it is embedded or networked.

v Whether the server is in a standalone or a network deployment configuration.

Chapter 10. Web services 275

v If the server is in a network deployment configuration, whether it is in a cluster or not.

v Whether the UDDI node is default or customized.

v The language used, for example, Chinese.
4. Any relevant log files and trace files.

v If the problem occurred while setting up and installing the UDDI registry application using the setup

script uddiDeploy.jacl, supply the log output from running the script. (If you did not redirect the

output from the script file to a log file, rerun the script, this time redirecting the output as described

in the sections Setting up a customized UDDI node or Setting up a default UDDI node.) The log file

is written to the directory from which you ran the setup script. For detailed information on setting up

UDDI nodes, see the chapter Setting up and deploying a new UDDI registry in the Developing and

deploying applications PDF book.

v If the problem occurred while removing the UDDI registry application using the remove script,

uddiRemove.jacl, supply the log output from running the script. The log file is written to the directory

from which you ran the remove script. For mode information about this task, see Removing a UDDI

registry node in the Administering applications and their environment PDF book.

v If the problem occurred while running the UDDI registry, enable UDDI tracing (if not already

enabled) and supply the trace log from the logs directory of the application server on which the

UDDI registry was running. See Turning on UDDI Trace for details on how to enable UDDI tracing.

The Trace string that is most useful for initial analysis of problems by IBM is ″com.ibm.uddi.*=all″.

v Also supply the WebSphere log files system.out and system.err.
5. If appropriate, any application code that you are using and the output produced by the application

code.

6. UDDI utilizes First Failure Data Capture (FFDC) to capture data for unexpected UDDI errors.

The FFDC data is saved in app_server_root/profiles/profile_name/logs/ffdc. Package all the files in this

directory and send the package to IBM.

276 Troubleshooting and support

Chapter 11. Resolving in-doubt transactions

Use this task to resolve in-doubt transactions and the messages associated with them.

Transactions may become stuck in the in-doubt state indefinitely due to an exceptional circumstance such

as the removal of a node causing messaging engines to be destroyed. When a transaction becomes

in-doubt, it must be committed or rolled back so that normal processing by the affected messaging engine

can continue.

You can use the administrative console to display the messages causing the problem (see Listing

messages on a message point.) If there are messages involved in an in-doubt transaction, the identity of

the transaction is shown in a panel associated with the message. You can then resolve the transaction in

two ways:

1. Using the server’s transaction management panels

2. Using methods on the messaging engine’s MBean

You should first attempt to resolve the in-doubt transaction using the application server transaction

management panels. You navigate to these panels in the administrative console by clicking Servers →

Application servers → [Content Pane] server-name → [Container Settings] Container Services →

Transaction Service → Runtime → Imported prepared transactions - Review. If the transaction identity

appears in the resulting panel, you can commit or roll back the transaction. If the transaction identity does

not appear in the panel, the transaction identity was not enlisted with the Transaction Service on the

server. In this case only, you should use methods on the MBean to display a list of the identities of the

in-doubt transactions managed directly by the messaging engine.

The following methods on the messaging engine’s MBean can be used to get a list of transaction identities

(xid) and to commit and roll back transactions:

v getPreparedTransactions()

v commitPreparedTransaction(String xid)

v rollbackPreparedTransaction(String xid)

To invoke the methods, you can use a wsadmin command, for example, you can use a command of the

following form to obtain a list of the in-doubt transaction identities from a messaging engine’s MBean:

wsadmin> $AdminControl invoke [$AdminControl queryNames type=SIBMessagingEngine,*] getPreparedTransactions

Alternatively, you can use a script such as the following to invoke the methods on the MBean:

set mbean [$AdminControl queryNames type=SIBMessagingEngine,*]

set input 0

while {$input >=0} {

 set xidList [$AdminControl invoke $mbean getPreparedTransactions]

 puts "----Prepared Transactions----"

 set index 0

 foreach xid $xidList {

 puts " Index=$index XID=$xid"

 incr index

 }

 puts "------- End of list ---------"

 puts "Select index of XID to commit/rollback:"

 set input [gets stdin]

 if {$input < 0 } {

 puts "No index selected, existing."

 } else {

 set xid [lindex $xidList $input]

© Copyright IBM Corp. 2006 277

puts "Enter c to commit or r to rollback XID $xid"

 set input [gets stdin]

 if {$input == "c"} {

 puts "Committing xid=$xid"

 $AdminControl invoke $mbean commitPreparedTransaction $xid

 }

 if {$input == "r"} {

 puts "Rolling back xid=$xid"

 $AdminControl invoke $mbean rollbackPreparedTransaction $xid

 }

 }

 puts ""

}

This script lists the transaction identities of the transactions together with an index. You can then select an

index and commit or roll back the transaction corresponding to that index.

In summary, to identify and resolve in-doubt transactions:

1. Use the administrative console to find the transaction identity of messages that have in-doubt

transactions.

2. Optional: If a transaction identity appears in the transaction management panel, commit or roll back

the transactions as required.

3. Optional: If a transaction identity does not appear in the transaction management panel, use the

methods on the messaging engine’s MBean. For example, use a script to display a list of transaction

identities for in-doubt transactions. For each transaction:

a. Enter the index of the transaction identity of the transaction.

b. Optional: Enter c to commit the transaction.

c. Optional: Enter r to roll back the transaction.

4. To check that transactions are no longer in-doubt, restart the server and use the transaction

management panel, or methods on the messaging engine’s MBean to check.

278 Troubleshooting and support

Chapter 12. Learning about file stores

Use the subtopics to learn about various aspects of file stores, such as different types of files within it and

high availability.

v “File stores”

v “File store high availability considerations” on page 280

v Files in a file store

v “File store configuration attributes”

v File store performance

File stores

File stores enable messaging engines to preserve operating information and to persist those objects that

messaging engines need for recovery in the event of a failure, using a file system.

A file store is a type of message store which directly uses files in a file system via the operating system.

File store mechanisms splits data storage into three levels: the log file, permanent store files and

temporary store files. For more information on these files see “File store configuration attributes.”

File store configuration attributes

The log file, permanent store file and temporary store file make up a file store. You preserve appropriate

amount of space within these three files so that operations and transactions behave predictably.

Data is first written to the log file sequentially, that is, new records are added to the end of the file. When

the end of the log file is reached, old records at the beginning of the log file are overwritten by new

records and this process repeats. Subsequently data is written to the permanent store file and temporary

store file, although extremely short-lived data is only written to the log file.

The permanent store file and temporary store files have a minimum reserved sizes and a maximum size

each. When created, the permanent and temporary store files consume their minimum reserved sizes, plus

the size of the log. If the maximum size is larger, they grow up to the maximum size as required. The

maximum size can be unlimited. It is recommended for production use that the minimum and maximum

sizes are the same, as it prevents the store files from growing and shrinking at runtime so that the

messaging engine does not gradually fill a file system. Another advantage is that if the file system does fill

up while the messaging engine is operating, it is not affected.

Figure 1. The relationship between a messaging engine and its file store.

© Copyright IBM Corp. 2006 279

The default configuration is intended to be sufficient to be used in typical messaging workloads without

any administration. To improve the performance or availability of the log or the two store files, the

administrator can modify the file store attributes to control where these files are placed. Similarly, the

administrator can modify the attributes which control the sizes of the log and two store files to handle

workloads with a large number of active transactions, large messages or a large volume of message data

resident in the messaging engine

Note: This behavior cannot be guaranteed on a compressing file system, for example, NT file system with

the Compress this directory option selected. You should avoid configuring file store to use a

compressing file system for production use.

 Table 6. File stores have the following attributes and values

Name Description

Minimum and Default Values in

mega bytes

Log size Size of the log file, in mega bytes v Minimum: 10 MB

v Default: 100 MB

Minimum permanent store size The minimum number of mega bytes reserved

by the permanent store file.

Note: The store files must always be at least

as big as the log file.

v Minimum: 0

v Default: 200 MB

Maximum permanent store size The maximum size in mega bytes of the

permanent store file.

Note: The store files must always be at least

as big as the log file.

v Minimum: 50 MB

v Default: 500 MB

Minimum temporary store size The minimum number of mega bytes reserved

by the temporary store file.

Note: The store files must always be at least

as big as the log file.

v Minimum: 0

v Default: 200 MB

Maximum temporary store size The maximum size in mega bytes of the

temporary store file.

Note: The store files must always be at least

as big as the log file.

v Minimum: 50 MB

v Default: 500 MB

Unlimited permanent store size Indicates whether the permanent store file is

unlimited in size

v Default: false

Unlimited temporary store size Indicates whether the temporary store file is

unlimited in size

v Default: false

Log directory Name of the directory that the log file is in v Default: ${USER_INSTALL_ROOT}/
filestores/com.ibm.ws.sib/
<me_name>.<me_build>/log

Permanent store directory Name of the permanent store file’s directory v Default: ${USER_INSTALL_ROOT}/
filestores/com.ibm.ws.sib/
<me_name>.<me_build>/
permanentStore

Temporary store directory Name of the temporary store file’s directory v Default: ${USER_INSTALL_ROOT}/
filestores/com.ibm.ws.sib/
<me_name>.<me_build>/
temporaryStore

File store high availability considerations

High availability refers to the capability of failing over messaging engines between servers. File stores can

be used in highly available environments.

280 Troubleshooting and support

You can achieve high availability by choosing a file store as the message store of a messaging engine. In

order to make a file store highly available, you should use hardware or software facilities to maximize the

availability of the file store data, for example, SAN.

Note: It is important to ensure that the directories containing the log file and store files are universally

accessible with the same directory name from all members of the cluster.

WebSphere Application Server v6.1 supports two styles of file system access to enable this:

v Cluster-managed file system

This style of file system access uses high availability clustering and failover of shared disks to ensure

that the file store’s directories are accessible from the server that is currently running the messaging

engine. The file store’s directories are located on file systems in the shared disks, and high availability

cluster scripts are used to mount the file systems on the node with the server that is running the

messaging engine.

v Networked file system

This style of file system access uses a network file system. The most popular protocols for accessing

remote files are Common Internet File System (CIFS) and Network File System (NFS). It is

recommended that you adopt Version 4 of NFS, which supports automated failover to ensure access

locking. Access locking ensures the integrity of the log files, that is, only a single client process can

access the log at a time.

Note: It is important to check that the file system configuration is correct, because it cannot be checked

by the WebSphere configuration system or messaging engine. Errors only surface at runtime, so

thorough failover testing is recommended.

Further information:

These considerations for enabling access to the file store’s directories are similar to those for enabling

access to the recovery log in a cluster. For more information see the following article: Transactional high

availability and deployment considerations in WebSphere Application Server V6

Exclusive access to file store

A messaging engine has exclusive access to file store by design of file stores.

Each file store contains information which uniquely identifies the messaging engine which created it. A file

store can only be used by the messaging engine which created it.

The messaging engine opens the file store’s files in exclusive mode to prevent multiple instances of the

same messaging engine from simultaneously using the file store, for example, by accidental activation on

the messaging engine of multiple servers in a cluster. When a messaging engine stops, either in a

controlled fashion or as a result of server failure, the file store’s files are closed. Then another instance of

the same messaging engine is able to open the file store.

Chapter 12. Learning about file stores 281

http://www-128.ibm.com/developerworks/websphere/techjournal/0504_beaven/0504_beaven.html
http://www-128.ibm.com/developerworks/websphere/techjournal/0504_beaven/0504_beaven.html

282 Troubleshooting and support

Chapter 13. Messaging engine failover between v6 and v6.1

It is not permissible to failover a messaging engine using a file store onto a WebSphere Application Server

v6 server. If you have a cluster as a bus member that consists of a mixture of v6 and v6.1 servers, you

must modify the high availability policy to prevent this.

To prevent failover of a v6.1 messaging engine to a v6 server, the high availability policy for the messaging

engine should be modified so that the cluster is effectively divided into sets of servers at the different

versions and the messaging engine is restricted to the servers at v6.1.

© Copyright IBM Corp. 2006 283

284 Troubleshooting and support

Chapter 14. Tuning and problem solving for messaging

engine data stores

Obtain an overview of improving the performance of messaging engine data stores and understanding

problems that can occur with a data store.

For more information about tuning and problem solving for messaging engine data stores, see the

following topics:

v Tuning the JDBC data source of a messaging engine

v Controlling the memory buffers used by a messaging engine

v “Diagnosing problems with data store exclusive access locks”

v “Diagnosing problems with your data store configuration” on page 287

v “Avoiding failover problems when you use DB2 v8.2 with HADR as your data store” on page 287

Diagnosing problems with data store exclusive access locks

Diagnose the causes of problems with data store exclusive access locks and examine possible causes to

the problems.

Each messaging engine establishes an exclusive lock on its data store. While the messaging engine is

running, it maintains that lock to ensure the integrity of the data within the data store.

Compare your symptoms with those listed in the following table and examine the possible solutions:

 Symptom Cause Solution

The messaging engine

cannot start nor

failover to another

server. The messaging

engine writes error

message CWSIS1519

The messaging engine cannot

connect to the database that you

specified in the data source that

you configured to enable the

messaging engine to access its

data store.

v Check that connectivity to the database is possible

using the defined data source.

v If you can connect to the database, another instance

of the messaging engine might hold a lock on the data

store. Check for other running instances of the

messaging engine.

v If the messaging engine is taking over from another

that was running on a different server in the same

cluster, the database might not have released the

database locks that comprise the data store lock. Use

the administration tools for your relational database

management system to examine the locks on the

SIBOWNER table. If the database is still holding locks

after the failure of a server, ensure that you configure

the liveness checking of the network connection

between the application server and the database

server appropriately. For example, examine the TCP

keep alive parameter. If you are using DB2 for z/OS,

you can examine the DB2 Idle Thread Timeout.

© Copyright IBM Corp. 2006 285

Symptom Cause Solution

After a delay of many

minutes, the

messaging engine

cannot failover to

another server and

writes error message

CWSIS1519.

Another instance of the same

messaging engine is holding the

data store lock, or the database

has not released a data store lock

that was held by a failed instance

of the same messaging engine.

v If you can connect to the database, another instance

of the messaging engine might hold a lock on the data

store. Check for other running instances of the same

messaging engine. Only one instance of each

messaging engine can run in a cluster at a given time.

v After the failure of an instance of a messaging engine

or an application server that is running in a cluster, the

database might not have released the database locks

that comprise the data store lock. Use the

administration tools for your relational database

management system to examine the locks on the

SIBOWNER table. If the database is still holding locks

after the failure of a server, ensure that you configure

the liveness checking of the network connection

between the application server and the database

server to enable prompt failover. For example,

examine the TCP keep alive parameter. If you are

using DB2 for z/OS, you can examine the DB2 Idle

Thread Timeout. You might need to use your database

administration tools to force the release of the lock on

the data store.

The messaging engine

fails to start and writes

error messages

CWSIS1535 and

CWSIS1519

The identifiers in the SIBOWNER

table do not match those of the

messaging engine.

v Check that the data source that you configured for the

messaging engine refers to the correct database.

v If the MEUUID identifiers do not match, check that a

previous messaging engine did not use the same

tables. If the tables already exist, DROP the tables

and CREATE them again for the new messaging

engine.

v If the INCUUID identifiers do not match, another

instance of the same messaging engine is running

and has acquired the lock. Check for other running

instances of the messaging engine.

The messaging engine

starts but then stops

and writes error

message CWSIS1519.

The messaging engine has lost its

lock on the data store.

v Check that you have connectivity to the database

through the data source that you specified. The

messaging engine might have lost network

connectivity and be unable to maintain a connection

with the database.

v If you can connect to the database, another instance

of the messaging engine might have started and

obtained a lock on the data store. Check for other

running instances of the messaging engine.

Fixing storage allocation error caused by DB2 Universal JDBC Driver

on z/OS

When using DB2 Universal JDBC type 2 driver on z/OS, the messaging engine fails to start. This is a

known issue and can be solved by tuning the JDBC driver.

In the address space of Control Region Adjunct (CRA), you might see text ″Storage Allocation Error″,

for example, in

286 Troubleshooting and support

BBOO0220E: [SB6NLA1:SB6NLA1.server1-SB6NLA1] CWSIP0002E: An internal messaging error occurred in com.ibm.ws.sib.p

 rocessor.impl.MessageProcessor, 1:1469:1.365, com.ibm.ws.sib.msgstore.MessageStoreRuntimeException: com.ibm.ws.sib.msgst
 nceException: CWSIS1501E: The data source has produced an unexpected exception: com.ibm.db2.jcc.t2zos.y: [IBM/DB2][T2zos
 sPreparedStatement.readPrepareDescribeOutput_:processDescribeOutput:1563:Storage Allocation Error at com.ibm.ws.sib.msgs
 inks.AbstractItemLink.readDataFromPersistence(AbstractItemLink.java:2487) at com.ibm.ws.sib.msgstore.cache.links.Abstrac
 estoreItem(AbstractItemLink.java:639)

1. You can avoid this error by performing one of the following steps:

a. Set the JDBC driver customer property fullyMaterializeLobData to false. You can do this in the

administrative console: Resources > JDBC Providers > Your JDBC provider -> Data sources ->

Your data source > Custom properties > fullyMaterializeLobData.

b. Use the Universal JDBC provider of type 4 driver.

2. Restart the application server.

Diagnosing problems with your data store configuration

Find out how to diagnose problems that are caused by your data store configuration and possible solutions

to these problems.

The following problems depend on the database that you use with your data store configuration and the

level of that database:

v Examine this section if your messaging engine uses an Oracle 9i database for its data store and your

messaging engine fails to start. If the messaging engine fails with the following message, where

XXXXXXXX is the schema for the table, ensure that your Oracle installation is at 9.2.0.4, or higher:

CWSIS1530E: The data type, 1,111, was found instead of the expected type, 2,004, for column,

LONG_DATA, in table, XXXXXXXX.SIB000.

v Examine this section if your messaging engine uses a Sybase database for its data store. When you

create your Sybase server:

– Ensure that you create the database server with a page size of at least 4k.

– Ensure that you set the lock scheme property on your server to the value datarows. This avoids the

possibility of a deadlock on the data store tables.

v Examine this section if your messaging engine uses an Informix database for its data store and the

messaging engine is unable to access its data store. When you configure your messaging engine to use

an Informix database, ensure that you specify the schema name in lower case. For a full description of

the configuring procedure, refer to Modify data store configurations.

Avoiding failover problems when you use DB2 v8.2 with HADR as your

data store

Use this task to avoid problems that can occur when a messaging engine that is configured to use DB2

v8.2 with the High Availability Data Recovery (HADR) feature for its data store terminates if the DB2

database fails over.

If you use the High Availability Data Recovery (HADR) feature of DB2, note the following restrictions:

v The messaging engine default messaging provider supports only the synchronous and

near-synchronoous synchronization modes of HADR. The default messaging provider does not support

asynchronous HADR configurations.

v The TAKEOVER BY FORCE command is permitted only when the standby database is in peer state, or

in a non-peer state (such as disconnected state) having changed from peer state.

One-phase commit optimization tuning

If you have configured your messaging engine to use a data store, you can achieve better performance by

configuring both the messaging engine and container-managed persistent (CMP) beans.

Chapter 14. Tuning and problem solving for messaging engine data stores 287

You need to configure both the CMP and the messaging engine’s resource authorization so that they

share the same data source.

1. Open the administrative console.

2. Click on Enterprise Applications > servername > Map data sources for all 2.x CMP beans.

3. On the content pane, select the check boxes next to all the CMPs.

4. Select Per application in the Resource authorization selection list.

5. You can modify the messaging engine’s resource authorization to Per application by modify the

property file sib.properties by adding the custom property

sib.msgstore.jdbcResAuthForConnections=Application.

288 Troubleshooting and support

Chapter 15. Listing messages on a message point

Use this task to list the messages that exist on a message point for a selected bus destination or

messaging engine.

To display a list of messages on a message point, use the administrative console to complete the following

steps:

1. In the navigation pane, click Service integration → Buses.

2. In the content pane, click the name of the service integration bus.

3. Optional: To list the message points for a bus destination, complete the following steps:

a. In the content pane, under Destination resources, click Destinations

b. Click the destination name.

4. Optional: To list the message points for a messaging engine, complete the following steps:

a. In the content pane, under Topology, click Messaging engines

b. Click the messaging engine name.

5. Under Additional Properties, click Message points This displays a list of message points in the content

pane.

6. Click the message point name. This displays the properties of the destination localization in the content

pane.

7. Click the Runtime tab.

8. Under Additional Properties, click Messages

A list of messages on the selected message point is displayed in the content pane.

You can select one or more messages to act on; for example, to display the message content, delete

messages.

© Copyright IBM Corp. 2006 289

290 Troubleshooting and support

Chapter 16. Deleting messages on a message point

Use this task to delete one or messages that exist on a message point for a selected bus destination or

messaging engine.

You should not normally need to delete messages on a message point. This task is intended as part of a

troubleshooting procedure.

To delete one or messages on a message point, use the administrative console to complete the following

steps:

1. List the messages on the message point.

2. In the content pane, click the check box next to each message you want to delete. Alternatively, you

can select all messages in the list by clicking the Select all items button

3. Click Delete

The selected messages are removed from the list.

© Copyright IBM Corp. 2006 291

292 Troubleshooting and support

Chapter 17. Resolving locked messages on a message point

Use this task to identify and resolve messages that are locked on a message point.

To resolve locked messages on a message point, use the administrative console to complete the following

steps:

1. List the messages on the message point. The State property indicates whether or note the message is

locked.

2. To list extra information about a message, click its name in the list. This displays the Messages

settings panel, which shows a range of properties about the message; for example

Time stamp

The time stamp of the message.

Message wait time

The time the message has been waiting to be consumed.

If appropriate, after resolving the reason for messages being locked, you can delete messages on the

Messages collection page.

© Copyright IBM Corp. 2006 293

294 Troubleshooting and support

Chapter 18. Troubleshooting service integration technologies

Use this overview task to help resolve a problem that you think is related to service integration

technologies.

For general information about fixing problems, see Diagnosing and fixing problems.

To help you identify and resolve problems, use the WebSphere Application Server tracing and logging

facilities. For more information about using tracing and logging, see Adding logging and tracing to your

application.

If you encounter a problem that you think might be related to service integration technologies, complete

the following stages.

1. Check the “Tips for troubleshooting” related links for specific problems related to service integration

technologies.

2. Use “Troubleshooting service integration message problems” on page 324 to investigate problems with

messages, such as messages not arriving or being consumed. If the tips and the investigations do not

help you fix the problem, complete the following general stages.

3. Check the Release Notes for known problems and their resolution. The Release Notes are available

from the WebSphere Application Server library web site.

4. For current information from IBM Support on known problems and their resolution, see the WebSphere

Application Server support page.

5. Search the WebSphere Technotes database.

You can use the following queries to find articles for service integration technologies:

v All technotes: http://www.ibm.com/support/search.wss?rs=180tc=SSEQTP&tc1=SSCBRCS

v MustGather technotes, used to debug problems: http://www.ibm.com/support/
search.wss?rs=180tc=SSEQTP&tc1=SSCBRCS&q=MustGather

6. Check for error messages.

Check in the SYSPRINT or SYSOUT log for error messages.

The following message prefixes relate to specific aspects of service integration technologies:

 Message prefix Aspect of service integration technologies

CWSIA API

CWSIB Message formatting and parsing core

CWSIC Communications

CWSID Administration and system management

CWSIE Message formatting and parsing SPI

CWSIF Message formatting and parsing

CWSIG Example

CWSIH Match space

CWSII Security

CWSIJ Communications formats and protocol

CWSIK Common messages

CWSIL Publish and subscribe bridge

CWSIM Mediations

CWSIN Mediation services

CWSIO Administration migration

© Copyright IBM Corp. 2006 295

http://www.ibm.com/software/webservers/appserv/infocenter.html
http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCR4XC
http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCR4XC
http://publib-b.boulder.ibm.com/Redbooks.nsf/Portals/WebSphereTips
http://www.ibm.com/support/search.wss?rs=180tc=SSEQTP&tc1=SSCBRCS
http://www.ibm.com/support/search.wss?rs=180tc=SSEQTP&tc1=SSCBRCS&q=MustGather
http://www.ibm.com/support/search.wss?rs=180tc=SSEQTP&tc1=SSCBRCS&q=MustGather

Message prefix Aspect of service integration technologies

CWSIP Message processor

CWSIQ MQ formats and protocol

CWSIR Core programming interface

CWSIS Message store

CWSIT Topology routing and management

CWSIU Utilities

CWSIV Resource adapter

CWSIX Core beans

CWSIY Mediation handler framework

CWSIZ Mediation framework

CWSJA Administration commands

CWSJB Inter-bus link

CWSJC Core selector

CWSJD Administration security

CWSJO Service Data Objects configuration

CWSJQ Message formatting and parsing MQ interoperability

CWSJR Resource adapter (JMS)

CWSJU Message tracing

CWSJW WLM classifier for z/OS

The Troubleshooter reference: Messages contains information about the messages, indexed by

message prefix. For each message there is an explanation of the problem, and details of any action

that you can take to resolve the problem.

7. Check for more information and error messages that might provide a clue to a related problem. For

example, if you see WebSphere MQ error messages or reason codes in WebSphere Application

Server messages and logs, refer to the WebSphere MQ Messages document at http://
publibfi.boulder.ibm.com/epubs/pdf/amqzao05.pdf.

8. If the information obtained in the preceding stages is still inconclusive you should explore further, for

example by enabling the application server debug trace to provide a detailed exception dump.

Tips for troubleshooting service integration messaging

This topic provides a set of specific tips to help you troubleshoot problems with service integration

messaging.

v “Messaging engine cannot startup because of a known error in the Informix JDBC Driver 3.00JC1” on

page 297

v “Problem determination for a data store” on page 297

v “Possible causes of the XAResourceNotAvailableException exception and how to take appropriate

action” on page 298

v “Problems when you re-create a service integration bus” on page 298

v “Problems when re-creating bus members” on page 298

v Problems communicating with foreign buses

v “Problems when attempting to communicate with a renamed foreign bus” on page 299

v “Possible causes of a JMSException with a wrapped SILimitExceeded exception” on page 299

v “Corruption problems on system restarts” on page 300

v “Retrieving the status of messaging engines in the administrative console” on page 301

v “Enabling an application to be started before a required messaging engine has started” on page 301

v “Messages appear following activation of a message-driven bean during server startup” on page 301

296 Troubleshooting and support

http://publibfi.boulder.ibm.com/epubs/pdf/amqzao05.pdf
http://publibfi.boulder.ibm.com/epubs/pdf/amqzao05.pdf

Messaging engine cannot startup because of a known error in the Informix JDBC

Driver 3.00JC1

When attempting to use the Informix JDBC driver 3.00JC1 to store data, the messaging engine cannot

start up, and the following error message might appear in the WebSphere Application Server

SystemOut.log file:

00000022 SibMessage E [RetireBus:retire_web.000- RetireBus] CWSIS0002E:

The messaging engine encountered an exception while starting.

Exception: com.ibm.ws.sib.msgstore.PersistenceException: CWSIS1501E:

The data source has produced an unexpected exception: java.sql.BatchUpdateException: Unique constraint

(informix.u114_62) violated.

00000022 SibMessage E [RetireBus:retire_web.000- RetireBus] CWSID0035E:

Messaging engine retire_web.000-RetireBus cannot be started;

detected error reported during com.ibm.ws.sib.msgstore.impl.MessageStoreImpl start()

00000022 SibMessage E [RetireBus:retire_web.000- RetireBus] CWSID0027I:

Messaging engine retire_web.000-RetireBus cannot be restarted because a serious error has been reported.T]

00000022 SibMessage I [RetireBus:retire_web.000- RetireBus] CWSID0016I:

Messaging engine retire_web.000-RetireBus is in state Stopped.

There is a known defect (PTS 172471) in the Informix JDBC Driver 3.00JC1. To avoid this error, upgrade

the Informix JDBC Driver to 3.00JC2.

Problem determination for a data store

You can perform a dump, in reduced form, of the data in the data store for a messaging engine. The

output is intended for use by IBM Service personnel.

If there is a problem with the data in the data store, it can be hard to diagnose from the trace output.

However, you can create a dump, in XML format, of the data in the data store. This makes diagnosis

easier because it is a human readable representation that can be transformed to other formats as

required.

The dump is created as an XML file in the $WAS_HOME/logs/server1 directory. The file is named

according to the format: messaging_engine_nameUUIDtimestamp.xml

The format of the file is illustrated in the following example:

<MessageStore>

 <itemStreams>

 <ItemStreamLink id="0" state="Available">

 <class>com.ibm.ws.sib.msgstore.ItemStream</class>

 <priority>5</priority>

 <canExpireSilently></canExpireSilently>

 <storageStrategy>STORE_NEVER</storageStrategy>

 <expiryTime>0</expiryTime>

 <sequence>0</sequence>

 <tranID>null</tranID>

 <tickValue>0</tickValue>

 <items>

 <ItemLink id="2" state="Available" refCount="3" refCountDecreasing="false">

 <class>com.ibm.ws.sib.msgstore.Item</class>

 <priority>5</priority>

 <canExpireSilently></canExpireSilently>

 <storageStrategy>STORE_NEVER</storageStrategy>

 <expiryTime>0</expiryTime>

 <sequence>1</sequence>

 <tranID>null</tranID>

 <tickValue>0</tickValue>

 </ItemLink></items></ItemStreamLink></itemStreams></MessageStore>

Chapter 18. Troubleshooting service integration technologies 297

Possible causes of the XAResourceNotAvailableException exception and how to

take appropriate action

When the deleteNode command is used for a node that hosts messaging engines, those messaging

engines are deleted. When new messaging engines are re-created following the addNode command, they

have different identifiers and so during transaction recovery it is not possible to connect to the old

messaging engines. A message identifying the XAResourceNotAvailableException exception is generated

in the SystemOut.log file for each server that hosts a messaging engine.

To solve this problem, you must follow the procedure described in Chapter 11, “Resolving in-doubt

transactions,” on page 277.

The XAResourceNotAvailableException exception can also be thrown when a server in a cluster bus

member fails over. In this case, no operator intervention is required to recover and resolve transactions.

Problems when you re-create a service integration bus

If you delete a service integration bus, and later create a new bus with the same name, the messaging

engine fails to start and messages like the following are generated in SystemOut.log:

[8/11/04 21:55:01:439 CDT] 0000000f SibMessage I

[LateBus:xyzsun15.server1-LateBus] isAlive: MessagingEngine suffered common mode error. Correct error (see

logs) and restart server.

[8/11/04 21:55:01:468 CDT] 0000000f SibMessage I

[LateBus:xyzsun15.server1-LateBus] isAlive: MessagingEngine will be stopped because of common mode error.

No failover will occur.

[8/11/04 21:55:01:493 CDT] 0000000f SibMessage I

[LateBus:xyzsun15.server1-LateBus] Messaging Engine

xyzsun15.server1-LateBus not in state from which stop is valid: Starting

[8/11/04 21:55:01:513 CDT] 0000000f SibMessage I

[LateBus:xyzsun15.server1-LateBus] isAlive: MessagingEngine stopped because of common mode error. Correct

error (see logs) and restart server.

[8/11/04 21:57:01:431 CDT] 0000000e SibMessage I

[LateBus:xyzsun15.server1-LateBus] isAlive: MessagingEngine suffered common mode error. Correct error (see

logs) and restart server.

The reason is that the database directory for the messaging engine still exists after deletion of the bus and

must be manually removed. To delete the Cloudscape Version 10.1.x (Derby) database for a non-existent

messaging engine, you must delete the database directory that is located in profile_root/databases/
com.ibm.ws.sib, where profile_root is the directory in which profile-specific information is stored.

You must stop WebSphere Application Server before you can delete the database files.

For other databases, you can either delete all of the rows from the data store tables, or you can drop all of

the tables. The names of the data store tables all begin with SIB, and are in the schema that you

configured for the data store.

For more information , see Data store life cycle.

Problems when re-creating bus members

If you previously created a bus and added a bus member using the DEFAULT data source, when you

attempt to recreate this bus member and you therefore delete the bus member and then try to add it

again, the following exception appears:

ADMG0037E: A new instance of the DataSource object cannot be created because the jndiName attribute

 of an existing DataSource object has the same value as jdbc/com.ibm.ws.sib/<NODENAME>.<SERVERNAME>-

<BUSNAME>

Note: The bus member is recreated but the messaging engine fails to start.

298 Troubleshooting and support

To resolve the problem, delete the data source manually. To do this, use the administrative console to

complete the following steps:

1. Delete the bus member that is causing the exception.

2. Select Resources > JDBC Providers.

3. Change the scope to the scope of the data source that you want to delete. For example, on a single

server install, you would choose Server, but this may vary with other topologies.

4. In the list of data sources, click Cloudscape Version 10.1.x (Derby) JDBC Provider. Note: Select the

non XA option.

5. On the Configuration tab, under Additional Properties, click Data sources.

6. Select the check box next to the data source specified in the error message.

7. Click Delete.

8. Save your changes to the master configuration.

You should now be able to recreate the bus member without difficulty.

Problems communicating with foreign buses

To enable communication between buses, a foreign bus and a service bus integration link must be

created. On the first bus, the name of the foreign bus must match the name of the second bus that

becomes a foreign bus, and the name of the foreign bus for this second bus must match the name of the

first bus. The service integration bus link must be have the same name on both buses.

You may see the following type of error if your configuration is not correct, for example because the

service integration bus links do not match:

SibMessage E [TechBus:TechCluster.000-TechBus] CWSIT0057E: The inter-bus

connection BookstoreBus failed in the remote messaging engine on host

aixp401.rchland.ibm.com with reason: CWSIT0067E: Inter-bus connection BookstoreBus

in bus BookstoreBus is not available.

Problems when attempting to communicate with a renamed foreign bus

The administrative console panel used for configuring the properties of a service integration bus link, also

allows you to change the foreign bus name that the link is pointing to. However, the foreign bus name

must not be altered once it has been configured. If it is, any messaging engines that already hold state

information about the link will not be able to use the link unless the foreign bus name is reset to its

previous value.

Possible causes of a JMSException with a wrapped SILimitExceeded exception

When the number of messages held by a destination reaches its limiting threshold, any attempt to send a

message to that destination fails with a JMSException with a wrapped SILimitExceeded exception. The

destination continues to fail with this exception until the number of messages held by the destination

reduces below the limiting threshold.

To obtain an accurate count of the number of available message, you can monitor the Available Message

Count PMI statistic for queue and topicspace destinations. If the number of available messages increases,

take action to balance the system. Consider stopping producers from sending new messages until the

destination consumes the available messages.

Examine the following list for possible causes and solutions for this problem:

v The high threshold for the destination is too low for the projected number of messages. The destination

does not process some messages. The default value for the high threshold is 50000.

Solution: Increase the high threshold for the destination.

Chapter 18. Troubleshooting service integration technologies 299

v Applications are producing more messages than the destination can process.

The ideal balance is for the number of messages produced and the number of messages consumed to

be equal over a period of time. If your system is unbalanced and the producing application sends more

messages than the destination can consume, the producing application eventually throws a

JMSException.

Solution: Aim for a balance between the number of messages produced and the number of messages

consumed.

Tip: The default setting for the Object Request Broker (ORB) thread pool is 100 threads. For some

applications, this might allow 100 applications to send messages to the same destination. Consider

tuning the ORB thread pool to have a maximum of 10 threads. This lower setting reduces the

number of producers that can send messages, which might increase the overall message

throughput.

v Applications are processing messages from the destination too slowly.

Solution: It might be necessary to increase the number of messages consumed by the client

applications. A destination processes more message when multiple consumers read from that

destination.

Consider cloning your application across multiple servers in a non-clustered environment. By

default, applications are cloned in a clustered server environment. To enable subscribers in a

non-clustered environment, set the cloned flag in the TopicConnectionFactory JNDI setting

for DurableSubscriptions.

Restriction: This solution is not suitable for applications that require total message ordering.

v Messages have a quality of service attribute that is better than best effort nonpersistent.

Solution: Use messages for which the quality of service attribute is best effort nonpersistent. If there

are too many messages in the system, the destination discardsbest effort nonpersistent

messages.

Restriction: This solution is not suitable for applications that must receive all messages.

Corruption problems on system restarts

It is possible, although rare, for a messaging engine, destination or link to be corrupted after a restart of

the system. If this occurs you will see a message indicating the problem. If the problem lies with the

messaging engine, the messaging engine will not start. If a destination or link is corrupted, the relevant

messaging engine will start, but the destination or link will not be usable on that messaging engine.

If you do not know the cause of the problem, contact your IBM service representative to establish the

cause before attempting to resolve the situation.

If you know the cause of the problem, for example, you are aware of an issue with your database, resolve

it by completing the following steps:

1. Ensure that the configuration files are synchronized across your system by clicking System

administration → Nodes → Full resynchronize. This operation can take several minutes to run.

2. If the problem still exists, perform one of the following tasks:

v Delete the corrupted object and recreate it. Messages produced or received before the corruption

occurred will be lost.

v Restore your system from a backup, see Restoring a data store backup and recovering a

messaging engine afterwards. Messages produced or received since the backup was taken will be

lost.

300 Troubleshooting and support

Retrieving the status of messaging engines in the administrative console

To be able to retrieve the status of messaging engines, you must be logged into the administrative console

with at least monitor authority. If you do not have this authority, the messaging engine status is displayed

as ″Unavailable″, even if the messaging engine has started.

If you are not logged in with the authority needed to retrieve the status of messaging engines, an error

message like the following is logged in the server’s systemOut log file:

[4/20/05 10:49:57:083 CDT] 0000004b RoleBasedAuth A SECJ0305I: The role-based authorization check

failed for admin-authz operation SIBMessagingEngine:stateExtended. The user UNAUTHENTICATED (unique ID:

unauthenticated) was not granted any of the following required roles: administrator, operator,

configurator, monitor.

Where the user ID actually shown in the message is the user ID that you used to log in to the

administrative console.

Enabling an application to be started before a required messaging engine has

started

If an application depends on a messaging engine being available, then the messaging engine must be

started before the application can be run. If you want application server to start an application

automatically, you should develop your applications to test that any required messaging engine has been

started and, if needed, wait for the messaging engine. If this is technique used in a startup bean, then the

startup bean method should perform the test and wait work in a separate thread (using the standard

WorkManager methods), so that the application server startup is not delayed.

For an example of code to test and wait for a messaging engine, see Enabling an application to be started

before a messaging engine.

Messages appear following activation of a message-driven bean during server

startup

If a message-driven bean is configured to connect to a given bus, but there are no suitable active

messaging engines within the local server, the following message appears during server startup:

CWSIV0759W: During activation of a message-driven bean, no suitable active messaging engines were found in

the local server on the bus {0}.

Message consumption will begin when a suitable local messaging engine becomes active. Ensure that a

suitable messaging engine is in the process of starting, in which case a message is displayed when a

successful connection is made.

If a messaging engine does not appear to start, check if custom core group policies are being used. Verify

that they are set correctly and, if preferred servers are being used, that appropriate servers are selected in

the preferred server list.

Tips for troubleshooting bus members

This topic provides a set of specific tips to help you troubleshoot problems with bus members.

v Error 500 when adding a new member to a service integration bus.

Error 500 when adding a new member to a service integration bus.

When using the WebSphere administrative console to add a server or server cluster as a new member of

a service integration bus, you can receive an Error 500 message, with the additional message “An error

occurred while processing request: /ibm/console/sIBusMemberCollection.do”. In addition, the

SystemOut log contains a null pointer exception for the stepsLayout.jsp; for example:

Chapter 18. Troubleshooting service integration technologies 301

[9/21/04 14:35:18:282 CDT] 00000031 ServletWrappe E SRVE0068E: Could not invoke

the service() method on servlet /secure/layouts/stepsLayout.jsp. Exception thrown :

java.lang.NullPointerException

This occurs in situations where your firewall product is configured to remove the private header information

(Referer) from requests, because the WebSphere administrative console requires the header to contain

the referer.

To solve this problem, you can either configure your firewall product to allow the private header information

(Referer) in requests or disable the firewall product. For example, for information about configuring

ZoneLabs to allow the referer in requests, see the Private Header Information (Referer) article at

http://www.hotcomm.com/FAQ/FAQ_ZA.asp#referer.

Tips for troubleshooting the default messaging provider

This topic provides a set of specific tips to help you troubleshoot problems for JMS messaging with the

default messaging provider.

For general tips about troubleshooting problems with WebSphere messaging, see Tips for troubleshooting

WebSphere Messaging. This topic provides additional tips specific to the default messaging provider and

its use of service integration technologies.

v JMS client applications running inside the J2EE client container fail when invoking the

ConnectionFactory.createConnection method

JMS client applications running inside the J2EE client container fail when invoking

the ConnectionFactory.createConnection method

When a JMS client application is running inside the J2EE client container, on a machine that is running no

other WebSphere processes, a call to the ConnectionFactory.createConnection method can fail with the

following error:

CWSIJ0005E: An instance of the channel framework service to use for communication cannot be found

Cause

 The ConnectionFactory for the default messaging provider has a dependency on the Channel

Framework Service. It locates the Channel Framework Service using a lookup in the JNDI name

space. To connect to a naming service, the ConnectionFactory uses an InitialContext object

created using the default constructor.

 When the JMS client is running within an application server environment, the InitialContext object

is able to successfully connect to the naming service, the Channel Framework Service is located

and the call to createConnection completes successfully.

 However, when the JMS client is executing within the J2EE client container, the InitialContext

object uses the value of the java.naming.provider.url system property, to determine the location of

the naming service to connect to. If no value is specified for this property, it attempts to connect to

a naming service located at port 2809 on the local client machine. If there is no node agent

process running on the client machine, there is no naming service listening on this port on the

local machine. This causes the createConnection method to fail with the following error:

CWSIJ0005E: An instance of the channel framework service to use for communication cannot be found

Solution

 A JMS client application can specify the value of the java.naming.provider.url programmatically,

using code of the form:

String key = "java.naming.provider.url";

String value = "iiop://some.remote.machine:9810";

System.setProperty(key, value);

302 Troubleshooting and support

http://www.hotcomm.com/FAQ/FAQ_ZA.asp#referer

This code should be run prior to invoking the createConnection method on the ConnectionFactory

object.

 Alternatively, if you use the launchClient script from the command line to launch the J2EE client

container, you can specify either of the following command line parameters:

v launchClient <CLIENT EAR> -CCBootstrapHost=some.remote.machine -CCBootstrapPort=981

v launchClient <CLIENT EAR> -CCproviderURL=iiop://some.remote.machine:9810

This ensures that if no provider URL is specified programmatically, then any InitialContext objects

default to using the provider URL specified on the command line.

Tips for troubleshooting mediations

This topic provides a set of specific tips to help you troubleshoot problems with mediations.

To help identify and resolve problems, use the Troubleshooter reference: Messages. It contains information

about error messages, indexed by message prefix. For each message there is an explanation of the

problem, and details of any action that you can take to resolve the problem.

For information about looking at error logs, see Working with message logs.

Tips for common problems

v “Where is my message?”

v How do I enable trace?

v Why was my message not mediated?

v Why does my mediation not run?

v Which error messages relate to mediations?

Where is my message?

If your message is not where you expect it to be, check the following:

v The message had the reliability level Best effort nonpersistent, and has been discarded as a result

of constrained system resources. For more information, see Reliability levels.

v The message has been received by another consumer, and has gone from the system.

v The message expiry time has exceeded, and the message has been discarded.

v The mediation returned false, and the message has been discarded. For more information, see

Programming mediations .

v The mediation threw an exception, and the message was sent to the exception destination. For more

information, see Error handling in mediations.

v The destination to which the message was forwarded has been deleted, and the message has been

sent to the exception destination. For more information, see Exception destinations and Error handling

in mediations.

v The forward routing path has been modified to behave other than intended, and the message has not

been routed to the intended destination. For more information, see Configuring a destination forward

routing path.

v There is an implicit loop in the forward routing path, and the message has not arrived at the intended

destination.

How do I enable trace?

For more information, see Enabling trace.

Chapter 18. Troubleshooting service integration technologies 303

Why was my message not mediated?

v Check if the destination is mediated. To do this, list the mediation points for the destination. For more

information, see Listing mediation points for a bus destination.

v Look in the system.out log for the following error message:

CWSIZ0002E: The mediation named {0} that is attached to destination {1} is defined to use mediation

handler list {2}. However this handler list does not exist.

Check for the following common reasons why the handler list does not exist:

– The application containing the handler list has not been installed.

– The application containing the handler list has not been started.

– The name of the handler list is mis-spelled in the mediation definition.

v Check the status of the mediation handler application in the administrative console. If it has the status

Stopped, check for error messages in the system.out log.

v Check that the message matches the selector and/or discriminator configured on the mediation. To do

this:

1. View the message on the mediation point. For more information, see Viewing messages for a bus

destination.

2. Check the configuration for the mediated destination. For more information, see Configuring

mediation properties.

Why does my mediation not run?

If your mediation does not run, check the following:

v The status of the mediation in the administrative console.

v The stop reason on the mediation point. For more information, see restarting a mediation that has

stopped on error.

v Error messages in system.out log. For more information, see Working with message logs.

Which error messages relate to mediations?

Mediations error messages have the following prefixes:

CWSJU

Errors about message production or consumption.

CWSIZ

Errors about what has happened to the message whilst it was mediated.

Tips for troubleshooting service integration bus security

This topic provides a set of specific tips to help you troubleshoot problems you experience when working

with a secure service integration bus.

To help you identify and resolve service integration bus security-related problems, use the WebSphere

Application Server trace and logging facilities as described in Setting up component trace (CTRACE).

If you encounter a problem that you think might be related to service integration bus security, you can

check for error messages in the WebSphere Application Server administrative console, and in the

application server SystemOut.log file. You can also enable the application server debug trace to provide a

detailed exception dump.

WebSphere system messages are logged from a variety of sources, including application server

components and applications. Messages logged by application server components and associated IBM

304 Troubleshooting and support

products start with a unique message identifier that indicates the component or application that issued the

message. The prefix for the service integration bus security component is CWSII.

The Troubleshooter reference: Messages contains information about all WebSphere Application Server

messages, indexed by message prefix. For each message there is an explanation of the problem, and

details of any action that you can take to resolve the problem.

Here is a set of tips to help you troubleshoot commonly-experienced problems:

v “After you migrate an application server to WebSphere Application Server Version 6, existing Web

services clients can no longer use SOAP over JMS to access services hosted on the migrated server.”

v “When you try and make a connection using a user ID in an authorized group but access is denied

when using LDAP” on page 306

After you migrate an application server to WebSphere Application Server Version

6, existing Web services clients can no longer use SOAP over JMS to access

services hosted on the migrated server.

Before you migrated the Version 5 application server, no user ID or password was required on the target

MQ Series queue. After the application server is migrated to Version 6, and using Version 6 default

messaging, client requests fail because basic authentication is now enabled. The problem appears as a

log message:

SibMessage W [:] CWSIT0009W: A client request failed in the application

server with endpoint <endpoint_name> in bus your_bus with reason: CWSIT0016E:

The user ID null failed authentication in bus your_bus.

In WebSphere Application Server Version 6, when you use the default messaging provider (service

integration technologies) and WebSphere Application Server security is enabled for the server or cell, then

by default the service integration bus queue destination inherits the security characteristics of the server or

cell. So if the server or cell has basic authentication enabled, then the client request fails.

To resolve the problem, you have three choices (in order of security, from least secure to most secure):

v Disable security.

v For an equivalent level of security to the configuration on Version 5, modify the settings for the service

integration bus that hosts the queue destination so that bus security is disabled and therefore the bus

does not inherit security characteristics from the server or cell.

v For a greater level of security than the configuration on Version 5, configure basic authentication on

each client that uses the service.

To disable WebSphere Application Server security, refer to either of these topics:

v Secure administration, applications, and infrastructure settings.

v Enabling and disabling administrative security using scripting.

To disable bus security, use the administrative console to complete the following steps:

1. Navigate to Service Integration → Buses [Content Pane] → your_bus.

2. Clear the Secure check box.

3. Save your changes.

To configure basic authentication on each client, use either the administrative console or the wsadmin tool.

To complete the task using the wsadmin tool, see Configuring Web service client port information with the

wsadmin tool and use the WebServicesClientBindPortInfo wsadmin task option. To complete the task

using the administrative console, complete the following steps:

Chapter 18. Troubleshooting service integration technologies 305

1. Navigate to Applications → Enterprise Applications → [Content Pane] application_name → Web

Modules or EJB Modules → [Content Pane] module_name → Web services: Client security

bindings.

2. Click HTTP basic authentication to access the “Configuring HTTP basic authentication with the

administrative console” panel.

3. Enter the values in the panel.

4. Save your changes to the master configuration.

When you try and make a connection using a user ID in an authorized group but

access is denied when using LDAP

One of the possible causes is the group name, if you are using an Lightweight Directory Access Protocol

(LDAP) registry. When you specify the group authorization permissions, the distinguished name (DN)

should be used as the group name. If you specify a common name (CN) for the group name users in that

group cannot be authorized.

Steps to change the group name from CN to DN depends on where the problem occurred.

v If you have problem connecting to a Service Integration Bus, refer to Administering bus Connector roles,

and remove any groups with CN group names, and replace them with DN group names.

v If you have problem sending a message to a destination, refer to Administering destination roles, and

remove any groups with CN group names, and replace them with DN group names.

v If you have problems sending topics to a topic space, refer to Administering topic space root roles, and

remove any groups with CN group names, and replace them with DN group names.

v For any other problems refer to the appropriate section on Administering authorization permissions on

how to modify the group name.

Tips for troubleshooting the SIBWS

This topic provides a set of specific tips to help you troubleshoot problems you experience with the service

integration bus Web services enablement (SIBWS).

To help you identify and resolve SIBWS-related problems, use the WebSphere Application Server trace

and logging facilities as described in Setting up component trace (CTRACE).

To enable trace for SIBWS, set the application server trace string to

com.ibm.ws.sib.webservices.*=all=enabled. If you encounter a problem that you think might be related to

SIBWS, you can check for error messages in the WebSphere Application Server administrative console,

and in the application server SystemOut.log file. You can also enable the application server debug trace to

provide a detailed exception dump.

A list of the main known restrictions that apply when using SIBWS is provided in SIBWS - Known

restrictions.

WebSphere Application Server system messages are logged from a variety of sources, including

application server components and applications. Messages logged by application server components and

associated IBM products start with a unique message identifier that indicates the component or application

that issued the message. The prefix for the SIBWS component is CWSWS.

The Troubleshooter reference: Messages topic contains information about all WebSphere Application

Server messages, indexed by message prefix. For each message there is an explanation of the problem,

and details of any action that you can take to resolve the problem.

Here is a set of tips to help you troubleshoot commonly-experienced problems:

v “You need to manually install one of the SIBWS applications or resources.” on page 307

306 Troubleshooting and support

v “You have a client application that works under WebSphere Application Server Version 5, but under

Version 6 you get problems caused by poorly-formed requests or responses.” on page 308

v “A JAX-RPC client running on WebSphere Application Server Version 5 uses SOAP over JMS to invoke

a Web service running on a Version 5 application server. No user ID or password is required on the

target MQ Series queue. After the application server is migrated to Version 6, and using Version 6

default messaging, client requests fail because basic authentication is now enabled.” on page 308

v “You unsuccessfully attempt to create an Informix database for use with the SDO repository, and receive

the message No Transaction Isolation on non-logging databases.” on page 308

v “You have an inbound service that, according to the administrative console, is published to a UDDI

registry. When you check the UDDI registry you discover that the service is not listed there. When you

attempt to use the administrative console to republish the service to UDDI, the attempt is unsuccessful.”

on page 309

v “If the bus needs to pass messages through an authenticating proxy server to retrieve WSDL

documents, then you must use command-line tools to retrieve the WSDL.” on page 309

v “If you are using JMS to connect to a remote bus, extra configuration is required to allow Web service

clients to connect to the bus.” on page 309

v “You pass a large attachment through the service integration bus and you get an out-of-memory error in

the Java virtual machine.” on page 310

v “When you try to create a new endpoint listener configuration through the administrative console, and

click New on the endpoint listener collection panel, the Please wait icon is displayed but the target panel

does not appear.” on page 310

v “When you try to create a new inbound service through the administrative console, the drop-down list of

destinations is empty and the wizard stops you at step 1 with the error message A destination must be

selected.” on page 310

v “You get listener port timeout errors when large messages are passed using the SOAP over JMS

endpoint listener.” on page 310

v “You are getting SOAP fault messages, but cannot determine the precise problem from the fault

message.” on page 310

v “You are password-protecting a Web service operation, but when you install the sibwsauthbean.ear file,

an error message is displayed in the WebSphere Application Server administrative console detailing a

Java Naming and Directory Interface (JNDI) problem.” on page 310

v “You get JNDI lookup errors when you use the same names for JMS messaging queues and queue

connection factories that run on application servers on different machines.” on page 311

v “You are trying to send a SOAP over HTTPS message, and you are receiving a Malformed

URLException error.” on page 311

v “You experience problems with handling SOAP messages with attachments.” on page 311

You need to manually install one of the SIBWS applications or resources.

In WebSphere Application Server Version 6.1 and later, the following SIBWS applications and resources

are installed automatically as and when needed:

v The SIBWS application (the core application that lets you configure and access Web services through a

service integration bus).

v The service integration technologies resource adapter (used to invoke Web services at outbound ports).

v The endpoint listener applications (used to enable the points at which messages for inbound services

are received).

For example, an endpoint listener application is installed as part of the process of creating a new endpoint

listener configuration.

However if you do need to manually install one of these applications, you can still do so by using the

supplied sibwsInstall.jacl script, and following the instructions given in the WebSphere Application

Server Version 6.0 topic: SIBWS - Completing the installation.

Chapter 18. Troubleshooting service integration technologies 307

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r0/index.jsp?topic=/com.ibm.websphere.pmc.nd.doc/tasks/tjw_install.html

You have a client application that works under WebSphere Application Server

Version 5, but under Version 6 you get problems caused by poorly-formed

requests or responses.

The service integration bus Web services enablement (SIBWS) performs more validation on Web service

messages than is done in WebSphere Application Server Version 5. As a result, some client applications

that use poorly-formed requests or responses (where the message parts are misnamed), and that work

when using Version 5, are identified as poorly-formed in Version 6. For the steps to take to resolve the

problem, see Toleration of poorly-formed SOAP messages

A JAX-RPC client running on WebSphere Application Server Version 5 uses SOAP

over JMS to invoke a Web service running on a Version 5 application server. No

user ID or password is required on the target MQ Series queue. After the

application server is migrated to Version 6, and using Version 6 default

messaging, client requests fail because basic authentication is now enabled.

The problem appears as a log message:

SibMessage W [:] CWSIT0009W: A client request failed in the application server with endpoint

<endpoint_name> in bus your_bus with reason: CWSIT0016E: The user ID null failed authentication

in bus your_bus.

For the steps to take to resolve the problem, see the following service integration technologies

troubleshooting tip: “After you migrate an application server to WebSphere Application Server Version 6,

existing Web services clients can no longer use SOAP over JMS to access services hosted on the

migrated server.” on page 305

You unsuccessfully attempt to create an Informix database for use with the SDO

repository, and receive the message “No Transaction Isolation on non-logging

databases.”

If “No Transaction Isolation on non-logging databases.” is displayed as part of an exception message, it is

because logging is disabled on the Informix database being used. To use an Informix database with the

SDO repository, you must enable logging.

The full exception text is:

javax.transaction.TransactionRolledbackException: CORBA TRANSACTION_ROLLEDBACK 0x0 No; nested exception is:

 org.omg.CORBA.TRANSACTION_ROLLEDBACK: javax.transaction.TransactionRolledbackException: ;

 nested exception is:

 javax.ejb.TransactionRolledbackLocalException: ; nested exception is:

 com.ibm.ws.ejbpersistence.utilpm.PersistenceManagerException: PMGR1013E: Exception occured

 when verifying current backend id INFORMIX_V94: javax.resource.spi.ResourceAllocationException:

 DSRA0080E: An exception was received by the Data Store Adapter. See original exception message:

 No Transaction Isolation on non-logging db’s., error code: DSA_ERROR, error code: DSA_ERROR

 vmcid: 0x0 minor code: 0 completed: No

Logging is disabled by default, so the create database statement CREATE DATABASE SDOREP; results in an

exception at run time. When you create the database, use one of the following database creation

statements:

v CREATE DATABASE SDOREP WITH LOG;

v CREATE DATABASE SDOREP WITH BUFFERED LOG:

v CREATE DATABASE SDOREP WITH LOG MODE ANSI;

308 Troubleshooting and support

You have an inbound service that, according to the administrative console, is

published to a UDDI registry. When you check the UDDI registry you discover that

the service is not listed there. When you attempt to use the administrative console

to republish the service to UDDI, the attempt is unsuccessful.

The service was published to the UDDI registry, and the service configuration shown in the WebSphere

Application Server administrative console includes a UDDI Service Key, but the service has subsequently

been unpublished from UDDI without the corresponding update being applied to the WebSphere

Application Server master configuration. One way in which this situation can arise is if you use the

administrative console to delete an inbound service that is published to a UDDI registry, then log out of the

administrative console without saving your changes. In this case, the service is unpublished from the UDDI

registry, but not deleted from WebSphere Application Server (because the delete request is not confirmed,

and therefore is not applied).

To update the service configuration information and republish the service to UDDI, use the administrative

console to complete the following steps:

1. In the navigation pane, click Service integration → Buses → [Content Pane] bus_name → [Services]

Inbound Services → [Content Pane] service_name. The current settings for this inbound service are

displayed.

2. Click Reload template WSDL, then save the changes.

3. Click Unpublish from UDDI, then save the changes.

4. Click Publish to UDDI, then save the changes.

The service is successfully republished, and is reinstated in the UDDI registry.

If the bus needs to pass messages through an authenticating proxy server to

retrieve WSDL documents, then you must use command-line tools to retrieve the

WSDL.

Neither the administrative console panels used to create a new Web service configuration, nor the Reload

WSDL button provided on the panels used to modify an existing Web service configuration, allow you to

enter a J2C authentication alias for WSDL retrieval. Therefore when you create or modify inbound and

outbound services, if the bus needs to pass messages through an authenticating proxy server to retrieve

WSDL documents then you must use one of the following command-line tools to retrieve the WSDL:

v Creating a new inbound service configuration through the command line.

v Creating a new outbound service configuration through the command line.

v Refreshing the inbound service WSDL file through the command line.

v Refreshing the outbound service WSDL file through the command line.

If you are using JMS to connect to a remote bus, extra configuration is required to

allow Web service clients to connect to the bus.

A Web service client application running in a server that is a member of a bus can locate a messaging

engine in that bus. A Web service client application running outside of an application server - for example,

running outside the WebSphere Application Server environment - cannot locate directly a suitable

messaging engine to connect to in the target bus. Similarly, a Web service client application running on a

server in one cell that needs to connect to a target bus in another cell cannot locate directly a suitable

messaging engine to connect to in the target bus.

To enable the Web service client application to contact a target messaging engine in a remote bus,

configure the JMS connection factory that the client uses so that the client can connect to a bootstrap

messaging engine in the remote bus. The bootstrap messaging engine then identifies the target engine,

and the information required to access the target engine is passed back to the client. For the bootstrap

process to be possible, configure one or more provider end points in the connection factory used by the

Chapter 18. Troubleshooting service integration technologies 309

client. For more information, see Configuring connection to a non-default bootstrap server.

You pass a large attachment through the service integration bus and you get an

out-of-memory error in the Java virtual machine.

If this error occurs,increase the heap size as described in Tuning the SIBWS.

When you try to create a new endpoint listener configuration through the

administrative console, and click New on the endpoint listener collection panel,

the “Please wait” icon is displayed but the target panel does not appear.

This problem is only found with older versions of the Mozilla Web browser. Upgrade your browser to

Version 1.4 or later. As a workaround, click New a second time and the target panel is displayed.

When you try to create a new inbound service through the administrative console,

the drop-down list of destinations is empty and the wizard stops you at step 1

with the error message “A destination must be selected”.

This can only happen if there is no messaging engine on the service integration bus on which you are

creating your inbound service. Create a messaging engine, then create a service destination, then re-run

the wizard to create a new inbound service configuration.

You get listener port timeout errors when large messages are passed using the

SOAP over JMS endpoint listener.

As with any synchronous endpoint listener, timeout errors can occur. To minimize the frequency of timeout

errors, increase the timeout settings for the endpoint listener. If the problem persists, then disable trace

and logging for service integration technologies by setting the application server trace string to

com.ibm.ws.sib.webservices.*=all=disabled.

You are getting SOAP fault messages, but cannot determine the precise problem

from the fault message.

If you receive a SOAP fault message with a faultstring that is just the value of one of the parameters of

the invocation, that means the parameter value is not valid. For example if you have a service that expects

an int parameter and you send it a message containing the value “1.1”, then the fault message you

receive contains 1.1 as the fault string:

<faultcode>SOAP-ENV:Client</faultcode>

<faultstring>1.1</faultstring>

This message is consistent with Apache SOAP behavior, and is not correctable by the service integration

technologies.

You are password-protecting a Web service operation, but when you install the

sibwsauthbean.ear file, an error message is displayed in the WebSphere

Application Server administrative console detailing a Java Naming and Directory

Interface (JNDI) problem.

When you password-protect a Web service operation, check that you enter, in the “EJB References” for

the authorization session bean, the correct JNDI name of the imported Web service enterprise bean. Note

that this home is case sensitive.

310 Troubleshooting and support

You get JNDI lookup errors when you use the same names for JMS messaging

queues and queue connection factories that run on application servers on

different machines.

You should not use the same names for messaging queues and queue connection factories that run on

application servers on different machines, because the service integration technologies always look first for

JMS destinations locally, and only use the full JNDI reference if they cannot find the destination locally. If

you configure as an outbound service a Web service that is hosted on a remote machine, and you use the

same names for messaging queues and queue connection factories on the remote machine and on the

machine on which the outbound service is hosted, then the service integration technologies find and use

the local queues even if the remote JNDI destination is provided in full in the WSDL service definition.

You are trying to send a SOAP over HTTPS message, and you are receiving a

Malformed URLException error.

The service integration technologies can use Secure Sockets Layers (SSL) to invoke external Web

services that include https:// in their addresses. For more information see Invoking outbound services

over HTTPS.

You experience problems with handling SOAP messages with attachments.

See You pass a large attachment through the service integration bus and you get an out-of-memory error

in the Java virtual machine..

Tips for troubleshooting the Web services gateway

This topic provides specific tips to help you troubleshoot problems you experience when using the Web

services gateway.

To help you identify and resolve Web services gateway-related problems, use the WebSphere Application

Server trace and logging facilities as described in Setting up component trace (CTRACE).

To enable trace for the gateway, set the application server trace string to

com.ibm.ws.sib.webservices.*=all=enabled:com.ibm.ws.wsgw.*=all=enabled. If you encounter a problem

that you think might be related to the gateway, you can check for error messages in the WebSphere

Application Server administrative console, and in the application server SystemOut.log file. You can also

enable the application server debug trace to provide a detailed exception dump.

In WebSphere Application Server Version 6, the Web services gateway is implemented as an

administrative layer on top of the service integration bus Web services enablement (SIBWS). Therefore

most known problems that you might experience when using the gateway are actually SIBWS-related

problems, and are documented in Tips for troubleshooting the SIBWS.

WebSphere Application Server system messages are logged from a variety of sources, including

application server components and applications. Messages logged by application server components and

associated IBM products start with a unique message identifier that indicates the component or application

that issued the message. The prefix for the Web services gateway component is CWWSG and the prefix for

the SIBWS component is CWSWS.

The Troubleshooter reference: Messages topic contains information about the gateway and SIBWS

messages, indexed by message prefix. For each message there is an explanation of the problem, and

details of any action that you can take to resolve the problem.

Here is a set of tips to help you troubleshoot commonly-experienced problems:

Chapter 18. Troubleshooting service integration technologies 311

v “You migrate a gateway from WebSphere Application Server Version 5 to Version 6. When you try to

access a gateway service, your client receives one or more error messages stating No response body

is available, or Null response message, or The message body did not match any of the definitions in the

WSDL.”

v “You choose to generate a Web service client from the WSDL for the target service, rather than the

gateway service. When you try to access the target service through the gateway, your client receives

the following error message: CWSIF0304E: The message body did not match any of the definitions in

the WSDL.”

v “You migrate a gateway that contains filters from WebSphere Application Server Version 5 to Version 6,

and your routing filters no longer work.” on page 313

v “When you migrate a gateway that contains filters from WebSphere Application Server Version 5 to

Version 6, destinations with names ending StorageQueue are created. These destinations are not

removed if you subsequently delete the migrated gateway.” on page 315

v “You have a client application that works under WebSphere Application Server Version 5, but under

Version 6 you get problems caused by poorly-formed requests or responses.” on page 316

v “A JAX-RPC client running on WebSphere Application Server Version 5 uses SOAP over JMS to invoke

a Web service running on a Version 5 application server. No user ID or password is required on the

target MQ Series queue. After the application server is migrated to Version 6, and using Version 6

default messaging, client requests fail because basic authentication is now enabled.” on page 316

v “The gateway panels in the administrative console are only available in WebSphere Application Server

Network Deployment if you are working with a deployment manager profile.” on page 316

You migrate a gateway from WebSphere Application Server Version 5 to Version 6.

When you try to access a gateway service, your client receives one or more error

messages stating “No response body is available”, or “Null response message”,

or “The message body did not match any of the definitions in the WSDL”.

When the Version 5 gateway generates WSDL for a gateway service, the generated namespace contains

the service name. For example: namespace=“http://griddev:9080/wsgw#yourService”. However in Version

6 the generated WSDL for a gateway service does not contain the service name. For example:

namespace=“http://griddev:9080/wsgw”.

If your WSDL binding and encoding style is document literal then your clients still work with the migrated

gateway, because document literal style does not use the namespace attribute. However, if you used the

Version 5 gateway service WSDL to generate your Web service clients and your WSDL binding and

encoding style is not document literal, then after migration to Version 6 you must regenerate the client

stubs using the new gateway service WSDL.

You choose to generate a Web service client from the WSDL for the target service,

rather than the gateway service. When you try to access the target service through

the gateway, your client receives the following error message: “CWSIF0304E: The

message body did not match any of the definitions in the WSDL”.

The benefit of choosing to generate a Web service client from the WSDL for the target service is that you

can move between going to the target service directly or going through the gateway to the target service

just by changing the URL in the generated stubs. To enable this approach in this version of the gateway,

use the administrative console to set the custom property com.ibm.websphere.wsgw.mapSoapBodyNamespace

to false on each inbound service that is associated with a gateway service.

Note: This approach is not flagged by default as a possible error in WebSphere Application Server

Version 5, so you might encounter this problem for the first time when you migrate a gateway

configuration from a Version 5 application server to the new gateway capability on a Version 6

application server. After migration, you have two choices:

v If you want to retain the flexibility to reroute your messages by changing the URL in the

generated stubs, set the custom property com.ibm.websphere.wsgw.mapSoapBodyNamespace to

false as described above.

312 Troubleshooting and support

v If you no longer need this flexibility, regenerate the client stubs using the Version 6 gateway

service WSDL.

You migrate a gateway that contains filters from WebSphere Application Server

Version 5 to Version 6, and your routing filters no longer work.

The Version 5 gateway target service identity values are not migrated to Version 6, so filters that use the

Routing interface to select a target service by identity either fail with this exception:

WSGWException: CWWSG3026E: Target service identity information identity not matched for gateway service

gateway_service_name

or fail to find any identity values for the target services.

Although deprecated, the Routing interface and target service identity values are still supported in

WebSphere Application Server Version 6. However, the Version 5 gateway backup command does not

save the target service identity values, so they are not imported into the Version 6 configuration when you

run the migration command. To add the missing identity values back into the Version 6 configuration,

complete the following steps:

1. Get the cell name, bus name, gateway instance name, gateway service name, and target service

names for the target services that need identity values. You can get some of this information from the

parameters that you set when you migrated the gateway, and get the rest of this information from the

Version 6 administrative console panels.

2. Determine the identity value for each of these target services. You can examine the original Version 5

gateway service definitions, or use other methods to determine these identity values.

3. Save a copy of the following script on the machine on which the Version 6 gateway is running, with a

file name of setIdentity.jacl:

#---

Jacl script to set the Identity attribute on a WSGW Gateway Target Service

2004/11/17 add copyright and disclaimer notices

#---

Copyright (C) 2004 International Business Machines Corporation

INTERNATIONAL BUSINESS MACHINES CORPORATION

PROVIDES THIS SOFTWARE ON AN "AS IS" BASIS

AND IBM DISCLAIMS ALL WARRANTIES, EXPRESS OR

IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE

WARRANTY OF NON-INFRINGEMENT AND THE IMPLIED

WARRANTIES OF MERCHANTABILITY OR FITNESS

FOR A PARTICULAR PURPOSE. IBM SHALL NOT BE

LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,

SPECIAL OR CONSEQUENTIAL DAMAGES ARISING OUT

OF THE USE OR OPERATION OF THIS SOFTWARE.

IBM HAS NO OBLIGATION TO PROVIDE MAINTENANCE,

SUPPORT, UPDATES, ENHANCEMENTS OR MODIFICATIONS

TO THE SOFTWARE.

#---

Clean the environment

#---

$AdminConfig reset

#---

Check correct usage

#---

if {[llength $argv] != 6} {

 puts ""

Chapter 18. Troubleshooting service integration technologies 313

puts "ERROR: Incorrect usage."

 puts ""

 puts {Usage: wsadmin [-conntype none] -f setIdentity.jacl <cell> <bus> <instance> <gateway>

 <target> <identity>}

 puts ""

 puts "Where:"

 puts ""

 puts " ’-conntype none’ is optional, but is required if the server is not running."

 puts ""

 puts "Also:"

 puts ""

 puts " <cell> = the name of the cell containing the <bus>"

 puts " <bus> = the name of the bus containing the <instance>"

 puts " <instance> = the name of the WSGW Gateway Instance containing the <gateway>"

 puts " <gateway> = the name of the WSGW Gateway Service containing the <target>"

 puts " <target> = the name of the WSGW Target Service to be modified"

 puts " <identity> = the new Target Service Identity value to be added to or altered in the <target>"

 puts ""

 puts "All parameters are mandatory."

 puts "If the <identity> value has spaces in it, the value should be enclosed in double-quotes."

 puts ""

 exit

}

#---

Extract the arguments

#---

set cellName [lindex $argv 0]

set busName [lindex $argv 1]

set wsgwInstanceName [lindex $argv 2]

set gatewayServiceName [lindex $argv 3]

set targetServiceName1 [lindex $argv 4]

set targetServiceIdentity1 [lindex $argv 5]

puts "--- Cell Name : $cellName"

puts "--- Bus Name : $busName"

puts "--- Gateway Instance Name : $wsgwInstanceName"

puts "--- Gateway Service Name : $gatewayServiceName"

puts "--- Target Service Name : $targetServiceName1"

puts "--- Target Service Identity : $targetServiceIdentity1"

puts ""

#---

Set constants

#---

set gatewayServiceType "WSGWGatewayService"

set targetServiceType "WSGWTargetService"

set identityAttrib "targetServiceIdentity"

#---

proc to return the object id for a given object name and type within a scope

#---

proc getScopedObjectId {idType idName scopeId} {

 global AdminConfig

 set ids [$AdminConfig list $idType $scopeId]

 foreach id $ids {

 set thisName [$AdminConfig showAttribute $id name]

 if {[sameString $thisName $idName]} {

 return $id

 }

 }

name not found

 return 0

}

314 Troubleshooting and support

#---

proc to compare 2 strings

#---

proc sameString {string1 string2} {

 #-- if the object name supplied is * then return true --#

 set anything "*"

 if {[string compare $string2 $anything] == 0} {

 return 1

 }

 #-- if the 2 names are the same then return true --#

 if {[string compare $string1 $string2] == 0} {

 return 1

 }

 #-- return false --#

 return 0

}

#---

puts "+++ Getting Gateway Instance ID for $cellName $busName $wsgwInstanceName"

set wsgwInstanceId [$AdminConfig getid /Cell:$cellName/SIBus:$busName/WSGWInstance:$wsgwInstanceName/]

puts "+++ Getting Gateway Service ID for $gatewayServiceName"

set gatewayServiceId [getScopedObjectId $gatewayServiceType $gatewayServiceName $wsgwInstanceId]

puts "+++ Getting Target Service ID for $targetServiceName1"

set targetServiceId1 [getScopedObjectId $targetServiceType $targetServiceName1 $gatewayServiceId]

puts "+++ Setting Identity for Target Service $targetServiceName1 to $targetServiceIdentity1"

set identargs {}

lappend identargs [list $identityAttrib $targetServiceIdentity1]

$AdminConfig modify $targetServiceId1 $identargs

puts "--- Target Service Identity set"

$AdminConfig save

puts "Configuration saved"

4. Change to the app_server_root/bin directory (where app_server_root is the root directory for the

installation of IBM WebSphere Application Server), and use the wsadmin scripting client to run the

setIdentity.jacl script for each target service and related identity value:

wsadmin [-conntype none] -f path_and_filename_for_setIdentity.jacl cell_name bus_name

gateway_instance_name gateway_service_name target_service_name target_service_identity

5. You might need to restart the server to enable the new identity values.

When you migrate a gateway that contains filters from WebSphere Application

Server Version 5 to Version 6, destinations with names ending “StorageQueue”

are created. These destinations are not removed if you subsequently delete the

migrated gateway.

These additional destinations are required to support legacy Version 5 gateway filters in the Version 6

environment. However they are not part of the standard Version 6 configuration model, and consequently

are not removed automatically if you delete a Version 6 gateway instance.

During migration, these “StorageQueue” destinations are created in one of the following two ways:

v If you specify the -Q parameter (shared filter correlation queue name), then a single queue destination

of the specified name is created (if it does not already exist) and shared by all gateway services that

have associated filters.

Chapter 18. Troubleshooting service integration technologies 315

v If you do not specify the -Q parameter, then a separate queue destination is created for each gateway

service that has associated filters. Each of these destinations has a name derived from the name of the

corresponding gateway service request and reply destinations, and ending in StorageQueue.

These “StorageQueue” destinations are required to support legacy filters in a migrated gateway

configuration, and they should not be removed unless the gateway instance is deleted. After you delete the

gateway instance, identify each associated storage queue destination by name, and delete it as described

in Deleting a non-topic space bus destination .

You have a client application that works under WebSphere Application Server

Version 5, but under Version 6 you get problems caused by poorly-formed

requests or responses.

The service integration bus Web services enablement (SIBWS) performs more validation on Web service

messages than is done in WebSphere Application Server Version 5. As a result, some client applications

that use poorly-formed requests or responses (where the message parts are misnamed), and that work

when using Version 5, are identified as poorly-formed in Version 6. For the steps to take to resolve the

problem, see Toleration of poorly-formed SOAP messages

A JAX-RPC client running on WebSphere Application Server Version 5 uses SOAP

over JMS to invoke a Web service running on a Version 5 application server. No

user ID or password is required on the target MQ Series queue. After the

application server is migrated to Version 6, and using Version 6 default

messaging, client requests fail because basic authentication is now enabled.

The problem appears as a log message:

SibMessage W [:] CWSIT0009W: A client request failed in the application server with endpoint

<endpoint_name> in bus your_bus with reason: CWSIT0016E: The user ID null failed authentication in bus

your_bus.

For the steps to take to resolve the problem, see the following service integration technologies

troubleshooting tip: “After you migrate an application server to WebSphere Application Server Version 6,

existing Web services clients can no longer use SOAP over JMS to access services hosted on the

migrated server.” on page 305

The gateway panels in the administrative console are only available in WebSphere

Application Server Network Deployment if you are working with a deployment

manager profile.

The panels are not available in a WebSphere Application Server Network Deployment standalone server

profile, but equivalent functionality is provided through command line tools and these are available in

WebSphere Application Server Network Deployment under both the standalone and deployment manager

profiles. The gateway administrative commands cover all the main requirements, except for creating a new

gateway instance. You can create a gateway instance and its associated default proxy WSDL location

information through the wsadmin scripting client using Jacl. Here is an example script:

set wsgwAttribs {}

lappend wsgwAttribs [list “name” $wsgwName]

lappend wsgwAttribs [list “wsdlServiceNamespace” $wsgwNamespace]

set wsgw [$AdminConfig create “WSGWInstance” $bus $wsgwAttribs]

set wsgwWsdlAttribs {}

lappend wsgwWsdlAttribs [list “WSDLLocation” $wsgwWsdlLocation]

$AdminConfig create “SIBWSWSDLLocation” $wsgw $wsgwWsdlAttribs “defaultProxyWSDLLocation”

In this example, $bus is the ID of the service integration bus in which the gateway instance is created. For

more information about the WebSphere Application Server $AdminConfig function, enter ’$AdminConfig

help’ from the wsadmin command line.

316 Troubleshooting and support

Tips for troubleshooting WS-Notification

To help you identify and resolve WS-Notification-related problems, use the WebSphere Application Server

trace and logging facilities as described in Setting up component trace (CTRACE).

To enable trace for WS-Notification, set the application server trace string to

SIBWsn=all=enabled:com.ibm.ws.sib.webservices.*=all=enabled. If you encounter a problem that you

think might be related to WS-Notification, you can check for error messages in the WebSphere Application

Server administrative console, and in the application server SystemOut.log file. You can also enable the

application server debug trace to provide a detailed exception dump.

A list of the main known restrictions that apply when using WS-Notification is provided in WS-Notification -

known restrictions.

WebSphere Application Server system messages are logged from a variety of sources, including

application server components and applications. Messages logged by application server components and

associated IBM products start with a unique message identifier that indicates the component or application

that issued the message. The prefix for the WS-Notification component is CWSJN.

The Troubleshooter reference: Messages topic contains information about all WebSphere Application

Server messages, indexed by message prefix. For each message there is an explanation of the problem,

and details of any action that you can take to resolve the problem.

Here is a set of tips to help you troubleshoot commonly-experienced problems:

v “Exception caused by incorrect configuration of the SDO repository.”

v “Multiple messages received by a notification consumer for each event notification” on page 318

v “Deleting administered subscribers and messaging engines” on page 318

v “Use of Web service destinations” on page 319

v “Failure of an inbound (application to broker) notification” on page 319

v “Failure of an outbound (broker to application) notification” on page 320

v “Tidying up stateful resources that are not automatically deleted” on page 320

v “Administrative stop of a messaging engine” on page 321

v “Failures as a result of changes in topic space and topic namespace configurations” on page 321

Exception caused by incorrect configuration of the SDO repository.

If you try to create a WS-Notification service, and you get the following stack trace, then SDO repository is

not configured correctly. To resolve this problem, see Installing and configuring the SDO repository.

java.lang.Exception: com.ibm.ws.sib.webservices.admin.config.SIBConfigException: CWSWS5010E:

Failed to store WSDL located at http://www.ibm.com/websphere/wsn/notification-broker

due to the following exception: com.ibm.ws.sib.webservices.exception.SIBWSUnloggedException:

CWSWS1007E: The following exception occurred:

com.ibm.ws.sdo.config.repository.impl.RepositoryRuntimeException:

javax.transaction.TransactionRolledbackException: CORBA TRANSACTION_ROLLEDBACK 0x0 No;

nested exception is: org.omg.CORBA.TRANSACTION_ROLLEDBACK:

javax.transaction.TransactionRolledbackException: ; nested exception is:

javax.ejb.TransactionRolledbackLocalException: ; nested exception is:

com.ibm.ws.ejbpersistence.utilpm.PersistenceManagerException:

PMGR1014E: Exception occured when getting connection factory:

com.ibm.websphere.naming.CannotInstantiateObjectException:

threw NameNotFoundException while the JNDI NamingManager was processing a

javax.naming.Reference object. [Root exception is javax.naming.NameNotFoundException:

Context: smeagolNode03Cell/nodes/smeagolNode03/servers/server1, name:

jdbc/com.ibm.ws.sdo.config/SdoRepository:

First component in name com.ibm.ws.sdo.config/SdoRepository not found.

[Root exception is org.omg.CosNaming.NamingContextPackage.NotFound:

IDL:omg.org/CosNaming/NamingContext/NotFound:1.0]] vmcid: 0x0 minor code: 0 completed: No.

Chapter 18. Troubleshooting service integration technologies 317

Multiple messages received by a notification consumer for each event notification

In some situations you might receive more notifications at a given notification consumer than the number

of event notifications that have been inserted into the notification broker by a publisher. For example you

might publish 4 messages, and receive 8, 12, 16 (or some other multiple of four) messages at the

notification consumer.

This is normally caused by there being two or more active subscriptions that target the notification

consumer - a situation that can occur if the subscriber application is run more than once. Each time the

Subscribe operation is called, a new subscription must be created by the notification broker (see section

4.2 of the Web Services Base Notification specification), which causes duplicate messages to be delivered

if a previous subscription exists.

To check whether this is what is happening, examine the SubscriptionReference property of the

notifications received by the notification consumer. This endpoint reference contains the identifier of the

subscription that caused the notification to be sent. If you find several different subscription identifiers, then

there is more than one subscription active.

Subscriber applications should tidy up subscriptions when they are not required (or register them with a

timeout), however you can tidy them up administratively using the run-time panels as described in Listing

or deleting active WS-Notification subscriptions.

Deleting administered subscribers and messaging engines

Deleting administered subscribers

 You should be wary of deleting and recreating messaging engines on bus members for which

WS-Notification administered subscribers have been configured, because in some cases this can

leave the remote Web service subscription active (and passing notification messages to the local

server) even though there is no longer any record of it.

 To avoid this situation you should delete the WS-Notification configuration, or just the administered

subscribers, in a separate step to deleting the messaging engine. When the dynamic configuration

update is then processed, or the server restarted, the remote Web service subscription is tidied up

cleanly.

Note: This problem does not occur if it is only the WS-Notification configuration that is modified; it

only occurs if the messaging engine is also deleted.

Administered subscribers in a cluster

 When you remove messaging engines from a cluster you should remove them in numerical order

from highest to lowest, so as to avoid a situation where (for example) there are messaging

engines numbered 001 and 002 and not 000. The reason for this is to provide additional surety

when using WS-Notification, because WS-Notification attaches special significance to the “first” ME

in the cluster.

 In a clustered use pattern there can be more than one messaging engine running on the “bus

member” (cluster). Administered subscribers are defined against a service point (bus member) and

so there are several alternatives when choosing the messaging engine that is responsible for

creating the subscription to the remote Web service. In this situation, the “first” messaging engine

in the cluster is responsible for making the subscription. For example in a cluster containing three

messaging engines the messaging engines will have names following the pattern xxx-000-yyy,

xxx-001-yyy, xxx-002-yyy, and the administered subscriber subscriptions will be managed by the

“000” messaging engine.

 If you delete the “000” messaging engine from the cluster then restart the servers, the

administered subscriptions are now managed by the “001” messaging engine - being the lowest

number engine in the cluster. However, as previously mentioned, deleting and recreating

318 Troubleshooting and support

messaging engines on bus members for which administered subscribers have been configured

can leave the remote Web service subscription active (and passing notification messages to the

local server) even though there is no longer any record of it. Therefore if another messaging

engine is later added to the cluster and there is no xxx-000-yyy messaging engine currently

defined the new engine takes on the name of xxx-000-yyy. Therefore, in this instance it is possible

for two messaging engines to concurrently believe that they manage the administered subscription,

resulting in multiple subscriptions being made to the remote Web service.

 In the unlikely event that you need to re-create messaging engine xxx-000-yyy, you can avoid

duplicate messages from an administered subscription by completing the following steps:

v Delete the administered subscriptions defined to this cluster.

v Allow the existing messaging engines to observe the change. This will result in messaging

engines in the cluster deleting the administered subscriptions they believe they managed.

v Create the new messaging engine in the cluster.

v Re-create the administered subscriptions.

Use of Web service destinations

When a WS-Notification service is created, three inbound services are configured for the WS-Notification

service, one for each of the three WS-Notification service roles:

v Notification broker

v Subscription manager

v Publisher registration manager

These inbound services are defined on the same service integration bus as the WS-Notification service,

and each of these inbound services refers to the same bus destination. Usually, a bus destination can be

used as described in Learning about bus destinations. However, this is not the case for WS-Notification.

This destination does not relate to the topics for which the WS-Notification service can handle requests

and you should not alter or mediate the destination. In WS-Notification, the configuring of topics is handled

through topic namespaces. For more information, see Creating a new permanent WS-Notification topic

namespace.

Failure of an inbound (application to broker) notification

Applications wishing to publish event notifications into the broker make use of the Notify operation. This is

defined as a one-way (Web services) operation which means that it is not possible to return a fault

(exception) if it is not possible to complete the operation. Thus the application will assume that the

notification was successful, but subscribing applications will not receive the notification message.

The cause of this type of failure might be an application error (invalid topic syntax), or a mismatch

between the application code and the server configuration (using an undefined topic namespace). Specific

reasons for which an inbound notification might fail include the following:

v Invalid topic: the topic expression supplied does not match the syntax of the stated dialect, or they

specified an unsupported dialect. This is an application error.

v Invalid topic namespace: the application specifies a topic namespace that has not been configured, but

the administrator has specified on the WS-Notification service that we should not permit use of dynamic

namespaces. This is caused by a mismatch between the application and the WS-Notification Service

topic namespaces.

v Unsupported topic: the specified topic is prohibited by a topic namespace document that has been

applied to the topic namespace (for example it is a sub-topic of a topic that has been marked as “final”).

v Invalid credentials: the specified user ID or password is not valid or does not have the required

authority. This is caused by a mismatch between the application configuration and the server security

policies.

Chapter 18. Troubleshooting service integration technologies 319

v Publisher not registered: The application tries to send a notification without first registering with the

broker, but the administrator has configured the WS-Notification service to require registration of

applications. This is caused by an application error - a well behaved application should first check

whether it is required to register before publishing to a broker.

v The associated service integration bus topic space has been disabled.

You need to monitor this type of failure closely, because it might indicate a denial of service attack and

certainly indicates that the application is not functioning correctly. The first time an inbound notification fails

from a particular producing application, a warning message is sent to the SystemOut log of the server. If

there are further notification failures for that producer, subsequent timed warning messages are logged at

30 minute intervals. Additional information is provided with each timed message to indicate how many

failed notifications were received for that producer during the 30 minute interval.

When the system generates each warning message, it identifies the producing application through one of

two identifiers:

v The ProducerReference element of the NotifyMessage provided in the Notify operation . This element

uniquely identifies the application. However this element is optional.

v The IP address of the host that originated the request. This address might not uniquely identify the

application, but it narrows your search.

Note: The system cannot identify the host IP address in all cases. For example, for SOAP over JMS

transports the IP address of the originating host is not available or applicable.

Failure of an outbound (broker to application) notification

The failure of an outbound Web service invocation (broker to application) is caused when a remote

application is unavailable for invocation, and might be the result of an application failure, a network error,

or a firewall configuration issue. Failure to pass event notifications to subscribed applications causes

messages to build up on the subscriptions held on the server. The messages held on a given subscription

can be observed using the run-time panels as described in Listing or deleting active WS-Notification

subscriptions. Subscriptions for which the most recent event notification attempt has failed in this way are

marked as being in ERROR state when viewed in the WS-Notification subscription runtime administration

panel.

If the WS-Notification service point fails to successfully notify a NotificationConsumer application, a

warning message is sent to the application server SystemOut log and the subscription is told to wait for 2

minutes. Reasons for a failure of this type might be that the remote Web service is not currently available,

or that network conditions prevent contact between the local server and the service.

After 2 minutes, the notification is retried. If delivery is still not possible then the subscription is put back

into a wait state for another 2 minutes. If the failure is caused by a transient I/O error, this pattern is

repeated indefinitely, until the notification is either successfully delivered or you delete the subscription. If

the error is caused by an application failure on the remote side then the notification will be retried up to the

number of times defined in the ’Maximum failed deliveries’ setting of the service integration bus topic

space destination from which the message is being received. After the first warning message is output to

the SystemOut log, subsequent timed warning messages are logged at 30 minute intervals.

Tidying up stateful resources that are not automatically deleted

The act of subscribing to the broker or registering a publisher creates a stateful resource on the server

that consumes system resources while it is active. Normally an application specifies a termination time as

part of the act of creating these resources, and thus they are automatically deleted when the termination

time is reached. However it is also possible for the application to request an infinite lifetime for the

resource. If this is done then it is possible for resources to remain on the server indefinitely even though

the application might never be coming back to use (or destroy) the resource.

320 Troubleshooting and support

You can to view the stateful resources (subscriptions and publisher registrations) using the run-time panels

described in Interacting at run time with WS-Notification. These panels also provide the ability to

administratively delete the items if required. Only do this if you are sure that the application is no longer

using the resource because it will cause application failures if the resource is referenced after being

deleted.

Failure to delete a durable subscription that was created by WS-Notification, when

using the service integration bus panel

When you create a subscription using a WS-Notification application, in other words by using the Subscribe

operation, one or more durable subscriptions are created in the relevant service integration bus topic

space destination. You can view these durable subscriptions in the service integration bus runtime panels

for the publication point.

The runtime panels for the publication point also provide the ability to delete one or more durable

subscriptions. However, if you use this function to delete a subscription that was created by a

WS-Notification application, the delete operation fails. This failure occurs because the WS-Notification

implementation maintains an active consumer for this durable subscription for the duration of the time that

the server is running, and a durable subscription cannot be deleted if an active consumer is present.

Note: This deletion restriction also applies to durable subscriptions created by other applications, such as

JMS applications.

To delete a subscription that was created by a WS-Notification application, use the runtime panels

provided by the WS-Notification implementation, as described in Interacting at run time with

WS-Notification. This approach closes the active consumer and automatically deletes the related service

integration bus durable subscriptions.

Administrative stop of a messaging engine

WebSphere Application Server depends on being able to access a running service integration bus

messaging engine to send and receive messages, and to create and retrieve state for the various Web

service resources that are created.

You can stop a messaging engine using the MBean interface or run-time panels. This prevents

WS-Notification from successfully servicing any requests from applications that might come in during the

time that the messaging engine is stopped. In this situation, error messages are logged as described in

“Failure of an inbound (application to broker) notification” on page 319 and “Failure of an outbound (broker

to application) notification” on page 320. When you stop a messaging engine, all WS-Notification

processing stops and all messaging applications cease to function. When you restart the messaging

engine, WS-Notification processing resumes.

Failures as a result of changes in topic space and topic namespace configurations

The WS-Notification configuration artefacts often depend on objects defined in other areas of the server

configuration. For example the endpoint listeners through which application requests are received, and the

service integration bus topic spaces to and from which messages are sent.

The following items describe the action that is taken by the WS-Notification run-time code when it meets

relevant changes in the objects upon which it depends.

Deleting a service integration bus topic space

 The service integration bus topic space is the primary messaging object upon which

WS-Notification depends at run time. Notification messages from an application are published to

the topic space specified by the (permanent) topic namepace mapping specified by the

administrator.

Chapter 18. Troubleshooting service integration technologies 321

Deleting a service integration bus topic space has the following effects upon new and existing

WS-Notification applications:

v RegisterPublisher requests using a WS-Notification topic namespace that references the deleted

topic space receive a TopicNotSupportedFault error message.

v Notify requests for a topic associated with the deleted topic space do not publish the message

to the topic space (because it has been deleted). The application is not informed because no

faults are thrown by the Notify operation (see “Failure of an inbound (application to broker)

notification” on page 319).

v Subscribe requests using a WS-Notification topic namespace that references the deleted topic

space receive a SubscribeCreateFailedFault error message.

v No further messages are delivered to applications that have existing subscriptions to the deleted

topic space. The existing subscription is deleted, and any attempt to invoke operations on the

subscription (for example getCreationTime) results in a ResourceUnknownFault error message.

v Deleting and recreating a service integration bus topic space is considered as two separate

steps. Existing subscriptions are deleted in response to the first step, and therefore do not exist

when the topic space is recreated.

Deleting a permanent topic namespace mapping

 Deleting the topic namespace mapping that was used to establish a (currently active) subscription

has the same effect as deleting the underlying service integration bus topic space as defined

previously, and subscriptions that were created using this namespace mapping are deleted.

 Publisher registrations and pull points associated with the deleted topic namespace mapping are

also deleted.

Changing a permanent topic namespace mapping

 The fields of a permanent topic namespace mapping are read-only fields, so the only way to

“change” the fields is to delete the namespace mapping and recreate it with new values. The

effect of deleting a permanent topic namespace mapping is described in the previous item.

Failure to create a WS-Notification service without a configured SDO repository

During the process of creating a WS-Notification service it is necessary for WSDL documents to be saved

into the SDO repository. You will see the following error message if you attempt to create a

WS-Notification service through the administrative console, or through scripting, before successfully

configuring the SDO repository.

java.lang.Exception: com.ibm.ws.sib.webservices.admin.config.SIBConfigException: CWSWS5010E: Failed to

store WSDL located at http://www.ibm.com/websphere/wsn/notification-broker due to the following

exception:

 com.ibm.ws.sib.webservices.exception.SIBWSUnloggedException: CWSWS1007E: The following exception

 occurred: com.ibm.ws.sdo.config.repository.impl.RepositoryRuntimeException:

 javax.transaction.TransactionRolledbackException: CORBA TRANSACTION_ROLLEDBACK 0x0 No; nested

 exception is: org.omg.CORBA.TRANSACTION_ROLLEDBACK:

 javax.transaction.TransactionRolledbackException: ;

 nested exception is: javax.ejb.TransactionRolledbackLocalException: ;

 nested exception is: com.ibm.ws.ejbpersistence.utilpm.PersistenceManagerException: PMGR1014E:

 Exception occured when getting connection factory:

 com.ibm.websphere.naming.CannotInstantiateObjectException: threw NameNotFoundException while

 the JNDI NamingManager was processing a javax.naming.Reference object.

 [Root exception is javax.naming.NameNotFoundException: Context:

 KADGINNode01Cell/nodes/KADGINNode01/servers/server1, name:

 jdbc/com.ibm.ws.sdo.config/SdoRepository: First component in name

 com.ibm.ws.sdo.config/SdoRepository not found.

 [Root exception is org.omg.CosNaming.NamingContextPackage.NotFound:

 IDL:omg.org/CosNaming/NamingContext/NotFound:1.0]] vmcid: 0x0 minor code: 0 completed: No.

For details on how to configure the SDO repository, see Installing and configuring the SDO repository.

322 Troubleshooting and support

Tips for troubleshooting WebSphere MQ link

This topic provides a set of specific tips to help you troubleshoot problems with WebSphere MQ link.

v Use this topic if channels fail to start.

v Use this topic if messages are not delivered.

v Use this topic if an application server cannot shutdown if a WebSphere MQ link sender channel is

waiting for its disconnect interval to expire.

Channels do not start

Note: Error messages appear in the SystemOut.log file or, if you have turned on tracing, in the trace.log

file.

1. Verify that the channel names specified on the WebSphere MQ link sender channel and/or the

MQLinkReceiver definitions match those specified on the sender and/or receiver channel definitions in

the WebSphere MQ network. Channel names are case sensitive.

2. Verify that the channel sequence numbers are not out of step. If they are, then the channel will remain

in a state of retry until the sequence numbers have been reset. The sequence numbers are reset by

WebSphere MQ. On Windows, if using the WebSphere MQ Explorer, you can right click on the

channel and select All Tasks>Reset.

Look for messages CWSIC3011E, CWSIC3015E.

3. Verify that both ends of the channel have been defined and configured correctly. It is possible that the

channel at the remote end is currently in a stopped state and therefore is currently unavailable. Start

the channel at the remote end if possible.

Look for messages CWSIC3018E, CWSIC3113E, CWSIC3114E, CWSIC3236E.

4. Verify that the channel sequence number wrap values are the same at both ends of the channel.

Look for message CWSIC3010E.

5. Verify that the WebSphere MQ link sender channel or the sender channel is not in an in doubt state.

Resolve the channel if required. The channel is resolved by WebSphere MQ. On Windows, if using the

WebSphere MQ Explorer, you can right click on the channel and select All Tasks>Resolve.

Look for message CWSIC3065E.

6. Verify that the listeners have been started, and are listening on the correct ports. By default, service

integration listens on port 5558 for inbound connections while the WebSphere MQ network listens on

port 1414.

Messages are not delivered

Note: Error messages appear in the SystemOut.log file or, if you have turned on tracing, in the trace.log

file. You can also look for equivalent messages in the WebSphere MQ error logs (or trace files if

you have turned on tracing in the WebSphere MQ network).

1. If you are sending messages from a service integration bus to a WebSphere MQ network, it is possible

that the messages are stored on the service integration bus and waiting to be delivered, but that the

WebSphere MQ link sender channel channel has not been started or is in a retry state.

Verify that the WebSphere MQ link sender channel is started and in running state.

2. If you are sending messages from a WebSphere MQ network to a service integration bus, it is possible

that the messages are stored on the transmission queue in the WebSphere MQ network and waiting to

be delivered, but that the sender channel in the WebSphere MQ network has not been started or is in

a retry state.

Verify that the sender channel in WebSphere MQ network is started and in running state.

3. It is possible that the messages could not be processed or delivered to the target destination and

hence they have been placed either on an exception destination on the service integration bus, or on

the dead letter queue in the WebSphere MQ network. Verify that the WebSphere MQ Link on the

messaging engine is configured properly with the correct foreign bus, queue manager name (service

Chapter 18. Troubleshooting service integration technologies 323

integration bus), sender channel and receiver channel. The sender channel on the WebSphere MQ

Link should match the receiver channel on WebSphere MQ. The receiver channel on the WebSphere

MQ Link should match the sender channel on WebSphere MQ.

Look for messages CWSIC3096I, CWSIC3098I, CWSIC3200E, CWSIC3209E.

Check the exception destination(s) and the dead letter queue. It is possible that the target destination

has not been defined, or is full in which case, determine why messages are not being processed from

the target destination.

4. It is possible that the target destination and the exception destination and/or the dead letter queue are

full and that subsequent persistent messages cannot be safely delivered. Under these circumstances

the channel is stopped to avoid any loss of messages.

Look for message CWSIP0291W.

Determine why messages are not being processed from the target destination.

5. It is possible that the target destination and the exception destination and/or dead letter queue are full

and that subsequent nonpersistent messages are discarded.

Check the persistence of messages being generated by your application(s).

6. It is possible that the channel has stopped because the remote system cannot accept messages for

some reason.

Look for message CWSIC3080E.

An application server cannot shutdown if a WebSphere MQ link sender channel is

waiting for its disconnect interval to expire

If a WebSphere MQ link sender channel does not have any messages to deliver, it waits for its specified

disconnect interval before timing out. If the application server is shut down while a WebSphere MQ link

sender channel is in a wait state, the application server waits for the WebSphere MQ link sender channel

to timeout before shutting down. A long disconnect interval might delay the server shutdown.

If the application server shutdown is delayed by a WebSphere MQ link sender channel in a wait state, you

have two options:

v Attempt to put a message onto the transmission item stream for the WebSphere MQ link sender

channel. Note that this might not take the channel out of its wait state if the application server shutdown

is already in progress

v Force the termination of the application server process.

To reduce possible delays during application server shutdown, you can specify a smaller value for the

disconnect interval. Note that a discount interval of 0 indicates an indefinite wait. For more information

about setting the disconnect interval for a WebSphere MQ link sender channel, see Modifying a

WebSphere MQ link sender channel.

Troubleshooting service integration message problems

This topic contains links to tasks that will help you to investigate problems with messages, such as

messages not arriving or being consumed, or poison messages.

If you are having problems with messages not behaving as you expect, use the links below to navigate to

the topic that is appropriate for your problem.

v “Understanding why best effort messages are being discarded” on page 325

v “Investigating why a queue is full” on page 325

v “Investigating why a topic space is full” on page 326

v “Investigating why point-to-point messages are not arriving” on page 328

v “Investigating why point-to-point messages are not being consumed” on page 333

v “Investigating why publish/subscribe messages are not arriving at a subscription” on page 340

324 Troubleshooting and support

Understanding why best effort messages are being discarded

A reliability level of best effort means that messages might be lost during normal functioning of the system,

for example if the connection used to send the messages is busy. Although this is normal and expected,

you might want to investigate the reasons for messages being lost.

Use this task when best effort messages are being discarded by a running system, and you want to

understand the possible causes. For more information about ’best effort’ and other message reliability

levels, see Message reliability levels.

The following list explains some of the reasons for losing best effort messages:

v The destination queue or topic space is already full to a level higher than the high message threshold.

To check whether this is the case, click Service integration -> Buses -> bus_name -> [Additional

Properties] Destinations -> destination_name and under Message points click the relevant point type

(for example, Queue points). Click the relevant message point to display its general properties, and

compare the values of the High message threshold and Current message depth fields.

v The connection to the target system is down.

v The connection to the target system is busy. Any best effort messages that cannot be sent will be

discarded.

v The system in general is busy, for example a messaging engine might be occupied processing higher

reliability messages for another destination.

v There is a temporary network problem. Look in the error log for more information.

Investigating why a queue is full

This topic describes how to investigate why a queue on a service integration bus is full.

When a queue becomes full, exceptions will be returned when you attempt to produce a message to that

queue. The most probable reason for a queue filling up is that the producing application is producing

messages faster than they can be consumed by the consuming application, although causes can also

include broken communication links or errors in the consuming application.

1. Click Service integration -> Buses -> bus_name -> Destinations to display a list which includes all

the queues on that bus. Click the name of the queue that is full.

2. Click Queue points -> queue_point_name, then on the Runtime tab review the value of the Current

message depth. If this value increases steadily, the producing application is outpacing the consumer.

Note: If the destination has multiple queue points, or is mediated, perform the following checks for

each message point the message could have been sent to or consumed from.

3. Determine which messaging engines the producing and consuming applications are connected to, see

“Determining which messaging engine an application is connected to” on page 326.

4. If the producing and consuming applications are connected to different messaging engines, the

messages are being routed via a remote queue point. On the producer’s messaging engine, click

Remote queue points and then click the queue point that represents the consumer’s queue point.

Review the number of current outbound messages. If the number of current messages is low, the

problem does not lie with the remote queue point; check that the consuming application is started and

is consuming messages without error. If the number of current messages is approaching the high

message threshold, perform the following checks:

v Check that the two messaging engines can communicate with each other, see “Service integration

troubleshooting: Checking the communication between two messaging engines in a bus” on page

326. If the messaging engines can communicate, reduce the rate at which messages are produced.

If the messaging engines cannot communicate, resolve the failure. If you encounter problems

processing the backlog of messages once communication is restored, and the backlog does not

Chapter 18. Troubleshooting service integration technologies 325

contain any messages that are vital, consider deleting all the messages on the remote message

point. To delete the messages, select the relevant remote message point and click Delete all

messages.

Note: You will not be able to recover the messages once they have been deleted.

v Check that messages are not being trapped in the ’Committing’ state. If they are, a resource

manager, such as a database, has hung. Resolve the issue with the resource manager. If this fails,

note the Transaction ID of the message and click Servers -> Application servers -> [Content

pane] server_name -> [Runtime tab] [Additional Properties] Transaction Service to display the

general properties for the transaction service, including numbers of transactions. Use the Review

links to resolve the transaction whose Global ID matches the transaction ID of the message.

Determining which messaging engine an application is connected to

If your application fails to receive or produce a message, you might want to find out which messaging

engine it is connected to, as part of troubleshooting the problem.

1. If your application is a JMS application, examine its connection factory as the messaging engine name

might be specified there.

2. If your application is not a JMS application, or its connection factory does not specify the messaging

engine name, use one of the following methods to determine which messaging engine the application

is connected to:

v Within the application code, after the application has obtained a valid Connection object, add a call

to the toString() method of that object. The connected messaging engine name will be clearly listed

when you rerun the application.

v Enable the SIBJms_External trace component and rerun the application. Inspect the generated trace

for a reference to the connected messaging engine name.

Be aware that the messaging engine name returned by either of these methods relates to the rerun of the

application. It is possible that the original failing instance of the application was connected to a different

messaging engine in the bus.

Service integration troubleshooting: Checking the communication between two

messaging engines in a bus

If you are troubleshooting a problem with your service integration system, you might want to check that

two messaging engines can communicate with each other.

1. Check that both messaging engines are running.

2. For each messaging engine:

a. Check the system log for a CWSIT0028I message that relates to the two messaging engines in

question. This message indicates that the two messaging engines are successfully communicating

with each other.

b. Find the most recent instance (there may be only one) of the CWSIT0028I message for the two

messaging engines, and check the log to make sure that a CWSIT0029I message for these two

messaging engines does not appear later in the log. This message indicates that the

communication connection between the two messaging engines has failed.

If either of these checks fails, inspect the log for indications of the cause of the failure, and follow the

suggested actions to rectify the problem.

Investigating why a topic space is full

This topic describes how to investigate why a topic space on a service integration bus is full.

When a topic space becomes full, exceptions will be returned when you attempt to publish a message to

that topic space. The most probable reason for a topic space filling up is that the publishing application is

producing messages faster than they can be consumed by the subscribing application or applications.

However there could be other causes, such as dormant subscribers or broken communications links.

326 Troubleshooting and support

Another possible cause is a regular increase in message traffic, for example at certain times of day.

Consider increasing the high message threshold to overcome this problem.

1. Click Service integration -> Buses -> bus_name -> Destinations to display a list which includes all

the topic spaces on that bus. Click the name of the topic space that is full.

2. Click Publication points -> publication_point_name, then on the Runtime tab review the value of

the Current message depth. If this value increases steadily, the publishing application is outpacing

the subscribers. Click Subscriptions to display the subscriptions for the topic space. For each

subscription, click on the subscription name and examine the Current message depth. If all the

subscriptions are filling up, reduce the rate at which the publishing application is publishing messages.

Note: If the topic space is mediated, perform the following checks for each mediation point the

message could have been sent to or consumed from.

3. If only one subscription is filling up, the problem lies with the related subscribing application. If the

subscription is nondurable, modify the subscribing application to increase the speed of consumption.

4. If the subscription is a durable subscription, click Messages and ensure that the message at the top of

the list changes with time; this indicates that the subscribing application is actually consuming

messages. If the message does not change but the application is running, either delete the

subscription or increase the high message threshold of the publication point.

5. Determine which messaging engines the publishing and subscribing applications are connected to, see

“Determining which messaging engine an application is connected to” on page 326.

6. If the publishing and subscribing applications are connected to different messaging engines, the

messages are being routed via a remote queue point. On the publisher’s messaging engine, click

Remote publication points and then click the publication point that represents the subscriber’s

publication point. Review the number of current outbound messages. If the number of current

messages is low, the problem does not lie with the remote message point. If the number of current

messages is approaching the high message threshold, perform the following checks:

v Check that the two messaging engines can communicate with each other, see “Service integration

troubleshooting: Checking the communication between two messaging engines in a bus” on page

326. If the messaging engines can communicate, reduce the rate at which messages are published.

If the messaging engines cannot communicate, resolve the failure. If you encounter problems

processing the backlog of messages once communication is restored, and the backlog does not

contain any messages that are vital, consider deleting all the messages on the remote message

point. To delete the messages, select the relevant remote message point and click Delete all

messages.

Note: You will not be able to recover the messages once they have been deleted.
To avoid the messages building up again, click Topics, then click Clear all. No more messages will

be sent to this remote publication point. To reset the topic list, restart the messaging engine.

v Check that messages are not being trapped in the ’Committing’ state. If they are, a resource

manager, such as a database, has hung. Resolve the issue with the resource manager. If this fails,

note the Transaction ID of the message and click Servers -> Application servers -> [Content

pane] server_name -> [Runtime tab] [Additional Properties] Transaction Service to display the

general properties for the transaction service, including numbers of transactions. Use the Review

links to resolve the transaction whose Global ID matches the transaction ID of the message.

Determining which messaging engine an application is connected to

If your application fails to receive or produce a message, you might want to find out which messaging

engine it is connected to, as part of troubleshooting the problem.

1. If your application is a JMS application, examine its connection factory as the messaging engine name

might be specified there.

2. If your application is not a JMS application, or its connection factory does not specify the messaging

engine name, use one of the following methods to determine which messaging engine the application

is connected to:

Chapter 18. Troubleshooting service integration technologies 327

v Within the application code, after the application has obtained a valid Connection object, add a call

to the toString() method of that object. The connected messaging engine name will be clearly listed

when you rerun the application.

v Enable the SIBJms_External trace component and rerun the application. Inspect the generated trace

for a reference to the connected messaging engine name.

Be aware that the messaging engine name returned by either of these methods relates to the rerun of the

application. It is possible that the original failing instance of the application was connected to a different

messaging engine in the bus.

Service integration troubleshooting: Checking the communication between two

messaging engines in a bus

If you are troubleshooting a problem with your service integration system, you might want to check that

two messaging engines can communicate with each other.

1. Check that both messaging engines are running.

2. For each messaging engine:

a. Check the system log for a CWSIT0028I message that relates to the two messaging engines in

question. This message indicates that the two messaging engines are successfully communicating

with each other.

b. Find the most recent instance (there may be only one) of the CWSIT0028I message for the two

messaging engines, and check the log to make sure that a CWSIT0029I message for these two

messaging engines does not appear later in the log. This message indicates that the

communication connection between the two messaging engines has failed.

If either of these checks fails, inspect the log for indications of the cause of the failure, and follow the

suggested actions to rectify the problem.

Investigating why point-to-point messages are not arriving

This topic describes how to investigate why point-to-point messages are not arriving at a destination on a

service integration bus.

Use this topic if you have an application that is producing point-to-point messages in a service integration

system, and the messages are not arriving at their destination.

Perform the following preliminary checks before starting the investigation:

v Check that the producing application is producing messages correctly:

– Check that there are no failures in the application.

– Check that the name of the destination is correct.

– Check that the transaction used to produce the message was committed without any exceptions.

– Check that the application is allowing sufficient time for messages to be delivered; messages are

transmitted asynchronously between messaging engines, so if the messages are being routed

through a remote message point there may be a slight delay before they are delivered. The length of

the delay is dependent upon factors such as system capacity and loading.

v Check the producing application to see if it is giving the messages a short expiry time. If this is the

case, the messages may be expiring before they arrive, or before they can be processed by the

receiving messaging engine.

v Examine the relevant exception destination to see if the messages appear there. If they do, use the

information contained within the messages to understand why they have arrived at the exception

destination, and write an application (or mediation) to process the messages.

v Check the reliability of the messages. If the reliability is set to best effort, the messages can be

discarded by the system during normal operation. See “Understanding why best effort messages are

being discarded” on page 325 for a list of possible causes.

328 Troubleshooting and support

v Check the priority of the messages. If the priority is low, higher priority work may be delaying the

messages.

v Check the system environment, for example, a busy CPU might cause delayed messages.

v Examine the error logs for exceptions.

1. Click Service integration -> Buses -> bus_name -> [Destination resources] Destinations to display

the destinations on the relevant bus. Click on the destination and check that the Send allowed check

box is selected.

2. Stop the consuming application. Clear the Receive allowed check box for the destination and save the

changes to the master repository. If you do not have dynamic configuration enabled, restart the

messaging engine for the changes to take effect. This will prevent any consumers from consuming the

test message that you will use to investigate the problem.

3. Run the producing application to produce a test message with a reliability level greater than best effort

(best effort messages can be discarded during normal operation so are not useful for investigating this

problem). The following steps describe how to investigate what happens to the test message.

4. Determine which messaging engine hosts the queue point for the destination to which the messages

are being sent, see “Determining the location of message points for a destination on a service

integration bus.”

5. Click Service integration -> Buses -> bus_name -> [Topology] Messaging engines and check that

the messaging engine is running.

6. From the messaging engine panel click [Message points] Queue points ->queue_point_name

[Runtime tab] Messages to view the messages on the queue point. If the message is displayed, it

arrived successfully at the messaging engine and the problem has cleared.

7. Determine which messaging engine the producing application is connected to, see “Determining which

messaging engine an application is connected to” on page 326.

8. If the producing application is connected to a messaging engine other than the messaging engine

hosting the queue point, the messages are being routed through a remote message point. Refer to

“Investigating why point-to-point messages are not arriving through a remote message point” on page

330 to investigate this scenario.

Determining the location of message points for a destination on a service

integration bus

As part of troubleshooting a problem, you might need to find where message points for a destination are

located.

Perform this task as part of problem determination, when you need to find out which messaging engine a

message point is located on.

Note: If you have an alias destination, the alias is resolved to the physical destination immediately after a

message is produced. Follow the steps below for the physical destination.

Click Service integration -> Buses -> bus_name -> [Additional Properties] Destinations to display the

destinations on the relevant bus. Review the Type of the destination:

v If the destination is a queue, the number of queue points depends on whether the queue is localized to

a single messaging engine, or a cluster of messaging engines. In either case the name of the queue

point or points is of the form destination@messaging_engine_name:

– If the queue is localized to a single, non clustered messaging engine, there will be a single queue

point.

– If the queue is localized to a cluster, there will be one queue point for every messaging engine in the

cluster.

If the queue is mediated it will have one or more mediation points (depending on whether it is localized

to a single messaging engine or a cluster). Messages produced to a mediated destination will first be

Chapter 18. Troubleshooting service integration technologies 329

delivered to a mediation point, processed by the mediation or mediations, and unless routed otherwise,

finally be delivered to one of the queue’s queue points.

v If the destination is a topic space, it will have a publication point localized to every messaging engine in

the bus. Messages produced to a topic space are always delivered directly to the publication point

situated on the same messaging engine that the producing application is connected to. A topic space

may be mediated in the same way as a queue, in which case messages will initially be directed to the

one or more mediation points and then to a publication point colocated with the mediation point.

Continue with the problem determination. If the destination is a queue with multiple queue points, or it is

mediated using multiple mediation points, perform the problem determination for each message point that

the message could have been sent to or consumed from.

Investigating why point-to-point messages are not arriving through a remote

message point

This topic describes how to investigate why point-to-point messages are not arriving at a destination on a

service integration bus, when the messages are being routed through a remote message point.

Follow the steps in “Investigating why point-to-point messages are not arriving” on page 328, which

contains preliminary checks and investigative tasks that you should carry out before proceeding with this

task.

You should perform this task as part of “Investigating why point-to-point messages are not arriving” on

page 328. This task explains how to investigate the flow of messages in a point-to-point messaging

scenario where the messages are being routed through a remote message point. The following diagram

illustrates the situation. ME1 is the messaging engine that the producing application is attached to, and

ME2 is the messaging engine that is hosting the queue point. These messaging engines are referred to in

the following steps.

Producing
Application

Consuming
Application

Message
Point

Remote
Message

Point

Remote
Message

Point

ME1 ME2

ME3

Bus

Figure 2. Point-to-point message production using a remote message point

330 Troubleshooting and support

1. Display the properties for ME1 by clicking Service integration → Buses -> bus_name -> [Topology]

Messaging engines -> messaging_engine_name.

2. On the Runtime tab for ME1, click [Remote message points]Remote queue points, then click the

remote queue point that represents the queue point on ME2. Review the value of the Current

outbound messages field.

3. If the number of current outbound messages is greater than zero, messages have been produced but

they might not have been received by ME2.

a. Check that the two messaging engines can communicate with each other, see “Service integration

troubleshooting: Checking the communication between two messaging engines in a bus” on page

326.

b. Look for previous messages on the queue. If there are previous messages, and some or all of

them are for ME2, wait a few moments and then refresh the view.

v If some of the messages have disappeared from the queue, the system is currently delivering

messages but is backlogged. Wait until the backlog has been cleared, then inspect the queue

point on ME2 to see if the test message has arrived.

v If none of the messages have disappeared from the queue, the transmission of messages might

be blocked by a message that is trapped in the ’Committing’ state. Later messages must wait for

this message to be delivered, otherwise the ordering of messages will be broken.

If a message is trapped in the ’Committing’ state, that message is contained in an unresolved

transaction. A resource manager, such as a database, might have hung. Resolve the issue with

the resource manager. If this fails, note the Transaction ID of the message and click Servers ->

Application servers -> [Content pane] server_name -> [Runtime tab] [Additional Properties]

Transaction Service to display the general properties for the transaction service. Use the

Review links to resolve the transaction whose Global ID matches the transaction ID of the

message.

c. Examine the state of the test message:

v If the status of the test message is ’Pending send’, the message is waiting to be sent. ME2

might not be accepting messages. Perform the following checks:

– Check that the two messaging engines can communicate with each other, see “Service

integration troubleshooting: Checking the communication between two messaging engines in

a bus” on page 326.

– Check that the queue point on ME2 is not full: display the runtime properties for the queue

point and compare the Current message depth to the High message threshold. If the

current message depth is equal to the high message threshold, the messaging engine will not

accept new messages until the queued messages have been consumed. Either restart the

consumer and wait until the backlog is cleared, or delete the messages.

Note: You will not be able to recover the messages once they have been deleted.

– Check that configuration changes have been propagated. Ensure that ME2 is aware of the

existence of the queue point by deploying the latest configuration settings to ME2’s

application server.

v If the status of the test message is ’Pending acknowledgement’, the message has been sent but

ME2 has either not received the message, or not processed the message. Check that there are

no messages in the ’Committing’ state ahead of the test message in the transmit queue, then

wait a few moments and examine the queue point again to see if the test message has arrived.If

there are messages that are trapped in the ’Committing’ state, resolve this problem by referring

to the following point.

v If the test message (or another message) is in the ’Committing’ state, the message is contained

in an unresolved transaction. A resource manager, such as a database, might have hung.

Resolve the issue with the resource manager. If this fails, note the Transaction ID of the

message and click Servers -> Application servers -> [Content pane] server_name -> [Runtime

Chapter 18. Troubleshooting service integration technologies 331

tab] [Additional Properties] Transaction Service to display the general properties for the

transaction service. Use the Review links to resolve the transaction whose Global ID matches

the transaction ID of the message.

4. If the number of completed outbound messages is greater than zero, messages have been produced

and processed by ME2, but the test message has not appeared. Rerun the producing application and

ensure that the number of completed outbound messages on ME1 increases (you might see the active

outbound message count increase before the completed outbound message count increases).

v If the counts do not increase, the message was not produced at ME1. Check that the producing

application is actually connected to this messaging engine (see “Determining which messaging

engine an application is connected to” on page 326).

v If the counts do increase, the message arrived at ME2, but was either consumed, sent to the

exception destination, or expired. Check for the presence of consumers, and perform the preliminary

checks again.

5. If the number of current and completed messages are both zero, check that the producing application

really is producing messages to this destination, by performing the relevant preliminary checks again.

If you are still having problems, contact your IBM customer service representative.

Determining which messaging engine an application is connected to:

If your application fails to receive or produce a message, you might want to find out which messaging

engine it is connected to, as part of troubleshooting the problem.

1. If your application is a JMS application, examine its connection factory as the messaging engine name

might be specified there.

2. If your application is not a JMS application, or its connection factory does not specify the messaging

engine name, use one of the following methods to determine which messaging engine the application

is connected to:

v Within the application code, after the application has obtained a valid Connection object, add a call

to the toString() method of that object. The connected messaging engine name will be clearly listed

when you rerun the application.

v Enable the SIBJms_External trace component and rerun the application. Inspect the generated trace

for a reference to the connected messaging engine name.

Be aware that the messaging engine name returned by either of these methods relates to the rerun of the

application. It is possible that the original failing instance of the application was connected to a different

messaging engine in the bus.

Service integration troubleshooting: Checking the communication between two messaging engines

in a bus:

If you are troubleshooting a problem with your service integration system, you might want to check that

two messaging engines can communicate with each other.

1. Check that both messaging engines are running.

2. For each messaging engine:

a. Check the system log for a CWSIT0028I message that relates to the two messaging engines in

question. This message indicates that the two messaging engines are successfully communicating

with each other.

b. Find the most recent instance (there may be only one) of the CWSIT0028I message for the two

messaging engines, and check the log to make sure that a CWSIT0029I message for these two

messaging engines does not appear later in the log. This message indicates that the

communication connection between the two messaging engines has failed.

If either of these checks fails, inspect the log for indications of the cause of the failure, and follow the

suggested actions to rectify the problem.

332 Troubleshooting and support

Investigating why point-to-point messages are not being consumed

This topic describes how to investigate why point-to-point messages are not being consumed from a

destination on a service integration bus.

Use this topic if you did not get a response in your application because a message you were expecting did

not appear on a queue. The information in this topic applies to local and remote producers, and local and

remote consumers.

Perform the following preliminary checks before starting the investigation:

v Perform the following preliminary checks before starting the investigation:

v Check that the consuming application is consuming messages correctly:

– Check that the application is started.

– Check that the name of the destination being consumed from is correct.

v Check the producing application to see if it is giving the messages a short expiry time. If this is the

case, the messages may be expiring before they can be consumed.

v Click Service integration -> Buses -> bus_name -> [Destination resources] Destinations to display

the destinations on the relevant bus. Click on the destination and check that the Receive allowed

check box is selected.

v Check the reliability of the messages. If the reliability is set to best effort, the messages can be

discarded by the system during normal operation. See “Understanding why best effort messages are

being discarded” on page 325 for a list of possible causes.

v Examine the error logs.

1. Run the consuming application and check that messages are still not being consumed.

2. Stop the consuming application.

3. Determine which messaging engine is hosting the queue point to which messages are being produced.

See “Determining the location of message points for a destination on a service integration bus” on

page 329.

4. Click Application servers -> server_name -> Messaging engines -> messaging_engine_name ->

[Message points] Queue points -> queue_point_identifier -> [Runtime tab] Messages to view the

messages on the queue point. Check that there are messages present that are in the ’Unlocked’ state.

v If there are no messages present, then there are no messages to consume. Run the producing

application to produce a test message and check the queue again. If there are still no messages

present, the test message has not arrived. Use the topic “Investigating why point-to-point messages

are not arriving” on page 328 to investigate the problem.

v If there are messages present but they are not in the ’Unlocked’ state, check for other consumers

that are consuming from this queue point. If there are other consumers, stop them and repeat the

investigation.

5. Determine which messaging engine the consuming application is connected to. See “Determining

which messaging engine an application is connected to” on page 326.

v If the consuming application is connected to the messaging engine hosting the queue point, check

the consuming application for errors, in particular check that the selector in the consuming

application matches the available message.

v If the consuming application is connected to a messaging engine other than the messaging engine

hosting the queue point, the messages are being routed through a remote message point. Display

the runtime properties of the messaging engine that the consuming application is connected to, then

display the remote message points for that messaging engine and view the list of message requests

on the relevant message point. If possible, start the consuming application and ensure that it is

actively trying to consume a message (the application should be in either a ’receive with wait’ state

or an ’asynchronous consumer registered’ state), then follow the instructions in “Investigating why

messages are not being consumed through a remote message point or subscription point, while the

application is running” on page 334. If your application cannot remain in an actively consuming state

Chapter 18. Troubleshooting service integration technologies 333

for a significant length of time (long enough to investigate the problem), follow the steps in

“Investigating why messages are not being consumed through a remote message point or

subscription point, while the application is stopped” on page 337.

Determining which messaging engine an application is connected to

If your application fails to receive or produce a message, you might want to find out which messaging

engine it is connected to, as part of troubleshooting the problem.

1. If your application is a JMS application, examine its connection factory as the messaging engine name

might be specified there.

2. If your application is not a JMS application, or its connection factory does not specify the messaging

engine name, use one of the following methods to determine which messaging engine the application

is connected to:

v Within the application code, after the application has obtained a valid Connection object, add a call

to the toString() method of that object. The connected messaging engine name will be clearly listed

when you rerun the application.

v Enable the SIBJms_External trace component and rerun the application. Inspect the generated trace

for a reference to the connected messaging engine name.

Be aware that the messaging engine name returned by either of these methods relates to the rerun of the

application. It is possible that the original failing instance of the application was connected to a different

messaging engine in the bus.

Investigating why messages are not being consumed through a remote message

point or subscription point, while the application is running

This topic describes how to investigate why messages are not being consumed at a destination on a

service integration bus, when the messages are being routed through a remote message point and the

consuming application is running.

Follow the steps in either “Investigating why point-to-point messages are not being consumed” on page

333 or “Investigating why publish/subscribe messages are not arriving at a subscription” on page 340,

whichever best suits the problem. These topics contain preliminary checks and investigative tasks that you

should carry out before proceeding with this task.

You should perform this task as part of either “Investigating why point-to-point messages are not being

consumed” on page 333 or “Investigating why publish/subscribe messages are not arriving at a

subscription” on page 340. This task explains how to investigate the flow of messages in a scenario where

the messages are being routed through a remote message point and the consuming application is started.

The following diagrams illustrate two possible scenarios. In Figure 1, ME2 is the messaging engine that

hosts the message point, and receives messages from the producing application through ME1. ME3 is the

messaging engine that the consuming application is attached to, and hosts a remote message point which

represents the message point on ME2. In Figure 2, ME2 and ME3 host publication points that are

represented by remote publication points on ME1, where the producing application is attached.

Subscribing application B is connected to ME3 and receives messages indirectly from ME1, via a

subscription on ME2. a remote subscription point on ME 3. These messaging engines are referred to in

the following steps.

334 Troubleshooting and support

Producing
Application

Consuming
Application

Message
Point

Remote
Message

Point

Remote
Message

Point

ME1 ME2

ME3

Bus

Figure 3. Point-to-point message consumption using a remote message point

Publication
Point

Publishing
Application

Subscribing
Application A

Subscribing
Application B

Publication
Point

Publication
Point

Remote
Publication

Points

Subscription

Durable
Subscription

Remote
Subscription

ME1 ME2

ME3

Bus

Figure 4. Publish/subscribe messaging using a remote message point

Chapter 18. Troubleshooting service integration technologies 335

1. If you have followed the steps in “Investigating why point-to-point messages are not being consumed”

on page 333 or “Investigating why publish/subscribe messages are not arriving at a subscription” on

page 340 before starting this task, you should have displayed a list of message requests. Check that

the list contains a request with a selector that matches an available message on the message point on

ME2. If there is no such request in the list, the consuming application is not consuming; check the

consuming application for errors:

v Check that the consumer is started.

v Check that the application is actively trying to consume:

– If the application uses an asynchronous consumer, check that the asynchronous consumer is

registered.

– If the application is synchronous, check that the consumer is currently in a ’receive with wait’

state (this may require a modification to the application to extend the time that the application

waits for a message).

2. Check the state of the active request:

v If the state is ’Value’, a message was retrieved and returned to the consuming application, but the

consumption of the message has not yet completed. Check that the consuming application is

correctly processing any incoming messages, for example, check that the application is committing

the transaction used to consume the message.

v If the state is ’Rejected’, a message was retrieved and returned to the consuming application, which

then rejected the message for some reason. Generally, this means that the consuming application

rolled back the consume operation or an associated transaction.

v If the state is ’Acknowledged’, an message was returned for the request and consumed by an

application. Check that the message was received by the correct application, and was not

consumed by a different application.

v If the state is ’Request’, the message request has been sent to ME2, continue to the next check to

investigate why a message has not been returned.

3. Note the Request ID. On ME2, display the message points for the destination, and view the message

requests from ME3. Check that there is a request which matches the request ID on ME3. If there is no

matching request, ME2 is not aware of the request. Check that the two messaging engines can

communicate with each other, see “Service integration troubleshooting: Checking the communication

between two messaging engines in a bus” on page 326.

4. Check the state of the request:

v If the request is ’Requested’, the request has been received but no suitable message is available.

Check that the request selector matches the available message on the message point.

v If the request is ’Pending acknowledgement’, the request has successfully identified a matching

message and attempted to transmit it to ME3. Check that the two messaging engines can

communicate with each other, see “Service integration troubleshooting: Checking the communication

between two messaging engines in a bus” on page 326.

If you are still having problems, contact your IBM customer service representative.

Service integration troubleshooting: Checking the communication between two messaging engines

in a bus:

If you are troubleshooting a problem with your service integration system, you might want to check that

two messaging engines can communicate with each other.

1. Check that both messaging engines are running.

2. For each messaging engine:

a. Check the system log for a CWSIT0028I message that relates to the two messaging engines in

question. This message indicates that the two messaging engines are successfully communicating

with each other.

336 Troubleshooting and support

b. Find the most recent instance (there may be only one) of the CWSIT0028I message for the two

messaging engines, and check the log to make sure that a CWSIT0029I message for these two

messaging engines does not appear later in the log. This message indicates that the

communication connection between the two messaging engines has failed.

If either of these checks fails, inspect the log for indications of the cause of the failure, and follow the

suggested actions to rectify the problem.

Investigating why messages are not being consumed through a remote message

point or subscription point, while the application is stopped

This topic describes how to investigate why messages are not being consumed at a destination on a

service integration bus, when the messages are being routed through a remote message point and the

consuming application is stopped.

Follow the steps in either “Investigating why point-to-point messages are not being consumed” on page

333 or “Investigating why publish/subscribe messages are not arriving at a subscription” on page 340,

whichever best suits the problem. These topics contain preliminary checks and investigative tasks that you

should carry out before proceeding with this task.

Perform this task as part of either “Investigating why point-to-point messages are not being consumed” on

page 333 or “Investigating why publish/subscribe messages are not arriving at a subscription” on page

340. This task explains how to investigate the flow of messages in a scenario where the messages are

being routed through a remote message point and the consuming application is stopped. The following

diagrams illustrate two possible scenarios. In Figure 1, ME2 is the messaging engine that hosts the

message point, and receives messages from the producing application through ME1. ME3 is the

messaging engine that the consuming application is attached to, and hosts a remote message point which

represents the message point on ME2. In Figure 2, ME2 and ME3 host publication points that are

represented by remote publication points on ME1, where the producing application is attached.

Subscribing application B is connected to ME3 and receives messages indirectly from ME1, via a

subscription on ME2. a remote subscription point on ME 3. These messaging engines are referred to in

the following steps.

Chapter 18. Troubleshooting service integration technologies 337

Producing
Application

Consuming
Application

Message
Point

Remote
Message

Point

Remote
Message

Point

ME1 ME2

ME3

Bus

Figure 5. Point-to-point message consumption using a remote message point

Publication
Point

Publishing
Application

Subscribing
Application A

Subscribing
Application B

Publication
Point

Publication
Point

Remote
Publication

Points

Subscription

Durable
Subscription

Remote
Subscription

ME1 ME2

ME3

Bus

Figure 6. Publish/subscribe messaging using a remote message point

338 Troubleshooting and support

1. If you have followed the steps in “Investigating why point-to-point messages are not being consumed”

on page 333 or “Investigating why publish/subscribe messages are not arriving at a subscription” on

page 340 before starting this task, you should have displayed a list of message requests. On the

previous panel (runtime properties for the message point), check that the Message requests issued

(point-to-point only) or Message requests received (publish/subscribe only) value is greater than zero.

If the value is not greater than zero, no requests have been made. Check the consuming application

for errors:

v Check that the application is actually connected to ME2.

v Check that the application did not produce any errors which could explain why messages are not

being consumed.

v Check that the consumer was started.

v Check that the application did attempt to consume a message:

– If the application uses an asynchronous consumer, check that the asynchronous consumer was

registered.

– If the application is synchronous, check that the consumer performed a ’receive’ or a ’receive

with wait’ function (this may require a modification to the application to extend the time that the

application waits for a message).

2. If the number of issued message requests is greater than zero, requests from ME3 to ME2 for

messages on the message point have been made. Check that the Completed message requests

value is greater than zero. If not, check that the two messaging engines can communicate with each

other, see “Service integration troubleshooting: Checking the communication between two messaging

engines in a bus” on page 326.

3. If the number of completed message requests is greater than zero, requests are being issued by ME3,

processed by ME2 and completed back to ME3. To ensure that those requests were made by the

actual application being investigated, record the current values of Completed message requests and

either Message requests issued or Message requests received. Rerun the consuming application

and check that both values have increased. If the values do not increase, the application did not make

a request from ME3 to ME2 for this message point (the existing numbers relate to a previous

application that was consuming messages). Check the consuming application for errors:

v Check that the application was started.

v Check that the name of the destination being consumed from is correct.

4. If the values do increase, the message request was issued and completed, but no message was

returned or processed by the consuming application.

v Check that the application’s selection criteria match the available message or messages on the

message point.

v Check that the application is correctly receiving the message, by checking for application or runtime

errors.

If you are still having problems, contact your IBM customer service representative.

Service integration troubleshooting: Checking the communication between two messaging engines

in a bus:

If you are troubleshooting a problem with your service integration system, you might want to check that

two messaging engines can communicate with each other.

1. Check that both messaging engines are running.

2. For each messaging engine:

a. Check the system log for a CWSIT0028I message that relates to the two messaging engines in

question. This message indicates that the two messaging engines are successfully communicating

with each other.

b. Find the most recent instance (there may be only one) of the CWSIT0028I message for the two

messaging engines, and check the log to make sure that a CWSIT0029I message for these two

Chapter 18. Troubleshooting service integration technologies 339

messaging engines does not appear later in the log. This message indicates that the

communication connection between the two messaging engines has failed.

If either of these checks fails, inspect the log for indications of the cause of the failure, and follow the

suggested actions to rectify the problem.

Investigating why publish/subscribe messages are not arriving at a

subscription

This topic describes how to investigate why publish/subscribe messages are not arriving at a subscription

on a service integration bus.

Use this topic if you have an application that is producing messages to a topic space destination, and a

consuming application is not receiving the messages.

Perform the following preliminary checks before starting the investigation:

v Check that the producing application is producing messages correctly:

– Check that there are no failures or runtime errors from the application.

– Check that the name of the destination is correct.

– Check that messages are actually being produced.

– Check that the transaction used to produce the message was committed without any exceptions.

v Check that the consuming application is consuming messages correctly:

– Check that the application is started.

– Check that the subscription’s topic and selector are correct. To do this click Service integration ->

Buses -> bus_name -> [Destination resources] Destinations -> topic_space_name -> [Message

points] Publication points -> publication_point_identifier -> Subscriptions ->

subscription_name and ensure that the Topic and Selector fields match the topic and selector

specified in the application.

– If security is enabled, ensure that the subscription has the authority to receive messages sent to it.

Refer to Topic security and Messaging security for more information.

v Check the producing application to see if it is giving the messages a short expiry time. If this is the

case, the messages may be disappearing before they arrive, or before they can be processed by the

receiving messaging engine.

v Click Service integration -> Buses -> bus_name -> [Destination resources] Destinations to display

the destinations on the relevant bus. Click on the topic space and check that the Send allowed and

Receive allowed check boxes are selected.

v Examine the relevant exception destination to see if the messages appear there. If they do, use the

information contained within the messages to understand why they have arrived at the exception

destination, and write an application (or mediation) to process the messages.

v Check the reliability of the messages. If the reliability is set to best effort, the messages can be

discarded by the system during normal operation. See “Understanding why best effort messages are

being discarded” on page 325 for a list of possible causes.

v Examine the error logs for exceptions.

1. Click Service integration -> Buses -> bus_name -> [Destination resources] Destinations to display

the destinations on the relevant bus. Click on the relevant topic space and under Message points,

click Publication points. For each publication point listed, click the publication point then click

[Runtime] Subscriptions and look for your subscription. If your subscription is not listed on any of the

publication points, there is an error in the consuming application.

2. Determine which messaging engines the producing and consuming applications are connected to, see

“Determining which messaging engine an application is connected to” on page 326.

340 Troubleshooting and support

3. If the producing application is connected to the same messaging engine as the consuming application,

the messages are being produced locally to the consumer. Recheck the producing and consuming

applications, and check the system logs for errors.

4. If the producing application is connected to a different messaging engine than the consuming

application, the messages are being routed through a remote publication point. Refer to “Investigating

why publish/subscribe messages are not being received by a subscription through a remote message

point” to investigate this scenario.

Determining which messaging engine an application is connected to

If your application fails to receive or produce a message, you might want to find out which messaging

engine it is connected to, as part of troubleshooting the problem.

1. If your application is a JMS application, examine its connection factory as the messaging engine name

might be specified there.

2. If your application is not a JMS application, or its connection factory does not specify the messaging

engine name, use one of the following methods to determine which messaging engine the application

is connected to:

v Within the application code, after the application has obtained a valid Connection object, add a call

to the toString() method of that object. The connected messaging engine name will be clearly listed

when you rerun the application.

v Enable the SIBJms_External trace component and rerun the application. Inspect the generated trace

for a reference to the connected messaging engine name.

Be aware that the messaging engine name returned by either of these methods relates to the rerun of the

application. It is possible that the original failing instance of the application was connected to a different

messaging engine in the bus.

Investigating why publish/subscribe messages are not being received by a

subscription through a remote message point

This topic describes how to investigate why publish/subscribe messages are not being received by a

subscription on a service integration bus, when the messages are being routed through a remote message

point.

Follow the steps in “Investigating why publish/subscribe messages are not arriving at a subscription” on

page 340, which contains preliminary checks and investigative tasks that you should carry out before

proceeding with this task.

Perform this task as part of “Investigating why publish/subscribe messages are not arriving at a

subscription” on page 340. This task explains how to investigate the flow of messages in a

publish/subscribe messaging scenario where the messages are being routed through a remote message

point to a nondurable subscription. The following diagrams illustrates two possible situations. The dotted

lines in the diagrams indicate relationships between publication points, whereas the solid lines indicate

flow of messages. In Figure 1, ME1 is the messaging engine that the producing application is attached to,

and ME2 and ME3 are the messaging engines that are hosting the subscriptions. The publication points

on ME2 and ME3 are represented by remote publication points on ME1. In Figure 2, Subscribing

application B, which is attached to ME3, has a durable subscription which receives messages through

ME2, rather than directly from ME1. In order to do this, ME3 hosts a remote subscription, which represents

the subscription on ME2. The messaging engines are referred to in the following steps.

Chapter 18. Troubleshooting service integration technologies 341

The following steps apply to both the above scenarios.

Publication
Point

Publishing
Application

Subscribing
Application A

Subscribing
Application B

Publication
Point

Publication
Point

Remote
Publication

Points
Subscription

Subscription

ME1 ME2

ME3

Bus

Figure 7. Point-to-point message production using a remote message point

Publication
Point

Publishing
Application

Subscribing
Application A

Subscribing
Application B

Publication
Point

Publication
Point

Remote
Publication

Points

Subscription

Durable
Subscription

Remote
Subscription

ME1 ME2

ME3

Bus

Figure 8. Publish/subscribe messaging using a remote message point

342 Troubleshooting and support

1. Display the properties for ME1 by clicking Service integration → Buses -> bus_name -> [Topology]

Messaging engines -> messaging_engine_name.

 2. On the Runtime tab for ME1, click [Remote message points]Remote publication points, then click

the remote publication point that represents the publication point on ME2. Click Topics and check

that the consumer’s topic is listed. If the topic is not listed, perform the following checks:

v Check that the subscribing application is still running.

v Check that the two messaging engines can communicate with each other, see “Service integration

troubleshooting: Checking the communication between two messaging engines in a bus” on page

326.

v Wait a short period (dependent on the system configuration) and recheck.

 3. It is possible that the registration of the subscription occurred after the message was published.

Republish the message and check again to see if it was received.

 4. On ME1, again display the remote publication point that represents the publication point on ME2.

Review the value of the Current outbound messages field.

 5. If the number of current outbound messages is greater than zero, messages have been produced but

they might not have been received by ME2.

a. Check that the two messaging engines can communicate with each other, see “Service integration

troubleshooting: Checking the communication between two messaging engines in a bus” on page

326.

b. Look for previous messages on the topic space. If there are previous messages, and some or all

of them are for ME2, wait a few moments and then refresh the view.

v If some of the messages have disappeared from the topic space, the system is currently

delivering messages but is backlogged. Wait until the backlog has been cleared, then inspect

the publication point on ME2 to see if the test message has arrived.

v If none of the messages have disappeared from the topic space, the transmission of messages

might be blocked by a message that is trapped in the ’Committing’ state. Later messages must

wait for this message to be delivered, otherwise the ordering of messages will be broken.

If a message is trapped in the ’Committing’ state, that message is contained in an unresolved

transaction. A resource manager, such as a database, might have hung. Resolve the issue with

the resource manager. If this fails, note the Transaction ID of the message and click Servers

-> Application servers -> [Content pane] server_name -> [Runtime tab] [Additional

Properties] Transaction Service to display the general properties for the transaction service.

Use the Review links to resolve the transaction whose Global ID matches the transaction ID of

the message.

c. Examine the state of the test message:

v If the status of the test message is ’Pending send’, the message is waiting to be sent. ME2

might not be accepting messages. Perform the following checks:

– Check that the two messaging engines can communicate with each other, see “Service

integration troubleshooting: Checking the communication between two messaging engines in

a bus” on page 326.

– Check that the publication point on ME2 is not full: display the runtime properties for the

publication point and compare the Current message depth to the High message

threshold. If the current message depth is equal to the high message threshold, the

messaging engine will not accept new messages until the queued messages have been

consumed. Either restart the consumer and wait until the backlog is cleared, or delete the

messages.

– Check that configuration changes have been propagated. Ensure that ME2 is aware of the

existence of the publication point by deploying the latest configuration settings to ME2’s

application server.

v If the status of the test message is ’Pending acknowledgement’, the message has been sent

but ME2 has either not received the message, or not processed the message. Check that there

Chapter 18. Troubleshooting service integration technologies 343

are no messages in the ’Committing’ state ahead of the test message in the transmit queue,

then wait a few moments and examine the publication point again to see if the test message

has arrived.If there are messages that are trapped in the ’Committing’ state, resolve this

problem by referring to the following point.

v If the test message (or another message) is in the ’Committing’ state, the message is contained

in an unresolved transaction. A resource manager, such as a database, might have hung.

Resolve the issue with the resource manager. If this fails, note the Transaction ID of the

message and click Servers -> Application servers -> [Content pane] server_name ->

[Runtime tab] [Additional Properties] Transaction Service to display the general properties for

the transaction service. Use the Review links to resolve the transaction whose Global ID

matches the transaction ID of the message.

 6. If the number of completed outbound messages is greater than zero, messages have been produced

and processed by ME2, but the test message has not appeared. Rerun the producing application and

ensure that the number of completed outbound messages on ME1 increases (you might see the

active outbound message count increase before the completed outbound message count increases).

v If the counts do not increase, the message was not produced at ME1. Check that the producing

application is actually connected to this messaging engine (see “Determining which messaging

engine an application is connected to” on page 326).

v If the counts do increase, the message arrived at ME2, but was either consumed, sent to the

exception destination, or expired. Check for the presence of consumers, and perform the

preliminary checks again.

 7. If the number of current and completed messages are both zero, check that the producing application

really is producing messages to this destination, by performing the relevant preliminary checks again.

 8. You have now checked the flow of messages between ME1 and ME2. If you have an application

which is in the position of Subscribing application A or B in Figure 1, you have investigated the

situation fully; if you are still having problems, contact your IBM customer service representative. If

you have an application which is in the position of Subscribing application B in Figure 2, in other

words an application which has a remote subscription, you also need to investigate the flow of

messages between ME2 and ME3, using the following steps. To determine if your application is using

a remote subscription, display the publication points for the relevant topic space, find your

subscription and examine the name of the publication point. The name will be of the form

topic_space_name@messaging_engine_name. This will tell you which messaging engine the

subscription is hosted by. If this messaging engine is different than both the messaging engine that

the producing application is connected to, and the messaging engine that the consuming application

is connected to, a remote subscription is being used.

 9. Display the subscriptions for the publication point on ME2, and find your subscription in the list. If the

subscription is not listed, perform the following checks:

v Check that the subscribing application is still running.

v Check that the two messaging engines can communicate with each other, see “Service integration

troubleshooting: Checking the communication between two messaging engines in a bus” on page

326.

v Wait a short period (dependent on the system configuration) and recheck.

10. Click your subscription and then click Known remote subscription points. In the resulting list, click

the name of the messaging engine that is represented by ME3 in the diagram. Click Message

requests. This displays the requests that have been received by the subscription on ME2, from the

remote subscription on ME3.

11. If possible, start the consuming application and ensure that it is actively trying to consume a message

(the application should be in either a ’receive with wait’ state or an ’asynchronous consumer

registered’ state), then follow the instructions in “Investigating why messages are not being consumed

through a remote message point or subscription point, while the application is running” on page 334.

If your application cannot remain in an actively consuming state for a significant length of time (long

344 Troubleshooting and support

enough to investigate the problem), follow the steps in “Investigating why messages are not being

consumed through a remote message point or subscription point, while the application is stopped” on

page 337.

Service integration troubleshooting: Checking the communication between two messaging engines

in a bus:

If you are troubleshooting a problem with your service integration system, you might want to check that

two messaging engines can communicate with each other.

1. Check that both messaging engines are running.

2. For each messaging engine:

a. Check the system log for a CWSIT0028I message that relates to the two messaging engines in

question. This message indicates that the two messaging engines are successfully communicating

with each other.

b. Find the most recent instance (there may be only one) of the CWSIT0028I message for the two

messaging engines, and check the log to make sure that a CWSIT0029I message for these two

messaging engines does not appear later in the log. This message indicates that the

communication connection between the two messaging engines has failed.

If either of these checks fails, inspect the log for indications of the cause of the failure, and follow the

suggested actions to rectify the problem.

Determining which messaging engine an application is connected to:

If your application fails to receive or produce a message, you might want to find out which messaging

engine it is connected to, as part of troubleshooting the problem.

1. If your application is a JMS application, examine its connection factory as the messaging engine name

might be specified there.

2. If your application is not a JMS application, or its connection factory does not specify the messaging

engine name, use one of the following methods to determine which messaging engine the application

is connected to:

v Within the application code, after the application has obtained a valid Connection object, add a call

to the toString() method of that object. The connected messaging engine name will be clearly listed

when you rerun the application.

v Enable the SIBJms_External trace component and rerun the application. Inspect the generated trace

for a reference to the connected messaging engine name.

Be aware that the messaging engine name returned by either of these methods relates to the rerun of the

application. It is possible that the original failing instance of the application was connected to a different

messaging engine in the bus.

Chapter 18. Troubleshooting service integration technologies 345

346 Troubleshooting and support

Chapter 19. Data access resources

Unit testing with DB2

These steps describe how to setup a unit test environment that would allow you to develop and unit test

code with DB2 z/OS to support Container Managed Persistence (CMP) development and access DB2 test

data that resides on z/OS.

When using DB2 z/OS to support Container Managed Persistence (CMP) development and access DB2

test data that resides on z/OS, you should establish a testing environment to develop and unit test the

code. Perform the steps below to setup a test environment:

1. Configure DB2 Distributed Data Facility (DDF) on z/OS to allow remote TCP/IP connections from your

WebSphere Studio Application Developer workstation. See the DB2 Information Center for information

on DDF.

2. Install the DB2 Client Configuration Assistant on the workstation where WebSphere Studio Application

Developer is installed. The DB2 Client Configuration Assistant is shipped with DB2.

3. Use the DB2 Client Configuration Assistant to define a DB2 alias.

4. Use the DB2 alias you defined to access the DB2 subsystem on z/OS using the DB2 Distributed Data

Facility (DDF).

Provider coexistence considerations

DB2 Drivers and Cloudscape

The Cloudscape Network Server Using Universal JDBC Driver Provider uses an embedded copy of the

DB2 Universal JDBC Driver that is shipped with Cloudscape. This provider is configured to automatically

use the new level of the DB2 Universal JDBC Driver when installing the DB2 Version 7, Version 8, or

standalone Type 4 version of the DB2 Universal JDBC Driver on the system where WebSphere Application

Server for z/OS is configured.

The Cloudscape Network Server Using Universal JDBC Driver Provider can coexist on the same server as

the DB2 for Universal JDBC Driver Providers since it uses the same DB2 JDBC driver.

Deprecation: The Derby Network Server using the Universal JDBC driver Provider is deprecated in

WebSphere Application Server Version 6.1. Therefore it is no longer an available choice

among provider types in the administrative console. Use the Derby Network Server using

Derby Client Provider instead.

Connection and connection pool statistics

Performance Monitoring Infrastructure (PMI) method calls that are supported in the two existing

Connection Managers (JDBC and J2C) are still supported in this version of WebSphere Application Server.

The calls include:

v ManagedConnectionsCreated

v ManagedConnectionsAllocated

v ManagedConnectionFreed

v ManagedConnectionDestroyed

v BeginWaitForConnection

v EndWaitForConnection

v ConnectionFaults

v Average number of ManagedConnections in the pool

v Percentage of the time that the connection pool is using the maximum number of ManagedConnections

v Average number of threads waiting for a ManagedConnection

v Average percent of the pool that is in use

© Copyright IBM Corp. 2006 347

http://publib.boulder.ibm.com/infocenter/db2help/index.jsp

v Average time spent waiting on a request

v Number of ManagedConnections that are in use

v Number of Connection Handles

v FreePoolSize

v UseTime

Java Specification Request (JSR) 77 requires statistical data to be accessed through managed beans

(Mbeans) to facilitate this. The Connection Manager passes the ObjectNames of the Mbeans created for

this pool. In the case of Java Message Service (JMS) null is passed in. The interface used is:

PmiFactory.createJ2CPerf(

 String pmiName, // a unique Identifier for JCA /JDBC. This is the

 // ConnectionFactory name.

 ObjectName providerName,// the ObjectName of the J2CResourceAdapter

 // or JDBCProvider Mbean

 ObjectName factoryName // the ObjectName of the J2CConnectionFactory

 // or DataSourceMbean.

)

The following Unified Modeling Language (UML) diagram shows how JSR 77 requires statistics to be

reported:

<<JavaInterface>>

<<JavaInterface>>

<<JavaInterface>>

<<JavaInterface>>

+ getConnections ()

+ getConnectionFactory ()

+ getCloseCount ()

+ getWaitTime ()

+ getFreePoolSize ()

+ getUseTime ()

+ getPoolSize ()

+ getWaitingThreadCount ()

+ getConnections ()

+ getConnectionPools ()

+ getManageConnectionFactory ()

+ getCreateCount ()

+ getConnectionPools ()

JCAStats

JCAConnectionStats

JCAConnectionPoolStats

JDBCStats

JDBCDataSource

<<JavaInterface>>

<<JavaInterface>>

+ getJdbcDataSource ()

+ getCreateCount ()

+ getWaitTime ()

+ getCloseCount ()

+ getUseTime ()

+ getPoolSize ()

+ Operation1 ()

+ getFreePoolSize ()

+ getWaitingThreadCount ()

JDBCConnectionStats

JDBCConnectionPoolStats

1

In WebSphere Application Server Version 5.x, the JCAStats interface was implemented by the

J2CResourceAdapter Mbean, and the JDBCStats interface was implemented by the JDBCProvider Mbean.

The JCAConnectionStats and JDBCConnectionStats interfaces are not implemented because they collect

statistics for nonpooled connections, which are not present in the JCA 1.0 Specification.

JCAConnectionPoolStats, and JDBCConnectionPoolStats do not have a direct implementing Mbean; those

statistics are gathered through a call to PMI. A J2C resource adapter, and JDBC provider each contain a

list of ConnectionFactory or DataSource ObjectNames, respectively. The ObjectNames are used by PMI to

find the appropriate connection pool in the list of PMI modules.

348 Troubleshooting and support

The JCA 1.5 Specification allows an exception from the matchManagedConnection() method that indicates

that the resource adapter requests that the connection not be pooled. In that case, statistics for that

connection are provided separately from the statistics for the connection pool.

Example: Connection factory lookup

import javax.resource.cci.*;

import javax.resource.ResourceException;

import javax.naming.*;

import java.util.*;

/**

 * This class is used to look up a connection factory.

 */

public class ConnectionFactoryLookup {

 String jndiName = "java:comp/env/eis/SampleConnection";

 boolean verbose = false;

 /**

 * main method

 */

 public static void main(String[] args) {

 ConnectionFactoryLookup cfl = new ConnectionFactoryLookup();

 cfl.checkParam(args);

 try {

 cfl.lookupConnectionFactory();

 }

 catch(javax.naming.NamingException ne) {

 System.out.println("Caught this " + ne);

 ne.printStackTrace(System.out);

 }

 catch(javax.resource.ResourceException re) {

 System.out.println("Caught this " + re);

 re.printStackTrace(System.out);

 }

 }

 /**

 * This method does a simple Connection Factory lookup.

 *

 * After the Connection Factory is looked up, a connection is got from

 * the Connection Factory. Then the Connection MetaData is retrieved

 * to verfiy the connection is workable.

 */

 public void lookupConnectionFactory()

 throws javax.naming.NamingException, javax.resource.ResourceException {

 javax.resource.cci.ConnectionFactory factory = null;

 javax.resource.cci.Connection conn = null;

 javax.resource.cci.ConnectionMetaData metaData = null;

 try {

 // lookup the connection factory

 if (verbose) System.out.println("Look up the connection factory...");

 InitialContext ic = new InitialContext();

 factory = (ConnectionFactory) ic.lookup(jndiName);

 // Get connection

 if (verbose) System.out.println("Get the connection...");

 conn = factory.getConnection();

Chapter 19. Data access resources 349

// Get ConnectionMetaData

 metaData = conn.getMetaData();

 // Print out the metadata Informatin.

 if (verbose) System.out.println(" ** EISProductName :" + metaData.getEISProductName());

 if (verbose) System.out.println(" EISProductVersion:" + metaData.getEISProductName());

 if (verbose) System.out.println(" UserName :" + metaData.getUserName());

 System.out.println("Connection factory "+jndiName+" is successfully looked up");

 }

 catch (javax.naming.NamingException ne) {

 // Connection factory cannot be looked up.

 throw ne;

 }

 catch (javax.resource.ResourceException re) {

 // Something wrong with connections.

 throw re;

 }

 finally {

 if (conn != null) {

 try {

 conn.close();

 }

 catch (javax.resource.ResourceException re) {

 }

 }

 }

 }

 /**

 * Check and gather all the parameters.

 */

 private void checkParam(String args[]) {

 int i = 0, j;

 String arg;

 char flag;

 boolean help = false;

 // parse out the options

 while (i < args.length && args[i].startsWith("-")) {

 arg = args[i++];

 // get the database name

 if (arg.equalsIgnoreCase("-jndiName")) {

 if (i < args.length)

 jndiName = args[i++];

 else {

 System.err.println("-jndiName requires a J2C Connection Factory JNDI name");

 break;

 }

 }

 else { // check for verbose, cmp , bmp

 for (j = 1; j < arg.length(); j++) {

 flag = arg.charAt(j);

 switch (flag) {

 case ’v’ :

 case ’V’ :

 verbose = true;

 break;

 case ’h’ :

 case ’H’ :

 help = true;

 break;

 default :

 System.err.println("illegal option " + flag);

 break;

 }

350 Troubleshooting and support

}

 }

 }

 if ((i != args.length) || help) {

 System.err.println("Usage: java ConnectionFactoryLookup [-v] [-h]");

 System.err.println(" [-jndiName the J2C Connection Factory JNDI name]");

 System.err.println("-v=verbose");

 System.err.println("-h=this information");

 System.exit(1);

 }

 }

}

Vendor-specific data sources minimum required settings

Use this table as an at-a-glance reference of JDBC providers that can be defined for use with WebSphere

Application Server Version 6.x, to establish data sources for transacting with relational databases. A list

that contains detailed requirements for creating data sources with these providers follows the table. (The

list also contains information about JDBC providers that are deprecated in WebSphere Application Server

Version 6.x.)

Database type JDBC Provider Transaction support

Version and other

considerations

DB2 on Windows, UNIX,

or workstation-based

LINUX

DB2 Universal JDBC

Provider

One phase only

DB2 Universal JDBC

Provider (XA)

One and two phase The XA implementation is

not supported in

WebSphere Application

Server run on

workstation-based LINUX

DB2 legacy CLI-based Type

2 JDBC Provider

Deprecated in WebSphere

Application Server v.6.1

One phase only

DB2 legacy CLI-based Type

2 JDBC Provider (XA)

Deprecated in WebSphere

Application Server v.6.1

One and two phase

Chapter 19. Data access resources 351

Database type JDBC Provider Transaction support

Version and other

considerations

DB2 UDB for iSeries

DB2 UDB for iSeries

(Native)

One phase only Recommended for use with

WebSphere Application

Server run on iSeries

DB2 UDB for iSeries

(Native XA)

One and two phase Recommended for use with

WebSphere Application

Server run on iSeries

DB2 UDB for iSeries

(Toolbox)

One phase only

DB2 UDB for iSeries

(Toolbox XA)

One and two phase

DB2 Universal JDBC

Provider (XA)

One and two phase -Only for use with

WebSphere Application

Server run on z/OS

-Only driver type 4 is

supported

-Does not support Version 4

data sources

DB2 legacy CLI-based Type

2 JDBC Provider

Deprecated in WebSphere

Application Server v.6.1

One phase only -Only for use with

WebSphere Application

Server run on Windows,

UNIX, or workstation-based

LINUX

- Requires the DB2

Connect driver (available

from DB2)

DB2 legacy CLI-based Type

2 JDBC Provider (XA)

Deprecated in WebSphere

Application Server v.6.1

One and two phase -Only for use with

WebSphere Application

Server run on Windows,

UNIX, or workstation-based

LINUX

- Requires the DB2

Connect driver (available

from DB2)

352 Troubleshooting and support

Database type JDBC Provider Transaction support

Version and other

considerations

DB2 on z/OS

DB2 for z/OS Local JDBC

Provider (RRS), using the

Legacy DB2 for OS/390

and z/OS JDBC Driver

Removed

support: WebSphere

Application Server v6.1

does not support this

provider. Use the DB2

Universal JDBC Driver

provider instead. See

″Migrating from the

JDBC/SQLJ Driver for

OS/390 and z/OS to the

DB2 Universal JDBC

Driver″ in the Information

Management Software for

z/OS Solutions Information

Center.

One and two phase Only for use with

WebSphere Application

Server run on z/OS

DB2 Universal JDBC

Provider

One phase only

DB2 Universal JDBC

Provider (XA)

One and two phase -Only driver type 4 is

supported in WebSphere

Application Server run on

z/OS

-Does not support Version 4

data sources in WebSphere

Application Server run on

z/OS

DB2 legacy CLI-based Type

2 JDBC Provider

Deprecated in WebSphere

Application Server v.6.1

One phase only -Only for use with

WebSphere Application

Server run on Windows,

UNIX, or workstation-based

LINUX

- Requires the DB2

Connect program (available

from DB2)

DB2 legacy CLI-based Type

2 JDBC Provider (XA)

Deprecated in WebSphere

Application Server v.6.1

One and two phase -Only for use with

WebSphere Application

Server run on Windows,

UNIX, or workstation-based

LINUX

- Requires the DB2

Connect program (available

from DB2)

Chapter 19. Data access resources 353

Database type JDBC Provider Transaction support

Version and other

considerations

Cloudscape Version

10.1.x

Cloudscape v10.1.x

provides the Apache Derby

runtime.

JDBC naming

requirements: Because

the new Cloudscape code

base is the product of the

Apache Derby Project,

Cloudscape v10.1.x uses

Derby JDBC classes.

Therefore you must specify

Derby JDBC provider

names, Derby JDBC driver

classes, and Derby data

source classes to configure

JDBC access to

Cloudscape v10.1.x.

Derby JDBC Provider One phase only - Not for use in clustered

environment: accessible

from a single JVM only

- Does not support Version

4 data sources

Derby JDBC Provider (XA) One and two phase - Not for use in clustered

environment: accessible

from a single JVM only

- Does not support Version

4 data sources

Derby Network Server

Provider using the Universal

JDBC driver

Deprecated in WebSphere

Application Server v.6.1

One phase only - Can be used in clustered

environment: a database

instance can be accessed

by multiple JVMs

- Does not support XA

- Does not support Version

4 data sources

Derby Network Server using

Derby Client provider

One phase only - Can be used in clustered

environment: a database

instance can be accessed

by multiple JVMs

- Does not support Version

4 data sources

- Only for use with

Cloudscape 10.1.x

databases that run on the

same node as WebSphere

Application Server

Derby Network Server using

Derby Client provider (XA)

One and two phase - Can be used in clustered

environment: a database

instance can be accessed

by multiple JVMs

- Does not support Version

4 data sources

- Only for use with

Cloudscape 10.1.x

databases that run on the

same node as WebSphere

Application Server

Informix

Informix JDBC Provider One phase only

Informix JDBC Provider

(XA)

One and two phase

Sybase

Sybase jConnect for JDBC

Provider

One phase only

Sybase jConnect for JDBC

Provider (XA)

One and two phase

354 Troubleshooting and support

Database type JDBC Provider Transaction support

Version and other

considerations

Oracle

Oracle JDBC Provider One phase only

Oracle JDBC Provider(XA) One and two phase

Microsoft SQL Server

DataDirect ConnectJDBC

Provider, type 4 driver, for

MS SQL Server

One phase only - Only for use with the

corresponding driver from

DataDirect Technologies

- Version 3.5, Service pack

2 of the DataDirect

ConnectJDBC type 4 driver

can support access to both

MS SQL Server 2005 and

MS SQL Server 2000

DataDirect ConnectJDBC

Provider, type 4 driver, for

MS SQL Server (XA)

One and two phase - Only for use with the

corresponding driver from

DataDirect Technologies

- Version 3.5, Service pack

2 of the DataDirect

ConnectJDBC type 4 driver

can support access to both

MS SQL Server 2005 and

MS SQL Server 2000

IBM WebSphere embedded

ConnectJDBC Provider for

MS SQL Server

One phase only - Cannot be used outside of

WebSphere Application

Server environment

- Version 3.5, Service pack

2 of the driver can support

access to both MS SQL

Server 2005 and MS SQL

Server 2000

IBM WebSphere embedded

ConnectJDBC Provider for

MS SQL Server (XA)

One and two phase - Cannot be used outside of

WebSphere Application

Server environment

- Version 3.5, Service pack

2 of the driver can support

access to both MS SQL

Server 2005 and MS SQL

Server 2000

Detailed data source requirements per JDBC provider and platform

The following list contains the requirements for creating data sources with every JDBC provider type that is

supported in WebSphere Application Server Version 6.x. Specific fields are designated for the user and

password properties. Inclusion of a property in the list does not imply that you should add it to the data

source custom properties list. Rather, inclusion in the list means that a value is typically required for that

field.

Important: After you determine the type of JDBC provider that suits your application and environment,

ensure that you acquire the corresponding JDBC driver at a release level supported by this version of

WebSphere Application Server. Consult the WebSphere Application Server prerequisite Web site.

Use these links to find your provider and data source information:

Chapter 19. Data access resources 355

v DB2 on z/OS, connecting to Application Server on z/OS

v “DB2 UDB for iSeries, connecting to Application Server on z/OS” on page 358

v “Cloudscape v10.x” on page 360

– Formerly known as Derby

– Comprised of the Derby code base

– Not supported as a production database with this version of WebSphere Application Server

– Cloudscape v10.1.x: The Cloudscape 10.1.x package that is bundled with WebSphere Application

Server is backed by full IBM Quality Assurance (QA).
v Informix

v Sybase

v Oracle

v MS SQL Server

DB2 on z/OS, connecting to Application Server on z/OS

1. DB2 for zOS Local JDBC Provider (RRS)--Removed

Removed support: Do not use this provider and the corresponding DB2 for 390 and z/OS Legacy

JDBC driver; WebSphere Application Server no longer supports this JDBC

configuration. Version 6.1 of the product requires that you migrate your DB2 for

z/OS Local JDBC Provider (RRS) configurations to the DB2 Universal JDBC

Driver provider. For migration instructions, consult the topic ″Migrating from the

JDBC/SQLJ Driver for OS/390 and z/OS to the DB2 Universal JDBC Driver″ in

the Information Management Software for z/OS Solutions Information Center,

which is located at http://publib.boulder.ibm.com/infocenter/dzichelp.

2. DB2 Universal JDBC Provider

The DB2 Universal JDBC Driver is an architecture-neutral JDBC driver for distributed and local DB2

access. Because the Universal Driver architecture is independent of any particular JDBC driver

connectivity or target platform, it allows both Java connectivity (Type 4) or Java Native Interface (JNI)

based connectivity (Type 2) in a single driver instance to DB2.

Note: To use this provider, you must have the DB2 Universal JDBC Driver for DB2 Version 7 or DB2

Version 8 installed and configured for WebSphere Application Server for z/OS. Refer to the topic

Configuring a DB2 Universal JDBC Driver Provider for WebSphere Application Server for z/OS.

The DB2 Universal JDBC Provider allows applications to use both JDBC and Structured Query

Language in Java (SQLJ) access to DB2 databases. SQLJ use with CMP is also supported.

It supports the following data source:

com.ibm.db2.jcc.DB2ConnectionPoolDataSource

Note that when you configure the data source, you must specify a name for the data source definition.

This data source implementation class performs one-phase commit processing when you specify driver

Type 4 in WebSphere Application Server for z/OS. When you specify driver Type 2, Application Server

for z/OS uses RRS to coordinate transaction processing, and two-phase commit processing is

performed for global transactions. The provider requires JDBC driver files:

v db2jcc.jar This is the DB2 Universal JDBC Driver jar file. After the DB2 installation, this jar file is

located in DB2’s install directory. The fully-qualified path of this jar must be specified as the value of

the DB2UNIVERSAL_JDBC_DRIVER_PATH environment variable. Class path:

${DB2UNIVERSAL_JDBC_DRIVER_PATH}/db2jcc.jar

v db2jcc_License_cu.jar This is the DB2 Universal JDBC driver license file that allows access to DB2

Universal databases under Cloudscape and workstations. It is not used for WebSphere Application

Server for z/OS, but is included to make the provider definition common between WebSphere

Application Server for z/OS and WebSphere Application Server Distributed. Class path:

${UNIVERSAL_JDBC_DRIVER_PATH}/db2jcc_License_cu.jar

v db2jcc_License_cisuz.jar This is the DB2 Universal JDBC Driver license file that allows access to

DB2 Universal databases under Cloudscape, workstations, and z/OS. After you install DB2, this jar

file appears in the same DB2 directory as db2jcc.jar. Class path:

356 Troubleshooting and support

http://publib.boulder.ibm.com/infocenter/dzichelp

${DB2UNIVERSAL_JDBC_DRIVER_PATH}/db2jcc_License_cisuz.jar

v The native files (.so type files) required by the DB2 Universal JDBC Driver in WebSphere

Application Server for z/OS. Use the following library path:

${DB2UNIVERSAL_JDBC_DRIVER_NATIVEPATH}

The DB2 Universal JDBC driver requires DataStoreHelper class:

com.ibm.websphere.rsadapter.DB2UniversalDataStoreHelper

This driver also requires a valid authentication alias if the driverType property (see properties below) is

set to 4. If the driverType property is set to 2, a component-managed authentication alias must be

specified to use the datasource with res-auth APPLICATION. In the case where driverType 2 is

specified and the datasource is used with res-auth CONTAINER, you can specify a container-managed

authentication alias; however, it is not required. If you do not specify a container-managed alias, the

user identity associated with a connection created by the datasource will be the user identity

associated with the current thread at the time the connection is obtained.

It requires the following properties:

v databaseName This is an actual database name if the driverType is set to 4, or a locally

cataloged database name if the driverType is set to 2.

v driverType The JDBC connectivity type of a data source. There are two permitted values: 2 and 4.

If you want to use Universal JDBC Type 2 driver, set this value to 2. If you want to use Universal

JDBC Type 4 driver, set this value to 4.

v serverName The TCP/IP address or host name for the Distributed Relational Database Architecture

(DRDA) server. Provide a value for this property only if your driverType is set to 4. This property is

not required if your driverType is set to 2.

v portNumber The TCP/IP port number where the DRDA server resides. Provide a value for this

property only if your driverType is set to 4. This property is not required if your driverType is set to

2.
3. DB2 Universal JDBC Provider (XA)

This provider is the XA DB2 Universal JDBC provider that uses the DB2 Universal JDBC driver to

provide access to DB2 databases. The Universal JDBC driver supports Java communication-based

connectivity (driver Type 4), which allows distributed access to DB2. The driver also supports Java

Native Interface (JNI) based connectivity (driver type 2), which allows local access to DB2. For XA

capabilities, however, driver type 2 is not supported by the DB2 Universal JDBC Driver on WebSphere

Application Server for z/OS. Therefore driver type 2 should not be used when defining an XA data

source under this provider.

Note: To use this provider, you must have the DB2 Universal JDBC Driver for DB2 Version 7 or DB2

Version 8 installed and configured for WebSphere Application Server for z/OS, or you must

have the z/OS Application Connectivity to DB2 for z/OS feature installed and configured for

WebSphere Application Server for z/OS. Refer to the topic Configuring a DB2 Universal JDBC

Driver Provider for WebSphere Application Server for z/OS.

The DB2 Universal JDBC Provider (XA) allows applications to use both JDBC and Structured Query

Language in Java (SQLJ) access to DB2 databases. SQLJ use with CMP is also supported.

This provider does not support the creation of Version 4.0 data sources.

The DB2 Universal JDBC Provider (XA) supports the two phase data source:

com.ibm.db2.jcc.DB2XADataSource

Note that when you configure the data source, you must specify a name for the data source definition.

It requires JDBC driver files:

v db2jcc.jar This is the DB2 Universal JDBC Driver jar file. After the DB2 installation, this jar file is

located in DB2’s install directory. The fully-qualified path of this jar must be specified as the value of

the DB2UNIVERSAL_JDBC_DRIVER_PATH environment variable:

${DB2UNIVERSAL_JDBC_DRIVER_PATH}/db2jcc.jar

v db2jcc_License_cu.jar This is the DB2 Universal JDBC driver license file that allows access to DB2

Universal databases under Cloudscape and workstations. It is not used for WebSphere Application

Chapter 19. Data access resources 357

Server for z/OS, but is included to make the provider definition common between WebSphere

Application Server for z/OS and WebSphere Application Server Distributed. Class path:

${UNIVERSAL_JDBC_DRIVER_PATH}/db2jcc_License_cu.jar

v db2jcc_License_cisuz.jar This is the DB2 Universal JDBC Driver license file that allows access to

DB2 Universal databases under Cloudscape, workstations, and z/OS. After you install DB2, this jar

file appears in the same DB2 directory as db2jcc.jar. Class path:

${DB2UNIVERSAL_JDBC_DRIVER_PATH}/db2jcc_License_cisuz.jar

v The native files (.so type files) required by the DB2 Universal JDBC Driver in WebSphere

Application Server for z/OS. Use the following library path:

${DB2UNIVERSAL_JDBC_DRIVER_NATIVEPATH}

(In cases that do not require native files, set the DB2UNIVERSAL_JDBC_DRIVER_NATIVEPATH to

null.)

The driver requires DataStoreHelper class:

com.ibm.websphere.rsadapter.DB2UniversalDataStoreHelper

It also requires a valid authentication alias.

The DB2 Universal JDBC driver requires the following properties:

v databaseName This is a locally cataloged database name.

v driverType This is the JDBC connectivity type of a data source. If you are running a version of

DB2 prior to DB2 V8.1 FP6, you are restricted to using only the type 2 driver.

v serverName The TCP/IP address or host name for the Distributed Relational Database Architecture

(DRDA) server. Provide a value for this property only if your driverType is set to 4. This property is

not required if your driverType is set to 2.

v portNumber The TCP/IP port number where the DRDA server resides. Provide a value for this

property only if your driverType is set to 4. This property is not required if your driverType is set to

2.

For more information on DB2 for z/OS, visit the DB2 Web site at: http://www.ibm.com/software/data/db2/.

DB2 UDB for iSeries, connecting to Application Server on z/OS

In the rare case that you need to connect to DB2 UDB on iSeries to provide JDBC connectivity for an

application run on WebSphere Application Server for z/OS, you can use the iSeries Toolbox driver for

Java, the iSeries Toolbox XA-compliant driver for Java, or the DB2 JDBC Universal Driver XA.

1. DB2 UDB for iSeries (Toolbox)

This JDBC driver, also known as iSeries Toolbox driver for Java, is provided in the DB2 for iSeries

database server. Use this driver for remote DB2 connections on iSeries. We recommend you use this

driver instead of the IBM Developer Kit for Java JDBC Driver to access remote DB2 UDB for iSeries

systems.

DB2 UDB for iSeries (Toolbox) supports one phase data source:

com.ibm.as400.access.AS400JDBCConnectionPoolDataSource

Requires JDBC driver files: jt400.jar

Requires DataStoreHelper class:

com.ibm.websphere.rsadapter.DB2AS400DataStoreHelper

Requires an authentication alias.

Requires properties:

v serverName The name of the server from which the data source obtains connections. Example:

myserver.mydomain.com.
2. DB2 UDB for iSeries (Toolbox XA)

358 Troubleshooting and support

http://www-3.ibm.com/software/data/db2/

This XA compliant JDBC driver, also known as iSeries Toolbox XA-compliant driver for Java, is

provided in the DB2 for iSeries database server. Use this driver for remote DB2 connections on

iSeries. We recommend you use this driver instead of the IBM Developer Kit for Java JDBC Driver to

access remote DB2 UDB for iSeries systems.

DB2 UDB for iSeries (Toolbox XA) supports two phase data source:

com.ibm.as400.access.AS400JDBCXADataSource

Requires JDBC driver files: jt400.jar

Requires DataStoreHelper class:

com.ibm.websphere.rsadapter.DB2AS400DataStoreHelper

Requires an authentication alias.

Requires properties:

v serverName The name of the server from which the data source obtains connections. Example:

myserver.mydomain.com.
3. DB2 Universal JDBC Provider (XA)

This provider is the XA DB2 Universal JDBC provider that uses the DB2 Universal JDBC driver to

provide access to DB2 databases. The Universal JDBC driver supports Java communication-based

connectivity (driver Type 4), which allows distributed access to DB2. If you are running WebSphere

Application Server for z/OS and connecting to DB2 UDB for iSeries, you cannot use Java Native

Interface (JNI) based connectivity (driver type 2) with this provider.

Note: To use this provider, you must have the DB2 Universal JDBC Driver for DB2 Version 7 or DB2

Version 8 installed and configured for WebSphere Application Server for z/OS, or you must

have the z/OS Application Connectivity to DB2 for z/OS feature installed and configured for

WebSphere Application Server for z/OS. Refer to the topic Configuring a DB2 Universal JDBC

Driver Provider for WebSphere Application Server for z/OS.

The DB2 Universal JDBC Provider (XA) allows applications to use both JDBC and Structured Query

Language in Java (SQLJ) access to DB2 databases. SQLJ use with CMP is also supported.

This provider does not support the creation of Version 4.0 data sources.

The DB2 Universal JDBC Provider (XA) supports the two phase data source:

com.ibm.db2.jcc.DB2XADataSource

Note that when you configure the data source, you must specify a name for the data source definition.

It requires JDBC driver files:

v db2jcc.jar This is the DB2 Universal JDBC Driver jar file. After the DB2 installation, this jar file is

located in DB2’s install directory. The fully-qualified path of this jar must be specified as the value of

the DB2UNIVERSAL_JDBC_DRIVER_PATH environment variable:

${DB2UNIVERSAL_JDBC_DRIVER_PATH}/db2jcc.jar

v db2jcc_License_cu.jar This is the DB2 Universal JDBC driver license file that allows access to DB2

Universal databases under Cloudscape and workstations. It is not used for WebSphere Application

Server for z/OS, but is included to make the provider definition common between WebSphere

Application Server for z/OS and WebSphere Application Server Distributed. Class path:

${UNIVERSAL_JDBC_DRIVER_PATH}/db2jcc_License_cu.jar

v db2jcc_License_cisuz.jar This is the DB2 Universal JDBC Driver license file that allows access to

DB2 Universal databases under Cloudscape, workstations, and z/OS. After you install DB2, this jar

file appears in the same DB2 directory as db2jcc.jar. Class path:

${DB2UNIVERSAL_JDBC_DRIVER_PATH}/db2jcc_License_cisuz.jar

v The native files (.so type files) required by the DB2 Universal JDBC Driver in WebSphere

Application Server for z/OS. Use the following library path:

${DB2UNIVERSAL_JDBC_DRIVER_NATIVEPATH}

(In cases that do not require native files, set the DB2UNIVERSAL_JDBC_DRIVER_NATIVEPATH to

null.)

Chapter 19. Data access resources 359

The driver requires DataStoreHelper class:

com.ibm.websphere.rsadapter.DB2UniversalDataStoreHelper

It also requires a valid authentication alias.

The DB2 Universal JDBC driver requires the following properties:

v databaseName This is a locally cataloged database name.

v driverType This is the JDBC connectivity type of a data source. Set this property to type 4 if you

are running WebSphere Application Server for z/OS and connecting to DB2 UDB for iSeries.

v serverName The TCP/IP address or host name for the Distributed Relational Database Architecture

(DRDA) server. Provide a value for this property only if your driverType is set to 4. This property is

not required if your driverType is set to 2.

v portNumber The TCP/IP port number where the DRDA server resides. Provide a value for this

property only if your driverType is set to 4. This property is not required if your driverType is set to

2.

For more information on DB2 for iSeries, visit the DB2 Web site at: http://www.ibm.com/software/data/db2/.

Cloudscape v10.x

(Cloudscape v10.0 through Cloudscape 10.1.x)

v

Requirement: To configure JDBC access, you must specify Derby JDBC provider names, Derby JDBC

driver classes, and Derby data source classes. Because the new Cloudscape code base

is the product of the Apache Derby Project, the database uses Derby JDBC classes.

v

Restriction: Do not use Cloudscape v10.x as a production database. Use it for development and test

purposes only.
1. Derby JDBC Provider

The Derby JDBC driver provides JDBC access to the Cloudscape v10.x database by using the

framework that is already embedded in WebSphere Application Server for Cloudscape. However, you

cannot use any Version 4.0 data sources with Cloudscape v10.x.

The Derby JDBC Provider supports one phase data source:

org.apache.derby.jdbc.EmbeddedConnectionPoolDataSource

Requires JDBC driver files: derby.jar; full path name: ${WAS_APP_SERVER_ROOT}/derby/lib/derby.jar

Requires DataStoreHelper class:

com.ibm.websphere.rsadapter.DerbyDataStoreHelper

Does not require a valid authentication alias.

Requires properties:

v databaseName The name of the database from which the data source obtains connections. If you

do not specify a fully qualified path name, Application Server uses the default location of

WAS_HOME/derby (or the equivalent default for a UNIX or LINUX environment).

– Example database path name for Windows: c:\temp\sampleDB

– Example database path name for UNIX or LINUX: /tmp/sampleDB

If no database currently exists for the path name you want to specify, simply append ;create=true

to the path name to create a database dynamically. (For example: c:\temp\sampleDB;create=true)
2. Derby JDBC Provider (XA)

The Derby JDBC driver (XA) provides JDBC access to the Cloudscape v10.x database by using the

framework that is already embedded in WebSphere Application Server for Cloudscape. However, you

cannot use any Version 4.0 data sources with Cloudscape v10.x.

The Derby JDBC Provider (XA) supports two phase data source:

org.apache.derby.jdbc.EmbeddedXADataSource

360 Troubleshooting and support

http://www-3.ibm.com/software/data/db2/

Requires JDBC driver files: derby.jar; full path name: ${WAS_APP_SERVER_ROOT}/derby/lib/derby.jar

Requires DataStoreHelper class:

com.ibm.websphere.rsadapter.DerbyDataStoreHelper

Does not require a valid authentication alias.

Requires properties:

v databaseName The name of the database from which the data source obtains connections. If you

do not specify a fully qualified path name, Application Server uses the default location of

WAS_HOME/derby (or the equivalent default for a UNIX or LINUX environment).

– Example database path name for Windows: c:\temp\sampleDB

– Example database path name for UNIX or LINUX: /tmp/sampleDB

If no database currently exists for the path name you want to specify, simply append ;create=true

to the path name to create a database dynamically. (For example: c:\temp\sampleDB;create=true)
3.

Derby Network Server using Universal JDBC driver -- Deprecated

This JDBC provider is deprecated in WebSphere Application Server Version 6.1. Therefore it is no

longer an available choice among provider types in the administrative console.

This Derby driver takes advantage of the Network Server support that the DB2 universal Type 4 JDBC

driver provides. You cannot use any Version 4.0 data sources with Cloudscape v10.x.

Use the following one phase data source for the Derby Network Server using the Universal JDBC

driver:

 com.ibm.db2.jcc.DB2ConnectionPoolDataSource

Requires JDBC driver files:

v db2jcc.jar If you install and run DB2, you must use the db2jcc.jar file that comes with DB2. To do

that, the classpath in the JDBC template for Derby Network Server is set to be:

<classpath>${DB2UNIVERSAL_JDBC_DRIVER_PATH}/db2jcc.jar</classpath>

<classpath>${CLOUDSCAPE_JDBC_DRIVER_PATH}/otherJars/db2jcc.jar</classpath>

<classpath>${UNIVERSAL_JDBC_DRIVER_PATH}/db2jcc_license_cu.jar</classpath>

which means that the db2jcc.jar from DB2 always takes precedence. Note that this also means that

you must set the DB2 environment variable DB2UNIVERSAL_JDBC_DRIVER_PATH in WebSphere

Application Server when you set up your DB2 data source. This is instead of hard coding the path of

the db2jcc.jar for DB2 data sources.

v db2jcc_license_cu.jar This file is the DB2 Universal JDBC license file that provides access to the

Derby databases using the Network Server framework. Use this file to gain access to the database.

This file ships with WebSphere and is located in ${UNIVERSAL_JDBC_DRIVER_PATH}.

Note: UNIVERSAL_JDBC_DRIVER_PATH is a WebSphere environment variable that is already

mapped to the location in Websphere Application Server where the license jar file is located,

and will only be used if the DB2UNIVERSAL_JDBC_DRIVER_PATH is not set. DB2 users

should ensure that DB2UNIVERSAL_JDBC_DRIVER_PATH is set to avoid loading multiple

versions of the db2jcc.jar file.

Note: DB2UNIVERSAL_JDBC_DRIVER_PATH is a WebSphere environment variable that you

must set to point to the location of db2jcc.jar file (that comes with DB2). This variable is set

only if you create a DB2 provider.

Note: Derby requires only db2jcc_license_c.jar; however, WebSphere Application Server uses

db2jcc_license_cu.jar because this works for both DB2 UDB and Derby.

Requires DataStoreHelper class:

com.ibm.websphere.rsadapter.DerbyNetworkServerDataStoreHelper

Requires a valid authentication alias.

Chapter 19. Data access resources 361

Requires properties:

v databaseName The name of the database from which the data source obtains connections. If you

do not specify a fully qualified path name, Application Server uses the default location of

WAS_HOME/derby (or the equivalent default for a UNIX or LINUX environment).

– Example database path name for Windows: c:\temp\sampleDB

– Example database path name for UNIX or LINUX: /tmp/sampleDB

If no database currently exists for the path name you want to specify, simply append ;create=true

to the path name to create a database dynamically. (For example: c:\temp\sampleDB;create=true)

v driverType Only the Type 4 driver is allowed.

v serverName The TCP/IP address or the host name for the Distributed Relational Database

Architecture (DRDA) server.

v portNumber The TCP/IP port number where the DRDA server resides. The default value is port

1527.

v retrieveMessagesfromServerOnGetMessage This property is required by WebSphere Application

Server, not the database. The default value is false. You must set the value of this property to true,

to enable text retrieval using the SQLException.getMessage() method.
4. Derby Network Server using Derby Client provider

Use this provider to access only Cloudscape 10.1.x databases that run on the same node as

WebSphere Application Server.

Use the following one phase data source for the Derby Network Server using Derby Client provider:

 org.apache.derby.jdbc.ClientConnectionPoolDataSource

Cloudscape v10.1.x does not support Version 4.0 data sources.

Requires the following JDBC driver file:

v derbyclient.jar

v

Requires DataStoreHelper class:

com.ibm.websphere.rsadapter.DerbyNetworkServerDataStoreHelper

Requires the databaseName property: The name of the database from which the data source obtains

connections. If you do not specify a fully qualified path name, Application Server uses the default

location of WAS_HOME/derby (or the equivalent default for a UNIX or LINUX environment).

v Example database path name for Windows: c:\temp\sampleDB

v Example database path name for UNIX or LINUX: /tmp/sampleDB

If no database currently exists for the path name you want to specify, append ;create=true to the path

name to create a database dynamically. (For example: c:\temp\sampleDB;create=true)

5. Derby Network Server using Derby Client provider (XA)

Use this provider to access only Cloudscape 10.1.x databases that run on the same node as

WebSphere Application Server.

Use the following XA data source for this Derby Network Server using Derby Client provider:

 org.apache.derby.jdbc.XADataSource

Cloudscape v10.1.x does not support Version 4.0 data sources.

Requires the following JDBC driver file:

v derbyclient.jar

v

Requires DataStoreHelper class:

com.ibm.websphere.rsadapter.DerbyNetworkServerDataStoreHelper

Requires the databaseName property: The name of the database from which the data source obtains

connections. If you do not specify a fully qualified path name, Application Server uses the default

location of WAS_HOME/derby (or the equivalent default for a UNIX or LINUX environment).

v Example database path name for Windows: c:\temp\sampleDB

v Example database path name for UNIX or LINUX: /tmp/sampleDB

362 Troubleshooting and support

If no database currently exists for the path name you want to specify, append ;create=true to the path

name to create a database dynamically. (For example: c:\temp\sampleDB;create=true)

For more information on the new Cloudscape code base, visit the Apache Derby Project Web site at:

http://incubator.apache.org/derby/.

Informix

1. Informix JDBC Driver

The Informix JDBC Driver is a Type 4 JDBC driver that provides JDBC access to the Informix

database.

Informix JDBC Driver supports one phase data source:

 com.informix.jdbcx.IfxConnectionPoolDataSource

Requires JDBC driver files:

 ifxjdbc.jar

 ifxjdbcx.jar

Requires DataStoreHelper class:

com.ibm.websphere.rsadapter.InformixDataStoreHelper

Requires a valid authentication alias.

Requires properties:

v serverName The name of the Informix instance on the server. Example: ol_myserver.

v portNumber The port on which the instances listen. Example: 1526.

v ifxIFXHOST Either the IP address or the host name of the machine that is running the Informix

database to which you want to connect. Example: myserver.mydomain.com.

v databaseName The name of the database from which the data source obtains connections.

Example: Sample.

v informixLockModeWait Although not required, this property enables you to set the number of

seconds that Informix software waits for a lock. By default, Informix code throws an exception if it

cannot immediately acquire a lock. Example: 2.
2. Informix JDBC Driver (XA)

The Informix JDBC Driver (XA) is a Type 4 JDBC driver that provides XA-compliant JDBC access to

the Informix database.

Informix JDBC Driver (XA) supports two phase data source:

com.informix.jdbcx.IfxXADataSource

Requires JDBC driver files:

 ifxjdbc.jar

 ifxjdbcx.jar

To use SQLJ: This provider also requires driver file ifxsqlj.jar if you plan to use SQLJ for queries.

Requires DataStoreHelper class:

com.ibm.websphere.rsadapter.InformixDataStoreHelper

Requires a valid authentication alias.

Requires properties:

v serverName The name of the Informix instance on the server. Example: ol_myserver.

v portNumber The port on which the instances listen. Example: 1526.

v ifxIFXHOST Either the IP address or the host name of the machine that is running the Informix

database to which you want to connect. Example: myserver.mydomain.com.

v databaseName The name of the database from which the data source obtains connections.

Example: Sample.

v ifxIFX_XASPEC Turn on this property when multiple users access the same database. Activating

the property enforces tight coupling of XA transactions within the same global transaction ID, and

requires the transactions to share lock space. These parameters help prevent transaction

management errors from occurring in cases of multiple client requests. Turn on the ifxIFX_XASPEC

Chapter 19. Data access resources 363

http://incubator.apache.org/derby/

property by assigning it the value of Y or y; either character works because the setting is not

case-specific. Turn the property off by assigning it the value of N or n. WebSphere Application Server

ignores all other values. Your setting for the property overrides the Informix database system setting.

v informixLockModeWait Although not required, this property enables you to set the number of

seconds that Informix software waits for a lock. By default, Informix code throws an exception if it

cannot immediately acquire a lock. Example: 2.

For more information on Informix, visit the Informix Web site at: http://www.ibm.com/software/data/informix/

Sybase

1. Sybase jConnect for JDBC driver

The Sybase jConnect JDBC driver is a Type 4 JDBC driver that provides JDBC access to the Sybase

database.

Sybase jConnect JDBC driver supports one phase data source:

com.sybase.jdbc2.jdbc.SybConnectionPoolDataSource

Requires JDBC driver files: jconn2.jar.

Requires DataStoreHelper class:

com.ibm.websphere.rsadapter.SybaseDataStoreHelper

Requires a valid authentication alias.

Requires properties:

v serverName The name of the database server. Example: myserver.mydomain.com.

v databaseName The name of the database from which the data source obtains connections.

Example: Sample.

v portNumber The TCP/IP port number through which all communications to the server take place.

Example: 4100.

v connectionProperties A custom property required for applications containing EJB 2.0 enterprise

beans. Value: SELECT_OPENS_CURSOR=true(Type: java.lang.String)
2. Sybase jConnect for JDBC driver (XA)

The Sybase jConnect JDBC driver (XA) is a Type 4 JDBC driver that provides XA-compliant JDBC

access to the Sybase database.

Sybase jConnect JDBC driver (XA) supports two phase data source:

com.sybase.jdbc2.jdbc.SybXADataSource

Requires JDBC driver files: jconn2.jar.

Requires DataStoreHelper class:

com.ibm.websphere.rsadapter.SybaseDataStoreHelper

Requires a valid authentication alias.

Requires properties:

v serverName The name of the database server. Example: myserver.mydomain.com

v databaseName The name of the database from which the data source obtains connections.

Example: Sample.

v portNumber The TCP/IP port number through which all communications to the server take place.

Example: 4100.

v connectionProperties A custom property required for applications containing EJB 2.0 enterprise

beans. Value: SELECT_OPENS_CURSOR=true(Type: java.lang.String)

For more information on Sybase, visit the Sybase Web site at: http://www.sybase.com/

Oracle

1. Oracle JDBC Driver

The Oracle JDBC Driver provides JDBC access to the Oracle database. This JDBC driver supports

both Type 2 JDBC access and Type 4 JDBC access.

Oracle JDBC Driver supports one phase data source:

364 Troubleshooting and support

http://www-3.ibm.com/software/data/informix/
http://www.sybase.com/

oracle.jdbc.pool.OracleConnectionPoolDataSource

Requires JDBC driver files: ojdbc14.jar. (Note: If you require Oracle trace, use ojdbc14_g.jar.)

Requires DataStoreHelper class:

com.ibm.websphere.rsadapter.OracleDataStoreHelper

(Note: If you are running Oracle10g, use com.ibm.websphere.rsadapter.Oracle10gDataStoreHelper.)

Requires a valid authentication alias.

Requires properties:

v URL The URL that indicates the database from which the data source obtains connections.

Example: jdbc:oracle:thin:@myServer:1521:myDatabase, where myServer is the server name, 1521

is the port it is using for communication, and myDatabase is the database name.
2. Oracle JDBC Driver (XA)

The Oracle JDBC Driver (XA) provides XA-compliant JDBC access to the Oracle database. This JDBC

driver supports both Type 2 JDBC access and Type 4 JDBC access.

Oracle JDBC Driver (XA) supports two phase data source:

oracle.jdbc.xa.client.OracleXADataSource

Requires JDBC driver files: ojdbc14.jar. (Note: If you require Oracle trace, use ojdbc14_g.jar.)

Requires DataStoreHelper class:

com.ibm.websphere.rsadapter.OracleDataStoreHelper

(Note: If you are running Oracle10g, use com.ibm.websphere.rsadapter.Oracle10gDataStoreHelper.)

Requires a valid authentication alias.

Requires properties:

v URL The URL that indicates the database from which the data source obtains connections.

Example: jdbc:oracle:thin:@myServer:1521:myDatabase, where myServer is the server name, 1521

is the port it is using for communication, and myDatabase is the database name.

For more information on Oracle, visit the Oracle Web site at: http://www.oracle.com/

MS SQL Server

MS SQL Server 2005: WebSphere Application Server Version 6.10 supports JDBC transactions with the

new Microsoft SQL Server 2005, as well as Microsoft SQL Server 2000. For

access to either version of the database, use Version 3.5, Service pack 2, of either

of the following JDBC providers:

v DataDirect ConnectJDBC Provider, type 4 driver, for MS SQL Server -- including

the XA implementation

v IBM WebSphere embedded ConnectJDBC Provider for MS SQL Server --

including the XA implementation

These JDBC drivers provide the same function for MS SQL Server 2005 as MS SQL Server 2000. As long

as you use only those new features of MS SQL Server 2005 that have no impact on JDBC transactions,

you generally risk no exceptions by upgrading to the new version. WebSphere Application Server does,

however, support two new options for setting isolation level in MS SQL Server 2005: SNAPSHOT and

READ_COMMITTED_SNAPSHOT. The following chart describes these isolation levels as well as the few

requirements and concerns for using MS SQL Server 2005 with Application Server v6.1.

Chapter 19. Data access resources 365

http://www.oracle.com/

Compatibility or New Usage concern Resolution or Recommended action

New

requirements:

Specifying your database version You do not have to specify your version of MS SQL Server.

Specify the name of your database as usual. WebSphere

Application Server detects the version and makes any

necessary class attribute adjustments.

Parenthesis requirement for locking

hints

MS SQL Server 2005 requires that you place parentheses

around locking hints. For example:

select value from t1 (holdlock)

where name = ?

New syntax for joining multiple locking

hints

v MS SQL Server 2005 requires use of the keyword with

to join multiple locking hints. For example:

select value from t1 with (updlock rowlock)

where name = ?

v For MS SQL Server 2000, no keyword is required. For

example:

select value from t1 (updlock rowlock)

where name = ?

Use of the alternate servers custom

data source property

Verify that all application component clients of the data

source issue commands that are valid for both database

versions before you configure the alternate servers

property to include both MS SQL Server 2005 and Server

2000 machines.

Deprecated data types Microsoft deprecated three data types for SQL Server 2005,

which are shown in the following list along with each

replacement data type:

v text, replaced by varchar(max)

v ntext, replaced by nvarchar(max)

v image, replaced by varbinary(max)

366 Troubleshooting and support

Compatibility or New Usage concern Resolution or Recommended action

New

features:

SNAPSHOT isolation level This new isolation level implements optimistic locking for

transactions in which MS SQL Server 2005 serializes the

data.

You must configure the ALLOW_SNAPSHOT_ISOLATION

setting on the database, and then set the isolation level in

one of two ways:

v By isolation level constant: Invoke the method

setTransactionIsolation with one of three new

attributes:

– conn.setTransactionIsolation

(com.ibm.websphere.jdbc.extensions.

ExtConstants.TRANSACTION_SNAPSHOT)

– conn.setTransactionIsolation

(com.ddtek.jdbc.extensions.

ExtConstants.TRANSACTION_SNAPSHOT)

– conn.setTransactionIsolation(16)

v By custom data source property:

– Set the new data source custom property

snapshotSerializable to true, and

– Invoke the method setTransactionIsolation with the

attribute:

conn.setTransactionIsolation

(java.sql.Connection.TRANSACTION_SERIALIZABLE)

READ_COMMITTED_SNAPSHOT

isolation level

This isolation level is a new implementation of Read

committed. The policy enforces optimistic locking for read

operations with MS SQL Server 2005.

You must configure the isolation level on the database.

Then invoke the method setTransactionIsolation with the

attribute:

conn.setTransactionIsolation

(java.sql.Connection.TRANSACTION_READ_COMMITTED)

Transact-SQL enhancements, including:

new functions, additional data types,

and the ability to create recursive

queries

WebSphere Application Server does not currently support

these features; do not use them with WebSphere

Application Server Version 6.10.

Consult the Microsoft Web page at http://msdn2.microsoft.com/en-us/library/ms143232(en-
US.SQL.90).aspx for a complete list of deprecated items, as well as backward compatibility provisions, for

MS SQL Server 2005.

For the MS SQL Server JDBC drivers that support both database versions, perform the same steps and

set the same class paths and properties that were previously required for MS SQL Server 2000.

1. DataDirect ConnectJDBC type 4 driver for MS SQL Server

DataDirect ConnectJDBC type 4 driver for MS SQL Server is a Type 4 JDBC driver that provides

JDBC access to the MS SQL Server 2005 and MS SQL Server 2000 databases. This provider is for

use only with the Connect JDBC driver purchased from DataDirect Technologies.

This JDBC provider supports this data source:

 com.ddtek.jdbcx.sqlserver.SQLServerDataSource

Requires JDBC driver files:

sqlserver.jar,

base.jar and util.jar

Chapter 19. Data access resources 367

http://msdn2.microsoft.com/en-us/library/ms143232.aspx
http://msdn2.microsoft.com/en-us/library/ms143232.aspx

(The spy.jar file is optional. You need this file to enable spy logging. The spy.jar file is not in the

same directory as the other three jar files. Instead, it is located in the ../spy/ directory.)

Requires DataStoreHelper class:

com.ibm.websphere.rsadapter.ConnectJDBCDataStoreHelper

Requires a valid authentication alias.

Requires properties:

v serverName The name of the server in which MS SQL Server resides. Example:

myserver.mydomain.com

v portNumber The TCP/IP port that MS SQL Server uses for communication. Port 1433 is the

default.

v databaseName The name of the database from which the data source obtains connections.

Example: Sample.
2. DataDirect ConnectJDBC type 4 driver for MS SQL Server (XA)

DataDirect ConnectJDBC type 4 driver for MS SQL Server (XA) is a Type 4 JDBC driver which

provides XA-compliant JDBC access to the MS SQL Server 2005 and MS SQL Server 2000

databases. This provider is for use only with the Connect JDBC driver purchased from DataDirect

Technologies.

This JDBC provider supports this data source:

com.ddtek.jdbcx.sqlserver.SQLServerDataSource.

Requires JDBC driver files:

sqlserver.jar,

base.jar and util.jar.

(The spy.jar file is optional. You need this file to enable spy logging. The spy.jar file is not in the

same directory as the other three jar files. Instead, it is located in the ../spy/ directory.)

Requires DataStoreHelper class:

com.ibm.websphere.rsadapter.ConnectJDBCDataStoreHelper

Requires a valid authentication alias.

Requires properties:

v serverName The name of the server in which MS SQL Server resides. Example:

myserver.mydomain.com

v portNumber The TCP/IP port that MS SQL Server uses for communication. Port 1433 is the

default.

v databaseName The name of the database from which the data source obtains connections.

Example: Sample.

For more information on the DataDirect ConnectJDBC driver, visit the DataDirect Web site at:

http://www.datadirect-technologies.com/

3. IBM WebSphere embedded ConnectJDBC driver for MS SQL Server

WebSphere embedded ConnectJDBC driver for MS SQL Server is a Type 4 JDBC driver that provides

JDBC access to the MS SQL Server 2005 and MS SQL Server 2000 databases. This JDBC driver

ships with WebSphere Application Server. Only use this provider with the Connect JDBC driver

embedded in WebSphere; it cannot be used with a Connect JDBC driver purchased separately from

DataDirect Technologies.

This JDBC provider supports this data source:

com.ibm.websphere.jdbcx.sqlserver.SQLServerDataSource.

Requires JDBC driver files:

sqlserver.jar

base.jar and

util.jar.

368 Troubleshooting and support

http://www.datadirect-technologies.com/

(The spy.jar file is optional. You need this file to enable spy logging. The spy.jar file for the

WebSphere embedded Connect JDBC driver ships with WebSphere Application Server. All the files are

located in the WAS_HOME/lib/ directory.)

Requires DataStoreHelper class:

com.ibm.websphere.rsadapter.WSConnectJDBCDataStoreHelper

Requires a valid authentication alias.

Requires properties:

v serverName The name of the server in which MS SQL Server resides. Example:

myserver.mydomain.com

v portNumber The TCP/IP port that MS SQL Server uses for communication. Port 1433 is the

default.

v databaseName The name of the database from which the data source obtains connections.

Example: Sample.
4. IBM WebSphere embedded ConnectJDBC driver for MS SQL Server (XA)

WebSphere embedded ConnectJDBC driver for MS SQL Server (XA) is a Type 4 JDBC driver that

supports two-phase commit transactions on connections with the MS SQL Server 2005 and MS SQL

Server 2000 databases. This JDBC driver ships with WebSphere Application Server. Use this provider

with the IBM WebSphere Connect JDBC driver embedded in WebSphere Application Server. Do not

use it with the DataDirect Connect JDBC driver purchased separately from DataDirect Technologies.

The ConnectJDBC provider supports the following data source:

 com.ibm.websphere.jdbcx.sqlserver.SQLServerDataSource.

Requires JDBC driver files:

sqlserver.jar

base.jar and

util.jar.

An additional file, the spy.jar file, is optional. You need spy.jar for spy logging, which is a form of

JDBC driver-level trace.

All of the JAR files in the previous list are shipped with WebSphere Application Server and are

installed automatically with the product. They are also updated automatically when you apply

WebSphere Application Server service packs.

Requires DataStoreHelper class:

com.ibm.websphere.rsadapter.WSConnectJDBCDataStoreHelper

Requires a valid authentication alias.

Requires properties:

v serverName The name of the server in which MS SQL Server resides. Example:

myserver.mydomain.com

v portNumber The TCP/IP port that MS SQL Server uses for communication. Port 1433 is the

default.

v databaseName The name of the database from which the data source obtains connections.

Example: Sample.

Patches to the IBM WebSphere Connect JDBC driver jar files are installed automatically when you

apply WebSphere Application Server service packs. However, to update Microsoft SQL Server-side

programs for this JDBC driver, you must go to the IBM FTP site for WebSphere Application Server

embedded product updates. Use the following URL:

ftp://ftp.software.ibm.com/software/websphere/info/tools/DataDirect/datadirect.htm

An important server-side program is Stored Procedures for the Java Transaction API (JTA). Whether

you need to run one or two phase transactions with the XA-enabled IBM WebSphere Connect JDBC

driver, you must install Stored Procedures for JTA on all machines that run Microsoft SQL. The

WebSphere Application Server installation disks contain a base level of Stored Procedures for JTA. Go

to the previously listed FTP site for updates to this API.

Install Stored Procedures for JTA by performing the following steps:

Chapter 19. Data access resources 369

ftp://ftp.software.ibm.com/software/websphere/info/tools/DataDirect/datadirect.htm

a. Determine whether you are running the 32-bit or 64-bit MS SQL Server and select the appropriate

sqljbc.dll and instjdbc.sql files.

b. Stop your MS SQL Server service.

c. Copy the sqljdbc.dll file into your %SQL_SERVER_INSTALL%\Binn\ directory.

d. Restart the MS SQL Server service.

e. Run the instjdbc.sql script. (The script can be run by the MS SQL Server Query Analyzer or the

ISQL utility).
ftp://ftp.software.ibm.com/software/websphere/info/tools/DataDirect/datadirect.htm

5. DataDirect SequeLink type 3 JDBC driver for MS SQL Server -- Deprecated

This type 3 JDBC driver for MS SQL Server is deprecated in WebSphere Application Server Version

6.0. Therefore it is no longer an available choice among provider types in the administrative console.

For best results with WebSphere Application Server JDBC access to MS SQL Server, use only JDBC

drivers that are not marked for deprecation. However, if you must continue using a deprecated driver

for JDBC access to MS SQL Server, you can configure it through the WebSphere Application Server

administrative console. Be sure to select User-defined for the database type. This selection triggers

the console to display default class files, data source interfaces, and so on for your user-defined JDBC

provider type. Replace those defaults with the following settings that are specific to the DataDirect

SequeLink type 3 JDBC driver. For information on this task, read the Configuring a JDBC provider

using the administrative console section of the Administering applications and their environment PDF

book.

Incompatible with MS SQL Server 2005: Use this JDBC driver for access to MS SQL Server 2000

only.

DataDirect SequeLink type 3 JDBC driver supports the following data source:

 com.ddtek.jdbcx.sequelink.SequeLinkDataSource

Requires JDBC driver files:

 sljc.jar and

 spy-sl.jar

(The JDBC driver shipped with WebSphere Application Server requires the sljc.jar and the

spy-sl.jar files. The JDBC driver purchased from DataDirect requires the sljc.jar and the spy.jar

files. The spy.jar and spy-sl.jar files are optional. You need these files to enable spy logging.)

Requires DataStoreHelper class:

com.ibm.websphere.rsadapter.SequeLinkDataStoreHelper

Requires a valid authentication alias.

Requires properties:

v serverName The name of the server in which SequeLink Server resides. Example:

myserver.mydomain.com

v portNumber The TCP/IP port that SequeLink Server uses for communication. By default,

SequeLink Server uses port 19996.

v databaseName The name of the database from which the data source obtains connections.

Example: Sample.

v enable2phase This property is necessary only if your application must participate in two-phase

transactions. By default, Application Server sets a user-defined implementation type to a connection

pool data source. The connection pool data source supports only one-phase transactions. Configure

two-phase transaction support by setting the enable2Phase custom property on each data source

that you create with your user-defined JDBC provider. Follow these steps:

a. Go to the Custom properties administrative console page by clicking Resources > JDBC

Providers > your_JDBC_provider > Data sources > your_data_source > Custom properties.

b. Click New.

c. Input enable2Phase as the property name and assign it the value of true. For Version 4 data

sources, use a property that works in the opposite manner: Input disable2Phase and assign it

the value of false.

370 Troubleshooting and support

ftp://ftp.software.ibm.com/software/websphere/info/tools/DataDirect/datadirect.htm

The DataDirect SequeLink type 3 JDBC driver requires installation of SequeLink Server on all

machines running MS SQL Server. See the readme.html file found in the DataDirect folder on the

WebSphere Application Server CD for instructions on how to install SequeLink Server. (Install

SequeLink Server from the WebSphere Application Server CD only if you are using the SequeLink

JDBC driver embedded in WebSphere. Otherwise, install a copy of SequeLink Server purchased from

DataDirect Technologies.)

Patches to the IBM WebSphere SequeLink JDBC driver jar files are installed automatically when

applying WebSphere Application Server service packs. If updates are ever needed for the Microsoft

SQL Server-side installables (SequeLink server) for the IBM WebSphere SequeLink JDBC driver, they

will be made available from the following FTP site:

ftp://ftp.software.ibm.com/software/websphere/info/tools/DataDirect/datadirect.htm

For more information on the DataDirect SequeLink type 3 JDBC driver, visit the DataDirect Web site at:

http://www.datadirect-technologies.com/

6. Microsoft JDBC driver for MS SQL Server 2000 -- Deprecated

This type 4 JDBC driver for MS SQL Server 2000 is deprecated in WebSphere Application Server

Version 6.0. Therefore it is no longer an available choice among provider types in the administrative

console.

For best results with WebSphere Application Server JDBC access to MS SQL Server, use only JDBC

drivers that are not marked for deprecation. However, if you must continue using a deprecated driver

for JDBC access to MS SQL Server, you can configure it through the WebSphere Application Server

administrative console. Be sure to select User-defined for the database type. This selection triggers

the console to display default class files, data source interfaces, and so on for your user-defined JDBC

provider type. Replace those defaults with the following settings that are specific to the Microsoft JDBC

driver for MS SQL Server 2000. Follow the steps listed in Configuring a JDBC provider using the

administrative console section of the Administering applications and their environment PDF book..

Microsoft JDBC driver for MS SQL Server 2000 supports the following data source:

com.microsoft.jdbcx.sqlserver.SQLServerDataSource

Requires JDBC driver files:

mssqlserver.jar,

msbase.jar and msutil.jar

(The spy.jar file is optional. You need it to enable spy logging. However, Microsoft does not ship the

spy.jar file. Contact Microsoft about this issue.)

Requires DataStoreHelper class:

com.ibm.websphere.rsadapter.ConnectJDBCDataStoreHelper

Requires a valid authentication alias.

Requires properties:

v serverName The name of the server in which MS SQL Server resides. Example:

myserver.mydomain.com

v portNumber The TCP/IP port that MS SQL Server uses for communication. Port 1433 is the default.

v databaseName The name of the database from which the data source obtains connections.

Example: Sample.

v enable2phase This property is necessary only if your application must participate in two-phase

transactions. By default, Application Server sets a user-defined implementation type to a connection

pool data source. The connection pool data source supports only one-phase transactions. Configure

two-phase transaction support by setting the enable2Phase custom property on each data source

that you create with your user-defined JDBC provider. Follow these steps:

a. Go to the Custom properties administrative console page by clicking Resources > JDBC

Providers > your_JDBC_provider > Data sources > your_data_source > Custom properties.

b. Click New.

c. Input enable2Phase as the property name and assign it the value of true. For Version 4 data

sources, use a property that works in the opposite manner: Input disable2Phase and assign it

the value of false.

Chapter 19. Data access resources 371

ftp://ftp.software.ibm.com/software/websphere/info/tools/DataDirect/datadirect.htm
http://www.datadirect-technologies.com/

For more information on the Microsoft JDBC driver for MS SQL Server 2000, visit the Microsoft Web

site at:

http://www.microsoft.com/sql

Example: Using the Java Management Extensions API to create a

JDBC driver and data source for container-managed persistence

//

// "This program may be used, executed, copied, modified and distributed

// without royalty for the purpose of developing, using, marketing, or

// distributing."

//

// Product 5630-A36, (C) COPYRIGHT International Business Machines Corp., 2001, 2002

// All Rights Reserved * Licensed Materials - Property of IBM

//

import java.util.*;

import javax.sql.*;

import javax.transaction.*;

import javax.management.*;

import java.io.*;

import com.ibm.websphere.management.*;

import com.ibm.websphere.management.configservice.*;

import com.ibm.ws.management.*;

import com.ibm.ws.exception.*;

/**

 * Creates a node-scoped resource.xml entry for a

 * DB2 for zOS Local JDBC Provider (RRS) DataSource

 * when WebSphere security is not enabled

 *

 * The datasource created is for CMP use.

 *

 * To run this example, the following must be done:

 *

 * 1) Set the WAS_HOME environment variable to the location of

 * your WebSphere Application Server for z/OS Configuration

 * directory

 *

 * Example: export WAS_HOME=/WebSphereV5R1M0/AppServer

 *

 * 2) Set the following environment variables:

 *

 * export WAS_LIB=$WAS_HOME/lib

 * export WAS_CLASSPATH=[DIRECTORY_CONTAINING_THIS_FILE]

 * export WAS_CLASSPATH=$WAS_CLASSPATH:$WAS_LIB/jmxc.jar

 * export WAS_CLASSPATH=$WAS_CLASSPATH:$WAS_LIB/wsexception.jar

 * export WAS_CLASSPATH=$WAS_CLASSPATH:$WAS_LIB/admin.jar

 * export WAS_CLASSPATH=$WAS_CLASSPATH:$WAS_LIB/wasjmx.jar

 * export WAS_CLASSPATH=$WAS_CLASSPATH:$WAS_HOME/java/jre/lib/ext/mail.jar

 * export WAS_CLASSPATH=$WAS_CLASSPATH:$WAS_LIB/ibmjlog.jar

 *

 * 3) Execute the following commands:

 *

 * javac -classpath $WAS_CLASSPATH CreateDataSourceCMP.java

 * java -classpath $WAS_CLASSPATH CreateDataSourceCMP

 */

public class CreateDataSourceCMP {

 String dsName = "MyDataSourceCMP"; // ds display name , also

 jndi name and CF name

 String dbName = "LOC1"; // database name

 String authDataAlias = "IBMUSER"; // an authentication data alias

 String uid = "IBMUSER"; // userid

372 Troubleshooting and support

http://www.microsoft.com/sql

String pw = "IBMUSER"; // password

 String dbclasspath = "/db2beta/db2710/classes/db2j2classes.zip";

 // path to the db driver

 String dblibpath = "/db2beta/db2710/lib";

 // path to the db lib directory

 /**

 * Main method.

 */

 public static void main(String[] args) {

 CreateDataSourceCMP cds = new CreateDataSourceCMP();

 try {

 cds.run(args);

 } catch (com.ibm.ws.exception.WsException ex) {

 System.out.println("Caught this " + ex);

 ex.printStackTrace();

 ex.getCause().printStackTrace();

 } catch (Exception ex) {

 System.out.println("Caught this " + ex);

 ex.printStackTrace();

 }

 }

 /**

 * This method creates the datasource using JMX.

 * The datasource created here is only written into resources.xml.

 * It is not bound into namespace until the server is restarted,

 or an application started

 */

 public void run(String[] args) throws Exception {

 try {

 // Initialize the AdminClient.

 Properties adminProps = new Properties();

 adminProps.setProperty(AdminClient.CONNECTOR_TYPE,

 AdminClient.CONNECTOR_TYPE_SOAP);

 adminProps.setProperty(AdminClient.CONNECTOR_HOST, "localhost");

 adminProps.setProperty(AdminClient.CONNECTOR_PORT, "8880");

 AdminClient adminClient =

 AdminClientFactory.createAdminClient(adminProps);

 // Get the ConfigService implementation.

 com.ibm.websphere.management.configservice.ConfigServiceProxy

 configService =

 new com.ibm.websphere.management.configservice.

 ConfigServiceProxy(adminClient);

 Session session = new Session();

 // Use this group to add to the node scoped resource.xml.

 ObjectName node1 = ConfigServiceHelper.createObjectName(null,

 "Node", null);

 ObjectName[] matches = configService.queryConfigObjects(session,

 null, node1, null);

 node1 = matches[0]; // use the first node found

 // Use this group to add to the server1 scoped resource.xml.

 ObjectName server1 = ConfigServiceHelper.createObjectName(null,

 "Server", "server1");

 matches = configService.queryConfigObjects(session, null,

 server1, null);

 server1 = matches[0]; // use the first server found

 // Create the JDBCProvider

 String providerName = "My DB2 for zOS Local JDBC Provider (RRS)

 for CMP";

 System.out.println("Creating JDBCProvider " + providerName);

Chapter 19. Data access resources 373

// Prepare the attribute list

 AttributeList provAttrs = new AttributeList();

 provAttrs.add(new Attribute("name", providerName));

 provAttrs.add(new Attribute("implementationClassName",

 "com.ibm.db2.jcc.DB2ConnectionPoolDataSource"));

 provAttrs.add(new Attribute("description","Legacy DB2 for z/OS

 driver using RRS"));

 //create it

 ObjectName jdbcProv = configService.createConfigData(session,node1,

 "JDBCProvider", "resources.jdbc:JDBCProvider", provAttrs);

 // now plug in the classpath

 configService.addElement(session,jdbcProv,"classpath",dbclasspath,

 -1);

 configService.addElement(session,jdbcProv,"nativepath",dblibpath,

 -1);

 // Search for RRA so we can link it to the datasource

 ObjectName rra = ConfigServiceHelper.createObjectName(null,

 "J2CResourceAdapter", null);

 matches = configService.queryConfigObjects(session, node1, rra,

 null);

 rra = matches[0]; // use the first J2CResourceAdapter segment for

 builtin_rra

 // Prepare the attribute list

 AttributeList dsAttrs = new AttributeList();

 dsAttrs.add(new Attribute("name", dsName));

 dsAttrs.add(new Attribute("jndiName", "jdbc/" + dsName));

 dsAttrs.add(new Attribute("datasourceHelperClassname",

 "com.ibm.websphere.rsadapter.DB2DataStoreHelper"));

 dsAttrs.add(new Attribute("statementCacheSize", new Integer(10)));

 dsAttrs.add(new Attribute("relationalResourceAdapter", rra));

 // this is where we make the link to "builtin_rra"

 dsAttrs.add(new Attribute("description", "JDBC Datasource for

 CMP usage"));

 dsAttrs.add(new Attribute("authDataAlias", authDataAlias));

 // Create the datasource

 System.out.println(" ** Creating datasource");

 ObjectName dataSource = configService.createConfigData(session,

 jdbcProv,"DataSource", "resources.jdbc:DataSource",dsAttrs);

 // Add a propertySet.

 AttributeList propSetAttrs = new AttributeList();

 ObjectName resourcePropertySet = configService.createConfigData

 (session,dataSource,"propertySet","",propSetAttrs);

 // Add resourceProperty databaseName

 AttributeList propAttrs1 = new AttributeList();

 propAttrs1.add(new Attribute("name", "databaseName"));

 propAttrs1.add(new Attribute("type", "java.lang.String"));

 propAttrs1.add(new Attribute("value", dbName));

 configService.addElement(session,resourcePropertySet,

 "resourceProperties",propAttrs1,-1);

 // Now Create the corresponding J2CResourceAdapter Connection

 Factory object.

 ObjectName jra = ConfigServiceHelper.createObjectName(null,

 "J2CResourceAdapter",null);

 // Get all the J2CResourceAdapter, and I want to add my datasource

 System.out.println(" ** Get all J2CResourceAdapter’s");

 ObjectName[] jras = configService.queryConfigObjects(session,

 node1, jra, null);

374 Troubleshooting and support

int i=0;

 for (;i< jras.length;i++) {

 System.out.println(ConfigServiceHelper.getConfigDataType

 (jras[i])+ " " + i + " = "

 + jras[i].getKeyProperty(SystemAttributes.

 _WEBSPHERE_CONFIG_DATA_DISPLAY_NAME)

 + "\nFrom scope ="

 + jras[i].getKeyProperty(SystemAttributes.

 _WEBSPHERE_CONFIG_DATA_ID));

 // quit on the first builtin_rra

 if (jras[i].getKeyProperty(SystemAttributes._WEBSPHERE_CONFIG_

 DATA_DISPLAY_NAME).equals("WebSphere Relational

 Resource Adapter")) {

 break;

 }

 }

 if (i >= jras.length) {

 System.out.println("Did not find builtin_rra

 J2CResourceAdapter object creating CF anyways");

 } else {

 System.out.println("Found builtin_rra J2CResourceAdapter

 object at index " + i + " creating CF");

 }

 // Prepare the attribute list

 AttributeList cfAttrs = new AttributeList();

 cfAttrs.add(new Attribute("name", dsName + "_CF"));

 cfAttrs.add(new Attribute("authMechanismPreference",

 "BASIC_PASSWORD"));

 cfAttrs.add(new Attribute("authDataAlias",authDataAlias));

 cfAttrs.add(new Attribute("cmpDatasource", dataSource));

 // this is where we make the link to DataSource’s xmi:id

 ObjectName cf = configService.createConfigData(session,jras[i],

 "CMPConnectorFactory", "resources.jdbc:CMPConnectorFactory",

 cfAttrs);

 // ===== start Security section

 System.out.println("Creating an authorization data alias " +

 authDataAlias);

 // Find the parent security object

 ObjectName security = ConfigServiceHelper.createObjectName(null,

 "Security", null);

 ObjectName[] securityName = configService.queryConfigObjects

 (session, null, security, null);

 security=securityName[0];

 // Prepare the attribute list

 AttributeList authDataAttrs = new AttributeList();

 authDataAttrs.add(new Attribute("alias", authDataAlias));

 authDataAttrs.add(new Attribute("userId", uid));

 authDataAttrs.add(new Attribute("password", pw));

 authDataAttrs.add(new Attribute("description","Auto created alias

 for datasource"));

 //create it

 ObjectName authDataEntry = configService.createConfigData(session,

 security,"authDataEntries", "JAASAuthData",authDataAttrs);

 // ===== end Security section

 // Save the session

 System.out.println("Saving session");

 configService.save(session, false);

Chapter 19. Data access resources 375

// reload resources.xml to bind the new datasource into the name

 space

 reload(adminClient,true);

 } catch (Exception ex) {

 ex.printStackTrace(System.out);

 throw ex;

 }

 }

 /**

 * Get the DataSourceConfigHelperMbean and call reload() on it

 *

 * @param adminClient

 * @param verbose true - print messages to stdout

 */

 public void reload(AdminClient adminClient,boolean verbose) {

 if (verbose) {

 System.out.println("Finding the Mbean to call reload()");

 }

 // First get the Mbean

 ObjectName handle = null;

 try {

 ObjectName queryName = new ObjectName("WebSphere:type=

 DataSourceCfgHelper,*");

 Set s = adminClient.queryNames(queryName, null);

 Iterator iter = s.iterator();

 if (iter.hasNext()) handle = (ObjectName)iter.next();

 } catch (MalformedObjectNameException mone) {

 System.out.println("Check the program variable queryName" + mone);

 } catch (com.ibm.websphere.management.exception.ConnectorException ce) {

 System.out.println("Cannot connect to the application server" + ce);

 }

 if (verbose) {

 System.out.println("Calling reload()");

 }

 Object result = null;

 try {

 result = adminClient.invoke(handle, "reload", new Object[] {},

 new String[] {});

 } catch (MBeanException mbe) {

 if (verbose) {

 System.out.println("\tMbean Exception calling reload" + mbe);

 }

 } catch (InstanceNotFoundException infe) {

 System.out.println("Cannot find reload ");

 } catch (Exception ex) {

 System.out.println("Exception occurred calling reload()" + ex);

 }

 if (result==null && verbose) {

 System.out.println("OK reload()");

 }

 }

}

Example: Using the Java Management Extensions API to create a

JDBC driver and data source for bean-managed persistence, session

beans, or servlets

// "This program may be used, executed, copied, modified and distributed without royalty for the

// purpose of developing, using, marketing, or distributing."

//

// Product 5630-A36, (C) COPYRIGHT International Business Machines Corp., 2001, 2002

376 Troubleshooting and support

// All Rights Reserved * Licensed Materials - Property of IBM

//

import java.util.*;

import javax.sql.*;

import javax.transaction.*;

import javax.management.*;

import com.ibm.websphere.management.*;

import com.ibm.websphere.management.configservice.*;

import com.ibm.ws.exception.WsException;

/**

 * Creates a node-scoped resource.xml entry for a

 * DB2 for zOS Local JDBC Provider (RRS) DataSource

 * when WebSphere security is not enabled

 *

 * To run this example, the following must be done:

 *

 * 1) Set the WAS_HOME environment variable to the location of

 * your WebSphere Application Server for z/OS Configuration

 * directory

 *

 * Example: export WAS_HOME=/WebSphereV5R1M0/AppServer

 *

 * 2) Set the following environment variables:

 *

 * export WAS_LIB=$WAS_HOME/lib

 * export WAS_CLASSPATH=[DIRECTORY_CONTAINING_THIS_FILE]

 * export WAS_CLASSPATH=$WAS_CLASSPATH:$WAS_LIB/jmxc.jar

 * export WAS_CLASSPATH=$WAS_CLASSPATH:$WAS_LIB/wsexception.jar

 * export WAS_CLASSPATH=$WAS_CLASSPATH:$WAS_LIB/admin.jar

 * export WAS_CLASSPATH=$WAS_CLASSPATH:$WAS_LIB/wasjmx.jar

 * export WAS_CLASSPATH=$WAS_CLASSPATH:$WAS_HOME/java/jre/lib/ext/mail.jar

 * export WAS_CLASSPATH=$WAS_CLASSPATH:$WAS_LIB/ibmjlog.jar

 *

 * 3) Execute the following commands:

 *

 * javac -classpath $WAS_CLASSPATH CreateDataSourceBMP.java

 * java -classpath $WAS_CLASSPATH CreateDataSourceBMP

 */

 public class CreateDataSourceBMP {

 String dsName = "MyDataSourceBMP"; // ds display name , also jndi name and CF name

 String dbName = "LOC1"; // database name

 String authDataAlias = "IBMUSER"; // an authentication data alias

 String uid = "IBMUSER"; // userid

 String pw = "IBMUSER"; // password

 String dbclasspath = "/db2beta/db2710/classes/db2j2classes.zip"; // path to the db driver

 String dblibpath = "/db2beta/db2710/lib"; // path to the db native library directory

 /**

 * Main method.

 */

 public static void main(String[] args) {

 CreateDataSourceBMP cds = new CreateDataSourceBMP();

 try {

 cds.run(args);

 } catch (com.ibm.ws.exception.WsException ex) {

 System.out.println("Caught this " + ex);

 ex.printStackTrace();

 } catch (Exception ex) {

 System.out.println("Caught this " + ex);

 ex.printStackTrace();

 }

 }

 /**

Chapter 19. Data access resources 377

* This method creates the datasource using JMX.

 *

 * The datasource created here is only written into resources.xml.

 * It is not bound into namespace until the server is restarted, or an application started

 */

 public void run(String[] args) throws Exception {

 try {

 // Initialize the AdminClient.

 Properties adminProps = new Properties();

 adminProps.setProperty(AdminClient.CONNECTOR_TYPE, AdminClient.CONNECTOR_TYPE_SOAP);

 adminProps.setProperty(AdminClient.CONNECTOR_HOST, "localhost");

 adminProps.setProperty(AdminClient.CONNECTOR_PORT, "8880");

 AdminClient adminClient = AdminClientFactory.createAdminClient(adminProps);

 // Get the ConfigService implementation.

 com.ibm.websphere.management.configservice.ConfigServiceProxy configService =

 new com.ibm.websphere.management.configservice.ConfigServiceProxy(adminClient);

 Session session = new Session();

 // Use this group to add to the node scoped resource.xml.

 ObjectName node1 = ConfigServiceHelper.createObjectName(null, "Node", null);

 ObjectName[] matches = configService.queryConfigObjects(session, null, node1, null);

 node1 = matches[0]; // use the first node found

 // Use this group to add to the server1 scoped resource.xml.

 ObjectName server1 = ConfigServiceHelper.createObjectName(null, "Server", "server1");

 matches = configService.queryConfigObjects(session, null, server1, null);

 server1 = matches[0]; // use the first server found

 // Create the JDBCProvider

 String providerName = "My DB2 for zOS Local JDBC Provider (RRS) for BMP";

 System.out.println("Creating JDBCProvider " + providerName);

 // Prepare the attribute list

 AttributeList provAttrs = new AttributeList();

 provAttrs.add(new Attribute("name", providerName));

 provAttrs.add(new Attribute("implementationClassName", "com.ibm.db2.jcc.DB2ConnectionPoolDataSource"));

 provAttrs.add(new Attribute("description","Legacy DB2 for z/OS driver using RRS"));

 //create it

 ObjectName jdbcProv = configService.createConfigData(session,node1,"JDBCProvider", "resources.jdbc:JDBCProvider
 // now plug in the classpath

 configService.addElement(session,jdbcProv,"classpath",dbclasspath,-1);

 configService.addElement(session,jdbcProv,"nativepath",dblibpath,-1);

 // Search for RRA so we can link it to the datasource

 ObjectName rra = ConfigServiceHelper.createObjectName(null, "J2CResourceAdapter", null);

 matches = configService.queryConfigObjects(session, node1, rra, null);

 rra = matches[0]; // use the first J2CResourceAdapter segment for builtin_rra

 // Prepare the attribute list

 AttributeList dsAttrs = new AttributeList();

 dsAttrs.add(new Attribute("name", dsName));

 dsAttrs.add(new Attribute("jndiName", "jdbc/" + dsName));

 dsAttrs.add(new Attribute("datasourceHelperClassname","com.ibm.websphere.rsadapter.DB2DataStoreHelper"));

 dsAttrs.add(new Attribute("statementCacheSize", new Integer(10)));

 dsAttrs.add(new Attribute("relationalResourceAdapter", rra)); // this is where we make the link to "builtin_rra
 dsAttrs.add(new Attribute("description", "JDBC Datasource for BMP usage"));

 dsAttrs.add(new Attribute("authDataAlias",authDataAlias));

 // Create the datasource

 System.out.println(" ** Creating datasource");

 ObjectName dataSource = configService.createConfigData(session,jdbcProv,"DataSource", "resources.jdbc:DataSourc

 // Add a propertySet.

378 Troubleshooting and support

AttributeList propSetAttrs = new AttributeList();

 ObjectName resourcePropertySet =configService.createConfigData(session,dataSource,"propertySet","",propSetAtt

 // Add resourceProperty databaseName

 AttributeList propAttrs1 = new AttributeList();

 propAttrs1.add(new Attribute("name", "databaseName"));

 propAttrs1.add(new Attribute("type", "java.lang.String"));

 propAttrs1.add(new Attribute("value", dbName));

 configService.addElement(session,resourcePropertySet,"resourceProperties",propAttrs1,-1);

 // ===== start Security section

 System.out.println("Creating an authorization data alias " + authDataAlias);

 // Find the parent security object

 ObjectName security = ConfigServiceHelper.createObjectName(null, "Security", null);

 ObjectName[] securityName = configService.queryConfigObjects(session, null, security, null);

 security=securityName[0];

 // Prepare the attribute list

 AttributeList authDataAttrs = new AttributeList();

 authDataAttrs.add(new Attribute("alias", authDataAlias));

 authDataAttrs.add(new Attribute("userId", uid));

 authDataAttrs.add(new Attribute("password", pw));

 authDataAttrs.add(new Attribute("description","Auto created alias for datasource"));

 //create it

 ObjectName authDataEntry = configService.createConfigData(session,security,"authDataEntries", "JAASAuthData"
 // ===== end Security section

 // Save the session

 System.out.println("Saving session");

 configService.save(session, false);

 // reload resources.xml

 reload(adminClient,true);

 } catch (Exception ex) {

 ex.printStackTrace(System.out);

 throw ex;

 }

 }

 /**

 * Get the DataSourceConfigHelperMbean and call reload() on it

 *

 * @param adminClient

 * @param verbose true - print messages to stdout

 */

 public void reload(AdminClient adminClient,boolean verbose) {

 if (verbose) {

 System.out.println("Finding the Mbean to call reload()");

 }

 // First get the Mbean

 ObjectName handle = null;

 try {

 ObjectName queryName = new ObjectName("WebSphere:type=DataSourceCfgHelper,*");

 Set s = adminClient.queryNames(queryName, null);

 Iterator iter = s.iterator();

 if (iter.hasNext()) handle = (ObjectName)iter.next();

 } catch (MalformedObjectNameException mone) {

 System.out.println("Check the program variable queryName" + mone);

 } catch (com.ibm.websphere.management.exception.ConnectorException ce) {

 System.out.println("Cannot connect to the application server" + ce);

 }

Chapter 19. Data access resources 379

if (verbose) {

 System.out.println("Calling reload()");

 }

 Object result = null;

 try {

 result = adminClient.invoke(handle, "reload", new Object[] {}, new String[] {});

 } catch (MBeanException mbe) {

 if (verbose) {

 System.out.println("\tMbean Exception calling reload" + mbe);

 }

 } catch (InstanceNotFoundException infe) {

 System.out.println("Cannot find reload ");

 } catch (Exception ex) {

 System.out.println("Exception occurred calling reload()" + ex);

 }

 if (result==null && verbose) {

 System.out.println("OK reload()");

 }

 }

}

380 Troubleshooting and support

Chapter 20. Messaging resources

Java Message Service (JMS) support problems

You might encounter JMS-related errors in the WebSphere Application Server for z/OS environment. To

debug these errors, use any of the various WebSphere console settings that controls the type of trace

data collected.

If you encounter a JMS-related error you can use these settings to manage trace data to debug the

problem:

com.ibm.ejs.*=all=enabled

Turns on all container tracing

com.ibm.ejs.j2c.*=all=enabled

Turns on all tracing for connector support in WebSphere Application Server for z/OS

Messaging=all=enabled

Collects trace data for the JMS and Message-driven bean (MDB) components of WebSphere

Application Server for z/OS

If your installation configures WebSphere MQ to provide Java Message Service (JMS) support, you might

need to use specific MQ tools for diagnosis:

v WebSphere variable JMSApi=all=enabled, which turns on all tracing for applications that use the JMS

application programming interface (API).

v MQSC commands, which allow you to display information and perform other operations.

v The CSQUTIL utility program, which helps you to perform backup, restoration, and reorganization tasks,

and to issue WebSphere MQ commands.

For more information about these diagnostic tools, refer to WebSphere MQ books, which are available

through the Web site:

http://www.ibm.com/software/ts/mqseries/library/

The most useful for diagnostic information are:

v WebSphere MQ for z/OS Problem Determination, GC34-6054

v WebSphere MQ for z/OS Messages and Codes, SC34-6056

v WebSphere MQ Script (MQSC) Command Reference, SC34-6055

v WebSphere MQ for z/OS System Administration Guide, SC34-6053

All of these publications can be accessed from the IBM Publications Center.

Important file for message-driven beans

The server_name-durableSubscriptions.ser file in the WAS_HOME/temp directory is important for the

operation of the WebSphere Application Server messaging service, so should not be deleted.

If you do need to delete the WAS_HOME/temp directory or other files in it, ensure that you preserve the

following file:

server_name-durableSubscriptions.ser

You should not delete this file, because the messaging service uses it to keep track of durable

subscriptions for message-driven beans. If you uninstall an application that contains a

message-driven bean, this file is used to unsubscribe the durable subscription.

Troubleshooting WebSphere messaging

Use this overview task to help resolve a problem that you think is related to the WebSphere Messaging.

© Copyright IBM Corp. 2006 381

http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi

To identify and resolve problems that you think are related to WebSphere Messaging, you can use the

standard WebSphere Application Server troubleshooting facilities. If you encounter a problem that you

think might be related to WebSphere Messaging, complete the following stages. Some problems and their

troubleshooting are specific to whether you are using the embedded WebSphere Messaging or

WebSphere MQ as the JMS provider.

1. Check for error messages about messaging. For example, check for error messages that indicate a

problem with JMS resources.

Check in the SYSPRINT or SYSOUT log.

The associated message reference information provides an explanation and any user actions to

resolve the problem. For details, see Troubleshooter reference: Messages in the information center.

2. Check for more informational and error messages that might provide a clue to a related problem. For

example, if you have problems accessing JMS resources, check for more error messages and extra

details about any problem associated with the JMS provider or with the service integration technologies

that the default messaging provider uses.

For messages related to the resource adapter (JMS) of the default messaging provider, look for the

prefix: CWSJR. For messages related to service integration technologies, see the related reference

topics.

If your message-driven bean uses WebSphere Application Server version 5 JMS resources, look for

the prefixes: MSGS and WMSG.

3. If you suspect that problems might be related to application use of message-driven beans, see

“Troubleshooting message-driven beans” on page 388.

4. Check the Release Notes for specific problems and workarounds The section Possible Problems and

Suggested Fixes of the Release Notes, available from the WebSphere Application Server library web

site, is updated regularly to contain information about known defects and their workarounds. Check the

latest version of the Release Notes for any information about your problem. If the Release Notes do

not contain any information about your problem, you can also search the Technotes database on the

WebSphere Application Server web site.

5. Check your JMS resource configurations If the messaging services seem to be running properly, check

that the JMS resources have been configured correctly. For example, check that the JMS activation

specification against which a message-driven bean is deployed has been configured correctly. For

more information about configuring JMS resources, refer to the Using asynchronous messaging topic.

6. Get a detailed exception dump for messaging. If the information obtained in the preceding steps is still

inconclusive, you can enable the application server debug trace for the ″Messaging″ group to provide a

detailed exception dump.

Troubleshooting WebSphere MQ messaging

These hints include a description of the scenario where a problem occurred, the probably reason for the

problem and the recommended solution.

What kind of problem are you seeing?

v javax.jms.JMSException: MQJMS2008: failed to open MQ queue in JVM log.

If you see WebSphere MQ error messages or reason codes in WebSphere Application Server messages

and logs, refer to the WebSphere MQ Messages document at http://publibfi.boulder.ibm.com/epubs/pdf/
amqzao05.pdf.

If you are still unable to resolve the problem, see “Troubleshooting help from IBM” on page 188.

v “An MDB listener fails to start” on page 383

v “Problems running JMS applications with security enabled” on page 383

v “Queue manager fails to stop on Redhat Linux” on page 383

v “Application server fails to start in zh_TW.EUC locale on Solaris” on page 384

v “Server memory consumption and java.lang.OutOfMemoryError exception when processing JMS

messages” on page 384

382 Troubleshooting and support

http://www-3.ibm.com/software/webservers/appserv/infocenter.html
http://www-3.ibm.com/software/webservers/appserv/infocenter.html
http://publibfi.boulder.ibm.com/epubs/pdf/amqzao05.pdf
http://publibfi.boulder.ibm.com/epubs/pdf/amqzao05.pdf

v “TopicConnectionFactory attributes clash error when using ″Basic″ WebSphere MQ broker (MA0C

SupportPac broker)” on page 384

v “Message WSEC5061E: The SOAP Body is not signed is issued when running a secured Web services

application using JMS transport and WebSphere MQ” on page 385

v “Message MQJMS1006: invalid value for tempQPrefix is issued when trying to use a V5.1 client with a

V5 Default Messaging queue connection factory on a V6 application server” on page 385

v “When you use WebSphere MQ as an external JMS provider, messages sent within a user-managed

transaction arrive before the transaction commits” on page 386

For information about messaging problems that are specific to WebSphere Application Server nodes, see

the following links:

 Application Servers support Web site

 Tips for troubleshooting WebSphere messaging [Version 5]

An MDB listener fails to start

If an MDB listener deployed against a listener port fails to start, you should see the following message:

WMSG0019E: Unable to start MDB Listener {0}, JMSDestination {1} : {2}

To troubleshoot the cause of an MDB listener not starting, check the following factors:

v Check that the administrative resources have been configured correctly; for example, use the

administrative console to check the listener port properties: Destination JNDI name and Connection

factory JNDI name. Check that other properties of the listener port, destination, and connection factory

are correct.

v Check that the queue exists and has been added to the JMS server.

v Check that the queue manager and JMS server have started.

v Check that the Remote Queue Manager Listener has started.

v If security is enabled, check that a component-managed authentication alias has been specified on the

queue connection factory or topic connection factory used by the message-driven bean.

v Check that the user ID used to start the MDB listener is appropriately authorized.

Problems running JMS applications with security enabled

When trying to run a JMS application with security enabled, you can encounter authentication problems

indicated by error messages; for example: WMSG0019E: Unable to start MDB Listener PSSampleMDB,

JMSDestination Sample/JMS/listen : javax.jms.JMSSecurityException: (this example indicates that the

security credentials supplied are not valid).

The problem can be removed by doing one of the following:

v If the authentication mechanism is set to Application, the application must supply valid credentials.

v If the authentication mechanism is set to Container, configure the JMS ConnectionFactory with a

container-managed Authentication Alias, and ensure that the associated username and password are

valid. Alternatively when running in bindings transport mode you can exploit the connector thread

identity support.

For more information about messaging security, see the Asynchronous messaging - security

considerations section of the Developing and deploying applications PDF book.

Queue manager fails to stop on Redhat Linux

When trying to stop an application server on Redhat Linux, the queue manager can hang with a Java core

dump, and the last message in the SystemOut.log file is Stopping Queue manager....

This is caused by a known RedHat problem (https://bugzilla.linux.ibm.com/show_bug.cgi?id=2336), that

was introduced in libstdc++-2.96-116.7.2 and beyond.

Chapter 20. Messaging resources 383

http://www.ibm.com/software/webservers/support.html
http://publib.boulder.ibm.com/infocenter/ws51help/topic/com.ibm.websphere.nd.doc/info/ae/ae/rmj_prob0.html

The workaround is to go back to the libstdc++-2.96-108.1 level.

Application server fails to start in zh_TW.EUC locale on Solaris

If you have set the locale to zh_TW.EUC on Solaris, and are using WebSphere MQ as a JMS provider,

you can encounter problems that stop application servers starting up.

If you intend using WebSphere MQ as a JMS provider on Solaris, do not set the LANG and LC_ALL

variables to zh_TW.EUC (Traditional Chinese locale) to avoid problems when starting application servers.

Set the LANG and LC_ALL variables to zh_TW instead of zh_TW.EUC.

Server memory consumption and java.lang.OutOfMemoryError exception when

processing JMS messages

Intensive processing of JMS messages using the default JMS provider (for example, significant concurrent

processing of large messages) can cause a java.lang.OutOfMemoryError exception and cause the

application server to terminate.

Processing of JMS messages by the default provider is performed by a messaging engine within the

application server process, and therefore consumes memory from the application server’s JVM heap. This

is in contrast with Version 5 where the support for the embedded JMS provider run in a separate process.

If the amount of memory available to the application server’s JVM heap has not been configured large

enough to handle the effect of the number of concurrent producers or consumers of messages and the

message size, then a java.lang.OutOfMemoryError exception is thrown and the application server

terminates.

Solution: When preparing to deploy applications that process JMS messages using the default messaging

provider, you should plan for the potential consumption of the application server’s memory for message

processing. You should take into account the potential number of concurrent processors or consumers of

messages and the message size, then set the size of the application server’s JVM heap to handle the

effect.

For example, when preparing to deploy a message-driven bean that is to be used to process messages

concurrently, you should plan for the potential consumption of the application server’s memory by

concurrent endpoints. Each endpoint that is concurrently processing a message request adds at least two

times the message size to the server’s JVM heap and can add more, especially if a two-phase transaction

is in place.

You can configure the amount of memory available to the application server’s JVM heap by setting the

Initial Heap Size and Maximum Heap Size properties of the application server. For example, on the

WebSphere administrative console panel: Servers → Application servers → server_name → Java and

Process Management → Process Definition → Java Virtual Machine.

You can configure the number of concurrent MDB endpoints that can process messages by setting the

Maximum concurrent endpoints property of the activation specification used to deploy the message-driven

bean. For example, on the WebSphere administrative console panel: Resources → JMS Providers →

Default messaging → JMS activation specification → activationspec_name.

TopicConnectionFactory attributes clash error when using ″Basic″ WebSphere MQ

broker (MA0C SupportPac broker)

When creating a JMS topic subscriber using the WebSphere MQ messaging provider, the following error

message occurs in the SystemOut.log file:

384 Troubleshooting and support

"WSVR0017E: Error encountered binding the J2EE resource, TopicConnectionFactory, as <JNDI_NAME>

 from file:<RESOURCES_FILE> com.ibm.ws.runtime.component.binder.ResourceBindingException: invalid

 configuration passed to resource binding logic. REASON: Failed to create connection factory:

 Error raised constructing AdminObject, error code: TopicConnectionFactory attributes clash :

 TopicConnectionFactory attributes clash"

This problem is causes by the configuration of the JMS topic connection factory used to create the

subscriber, which specifies a broker version of ″Basic″ and a message selection value of ″Broker″. The

″Basic″ WebSphere MQ broker (MA0C SupportPac broker) does not support ″Broker″ message selection.

Solution: Change the JMS topic connection factory to specify a message selection value of ″Client″,

which is the only supported value for the WebSphere MQ Basic broker (MA0C SupportPac broker).

Message “WSEC5061E: The SOAP Body is not signed” is issued when running a

secured Web services application using JMS transport and WebSphere MQ

When running a secured Web services application using JMS transport using the WebSphere MQ

messaging provider, the following error message occurs in the SystemOut.log file:

[9/7/04 12:10:02:895 GMT-06:00] 00000039 enterprise I TRAS0014I: The following exception was

 logged WebServicesFault

 faultCode: {http://schemas.xmlsoap.org/ws/2003/06/secext}FailedCheck

 faultString: WSEC5061E: The SOAP Body is not signed.; null

 faultActor: null

 faultDetail:

 stackTrace: com.ibm.wsspi.wssecurity.SoapSecurityException: WSEC5061E: The SOAP Body is not

 signed.; null

...

The problem scenario has WebSphere Application Server security enabled, and one Web services

application configured with Web services security has attempted and failed to use the JMS transport to

send SOAP requests to the target Web service. The JMS resource is configured with WebSphere MQ

using a remote WebSphere MQ server. The queue manager exists on this WebSphere MQ server.

The cause of this problem is another identical application is also running from a different application server

but using the same queue manager and same queue name in the same WebSphere MQ server. The

request sent from the original application has been processed through the same queue, but to the different

application server where security might not have been enabled.

Solution: To avoid this problem, complete the following steps:

1. Create a unique queue manager with a unique port in the WebSphere MQ server.

2. Reconfigure the JMS resources to use the new queue manager and port; for example, by using the

WebSphere administrative console to change the properties of the WebSphere MQ queue connection

factory. For information about how to perform this task, read the section, Configuring a JMS queue

connection factory for WebSphere MQ in the Administering applications and their environment PDF

book.

3. Rerun the application.

Message “MQJMS1006: invalid value for tempQPrefix” is issued when trying to

use a V5.1 client with a V5 Default Messaging queue connection factory on a V6

application server

When trying to use a V5.1 application client to connect to a queue connection factory defined as a ″V5

Default Messaging″ resource on a V6 application server. the following message appears:

Chapter 20. Messaging resources 385

com.ibm.websphere.naming.CannotInstantiateObjectException: Exception occurred while the JNDI

 NamingManager was processing a javax.naming.Reference object.

Root exception is com.ibm.websphere.naming.CannotInstantiateObjectException: Exception occurred

 while the JNDI NamingManager was processing a javax.naming.Reference object.

Root exception is javax.jms.JMSException: MQJMS1006: invalid value for tempQPrefix:

Cause: The application client is using WebSphere MQ JMS client CSD 04 JAR files. WebSphere

Application Server Version 6 sets tempQprefix to blank, which cannot be handled by the CSD 04 release

of the method setTempqPrefix.

Solution If the application client uses WebSphere embedded messaging JAR files, then apply the

WebSphere Embedded Messaging interim fixes for WebSphere Application Server V5.1. If the client uses

external WebSphere MQ JMS client JAR files, than apply CSD05.

When you use WebSphere MQ as an external JMS provider, messages sent within

a user-managed transaction arrive before the transaction commits

When you use WebSphere MQ as an external JMS provider, messages sent within a user-managed

transaction can arrive before the transaction commits. This occurs only when you use WebSphere MQ as

an external JMS provider, and you send messages to a WebSphere MQ queue within a user-managed

transaction. The message arrives on the destination queue before the transaction commits.

The cause of this problem is that the WebSphere MQ resource manager has not been enlisted in the

user-managed transaction.

The solution is to use a container-managed transaction.

Messaging engine start error, ″CWSIS1501E: The data source has produced an

unexpected exception

When a messaging engine attempts to start, the following error appears in the log:

CWSIS0002E: The messaging engine encountered an exception while starting. Exception:

 com.ibm.ws.sib.msgstore.PersistenceException: CWSIS1501E: The data source has produced an

 unexpected exception: java.sql.SQLException: <dbname> DSRA0010E: SQL State = 2E000, Error

 Code = -1,001DSR A0010E: SQL State = 2E000, Error Code = -1,001

Cause: The database for the messaging engine could not be found.

Solution: Review the database name on the messaging engine for accuracy and check that the database

has been created.

javax.jms.JMSException: MQJMS2008: failed to open MQ queue in JVM log

This error can occur when the MQ queue name is not defined in the internal Java Message Service (JMS)

server queue names list. This problem can occur if a WebSphere Application Server queue destination is

created, without adding the queue name to the internal JMS server queue names list.

To resolve this problem:

1. Open the WebSphere Application Server administrative console.

2. Click Servers > Manage Application Servers > server_name> Server Components > JMS Servers.

3. Add the queue name to the list.

4. Save the changes and restart the server.

For current information available from IBM Support on known problems and their resolution, see the IBM

Support page.

386 Troubleshooting and support

http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCMPBU
http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCMPBU

IBM Support has documents that can save you time gathering information needed to resolve this problem.

Before opening a PMR, see the IBM Support page.

Errors in messaging

These hints include a description of the scenario where a problem occurred, the probably reason for the

problem and the recommended solution.

What kind of problem are you seeing?

v javax.jms.JMSException: MQJMS2008: failed to open MQ queue in JVM log.

If you see WebSphere MQ error messages or reason codes in WebSphere Application Server messages

and logs, refer to the WebSphere MQ Messages document at http://publibfi.boulder.ibm.com/epubs/pdf/
amqzao05.pdf.

If you are still unable to resolve the problem, see “Troubleshooting help from IBM” on page 188.

javax.jms.JMSException: MQJMS2008: failed to open MQ queue in JVM log

This error can occur when the MQ queue name is not defined in the internal Java Message Service (JMS)

server queue names list. This problem can occur if a WebSphere Application Server queue destination is

created, without adding the queue name to the internal JMS server queue names list.

To resolve this problem:

1. Open the WebSphere Application Server administrative console.

2. Click Servers > Manage Application Servers > server_name> Server Components > JMS Servers.

3. Add the queue name to the list.

4. Save the changes and restart the server.

For current information available from IBM Support on known problems and their resolution, see the IBM

Support page.

IBM Support has documents that can save you time gathering information needed to resolve this problem.

Before opening a PMR, see the IBM Support page.

Errors connecting to WebSphere MQ and creating WebSphere MQ queue

connection factory

You can receive exception errors when trying to create a MDBListener instance, because the MQ manager

userid does not have write access to the /tmp directory.

The following exception may occur when trying to create the MDBListener instance:

6/23/03 22:45:58:232 CDT] 673106a8 MsgListenerPo W WMSG0049E:

Failed to start MDB PSSampleMDB against listener port SamplePubSubListenerPort

[6/23/03 22:47:58:289 CDT] 673106a8 FreePool E J2CA0046E:

Method createManagedConnctionWithMCWrapper caught an exception

during creation of the ManagedConnection for resource

JMS$SampleJMSQueueConnectionFactory, throwing ResourceAllocationException.

Original exception: javax.resource.spi.ResourceAdapterInternalException:

 createQueueConnection failed

com.ibm.mq.MQException: MQJE001: An MQException occurred:

Completion Code 2, Reason 2009

MQJE003: IO error transmitting message buffer at

com.ibm.mq.MQManagedConnectionJ11.(MQManagedConnectionJ11.java:239)

This problem occurs because the MQ manager userid does not have write access to the /tmp directory. To

correct this problem, before you use a Jacl procedure to configure WebSphere Application Server

resources and install an application:

1. Ensure that all applications have write access to /tmp directory. Use the chmod 1777 command on the

directory if necessary.

Chapter 20. Messaging resources 387

http://www-1.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCMPBU&q=mustgather
http://publibfi.boulder.ibm.com/epubs/pdf/amqzao05.pdf
http://publibfi.boulder.ibm.com/epubs/pdf/amqzao05.pdf
http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCMPBU
http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCMPBU
http://www-1.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCMPBU&q=mustgather

2. Create another subdirectory under /tmp (for example, /tmp/mydir). Use this directory as a ″working

directory″ for the Jacl.

3. Restart the server.

Applications that use messaging on startup should start successfully.

Messaging component troubleshooting tips

Use these tips to troubleshoot problems with messaging components.

Problems deploying or running applications which use the WebSphere Application Server

messaging capabilities

If you are having problems deploying or running applications which use the WebSphere Application Server

messaging capabilities, review these sections:

v “Troubleshooting WebSphere messaging” on page 381

v “Troubleshooting message-driven beans”

v Consult the Troubleshooting service integration technologies page in the information center

On a Linux platform, embedded messaging does not get removed after uninstalling the

product

On a Linux platform, you may find that embedded messaging is not removed when you uninstall the

product silently using the SetRetainMQToTrue.active=false option.

To prevent this problem, either issue the uninstall command from a local machine, or use ssh instead of

telnet to logon to the machine where you issue the uninstall command.

To correct this problem after logging in, issue the following command for a real root login: su -

If none of these steps solves the problem, check to see if the problem has been identified and

documented using the links in Diagnosing and fixing problems: Resources for learning.

IBM Support has documents and tools that can save you time gathering information needed to resolve

problems as described in “Troubleshooting help from IBM” on page 188. Before opening a problem report,

see the Support page:

v http://www.ibm.com/software/webservers/appserv/zos_os390/support/

Troubleshooting message-driven beans

Use this overview task to help resolve a problem that you think is related to message-driven beans.

Message-driven beans support uses the standard WebSphere Application Server troubleshooting facilities.

If you encounter a problem that you think might be related to the message-driven beans, complete the

following steps.

1. Check for error messages about message-driven beans. For example, check for error messages that

indicate a problem with JMS resources, such as activation specifications or listener ports, that are used

by message-driven beans.

Check in the SYSPRINT or SYSOUT log.

The associated message reference information provides an explanation and any user actions to

resolve the problem. For details, see Troubleshooter reference: Messages in the information center.

2. Check for more informational and error messages that might provide a clue to a related problem. For

example, if you have problems accessing JMS resources, check for more error messages and extra

details about any problem associated with the JMS provider or with the service integration technologies

that the default messaging provider uses.

388 Troubleshooting and support

http://www.ibm.com/software/webservers/appserv/zos_os390/support/

For messages related to the resource adapter (JMS) of the default messaging provider, look for the

prefix: CWSJR. For messages related to service integration technologies, see the related reference

topics.

If your message-driven bean uses WebSphere Application Server version 5 JMS resources, look for

the prefixes: MSGS and WMSG.

3. Check the Release Notes for specific problems and workarounds The section Possible Problems and

Suggested Fixes of the Release Notes, available from the WebSphere Application Server library Web

site, is updated regularly to contain information about known defects and their workarounds. Check the

latest version of the Release Notes for any information about your problem. If the Release Notes does

not contain any information about your problem, you can also search the Technotes database on the

WebSphere Application Server Web site.

4. If your message-driven bean is deployed against a lister port, check that message listener service has

started. The message listener service is an extension to the JMS functions of the JMS provider. It

provides a listener manager that controls and monitors one or more JMS listeners, which each monitor

a JMS destination on behalf of a deployed message-driven bean.

5. Check your JMS resource configurations If the messaging services seem to be running properly, check

that the JMS resources have been configured correctly. For example, check that the JMS activation

specification against which the message-driven bean is deployed has been configured correctly. For

more information about configuring JMS resources for message-driven beans, see Administering

support for message-driven beans in the Administering applications and their environment PDF book.

6. Get a detailed exception dump for messaging. If the information obtained in the preceding steps is still

inconclusive, you can enable the application server debug trace for the ″Messaging″ group to provide a

detailed exception dump.

Chapter 20. Messaging resources 389

http://www-3.ibm.com/software/webservers/appserv/infocenter.html
http://www-3.ibm.com/software/webservers/appserv/infocenter.html

390 Troubleshooting and support

Chapter 21. Mail, URLs, and other J2EE resources

Enabling debugger for a mail session

When you need to debug a JavaMail application, you can use the JavaMail debugging feature. Enabling

the debugger triggers the JavaMail component of WebSphere Application Server to print the following data

to the stdout output stream:

v interactions with the mail servers

v properties of the mail session

This output stream is redirected to the SystemOut.log file for the specific application server.

The mail debugger functions on a per session basis. To enable the JavaMail debugging feature:

1. Open the administrative console.

2. Click Resources>Mail Providers>mail_session>Mail Session>mail session.

3. Click Debug. Debug is enabled for just that session.

4. Click Apply or OK.

The following example shows sample JavaMail debugging output:

DEBUG: not loading system providers in <java.home>/lib

DEBUG not loading optional custom providers file: /META-INF/javamail.providers

DEBUG: successfully loaded default providers

DEBUG Tables of loaded providers

DEBUG: Providers listed by Class Name:

{com.sun.mail.smtp.SMTPTransport=javax.mail.Provider[TRANSPORT,smtp,com.sun.mail.smtp.SMTPTransport,Sun

Microsystems, Inc], com.sun.mail.imap.IMAPStore=javax.mail.Provider[STORE,imap,com.sun.mail.imap.IMAPStore,Sun

Microsystems, Inc], com.sun.mail.pop3.POP3Store=javax.mail.Provider[STORE,pop3,com.sun.mail.pop3.POP3Store,Sun

Microsystems, Inc]}

DEBUG: Providers Listed By Protocol:

{imap=javax.mail.Provider[STORE,imap,com.sun.mail.imap.IMAPStore,Sun Microsystems,

Inc], pop3=javax.mail.Provider[STORE,pop3,com.sun.mail.pop3.POP3Store,Sun

Microsystems, Inc], smtp=javax.mail.Provider[TRANSPORT,smtp,com.sun.mail.smtp.SMTPTransport,Sun

Microsystems, Inc]}

DEBUG: not loading optional address map file: /META-INF/javamail.address.map

*** In SessionFactory.getObjectInstance,

 The default SessionAuthenticator is based on:

 store_user = john_smith

 store_pw = abcdef

*** In SessionFactory.getObjectInstance, parameters in the new session:

 mail.store.protocol="imap"

 mail.transport.protocol="smtp"

 mail.imap.user="john_smith"

 mail.smtp.host="smtp.coldmail.com"

 mail.debug="true"

 ws.store.password="abcdef"

 mail.from="john_smith@coldmail.com"

 mail.smtp.class="com.sun.mail.smtp.SMTPTransport"

 mail.imap.class="com.sun.mail.imap.IMAPStore"

 mail.imap.host="coldmail.com"

DEBUG: mail.smtp.class property exists and points to com.sun.mail.smtp.SMTPTransport

DEBUG SMTP: useEhlo true, useAuth false

DEBUG: SMTPTransport trying to connect to host "smtp.coldmail.com", port 25

javax.mail.SendFailedException: Sending failed;

 nested exception is:

 javax.mail.MessagingException: Unknown SMTP host: smtp.coldmail.com;

 nested exception is

 java.net.UnknownHostException: smtp.coldmail.com

© Copyright IBM Corp. 2006 391

at javax.mail.Transport.send0(Transport.java:219)

 at javax.mail.Transport.send(Transport.java:81)

 at ws.mailfvt.SendSaveTestCore.runAll(SendSaveTestCore.java:48)

 at testers.AnyTester.main(AnyTester.java:130)

This output illustrates a connection failure to a Simple Mail Transfer Protocol (SMTP) server because a

fictitious name, smtp.coldmail.com, is specified as the server name.

The following list provides tips on reading the previous sample of debugger output:

v The lines headed by DEBUG are printed by the JavaMail run-time, while the two lines headed by *** are

printed by the WebSphere environment run-time.

v The first two lines say that some configuration files are skipped. At run-time the JavaMail component

attempts to load a number of configuration files from different locations. All those files are not required.

If a required file cannot be accessed, however, the JavaMail component creates an exception. In this

sample, there is no exception and the third line announces that default providers are loaded.

v The next few lines, headed by either Providers listed by Class Name or Providers Listed by Protocols,

show the protocol providers that are loaded. The three providers that are listed are the default protocol

providers that come under the WebSphere built-in mail provider. They are the protocols SMTP, IMAP,

and POP3, respectively. If you install special protocol providers (or, in JavaMail terminology, service

providers) and these providers are used in the current mail session, you see them listed here with the

default providers.

v The two lines headed by *** and the few lines below them are printed by WebSphere Application Server

to show the configuration properties of the current mail session. Although these properties are listed by

their internal name rather than the name you establish in the administrative console, you can easily

recognize the relationships between them. For example, the property mail.store.protocol corresponds to

the Protocol Name property in the Store Access section of the mail session configuration page.

Note: Review the listed properties and values to verify that they correspond.

v The few lines above the exception stack show the JavaMail activities when sending a message. First,

the JavaMail API recognizes that the transport protocol is set to SMTP and that the provider

com.sun.mail.smtp.SMTPTransport exists. Next, the parameters used by SMTP, useEhlo and useAuth,

are shown. Finally, the log shows the SMTP provider trying to connect to the mail server

smtp.coldmail.com.

v Next is the exception stack. This data indicates that the specified mail server either does not exist or is

not functioning.

392 Troubleshooting and support

Chapter 22. Security

Troubleshooting security configurations

The following topics help to troubleshoot specific problems that are related to configuring and enabling

security configurations.

Refer to Security components troubleshooting tips for instructions on how to troubleshoot errors that are

related to security.

Refer to SPNEGO TAI troubleshooting tips for instructions on how to troubleshoot errors that are related to

diagnosing Simple and Protected GSS-API Negotiation (SPNEGO) trust association interceptor (TAI)

problems and exceptions.

v Errors when configuring or enabling security

v Errors after enabling security

v Access problems after enabling security

v Errors after configuring or enabling Secure Sockets Layer

v Single sign-on configuration troubleshooting tips

v Authorization provider troubleshooting tips

Security components troubleshooting tips

This document explains basic resources and steps for diagnosing security-related issues in WebSphere

Application Server.

Basic resources and steps for diagnosing security-related issues in WebSphere Application Server include:

v What to look at and what to look for “Using SDSF” on page 394.

v “General approach for troubleshooting security-related issues” on page 394 to isolating and resolving

security problems.

v When and how to “Trace security” on page 403. Setting up component trace (CTRACE) is a topic that

will aid your tracing activity.

The following security-related problems are addressed elsewhere in the information center:

v Errors and access problems after enabling security

After enabling security, a degradation in performance is realized. For more information about using

unrestricted policy files, see the Enabling security for the realm section of the Securing applications and

their environment PDF book.

v Errors after enabling SSL, or SSL-related error messages

If none of these steps solves the problem, check to see if the problem is identified and documented using

the links in Diagnosing and fixing problems: Resources for learning.

V6.0.x

For an overview of WebSphere Application Server security components such as Secure

Authentication Services for z/OS (z/SAS) and how they work, refer to the Securing applications and their

environment PDF book..

Important: z/SAS is supported only between Version 6.0.x and previous version servers that have been

federated in a Version 6.1 cell.

© Copyright IBM Corp. 2006 393

Using SDSF

When troubleshooting the security component, use System Display and Search Facility (SDSF) to browse

logs for the server that hosts the resource you are trying to access. The following sample of messages

helps you see from a server in which the security service has started successfully:

 +BBOM0001I com_ibm_authMechanisms_type_OID: No OID for this mechanism.

 +BBOM0001I com_ibm_security_SAF_unauthenticated: WSGUEST.

 +BBOM0001I com_ibm_security_SAF_EJBROLE_Audit_Messages_Suppress: 0.

 +BBOM0001I com_ibm_ws_logging_zos_errorlog_format_cbe: NOT SET, 280

 DEFAULT=0.

 +BBOM0001I com_ibm_CSI_performClientAuthenticationRequired: 0.

 +BBOM0001I com_ibm_CSI_performClientAuthenticationSupported: 1.

 +BBOM0001I com_ibm_CSI_performTransportAssocSSLTLSRequired: 0.

 +BBOM0001I com_ibm_CSI_performTransportAssocSSLTLSSupported: 1.

 +BBOM0001I com_ibm_CSI_rmiInboundPropagationEnabled: 1.

 +BBOM0001I com_ibm_CSI_rmiOutboundLoginEnabled: 0.

 +BBOM0001I com_ibm_CSI_rmiOutboundPropagationEnabled: 1.

 +BBOM0001I security_assertedID_IBM_accepted: 0.

 +BBOM0001I security_assertedID_IBM_sent: 0.

 +BBOM0001I security_disable_daemon_ssl: NOT SET, DEFAULT=0.

 +BBOM0001I security_sslClientCerts_allowed: 0.

 +BBOM0001I security_sslKeyring: NOT SET.

 +BBOM0001I security_zOS_domainName: NOT SET.

 +BBOM0001I security_zOS_domainType: 0.

 +BBOM0001I security_zSAS_ssl_repertoire: SY1/DefaultIIOPSSL.

 +BBOM0001I security_EnableRunAsIdentity: 0.

 +BBOM0001I security_EnableSyncToOSThread: 0.

 +BBOM0001I server_configured_system_name: SY1.

 +BBOM0001I server_generic_short_name: BBOC001.

 +BBOM0001I server_generic_uuid: 457

 *** Message beginning with BBOO0222I apply to Java within ***

 *** WebSphere Application Server Security ***

 +BBOO0222I: SECJ6004I: Security Auditing is disabled.

 +BBOO0222I: SECJ0215I: Successfully set JAAS login provider 631

 configuration class to com.ibm.ws.security.auth.login.Configuration.

 +BBOO0222I: SECJ0136I: Custom 632

 Registry:com.ibm.ws.security.registry.zOS.SAFRegistryImpl has been initialized

 +BBOO0222I: SECJ0157I: Loaded Vendor AuthorizationTable: 633

 com.ibm.ws.security.core.SAFAuthorizationTableImpl

General approach for troubleshooting security-related issues

When troubleshooting security-related problems, the following questions are very helpful:

Does the problem occur when security is disabled?

This question is a good litmus test to determine that a problem is security related. However, just

because a problem only occurs when security is enabled does not always make it a security

problem. More troubleshooting is necessary to ensure the problem is really security-related.

Did security seem to initialize properly?

A lot of security code is visited during initialization. So you can see problems there first if the

problem is configuration related.

SASRas A CWWSA0001I: Security configuration initialized.

SASRas A CWWSA0002I: Authentication protocol: CSIV2/IBM

SASRas A CWWSA0003I: Authentication mechanism: SWAM

SASRas A CWWSA0004I: Principal name: BIRKT20/pbirk

SASRas A CWWSA0005I: SecurityCurrent registered.

SASRas A CWWSA0006I: Security connection interceptor initialized.

SASRas A CWWSA0007I: Client request interceptor registered.

SASRas A CWWSA0008I: Server request interceptor registered.

SASRas A CWWSA0009I: IOR interceptor registered.

NameServerImp I CWNMS0720I: Do Security service listener registration.

SecurityCompo A CWSCJ0242A: Security service is starting

394 Troubleshooting and support

UserRegistryI A CWSCJ0136I: Custom Registry:com.ibm.ws.security.registry.nt.

NTLocalDomainRegistryImpl has been initialized

SecurityCompo A CWSCJ0202A: Admin application initialized successfully

SecurityCompo A CWSCJ0203A: Naming application initialized successfully

SecurityCompo A CWSCJ0204A: Rolebased authorizer initialized successfully

SecurityCompo A CWSCJ0205A: Security Admin mBean registered successfully

SecurityCompo A CWSCJ0243A: Security service started successfully

SecurityCompo A CWSCJ0210A: Security enabled true

The following sequence of messages generated in the SDSF active log indicate normal code

initialization of an application server. Non-security messages have been removed from the

sequence that follows. This sequence will vary based on the configuration, but the messages are

similar:

 Trace: 2005/05/06 17:27:31.539 01 t=8E96E0 c=UNK key=P8 (13007002)

 ThreadId: 0000000a

 FunctionName: printProperties

 SourceId: com.ibm.ws390.orb.CommonBridge

 Category: AUDIT

 ExtendedMessage: BBOJ0077I java.security.policy =

 /WebSphere/V6R1M0/AppServer/profiles/default/pr

 Trace: 2005/05/06 17:27:31.779 01 t=8E96E0 c=UNK key=P8 (13007002)

 ThreadId: 0000000a

 FunctionName: printProperties

 SourceId: com.ibm.ws390.orb.CommonBridge

 Category: AUDIT

 ExtendedMessage: BBOJ0077I java.security.auth.login.config =

 /WebSphere/V6R1M0/AppServer/profiles/default/pr

 Trace: 2005/05/06 17:27:40.892 01 t=8E96E0 c=UNK key=P8 (13007002)

 ThreadId: 0000000a

 FunctionName: com.ibm.ws.security.core.SecurityDM

 SourceId: com.ibm.ws.security.core.SecurityDM

 Category: INFO

 ExtendedMessage: BBOO0222I: SECJ0231I: The Security component’s FFDC

 Diagnostic Module com.ibm.ws.security.core.Secur

 red successfully: true.

 Trace: 2005/05/06 17:27:40.892 01 t=8E96E0 c=UNK key=P8 (0000000A)

 Description: Log Boss/390 Error

 from filename: ./bborjtr.cpp

 at line: 932

 error message: BBOO0222I: SECJ0231I: The Security component’s FFDC

 Diagnostic Module com.ibm.ws.security.core.Securit

 d successfully: true.

 Trace: 2005/05/06 17:27:41.054 01 t=8E96E0 c=UNK key=P8 (13007002)

 ThreadId: 0000000a

 FunctionName: com.ibm.ws.security.audit.AuditServiceImpl

 SourceId: com.ibm.ws.security.audit.AuditServiceImpl

 Category: AUDIT

 ExtendedMessage: BBOO0222I: SECJ6004I: Security Auditing is disabled.

 Trace: 2005/05/06 17:27:41.282 01 t=8E96E0 c=UNK key=P8 (13007002)

 ThreadId: 0000000a

 FunctionName: com.ibm.ws.security.core.distSecurityComponentImpl

 SourceId: com.ibm.ws.security.core.distSecurityComponentImpl

 Category: INFO

 ExtendedMessage: BBOO0222I: SECJ0309I: Java 2 Security is disabled.

 Trace: 2005/05/06 17:27:41.282 01 t=8E96E0 c=UNK key=P8 (0000000A)

 Description: Log Boss/390 Error

 from filename: ./bborjtr.cpp

 at line: 932

 error message: BBOO0222I: SECJ0309I: Java 2 Security is disabled.

 Trace: 2005/05/06 17:27:42.239 01 t=8E96E0 c=UNK key=P8 (13007002)

 ThreadId: 0000000a

 FunctionName: com.ibm.ws.security.auth.login.Configuration

 SourceId: com.ibm.ws.security.auth.login.Configuration

 Category: AUDIT

 ExtendedMessage: BBOO0222I: SECJ0215I: Successfully set JAAS login

 provider configuration class to com.ibm.ws.securit

 Configuration.

 Trace: 2005/05/06 17:27:42.253 01 t=8E96E0 c=UNK key=P8 (13007002)

 ThreadId: 0000000a

 FunctionName: com.ibm.ws.security.core.distSecurityComponentImpl

 SourceId: com.ibm.ws.security.core.distSecurityComponentImpl

 Category: INFO

 ExtendedMessage: BBOO0222I: SECJ0212I: WCCM JAAS configuration information

Chapter 22. Security 395

successfully pushed to login provider clas

 Trace: 2005/05/06 17:27:42.254 01 t=8E96E0 c=UNK key=P8 (0000000A)

 Description: Log Boss/390 Error

 from filename: ./bborjtr.cpp

 at line: 932

 error message: BBOO0222I: SECJ0212I: WCCM JAAS configuration information

 successfully pushed to login provider class.

 Trace: 2005/05/06 17:27:42.306 01 t=8E96E0 c=UNK key=P8 (13007002)

 ThreadId: 0000000a

 FunctionName: com.ibm.ws.security.core.distSecurityComponentImpl

 SourceId: com.ibm.ws.security.core.distSecurityComponentImpl

 Category: INFO

 ExtendedMessage: BBOO0222I: SECJ0240I: Security service initialization

 completed successfully

 Trace: 2005/05/06 17:27:42.306 01 t=8E96E0 c=UNK key=P8 (0000000A)

 Description: Log Boss/390 Error

 from filename: ./bborjtr.cpp

 at line: 932

 error message: BBOO0222I: SECJ0240I: Security service initialization

 completed successfully

 Trace: 2005/05/06 17:27:42.952 01 t=8E96E0 c=UNK key=P8 (13007002)

 ThreadId: 0000000a

 FunctionName: com.ibm.ws.objectpool.ObjectPoolService

 SourceId: com.ibm.ws.objectpool.ObjectPoolService

 Category: INFO

 ExtendedMessage: BBOO0222I: OBPL0007I: Object Pool Manager service

 is disabled.

 Trace: 2005/05/06 17:27:53.512 01 t=8E96E0 c=UNK key=P8 (13007002)

 ThreadId: 0000000a

 FunctionName: com.ibm.ws.security.registry.UserRegistryImpl

 SourceId: com.ibm.ws.security.registry.UserRegistryImpl

 Category: AUDIT

 ExtendedMessage: BBOO0222I: SECJ0136I: Custom

 Registry:com.ibm.ws.security.registry.zOS.SAFRegistryImpl

 has been init

 Trace: 2005/05/06 17:27:55.229 01 t=8E96E0 c=UNK key=P8 (13007002)

 ThreadId: 0000000a

 FunctionName: com.ibm.ws.security.role.PluggableAuthorizationTableProxy

 SourceId: com.ibm.ws.security.role.PluggableAuthorizationTableProxy

 Category: AUDIT

 ExtendedMessage: BBOO0222I: SECJ0157I: Loaded Vendor

 AuthorizationTable: com.ibm.ws.security.core.SAFAuthorizationTab

 Trace: 2005/05/06 17:27:56.481 01 t=8E96E0 c=UNK key=P8 (13007002)

 ThreadId: 0000000a

 FunctionName: com.ibm.ws.security.core.distSecurityComponentImpl

 SourceId: com.ibm.ws.security.core.distSecurityComponentImpl

 Category: INFO

 ExtendedMessage: BBOO0222I: SECJ0243I: Security service started successfully

 Trace: 2005/05/06 17:27:56.481 01 t=8E96E0 c=UNK key=P8 (0000000A)

 Description: Log Boss/390 Error

 from filename: ./bborjtr.cpp

 at line: 932

 error message: BBOO0222I: SECJ0243I: Security service started successfully

 Trace: 2005/05/06 17:27:56.482 01 t=8E96E0 c=UNK key=P8 (13007002)

 ThreadId: 0000000a

 FunctionName: com.ibm.ws.security.core.distSecurityComponentImpl

 SourceId: com.ibm.ws.security.core.distSecurityComponentImpl

 Category: INFO

 ExtendedMessage: BBOO0222I: SECJ0210I: Security enabled true

 Trace: 2005/05/06 17:27:56.483 01 t=8E96E0 c=UNK key=P8 (0000000A)

 Description: Log Boss/390 Error

 from filename: ./bborjtr.cpp

 at line: 932

 error message: BBOO0222I: SECJ0210I: Security enabled true

Is there a stack trace or exception printed in the system log file?

A single stack trace tells a lot about the problem. What code initiated the code that failed? What is

the failing component? Which class did the failure actually come from? Sometimes the stack trace

is all that is needed to solve the problem and it can pinpoint the root cause. Other times, it can

only give us a clue, and can actually be misleading. When support analyzes a stack trace, they

can request additional trace if it is not clear what the problem is. If it seems to be security-related

and the solution cannot be determined from the stack trace or problem description, you are asked

to gather the following trace specification: SASRas=all=enabled:com.ibm.ws.security.*=all=enabled

from all processes involved.

Is this a distributed security problem or a local security problem?

396 Troubleshooting and support

v If the problem is local, that is the code involved does not make a remote method invocation,

then troubleshooting is isolated to a single process. It is important to know when a problem is

local versus distributed because the behavior of the object request broker (ORB), among other

components, is different between the two. When a remote method invocation takes place, an

entirely different security code path is entered.

v

V6.0.x

When you know that the problem involves two or more servers, the techniques of

troubleshooting change. You need to trace all the servers involved simultaneously so that the

trace shows the client and server sides of the problem. Make sure the timestamps on all

machines match as closely as possible so that you can find the request and reply pair from two

different processes. Enable both Secure Authentication Services (SAS) or z/SAS and Security

trace using the trace specification: SASRas=all=enabled:com.ibm.ws.security.*=all=enabled.

For more information on enabling trace, see Enabling trace.

For more information on enabling trace, see Working with Trace.
Is the problem related to authentication or authorization?

Most security problems fall under one of these two categories. Authentication is the process of

determining who the caller is. Authorization is the process of validating that the caller has the

proper authority to invoke the requested method. When authentication fails, typically this failure is

related to either the authentication protocol, authentication mechanism or user registry. When

authorization fails, this is usually related to the application bindings from assembly and deployment

and to the caller’s identity who is accessing the method and the roles that are required by the

method.

Is this a Web or EJB request?

 Web requests have a completely different code path than Enterprise JavaBeans (EJB) requests.

Different security features exist for Web requests than for EJB requests, requiring a completely

different body of knowledge to resolve. For example, when using the Lightweight Third-Party

Authentication (LTPA) authentication mechanism, the single sign-on feature (SSO) is available for

Web requests but not for EJB requests. Web requests involve HTTP header information that is not

required by EJB requests due to the protocol differences. Also, the Web container or servlet

engine is involved in the entire process. Any of these components can be involved in the problem

and all require consideration during troubleshooting, based on the type of request and where the

failure occurs.

V6.0.x

Secure EJB requests are passed from the controller to the servant. Web requests are

mostly ignored by the controller. As a result, EJB requests are first processed and authenticated

by the zSAS or Common Security Interoperability Version 2 (CSIv2) layers of security.

Authorization is done by the servant. If an authentication failure occurs, the zSAS type level of

tracing must be turned on to diagnose the problem. Other problems can be diagnosed using the

WebSphere Application Server component tracing (CTRACE) facility.

Does the problem seem to be related to the Secure Sockets Layer (SSL)?

 SSL is a totally distinct separate layer of security. Troubleshooting SSL problems is usually

separate from troubleshooting authentication and authorization problems, and you have many

considerations. Usually, SSL problems are first-time setup problems because the configuration can

be difficult. Each client must contain the signer certificate of the server. During mutual

authentication, each server must contain the client’s signer certificate. Also, there can be protocol

differences (SSLv3 vs. Transport Layer Security (TLS)), and listener port problems related to stale

Interoperable Object References (IORs), that is IORs from a server, that reflect the port prior to the

server restarting.

 In z/OS, two variations of SSL are used. To determine the cause of an SSL problem on z/OS, you

have to be aware of what protocol is being used.

v System SSL is used by the Internet Inter-ORB Protocol (IIOP) and HTTPS protocols

v Java Secure Socket Extension (JSSE) is used by all other protocols, for example, SOAP.

Chapter 22. Security 397

v

V6.0.x

System SSL requests are handled in the controller and are used by z/SAS and

CSIv2 security.

v SJSSE is predominately used by the servant, but cases exist where JSSE is used in the

controller as well.

For SSL problems, sometimes you get a request for an SSL trace to determine what is happening

with the SSL handshake. The SSL handshake is the process that occurs when a client opens a

socket to a server. If anything goes wrong with the key exchange, cipher exchange, and so on, the

handshake fails and the socket is not valid. Tracing JSSE (the SSL implementation that is used in

WebSphere Application Server) involves the following steps:

v Set the following system property on the client and server processes: -Djavax.net.debug=true.

For the server, add the system property to the generic JVM arguments property of the JVM

settings page. For more information on this task, refer to Java virtual machine settings section

of the Administering applications and their environment PDF book.

v Recreate the problem.

The SYSOUT data set for the region’s started task contains the JSSE trace. Using SDSF, this

trace is similar to the following:

 JSSEContext: handleConnection[Socket

[addr=boss0106.plex1.l2.ibm.com/9.38.48.108,port=2139,localport=8878]]

 JSSEContext: handleConnection[Socket

[addr=boss0106.plex1.l2.ibm.com/9.38.48.108,port=2140,localport=8878]]

 TrustManagerFactoryImpl: trustStore is :

 /WebSphere/V6R10M0/AppServer/etc/DummyServerTrustFile.jks

 TrustManagerFactoryImpl: trustStore type is : JKS

 TrustManagerFactoryImpl: init truststore

 JSSEContext: handleConnection[Socket

[addr=boss0106.plex1.l2.ibm.com/9.38.48.108,port=2142,localport=8878]]

 KeyManagerFactoryImpl: keyStore is :

/WebSphere/V6R1M0/AppServer/etc/DummyServerKeyFile.jks

 KeyManagerFactoryImpl: keyStore type is : JKS

 KeyManagerFactoryImpl: init keystore

 KeyManagerFactoryImpl: init keystore

 JSSEContext: handleConnection[Socket

[addr=boss0106.plex1.l2.ibm.com/9.38.48.108,port=2143,localport=8878]]

 JSSEContext: handleSession[Socket

[addr=BOSSXXXX.PLEX1.L2.IBM.COM/9.38.48.108,port=8879,localport=2145]]

 JSSEContext: confirmPeerCertificate

[Socket[addr=BOSSXXXX.PLEX1.L2.IBM.COM/9.38.48.108,port=8879,

 localport=2145]]

 X509TrustManagerImpl: checkServerTrusted

 X509TrustManagerImpl: Certificate [

 [

 Version: V3

 Subject: CN=jserver, OU=SWG, O=IBM, C=US

 Signature Algorithm: MD5withRSA, OID = 1.2.840.113549.1.1.4

0 Key: IBMJCE RSA Public Key:

 modulus:

 10094996692239509074796828756118539107568369566313889955538950668

6622953008589748001058216362638201577071902071311277365773252660799

 128781182947273802312699983556527878615792292244995317112436562491

489904381884265119355037731265408654007388863303101746314438337601

 264540735679944205391693242921331551342247891

 public exponent:

 65537

0 Validity: [From: Fri Jun 21 20:08:18 GMT 2002,

 To: Thu Mar 17 20:08:18 GMT 2005]

 Issuer: CN=jserver, OU=SWG, O=IBM, C=US

 SerialNumber: [3d1387b2]

0]

 Algorithm: [MD5withRSA]

 Signature:

 0000: 54 DC B5 FA 64 C9 CD FE B3 EF 15 22 3D D0 20 31 T...d......"=. 1

398 Troubleshooting and support

0010: 99 F7 A7 86 F9 4C 82 9F 6E 4B 7B 47 18 2E C6 25 L..nK.G...%

 0020: 5B B2 9B 78 D8 76 5C 82 07 95 DD B8 44 62 02 62 [..x.v\.....Db.b

 0030: 60 2A 0A 6D 4F B9 0A 98 14 27 E9 BB 1A 84 8A D1 `*.mO....’......

 0040: C2 22 AF 70 9E A5 DF A2 FD 57 37 CE 3A 63 1B EB .".p.....W7.:c..

 0050: E8 91 98 9D 7B 21 4A B5 2C 94 FC A9 30 C2 74 72 !J.,...0.tr

 0060: 95 01 54 B1 29 E7 F8 9E 6D F3 B5 D7 B7 D2 9E 9B ..T.)...m.......

 0070: 85 D8 E4 CF C2 D5 3B 64 F0 07 17 9E 1E B9 2F 79 ;d....../y

0]

 X509TrustManagerImpl: Certificate [

 [

 Version: V3

 Subject: CN=jserver, OU=SWG, O=IBM, C=US

 Signature Algorithm: MD5withRSA, OID = 1.2.840.113549.1.1.4

0 Key: IBMJCE RSA Public Key:

 modulus:

 1009499669223950907479682875611853910756836956631388995553895066866

22953008589748001058216362638201577071902071311277365773252660799

 1287811829472738023126999835565278786157922922449953171124365624914

89904381884265119355037731265408654007388863303101746314438337601

 264540735679944205391693242921331551342247891

 public exponent:

 65537

0 Validity: [From: Fri Jun 21 20:08:18 GMT 2002,

 To: Thu Mar 17 20:08:18 GMT 2005]

 Issuer: CN=jserver, OU=SWG, O=IBM, C=US

 SerialNumber: [3d1387b2]

0]

 Algorithm: [MD5withRSA]

 Signature:

 0000: 54 DC B5 FA 64 C9 CD FE B3 EF 15 22 3D D0 20 31 T...d......"=. 1

 0010: 99 F7 A7 86 F9 4C 82 9F 6E 4B 7B 47 18 2E C6 25 L..nK.G...%

 0020: 5B B2 9B 78 D8 76 5C 82 07 95 DD B8 44 62 02 62 [..x.v\.....Db.b

 0030: 60 2A 0A 6D 4F B9 0A 98 14 27 E9 BB 1A 84 8A D1 `*.mO....’......

 0040: C2 22 AF 70 9E A5 DF A2 FD 57 37 CE 3A 63 1B EB .".p.....W7.:c..

 0050: E8 91 98 9D 7B 21 4A B5 2C 94 FC A9 30 C2 74 72 !J.,...0.tr

 0060: 95 01 54 B1 29 E7 F8 9E 6D F3 B5 D7 B7 D2 9E 9B ..T.)...m.......

 0070: 85 D8 E4 CF C2 D5 3B 64 F0 07 17 9E 1E B9 2F 79 ;d....../y

0]

 JSSEContext: handleConnection[Socket[addr=boss0106.plex1.l2.ibm.com

/9.38.48.108,port=2144,localport=8878]]

 JSSEContext: handleConnection[Socket[addr=BOSSXXXX.PLEX1.L2.IBM.COM

/9.38.48.108,port=8879,localport=2145]]

 JSSEContext: handleConnection[Socket[addr=BOSSXXXX.PLEX1.L2.IBM.COM

/9.38.48.108,port=8879,localport=2146]]

 JSSEContext: handleConnection[Socket[addr=BOSSXXXX.PLEX1.L2.IBM.COM

/9.38.48.108,port=8879,localport=2147]]

 JSSEContext: handleConnection[Socket[addr=BOSSXXXX.PLEX1.L2.IBM.COM

/9.38.48.108,port=8879,localport=2148]]

 JSSEContext: handleConnection[Socket[addr=BOSSXXXX.PLEX1.L2.IBM.COM

/9.38.48.108,port=8879,localport=2149]]

 JSSEContext: handleConnection[Socket[addr=BOSSXXXX.PLEX1.L2.IBM.COM

/9.38.48.108,port=8879,localport=2150]]

 JSSEContext: handleConnection[Socket[addr=BOSSXXXX.PLEX1.L2.IBM.COM

/9.38.48.108,port=8879,localport=2151]]

 JSSEContext: handleConnection[Socket[addr=BOSSXXXX.PLEX1.L2.IBM.COM

/9.38.48.108,port=8879,localport=2152]]

 JSSEContext: handleConnection[Socket[addr=BOSSXXXX.PLEX1.L2.IBM.COM

/9.38.48.108,port=8879,localport=2153]]

 JSSEContext: handleConnection[Socket[addr=BOSSXXXX.PLEX1.L2.IBM.COM

/9.38.48.108,port=8879,localport=2154]]

 JSSEContext: handleConnection[Socket[addr=BOSSXXXX.PLEX1.L2.IBM.COM

/9.38.48.108,port=8879,localport=2155]]

 JSSEContext: handleConnection[Socket[addr=BOSSXXXX.PLEX1.L2.IBM.COM

/9.38.48.108,port=8879,localport=2156]]

 JSSEContext: handleConnection[Socket[addr=BOSSXXXX.PLEX1.L2.IBM.COM

/9.38.48.108,port=8879,localport=2157]]

 JSSEContext: handleConnection[Socket[addr=BOSSXXXX.PLEX1.L2.IBM.COM

Chapter 22. Security 399

/9.38.48.108,port=8879,localport=2158]]

 JSSEContext: handleConnection[Socket[addr=BOSSXXXX.PLEX1.L2.IBM.COM

/9.38.48.108,port=8879,localport=2159]]

 JSSEContext: handleConnection[Socket[addr=BOSSXXXX.PLEX1.L2.IBM.COM

/9.38.48.108,port=8879,localport=2160]]

 JSSEContext: handleConnection[Socket[addr=BOSSXXXX.PLEX1.L2.IBM.COM

/9.38.48.108,port=8879,localport=2161]]

 JSSEContext: handleConnection[Socket[addr=BOSSXXXX.PLEX1.L2.IBM.COM

/9.38.48.108,port=8879,localport=2162]]

 JSSEContext: handleConnection[Socket[addr=BOSSXXXX.PLEX1.L2.IBM.COM

/9.38.48.108,port=8879,localport=2163]]

 JSSEContext: handleConnection[Socket[addr=BOSSXXXX.PLEX1.L2.IBM.COM

/9.38.48.108,port=8879,localport=2164]]

 JSSEContext: handleConnection[Socket[addr=BOSSXXXX.PLEX1.L2.IBM.COM

/9.38.48.108,port=8879,localport=2165]]

 JSSEContext: handleConnection[Socket[addr=BOSSXXXX.PLEX1.L2.IBM.COM

/9.38.48.108,port=8879,localport=2166]]

 JSSEContext: handleSession[Socket[addr=boss0106.plex1.l2.ibm.com

/9.38.48.108,port=9443,localport=2167]]

 JSSEContext: confirmPeerCertificate[Socket[addr=boss0106.plex1.l2.ibm.com

/9.38.48.108,port=9443,localport=2167]]

 X509TrustManagerImpl: checkServerTrusted

 X509TrustManagerImpl: Certificate [

 [

 Version: V3

 Subject: CN=WAS z/OS Deployment Manager, O=IBM

 Signature Algorithm: SHA1withRSA, OID = 1.2.840.113549.1.1.5

0 Key: IBMJCE RSA Public Key:

 modulus:

 12840948267119651469312486548020957441946413494498370439558603901582589

8755033448419534105183133064366466828741516428176579440511007

 6258795528749232737808897160958348495006972731464152299032614592135114

19361539962555997136085140591098259345625853617389396340664766

 649957749527841107121590352429348634287031501

 public exponent:

 65537

0 Validity: [From: Fri Jul 25 05:00:00 GMT 2003,

 To: Mon Jul 26 04:59:59 GMT 2004]

 Issuer: CN=WAS CertAuth, C=US

 SerialNumber: [02]

0Certificate Extensions: 3

 [1]: ObjectId: 2.16.840.1.113730.1.13 Criticality=false

 Extension unknown: DER encoded OCTET string =

 0000: 04 3C 13 3A 47 65 6E 65 72 61 74 65 64 20 62 79 .<.:Generated by

 0010: 20 74 68 65 20 53 65 63 75 72 65 57 61 79 20 53 the SecureWay S

 0020: 65 63 75 72 69 74 79 20 53 65 72 76 65 72 20 66 ecurity Server f

 0030: 6F 72 20 7A 2F 4F 53 20 28 52 41 43 46 29 or z/OS (RACF)

-[2]: ObjectId: 2.5.29.14 Criticality=false

 SubjectKeyIdentifier [

 KeyIdentifier [

 0000: 05 6A CD 7F AE AF 89 78 99 A8 F1 5B 64 8B 9F AF .j.....x...[d...

 0010: 73 1B 58 65 s.Xe

]

]

0[3]: ObjectId: 2.5.29.35 Criticality=false

 AuthorityKeyIdentifier [

 KeyIdentifier [

 0000: 7E D1 7B 17 74 D3 AD D1 7D D8 F8 33 85 19 04 F8 t......3....

 0010: 36 51 57 16 6QW.

]

0]

0]

 Algorithm: [SHA1withRSA]

 Signature:

 0000: 73 0D FC E1 8A B3 42 E1 04 73 72 B1 C6 C9 87 54 s.....B..sr....T

 0010: 87 57 02 FA 41 32 D8 B0 39 09 86 CB 6B 03 B6 F9 .W..A2..9...k...

400 Troubleshooting and support

0020: 62 8D 95 36 56 0E D4 D2 F7 7A 8D 4B FB 0B FD 91 b..6V....z.K....

 0030: 89 A8 08 41 30 E2 27 DC 15 5F 2C F4 CD 2F 6B 8E ...A0.’.._,../k.

 0040: 21 2A 88 53 46 27 68 9B 55 14 38 8E 1F 50 95 BC !*.SF’h.U.8..P..

 0050: A8 46 F6 68 97 9E 7B 65 9E E8 A7 34 B2 C8 63 CF .F.h...e...4..c.

 0060: 73 C8 4E 25 0A EF C5 8F 04 A4 EB 8C CC 33 84 26 s.N%.........3.&

 0070: 5D FD 7C AD 7B 02 13 5A 86 A1 89 93 1E A4 93 63]......Z.......c

0]

 X509TrustManagerImpl: Certificate [

 [

 Version: V3

 Subject: CN=WAS CertAuth, C=US

 Signature Algorithm: SHA1withRSA, OID = 1.2.840.113549.1.1.5

0 Key: IBMJCE RSA Public Key:

 modulus:

 1167408593733331602218385578183389496484587418638676352829560040529918

40558681208199977833401609895748222369066230329785148883251144

 2382911186804921983976695395381692334250582278359056431484427844566504

41491799952592864895242987037929408453455627552772317382077015

 828713585220212502839546496071839496308430393

 public exponent:

 65537

0 Validity: [From: Fri Jul 25 05:00:00 GMT 2003,

 To: Sat Jul 24 04:59:59 GMT 2010]

 Issuer: CN=WAS CertAuth, C=US

 SerialNumber: [0]

0Certificate Extensions: 4

 [1]: ObjectId: 2.16.840.1.113730.1.13 Criticality=false

 Extension unknown: DER encoded OCTET string =

 0000: 04 3C 13 3A 47 65 6E 65 72 61 74 65 64 20 62 79 .<.:Generated by

 0010: 20 74 68 65 20 53 65 63 75 72 65 57 61 79 20 53 the SecureWay S

 0020: 65 63 75 72 69 74 79 20 53 65 72 76 65 72 20 66 ecurity Server f

 0030: 6F 72 20 7A 2F 4F 53 20 28 52 41 43 46 29 or z/OS (RACF)

-[2]: ObjectId: 2.5.29.14 Criticality=false

 SubjectKeyIdentifier [

 KeyIdentifier [

 0000: 7E D1 7B 17 74 D3 AD D1 7D D8 F8 33 85 19 04 F8 t......3....

 0010: 36 51 57 16 6QW.

]

]

0[3]: ObjectId: 2.5.29.15 Criticality=true

 KeyUsage [

 Key_CertSign

 Crl_Sign

]

0[4]: ObjectId: 2.5.29.19 Criticality=true

 BasicConstraints:[

 CA:true

 PathLen:2147483647

]

0]

 Algorithm: [SHA1withRSA]

 Signature:

 0000: 43 88 AB 19 5D 00 54 57 5E 96 FA 85 CE 88 4A BF C...].TW^.....J.

 0010: 6E CB 89 4C 56 BE EF E6 8D 2D 74 B5 83 1A EF 9C n..LV....-t.....

 0020: B3 82 F2 16 84 FA 5C 50 53 2A B4 FD EB 27 98 5D \PS*...’.]

 0030: 43 48 D3 74 85 21 D1 E1 F2 63 9E FB 58 2A F3 6A CH.t.!...c..X*.j

 0040: 44 D2 F5 7D B2 55 B9 5E 32 11 78 B6 34 8E 4B 1D D....U.^2.x.4.K.

 0050: F3 82 1D C1 5F 7B 3F AD C9 29 FA FF D1 D1 13 2C _.?..).....,

 0060: 57 F7 7B 51 02 99 6F ED 54 E1 51 34 B8 51 BE 97 W..Q..o.T.Q4.Q..

 0070: 30 AC 4F 89 AB AA 8A B2 E1 40 89 2E 18 C7 0E 15 0.O......@......

0]

 JSSEContext: handleConnection[Socket[addr=boss0106.plex1.l2.ibm.com

/9.38.48.108,port=9443,localport=2167]]

 JSSEContext: handleConnection[Socket[addr=BOSSXXXX.PLEX1.L2.IBM.COM

/9.38.48.108,port=8879,localport=2168]]

 JSSEContext: handleConnection[Socket[addr=boss0106.plex1.l2.ibm.com

Chapter 22. Security 401

/9.38.48.108,port=2235,localport=8878]]

 JSSEContext: handleConnection[Socket[addr=BOSSXXXX.PLEX1.L2.IBM.COM

/9.38.48.108,port=8879,localport=2236]]

 JSSEContext: handleSession[Socket[addr=BOSSXXXX.PLEX1.L2.IBM.COM

/9.38.48.108,port=8880,localport=2238]]

 JSSEContext: confirmPeerCertificate[Socket

[addr=BOSSXXXX.PLEX1.L2.IBM.COM

/9.38.48.108,port=8880,localport=2238]]

 X509TrustManagerImpl: checkServerTrusted

 X509TrustManagerImpl: Certificate [

 [

 Version: V3

 Subject: CN=jserver, OU=SWG, O=IBM, C=US

 Signature Algorithm: MD5withRSA, OID = 1.2.840.113549.1.1.4

0 Key: IBMJCE RSA Public Key:

 modulus:

 100949966922395090747968287561185391075683695663138899555389506686622953

008589748001058216362638201577071902071311277365773252660799

 1287811829472738023126999835565278786157922922449953171124365624914

89904381884265119355037731265408654007388863303101746314438337601

 264540735679944205391693242921331551342247891

 public exponent:

 65537

0 Validity: [From: Fri Jun 21 20:08:18 GMT 2002,

 To: Thu Mar 17 20:08:18 GMT 2005]

 Issuer: CN=jserver, OU=SWG, O=IBM, C=US

 SerialNumber: [3d1387b2]

0]

 Algorithm: [MD5withRSA]

 Signature:

 0000: 54 DC B5 FA 64 C9 CD FE B3 EF 15 22 3D D0 20 31 T...d......"=. 1

 0010: 99 F7 A7 86 F9 4C 82 9F 6E 4B 7B 47 18 2E C6 25 L..nK.G...%

 0020: 5B B2 9B 78 D8 76 5C 82 07 95 DD B8 44 62 02 62 [..x.v\.....Db.b

 0030: 60 2A 0A 6D 4F B9 0A 98 14 27 E9 BB 1A 84 8A D1 `*.mO....’......

 0040: C2 22 AF 70 9E A5 DF A2 FD 57 37 CE 3A 63 1B EB .".p.....W7.:c..

 0050: E8 91 98 9D 7B 21 4A B5 2C 94 FC A9 30 C2 74 72 !J.,...0.tr

 0060: 95 01 54 B1 29 E7 F8 9E 6D F3 B5 D7 B7 D2 9E 9B ..T.)...m.......

 0070: 85 D8 E4 CF C2 D5 3B 64 F0 07 17 9E 1E B9 2F 79 ;d....../y

0]

 X509TrustManagerImpl: Certificate [

 [

 Version: V3

 Subject: CN=jserver, OU=SWG, O=IBM, C=US

 Signature Algorithm: MD5withRSA, OID = 1.2.840.113549.1.1.4

0 Key: IBMJCE RSA Public Key:

 modulus:

 100949966922395090747968287561185391075683695663138899555389506

686622953008589748001058216362638201577071902071311277365773252660799

 12878118294727380231269998355652787861579229224499531711243656249

1489904381884265119355037731265408654007388863303101746314438337601

 264540735679944205391693242921331551342247891

 public exponent:

 65537

0 Validity: [From: Fri Jun 21 20:08:18 GMT 2002,

 To: Thu Mar 17 20:08:18 GMT 2005]

 Issuer: CN=jserver, OU=SWG, O=IBM, C=US

 SerialNumber: [3d1387b2]

0]

 Algorithm: [MD5withRSA]

 Signature:

 0000: 54 DC B5 FA 64 C9 CD FE B3 EF 15 22 3D D0 20 31 T...d......"=. 1

 0010: 99 F7 A7 86 F9 4C 82 9F 6E 4B 7B 47 18 2E C6 25 L..nK.G...%

 0020: 5B B2 9B 78 D8 76 5C 82 07 95 DD B8 44 62 02 62 [..x.v\.....Db.b

 0030: 60 2A 0A 6D 4F B9 0A 98 14 27 E9 BB 1A 84 8A D1 `*.mO....’......

 0040: C2 22 AF 70 9E A5 DF A2 FD 57 37 CE 3A 63 1B EB .".p.....W7.:c..

 0050: E8 91 98 9D 7B 21 4A B5 2C 94 FC A9 30 C2 74 72 !J.,...0.tr

402 Troubleshooting and support

0060: 95 01 54 B1 29 E7 F8 9E 6D F3 B5 D7 B7 D2 9E 9B ..T.)...m.......

 0070: 85 D8 E4 CF C2 D5 3B 64 F0 07 17 9E 1E B9 2F 79 ;d....../y

0]

 JSSEContext: handleConnection[Socket[addr=BOSSXXXX.PLEX1.L2.IBM.COM/

9.38.48.108,port=8880,localport=2238]]

 JSSEContext: handleConnection[Socket[addr=BOSSXXXX.PLEX1.L2.IBM.COM/

9.38.48.108,port=8880,localport=2239]]

 JSSEContext: handleConnection[Socket[addr=BOSSXXXX.PLEX1.L2.IBM.COM/

9.38.48.108,port=8880,localport=2240]]

 JSSEContext: handleConnection[Socket[addr=BOSSXXXX.PLEX1.L2.IBM.COM/

9.38.48.108,port=8880,localport=2241]]

Trace security

The classes that implement WebSphere Application Server security are:

v com.ibm.ws.security.*

v com.ibm.websphere.security.*

v com.ibm.WebSphereSecurityImpl.*

v com.ibm.ws.wim.* for tracing with a Virtual Member Manager (VMM) repository

V6.0.x

Fine tuning Security traces:

If a subset of packages need to be traced, specify a trace specification more detailed than

com.ibm.ws.security.*=all=enabled. For example, to trace just dynamic policy code, you can

specify com.ibm.ws.security.policy.*=all=enabled. To disable dynamic policy trace, you can specify

com.ibm.ws.security.policy.*=all=disabled.

Configuring CSIv2, or z/SAS Trace Settings

Situations arise where reviewing trace for the CSIv2 and z/SAS authentication protocols can assist

in troubleshooting difficult problems. This section describes how to enable to CSIv2 and z/SAS

trace.

Enabling Client-Side CSIv2 and z/SAS Trace

To enable CSIv2 and z/SAS trace on a pure client, the following steps need to be taken:

v Edit the file TraceSettings.properties in the /WebSphere/AppServer/properties

directory.

v In this file, change traceFileName= to point to the path in which you want the ouput file

created. Make sure you put a double backslash (\\) between each subdirectory. For

example, traceFileName=c:\\WebSphere\\AppServer\\logs\\sas_client.log

v In this file, add the trace specification string: SASRas=all=enabled. Any additional trace

strings can be added on separate lines.

v Point to this file from within your client application. On the Java command line where

you launch the client, add the following system property:

-DtraceSettingsFile=TraceSettings.properties.

Note: Do not give the fully qualified path to the TraceSettings.properties file. Make

sure that the TraceSettings.properties file is in your class path.
Enabling Server-Side CSIv2 and z/SAS Trace

To enable z/SAS trace in an application server, complete the following:

v Add the trace specification, SASRas=all=enabled, to the server.xml file or add it to the

Trace settings within the administrative console.

v Typically it is best to also trace the authorization security runtime in addition to the

authentication protocol run time. To do this, use the following two trace specifications in

combination: SASRas=all=enabled:com.ibm.ws.security.*=all=enabled.

v When troubleshooting a connection type problem, it is beneficial to trace both CSIv2

and SAS or CSIv2 and z/SAS and the ORB. To do this, use the following three trace

specifications:

SASRas=all=enabled:com.ibm.ws.security.*=all=enabled:ORBRas=all=enabled.

Chapter 22. Security 403

v In addition to adding these trace specifications, for ORB trace there are a couple of

system properties that also need to be set. Go to the ORB settings in the administrative

console and add the following two properties: com.ibm.CORBA.Debug=true and

com.ibm.CORBA.CommTrace=true.

For current information available from IBM Support on known problems and their resolution, see the IBM

Support page.

IBM Support has documents that can save you time gathering information needed to resolve this problem.

Before opening a PMR, see the IBM Support page.

Errors when trying to configure or enable security

Use this information to troubleshoot problems with configuring or enabling security.

What kind of error are you seeing?

v “″LTPA password not set. validation failed″ message displayed as error in the administrative console

after saving administrative or application security settings ”

v “Errors when trying to configure or enable security”

v “The setupClient.bat or setupClient.sh file is not working correctly”

v “WebSphere Application Server Version 6 is not working correctly with Enterprise Workload Manager

(EWLM)” on page 405

v If you successfully configured security, but are now having problems accessing Web resources or the

administrative console, refer to Errors or access problems after enabling security.

v “NMSV0610I: A NamingException is being thrown from a javax.naming.Context implementation” on page

405

IBM Support has documents and tools that can save you time gathering information needed to resolve

problems as described in “Troubleshooting help from IBM” on page 188. Before opening a problem report,

see the Support page:

v http://www.ibm.com/software/webservers/appserv/zos_os390/support/

″LTPA password not set. validation failed″ message displayed as error in the

administrative console after saving administrative or application security settings

This error can be caused if, when configuring WebSphere Application Server security, LTPA is selected as

the authentication mechanism and the LTPA password field is not set. To resolve this problem:

v Select Security > Secure administration, applications and infrastructure > Authentication

mechanisms and expiration .

v Complete the password and confirm password fields.

v Click OK.

v Try setting administrative or application security again.

The setupClient.bat or setupClient.sh file is not working correctly

The setupClient.bat file on Windows operating systems and the setupClient.sh file on Linux and

UNIX-based platforms incorrectly specify the location of the SOAP security properties file.

In the setupClient.sh file, the CLIENTSOAP variable is:

CLIENTSOAP=-Dcom.ibm.SOAP.ConfigURL=file:$WAS_HOME/properties/soap.client.props

In the setupClient.bat and the setupClient.sh files, complete the following steps:

1. Remove the leading slash (/) after file:.

2. Change sas to soap.

404 Troubleshooting and support

http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCVS2E
http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCVS2E
http://www-1.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCVS2E&q=mustgather
http://www.ibm.com/software/webservers/appserv/zos_os390/support/

WebSphere Application Server Version 6 is not working correctly with Enterprise

Workload Manager (EWLM)

To use WebSphere Application Server Version 6 with EWLM, you must manually update the WebSphere

Application Serve server.policy files. For example:

grant codeBase "file:/<EWLM_Install_Home>/classes/ARM/arm4.jar" {

 permission java.security.AllPermission;

};

Otherwise, you might encounter a Java 2 security exception for violating the Java 2 security permission.

For more information on configuring server.policy files, refer to the server.policy file permissions section in

the Developing and deploying applications PDF book.

For current information available from IBM Support on known problems and their resolution, see the IBM

Support page.

IBM Support has documents that can save you time gathering information needed to resolve this problem.

Before opening a PMR, see the IBM Support page.

NMSV0610I: A NamingException is being thrown from a javax.naming.Context

implementation

If you use CSIv2 inbound authentication, basic authentication is required, and Java clients running with

com.ibm.CORBA.validateBasicAuth=true might fail with the following exception:

If you use CSIv2 inbound authentication, basic authentication is required, and Java™

clients running with com.ibm.CORBA.validateBasicAuth=true might fail with the

following exception:

NMSV0610I: A NamingException is being thrown from a javax.naming.Context

 implementation. Details follow:

Context implementation: com.ibm.ws.naming.jndicos.CNContextImpl

Context method: lookupExt

Context name: TestaburgerNode01Cell/nodes/TestaburgerNode01/servers/server1

Target name: SecurityServer

Other data: ""

Exception stack trace: javax.naming.NoPermissionException: NO_PERMISSION

exception caught. Root exception is org.omg.CORBA.NO_PERMISSION:

vmcid: 0x49421000 minor code: 92 completed: No

...

SECJ0395E: Could not locate the SecurityServer at host/port:9.42.72.27/9100

to validate the userid and password entered. You may need to specify valid

securityServerHost/Port in (WAS_INSTALL_ROOT)/properties/sas.client.props file.

To fix this problem, modify the com.ibm.CORBA.validateBasicAuth=false property in the

clients.sas.clients.props file and then run the client.

Errors after enabling security

Use this information if you are experiencing errors after security is enabled.

What kind of error are you seeing?

v Authentication error accessing a Web page

v Authorization error accessing a Web page

v Error Message: CWSCJ0314E: Current Java 2 security policy reported a potential violation

v CWMSG0508E: The JMS Server security service was unable to authenticate user ID: error displayed

in SystemOut.log when starting an application server

Chapter 22. Security 405

http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCVS2E
http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCVS2E
http://www-1.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCVS2E&q=mustgather

v Error Message: CWSCJ0237E: One or more vital LTPAServerObject configuration attributes are

null or not available after enabling security and starting the application server

v Error Message: CWSCJ0336E: Authentication failed for user {0} because of the following

exception {1}

IBM Support has documents and tools that can save you time gathering information needed to resolve

problems as described in “Troubleshooting help from IBM” on page 188. Before opening a problem report,

see the Support page:

v http://www.ibm.com/software/webservers/appserv/zos_os390/support/

Authentication error accessing a Web page

Possible causes for authentication errors include:

v Incorrect user name or passwords. Check the user name and password and make sure that they are

correct.

v Security configuration error : User registry type is not set correctly. Check the user registry

property in administrative security settings in the administrative console. Verify that the user registry

property is the intended user registry.

v Internal program error. If the client application is a Java standalone program, this program might not

gather or send credential information correctly.

Authorization error accessing a Web page

If a user who is supposed to have access to a resource does not, a configuration step is probably missing.

For more information on configuring access to resources, review the chapter Authorizing access to

administrative roles in the Securing applications and their environment PDF book.

Specifically:

v Check the required roles for the accessed Web resource.

v Check the authorization table to make sure that the user, or the groups to which the user belongs, is

assigned to one of the required roles.

v View required roles for the Web resource in the deployment descriptor of the Web resource.

v View the authorization table for the application that contains the Web resource, using the administrative

console.

v Test with a user who is granted the required roles, to see if the user can access the problem resources.

v If the user is required to have one or more of the required roles, use the administrative console to

assign that user to required roles, stop, and restart the application.

Error Message: CWSCJ0314E: Current Java 2 security policy reported a potential

violation on server

If you find errors on your server similar to:

Error Message: CWSCJ0314E: Current Java 2 Security policy reported a potential violation of

Java 2 Security Permission. Please refer to Problem Determination Guide for further information.

{0}Permission/:{1}Code/:{2}{3}Stack Trace/:{4}Code Base Location/:{5}

The Java security manager checkPermission method has reported a SecurityException exception .

The reported exception might be critical to the secure system. Turn on security trace to determine the

potential code that might have violated the security policy. Once the violating code is determined, verify if

the attempted operation is permitted with respect to Java 2 Security, by examining all applicable Java 2

security policy files and the application code.

A more detailed report is enabled by either configuring RAS trace into debug mode, or specifying a Java

property.

406 Troubleshooting and support

http://www.ibm.com/software/webservers/appserv/zos_os390/support/

v Specify the following property in the Application Servers > server_name > ProcessDefinition > Java

Virtual Machine panel from the administrative console in the Generic JVM arguments panel:

– Add the java.security.debug run-time flag

– Valid values:

access

Print all debug information including required permission, code, stack, and code base

location.

stack Print debug information including required permission, code, and stack.

failure Print debug information including required permission, and code.

For a review of Java security policies, see the Java 2 Security documentation at http://java.sun.com/j2se/
1.3/docs/guide/security/index.html.

Tip: If the application is running with a Java Mail application programming interface (API), this message

might be benign. You can update the installed Enterprise Application root/META-INF/was.policy file to grant

the following permissions to the application:

v permission java.io.FilePermission ″${user.home}${/}.mailcap″, ″read″;

v permission java.io.FilePermission ″${user.home}${/}.mime.types″, ″read″;

v permission java.io.FilePermission ″${java.home}${/}lib${/}mailcap″, ″read″;

v permission java.io.FilePermission ″${java.home}${/}lib${/}mime.types″, ″read″;

Error message: CWMSG0508E: The JMS Server security service was unable to

authenticate user ID:″ error displayed in SystemOut.log when starting an

application server

This error can result from installing the Java Message Service (JMS) API sample and then enabling

security. You can follow the instructions in the Configure and Run page of the corresponding JMS sample

documentation to configure the sample to work with WebSphere Application Server security.

You can verify the installation of the message-driven bean sample by launching the installation program,

selecting Custom, and browsing the components which are already installed in the Select the features you

like to install panel. The JMS sample is shown as Message-Driven Bean Sample, under Embedded

Messaging.

You can also verify this installation by using the administrative console to open the properties of the

application server that contains the samples. Select MDBSamples and click uninstall.

Error message: CWSCJ0237E: One or more vital LTPAServerObject configuration

attributes are null or not available after enabling security and starting the

application server.

This error message can result from selecting Lightweight Third Party Authentication (LTPA) as the

authentication mechanism, but not generating the LTPA keys. The LTPA keys encrypt the LTPA token.

To resolve this problem:

1. Click Security > Secure administration, applications and infrastructure> Authentication >

Authentication mechanisms and expiration> LTPA

2. Enter a password, which can be anything.

3. Enter the same password in Confirm Password.

4. Click Apply.

5. Click Generate Keys.

6. Click Save.

Chapter 22. Security 407

http://java.sun.com/j2se/1.3/docs/guide/security/index.html
http://java.sun.com/j2se/1.3/docs/guide/security/index.html

The AccessControlException exception, is reported in the SystemOut.log

The problem is related to the Java 2 security feature of WebSphere Application Server, the API-level

security framework that is implemented in WebSphere Application Server. An exception similar to the

following example displays. The error message and number can vary.

CWSRV0020E: [Servlet Error]-[validator]: Failed to load servlet:

java.security.AccessControlException: access denied

(java.io.FilePermission

/WebSphere/V6R1M0/AppServer/systemApps/isclite.ear/isclite.war/WEB-INF/validation.xml read)

Possible causes of these errors include:

v Syntax errors in a policy file.

v Syntax errors in permission specifications in the ra.xml file that is bundled in a .rar file. This case

applies to resource adapters that support connector access to CICS or other resources.

v An application is missing the specified permission in a policy file, or in permission specifications in

ra.xml file bundled in a .rar file.

v The class path is not set correctly, preventing the permissions for the resource.xml file for Service

Provider Programming Interface (SPI) from being correctly created.

v A library called by an application, or the application, is missing a doPrivileged block to support access to

a resource.

v Permission is specified in the wrong policy file.

To resolve these problems:

v Check all of the related policy files to verify that the permission shown in the exception, for example

java.io.FilePermission, is specified.

v Look for a related ParserException exception in the SystemOut.log file which reports the details of the

syntax error. For example:

CWSCJ0189E: Caught ParserException while creating template for application policy

/WebSphere/V6R1M0/AppServer1/profiles/profile_name/config/cells/cell_name/nodes/node_name/app.policy.

Where:

– V6R1M0 represents the version of WebSphere Application Server that you are using.

– cell_name represents the name of your cell.

– profile_name represents the name of your profile.

– node_name represents the name of your node.

The exception is com.ibm.ws.security.util.ParserException: line 18: expected ’;’, found ’grant’

v Look for a message similar to: CWSCJ0325W: The permission permission specified in the policy

file is unresolved.

v Check the call stack to determine which method does not have the permission. Identify the class path of

this method. If it is hard to identify the method, enable the Java2 security Report.

– The report shows:

Permission

The missing permission.

Code Which method has the problem.

Stack Trace

Where the access violation occurred.

CodeBaseLocation

The detail of each stack frame.

Usually, permission and code are enough to identify the problem. The following example illustrates a

report:

Permission:

/WebSphere/AppServer/logs/server1/SystemOut_02.08.20_11.19.53.log :

access denied (java.io.FilePermission

WebSphere/AppServer/logs/server1/SystemOut_02.08.20_11.19.53.log delete)

Code:

408 Troubleshooting and support

com.ibm.ejs.ras.RasTestHelper$7 in

{file:/WebSphere/AppServer/installedApps/app1/JrasFVTApp.ear/RasLib.jar}

Stack Trace:

java.security.AccessControlException: access denied (java.io.FilePermission

/WebSphere/AppServer/logs/server1/SystemOut_02.08.20_11.19.53.log delete)

 at java.security.AccessControlContext.checkPermission

 (AccessControlContext.java(Compiled Code))

 at java.security.AccessController.checkPermission

 (AccessController.java(Compiled Code))

 at java.lang.SecurityManager.checkPermission

 (SecurityManager.java(Compiled Code))

 .

Code Base Location:

com.ibm.ws.security.core.SecurityManager :

file:/WebSphere/AppServer/lib/securityimpl.jar

 ClassLoader: com.ibm.ws.bootstrap.ExtClassLoader

 Permissions granted to CodeSource

(file:/WebSphere/AppServer/lib/securityimpl.jar <no certificates>

 {

 (java.util.PropertyPermission java.vendor read);

 (java.util.PropertyPermission java.specification.version read);

 (java.util.PropertyPermission line.separator read);

 (java.util.PropertyPermission java.class.version read);

 (java.util.PropertyPermission java.specification.name read);

 (java.util.PropertyPermission java.vendor.url read);

 (java.util.PropertyPermission java.vm.version read);

 (java.util.PropertyPermission os.name read);

 (java.util.PropertyPermission os.arch read);

 }

 (This list continues.)

Where:

- app1 represents the name of your application.

- app_server_root represents the installation root directory for WebSphere Application Server

Network Deployment.

- profile_root represents the location and name of a particular profile in your system.

- profile1 or profile_name represents the name of your profile.

- server1 or server_namerepresents the name of your application server.
v If the method is SPI, check the resources.xml file to ensure that the class path is correct.

v To confirm that all of the policy files are loaded correctly, or what permission each class path is granted,

enable the trace with com.ibm.ws.security.policy.*=all=enabled. All loaded permissions are listed in

the trace.log file. Search for the app.policy, was.policy and ra.xml files. To check the permission list for a

class path, search for Effective Policy for classpath.

v If there are any syntax errors in the policy file or the ra.xml file, correct them with the policy tool. Avoid

editing the policy manually, because syntax errors can result. For additional information about using this

tool, refer to the section Using PolicyTool to edit policy files in the Developing and deploying

applications PDF book.

v If a permission is listed as Unresolved, it does not take effect. Verify that the specified permission name

is correct.

v If the class path that is specified in the resource.xml file is not correct, correct it.

v If a required permission does not exist in either the policy files or the ra.xml file, examine the application

code to see if you need to add this permission. If so, add it to the proper policy file or the ra.xml file.

v If the permission is not granted outside of the specific method that is accessing this resource, modify

the code needs to use a doPrivileged block.

Tip: If the application is running with the Java Mail API, you can update the installed Enterprise Application

root/META-INF/was.policy file to grant the following permissions to the application:

Chapter 22. Security 409

v permission java.io.FilePermission ″${user.home}${/}.mailcap″, ″read″;

v permission java.io.FilePermission ″${user.home}${/}.mime.types″, ″read″;

v permission java.io.FilePermission ″${java.home}${/}lib${/}mailcap″, ″read″;

v permission java.io.FilePermission ″${java.home}${/}lib${/}mime.types″, ″read″;

Error Message: CWSCJ0336E: Authentication failed for user {0} because of the

following exception {1}

This error message results if the user ID that is indicated is not found in the Lightweight Directory Access

Protocol (LDAP) user registry. To resolve this problem:

1. Verify that your user ID and password are correct.

2. Verify that the user ID exists in the registry.

3. Verify that the base distinguished name (DN) is correct.

4. Verify that the user filter is correct.

5. Verify that the bind DN and the password for the bind DN are correct. If the bind DN and password are

not specified, add the missing information and retry.

6. Verify that the host name and LDAP type are correct.

Consult with the administrator of the user registry if the problem persists.

Access problems after enabling security

Use this information if you are experiencing access problems after enabling security.

What kind of error are you seeing?

v I cannot access all or part of the administrative console or use the wsadmin tool after enabling security

v I cannot access a Web page after enabling security

v Authentication error accessing a Web page

v Authorization error accessing a Web page

v The client cannot access an enterprise bean after enabling security

v The client never gets prompted when accessing a secured enterprise bean

v I cannot stop an application server, node manager, or node after enabling security

v After enabling single sign-on, I cannot log on to the administrative console

v The following exception displays in the SystemOut.log file after I start the server and enable security:

″SECJ0306E: No received or invocation credential exists on the thread.″

I cannot access all or part of the administrative console or use the wsadmin tool

after enabling security

v If you cannot access the administrative console, or view and update certain objects, look in the logs of

the application server which hosts the administrative console page for a related error message.

Note: You will need to use the administrative console to complete the next two items. If you are having

a problem accessing the administrative console, you will have to turn off security and restart the

administrative console. To turn off security, enter the following command at the system command

prompt:

wsadmin.sh -conntype NONE

When the system command prompt displays again, enter:

securityoff

Restart the deployment manager after you turn off security.

v You might not have authorized your ID for administrative tasks. This problem is indicated by errors such

as:

– [8/2/02 10:36:49:722 CDT] 4365c0d9 RoleBasedAuth A CWSCJ0305A: Role based authorization

check failed for security name MyServer/myUserId, accessId MyServer/S-1-5-21-882015564-
4266526380-2569651501-1005 while invoking method getProcessType on resource Server and

module Server.

410 Troubleshooting and support

– Exception message: ″CWWMN0022E: Access denied for the getProcessType operation on Server

MBean″

– When running the command: wsadmin -username j2ee -password j2ee: CWWAX7246E: Cannot

establish ″SOAP″ connection to host ″BIRKT20″ because of an authentication failure. Ensure

that user and password are correct on the command line or in a properties file.

To grant an ID administrative authority, from the administrative console, click System Administration >

Console Users and validate that the ID is a member. If the ID is not a member, add the ID with at least

monitor access privileges, for read-only access.

v Verify that the enable_trusted_application flag is set to true. To check the enable_trusted_application

flag value using the administrative console, click Security > Secure administration, applications and

infrastructure. Under Additional properties, click Custom properties > EnableTrustedApplications.

Remember: You could encounter synchronization problems if you are in a Network Deployment

environment and save your security settings and the node agent was down.

I cannot access a Web page after enabling security

When secured resources are not accessible, probable causes include:

v Authentication errors - WebSphere Application Server security cannot identify the ID of the person or

process. Symptoms of authentication errors include:

On a Netscape browser:

– Authorization failed. Retry? message is displayed after an attempt to log in.

– Accepts any number of attempts to retry login and displays Error 401 message when Cancel is

clicked to stop retry.

– A typical browser message displays: Error 401: Basic realm=’Default Realm’.

On an Internet Explorer browser:

– Login prompt displays again after an attempt to log in.

– Allows three attempts to retry login.

– Displays Error 401 message after three unsuccessful retries.
v Authorization errors - The security function has identified the requesting person or process as not

authorized to access the secured resource. Symptoms of authorization errors include:

– Netscape browser: ″Error 403: AuthorizationFailed″ message is displayed.

– Internet Explorer:

- ″You are not authorized to view this page″ message is displayed.

- ″HTTP 403 Forbidden″ error is also displayed.
v SSL errors - WebSphere Application Server security uses Secure Sockets Layer (SSL) technology

internally to secure and encrypt its own communication, and incorrect configuration of the internal SSL

settings can cause problems. Also you might have enabled SSL encryption for your own Web

application or enterprise bean client traffic which, if configured incorrectly, can cause problems

regardless of whether WebSphere Application Server security is enabled.

– SSL-related problems are often indicated by error messages that contain a statement such as:

ERROR: Could not get the initial context or unable to look up the starting

context.Exiting. followed by javax.net.ssl.SSLHandshakeException

The client cannot access an enterprise bean after enabling security

If the client access to an enterprise bean fails after security is enabled:

v Review the steps for securing and granting access to resources.

v Browse the server logs for errors that relate to enterprise bean access and security. Look up any errors

in the message table.

Errors similar to Authorization failed for /UNAUTHENTICATED while invoking resource

securityName:/UNAUTHENTICATED;accessId:UNAUTHENTICATED not granted any of the required roles

roles indicate that:

Chapter 22. Security 411

– An unprotected servlet or JavaServer Pages (JSP) file accessed a protected enterprise bean. When

an unprotected servlet is accessed, the user is not prompted to log in and the servlet runs as

UNAUTHENTICATED. When the servlet makes a call to an enterprise bean that is protected, the

servlet fails.

To resolve this problem, secure the servlet that is accessing the protected enterprise bean. Make

sure that the runAs property for the servlet is set to an ID that can access the enterprise bean.

– An unauthenticated Java client program is accessing an enterprise bean resource that is protected.

This situation can happen if the file that is read by the sas.client.props properties file that is used

by the client program does not have the securityEnabled flag set to true.

To resolve this problem, make sure that the sas.client.props file on the client side has its

securityEnabled flag set to true.

Errors similar to Authorization failed for valid_user while invoking resource securityName:/
username;accessId:xxxxxx not granted any of the required roles roles indicate that a client

attempted to access a secured enterprise bean resource, and the supplied user ID is not assigned the

required roles for that enterprise bean.

– Check that the required roles for the enterprise bean resource are accessed. View the required roles

for the enterprise bean resource in the deployment descriptor of the Web resource.

– Check the authorization table and make sure that the user or the group that the user belongs to is

assigned one of the required roles. You can view the authorization table for the application that

contains the enterprise bean resource using the administrative console.
v If you are using Local OS and System Authorization Facility (SAF) Authorization, check the SAF

EJBROLEs setup. Specifically, verify that

– the EJBROLE class is activated.

– The role is defined to SAF.

– The userid is permitted to the role.

– The class is refreshed after the permit operation.

Client program never gets prompted when accessing secured enterprise bean

Even though it seems that security is enabled and an enterprise bean is secured, occasions can occur

when the client runs the remote method without prompting. If the remote method is protected, an

authorization failure results. Otherwise, run the method as an unauthenticated user.

Possible reasons for this problem include:

v The server with which you are communicating might not have security enabled. Check with the

WebSphere Application Server administrator to ensure that the server security is enabled. Access the

security settings from within the Security section of the administrative console.

v The client does not have security enabled in the sas.client.props file. Edit the sas.client.props file

to ensure the property com.ibm.CORBA.securityEnabled is set to true.

v The client does not have a ConfigURL specified. Verify that the property com.ibm.CORBA.ConfigURL is

specified on the command line of the Java client, using the -D parameter.

v The specified ConfigURL does not have a valid URL syntax, or the sas.client.props that is pointed to

cannot be found. Verify that the com.ibm.CORBA.ConfigURL property is valid. Check the Java

documentation for a description of URL formatting rules. Also, validate that the file exists at the specified

path.

Cannot stop an application server, node manager, or node after enabling security

If you use command-line utilities to stop WebSphere Application Server processes, apply additional

parameters after enabling security to provide authentication and authorization information.

412 Troubleshooting and support

After enabling single sign-on, I cannot logon to the administrative console

This problem occurs when single sign-on (SSO) is enabled, and you attempt to access the administrative

console using the short name of the server, for example http://myserver:port_number/ibm/console. The

server accepts your user ID and password, but returns you to the logon page instead of the administrative

console.

To correct this problem, use the fully qualified host name of the server, for example http://
myserver.mynetwork.mycompany.com:9060/ibm/console.

The following exception displays in the SystemOut.log file after I start the server

and enable security: ″SECJ0306E: No received or invocation credential exists on

the thread.″

The following message displays when one or more nodes within the cell was not synchronized during

configuration:

SECJ0306E: No received or invocation credential exists on the thread. The Role based

authorization check will not have an accessId of the caller to check. The parameters

are: access check method getServerConfig on resource FileTransferServer and module

FileTransferServer. The stack trace is java.lang.Exception: Invocation and received

credentials are both null.

Make sure that each of the nodes are synchronized and then restart the deployment manager.

Errors after configuring or enabling Secure Sockets Layer

This topic explains various problems you might encounter after configuring or enabling Secure Sockets

Layer (SSL).

Stopping the deployment manager after configuring Secure Sockets Layer

After configuring the Secure Sockets Layer repertoires, if you stop the deployment manager without also

stopping the node agents, you might receive the following error message when you restart the deployment

manager:

CWWMU0509I: The server "nodeagent" cannot be reached. It appears to be stopped.

CWWMU0211I: Error details may be seen in the file:

 /opt/WebSphere/AppServer/logs/nodeagent/stopServer.log

The error occurs because the deployment manager did not propagate the new SSL certificate to the node

agents. The node agents are using an older certificate file than the deployment manager and the

certificate files are incompatible. To work around this problem, you must manually stop the node agent and

deployment manager processes.

To end the processes, use the MVS console and type c process_name.

You need to consider certain items when identifying the specific process to stop. For each process that is

stopped, WebSphere Application Server stores the process ID in a pid file and you need to find these

*.pid files. For example, the server1.pid for a stand-alone install action might be found at:

install_root/logs/server1.pid

Accessing resources using HTTPS

If you are unable to access resources using a Secure Sockets Layer (SSL) URL (beginning with https:),

or encounter error messages that indicate SSL problems, verify that your HTTP server is configured

correctly for SSL. Browse the welcome page of the HTTP server using SSL by entering the URL:

https://host_name.

Chapter 22. Security 413

If the page works with HTTP, but not HTTPS, the problem is with the HTTP server.

v Refer to the documentation for your HTTP server for instructions on correctly enabling SSL. If you are

using the IBM HTTP Server or Apache, go to: http://www.ibm.com/software/webservers/httpservers/
library.html. Click Frequently Asked Questions> SSL.

v If you use the IBM Key Management (IKeyman) tool to create certificates and keys, remember to stash

the password to a file when creating the Key Database (KDB) file with the IBM Key Management Tool.

1. Go to the directory where the KDB file is created, and see if an .sth file exists.

2. If not, open the KDB file with the IBM Key Management Tool, and click Key Database File > Stash

Password. The following message is displayed: The password has been encrypted and saved in

the file.

If the HTTP server handles SSL-encrypted requests successfully, or is not involved (for example, traffic

flows from a Java client application directly to an enterprise bean that is hosted by WebSphere Application

Server, or the problem displays only after enabling WebSphere Application Server security), what kind of

error are you seeing?

System SSL

See z/OS System Secure Sockets Layer Programming SC24-5901 for information on using the System

Secure Sockets Layer (SSL) callable services programming interfaces.

v javax.net.ssl.SSLHandshakeException - The client and server could not negotiate the desired

level of security. Reason: handshake failure

v javax.net.ssl.SSLHandshakeException - The client and server could not negotiate the desired

level of security. Reason: unknown certificate

v javax.net.ssl.SSLHandshakeException - The client and server could not negotiate the desired

level of security. Reason: bad certificate

For general tips on diagnosing and resolving security-related problems, see “Security components

troubleshooting tips” on page 393

If you do not see a problem that resembles yours, or if the information provided does not solve your

problem, see “Troubleshooting help from IBM” on page 188

javax.net.ssl.SSLHandshakeException - The client and server could not negotiate

the desired level of security. Reason: handshake failure

If you see a Java exception stack similar to the following example:

[Root exception is org.omg.CORBA.TRANSIENT: CAUGHT_EXCEPTION_WHILE_CONFIGURING_

SSL_CLIENT_SOCKET: CWWJE0080E: javax.net.ssl.SSLHandshakeException - The client

and server could not negotiate the desired level of security. Reason: handshake

failure:host=MYSERVER,port=1079 minor code: 4942F303 completed: No] at

com.ibm.CORBA.transport.TransportConnectionBase.connect

(TransportConnectionBase.java:NNN)

Some possible causes are:

v Not having common ciphers between the client and server.

v Not specifying the correct protocol.

To correct these problems:

1. Review the SSL settings. In the administrative console, click Security > SSL certificate and key

management. Under Configuration settings, click Manage endpoint security configurations >

endpoint_configuration_name. Under Related items, click SSL configurations >

SSL_configuration_name. You can also browse the file manually by viewing the install_root/
properties/sas.client.props file.

2. Check the property that is specified by the com.ibm.ssl.protocol file to determine which protocol is

specified.

414 Troubleshooting and support

http://www.ibm.com/software/webservers/httpservers/library.html
http://www.ibm.com/software/webservers/httpservers/library.html

3. Check the cipher types that are specified by the com.ibm.ssl.enabledCipherSuites interface. You might

want to add more cipher types to the list. To see which cipher suites are currently enabled, click

Quality of protection settings (QoP), and look for the Cipher Suites property.

4. Correct the protocol or cipher problem by using a different client or server protocol and cipher

selection. Typical protocols are SSL or SSLv3.

javax.net.ssl.SSLHandshakeException: unknown certificate

If you see a Java exception stack similar to the following example, it might be caused by not having the

personal certificate for the server in the client truststore file:

ERROR: Could not get the initial context or unable to look up the starting context.

Exiting. Exception received: javax.naming.ServiceUnavailableException: A

communication failure occurred while attempting to obtain an initial context using

the provider url: "corbaloc:iiop:localhost:2809". Make sure that the host and port

information is correct and that the server identified by the provider url is a

running name server. If no port number is specified, the default port number 2809

is used. Other possible causes include the network environment or workstation

network configuration. [Root exception is org.omg.CORBA.TRANSIENT:

CAUGHT_EXCEPTION_WHILE_CONFIGURING_SSL_CLIENT_SOCKET: CWWJE0080E:

javax.net.ssl.SSLHandshakeException - The client and server could not

negotiate the desired level of security. Reason: unknown

certificate:host=MYSERVER,port=1940 minor code: 4942F303 completed: No]

To correct this problem:

1. Check the client truststore file to determine if the signer certificate from the server personal certificate

is there. For a self-signed server personal certificate, the signer certificate is the public key of the

personal certificate. For a certificate authority (CA)-signed server personal certificate, the signer

certificate is the root CA certificate of the CA that signed the personal certificate.

2. Add the server signer certificate to the client truststore file.

javax.net.ssl.SSLHandshakeException: bad certificate

A Java exception stack error might display if the following situations occur:

v A personal certificate exists in the client keystore that is used for SSL mutual authentication.

v The signer certificate is not extracted into the server truststore file, and thus the server cannot trust the

certificate whenever the SSL handshake is made.

The following message is an example of the Java exception stack error:

ERROR: Could not get the initial context or unable to look

up the starting context. Exiting.

Exception received: javax.naming.ServiceUnavailableException:

A communication failure occurred while attempting to obtain an

initial context using the provider url: "corbaloc:iiop:localhost:2809".

Make sure that the host and port information is correct and that the

server identified by the provider url is a running name

server. If no port number is specified, the default port number 2809

is used. Other possible causes include the network environment or

workstation network configuration.

[Root exception is org.omg.CORBA.TRANSIENT: CAUGHT_EXCEPTION_WHILE_CONFIGURING_SSL_

CLIENT_SOCKET: CWWJE0080E: javax.net.ssl.SSLHandshakeException - The client and

server could not negotiate the desired level of security. Reason:

bad certificate: host=MYSERVER,port=1940 minor code: 4942F303 completed: No]

To verify this problem, check the server truststore file to determine if the signer certificate from the client

personal certificate is there. For a self-signed client personal certificate, the signer certificate is the public

key of the personal certificate. For a certificate authority-signed client personal certificate, the signer

certificate is the root CA certificate of the CA that signed the personal certificate.

To correct this problem, add the client signer certificate to the server truststore file.

Chapter 22. Security 415

Single sign-on configuration troubleshooting tips

This topic describes common problems in configuring single sign-on (SSO) between a WebSphere

Application Server and a Domino server and suggests possible solutions.

v Failure to save the Domino Web SSO configuration document

The client must find Domino server documents for the participating SSO Domino servers. The Web

SSO configuration document is encrypted for the servers that you specify. The home server that is

indicated by the client location record must point to a server in the Domino domain where the

participating servers reside. This pointer ensures that lookups can find the public keys of the servers.

If you receive a message stating that one or more of the participating Domino servers cannot be found,

then those servers cannot decrypt the Web SSO configuration document or perform SSO.

When the Web SSO configuration document is saved, the status bar indicates how many public keys

are used to encrypt the document by finding the listed servers, authors, and administrators in the

document.

v Failure of the Domino server console to load the Web SSO configuration document at Domino HTTP

server startup

During configuration of SSO, the server document is configured for Multi-Server in the Session

Authentication field. The Domino HTTP server tries to find and load a Web SSO configuration

document during startup. The Domino server console reports the following information if a valid

document is found and decrypted: HTTP: Successfully loaded Web SSO Configuration.

If a server cannot load the Web SSO configuration document, SSO does not work. In this case, a

server reports the following message: HTTP: Error Loading Web SSO configuration. Reverting to

single-server session authentication.

Verify that only one Web SSO configuration document is in the Web configurations view of the Domino

directory and in the $WebSSOConfigs hidden view. You cannot create more than one document, but

you can insert additional documents during replication.

If you can verify only one Web SSO configuration document, consider another condition. When the

public key of the server document does not match the public key in the ID file, this same error message

can display. In this case, attempts to decrypt the Web SSO configuration document fail and the error

message is generated.

This situation can occur when the ID file is created multiple times, but the Server document is not

updated correctly. Usually, an error message is displayed on the Domino server console stating that the

public key does not match the server ID. If this situation occurs, SSO does not work because the

document is encrypted with a public key for which the server does not possess the corresponding

private key.

To correct a key-mismatch problem:

1. Copy the public key from the server ID file and paste it into the Server document.

2. Create the Web SSO configuration document again.

v Authentication fails when accessing a protected resource.

If a Web user is repeatedly prompted for a user ID and password, SSO is not working because either

the Domino or the WebSphere Application Server security server cannot authenticate the user with the

Lightweight Directory Access Protocol (LDAP) server. Check the following possibilities:

– Verify that the LDAP server is accessible from the Domino server machine. Use the TCP/IP ping

utility to check TCP/IP connectivity and to verify that the host machine is running.

– Verify that the LDAP user is defined in the LDAP directory. Use the idsldapsearch utility to confirm

that the user ID exists and that the password is correct. For example, you can run the following

command, entered as a single line:

% ldapsearch -D "cn=John Doe, ou=Rochester, o=IBM, c=US" -w mypassword

-h myhost.mycompany.com -p 389 -b "ou=Rochester, o=IBM, c=US" (objectclass=*)

The percent character (%) indicates the prompt and is not part of the command. A list of directory

entries is expected. Possible error conditions and causes are contained in the following list:

416 Troubleshooting and support

- No such object: This error indicates that the directory entry referenced by either the user’s

distinguished name (DN) value, which is specified after the -D option, or the base DN value, which

is specified after the -b option, does not exist.

- Credentials that are not valid: This error indicates that the password is not valid.

- Cannot contact the LDAP server: This error indicates that the host name or the port specified for

the server is not valid or that the LDAP server is not running.

- An empty list means that the base directory that is specified by the -b option does not contain any

directory entries.
– If you are using the user’s short name or user ID instead of the distinguished name, verify that the

directory entry is configured with the short name. For a Domino directory, verify the Short

name/UserID field of the Person document. For other LDAP directories, verify the userid property of

the directory entry.

– If Domino authentication fails when using an LDAP directory other than a Domino directory, verify the

configuration settings of the LDAP server in the Directory assistance document in the Directory

assistance database. Also verify that the Server document refers to the correct Directory assistance

document. The following LDAP values that are specified in the Directory Assistance document must

match the values specified for the user registry in the WebSphere Application Server administrative

domain:

- Domain name

- LDAP host name

- LDAP port

- Base DN

Additionally, the rules that are defined in the Directory assistance document must refer to the base

distinguished name (DN) of the directory that contains the directory entries of the users.

You can trace Domino server requests to the LDAP server by adding the following line to the server

notes.ini file:

webauth_verbose_trace=1

After restarting the Domino server, trace messages are displayed in the Domino server console as

Web users attempt to authenticate to the Domino server.

v Authorization failure when accessing a protected resource.

After authenticating successfully, if an authorization error message is displayed, security is not

configured correctly. Check the following possibilities:

– For Domino databases, verify that the user is defined in the access-control settings for the database.

Refer to the Domino administrative documentation for the correct way to specify the user’s DN. For

example, for the DN cn=John Doe, ou=Rochester, o=IBM, c=US, the value on the access-control list

must be set as John Doe/Rochester/IBM/US.

– For resources that are protected by WebSphere Application Server, verify that the security

permissions are set correctly.

- If granting permissions to selected groups, make sure that the user attempting to access the

resource is a member of the group. For example, you can verify the members of the groups by

using the following Web site to display the directory contents: Ldap://myhost.mycompany.com:389/
ou=Rochester, o=IBM, c=US??sub

- If you changed the LDAP configuration information (host, port, and base DN) in a WebSphere

Application Server administrative domain since the permissions were set, the existing permissions

are probably not valid and need to be recreated.

v SSO failure when accessing protected resources.

If a Web user is prompted to authenticate with each resource, SSO is not configured correctly. Check

the following possibilities:

1. Configure both WebSphere Application Server and the Domino server to use the same LDAP

directory. The HTTP cookie that is used for SSO stores the full DN of the user, for example, cn=John

Doe, ou=Rochester, o=IBM, c=US, and the domain name service (DNS) domain.

Chapter 22. Security 417

2. Define Web users by hierarchical names if the Domino directory is used. For example, update the

User name field in the Person document to include names of this format as the first value: John

Doe/Rochester/IBM/US.

3. Specify the full DNS server name, not just the host name or TCP/IP address for Web sites issued to

Domino servers and WebSphere Application Servers that are configured for SSO. For browsers to

send cookies to a group of servers, the DNS domain must be included in the cookie, and the DNS

domain in the cookie must match the Web address. This requirement is why you cannot use cookies

across TCP/IP domains.

4. Configure both Domino and the WebSphere Application Server to use the same DNS domain. Verify

that the DNS domain value is exactly the same, including capitalization. You need the name of the

DNS domain in which WebSphere Application Server is configured. For additional information about

configuring DNS domains for SSO, refer to the Single sign-on topic in the Securing applications and

their environment PDF book.

5. Verify that the clustered Domino servers have the host name populated with the full DNS server

name in the server document. By using the full DNS server name, Domino Internet Cluster Manager

(ICM) can redirect to cluster members using SSO. If this field is not populated, by default, ICM

redirects Web addresses to clustered Web servers by using the host name of the server only. ICM

cannot send the SSO cookie because the DNS domain is not included in the Web address. To

correct the problem:

a. Edit the Server document.

b. Click Internet Protocols > HTTP tab.

c. Enter the full DNS name of the server in the Host names field.
6. If a port value for an LDAP server is specified for a WebSphere Application Server administrative

domain, edit the Domino Web SSO configuration document and insert a backslash character (\) into

the value of the LDAP Realm field before the colon character (:). For example, replace

myhost.mycompany.com:389 with myhost.mycompany.com\:389.

Authorization provider troubleshooting tips

This article describes the issues you might encounter using a Java Authorization Contract for Containers

(JACC) authorization provider. Tivoli Access Manager is bundled with WebSphere Application Server as an

authorization provider. However, you also can plug in your own authorization provider.

Tivoli Access Manager as a Java Authorization Contract for Containers

authorization provider

You might encounter the following issues when using Tivoli Access Manager as a JACC authorization

provider:

v The configuration of JACC might fail.

v The server might fail to start after configuring JACC.

v The application might not deploy properly.

v The startServer command might fail after you have configured Tivoli Access Manager or a clean

uninstall did not take place after unconfiguring JACC.

v An ″HPDIA0202w An unknown user name was presented to Access Manager″ error might occur.

v An ″HPDAC0778E The specified user’s account is set to invalid″ error might occur.

v An WASX7017E: Exception received while running file ″InsuranceServicesSingle.jacl″ error might occur.

v “Access denied exceptions accessing applications when using JACC” on page 421

v “An ″HPDBA0219E: An error occurred reading data from an SSL connection″ might occur” on page 422

v A ″There are no ports available in the port set″ error might occur

v A FileNotFoundException error might occur

418 Troubleshooting and support

External providers for Java Authorization Contract for Containers authorization

provider

You might encounter the following issues when you use an external provider for JACC authorization:

v An ″HPDJA0506E Invalid argument: Null or zero-length user name field for the ACL entry″ error might

occur.

The configuration of JACC might fail

If you have problems configuring JACC, check the following items:

v Ensure that the parameters are correct. For example, you do not want a number after

TAM_Policy_server_hostname:7135, but you do want be a number after

TAM_Authorization_server_hostname:7136 (for example, TAM_Authorization_server_hostname:7136:1).

v If a message such as “server can’t be contacted” is displayed, it is possible that the host names or port

numbers of the Tivoli Access Manager servers are incorrect, or that the Tivoli Access Manager servers

have not started.

v Ensure that the password for the sec_master user is correct.

v Check the SystemOut.log file and search for the AMAS string to see if any error messages are present.

The server might fail to start after configuring JACC

If the server does not start after JACC is configured, check the following items:

v Ensure that WebSphere Application Server and Tivoli Access Manager use the same Lightweight

Directory Access Protocol (LDAP) server.

v If the message “Policy Director Authentication failed″ is displayed, ensure that the:

– WebSphere Application Server LDAP server ID is the same as the “Administrator user” in the Tivoli

Access Manager JACC configuration panel.

– Verify that the Tivoli Access Manager Administrator distinguished name (DN) is correct.

– Verify that the password of the Tivoli Access Manager administrator has not expired and is valid.

– Ensure that the account is valid for the Tivoli Access Manager administrator.

v If a message such as socket can’t be opened for xxxx (where xxxx is a number) is displayed, take

the following actions:

1. Go to the profile_root/etc/tam directory.

2. Change xxxx to an available port number in the amwas.commomconfig.properties file, and the

amwas*cellName_dmgr.properties file if the deployment manager failed to start. If the node failed to

start, change xxx to an available port number in the amwas*cellName_nodeName_.properties file. If

the Application Server failed to start, change xxxx in the

amwas*cellname_nodeName_serverName.properties file.

The application might not deploy properly

When you click Save, the policy and role information is propagated to the Tivoli Access Manager policy.

This process might take some time to finish. If the save fails, you must uninstall the application and then

reinstall it.

To access an application after it is installed, you must wait 30 seconds, by default, to start the application

after you save.

Chapter 22. Security 419

The startServer command might fail after you configure Tivoli Access Manager or

a clean uninstall did not take place after unconfiguring JACC.

If the cleanup for JACC unconfiguration or start server fails after JACC is configured, take the following

actions:

v Remove Tivoli Access Manager properties files from WebSphere Application Server. For each

application server in a Network Deployment (ND) environment with N servers defined (for example,

server1, server2).

The following files must be removed.

install_root/java/jre/PdPerm.properties

install_root/java/jre/PdPerm.ks

profile_root/etc/tam/*

v Use a utility to clear the security configuration and return the system to the state it was in before you

configure the JACC provider for Tivoli Access Manager. The utility removes all of the

PDLoginModuleWrapper entries as well as the Tivoli Access Manager authorization table entry from the

security.xml file, effectively removing the JACC provider for Tivoli Access Manager. Backup the

security.xml file before running this utility.

Enter the following commands:

install_root/java/jre/bin/java -classpath

"install_root/lib/AMJACCProvider.jar:CLASSPATH"

com.tivoli.pd.as.jacc.cfg.CleanSecXML fully_qualified_path/security.xml

An ″HPDIA0202w An unknown user name was presented to Access Manager″ error

might occur

You might encounter the following error message if you try to use an existing user in a Local Directory

Access Protocol (LDAP) user registry with Tivoli Access Manager:

AWXJR0008E Failed to create a PDPrincipal for principal mgr1.:

AWXJR0007E A Tivoli Access Manager exception was caught. Details are:

"HPDIA0202W An unknown user name was presented to Access Manager."

This problem might be caused by the host name exceeding predefined limits with Tivoli Access Manager

when it is configured against MS Active Directory. In WebSphere Application Server, the maximum length

of the host name can not exceed 46 characters.

Check that the host name is not fully qualified. Configure the machine so that the host name does not

include the host domain.

To correct this error, complete the following steps:

1. On the command line, type the following information to get a Tivoli Access Manager command prompt:

pdadmin -a administrator_name -p administrator_password

The pdadmin administrator_name prompt is displayed. For example:

pdadmin -a administrator1 -p passw0rd

2. At the pdadmin command prompt, import the user from the LDAP user registry to Tivoli Access

Manager by typing the following information:

user import user_name cn=user_name,o=organization_name,c=country

For example:

user import jstar cn=jstar,o=ibm,c=us

After importing the user to Tivoli Access Manager, you must use the user modify command to set the user

account to valid. The following syntax shows how to use this command:

user modify user_name account-valid yes

420 Troubleshooting and support

For example:

user modify jstar account-valid yes

For information on how to import a group from LDAP to Tivoli Access Manager, see the Tivoli Access

Manager documentation.

An ″HPDAC0778E The specified user’s account is set to invalid″ error might occur

You might encounter the following error message after you import a user to Tivoli Access Manager and

restart the client:

AWXJR0008E Failed to create a PDPrincipal for principal mgr1.:

AWXJR0007E A Tivoli Access Manager exception was caught.

Details are: "HPDAC0778E The specified user’s account is set to invalid."

To correct this error, use the user modify command to set the user account to valid. The following syntax

shows how to use this command:

user modify user_name account-valid yes

For example:

user modify jstar account-valid yes

An ″HPDJA0506E Invalid argument: Null or zero-length user name field for the ACL

entry″ error might occur

You might encounter an error similar to the following message when you propagate the security policy

information from the application to the provider using the wsadmin propagatePolicyToJACCProvider

command:

AWXJR0035E An error occurred while attempting to add member,

 cn=agent3,o=ibm,c=us, to role AgentRole

HPDJA0506E Invalid argument: Null or zero-length user name field for

 the ACL entry

To correct this error, create or import the user, that is mapped to the security role to the Tivoli Access

Manager. For more information on propagating the security policy information, see the documentation for

your authorization provider.

An WASX7017E: Exception received while running file

″InsuranceServicesSingle.jacl″ error might occur

After the JACC provider and Tivoli Access Manager are enabled, when attempting to install the application,

which is configured with security roles using the wsadmin command, the following error might occur:

WASX7017E: Exception received while running file "InsuranceServicesSingle.jacl";

exception information: com.ibm.ws.scripting.ScriptingException: WASX7111E:

Cannot find a match for supplied option:

"[RuleManager, , , cn=mgr3,o=ibm,c=us|cn=agent3,o=ibm,c=us, cn=ManagerGro

up,o=ibm,c=us|cn=AgentGroup,o=ibm,c=us]" for task "MapRolesToUsers

The $AdminApp MapRolesToUsers task option is no longer valid when Tivoli Access Manager is used as

the authorization server. To correct the error, change MapRolesToUsers to TAMMapRolesToUsers.

Access denied exceptions accessing applications when using JACC

In the case of Tivoli Access Manager, you might see the following error message.

AWXJR0044E: The access decision for Permission, {0}, was denied because either the

PolicyConfiguration or RoleConfiguration objects did not get created successfully at

application installation time. RoleConfiguration exists = {false}, PolicyConfiguration

exists = {false}."

Chapter 22. Security 421

If the access denied exceptions are not expected for the application, check the SystemOut.log files to see

if the security policy information was correctly propagated to the provider.

If the security policy information for the application is successfully propagated to the provider, the audit

statements with the message key SECJ0415I appear. However, if there was a problem propagating the

security policy information to the provider (for example: network problems, JACC provider is not available),

the SystemOut.log files contain the error message with the message keys SECJ0396E (during install) or

SECJ0398E (during modification). The installation of the application is not stopped due to a failure to

propagate the security policy to the JACC provider. Also, in the case of failure, no exception or error

messages appear during the save operation. When the problem causing this failure is fixed, run the

propagatePolicyToJaccProvider tool to propagate the security policy information to the provider without

reinstalling the application. For more information about this task, see the Propagating security policy of

installed applications to a JACC provider using wsadmin scripting topic in the Securing applications and

their environment PDF book.

An ″HPDBA0219E: An error occurred reading data from an SSL connection″ might

occur

An error message (HPDBA0219E) might appear in dmgr SystemOut.log when you install an application on

WebSphere Application Server for Network Deployment (ND) and a managed node with Tivoli Access

Manager is enabled.

If the error occurs, then the security policy data of recently deployed applications might not be immediately

available. The policy data is available based on the server replicate time of the Tivoli Access Manager.

This is defaulted to 30 seconds after all updates have been completed. To ensure that the latest policy

data is available, log on to the pdadmin console and type: server replicate.

A ″There are no ports available in the port set″ error might occur

When you use Tivoli Access Manager as the JACC provider and stop WebSphere Application Server using

the administrative console or the wsadmin script, there is a clean up process that runs for Tivoli Access

Manager. WebSphere Application Server is unable to complete the clean up process.

WebSphere Application Server uses a different port number for each new process. Eventually, the

application server runs out of port numbers to connect to the Tivoli Access Manager server and displays a

″There are no ports available in the port set″ error.

If this error occurs, you must manually clean up the ports that are available to WebSphere Application

Server processes. A script is provided to complete this process. For more information, see Cancelling

multiple processes with Tivoli Access Manager as the Java Authorization Contract for Containers (JACC)

provider might cause a ″There are no ports available in the port set″ error .

A FileNotFoundException error might occur

You might encounter memory shortage problems when WebSphere Application Server runs with Tivoli

Access Manager as the JACC provider. To fix this issue after you configure Tivoli Access Manager as the

Java Authorization Contract for Containers (JACC) provider, complete the following steps:

1. Set the com.tivoli.pd.as.atcc.ATCCache.enabled property to false in the

amwas.amjacc.template.properties file. This file is located in the PROFILE_HOME/config/cells/
cell_name/ directory.

2. Set the amwas.NODENAME_SERVERNAME.amjacc.properties property to false in the PROFILE_HOME/etc/tam

directory.

3. Restart WebSphere Application Server.

422 Troubleshooting and support

http://www.ibm.com/support/docview.wss?rs=727&uid=swg21209611
http://www.ibm.com/support/docview.wss?rs=727&uid=swg21209611
http://www.ibm.com/support/docview.wss?rs=727&uid=swg21209611

SPNEGO trust association interceptor (TAI) troubleshooting tips

Presented here is a list of trouble shooting tips useful in diagnosing Simple and Protected GSS-API

Negotiation (SPNEGO) TAI problems and exceptions.

The IBM Java Generic Security Service (JGSS) and IBM SPNEGO providers use a Java virtual machine

(JVM) custom property to control trace information. The SPNEGO TAI uses the JRas facility to allow an

administrator to trace only specific classes. To debug the TAI using tracing, the following important trace

specifications or JVM customer should be used:

 Table 7. SPNEGO TAI trace specifications

Trace Use

com.ibm.security.jgss.debug Set this JVM Custom Property to all to trace through JGSS code.

Messages appear in the trace.log file, and SystemOut.log.

com.ibm.security.krb5.Krb5Debug Set this JVM Custom Property to all to trace through the

Kerberos5-specific JGSS code. Messages appear in the trace.log file, and

SystemOut.log.

com.ibm.ws.security.spnego.* Set this trace on using the administrative console > troubleshooting >

Logging and Tracing > server1 > Change Log Detail Levels >

com.ibm.ws.security.spnego.*. Messages appear in the trace.log file.

Problem: WebSphere Application Server and the Active Directory (AD) Domain

Controller’s time are not synchronized within 5 minutes

The time is not synchronized between WebSphere Application Server and AD Domain Controller.

[2/24/06 13:12:46:093 CST] 00000060 Context 2 com.ibm.ws.security.spnego.Context

 begin GSSContext accepted

[2/24/06 13:12:46:093 CST] 00000060 Context E com.ibm.ws.security.spnego.Context

 begin

CWSPN0011E: An invalid SPNEGO token has been encountered while authenticating a

 HttpServletRequest:

0000: 60820160 06062b06 01050502 a1820154 `..` ..+. T

0010: 30820150 a0030a01 01a10b06 092a8648 0..P *.H

0020: 82f71201 0202a282 013a0482 01366082 :.. .6`.

0030: 01320609 2a864886 f7120102 0203007e .2.. *.H. ~

0040: 82012130 82011da0 03020105 a1030201 ..!0

0050: 1ea41118 0f323030 36303232 34313931 200 6022 4191

0060: 3234365a a5050203 016b48a6 03020125 246Z kH. ...%

0070: a9161b14 57535345 432e4155 5354494e WSSE C.AU STIN

0080: 2e49424d 2e434f4d aa2d302b a0030201 .IBM .COM .-0+

0090: 00a12430 221b0448 5454501b 1a773230 ..$0 "..H TTP. .w20

00a0: 30337365 63646576 2e617573 74696e2e 03se cdev .aus tin.

00b0: 69626d2e 636f6dab 81aa1b81 a76f7267 ibm. com. org

00c0: 2e696574 662e6a67 73732e47 53534578 .iet f.jg ss.G SSEx

00d0: 63657074 696f6e2c 206d616a 6f722063 cept ion, maj or c

00e0: 6f64653a 2031302c 206d696e 6f722063 ode: 10, min or c

00f0: 6f64653a 2033370a 096d616a 6f722073 ode: 37. .maj or s

0100: 7472696e 673a2044 65666563 74697665 trin g: D efec tive

0110: 20746f6b 656e0a09 6d696e6f 72207374 tok en.. mino r st

0120: 72696e67 3a20436c 69656e74 2074696d ring : Cl ient tim

0130: 65204672 69646179 2c204665 62727561 e Fr iday , Fe brua

0140: 72792032 342c2032 30303620 61742031 ry 2 4, 2 006 at 1

0150: 3a31323a 34352050 4d20746f 6f20736b :12: 45 P M to o sk

0160: 65776564 ewed

Chapter 22. Security 423

Solution: You can fix this in one of two ways. The preferred way is to synchronize the WebSphere

Application Server system time to within 5 minutes of the AD server’s time. A best practice is to use a time

server to keep all systems synchronized. Or you can add or adjust the clockskew parameter in the

Kerberos configuration file.

Note: The default for the clockskew parameter is 300 seconds (or 5 minutes).

Problem: Getting exception: No factory available to create a name for mechanism

1.3.6.1.5.5.2

There apparently is no factory available to process the creation of a name for the specific mechanism.

The systemout.log file displays something like this:

[4/8/05 22:51:24:542 EDT] 5003e481 SystemOut O [JGSS_DBG_PROV] Provider

 IBMJGSSProvider version 1.01 does not support mech 1.3.6.1.5.5.2

[4/8/05 22:51:24:582 EDT] 5003e481 ServerCredent >

 com.ibm.ws.security.spnego.ServerCredential initialize ENTRY

SPNEGO014: Kerberos initialization Failure: org.ietf.jgss.GSSException, major code: 2,

 minor code: 0

 major string: Unsupported mechanism

 minor string: No factory available to create name for mechanism 1.3.6.1.5.5.2

 at com.ibm.security.jgss.i18n.I18NException.throwGSSException

 (I18NException.java:30)

 at com.ibm.security.jgss.GSSManagerImpl.a(GSSManagerImpl.java:36)

 at com.ibm.security.jgss.GSSCredentialImpl.add(GSSCredentialImpl.java:217)

 at com.ibm.security.jgss.GSSCredentialImpl.<init>(GSSCredentialImpl.java:264)

Solution: Check the java.security file to ensure it contains the IBMSPNEGO security provider and that

the provider is defined correctly. The java.security file should contain a line similar to:

security.provider.6=com.ibm.security.jgss.mech.spnego.IBMSPNEGO

Problem: Getting an exception

An exception has occurred when reporting to the client.

You get the following display.

Error authenticating request. Reporting to client

Major code = 11, Minor code = 31

org.ietf.jgss.GSSException, major code: 11, minor code: 31

 major string: General failure, unspecified at GSSAPI level

 minor string: Kerberos error while decoding and verifying token:

 com.ibm.security.krb5.internal.KrbException, status code: 31

 message: Integrity check on decrypted field failed

as the JGSS library is trying to process the SPNEGO token.

Cause: This exception is the result of encoding the ticket using one key and attempting to decode it using

a different key. There are number of possible reasons for this condition:

1. The Kerberos keytab file has not been copied to the server machine after it has been regenerated.

2. The Kerberos configuration points to the wrong Kerberos keytab file.

3. The Kerberos service principal name (SPN) has been defined to the Active Directory more than once;

this can occur because you have another userid with a similarly defined SPN (either exactly the same

name, or one having a different name but with a port defined part of the SPN).

Solution: If the problem is with the Kerberos keytab file, then fix it. If the problem is with multiple SPN

definitions, then remove the extra or conflicting SPN, confirm that the SPN is no longer registered with the

Active Directory, and then add the SPN. The Active Directory may need to be searched for other entries

with SPNs defined that clash with the SPN.

424 Troubleshooting and support

To confirm that the SPN is not registered, the command:

setspn –l userid

should return with the following response:

Cannot find account userid

Problem: Single sign-on is not occurring.

When trace is turned on, the following message appears:

[2/27/06 14:28:04:191 CST] 00000059 SpnegoHandler <

 com.ibm.ws.security.spnego.SpnegoHandler handleRequest: Received a

 non-SPNEGO Authorization Header RETURN

Cause: The client is returning an NT LAN manager (NTLM) response to the authorize challenge, not a

SPNEGO token. This condition can be occur due to any of the following reasons:

v The client has not been configured properly.

v The client is not using a supported browser. For example, when using Microsoft Internet Explorer 5.5,

SP1 responds with a non-SPNEGO authentication header.

v The user has not logged into the Active Directory domain, or into a trusted domain, or the client used

does not support integrated authentication with Windows – in this case, the SPNEGO TAI is working

properly.

v The user is accessing a service defined on the same machine upon which the client is running (local

host). Microsoft Internet Explorer resolves the host name of the URL to http://localhostsomeURL

instead of a fully qualified name.

v The SPN is not found in the Active Directory. The SPN must be of the format HTTP/server.realm.com.

The command to add the SPN is

setspn –a HTTP/server.realm.com userid

If the SPN is defined incorrectly as HTTP/server.realm.com@REALM.COM with the addition of @REALM.COM,

then delete the user, redefine the user, and redefine the SPN.

Problem: Credential Delegation is not working

An invalid option is detected. When trace is turned on, the following message is displayed:

com.ibm.security.krb5.KrbException, status code: 101 message: Invalid option in

ticket request

Cause: The Kerberos configuration file is not properly configured.

Solution: Ensure that neither renewable, nor proxiable are set to true.

Problem: Unable to get SSO working using RC4-HMAC encryption.

When trace is turned on, you get the following message in the trace:

com.ibm.security.krb5.internal.crypto.KrbCryptoException, status code: 0

 message: Checksum error; received checksum does not match computed checksum

Cause: RC4-HMAC encryption is not supported with a Microsoft Windows 2000 Kerberos key distribution

center (KDC). To confirm this condition, examine the trace and identify where the exception is thrown. The

content of the incoming ticket should be visible in the trace. Although the incoming ticket is encrypted, the

SPN for the service is readable. If a Microsoft Windows 2000 KDC is used and the system is configured to

use RC4-HMAC, the string representing the ticket for userid@REALM (instead of the expected

HTTP/hostname.realm@REALM) is displayed. For example, this is beginning of the ticket received from a

Microsoft Windows 2000 KDC:

Chapter 22. Security 425

0000: 01 00 6e 82 04 7f 30 82 04 7b a0 03 02 01 05 a1 ..n...0.........

0010: 03 02 01 0e a2 07 03 05 00 20 00 00 00 a3 82 03

0020: a5 61 82 03 a1 30 82 03 9d a0 03 02 01 05 a1 0a .a...0..........

0030: 1b 08 45 50 46 44 2e 4e 45 54 a2 18 30 16 a0 03 ...REALM.COM.0..

0040: 02 01 01 a1 0f 30 0d 1b 0b 65 70 66 64 77 61 73 0...userid

0050: 75 6e 69 74 a3 82 03 6e 30 82 03 6a a0 03 02 01 .a.f...n0..j....

The realm is REALM.COM. The service name is userid. A correctly formed ticket for the same SPN is:

0000: 01 00 6e 82 04 56 30 82 04 52 a0 03 02 01 05 a1 ..n..V0..R......

0010: 03 02 01 0e a2 07 03 05 00 20 00 00 00 a3 82 03

0020: 82 61 82 03 7e 30 82 03 7a a0 03 02 01 05 a1 0a .a...0..z.......

0030: 1b 08 45 50 46 44 2e 4e 45 54 a2 2a 30 28 a0 03 ..REALM.COM.0...

0040: 02 01 02 a1 21 30 1f 1b 04 48 54 54 50 1b 17 75 0...HTTP..u

0050: 73 31 30 6b 65 70 66 77 61 73 73 30 31 2e 65 70 serid.realm.com.

0060: 66 64 2e 6e 65 74 a3 82 03 39 30 82 03 35 a0 03 ...n.....90..5..

Solution: To correct the problem, either use the Single data encryption standard (DES) or use a Microsoft

Windows 2003 Server for a KDC. Remember to regenerate the SPN, and the Kerberos keytab file.

Problem: User receives the following message when accessing a protected URL

through the SPNEGO SSO

Bad Request

Your browser sent a request that this server could not understand.

Size of request header field exceeds server limit.

Authorization: Negotiate YII......

Cause: This message is generated by the Apache/IBM HTTP Server. This server is indicating that the

authorization header returned by the user’s browser is too large. The long string that follows the word

Negotiate (in the error message above) is the SPNEGO token. This SPNEGO token is a wrapper of the

Microsoft Windows Kerberos token. Microsoft Windows includes the user’s PAC information in the

Kerberos token. The more security groups that the user belongs to, the more PAC information is inserted

in the Kerberos token, and the larger the SPNEGO becomes. IBM HTTP Server 2.0 (also Apache 2.0 and

IBM HTTP Server 6.0) limit the size of any acceptable HTTP header to be 8K. In Microsoft Windows

domains having many groups, and with user membership in many groups, the size of the user’s SPNEGO

token may exceed the 8K limit.

Solution: If possible, reduce the number of security groups the user is a member of. IBM HTTP Server

2.0.47 cumulative fix PK01070 allows for HTTP header sizes up to and beyond the Microsoft limit of 12K.

WebSphere Application Server Version 6.0 users can obtain this fix in fixpack 6.0.0.2.

Note: Non-Apache based Web servers may require differing solutions.

Problem: Even with JGSS tracing disabled, some KRB_DBG_KDC messages

appear in the SystemOut.log

Cause: While most of the JGSS tracing is controlled by the com.ibm.security.jgss.debug property, a small

set of messages are controlled by the com.ibm.security.krb5.Krb5Debug property. The

com.ibm.security.krb5.Krb5Debug property has a default value to put some messages to the

SystemOut.log.

Solution: To remove all KRB_DBG_KDC messages from the SystemOut.log, set the JVM property as

follows:

-Dcom.ibm.security.krb5.Krb5Debug=none

.

426 Troubleshooting and support

Problem: HTTP Post parameters are lost during interaction with the SPNEGO TAI,

when stepping down to userid/password login.

Cause: The Microsoft Internet Explorer maintains state during a user’s request. If a request was given the

response of an ″HTTP 401 Authenticate Negotiate″, and the browser responds with a NTLM token

obtained through a userid/password challenge, the browser resubmits the request. If this second request is

given a response of an HTML page containing a redirection to the same URL but with new arguments (via

Javascript) then the browser does not resubmit the POST parameters. To avoid this problem, it is critical to

NOT perform the automatic redirection. If the user clicks on a link, the problem does not occur. See

section 5.2 Client Returns NTLM Token to SPNEGO Challenge for a resolution to the problem,

Solution: The browser responds to the Authenticate/Negotiate challenge with an NTLM token, not an

SPNEGO token. The SPNEGO TAI sees the NTLM, and returns back a HTTP 403 response, along with

the HTML page. When the browser runs the Javascript redirTimer function, any POST of GET parameters

that were present on the original request are lost.

By leveraging the SPN<id>.NTLMTokenReceivedPage property, an appropriate message page can be

returned to the user. The default message that is returned (in the absence of a user defined property) is:

"<html><head><title>An NTLM Token was Received.</title></head>"

 + "<body>Your browser configuration is correct, but you have not logged into

 a supported Windows Domain."

 + "<p>Please login to the application using the normal login page.</html>";

Using the SPN<id>.NTLMTokenReceivedPage property, you can customize the exact response. It is critical

that the returned HTML not perform a redirection.

When the SPNEGO TAI has been configured to use the shipped default HTTPHeaderFilter class as the

SPN<id>.filterClass, then the SPN<id>.filter can be used to allow the second request to flow directly to the

normal WebSphere Application Server security mechanism. In this way, the user experiences the normal

authentication mechanism.

An example of such a configuration follows. The required SPNEGO TAI properties necessary and the

HTML file content are presented.

 Table 8. SPNEGO TAI properties and HTML

SPNEGO TAI Property Name HTML File Content

com.ibm.ws.security.spnego.SPN1.hostName server.wasteched30.torolab.ibm.com

com.ibm.ws.security.spnego.SPN1.filterClass com.ibm.ws.security.spnego.HTTPHeaderFilter

com.ibm.ws.security.spnego.SPN1.filter request-url!=noSPNEGO

com.ibm.ws.security.spnego.SPN1.NTLMTokenReceivedPage File:///C:/temp/NTLM.html

Note: Observe that the filter property instructs the SPNEGO TAI to NOT intercept any HTTP request that

contains the string “noSPNEGO”.

Here is an example of a generating a helpful response.

<html>

<head>

<title>NTLM Authentication Received </title>

<script language="javascript">

 var purl=""+document.location;

if (purl.indexOf("noSPNEGO")<0) {

 if(purl.indexOf(’?’)>=0) purl+="&noSPNEGO";

 else purl+="?noSPNEGO";

 }

</script>

Chapter 22. Security 427

</head>

<body>

<p>An NTLM token was retrieved in response to the SPNEGO challenge. It is likely that

you are not logged into a Windows domain.

Click on the following link to get the requested website.

<script language="javascript">

 document.write("");

 document.write("Open the same page using the normal authentication

 mechanism.");

 document.write("
");

</script>

You will not automatically be redirected.

</body>

</html>

428 Troubleshooting and support

Chapter 23. Naming and directory

Troubleshooting name space problems

When developing or running applications, you might encounter name space problems.

Many naming problems can be avoided by fully understanding the key underlying concepts of WebSphere

Application Server naming.

1. Review the key concepts of WebSphere Application Server naming, especially the sections about

Name space logical view and Lookup names support in deployment descriptors and thin clients in the

Developing and deploying applications PDF book.

2. Review the programming examples that are included in the sections explaining the JNDI and

CosNaming interfaces in the Developing and deploying applications PDF book.

3. Read “Naming service troubleshooting tips” for additional general information.

4. Read “Cannot look up an object hosted by WebSphere Application Server from a servlet, JSP file, or

other client” on page 430 for information on lookup errors.

Naming service troubleshooting tips

Naming is a J2EE service which publishes and provides access to resources such as connection pools,

enterprise beans, and message listeners to client processes. If you have problems in accessing a resource

which otherwise appears to be healthy, the naming service might be involved.

To investigate problems with the WebSphere Application Server Naming service:

v With WebSphere Application Server running, run the dumpNameSpace command for Windows systems, or

the dumpNameSpace.sh command for operating systems such as z/OS, AIX, or Linux, and pipe, redirect,

or ″more″ the output so that it is easily viewed. This command results in a display of objects in the

WebSphere Application Server namespace, including the directory path and object name.

v If the object a client needs to access does not appear, use the administrative console to verify that:

– The server hosting the target resource is started.

– The Web module or EJB container, if applicable, hosting the target resource is running.

– The JNDI name of the target resource is correct and updated.

– If the problem resource is remote, that is, not on the same node as the Name Server node, that the

JNDI name is fully qualified, including the host name. This is especially applicable to Network

Deployment configurations

v If you see an exception that appears to be CORBA related (″CORBA″ appears as part of the exception

name) look for a naming-services-specific CORBA minor code, further down in the exception stack, for

information on the real cause of the problem. For a list of naming service exceptions and explanations,

see the class com.ibm.websphere.naming.WsnCorbaMinorCodes in the API documentation that is

included in the Reference section of the information center.

If none of these steps solve the problem:

v For specific problems that can cause access to named object hosted in WebSphere Application Server

to fail, see Cannot look up an object hosted by WebSphere Application Server from a servlet, JSP file,

or other client.

v Check to see if the problem has been identified and documented using the links in Diagnosing and

fixing problems: Resources for learning.

For current information available from IBM Support on known problems and their resolution, see the IBM

Support page.

IBM Support has documents that can save you time gathering information needed to resolve this problem.

Before opening a PMR, see the IBM Support page.

© Copyright IBM Corp. 2006 429

http://www.ibm.com/software/webservers/appserv/was/support/
http://www.ibm.com/software/webservers/appserv/was/support/

Cannot look up an object hosted by WebSphere Application Server

from a servlet, JSP file, or other client

To resolve problems encountered when a servlet, JavaServer Pages file, standalone application or other

client attempts to access an enterprise bean, ConnectionPool, or other named object hosted by

WebSphere Application Server, you must first verify that the target server can be accessed from the client.

Follow these steps:

v From a command prompt on the client’s server, enter ″ping server_name″ and verify connectivity.

v Use the WebSphere Application Server administrative console to verify that the target resource’s

application server and, if applicable, EJB module or Web module, is started.

Continue only if there is no problem with connectivity and the target resource appears to be running.

What kind of error are you seeing?

v “NameNotFoundException from JNDI lookup operation ”

v “CannotInstantiateObjectException from JNDI lookup operation ” on page 431

v “Message NMSV0610I appears in the server’s log file, indicating that some Naming exception has

occurred ” on page 431

v “OperationNotSupportedException from JNDI Context operation” on page 432

v “WSVR0046E: Failed to bind, ejb/jndiName: ejb/jndiName. Original exception :

org.omg.CosNaming.NamingContextPackage.AlreadyBound ” on page 432

v “ConfigurationException from ″new InitialContext″ operation or from a JNDI Context operation with a

URL name” on page 432

v “ServiceUnavailableException from ″new InitialContext″ operation” on page 432

v “CommunicationException thrown from a ″new InitialContext″ operation” on page 433

If you do not see a problem that resembles yours, or if the information provided does not solve your

problem, contact IBM support for further assistance.

NameNotFoundException from JNDI lookup operation

There are three causes for a NameNotFoundException:

v The lookup name is incorrect.

v The object being looked up is not bound.

v Two servers with the same name running on the same host are being used to interoperate.

Incorrect lookup name

If you encounter a NameNotFoundException when trying to access an enterprise bean, data

source, messaging resource, or other resource:

1. Determine the cause of the NameNotFoundException.

Browse the properties of the target object in the administrative console, and verify that the

JNDI name it specifies matches the JNDI name the client is using.

If you are looking up an object that resides on a server different from the one from which the

initial context was obtained, you must use the fully qualified name.

v If access is from another server object such as a servlet accessing an enterprise bean and

you are using the default context, not specifying the fully qualified JNDI name, you might get

a NameNotFoundException if the object is hosted on a different server.

v If access is from a standalone client, it might be that the object you are attempting access is

on a server different from the server from which you obtained the initial context.

2. Use the fully-qualified JNDI name to correct the problem.

If the object is in a single server, the fully-qualified JNDI name is as follows:

cell/nodes/nodeName/servers/serverName/jndiName

Restriction: Objects are not supported in this release.

430 Troubleshooting and support

If the object is on a server cluster, the fully-qualified JNDI name is as follows:

cell/clusters/clusterName/jndiName

Object being looked up is not bound

To correct a NameNotFoundException where the object being looked up is not bound:

1. If the object being looked up is an application object such as an enterprise bean, ensure that

the application is running.

2. Run the dumpNameSpace tool to view the contents of the name space to verify that the object

being looked up is bound to the name space with the expected name.

Two servers with the same name running on the same host are being used to interoperate

For a server application to access objects on a server in a different node running on the same

host, the names of the two servers must be different. For example, if an application running on a

server in node1 looks up an object that resides on a server in node2, and node1 and node2 are

installed on the same host, the server names must be different. If both server names are the same

(for example, server1), the lookup fails with a NameNotFoundException.

 To correct the problem, use different server names, such as server1 and server2.

 Note that any remote object references from server1 in node1 to server1 in node2 in the described

configuration fail. JNDI lookups fail with a NameNotFoundException, but object references

obtained through means other than JNDI lookups also fail, most likely with an

org.omg.CORBA.OBJECT_NOT_EXIST exception. Object references between servers in different

nodes and on different hosts do not result in an exception even if the server names match.

CannotInstantiateObjectException from JNDI lookup operation

If you encounter this exception in trying to access an enterprise bean, data source, messaging resource,

or other resource, possible causes include:

v A serialized Java object is being looked up, but the necessary classes required to deserialize it are not

in the runtime environment.

v A Reference object is being looked up, and the associated factory used to process it as part of the

lookup processing is failing.

To determine the precise cause of the problem:

v Look at the relevant logs for exceptions immediately preceding the CannotInstantiateObjectException. If

it is a java.lang.NoClassDefFoundError or java.lang.ClassNotFoundException, make sure the class

referenced in the error message can be located by the class loader. See the section Class loading in

the Developing and deploying applications PDF book.

View the logs of the server hosting the target resource.

v Print out the stack trace for the root cause and look for the factory class. It will be called by

javax.naming.NamingManager.getObjectInstance(). The reason for the failure will depend on the

factory implementation, and may require you to contact the developer of the factory class.

Message NMSV0610I appears in the server’s log file, indicating that some Naming

exception has occurred

This error is informational only and is provided in case the exception is related to an actual problem. Most

of the time, it is not. If it is, the log file should contain adjacent entries to provide context.

v If no problems are being experienced, ignore this message. Also ignore the message if the problem you

are experiencing does not appear to be related to the exception being reported and if there are no other

adjacent error messages in the log.

v If a problem is being experienced, look in the log for underlying error messages.

v The information provided in message NMSV0610I can provide valuable debug data for other adjacent

error messages posted in response to the Naming exception that occurred.

Chapter 23. Naming and directory 431

OperationNotSupportedException from JNDI Context operation

This error has two possible causes:

v An update operation, such as a bind, is being performed with a name that starts with ″java:comp/env″.

This context and its subcontexts are read-only contexts.

v A Context bind or rebind operation of a non-CORBA object is being performed on a remote name space

that does not belong to WebSphere Application Server. Only CORBA objects can be bound to these

CosNaming name spaces.

To determine which of these errors is causing the problem, check the full exception message.

WSVR0046E: Failed to bind, ejb/jndiName: ejb/jndiName. Original exception :

org.omg.CosNaming.NamingContextPackage.AlreadyBound

This error occurs two enterprise bean server applications were installed on the same server such that a

binding name conflict occurred. That is, a jndiName value is the same in the two applications’ deployment

descriptors. The error will surface during server startup when the second application using that jndiName

value is started.

To verify that this is the problem, examine the deployment descriptors for all enterprise bean server

applications running in the server in search for a jndiName that is specified in more than one enterprise

bean application.

To correct the problem, change any duplicate jndiName values to ensure that each enterprise bean in the

server process is bound with a different name.

ConfigurationException from ″new InitialContext″ operation or from a JNDI Context

operation with a URL name

If you are attempting to obtain an initial JNDI context, a configuration exception can occur because an

invalid JNDI property value was passed to the InitialContext constructor. This includes JNDI properties set

in the System properties or in some jndi.properties file visible to the class loader in effect. A malformed

provider URL is the most likely property to be incorrect. If the JNDI client is being run as a thin client such

that the CLASSPATH is set to include all of the individual jar files required, make sure the .jar file containing

the properties file com/ibm/websphere/naming/jndiprovider.properties is in the CLASSPATH.

If the exception is occurring from a JNDI Context call with a name in the form of a URL, the current JNDI

configuration may not be set up properly so that the required factory class name cannot be determined, or

the factory may not be visible to the class loader currently in effect. If the name is a Java: URL, the JNDI

client must be running in a J2EE client or server environment. That is, the client must be running in a

container.

Check the exception message to verify the cause.

If the exception is being thrown from the InitialContext constructor, correct the property setting or the

CLASSPATH.

If the exception is being thrown from a JNDI Context method, make sure the property

java.naming.factory.url.pkgs includes the package name for the factory required for the URL scheme in

the name. URL names with the Java scheme can only be used while running in a container.

ServiceUnavailableException from ″new InitialContext″ operation

This exception indicates that some unexpected problem occurred while attempting to contact the name

server to obtain an initial context. The ServiceUnavailableException, like all NamingException objects, can

432 Troubleshooting and support

be queried for a root cause. Check the root cause for more information. It is possible that some of the

problems described for CommunicationExceptions may also result in a ServiceUnavailableException.

Since this exception is triggered by an unexpected error, there is no probable cause to confirm. If the root

cause exception does not indicate what the probable cause is, investigate the possible causes listed for

CommunicationExceptions.

CommunicationException thrown from a ″new InitialContext″ operation

The name server identified by the provider URL cannot be contacted to obtain the initial JNDI context.

There are many possible causes for this problem, including:

v The host name or port in the provider URL is incorrect.

v The host name cannot be resolved into an IP address by the domain name server, or the IP address

does not match the IP address which the server is actually running under.

v A firewall on the client or server is preventing the port specified in the provider URL from being used.

To correct this problem:

v Make sure the provider URL and the network configurations on the client and server machines are

correct.

v Make sure the host name can be resolved into an IP address which can be reached by the client

machine. You can do this using the ping command.

v If you are running a firewall, make sure that use of the port specified in the provider URL will be

allowed.

dumpNameSpace tool

You can use the dumpNameSpace tool to dump the contents of a name space accessed through a name

server. The dumpNameSpace tool is based on Java Naming and Directory Interface (JNDI).

When you run the dumpNameSpace tool, the naming service must be active. The dumpNameSpace tool

cannot dump name spaces local to the server process, such as those with java: and local: URL schemes.

The local: name space contains references to enterprise beans with local interfaces. Use the name space

dump utility for java:, local: and server name spaces to dump java: and local: name spaces.

The tool dumps the server root context for the server at the specified host and port unless you specify a

non-default starting context which precludes it. The tool does not dump the server root contexts for other

servers.

Running dumpNameSpace

You can run the tool from a command line or using its program interface. This topic describes

command-line invocations. To access the dumpNameSpace tool through its program interface, refer to the

class com.ibm.websphere.naming.DumpNameSpace in the WebSphere Application Server API documentation.

“Example: Invoking the name space dump tool” on page 435 illustrates running the tool from a command

line or using its program interface.

To run the tool from a command line, enter the following command from the WebSphere/AppServer/bin

directory:

 Platform Command

UNIX dumpNameSpace.sh [[-keyword value]...]

Windows NT or later dumpNameSpace [[-keyword value]...]

If you run the dumpNameSpace tool with security enabled, a login prompt is displayed. If you cancel the

login prompt, the dumpNameSpace tool continues outbound with an ″UNAUTHENTICATED″ credential.

Chapter 23. Naming and directory 433

Thus, by default, an ″UNAUTHENTICATED″ credential is used that is equivalent to the ″Everyone″ access

authorization policy. You can modify this default setting by changing the value for the

com.ibm.CSI.performClientAuthenticationRequired property to true in the install_dir/properties/
sas.client.props file. If you change this property to true, rerun the dumpNameSpace tool and cancel the

login prompt; the authorization fails and the command does not continue outbound.

Parameters

The keywords and associated values for the dumpNameSpace tool follow:

-host myhost.company.com

Indicates the bootstrap host or the WebSphere Application Server host whose name space you want

to dump. The value defaults to localhost. Specify a value for -host if the tool is not run from the local

machine. The -host parameter instructs the tool to connect to a server on a remote machine. For

example, run

dumpNameSpace -host myhost.mycompany.com

to display the name space of the server running on myhost.mycompany.com.

-port nnn

Indicates the bootstrap port which, if not specified, defaults to 2809.

-root { cell | server | node | host | legacy | tree | default }

Indicates the root context to use as the initial context for the dump. The applicable root options and

default root context depend on the type of name server from which the dump is being obtained.

Descriptions of -root options follow.

 For WebSphere Application Server Version 5.0 or later servers:

 cell DumpNameSpace default for product Version 5.0 or later servers. Dumps the tree

starting at the cell root context.

server Dumps the tree starting at the server root context.

node Dumps the tree starting at the node root context.

tree Dumps the tree starting at the tree root context.

For all WebSphere Application Server and other name servers:

 default Dumps the tree starting at the initial context which JNDI returns by default for that

server type. This is the only -root option that is compatible with non-WebSphere

Application Server name servers.

-url some_provider_URL

Indicates the value for the java.naming.provider.url property used to get the initial JNDI context. This

option can be used in place of the -host, -port, and -root options. If the -url option is specified, the

-host, -port, and -root options are ignored.

-factory com.ibm.websphere.naming.WsnInitialContextFactory

Indicates the initial context factory to be used to get the JNDI initial context. The value defaults to

com.ibm.websphere.naming.WsnInitialContextFactory. The default value generally does not need to be

changed.

-startAt some/subcontext/in/the/tree

Indicates the path from the bootstrap host’s root context to the top level context where the dump

should begin. The tool recursively dumps subcontexts below this point. It defaults to an empty string,

that is, the bootstrap host root context.

434 Troubleshooting and support

-format { jndi | ins }

 jndi The default. Displays name components as atomic strings.

ins Shows name components parsed using Interoperable Naming Service (INS) rules

(id.kind).

-report { short | long }

 short The default. Dumps the binding name and bound object type. This output is also

provided by JNDI Context.list().

long Dumps the binding name, bound object type, local object type, and string

representation of the local object (that is, the IORs, string values, and other values that

are printed).

For objects of user-defined classes to display correctly with the long report option, you

might need to add their containing directories to the list of directories searched. Set

the environment variable WAS_USER_DIRS as shown in the following

platform-specific commands. The value can include one or more directories.

UNIX WAS_USER_DIRS=/usr/classdir1:/usr/classdir2 export WAS_USER_DIRS

Windows NT or later

set WAS_USER_DIRS=c:\classdir1;d:\classdir2

All .zip, .jar, and .class files in the specified directories can then be resolved by the

class loader when running the dumpNameSpace tool.

-traceString ″some.package.name.to.trace.*=all=enabled″

Represents the trace string with the same format as that generated by the servers. The output is sent

to the file DumpNameSpaceTrace.out.

Example: Invoking the name space dump tool

It is often helpful to view a dump of the name space to understand why a naming operation is failing. You

can invoke the name space dump tool from the command line or from a program. Examples of each

option follow.

Invoking the name space dump tool from a command line

Invoke the name space dump tool from a command line by entering either of the following commands:

dumpNameSpace -host myhost.mycompany.com -port 901

or:

dumpNameSpace -url corbaloc:iiop:myhost.mycompany.com:901

There are several command-line options to choose from. For detailed help on the options, enter either of

the following commands:

dumpNameSpace -help

or:

dumpNameSpace -?

Use the dumpNameSpace.sh command. (Add .sh to the utility name.)

Chapter 23. Naming and directory 435

Invoking the name space dump tool from a Java program

You can dump name spaces from a program with the com.ibm.websphere.naming.DumpNameSpace API.

Refer to the WebSphere Application Server API documentation for details on the DumpNameSpace

program interface.

The following example illustrates how to invoke the name space dump tool from a Java program:

{

 ...

 import javax.naming.Context;

 import javax.naming.InitialContext;

 import com.ibm.websphere.naming.DumpNameSpace;

 ...

 java.io.PrintStream filePrintStream = ...

 Context ctx = new InitialContext();

 // Starting context for dump

 ctx = (Context) ctx.lookup("cell/nodes/node1/servers/server1");

 DumpNameSpace dumpUtil =

 new DumpNameSpace(filePrintStream, DumpNameSpace.SHORT);

 dumpUtil.generateDump(ctx);

 ...

}

Name space dump utility for java:, local: and server name spaces

Sometimes it is helpful to dump the java: name space for a J2EE application. You cannot use the

dumpNameSpace command line utility for this purpose because the application’s java: name space is

accessible only by that J2EE application. From the WebSphere Application Server scripting tool, you can

invoke a NameServer MBean to dump the java: name space for any J2EE application running in that

same server process.

There is another name space local to server process which you cannot dump with the dumpNameSpace

command line utility. This name space has the URL scheme of local: and is used by the container to bind

objects locally instead of through the name server. The local: name space contains references to

enterprise beans with local interfaces. There is only one local: name space in a server process. You can

dump the local: name space by invoking the NameServer MBean associated with that server process.

Name space dump options

Name space dump options are specified in the MBean invocation as a parameter in character string

format. The option descriptions follow.

-startAt some/subcontext/in/the/tree

Indicates the path from the name space root context to the top level context where the dump should

begin. The utility recursively dumps subcontexts below this point. It defaults to an empty string, that is,

the root context.

-report {short | long}

 Option Description

short The default. Dumps the binding name and bound object type. This output is also

provided by JNDI Context.list().

long Dumps the binding name, bound object type, local object type, and string

representation of the local object (that is, the IORs, string values, and other values that

are printed).

-root {tree | host | legacy | cell | node | server | default}

Specify the root context of where the dump should start. The default value for -root is cell. This option

is only valid for server name space dumps.

436 Troubleshooting and support

Option Description

tree Dump the tree starting at the tree root context.

host Dump the tree starting at the server host root context (synonymous with ″node″).

legacy Dump the tree starting at the legacy root context.

cell Dump the tree starting at the cell root context. This is the default option.

node Dump the tree starting at the node root context (synonymous with ″host″).

server Dump the tree starting at the server root context. This is -root default.

default Dump the tree starting at the initial context which JNDI returns by default for that

server type.

-format {jndi | ins}

 Specify the format to display name component as atomic strings or parsed according to INS rules

(id.kind). This option is only valid for server name space dumps.

 Option Description

jndi Display name components as atomic strings. This is -format default.

ins Display name components parsed according to INS rules (id.kind).

NameServer MBean invocation

1. Enter the WebSphere Application Server scripting command prompt.

Invoke a method on a NameServer MBean by using the WebSphere Application Server scripting tool.

Enter the scripting command prompt by typing the following command:

 Platform Command

UNIX wsadmin.sh

Windows NT wsadmin

Use the -help option for help on using the wsadmin command.

2. Select the NameServer MBean instance to invoke.

Execute the following script commands to select the NameServer instance you want to invoke. For

example,

set mbean [$AdminControl completeObjectName WebSphere:*,type=NameServer,cell=

 cellName,node=nodeName,process=serverName]

where cellName, nodeName, and serverName are the names of the cell, node, and server for the

MBean you want to invoke. The specified server must be running before you can invoke a method on

the MBean.

You can see a list of all NameServer MBeans current running by issuing the following query:

$AdminControl queryNames {*:*,type=NameServer}

3. Invoke the NameServer MBean.

java: name space

Dump a java: name space by invoking the dumpJavaNameSpace method on the NameServer

MBean. Since each server application has its own java: name space, the application must be

specified on the method invocation. An application is identified by the application name,

module name, and component name. The method syntax follows:

$AdminControl invoke $mbean dumpJavaNameSpace {{appname}{modName}{compName}{opts}}

Chapter 23. Naming and directory 437

where appName is the application name, modName is the module name, and compName is

the component name of the java: name space you want to dump. The value for opts is the list

of name space dump options described earlier in this section. The list can be empty.

local: name space

Dump a java: name space by invoking the dumpLocalNameSpace method on the

NameServer MBean. Because there is only one local: name space in a server process, you

have to specify the name space dump options only.

$AdminControl invoke $mbean dumpLocalNameSpace {{opts}}

where opts is the list of name space dump options described earlier in this section. The list

can be empty.

Server name space

Dump a server name space by invoking the dumpServerNameSpace method on an application

server’s NameServer MBean. This provides an alternative way to dump the name space on an

application server, much like the dumpNameSpace command line utility.

$AdminControl invoke $mbean dumpServerNameSpace {{opts}}

where opts is the list of name space dump options described earlier in this section. The list

can be empty.

Name space dump output

Name space dump output is sent to the console. It is also written to the file DumpNameSpace.log, in the

server’s log directory.

Example: Invoking the name space dump utility for java: and local:

name spaces

It is often helpful to view the dump of a java: or local: name space to understand why a naming

operation is failing. The NameServer MBean running in the application’s server process can be invoked

from the WebSphere Application Server scripting tool to generate a dump of these name spaces.

Examples of NameServer MBean calls to generate dumps of java: and local: name spaces follow.

Dumping a java: name space

Assume you want to dump the java: name space of an application component running in server server1

on node node1 of the cell MyCell. The application name is AcctApp in module AcctApp.war, and the

component name is Acct Servlet. The following script commands generate a long format dump of the

application’s java: name space of that application:

set mbean [$AdminControl completeObjectName WebSphere:*,type=NameServer,cell=MyCell,node=node1,process=server1]

$AdminControl invoke $mbean dumpJavaNameSpace {{DefaultApplication}{Increment.jar}{Increment}{-report long}}

Dumping a local: name space

Assume you want to dump the local: name space for the server server1 on node node1 of cell MyCell.

The following script commands will generate a short format dump of that server’s local name space:

set mbean [$AdminControl completeObjectName WebSphere:*type=NameServer,cell=MyCell,node=node1,process=server1]

$AdminControl invoke $mbean dumpLocalNameSpace {{-report short}}

Name space dump sample output

Name space dump output is available in short or long format.

Name space dump output looks like the following example, which is the SHORT dump format:

438 Troubleshooting and support

Getting the initial context

Getting the starting context

==

Name Space Dump

 Provider URL: corbaloc:iiop:localhost:9810

 Context factory: com.ibm.websphere.naming.WsnInitialContextFactory

 Requested root context: cell

 Starting context: (top)=outpostNetwork

 Formatting rules: jndi

 Time of dump: Mon Sep 16 18:35:03 CDT 2002

==

==

Beginning of Name Space Dump

==

 1 (top)

 2 (top)/domain javax.naming.Context

 2 Linked to context: outpostNetwork

 3 (top)/cells javax.naming.Context

 4 (top)/clusters javax.naming.Context

 5 (top)/clusters/Cluster1 javax.naming.Context

 6 (top)/cellname java.lang.String

 7 (top)/cell javax.naming.Context

 7 Linked to context: outpostNetwork

 8 (top)/deploymentManager javax.naming.Context

 8 Linked to URL: corbaloc::outpost:9809/NameServiceServerRoot

 9 (top)/nodes javax.naming.Context

 10 (top)/nodes/will2 javax.naming.Context

 11 (top)/nodes/will2/persistent javax.naming.Context

 12 (top)/nodes/will2/persistent/SomeObject SomeClass

 13 (top)/nodes/will2/nodename java.lang.String

 14 (top)/nodes/will2/domain javax.naming.Context

 14 Linked to context: outpostNetwork

 15 (top)/nodes/will2/cell javax.naming.Context

 15 Linked to context: outpostNetwork

 16 (top)/nodes/will2/servers javax.naming.Context

 17 (top)/nodes/will2/servers/server1 javax.naming.Context

 18 (top)/nodes/will2/servers/will2 javax.naming.Context

 19 (top)/nodes/will2/servers/member2 javax.naming.Context

 20 (top)/nodes/will2/node javax.naming.Context

 20 Linked to context: outpostNetwork/nodes/will2

 21 (top)/nodes/will2/nodeAgent javax.naming.Context

 22 (top)/nodes/outpost javax.naming.Context

 23 (top)/nodes/outpost/node javax.naming.Context

 23 Linked to context: outpostNetwork/nodes/outpost

 24 (top)/nodes/outpost/nodeAgent javax.naming.Context

 24 Linked to URL: corbaloc::outpost:2809/NameServiceServerRoot

 25 (top)/nodes/outpost/persistent javax.naming.Context

 26 (top)/nodes/outpost/nodename java.lang.String

 27 (top)/nodes/outpost/domain javax.naming.Context

 27 Linked to context: outpostNetwork

 28 (top)/nodes/outpost/servers javax.naming.Context

 29 (top)/nodes/outpost/servers/server1 javax.naming.Context

 30 (top)/nodes/outpost/servers/server1/url javax.naming.Context

 31 (top)/nodes/outpost/servers/server1/url/CatalogDAOSQLURL

 31 java.net.URL

 32 (top)/nodes/outpost/servers/server1/mail javax.naming.Context

 33 (top)/nodes/outpost/servers/server1/mail/PlantsByWebSphere

 33 javax.mail.Session

 34 (top)/nodes/outpost/servers/server1/TransactionFactory

 34 com.ibm.ejs.jts.jts.ControlSet$LocalFactory

 35 (top)/nodes/outpost/servers/server1/servername java.lang.String

 36 (top)/nodes/outpost/servers/server1/WSsamples javax.naming.Context

 37 (top)/nodes/outpost/servers/server1/WSsamples/TechSampDatasource

Chapter 23. Naming and directory 439

37 TechSamp

 38 (top)/nodes/outpost/servers/server1/thisNode javax.naming.Context

 38 Linked to context: outpostNetwork/nodes/outpost

 39 (top)/nodes/outpost/servers/server1/cell javax.naming.Context

 39 Linked to context: outpostNetwork

 40 (top)/nodes/outpost/servers/server1/eis javax.naming.Context

 41 (top)/nodes/outpost/servers/server1/eis/DefaultDatasource_CMP

 41 Default_CF

 42 (top)/nodes/outpost/servers/server1/eis/WSsamples javax.naming.Context

 43 (top)/nodes/outpost/servers/server1/eis/WSsamples/TechSampDatasource_CMP

 43 TechSamp_CF

 44 (top)/nodes/outpost/servers/server1/eis/jdbc javax.naming.Context

 45 (top)/nodes/outpost/servers/server1/eis/jdbc/PlantsByWebSphereDataSource_CMP

 45 PLANTSDB_CF

 46 (top)/nodes/outpost/servers/server1/eis/jdbc/petstore

 46 javax.naming.Context

 47 (top)/nodes/outpost/servers/server1/eis/jdbc/petstore/PetStoreDB_CMP

 47 PetStore_CF

 48 (top)/nodes/outpost/servers/server1/eis/jdbc/CatalogDB_CMP

 48 Catalog_CF

 49 (top)/nodes/outpost/servers/server1/jta javax.naming.Context

 50 (top)/nodes/outpost/servers/server1/jta/usertransaction

 50 java.lang.Object

 51 (top)/nodes/outpost/servers/server1/DefaultDatasource

 51 Default Datasource

 52 (top)/nodes/outpost/servers/server1/jdbc javax.naming.Context

 53 (top)/nodes/outpost/servers/server1/jdbc/CatalogDB CatalogDB

 54 (top)/nodes/outpost/servers/server1/jdbc/petstore javax.naming.Context

 55 (top)/nodes/outpost/servers/server1/jdbc/petstore/PetStoreDB

 55 PetStoreDB

 56 (top)/nodes/outpost/servers/server1/jdbc/PlantsByWebSphereDataSource

 56 PLANTSDB

 57 (top)/nodes/outpost/servers/outpost javax.naming.Context

 57 Linked to URL: corbaloc::outpost:2809/NameServiceServerRoot

 58 (top)/nodes/outpost/servers/member1 javax.naming.Context

 59 (top)/nodes/outpost/cell javax.naming.Context

 59 Linked to context: outpostNetwork

 60 (top)/nodes/outpostManager javax.naming.Context

 61 (top)/nodes/outpostManager/domain javax.naming.Context

 61 Linked to context: outpostNetwork

 62 (top)/nodes/outpostManager/cell javax.naming.Context

 62 Linked to context: outpostNetwork

 63 (top)/nodes/outpostManager/servers javax.naming.Context

 64 (top)/nodes/outpostManager/servers/dmgr javax.naming.Context

 64 Linked to URL: corbaloc::outpost:9809/NameServiceServerRoot

 65 (top)/nodes/outpostManager/node javax.naming.Context

 65 Linked to context: outpostNetwork/nodes/outpostManager

 66 (top)/nodes/outpostManager/nodename java.lang.String

 67 (top)/persistent javax.naming.Context

 68 (top)/persistent/cell javax.naming.Context

 68 Linked to context: outpostNetwork

 69 (top)/legacyRoot javax.naming.Context

 69 Linked to context: outpostNetwork/persistent

 70 (top)/persistent/AnotherObject AnotherClass

==

End of Name Space Dump

==

440 Troubleshooting and support

Chapter 24. Object Request Broker

Object request broker component troubleshooting tips

The following topics might help you diagnose problems with the Object request broker (ORB) component.

Enabling tracing for the Object Request Broker component

The object request broker (ORB) service is one of the WebSphere Application Server run time services.

Tracing messages that are sent and received by the ORB is a useful starting point for troubleshooting the

ORB service. You can selectively enable or disable tracing of ORB messages for each server in a

WebSphere Application Server installation, and for each application client.

For instructions on how to set trace controls so that tracing occurs for the ORB subcomponent, see Setting

trace controls for IBM service.

Log files and messages associated with Object Request Broker

For a summary of how messages get routed in WebSphere Application Server, see Message routing.

Java packages containing the Object Request Broker service

The ORB service resides in the following Java packages:

v com.ibm.com.CORBA.*

v com.ibm.rmi.*

v com.ibm.ws.orb.*

v com.ibm.ws.orbimpl.*

v com.ibm.ws390.orb.*

v org.omg.CORBA.*

v javax.rmi.CORBA.*

v com.ibm.ws390.ziop.*

v com.ibm.ws390.channel.ziop.*

JAR files that contain the previously mentioned packages include:

v java_app_server_root/jre/lib/ext/ibmorb.jar

v java_app_server_root/jre/lib/ext/iwsorbutil.jar

v app_server_root/lib/iwsorb.jar

v app_server_root/lib/runtimews390.jar

v app_server_root/lib/bootstrap.jar

Tools used with Object Request Broker

The tools used to compile Java remote interfaces to generate language bindings used by the ORB at

runtime reside in the following APIs:

v com.ibm.tools.rmic.*

v com.ibm.idl.*

The JAR file that contains these APIs is app_server_root/java/lib/ibmtools.jar.

Object Request Broker properties

The ORB service requires a number of ORB properties for correct operation. It is not necessary for most

users to modify these properties, and only the system administrator should modify them when required.

Consult IBM Support personnel for assistance. The properties reside in the orb.properties file, located at

app_server_root/java/jre/lib/orb.properties.

© Copyright IBM Corp. 2006 441

If none of these steps fixes your problem, check to see if the problem has been identified and documented

by looking at the available online support (hints and tips, technotes, and fixes).

For current information available from IBM Support on known problems and their resolution, see the IBM

Support page.

IBM Support has documents that can save you time gathering information needed to resolve this problem.

Before opening a PMR, see the IBM Support page.

442 Troubleshooting and support

http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCMPCT
http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCMPCT
http://www-1.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCMPCT&q=mustgather

Chapter 25. Transactions

Troubleshooting transactions

Use this overview task to help resolve a problem that you think is related to the Transaction service.

To identify and resolve transaction-related problems, you can use the standard WebSphere Application

Server RAS facilities. If you encounter a problem that you think might be related to transactions, complete

the following steps:

1. Check for transaction messages in the administrative console.

The Transaction service produces diagnostic messages prefixed by “CWWTR”. The error message

indicates the nature of the problem and provides some detail. The associated message information

provides an explanation and any user actions to resolve the problem.

2. Check for Transaction messages.

Check the error log.

3. Check for more messages in additional places.

Check for more messages in other potential message output repositories. For more information about

a problem, check the standard output file configured by your administrator. This will contain more error

messages and other detailed information about the problem.

4. Check for messages related to the application server’s transaction log directory when the problem

occurred.

Note: If you changed the transaction log directory and a problem caused the application server to fail

(with in-flight transactions) before the server was restarted properly, the server will next start

with the new log directory and be unable to automatically resolve in-flight transactions that were

recorded in the old log directory. To resolve this, you can copy the transaction logs to the new

directory then stop and restart the application server.

5. Check the RRS logs for any transaction activity involving RRS-compliant resources. IBM WebSphere

Application Server for z/OS is capable of supporting both XA and RRS resource managers, and of

coordinating a mix of RRSTransactional resource managers and XA capable resource managers under

the same global transaction. If your installation uses XA resource managers, RRS resource managers,

or a mixture of both, you can use the administrative console to view transaction logs that contain

information about all transactions. You can find additional information about RRS transactions by using

the RRS panels.

6. Check the hints and tips for troubleshooting transactions.

The “Tips for troubleshooting transactions” is an ongoing collection of troubleshooting tips, based on

test and user experience. If you have suggestions for other tips, please let the IBM WebSphere writing

team know.

Tips for troubleshooting transactions

This topic provides a set of tips to help you troubleshoot problems with the WebSphere Application Server

transaction service.

v Peer recovery fails to acquire a lock

v “XAER_NOTA exception logged after server fails” on page 444

For messaging problems specific to WebSphere Application Server nodes, see other topics in the

information center, such as “Troubleshooting WebSphere MQ messaging” on page 382, and the

Application Servers support Web site.

© Copyright IBM Corp. 2006 443

http://www.ibm.com/software/webservers/support.html

Peer recovery fails to acquire a lock

If peer recovery of a transaction fails to acquire a file lock that is needed to perform recovery processing,

you should see the following messages:

[10/26/04 8:41:38:887 CDT] 00000029 CoordinationL A CWWTR0100_GENERIC_ERROR

[10/26/04 8:41:39:100 CDT] 00000029 RecoveryHandl A CWWTR0100E: An attempt to

acquire a file lock need to perform recovery processing failed. Either the target

server is active or the recovery log configuration is incorrect

....

[10/26/04 8:42:34:921 CDT] 00000027 HAGroupImpl I CWRHA0130I: The local member

of group GN_PS=fwsitkaCell01\fwwsaix1Node01\GriffinServer3,IBM_hc=GriffinCluster,type

=WAS_TRANSACTIONS has indicated that is it not alive. The JVM will be terminated.

[10/26/04 8:42:34:927 CDT] 00000027 SystemOut O Panic:component requested panic

from isAlive

To troubleshoot the cause of failure to acquire the file lock, check the following factors:

v If you have enabled failover of transaction log recovery on the server cluster and are using a NAS

devise for the transaction logs, check that the DFS level on your machine is at a correct level for the

NAS DFS level. If the two levels are not correct, the transaction logs cannot be accessed.

v If you are running as non-root, check that the id numbers of the non-root user and group match on all

machines involved with peer recovery.

v If you have a policy defined for transaction, review the policy to ensure that you are giving control to the

correct servers (perhaps you need to add to or reorder the preferred server list).

XAER_NOTA exception logged after server fails

If an application server fails, and the end transaction record is not forced to disk immediately, you may or

may not recover a transaction.

WebSphere Application Server does not force the end record to the log, so it is up to the operating

system/network file system to decide when to write to the disk. The record would be forced if the server

was shutdown cleanly. The transaction service is designed to cope with the case of the end record never

being written to disk - when it gets an XAER_NOTA returned from the databases.

[date time] 00000057 WSRdbXaResour E CWWRA0302E: XAException occurred.

 Error code is: XAER_NOTA (-4). Exception is: XAER_NOTA

If there is a transaction without an end record left in the transaction log, the transaction service tries to

check with the database. If the transaction has completed, the database indicates that there is nothing to

complete (XAER_NOTA). This is normal behavior, and not an error.

Transaction service exceptions

This topic lists the exceptions that can be thrown by the WebSphere Application Server transaction

service. The exceptions are listed in the following groups:

v Standard exceptions

v Heuristic exceptions

If the EJB container catches a system exception from the business method of an enterprise bean, and the

method is running within a container-managed transaction, the container rolls back the transaction before

passing the exception on to the client. For more information about how the container handles the

exceptions thrown by the business methods for beans with container-managed transaction demarcation,

see the section Exception handling in the Enterprise JavaBeans 2.0 specification. That section specifies

the container’s action as a function of the condition under which the business method executes and the

exception thrown by the business method. It also illustrates the exception that the client receives and how

the client can recover from the exception.

444 Troubleshooting and support

http://java.sun.com/products/ejb/docs.html

Standard exceptions

The standard exceptions such as TransactionRequiredException, TransactionRolledbackException, and

InvalidTransactionException are defined in the Java Transaction API (JTA) 1.0.1 Specification.

InvalidTransactionException

This exception indicates that the request carried an invalid transaction context.

TransactionRequiredException exception

This exception indicates that a request carried a null transaction context, but the target object

requires an active transaction.

TransactionRolledbackException exception

This exception indicates that the transaction associated with processing of the request has been

rolled back, or marked for roll back. Thus the requested operation either could not be performed or

was not performed because further computation on behalf of the transaction would be fruitless.

Heuristic exceptions

A heuristic decision is a unilateral decision made by one or more participants in a transaction to commit or

rollback updates without first obtaining the consensus outcome determined by the Transaction Service.

Heuristic decisions are an issue only after the participant has been prepared and the second phase of

commit processing is underway. Heuristic decisions are normally made only in unusual circumstances,

such as repeated failures by the transaction manager to communicate with a resource manage during

two-phase commit. If a heuristic decision is taken, there is a risk that the decision differs from the

consensus outcome, resulting in a loss of data integrity.

The following list provides a summary of the heuristic exceptions. For more detail, see the Java

Transaction API (JTA) 1.0.1 Specification.

HeuristicRollback exception

This exception is raised on the commit operation to report that a heuristic decision was made and

that all relevant updates have been rolled back.

HeuristicMixed exception

This exception is raised on the commit operation to report that a heuristic decision was made and

that some relevant updates have been committed and others have been rolled back.

Exceptions thrown for transactions involving both single- and

two-phase commit resources

The exceptions that can be thrown by transactions that involve single- and two-phase commit resources

are the same as those that can be thrown by transactions involving only two-phase commit resources.

The exceptions that can be thrown are listed in the Reference: Generated API documentation found in the

Reference section of the WebSphere Application Server Version 6.1 Information Center.

Chapter 25. Transactions 445

http://java.sun.com/products/jta/
http://java.sun.com/products/jta/
http://java.sun.com/products/jta/

446 Troubleshooting and support

Chapter 26. Learn about WebSphere programming extensions

Use this section as a starting point to investigate the WebSphere programming model extensions for

enhancing your application development and deployment.

See Learn about WebSphere applications: Overview and new features for a brief description of each

WebSphere extension.

See the Developing and deploying applications PDF book for a brief description of each WebSphere

extension.

In addition, now your applications can use the Eclipse extension framework. Your applications are

extensible as soon as you define an extension point and provide the extension processing code for the

extensible area of the application. You can also plug an application into another extensible application by

defining an extension that adheres to the target extension point requirements. The extension point can find

the newly added extension dynamically and the new function is seamlessly integrated in the existing

application. It works on a cross Java 2 Platform, Enterprise Edition (J2EE) module basis.

The application extension registry uses the Eclipse plug-in descriptor format and application programming

interfaces (APIs) as the standard extensibility mechanism for WebSphere applications. Developers that

build WebSphere application modules can use WebSphere Application Server extensions to implement

Eclipse tools and to provide plug-in modules to contribute functionality such as actions, tasks, menu items,

and links at predefined extension points in the WebSphere application. Read the information about

Application extension registry in the Developing and deploying applications PDF book.

ActivitySessions

Troubleshooting ActivitySessions

Use this overview task to help resolve a problem that you think is related to the ActivitySession service.

To identify and resolve ActivitySession-related problems, you can use the standard WebSphere Application

Server RAS facilities. If you encounter a problem that you think might be related to ActivitySessions,

complete the following stages:

1. Check for ActivitySession messages in the admin console. The ActivitySession service produces

diagnostic messages prefixed by “WACS”. The error message indicates the nature of the problem and

provides some detail. The associated message information provides an explanation and any user

actions to resolve the problem.

2. Check for ActivitySession messages. The ActivitySession service produces diagnostic messages

prefixed by “WACS”. The error message indicates the nature of the problem and provides some detail.

The associated message information provides an explanation and any user actions to resolve the

problem. Activity log messages produced by the ActivitySession service are accompanied by Log and

Trace Analyzer descriptions.

Check in the SYSPRINT or SYSOUT log for error messages with the prefix WACS. If needed, check

other messages, which should provide extra details about the problem.

Application profiling

Application profiling exceptions

The following exceptions are thrown in response to various illegal actions related to application profiling.

com.ibm.ws.exception.RuntimeWarning

This exception is thrown when the application is started, if the application is configured incorrectly.

The startup is consequently terminated. Some examples of bad configurations include:

© Copyright IBM Corp. 2006 447

v A task configured on two different application profiles.

v A method configured with two different task run-as policies .
com.ibm.websphere.appprofile.IllegalTaskNameException

This exception is raised if an application attempts to programmatically set a task when that task

has not been configured as a task name reference.

Dynamic cache

Troubleshooting the dynamic cache service

This topic includes steps to troubleshoot the dynamic cache service.

Complete the steps below to resolve problems that you think are related to the dynamic cache service.

1. Review the logs. Messages that are prefaced with DYNA result from dynamic cache service

operations.

On the z/OS platform, check the job logs for the controller and servant.

a. Find any messages prefaced with DYNA in the log you are viewing, and write down the message

IDs. A sample message having the message ID DYNA0030E follows:

DYNA0030E: "property" element is missing required attribute "name".

b. Find the message for each message ID in the information center for WebSphere Application

Server. In the information center navigation tree, click product_name > Reference >

Troubleshooter > Messages > DYNA to view dynamic cache service messages.

c. Read the message Explanation and User Action statements. A search for the message ID

DYNA0030E displays a page having the following message:

DYNA0030E: "property" element is missing required attribute "name".

 Explanation: A required attribute was missing in the cache configuration.

 User Action: Add the required attribute to your cache configuration file.

This explanation and user action suggests that you can fix the problem by adding or correcting a

required attribute in the cache configuration file.

d. Try the solutions stated under User Action in the DYNA messages.

2. Use the cache monitor to determine whether the dynamic cache service is functioning as expected.

The cache monitor is an installable Web application that displays simple cache statistics, cache

entries, and cache policy information. Read the information about cache monitor in the Setting up the

application serving environment PDF book.

3. If you have completed the preceding steps and still cannot resolve the problem, contact your IBM

software support representative.

The IBM representative might ask you to complete a diagnostic trace. To enable tracing in the

administrative console, click Troubleshooting > Logs and trace > server_name > Diagnostic trace

and specify Enable trace with the following specification. The IBM representative can tell you what

trace specification to enter. Note that dynamic cache trace files can become large in a short period of

time; you can limit the size of the trace file by starting the trace, immediately recreating the problem,

and immediately stopping the trace.

For current information available from IBM Support on known problems and their resolution, see the

IBM Support page.

For technical support on dynamic cache service, see the IBM Support page.

Troubleshooting tips for the dynamic cache service

The dynamic cache service works within an application server Java virtual machine (JVM), intercepting

calls to cacheable objects. This article describes some common runtime and configuration problems and

remedies.

448 Troubleshooting and support

http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCVRZY
http://www-1.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCVRZY&q=mustgather

Servlets are not cached

 Recommended response Enable servlet caching. On the Web container settings page of the

administrative console, select the Enable servlet caching check box. Read

the information about the Web container settings in the Developing and

deploying applications PDF book.

Cache entries are not written to disk

 Explanation Cache entries are written to disk when the cache is full and new entries are

added to the memory cache. Cache entries also are written to disk when

Flush to disk is enabled in the administrative console and the server is

stopped.

Recommended response Verify that Disk offload is enabled on the dynamic cache service settings

page of the administrative console. Also verify that cache entries written to

disk are serializable and do not have the PersistToDisk configuration set to

false. Read more information about the dynamic cache settings in the

Developing and deploying applications PDF book.

Some servlets are not replicated or written to disk

 Recommended response Ensure that the attributes and response are serializable. If you do not want to

store the attributes, use the following property in your cache policy:

<property name="save-attributes">false</property>

Dynamic cache service does not cache fragments on the Edge

 Recommended response Set the EdgeCacheable property to true in the cache policy for those entries

that are to be cached on the Edge.

<property name="EdgeCacheable">true</property>

Dynamic cache invalidations are not sent to the IBM HTTP Server plug-in

 Explanation The DynaCacheEsi.ear file is required to send invalidations to external caches.

Recommended response Install DynaCacheEsi.ear using the administrative console. See the Developing

and deploying applications PDF for more information.

Cache entries are evicted often

 Problem The cache is full and new entries are added to the cache.

Explanation Cache entries are evicted when the cache is full and new entries are added

to the cache. A least recently used (LRU) eviction mechanism removes the

least recently used entry to make space for the new entries.

Recommended response Enable Disk offload on the Dynamic cache service settings page of the

administrative console so the entries are written to disk. You can also

increase the cache size to accommodate more entries in the cache. Read

more information about the dynamic cache settings in the Developing and

deploying applications PDF book.

Cache entries in disk with timeout set to 0 expire after one day

 Explanation The maximum lifetime of an entry in disk cache is 24 hours. A timeout of 0 in

the cache policy configures these entries to stay in disk cache for one whole

day, unless they are evicted earlier.

Chapter 26. Learn about WebSphere programming extensions 449

Recommended response Set the timeout for the cache policy to a number less than 0.

I cannot monitor cache entries on the Edge

 Explanation Use the dynamic cache monitor to monitor the contents of the memory cache,

disk cache and external caches, like the Edge cache. For the ESI processor’s

cache to be visible in the cache monitor, the DynaCacheEsi.ear application

must be installed and the esiInvalidationMonitor property must be set to

true in the plugin-cfg.xml file.

Recommended response Set the esiInvalidationMonitor property in the plugin-cfg.xml file to true.

See the Administering applications and their environment PDF for more

information.

I want to tune cache for my environment

 Recommended response Use the Tivoli Performance viewer to study the caching behavior for your

applications. Also consider performing the following actions:

v Increase the priority of cache entries that are expensive to regenerate.

v Modify timeout of entries so that they stay in memory as long as they are

valid.

v Enable disk offload to store LRU evicted entries.

v Increase the cache size.

Cleaning the disk cache files after installing the fix pack or a new release if you use the

disk cache function

 Symptom If the server is configured to use the disk cache, you must delete the disk

cache files because the disk cache files are not compatible to the previous

version.

Problem Failure to remove the old disk cache files results in a ClassCastException

error in the systemerr.log file when you access the cache from the disk.

Recommended response To delete the disk cache, perform the following steps:

1. Note your disk offload location. If you do not know the disk cache offload

location, perform the following steps:

a. Click Servers > Application servers > server_name > Container

services > Dynamic cache service in the administrative console

navigation tree.

b. The location is specified in the Disk offload field. If the location is not

specified, the default directory profile_root/temp/your_node/
server_name/_dynacache is used.

2. Make sure that the you stop the server and delete all the files under the

offload location.

3. If you use the Network Deployment product, delete the disk cache files for

each server.

Setting the flush attribute to true on every <jsp:include>tag in the cacheable JavaServer

Pages file

 Symptom When you obtain the JavaServer Pages (JSP) file from the dynamic cache, a

part of the page is not displayed.

Problem The flush attribute is set to false on the <jsp: include> tag in the JSP file.

Description When the cacheable JSP file includes another JSP file and if the flush

attribute is set to false on the <jsp: include> tag, any data written to the

parent output stream before the<jsp: include> tag are not cached.

450 Troubleshooting and support

Recommended response Set flush=true on every <jsp: include> tag in the cacheable JSP file.

Dynamic cache limitation when using the JSTL <c:import> tag to include a fragment

 Problem When a cacheable fragment is included using the JavaServer Pages

Standard Tag Library (JSTL) <c:import> tag, part of the page content

disappears and part of the page content displays twice on a cache hit.

Description Dynamic cache relies on flushing the content before and after including a

fragment so that the parent content before the include is not lost, and also to

prevent pulling the child content into the parent fragment.

However, in the case of the JSTL <c:import> tag, the flush=true attribute,

which flushes the parent writer before the child fragment is actually invoked,

is not supported. Also, JSTL buffers the responses, so that the child writer is

not flushed right after the child fragment is done. Subsequently, the child

response is pulled into the parent.

Recommended response To avoid this problem, surround the <c:import> statement with out.flush

method statements as follows:

<% out.flush(); %>

<c:import url="DNCParent2.jsp" />

<% out.flush(); %>

Internationalization

Internationalization service errors

Certain conditions might cause the internationalization service not to start, to issue

java.lang.IllegalStateException exceptions while an application is running, or to exercise default behaviors.

The java.lang.IllegalStateException exception indicates one of the following things:

v An application component attempted an operation that is not supported by the internationalization

programming model.

The IllegalStateException exception is issued whenever a server application component whose

internationalization type is set to container-managed internationalization (CMI) attempts to set invocation

context. This behavior is a violation of the CMI policy, under which servlets and enterprise beans cannot

modify their invocation internationalization context.

v An anomaly occurred that disabled the service.

For instance, if the internationalization service is not properly initialized, the Java Naming and Directory

Interface (JNDI) lookup on the UserInternationalization URL attribute issues a

javax.naming.NameNotFoundException exception that contains an IllegalStateException instance.

The following conditions can occur while your internationalized application is running. These conditions

might cause the internationalization service not to start, to issue IllegalStateException exceptions, or to

exercise default behaviors:

v “The service is disabled ” on page 452

v “The service is not started” on page 452

v “Invalid context element” on page 453

v “Missing context element” on page 453

v “Invalid policy” on page 453

v “Missing policy” on page 453

If you encounter unexpected or exceptional behavior, the problem is likely related to one of these

conditions. You need to examine the trace log to investigate these conditions, which requires that you

configure the diagnostic trace service to generate messages about internationalization service function. To

get started with logging and tracing, see “Tracing and logging configuration” on page 154.

Chapter 26. Learn about WebSphere programming extensions 451

The trace strings for the internationalization service follow; use both:

com.ibm.ws.i18n.context.*=all=enabled:com.ibm.websphere.i18n.context.*=all=enabled

The service is disabled

The internationalization service is not initialized when the startup setting is cleared. The service generates

a message that indicates whether it is enabled or disabled. Applications cannot access the

internationalization API when the service is disabled. If an application attempts a JNDI lookup to obtain the

UserInternationalization reference, the lookup fails with a NamingException exception, indicating that the

reference cannot be found. In addition, the service does not scope (propagate) internationalization context

on incoming (outgoing) business method calls.

The service is not started

The internationalization service is operational whenever it is in the STARTED state. For example, if an

application attempts to access internationalization context and the service is not started, the API issues an

IllegalStateException exception. In addition, the service does not provide runtime support for servlets and

enterprise beans.

As an application server progresses through its life cycle, it initializes, starts, stops, and terminates

(destroys) the internationalization service. If an anomaly occurs during initialization, the service does not

start. After the service is started, its state can change to BLOCKED in the event that a serious error

occurs. The service generates a message for every state change.

If a trace message indicates that the service is not STARTED, examine previous messages to determine

the problem. For instance, the internationalization service does not start if the activity service is

unavailable and a message is displayed to that effect during initialization of the internationalization service.

During startup, the following messages indicate potential configuration or runtime problems:

No ORB support

The service cannot obtain an instance of the object request broker (ORB). This condition is a fatal

error. Examine the SystemErr.log and SystemOut.log files for information.

No TCM support

The service cannot obtain an instance of its thread context manager (TCM). This condition is a

fatal error. Examine the SystemErr.log and SystemOut.log files for information.

No IIOP (activity service) support

The service cannot register with the activity service. This condition is a fatal error. The

internationalization service cannot propagate or receive context on Internet Inter-ORB Protocol

(IIOP) requests without activity service support. Examine the SystemErr.log and SystemOut.log

files for information.

No AsynchBeans support

The service cannot register into the asynchronous beans environment. This warning indicates that

the asynchronous beans environment cannot support internationalization context.

No EJB container support

The service cannot register with the Enterprise JavaBeans (EJB) container. This warning indicates

that the internationalization service cannot support enterprise beans. Without EJB container

support, internationalization contexts do not scope properly to EJB business methods. Review the

trace log for any EJB container-related error conditions.

No Web container support

The service cannot register with the Web container. This warning indicates that the

internationalization service cannot support servlets and JavaServer Page (JSP) files. Without Web

container support, internationalization contexts do not scope properly to servlet service methods.

Review the trace log for any Web container-related error conditions.

No Metadata support

The service cannot register with the metadata service. This warning indicates that the

internationalization service cannot process the internationalization policies within application

452 Troubleshooting and support

deployment descriptors. Without metadata support, the service associates the default

internationalization context management policy, [CMI, RunAsCaller], to every servlet lifecycle

method and enterprise bean business method invocation. Review the trace log for any metadata

service-related error conditions.

No JNDI (Naming service) support

The service cannot bind the UserInternationalization object into the namespace. This condition is a

fatal error. Application components are unable to access internationalization context API

references, and are therefore unable to access internationalization context elements. Review the

trace log for any Naming (JNDI) service-related error conditions.

No API support

The service cannot obtain an instance of an internationalization context API object. This condition

is a fatal error. Application components are unable to access internationalization context API

references, and are therefore unable to access internationalization context elements.

Invalid context element

The service detected an invalid internationalization context element. For example, the internationalization

service does not support TimeZone instances of a type other than java.util.SimpleTimeZone. If the service

encounters an unusable element, it logs a message and substitutes the corresponding default element of

the JVM.

Missing context element

The service detected a missing internationalization context element. Incoming requests (for example, from

application servers that do not support the internationalization service) lack internationalization context.

When the service attempts to access a caller internationalization context element (which does not exist in

this case), the service logs a message and substitutes the corresponding default element of the Java

virtual machine (JVM).

Whenever possible, enable the internationalization service within all clients and hosting application servers

that comprise an internationalized enterprise application. Read more information about Administering the

internationalization service in the Administering applications and their environment PDF book.

Invalid policy

The internationalization service detected a malformed internationalization policy in the application

deployment descriptor. The service replaces the malformed attribute with the appropriate default. For

instance, if the internationalization type for an entity bean is set to Application during the run of a servlet

or EJB business method call, the service logs the inconsistency and enforces the Container setting

instead.

Also, AMI application components do have an implicit container internationalization attribute. By default

they run as server. The service silently enforces the implicit policy, [AMI, RunAsServer], and logs

messages to this effect.

Invalid container internationalization attributes are likely to occur when specifying the Locales and Time

zone ID fields. When encountering invalid locales and time zone IDs within attributes, the service replaces

each value with the corresponding default element of the JVM. Be sure to follow the guidelines provided in

the Developing and deploying applications PDF book.

Missing policy

The service detected a missing internationalization policy. The service replaces the missing policy with the

appropriate default. For instance, if the internationalization type is missing for a servlet or enterprise bean,

the service sets the attribute to Container.

Chapter 26. Learn about WebSphere programming extensions 453

Container internationalization attributes are not mandatory for CMI application components. In the event

that a CMI servlet or EJB business method lacks a container internationalization attribute, the service

silently enforces the implicit policy [CMI, RunAsCaller].

When an application lacks internationalization policies in its deployment descriptor, or metadata support is

unavailable, the service logs a message and applies the policy [CMI, RunAsCaller] on every servlet

service method and EJB business method invocation.

Read the information in the Developing and deploying applications PDF book:

v Assembling internationalized applications

v Container internationalization attributes

v Internationalization type

454 Troubleshooting and support

Appendix. Directory conventions

References in the product information to app_server_root, profile_root, and other directories imply specific

directory locations. This topic describes the conventions in use for WebSphere Application Server for z/OS.

smpe_root

Refers to the root directory for product code installed with SMP/E.

 The corresponding product variable is smpe.install.root.

 The default is /usr/lpp/zWebSphere/V6R1.

configuration_root

Refers to the mount point for the configuration file system (formerly, the configuration HFS) in

WebSphere Application Server for z/OS.

 The configuration_root contains the various app_server_root directories and certain symbolic links

associated with them. Each different configuration_root normally requires its own cataloged

procedures under z/OS.

 The default is /WebSphere/V6R1.

app_server_root

Refers to the top directory for a WebSphere Application Server node.

 The node may be of any type—application server, deployment manager, or unmanaged for

example. Each node has its own app_server_root. Before Version 6.0 of the product information,

this was referred to as the ″WAS_HOME″ directory. Corresponding product variables are

was.install.root and WAS_HOME.

 The default varies based on node type. Common defaults are configuration_root/Appserver and

configuration_root/DeploymentManager.

profile_root

Refers to the home directory for a particular instantiated WebSphere Application Server profile.

 Corresponding product variables are server.root and user.install.root.

 In general, this is the same as app_server_root/profiles/profile_name. On z/OS, this will be always

be app_server_root/profiles/default because only the profile name ″default″ is used in WebSphere

Application Server for z/OS.

© Copyright IBM Corp. 2006 455

456 Troubleshooting and support

Notices

References in this publication to IBM products, programs, or services do not imply that IBM intends to

make these available in all countries in which IBM operates. Any reference to an IBM product, program, or

service is not intended to state or imply that only IBM’s product, program, or service may be used. Any

functionally equivalent product, program, or service that does not infringe any of IBM’s intellectual property

rights may be used instead of the IBM product, program, or service. Evaluation and verification of

operation in conjunction with other products, except those expressly designated by IBM, is the user’s

responsibility.

IBM may have patents or pending patent applications covering subject matter in this document. The

furnishing of this document does not give you any license to these patents. You can send license inquiries,

in writing, to:

 IBM Director of Intellectual Property & Licensing

 IBM Corporation

 North Castle Drive

 Armonk, NY 10504-1785

 USA

 Licensees of this program who wish to have information about it for the purpose of enabling: (i) the

exchange of information between independently created programs and other programs (including this one)

and (ii) the mutual use of the information which has been exchanged, should contact:

 IBM Corporation

 Mail Station P300

 2455 South Road

 Poughkeepsie, NY 12601-5400

 USA

 Attention: Information Requests

Such information may be available, subject to appropriate terms and conditions, including in some cases,

payment of a fee.

© Copyright IBM Corp. 2006 457

458 Troubleshooting and support

Trademarks and service marks

For trademark attribution, visit the IBM Terms of Use Web site (http://www.ibm.com/legal/us/).

© Copyright IBM Corp. 2006 459

http://www.ibm.com/legal/us/

	Contents
	How to send your comments
	Chapter 1. Overview and new features for troubleshooting
	What is new for troubleshooters
	Troubleshooting by component
	A client program does not work
	Client exceptions - debugging tips
	Java Message Service (JMS) support problems

	Chapter 2. How do I troubleshoot?
	Chapter 3. Debugging applications
	Attaching WebSphere Studio Application Developer to a remote debug session
	Unit testing with DB2

	Chapter 4. Add logging and tracing to your application
	Log and trace with Java logging
	Loggers
	Log handlers
	Log levels
	Log filters
	Log formatters
	Logging properties for an application
	Sample security policy for logging
	Using loggers in an application
	Using a logger
	Logger hierarchy
	Creating log resource bundles and message files
	Changing the message IDs used in log files
	java.util.logging custom log handlers
	java.util.logging custom filters
	java.util.logging custom formatters
	Custom handlers, filters, and formatters

	Configuring applications to use Jakarta Commons Logging
	Jakarta Commons Logging
	Configurations for the WebSphere Application Server logger

	Programming with the JRas framework
	JRas logging toolkit
	JRas Extensions
	JRas extension classes
	JRas framework (deprecated)
	Programming model summary

	JRas messages and trace event types
	Instrumenting an application with JRas extensions
	Creating JRas resource bundles and message files
	JRas manager and logger instances
	Setting up for integrated JRas operation
	Setting up for combined JRas operation
	Setting up for stand-alone JRas operation

	Logging messages and trace data for Java server applications
	Message location best practices
	System performance when logging messages and trace data
	Issuing application messages in the MVS master console

	Configuring logging properties using the administrative console
	Log level settings
	HTTP error and NCSA access log settings
	Enable service at server startup
	Enable access logging
	Access log file path
	Access log maximum size
	NCSA access log format
	Enable error logging
	Error log file path
	Error log maximum size
	Error log level

	The Common Base Event in WebSphere Application Server
	Types of problem determination events
	The structure of the Common Base Event
	Common header information
	Component identification for source and reporter
	Situation information
	Message data
	Extended data

	Sample Common Base Event instance
	Sample Common Base Event template
	Component identification for problem determination
	Logging Common Base Events in WebSphere Application Server
	Logging with Common Base Event API and the Java logging API
	java.util.logging -- Java logging programming interface
	Logger.properties file
	Generate Common Base Event content with the default event factory
	Best practices for logging Common Base Events in WebSphere Application Server

	Chapter 5. Diagnosing problems (using diagnosis tools)
	Troubleshooting class loaders
	Class loading exceptions
	Class loader viewer service settings
	Enable service at server startup

	Enterprise application topology
	Enterprise Applications Topology

	Class loader viewer settings
	Class Loader

	Search settings
	Search type
	Search term(s)

	Problem determination skills
	Choosing diagnosis tools and controls
	Updating the CFRM policy
	Using RMF
	Collecting job-related information with the System Management Facility (SMF)
	Enabling SMF recording
	Formatting the output data set
	Viewing the output data set
	Disabling SMF recording for WebSphere Application Server
	Disabling SMF recording for the entire MVS system
	Using SMF type 80 - preparing for audit support
	SMF settings
	Overview of SMF record type 120

	Troubleshooting using WebSphere variables
	Best practices for maintaining the run-time environment
	Best practices for using system controls
	Performance diagnosis information

	Diagnosing problems with message logs
	Viewing JVM logs
	JVM log interpretation
	Process logs
	Setting up the error log
	Viewing the service log
	Generating messages in Common Base Event format
	Modifying logstream size

	Message reference
	Displaying WebSphere Application Server work
	Choosing diagnostic information sources
	CEEDUMPs in the job log
	SVC dumps
	Formatting CTRACE data with an IPCS dialog
	Formatting CTRACE data in batch mode with IPCS
	ICPS CTRACE command
	IPCS CTRACE subname query

	Viewing error log contents through the Log Browse Utility (BBORBLOG)
	Using the log browse utility (BBORBLOG)
	Error log stream record output

	z/OS display command
	Hexadecimal conversion of Java error codes
	SYSPRINT output, STDOUT and STDERR streams in an HFS File
	Managing operator message routing

	Error Dump and Cleanup interface
	Configuring the hang detection policy
	Hung threads in J2EE applications
	Hang detection policy of a running server

	Working with trace
	Enabling trace on client and standalone applications
	Tracing and logging configuration
	Enabling trace at server startup
	Enabling trace on a running server
	Diagnostic trace service settings
	Enable Log
	Trace Output
	Trace Output Format
	Runtime tab
	Trace Output

	Select a server to configure logging and tracing
	Name
	Node
	Version
	Status

	Log and trace settings
	Diagnostic Trace
	Change Log Level Details

	Setting up component trace (CTRACE)
	Preparing CTRACE controls and resources
	Starting CTRACE as part of WebSphere Application Server for z/OS initialization
	Starting CTRACE while WebSphere Application Server for z/OS servers are active
	CTRACE to collect trace data for Java server applications

	Automation and recovery scenarios and guidelines
	APPC automation and recovery scenarios
	WLM automation and recovery scenarios
	RACF automation and recovery scenarios
	RRS automation and recovery scenarios
	UNIX System Services automation and recovery scenarios
	TCP/IP automation and recovery scenarios
	DB2 automation and recovery scenarios
	CICS automation and recovery scenarios
	IMS automation and recovery scenarios
	LDAP automation and recovery scenarios
	WebSphere Application Server for z/OS (Daemon) automation and recovery scenarios
	Web server (servlet) automation and recovery scenarios

	Working with troubleshooting tools
	Configuring first failure data capture log file purges

	Types of configuration variables
	Output destinations and characteristics
	Trace control settings
	Dump control settings
	Timeout values - controlling behavior

	Getting IBM Support Assistant
	Diagnosing out-of-memory errors and Java heap memory leaks
	IBM service call preparation
	IPCS VERBEXIT subcommand to display diagnostic data
	Trace controls for IBM service
	Dump controls for IBM service

	Troubleshooting help from IBM
	Diagnosing and fixing problems: Resources for learning
	Debugging Service details
	Enable service at server startup
	JVM debug port
	JVM debug arguments
	Debug class filters

	Configuration problem settings
	Configuration document validation
	Enable Cross validation
	Configuration Problems
	Scope
	Message
	Explanation
	User action
	Target Object
	Severity
	Local URI
	Full URI
	Validator classname
	Runtime events
	Message details

	Showlog commands for Common Base Events
	Working with Diagnostic Providers
	Diagnostic Providers
	Diagnostic Provider IDs
	Diagnostic Provider configuration dumps, state dumps, and self tests
	Diagnostic Provider registered attributes and registered tests
	Diagnostic Provider names
	The simpler interfaces provided by the Diagnostic Service MBean

	Creating a Diagnostic Provider
	Conventions for Diagnostic Provider Extensible Markup Language
	Tips for choosing a Diagnostic Provider name
	Implementing a Diagnostic Provider
	Creating a Diagnostic Provider registration XML file

	Associating a Diagnostic Provider ID with a logger
	Static Assignment
	Dynamic Assignment

	Using Diagnostic Providers from wsadmin scripts
	Viewing the run time configuration of a component using Diagnostic Providers
	Configuration data quick link or server selection
	Diagnostic Providers (selection)
	Configuration data

	Viewing the run time state data or configuring the state data collection specifications for a Diagnostic Provider
	Diagnostic Provider State Collection Specification
	State Data Quick Link or Server Selection
	State data
	Detailed state specification
	Change state specification
	Modifying the State Collection Specification from wsadmin scripts

	Running a self diagnostic on a Diagnostic Provider
	Tests Quick Link or Server Selection
	Test selection
	Test Results
	Test result details

	Chapter 6. Web applications
	Web module or application server stops processing requests
	Errors starting an application
	A Web resource does not display
	JavaServer Pages troubleshooting tips
	Web container troubleshooting tips
	Troubleshooting tips for Web application deployment
	HTTP session manager troubleshooting tips
	Problems creating or using HTTP sessions

	Chapter 7. SIP applications
	Tracing a SIP container

	Chapter 8. EJB applications
	Unit testing with DB2
	Access intent exceptions
	Frequently asked questions: Access intent
	Troubleshooting tips for EJBDEPLOY relationships
	Enterprise bean and EJB container troubleshooting tips
	Error in client log: Missing jar file

	Cannot access an enterprise bean from a servlet, a JSP file, a stand-alone program, or another client
	Important file for message-driven beans

	Chapter 9. Client applications
	A client program does not work
	Client exceptions - debugging tips
	Application client troubleshooting tips

	Chapter 10. Web services
	SYSPRINT output, STDOUT and STDERR streams in an HFS File
	Troubleshooting Web services
	Troubleshooting Web services command-line tools
	Troubleshooting Web services compiled bindings
	Troubleshooting the run time for a Web services client
	Troubleshooting serialization and deserialization in Web services
	Troubleshooting authentication and authorization for Web services security based on the Web Services for Java 2 Platform, Enterprise Edition (J2EE) specification
	Tracing SOAP messages with tcpmon
	Web services security troubleshooting tips

	Tips for troubleshooting the Web Services Invocation Framework
	Trace and logging for WSIF
	WSIF (Web Services Invocation Framework) messages
	WSIF - Known restrictions

	UDDI registry troubleshooting
	Turning on UDDI registry trace
	Common causes of errors in the UDDI registry
	Reporting problems with the UDDI registry

	Chapter 11. Resolving in-doubt transactions
	Chapter 12. Learning about file stores
	File stores
	File store configuration attributes

	File store high availability considerations
	Exclusive access to file store

	Chapter 13. Messaging engine failover between v6 and v6.1
	Chapter 14. Tuning and problem solving for messaging engine data stores
	Diagnosing problems with data store exclusive access locks
	Fixing storage allocation error caused by DB2 Universal JDBC Driver on z/OS
	Diagnosing problems with your data store configuration
	Avoiding failover problems when you use DB2 v8.2 with HADR as your data store
	One-phase commit optimization tuning

	Chapter 15. Listing messages on a message point
	Chapter 16. Deleting messages on a message point
	Chapter 17. Resolving locked messages on a message point
	Chapter 18. Troubleshooting service integration technologies
	Tips for troubleshooting service integration messaging
	Tips for troubleshooting bus members
	Tips for troubleshooting the default messaging provider
	Tips for troubleshooting mediations
	Tips for troubleshooting service integration bus security
	Tips for troubleshooting the SIBWS
	Tips for troubleshooting the Web services gateway
	Tips for troubleshooting WS-Notification
	Tips for troubleshooting WebSphere MQ link
	Troubleshooting service integration message problems
	Understanding why best effort messages are being discarded
	Investigating why a queue is full
	Determining which messaging engine an application is connected to
	Service integration troubleshooting: Checking the communication between two messaging engines in a bus

	Investigating why a topic space is full
	Determining which messaging engine an application is connected to
	Service integration troubleshooting: Checking the communication between two messaging engines in a bus

	Investigating why point-to-point messages are not arriving
	Determining the location of message points for a destination on a service integration bus
	Investigating why point-to-point messages are not arriving through a remote message point

	Investigating why point-to-point messages are not being consumed
	Determining which messaging engine an application is connected to
	Investigating why messages are not being consumed through a remote message point or subscription point, while the application is running
	Investigating why messages are not being consumed through a remote message point or subscription point, while the application is stopped

	Investigating why publish/subscribe messages are not arriving at a subscription
	Determining which messaging engine an application is connected to
	Investigating why publish/subscribe messages are not being received by a subscription through a remote message point

	Chapter 19. Data access resources
	Unit testing with DB2
	Provider coexistence considerations
	Connection and connection pool statistics
	Example: Connection factory lookup
	Vendor-specific data sources minimum required settings
	Example: Using the Java Management Extensions API to create a JDBC driver and data source for container-managed persistence
	Example: Using the Java Management Extensions API to create a JDBC driver and data source for bean-managed persistence, session beans, or servlets

	Chapter 20. Messaging resources
	Java Message Service (JMS) support problems
	Important file for message-driven beans
	Troubleshooting WebSphere messaging
	Troubleshooting WebSphere MQ messaging
	Errors in messaging
	Errors connecting to WebSphere MQ and creating WebSphere MQ queue connection factory
	Messaging component troubleshooting tips

	Troubleshooting message-driven beans

	Chapter 21. Mail, URLs, and other J2EE resources
	Enabling debugger for a mail session

	Chapter 22. Security
	Troubleshooting security configurations
	Security components troubleshooting tips
	Errors when trying to configure or enable security
	Errors after enabling security
	Access problems after enabling security
	Errors after configuring or enabling Secure Sockets Layer
	Single sign-on configuration troubleshooting tips
	Authorization provider troubleshooting tips
	SPNEGO trust association interceptor (TAI) troubleshooting tips
	Problem: WebSphere Application Server and the Active Directory (AD) Domain Controller's time are not synchronized within 5 minutes
	Problem: Getting exception: No factory available to create a name for mechanism 1.3.6.1.5.5.2
	Problem: Getting an exception
	Problem: Single sign-on is not occurring.
	Problem: Credential Delegation is not working
	Problem: Unable to get SSO working using RC4-HMAC encryption.
	Problem: User receives the following message when accessing a protected URL through the SPNEGO SSO
	Problem: Even with JGSS tracing disabled, some KRB_DBG_KDC messages appear in the SystemOut.log
	Problem: HTTP Post parameters are lost during interaction with the SPNEGO TAI, when stepping down to userid/password login.

	Chapter 23. Naming and directory
	Troubleshooting name space problems
	Naming service troubleshooting tips
	Cannot look up an object hosted by WebSphere Application Server from a servlet, JSP file, or other client
	dumpNameSpace tool
	Example: Invoking the name space dump tool
	Name space dump utility for java:, local: and server name spaces
	Example: Invoking the name space dump utility for java: and local: name spaces
	Name space dump sample output

	Chapter 24. Object Request Broker
	Object request broker component troubleshooting tips

	Chapter 25. Transactions
	Troubleshooting transactions
	Tips for troubleshooting transactions

	Transaction service exceptions
	Exceptions thrown for transactions involving both single- and two-phase commit resources

	Chapter 26. Learn about WebSphere programming extensions
	ActivitySessions
	Troubleshooting ActivitySessions

	Application profiling
	Application profiling exceptions

	Dynamic cache
	Troubleshooting the dynamic cache service
	Troubleshooting tips for the dynamic cache service

	Internationalization
	Internationalization service errors

	Appendix. Directory conventions
	Notices
	Trademarks and service marks

