
WebSphere® Application Server, Version 6.0.2

Tuning guide

���

Note

Before using this information, be sure to read the general information under “Notices” on page 125.

Compilation date: June 29, 2005

© Copyright International Business Machines Corporation 2005. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

How to send your comments v

Chapter 1. How do I tune performance? 1

Chapter 2. Planning ahead for

performance 5

Application design consideration 5

Chapter 3. Taking advantage of

performance functions 9

Chapter 4. Obtaining performance

advice from the performance advisors . 11

Why use the performance advisors? 11

Choosing the right performance advisor for the

purpose 12

Runtime Performance Advisor 12

Tivoli Performance Viewer advisor 13

Using the Runtime Performance Advisor 14

Runtime Performance Advisor configuration

settings 16

Restart 16

Enable automatic heap dump collection . . . 16

Enable Runtime Performance Advisor . . . 16

Calculation Interval 17

Maximum warning sequence 17

Number of processors 17

Advice configuration settings 17

Advice name 17

Advice applied to component 17

Advice status 17

Advice status 17

Viewing the Runtime Performance Advisor

recommendations 17

Understanding the lightweight memory leak

detection 18

Enabling the lightweight memory leak

detection 19

Getting the automated heap dump generation

support 19

Enabling automated heap dump generation . 20

Generating heap dumps manually 20

Locating and analyzing heap dumps 21

Using the performance advisor in Tivoli

Performance Viewer 22

Performance advisor report in Tivoli Performance

Viewer 24

Message 24

Performance data in the upper panel 24

Chapter 5. Tuning the application

serving environment 25

Tuning parameter hot list 26

Tuning TCP/IP buffer sizes 28

Tuning Java virtual machines 29

Tuning transport channel services 35

Checking hardware configuration and settings . . . 38

Tuning operating systems 40

Tuning Windows systems 40

Tuning Linux systems 43

Tuning AIX systems 45

Tuning Solaris systems 48

Tuning HP-UX systems 51

Tuning Web servers 54

Tuning WebSphere applications 56

Web applications 58

Tuning session management 58

Web services 65

Tuning Web services security for version 6.0.x

applications 65

Tuning Web services security for version 5.x

applications 66

Monitoring the performance of Web services

applications 66

Service integration 69

Setting tuning properties of a messaging

engine 69

Tuning and problem solving for messaging

engine data stores 69

Setting tuning properties for a mediation . . 73

Enabling CMP entity beans and messaging

engine data stores to share database

connections 74

Tuning service integration messaging 76

Tuning the SIBWS 79

Data access resources 81

EJB Container Cache tuning 81

Database performance tuning 84

DB2 tuning parameters 85

Tuning parameters for data access resources 88

Messaging 90

Setting tuning properties of a messaging

engine 90

Tuning and problem solving for messaging

engine data stores 91

Setting tuning properties for a mediation . . 94

Enabling CMP entity beans and messaging

engine data stores to share database

connections 95

Tuning service integration messaging 97

Tuning the SIBWS 100

Security 102

Tuning security configurations 102

Object Request Broker 109

Object Request Broker tuning guidelines . . 109

Learn about WebSphere programming

extensions 114

Dynamic cache 114

Work area 118

© Copyright IBM Corp. 2005 iii

Chapter 6. Troubleshooting

performance 121

Notices 125

Trademarks and service marks 127

iv IBM WebSphere Application Server, Version 6.0.2: Tuning guide

How to send your comments

Your feedback is important in helping to provide the most accurate and highest

quality information.

v To send comments on articles in the WebSphere Application Server Information

Center

1. Display the article in your Web browser and scroll to the end of the article.

2. Click on the Feedback link at the bottom of the article, and a separate

window containing an e-mail form appears.

3. Fill out the e-mail form as instructed, and click on Submit feedback .
v To send comments on PDF books, you can e-mail your comments to:

wasdoc@us.ibm.com or fax them to 919-254-0206.

Be sure to include the document name and number, the WebSphere Application

Server version you are using, and, if applicable, the specific page, table, or figure

number on which you are commenting.

When you send information to IBM, you grant IBM a nonexclusive right to use or

distribute the information in any way it believes appropriate without incurring any

obligation to you.

© Copyright IBM Corp. 2005 v

vi IBM WebSphere Application Server, Version 6.0.2: Tuning guide

Chapter 1. How do I tune performance?

Legend for ″How do I?...″ links

 Documentation

Show me

Tell me

Guide me

Teach me

Refer to the

detailed steps

and reference

Watch a brief

multimedia

demonstration

View the

presentation for

an overview

Be led through

the console

pages

Perform the

tutorial with

sample code

Approximate

time: Varies

Approximate

time: 3 to 5

minutes

Approximate

time: 10

minutes+

Approximate

time: 1/2 hour+

Approximate

time: 1 hour+

--

Tune the application serving environment

 Each WebSphere Application Server process has several parameters

influencing application performance.

 Documentation

--

Obtain tuning advice

 The Performance Advisor in Tivoli Performance Viewer (TPV) provides

advice to help tune systems for optimal performance and gives

recommendations on inefficient settings by using collected Performance

Monitoring Infrastructure (PMI) data.

© Copyright IBM Corp. 2005 1

Documentation

Show me

v Performance

advisor

v TPV advisor

Tell me

--

Tune WebSphere applications

 Expand Tuning performance > Tuning WebSphere applications in the

information center table of contents for information about tuning specific

application components and their administrative configurations (such as

EJB container settings).

 --

Pool database connections

 As described in Connection pooling, when accessing any database,

establishing connections is an expensive operation. Connection pooling

enables administrators to establish a pool of database connections that

applications can share on an application server. When connection pooling

capabilities are used, performance improvements up to 20 times the normal

results are realized.

 Documentation

--

Configure caching

 The dynamic cache service improves performance by caching the output of

servlets, commands, and JSP files.

 Documentation

Show me

Tell me

--
 Related concepts

2 IBM WebSphere Application Server, Version 6.0.2: Tuning guide

ftp://ftp.software.ibm.com/software/eod/WAS_6-0/Performance/Simulations/WASv6_PerformanceAdvisor.viewlet/WASv6_PerformanceAdvisor_viewlet_swf.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/Performance/Simulations/WASv6_PerformanceAdvisor.viewlet/WASv6_PerformanceAdvisor_viewlet_swf.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/Performance/Simulations/WASv6_TPVPerformanceAdvisor.viewlet/WASv6_TPVPerformanceAdvisor_viewlet_swf.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/Performance/Presentations/WASv6_PerformanceTools/playershell.swf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/Performance/Simulations/WASv6_DynamicCachingConfig.viewlet/WASv6_DynamicCachingConfig_viewlet_swf.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/Performance/Presentations/WASv6_DynamicCaching/playershell.swf

Overview and new features for tuning performance

 Product overview and quick start

This topic provides shortcuts to information for obtaining a high level

understanding of the product, then getting started quickly. Links include

various conceptual overviews, descriptions of what is new, and how the

documentation is organized. ″How do I?″ links lead to task descriptions,

including ShowMe demonstrations, tutorials, and presentations when they are

available.

Chapter 1. How do I tune performance? 3

4 IBM WebSphere Application Server, Version 6.0.2: Tuning guide

Chapter 2. Planning ahead for performance

How well a Web site performs while receiving heavy user traffic is an essential

factor in the overall success of an organization. This section provides online

resources that you can consult to ensure that your site performs well under

pressure.

v Consult the following Web resources for learning.

IBM Patterns for e-Business

 IBM Patterns for e-business is a group of reusable assets that can help

speed the process of developing Web-based applications. The patterns

leverage the experience of IBM architects to create solutions quickly,

whether for a small local business or a large multinational enterprise.

Planning for availability in the enterprise

 Availability is an achievable service-level characteristic that every

enterprise struggles with. The worst case scenario is realized when load

is underestimated or bandwidth is swamped because availability

planning was not carefully conducted. Applying the information in this

article and the accompanying spreadsheet to your planning exercises can

help you avoid such a scenario.

A concise guide to WebSphere capacity management

 How much capacity is enough for your Web site? It is a difficult

question, and often customers have either too much or too little capacity

to meet the demands of their site visitors. When developing a plan for

your Web site, you must first define its service levels. Next, you must

determine the health of your existing site and apply what you know to

planning for your future site. Finally, you must validate your capacity

estimates through testing and then eventually deploy the site. Here,

developing and implementing a capacity plan for your site is explored.

Hardware configurations for WebSphere Application Server production

environments

This article describes the most common production hardware

configurations, and provides the reasons for choosing each one. It begins

with a single machine configuration, and then proceeds with additional

configurations that have higher fault tolerance, horizontal scaling, and a

separation of Web and enterprise bean servers.
v See the documentation for the product functionality to improve performance .

Application design consideration

This topic describes the architectural suggestions in design and how to tune

applications.

Consult the Designing applications topic, which highlights Web sites and other

ideas for finding best practices for designing WebSphere applications, particularly

in the realm of WebSphere extensions to the Java 2 Platform, Enterprise Edition

(J2EE) specification.

The Designing applications topic contains the architectural suggestions in design

and the implementation of applications. For existing applications, the suggestions

© Copyright IBM Corp. 2005 5

http://www.ibm.com/developerworks/patterns/
http://www.ibm.com/developerworks/websphere/techjournal/0312_polozoff/polozoff.html
http://www.e-promag.com/eparchive//index.cfm?fuseaction=viewarticle&ContentID=2836&publicationid=19&PageView=Search&channel=2
http://www-106.ibm.com/developerworks/websphere/library/techarticles/0212_vansickel/0212_vansickel.html
http://www-106.ibm.com/developerworks/websphere/library/techarticles/0212_vansickel/0212_vansickel.html

might require changing the existing implementations. Tuning the application server

and resource parameters can have the greatest effect on performance of the

applications that are well designed.

Use the following information as an architectural guide when implementing

applications:

v Persistence

v Model-view-controller pattern

v Statelessness

v Caching

v Asynchronous considerations

v Third-party libraries

Persistence

Java 2 Platform, Enterprise Edition (J2EE) applications load, store, create, and

remove data from relational databases, a process commonly referred to as

persistence. Most enterprise applications have significant database access. The

architecture and performance of the persistence layer is critical to the performance

of an application. Therefore, persistence is a very important area to consider when

making architectural choices that require trade-offs related to performance. This

guide recommends first focusing on a solution that has clean architecture. The

clean architecture considers data consistency, security, maintenance, portability, and

the performance of that solution. Although this approach might not yield the

absolute peak performance obtainable from manual coding a solution that ignores

the mentioned qualities of service, this approach can achieve the appropriate

balance of data consistency, maintainability, portability, security, and performance.

Multiple options are available in J2EE for persistence: Session beans using entity

beans including container-managed persistence (CMP) or bean-managed

persistence (BMP), session beans using Java Database Connectivity (JDBC), and

Java beans using JDBC. For the reasons previously mentioned, consider CMP entity

persistence because it provides maximum security, maintenance, and portability.

CMP is also recommended for good performance. Refer to the Tune the EJB

container section of the Tuning application servers topic on tuning enterprise beans

and more specifically, CMP.

If an application requires using enterprise beans not using EJB entities, the

persistence mechanism usually involves the JDBC API. Because JDBC requires

manual coding, the Structured Query Language (SQL) that runs against a database

instance, it is critical to optimize the SQL statements that are used within the

application. Also, configure the database server to support the optimal

performance of these SQL statements. Finally, usage of specific JDBC APIs must be

considered including prepared statements and batching.

Regardless of which persistence mechanism is considered, use container-managed

transactions where the bean delegates management of transactions to the container.

For applications that use JDBC, this is easily achieved by using the session façade

pattern, which wraps all JDBC functions with a stateless session bean.

Finally, information about tuning the connection over which the EJB entity beans

or JDBC communicates can be found in the Tune the data sources section of the

Tuning application servers topic.

6 IBM WebSphere Application Server, Version 6.0.2: Tuning guide

Model-view-controller pattern

One of the standard J2EE programming architectures is the model-view-controller

(MVC) architecture, where a call to a controller servlet might include one or more

child JavaServer Pages (JSP) files to construct the view. The MVC pattern is a

recommended pattern for application architecture. This pattern requires distinct

separation of the view (JSP files or presentation logic), the controller (servlets), and

the model (business logic). Using the MVC pattern enables optimization of the

performance and scalability of each layer separately.

Statelessness

Implementations that avoid storing the client user state scale and perform the best.

Design implementations to avoid storing state. If state storage is needed, ensure

that the size of the state data and the time that the state is stored are kept to the

smallest possible values. Also, if state storage is needed, consider the possibility of

reconstructing the state if a failure occurs, instead of guaranteeing state failover

through replication.

Specific tuning of state affects HTTP session state, dynamic caching, and enterprise

beans. Refer to the follow tuning guides for tuning the size, replication, and timing

of the state storage:

v “Tuning session management” on page 58

v “EJB Container Cache tuning” on page 81

v “Tuning dynamic cache with the cache monitor” on page 116

Caching

Most J2EE application workloads have more read operations than write operations.

Read operations require passing a request through several topology levels that

consist of a front-end Web server, the Web container of an application server, the

EJB container of an application server, and a database. WebSphere Application

Server provides the ability to cache results at all levels of the network topology

and J2EE programming model that include Web services.

Application designers must consider caching when the application architecture is

designed because caching integrates at most levels of the programming model.

Caching is another reason to enforce the MVC pattern in applications. Combining

caching and MVC can provide caching independent of the presentation technology

and in cases where there is no presentation to the clients of the application.

Network designers must consider caching when network planning is performed

because caching also integrates at most levels of the network topology. For

applications that are available on the public Internet, network designers might

want to consider Edge Side Include (ESI) caching when WebSphere Application

Server caching extends into the public Internet. Network caching services are

available in the proxy server for WebSphere Application Server, WebSphere Edge

Component Caching Proxy, and the WebSphere plug-in.

Asynchronous considerations

J2EE workloads typically consist of two types of operations. You must perform the

first type of operation to respond to a system request. You can perform the second

type of operation asynchronously after the user request that initiated the operation

is fulfilled.

Chapter 2. Planning ahead for performance 7

An example of this difference is an application that enables you to submit a

purchase order, enables you to continue while the system validates the order,

queries remote systems, and in the future informs you of the purchase order status.

This example can be implemented synchronously with the client waiting for the

response. The synchronous implementation requires application server resources

and you wait until the entire operations complete. If the process enables you to

continue, while the result is computed asynchronously, the application server can

schedule the processing to occur when it is optimal in relation to other requests.

The notification to you can be triggered through e-mail or some other interface

within the application.

Because the asynchronous approach supports optimal scheduling of workloads and

minimal server resource, consider asynchronous architectures. WebSphere

Application Server supports asynchronous programming through J2EE Java

Message Service (JMS) and message-driven beans (MDB) as well as asynchronous

beans that are explained in the Tuning Java Message Service and Tuning MDB

topics.

Third-party libraries

Verify that all the libraries that applications use are also designed for server-side

performance. Some libraries are designed to work well within a client application

and fail to consider server-side performance concerns, for example, memory

utilization, synchronization, and pooling. It is suggested that all libraries that are

not developed as part of an application undergo performance testing using the

same test methodologies as used for the application.

Additional reference:

IBM WebSphere Developer Technical Journal: The top 10 (more or less) J2EE best

practices

Improve performance in your XML applications, Part 2

 Related tasks

 Chapter 5, “Tuning the application serving environment,” on page 25

This topic describes the benefits of tuning for optimal performance, highlights

the tunable parameters of the major WebSphere Application Server components,

and provides insight about how these parameters affect performance.

8 IBM WebSphere Application Server, Version 6.0.2: Tuning guide

http://www-106.ibm.com/developerworks/websphere/techjournal/0405_brown/0405_brown.html
http://www-106.ibm.com/developerworks/websphere/techjournal/0405_brown/0405_brown.html
http://www-106.ibm.com/developerworks/xml/library/x-perfap2.html

Chapter 3. Taking advantage of performance functions

This topic highlights a few main ways you can improve performance through a

combination of product features and application development considerations.

v Use this product functionality to improve performance.

Balancing workloads with clusters

 Clusters are sets of servers that are managed together and participate in

workload management. The servers that are members of a cluster can be

on different host machines, as opposed to the servers that are part of the

same node and must be located on the same host machine. A cell can

have no clusters, one cluster, or multiple clusters.

Task overview: Using the dynamic cache service to improve performance

 The dynamic cache service improves performance by caching the output

of servlets, commands, and JavaServer Pages (JSP) files. Dynamic

caching features include cache replication among clusters, cache disk

offload, Edge-side include caching, and external caching, which is the

ability to control caches outside of the application server, such as that of

your Web server.
v Ensure your applications perform well.

Details are available in the following topics:

– “Application design consideration” on page 5 (architectural suggestions)

– Designing applications (coding best practices)

© Copyright IBM Corp. 2005 9

10 IBM WebSphere Application Server, Version 6.0.2: Tuning guide

Chapter 4. Obtaining performance advice from the

performance advisors

Tuning WebSphere Application Server is a critical part of getting the best

performance from your Web site. But tuning WebSphere Application Server

involves analyzing performance data and determining the optimal server

configuration. This determination requires considerable knowledge about the

various components in the application server and their performance characteristics.

The performance advisors encapsulate this knowledge, analyze the performance

data and provide configuration recommendations to improve the application server

performance. Therefore, the performance advisors provide a starting point to the

application server tuning process and help you without requiring that you become

an expert.

Why use the performance advisors?

The performance advisors analyze the Performance Monitoring Infrastructure

(PMI) data of WebSphere Application Server using general performance principles,

best practices, and WebSphere-specific rules for tuning. The performance advisors

that are based on this information provide advice on how to set some of your

configuration parameters to better tune WebSphere Application Server.

The performance advisors provide a variety of advice on the following application

server resources:

v Object Request Broker service thread pools

v Web container thread pools

v Connection pool size

v Persisted session size and time

v Data source statement cache size

v Session cache size

v Dynamic cache size

v Java virtual machine heap size

v DB2 Performance Configuration Wizard

For example, consider the data source statement cache. It optimizes the processing

of prepared statements and callable statements by caching those statements that are

not being used in an active connection. (Both are SQL statements that essentially

run repeatable tasks without the costs of repeated compilation.) If the cache is full,

an old entry in the cache is discarded to make room for the new one. The best

performance is generally obtained when the cache is large enough to hold all of

the statements that are used in the application. The PMI counter prepared

statement cache discards indicates the number of statements that are discarded

from the cache. The performance advisors check this counter and provide

recommendations to minimize the cache discards.

Using another example with pools in the application server, the idea behind

pooling is to use an existing thread or connection from the pool instead of creating

a new instance for each request. Because each thread or connection in the pool

consumes memory and increases the context-switching cost, the pool size is an

important configuration parameter. A pool that is too large can hurt performance

© Copyright IBM Corp. 2005 11

as much as a pool that is too small. The performance advisors use PMI information

about current pool usage, minimum or maximum pool size, and the application

server CPU utilization to recommend efficient values for the pool sizes.

 Related tasks

 Chapter 4, “Obtaining performance advice from the performance advisors,” on

page 11

Choosing the right performance advisor for the purpose

Two performance advisors are available: the Runtime Performance Advisor and the

performance advisor in Tivoli Performance Viewer (TPV advisor). The Runtime

Performance Advisor runs in the Java virtual machine (JVM) process of

Application Server; therefore, it does not provide expensive advice. In a Network

Deployment environment, the performance advisor in TPV runs on the node agent

and can provide advice on resources which are more expensive to monitor and

analyze. The TPV advisor requires that you enable performance modules, counters,

or both.

The following chart shows the differences between the Runtime Performance

Advisor and the TPV advisor:

 Runtime Performance Advisor TPV advisor

Start location Application server TPV client

Invocation of tool Administrative console TPV

Output The SystemOut.log file and the

administrative console

TPV in the administrative

console

Frequency of operation Configurable When you select refresh in the

TPV administrative console

Types of advice v Object Request Broker (ORB)

service thread pools

v Web container thread pools

v Connection pool size

v Persisted session size and

time

v Prepared statement cache

size

v Session cache size

v Memory leak detection

v ORB service thread pools

v Web container thread pools

v Connection pool size

v Persisted session size and

time

v Prepared statement cache size

v Session cache size

v Dynamic cache size

v Java virtual machine (JVM)

heap size

v DB2 Performance

Configuration wizard

 Related tasks

 Chapter 4, “Obtaining performance advice from the performance advisors,” on

page 11

Runtime Performance Advisor

The Runtime Performance Advisor provides advice to help tune systems for

optimal performance and is configured using the WebSphere Application Server

administrative console or the wsadmin tool. Running in the Java virtual machine

(JVM) of the application server, the Runtime Performance Advisor periodically

checks for inefficient settings and issues recommendations as standard product

warning messages. These recommendations are displayed both as warnings in the

12 IBM WebSphere Application Server, Version 6.0.2: Tuning guide

administrative console under WebSphere Runtime Messages in the WebSphere

Status panel and as text in the application server SystemOut.log file. Enabling the

Runtime Performance Advisor has minimal system performance impact.

In WebSphere Application Server, Version 6.0.2, you can use the Runtime

Performance Advisor to enable the lightweight memory leak detection, which is

designed to provide early detection of memory problems in test and production

environments.

The advice that the Runtime Performance Advisor gives is all on the server level.

The only difference when running in a Network Deployment environment is that

you might receive contradictory advice on resources that are declared at the node

or cell level and used at the server level.

For example, two sets of advice are given if a data source is declared at the node

level to have a connection pool size of {10,50} and is used by two servers (server1

and server2). If server1 uses only two connections and server2 uses all fifty

connections during peak load, the optimal connection pool size is different for the

two servers. Therefore, the Runtime Performance Advisor gives two sets of advice

(one for server1 and another for server2). The data source is declared at the node

level and you must make your decisions appropriately by setting one size that

works for both, or by declaring two different data sources for each server with the

appropriate level.

 Related concepts

 “Choosing the right performance advisor for the purpose” on page 12

Two performance advisors are available: the Runtime Performance Advisor and

the performance advisor in Tivoli Performance Viewer (TPV advisor). The

Runtime Performance Advisor runs in the Java virtual machine (JVM) process

of Application Server; therefore, it does not provide expensive advice. In a

Network Deployment environment, the performance advisor in TPV runs on

the node agent and can provide advice on resources which are more expensive

to monitor and analyze. The TPV advisor requires that you enable performance

modules, counters, or both.

 “Tivoli Performance Viewer advisor”

Tivoli Performance Viewer advisor

The performance advisor in Tivoli Performance Viewer (TPV) provides advice to

help tune systems for optimal performance and provide recommendations on

inefficient settings by using collected Performance Monitoring Infrastructure (PMI)

data. Obtain the advice by selecting the performance advisor in TPV.

 Related concepts

 “Choosing the right performance advisor for the purpose” on page 12

Two performance advisors are available: the Runtime Performance Advisor and

the performance advisor in Tivoli Performance Viewer (TPV advisor). The

Runtime Performance Advisor runs in the Java virtual machine (JVM) process

of Application Server; therefore, it does not provide expensive advice. In a

Network Deployment environment, the performance advisor in TPV runs on

the node agent and can provide advice on resources which are more expensive

to monitor and analyze. The TPV advisor requires that you enable performance

modules, counters, or both.

 “Runtime Performance Advisor” on page 12

The Runtime Performance Advisor provides advice to help tune systems for

optimal performance and is configured using the WebSphere Application Server

Chapter 4. Obtaining performance advice from the performance advisors 13

administrative console or the wsadmin tool. Running in the Java virtual

machine (JVM) of the application server, the Runtime Performance Advisor

periodically checks for inefficient settings and issues recommendations as

standard product warning messages. These recommendations are displayed

both as warnings in the administrative console under WebSphere Runtime

Messages in the WebSphere Status panel and as text in the application server

SystemOut.log file. Enabling the Runtime Performance Advisor has minimal

system performance impact.

Using the Runtime Performance Advisor

The Runtime Performance Advisor provides advice to help tune systems for

optimal performance and is configured using the WebSphere Application Server

administrative console or the wsadmin tool . The Runtime Performance Advisor

uses Performance Monitoring Infrastructure (PMI) data to provide

recommendations for performance tuning. Running in the Java Virtual Machine

(JVM) of the application server, this advisor periodically checks for inefficient

settings, and issues recommendations as standard product warning messages. View

these recommendations by clicking Troubleshooting > Runtime Messages >

Warning in the administrative console. Enabling the Runtime Performance Advisor

has minimal system performance impact.

 1. Enable PMI in the application server administrative console as described in

the Enabling PMI using the administrative console article. To obtain advice,

you must first enable PMI through the administrative console and restart the

server. The Runtime Performance Advisor enables the appropriate monitoring

counter levels for all enabled advice when PMI is enabled. If specific counters

exist that are not wanted, disable the corresponding advice in the Runtime

Performance Advisor panel, and disable unwanted counters. If specific

counters exist that are not wanted, or when disabling the Runtime

Performance Advisor, you might want to disable PMI or the counters that the

Runtime Performance Advisor enabled.

 2. If running Network Deployment, you must enable PMI on both the server and

the node agent, and restart the server and the node agent.

 3. Click Servers > Application servers in the console navigation tree.

 4. Click server_name > Runtime Performance Advisor Configuration.

 5. Under the Configuration tab, specify the number of processors on the server.

This setting is critical to ensure accurate advice for the specific configuration

of the system.

 6. Select the Calculation Interval. PMI data is taken over an interval of time and

averaged to provide advice. The calculation interval specifies the length of the

time over which data is taken for this advice. Therefore, details within the

advice messages display as averages over this interval.

 7. Select the Maximum Warning Sequence. The maximum warning sequence

refers to the number of consecutive warnings that are issued before the

threshold is updated. For example, if the maximum warning sequence is set to

3, then the advisor only sends three warnings to indicate that the prepared

statement cache is overflowing. After three warnings, a new alert is only

issued if the rate of discards exceeds the new threshold setting.

 8. Click Apply.

 9. Click Save.

10. Click the Runtime tab.

14 IBM WebSphere Application Server, Version 6.0.2: Tuning guide

11. Click Restart. Select Restart on the Runtime tab to re-initialize the Runtime

Performance Advisor using the last configuration information that is saved to

disk.

Note: This action also resets the state of the Runtime Performance Advisor.

For example, the current warning count is reset to zero (0) for each

message.

12. Simulate a production level load. If you use the Runtime Performance Advisor

in a test environment, do any other tuning for performance, or simulate a

realistic production load for your application. The application must run this

load without errors. This simulation includes numbers of concurrent users

typical of peak periods, and drives system resources, for example, CPU and

memory, to the levels that are expected in production. The Runtime

Performance Advisor only provides advice when CPU utilization exceeds a

sufficiently high level. For a list of IBM business partners providing tools to

drive this type of load, see the article, Performance: Resources for learning in

the subsection of Monitoring performance with third party tools.

13. Select the check box to enable the Runtime Performance Advisor.

Note: To achieve the best results for performance tuning, enable the Runtime

Performance Advisor when a stable production level load is being

applied.

14. Click OK.

15. Select Warnings in the administrative console under the WebSphere Runtime

Messages in the WebSphere Status panel or look in the SystemOut.log file,

which is located in the

install_root/profiles/profile_name/logs/server_name directory to view

tuning advice. Some messages are not issued immediately.

16. Update the product configuration for improved performance, based on advice.

Although the performance advisors attempt to distinguish between loaded

and idle conditions, misleading advice might be issued if the advisor is

enabled while the system is ramping up or down. This result is especially

likely when running short tests. Although the advice helps in most

configurations, there might be situations where the advice hinders

performance. Because of these conditions, advice is not guaranteed. Therefore,

test the environment with the updated configuration to ensure that it

functions and performs better than the pervious configuration.

Over time, the advisor might issue differing advice. The differing advice is

due to load fluctuations and the run-time state. When differing advice is

received, you need to look at all advice and the time period over which it ia

issued. Advice is taken during the time that most closely represents the peak

production load.

Performance tuning is an iterative process. After applying advice, simulate a

production load, update the configuration that is based on the advice, and

retest for improved performance. This procedure is continued until optimal

performance is achieved.

You can enable and disable advice in the Advice Configuration panel. Some advice

applies only to certain configurations, and can only be enabled for those

configurations. For example, unbounded Object Request Broker (ORB) service

thread pool advice is only relevant when the ORB service thread pool is

unbounded, and can only be enabled when the ORB thread pool is unbounded.

For more information on Advice configuration, see the article, “Advice

configuration settings” on page 17.

Chapter 4. Obtaining performance advice from the performance advisors 15

Related tasks

 Chapter 4, “Obtaining performance advice from the performance advisors,” on

page 11

Runtime Performance Advisor configuration settings

Use this page to specify settings for the Runtime Performance Advisor.

For more information on how to use the Runtime Performance Advisor, see the

article, “Using the Runtime Performance Advisor” on page 14.

To view this administrative page, click Servers > Application Servers >

server_name > Runtime Performance Advisor Configuration under the

Performance section.

Restart

Selecting Restart on the Runtime tab reinitializes the Runtime Performance Advisor

using the last information saved to disk. Note that this action also resets the state

of the Runtime Performance Advisor. For example, the current warning sequence is

reset to zero for each recommendation or advice.

Enable automatic heap dump collection

Specifies whether the Runtime Performance Advisor automatically generates heap

dumps for post analysis when suspicious memory activity is detected.

Enable Runtime Performance Advisor

Specifies whether the Runtime Performance Advisor runs on the server startup.

The Runtime Performance Advisor requires that the Performance Monitoring

Infrastructure (PMI) be enabled. It does not require that individual counters be

enabled. When a counter that is needed by the Runtime Performance Advisor is

not enabled, the Runtime Performance Advisor enables it automatically. When

disabling the Runtime Performance Advisor, you might want to disable

Performance Monitoring Infrastructure (PMI) or the counters that Runtime

Performance Advisor enabled. The following counters might be enabled by the

Runtime Performance Advisor:

v ThreadPools (module)

– Web Container (module)

- Pool Size

- Active Threads
– Object Request Broker (module)

- Pool Size

- Active Threads
v JDBC Connection Pools (module)

– Pool Size

– Percent used

– Prepared Statement Discards
v Servlet Session Manager (module)

– External Read Size

– External Write Size

– External Read Time

– External Write Time

– No Room For New Session
v System Data (module)

– CPU Utilization

– Free Memory

16 IBM WebSphere Application Server, Version 6.0.2: Tuning guide

Calculation Interval

Specifies the length of time over which data is taken for this advice.

PMI data is taken over an interval of time and averaged to provide advice. The

calculation interval specifies the length of time over which data is taken for this

advice. Details within the advice messages display as averages over this interval.

Maximum warning sequence

The maximum warning sequence refers to the number of consecutive warnings

that are issued before the threshold is relaxed.

For example, if the maximum warning sequence is set to 3, the advisor only sends

three warnings to indicate that the prepared statement cache is overflowing. After

three warnings, a new alert is only issued if the rate of discards exceeds the new

threshold setting.

Number of processors

Specifies the number of processors on the server.

This setting is critical to ensure accurate advice for the specific configuration of the

system.

Advice configuration settings

Use this page to select the advice you wish to enable or disable.

To view this administrative page, click Servers > Application Servers >

server_name > Runtime Performance Advisor Configuration under the

Performance section > Advice Configuration.

Advice name

Specifies the advice that you can enable or disable.

Advice applied to component

Specifies the WebSphere Application Server component to which the run-time

performance advice applies.

Advice status

Specifies whether the advice is stopped or started.

Specify one of two values: Started and Stopped. Started means that the advice

runs if the advice applies. Stopped means that the advice does not run.

Advice status

Specifies whether the advice is stopped, started or unavailable.

The advice status has one of three values: Started, Stopped or Unavailable.

Started means that the advice is applied. Stopped means that the advice is not

applied. Unavailable means that the advice does not apply to the current

configuration, for example, persisted session size advice in a configuration without

persistent sessions.

Viewing the Runtime Performance Advisor recommendations

The Runtime Performance Advisor recommendations are displayed at the

following locations:

Chapter 4. Obtaining performance advice from the performance advisors 17

v The WebSphere Application Server log file SystemOut.log. The following log file

is a sample output of advice on the SystemOut.log file:

[4/2/04 15:50:26:406 EST] 6a83e321 TraceResponse W TUNE0202W:

Increasing the Web Container thread pool’s Maximum Size to 48

may improve performance.

Additional explanatory data follows.

Average number of threads: 48.

Configured maximum pool size: 2.

This alert has been issued 1 time(s) in a row.

The threshold will be updated to reduce the

overhead of the analysis.

v The Runtime Messages panel in the administrative console. To view this

administrative page, click Troubleshooting > Runtime Messages > Warning.
 Related tasks

 “Using the Runtime Performance Advisor” on page 14

Understanding the lightweight memory leak detection

This topic describes memory leaks in Java applications and introduces a new

function, lightweight memory leak detection, in WebSphere Application Server,

Version 6.0.2.

Memory leaks in Java applications

Although a Java application has a built-in garbage collection mechanism, which

frees the programmer from any explicit object deallocation responsibilities, memory

leaks are still common in Java applications. Memory leaks occur in Java

applications when unintentional references are made to unused objects. This

occurrence prevents Java garbage collection from freeing memory.

The term memory leak is overused; a memory leak refers to a memory misuse or

mismanagement. Old unused data structures might have outstanding references

but are never garbage collected. A data structure might have unbounded growth or

there might not be enough memory that is allocated to efficiently run a set of

applications.

Lightweight memory leak detection in WebSphere Application Server

Most existing memory leak technologies are based upon the idea that you know

that you have a memory leak and want to find it. Because of these analysis

requirements, these technologies have significant performance burdens and are not

designed for use as a detection mechanism in production. This limitation means

that memory leaks are generally not detected until the problem is critical; the

application passes all system tests and is put in production, but it crashes and

nobody knows why.

WebSphere Application Server has implemented a lightweight memory leak

detection mechanism that runs within the WebSphere Runtime Performance

Advisor framework. This mechanism is designed to provide early detection of

memory problems in test and production environments. This framework is not

designed to provide analysis of the source of the problem, but rather to provide

notification and help generating the information that is required to use analysis

tools. The mechanism only detects memory leaks in the Java heap and does not

detect native leaks.

18 IBM WebSphere Application Server, Version 6.0.2: Tuning guide

The lightweight memory leak detection in WebSphere Application Server does not

require any additional agents. The detection relies on algorithms that are based on

information that is available from the Performance Monitoring Infrastructure

service and has minimal performance overhead.

Enabling the lightweight memory leak detection

Use this task to enable the lightweight memory leak detection using the Runtime

Performance Advisor.

If you have a memory leak and want to confirm the leak, or you want to

automatically generate heap dumps on Java virtual machines (JVM) in WebSphere

Application Server, consider changing your minimum and maximum heap sizes to

be equal. This change provides the memory leak detection more time for reliable

diagnosis.

To enable the lightweight memory leak detection using the Runtime Performance

Advisor, perform the following steps in the administrative console:

1. Click Servers > Application servers in the administrative console navigation

tree.

2. Click server_name > Runtime Performance Advisor Configuration.

3. Click the Runtime tab.

4. Select the check box to enable the Runtime Performance Advisor.

5. Click OK.

6. From the Runtime or Configuration tab of Runtime Performance Advisor, click

Advice Configuration.

7. Enable the memory leak detection advice and disable any other unwanted

advice.

The memory leak detection advice is enabled.

Important: To achieve the best results for performance tuning, enable the Runtime

Performance Advisor when a stable production level load is running.

You can monitor any notifications of memory leaks by checking the SystemOut.log

file or Runtime Messages. For more information, see the Viewing the Runtime

Performance Advisor recommendations topic.

Getting the automated heap dump generation support

This topic explains the automated heap dump generation support, which is only

available on IBM Software Development Kit and analyzes memory leak problems.

Instructions from support involve setting environment variables, restarting the

application server, and using the wsadmin tool. To help you analyze memory leak

problems when memory leak detection occurs, some automated heap dump

generation support is available. This functionality is only available on IBM

Software Development Kit.

Most memory leak analysis tools perform some forms of difference evaluation on

two heap dumps. Upon detection of a suspicious memory situation, two heap

dumps are automatically generated at appropriate times. The general idea is to

take an initial heap dump as soon as problem detection occurs. Monitor the

memory usage and take another heap dump when you determine that enough

memory is leaked, so that you can compare the heap dumps to find the source of

the leak.

Chapter 4. Obtaining performance advice from the performance advisors 19

Enabling automated heap dump generation

Use this task to enable automated heap dump generation on AIX, Linux, and

Windows operating systems.

Although heap dumps are only generated in response to a detected memory leak,

you must understand that generating heap dumps can have a severe performance

impact on the Application Server for several minutes.

To help you analyze memory leak problems when memory leak detection occurs,

some automated heap dump generation support is available.

To enable automated heap dump generation support, perform the following steps

in the administrative console:

1. Click Servers > Application servers in the console navigation tree.

2. Click server_name > Runtime Performance Advisor Configuration.

3. Click the Runtime tab.

4. Select the Enable automatic heap dump collection check box.

5. Click OK.

The automated heap dump generation support is enabled.

Important: To preserve disk space, the Runtime Performance Advisor does not take

heap dumps if more than 10 heap dumps already exist in the WebSphere

Application Server home directory. Depending on the size of the heap and the

workload on the application server, taking a heap dump might be quite expensive

and might temporarily affect system performance.

You can monitor any notifications of memory leaks by checking the SystemOut.log

file or Runtime Messages. For more information, see the Viewing the Runtime

Performance Advisor recommendations topic. If a memory leak is detected and

you want to find the heap dump, refer to the Locating and analyzing heap dumps

topic.

 Related tasks

 “Generating heap dumps manually”

Use this task to manually generate heap dumps.

 “Locating and analyzing heap dumps” on page 21

Use this task to locate and analyze heap dumps.

Generating heap dumps manually

Use this task to manually generate heap dumps.

Although heap dumps are only generated in response to a detected memory leak,

you must understand that generating heap dump can have a severe performance

impact on the Application Server for several minutes. When generating multiple

heap dumps manually for memory leak analysis, make sure that significant objects

are leaked in between the two heap dumps. This approach enables problem

determination tools to identify the source of the memory leak.

You might want to manually generate heap dumps for analysis of memory leaks.

On Java virtual machines (JVM) in WebSphere Application Server, you cannot

enable automated heap dump generation. You might want to designate certain

times to take heap dumps because of the overhead involved. On JVM in

WebSphere Application Serve, you can manually produce heap dumps by using

20 IBM WebSphere Application Server, Version 6.0.2: Tuning guide

the generateHeapDump operation on WebSphere Application Server managed

beans (MBeans) that are special Java beans.

The WebSphere Application Server wsadmin tool provides the ability to run

scripts. You can use the wsadmin tool to manage a WebSphere Application Server

installation, as well as configuration, application deployment, and server run-time

operations. The WebSphere Application Server only supports the Jacl and Jython

scripting languages. To learn more about the wsadmin tool, see the Starting the

wsadmin scripting client topic.

1. Start the wsadmin scripting client. There are several options for you to run

scripting commands, ranging from running them interactively to running them

in a profile.

2. Invoke the generateHeapDump operation on JVM MBean, for example,

v Finding JVM objectName:

<wsadmin> set objectName [$AdminControl queryNames

WebSphere:type=JVM,process=<serverName>,node=<nodeName>,*]

v Invoking the generateHeapDump operation on JVM MBean:

<wsadmin> $AdminControl invoke $objectName generateHeapDump

where,

 $ is a Jacl operator for substituting a variable

name with its value

invoke is the command

generateHeapDump is the operation you are invoking

<serverName> is the name of the server on which you want

to generate a HeapDump

<nodeName> is the node to which <serverName> belongs

After running the wsadmin command, the file name of the heap dump is returned.

For more information on finding heap dumps, refer to theLocating and analyzing

heap dumps topic. When you have couple of heap dumps, use a number of

memory leak problem determination tools to analyze your problem. For example,

you can download a technology preview from WebSphere Serviceability.

 Related tasks

 “Enabling automated heap dump generation” on page 20

Use this task to enable automated heap dump generation on AIX, Linux, and

Windows operating systems.

 “Locating and analyzing heap dumps”

Use this task to locate and analyze heap dumps.

Locating and analyzing heap dumps

Use this task to locate and analyze heap dumps.

Do not analyze heap dumps on the Application Server machine because analysis is

very expensive. For analysis, transfer heap dumps to a dedicated problem

determination machine.

When a memory leak is detected and heap dumps are generated, you must

analyze heap dumps on a problem determination machine and not on the

application server because the analysis is very CPU and disk I/O intensive.

Perform the following steps to locate the heap dump files:

Chapter 4. Obtaining performance advice from the performance advisors 21

http://wst.pittsburgh.ibm.com/wst/portal

1. On the physical application server where a memory leak is detected, go to the

WebSphere Application Server home directory. For example, on the Windows

operating system, the directory is:

C:\WebSphere\AppServer\profiles\myProfile

2. IBM heap dump files are usually named in the following way:

heapdump.<date>..<timestamp><pid>.phd

3. Gather all the .phd files and transfer them to your problem determination

machine for analysis.

4. Many tools are available to analyze heap dumps that include Rational

Application Developer 6.0 (RAD). WebSphere Application Server serviceability

released a technology preview called Memory Dump Diagnostic For Java. You

can download this preview from the product download Web site.

When you have couple of heap dumps, use a number of memory leak problem

determination tools to analyze your problem. For example, you can download a

technology preview from WebSphere Serviceability.

 Related tasks

 “Enabling automated heap dump generation” on page 20

Use this task to enable automated heap dump generation on AIX, Linux, and

Windows operating systems.

 “Generating heap dumps manually” on page 20

Use this task to manually generate heap dumps.

Using the performance advisor in Tivoli Performance Viewer

The performance advisor in Tivoli Performance Viewer (TPV) provides advice to

help tune systems for optimal performance and provides recommendations on

inefficient settings by using the collected Performance Monitoring Infrastructure

(PMI) data. Obtain advice by clicking Performance advisor in TPV. The

performance advisor in TPV provides more extensive advice than the Runtime

Performance Advisor. For example, TPV provides advice on setting the dynamic

cache size, setting the Java virtual machine (JVM) heap size and using the DB2

Performance Configuration wizard.

1. Enable PMI in the application server as described in the Enabling PMI using

the administrative console article. To monitor performance data through the

PMI interfaces, you must first enable PMI through the administrative console

before restarting the server. If running in a Network Deployment environment,

you must enable PMI on both the server and on the node agent before

restarting the server and the node agent.

2. Enable data collection and set the PMI monitoring level to Extended. The

monitoring levels that determine which data counters are enabled can be set

dynamically, without restarting the server. These monitoring levels and the data

selected determine the type of advice you obtain. The performance advisor in

TPV uses the extended monitoring level; however, the performance advisor in

TPV can use a few of the more expensive counters (to provide additional

advice) and provide advice on which counters can be enabled.

For example, the advice pertaining to session size needs the PMI statistic set to

All. Or, you can use the PMI Custom Monitoring Level to enable the Servlet

Session Manager SessionObjectSize counter. The monitoring of the SessionSize

PMI counter is expensive, and is not in the Extended PMI statistic set.

Complete this action in one of the following ways:

a. Performance Monitoring Infrastructure settings.

22 IBM WebSphere Application Server, Version 6.0.2: Tuning guide

http://wst.pittsburgh.ibm.com/wst/portal

b. Enabling Performance Monitoring Infrastructure using the wsadmin tool.
3. In the administrative console, click Monitoring and Tuning > Performance

Viewer > Current activity.

4. Simulate a production level load. Simulate a realistic production load for your

application, if you use the performance advisor in a test environment, or do

any other performance tuning. The application must run this load without

errors. This simulation includes numbers of concurrent users typical of peak

periods, and drives system resources, for example, CPU and memory to the

levels that are expected in production. The performance advisor only provides

advice when CPU utilization exceeds a sufficiently high level. For a list of IBM

business partners providing tools to drive this type of load, see the article,

Performance: Resources for learning in the subsection of Monitoring

performance with third party tools.

5. Log performance data with TPV.

6. Clicking Refresh on top of the table of advice causes the advisor to recalculate

the advice based on the current data in the buffer.

7. Tuning advice displays when the Advisor icon is chosen in the TPV

Performance Advisor. Double-click an individual message for details. Because

PMI data is taken over an interval of time and averaged to provide advice,

details within the advice message display as averages.

Note: If the Refresh Rate is adjusted, the Buffer Size must also be adjusted to

enable sufficient data to be collected for performing average calculations.

Currently 5 minutes of data is required. Hence, the following guidelines

intend to help you use the Tivoli Performance Advisor:

a. You cannot have a Refresh Rate of more than 300 seconds.

b. RefreshRate * BufferSize > 300 seconds. Buffer Size * Refresh Rate is

the amount of PMI data available in memory and it must be greater

than 300 seconds.

c. For the Tivoli Performance Advisor to work properly with TPV logs,

the logs must be at least 300 seconds of duration.

For more information about configuring user and logging settings of

TPV, refer to the Configuring TPV settings article.

8. Update the product configuration for improved performance, based on advice.

Because Tivoli Performance Viewer refreshes advice at a single instant in time,

take the advice from the peak load time. Although the performance advisors

attempt to distinguish between loaded and idle conditions, misleading advice

might be issued if the advisor is enabled while the system is ramping up or

down. This result is especially likely when running short tests. Although the

advice helps in most configurations, there might be situations where the advice

hinders performance. Because of these conditions, advice is not guaranteed.

Therefore, test the environment with the updated configuration to ensure it

functions and performs well.

Over a period of time the advisor might issue differing advice. The differing

advice is due to load fluctuations and run-time state. When differing advice is

received, you need to look at all advice and the time period over which it was

issued. You must take advice during the time that most closely represents the

peak production load.

Performance tuning is an iterative process. After applying advice, simulate a

production load, update the configuration that is based on the advice, and

retest for improved performance. This procedure is continued until optimal

performance is achieved.

Chapter 4. Obtaining performance advice from the performance advisors 23

Related tasks

 Chapter 4, “Obtaining performance advice from the performance advisors,” on

page 11

Performance advisor report in Tivoli Performance Viewer

View recommendations and data from the performance advisor in Tivoli

Performance Viewer (TPV) by clicking the Advisor link in TPV for a server.

For more information on how to use the performance advisor in TPV, see the

article, Using the performance advisor in Tivoli Performance Viewer.

Message

Specifies recommendations for performance tuning.

Click the message to obtain more details.

Performance data in the upper panel

Displays a summary of performance data for WebSphere Application Server. Data

here corresponds to the same period that recommendations were provided for.

However, recommendations might use a different set of data points during analysis

than the set that is displayed by the summary page.

The first table represents the number of requests per second and the response time

in milliseconds for both the Web and Enterprise JavaBeans containers.

The pie graph displays the CPU activity as percentage busy and idle.

The second table displays the average thread activity for the Web container and

Object Request Broker (ORB) thread pools, and the average database connection

activity for connection pools. The activity is expressed as the number of threads or

connections busy and idle.

24 IBM WebSphere Application Server, Version 6.0.2: Tuning guide

Chapter 5. Tuning the application serving environment

This topic describes the benefits of tuning for optimal performance, highlights the

tunable parameters of the major WebSphere Application Server components, and

provides insight about how these parameters affect performance.

WebSphere Application Server provides tunable settings for its major components

to enable you to make adjustments to better match the run-time environment to

the characteristics of your application. Many applications can run successfully

without any changes to the default values for these tuning parameters. Other

applications might need changes, for example, a larger heap size, to achieve

optimal performance.

Performance tuning can yield significant gains in performance even if an

application is not optimized for performance. However, correcting shortcomings of

an application typically results in larger performance gains than are possible with

just altering tuning parameters. Many factors contribute to a high performing

application.

To optimize your WebSphere Application Servers to their fullest extent, use the

performance advisors, the suggested procedures or parameters in the tuning

parameter hot list, and the troubleshooting performance checklist.

Performance advisors The performance advisors use the Performance Monitoring

Infrastructure (PMI) data to suggest configuration changes to Object Request

Broker (ORB) service thread pools, Web container thread pools, connection pool

size, persisted session size and time, prepared statement cache size, and session

cache size. The Runtime Performance Advisor runs in the application server

process, while the other advisor runs in the Tivoli Performance Viewer (TPV). For

more information, see the articles, “Using the Runtime Performance Advisor” on

page 14 and “Using the performance advisor in Tivoli Performance Viewer” on

page 22.

Tuning parameter hot list Review the tuning parameter hot list. These parameters

have an important impact on performance. Because these parameters are

application dependent, the parameter settings for specific applications and

environments can vary.

Tuning parameter index for z/OS Performance tuning for WebSphere Application

Server for z/OS becomes a complex exercise because the nature of the runtime

involves many different components of the operating system and middleware. Use

the Tuning index for WebSphere Application Server for z/OS to find information

and parameters for tuning the z/OS operating system, subsystems, the WebSphere

Application Server for z/OS run-time environment, and some Java 2 Platform,

Enterprise Edition (J2EE) application tuning tips.

Recommendation: Before you read a description of WebSphere Application Server

for z/OS tuning guidelines, it is important to note that, no matter how well the

middleware is tuned, it cannot make up for poorly designed and coded

applications. Focusing on the application code can help improve performance.

Often, poorly written or designed application code changes will make the most

dramatic improvements to overall performance.

© Copyright IBM Corp. 2005 25

The tuning guide focuses on server tuning. If you want to tune your applications,

see the Performance: Resources for learning article for more information about

application tuning.

For your convenience, procedures for tuning parameters in other products, such as

DB2, Web servers and operating systems are included. Because these products

might change, consider these descriptions as suggestions.

Each WebSphere Application Server process has several parameters that influence

application performance. You can use the WebSphere Application Server

administrative console to configure and tune applications, Web containers,

Enterprise JavaBeans (EJB) containers, application servers and nodes in the

administrative domain.

If you are a WebSphere Application Server administrator or Systems programmer

on WebSphere Application Server for z/OS, refer to Tuning index for WebSphere

Application Server for z/OS for z/OS specific tuning tips.

Each parameter description: explains the parameter; provides reasons to adjust the

parameter; discusses how to view or set the parameter; as well as indicates default

and recommended values.

The Troubleshooting performance topic can save you time detecting problems and

help you troubleshoot performance problems.

Additional references:

v WebSphere Application Server - Performance Web site
 Related tasks

 “Using the Runtime Performance Advisor” on page 14

 “Using the performance advisor in Tivoli Performance Viewer” on page 22

 “Tuning security configurations” on page 102

 Chapter 6, “Troubleshooting performance,” on page 121

This topic illustrates that solving a performance problem is an iterative process

and shows how to troubleshoot performance problems.

 Tuning application servers
 Related reference

 “DB2 tuning parameters” on page 85

 “Secure Sockets Layer performance tips” on page 107

 EJB method Invocation Queuing

 Java memory tuning tips

 Example: Choosing a topology for better performance

 Performance: Resources for learning

 HTTP transport custom properties

Use this page to set custom properties for an HTTP transport.

Tuning parameter hot list

WebSphere Application Server provides several tunable parameters and options to

match the application server environment to the requirements of your application.

The following hot list contains recommendations that have improved performance

or scalability, or both, for many applications.

v Review the hardware and software requirements

26 IBM WebSphere Application Server, Version 6.0.2: Tuning guide

http://www-306.ibm.com/software/webservers/appserv/was/performance.html

Review the hardware and software requirements on the IBM WebSphere

Application Server supported hardware, software, and APIs Web site to get

started.

v Install the most current refresh pack, fix pack, and the recommended interim

fixes

The list of recommended updates is maintained on the Support site.

v Install the latest WebSphere Application Server PTFs

The list of recommended updates is maintained on the Support site

v Check hardware configuration and settings

Check network connections to make sure that they are running at their highest

speed. Sometimes transient errors can cause Ethernet adapters to shift down to a

lower speed. Verify that the system has adequate memory and that the number

and position of memory dual inline memory module (DIMM) are optimal. With

some systems, there are some memory DIMM configurations that permit higher

performance than other DIMM configurations. Verify that the hardware that is

used is the hardware that is supposed to be used.

v Review your application design

You can track many performance problems back to the application design.

Review the design to determine if it causes performance problems.

v Tune the operating systems

Operating system configuration plays a key role in performance. In many cases,

adjustments to some TCP/IP parameters might be necessary for your

application.

v Set the minimum and maximum Java virtual machine (JVM) heap sizes

Many applications need a larger heap size for best performance.

v Use a type 4 (or pure Java) JDBC driver

The type 4 JDBC drivers generally perform faster than type 2 JDBC drivers. Use

the immediately preceding link to view a list of database vendor-specific

requirements, which can tell you if a type 4 JDBC driver is supported for your

database.

v Tune WebSphere Application Server JDBC data sources and associated

connection pools

The JDBC data source configuration might have a significant performance

impact. For example, the connection pool size and prepared statement cache

need to be sized based on the number of concurrent requests being processed

and the design of the application.

See the Connection pooling topic for more information.

v Enable the pass by reference option

Use applications that can take advantage of the pass by reference option to

avoid the cost of copying parameters to the stack.

v Ensure that the transaction log is assigned to a fast disk

Some applications generate a high rate of writes to the WebSphere Application

Server transaction log. Locating the transaction log on a fast disk or disk array

can improve response time

v Tune related components, for example, Web servers and database

In many cases, some other component, for example, a Web server or database

needs adjustments to achieve higher throughput for your entire configuration.

For more information, see the Queuing network topic.
 Related tasks

 Chapter 5, “Tuning the application serving environment,” on page 25

This topic describes the benefits of tuning for optimal performance, highlights

Chapter 5. Tuning the application serving environment 27

http://www-306.ibm.com/software/webservers/appserv/doc/latest/prereq.html
http://www-306.ibm.com/software/webservers/appserv/doc/latest/prereq.html
http://www-1.ibm.com/support/docview.wss?uid=swg27004980
http://www-1.ibm.com/servers/eserver/iseries/software/websphere/wsappserver/services/service.htm

the tunable parameters of the major WebSphere Application Server components,

and provides insight about how these parameters affect performance.

 “Tuning Web servers” on page 54

 Task overview: Using the dynamic cache service to improve performance

Use the dynamic cache service to improve application performance by caching

the output of servlets, commands, and JavaServer Pages (JSP) files.
 Related information

 IBM eServer Workload Estimator

Tuning TCP/IP buffer sizes

WebSphere Application Server uses the TCP/IP sockets communication mechanism

extensively. For a TCP/IP socket connection, the send and receive buffer sizes

define the receive window. The receive window specifies the amount of data that

can be sent and not received before the send is interrupted. If too much data is

sent, it overruns the buffer and interrupts the transfer. The mechanism that

controls data transfer interruptions is referred to as flow control. If the receive

window size for TCP/IP buffers is too small, the receive window buffer is

frequently overrun, and the flow control mechanism stops the data transfer until

the receive buffer is empty.

Flow control can consume a significant amount of CPU time and result in

additional network latency as a result of data transfer interruptions. It is

recommended that you increase buffer sizes avoid flow control under normal

operating conditions. A larger buffer size reduces the potential for flow control to

occur, and results in improved CPU utilization. However, a large buffer size can

have a negative effect on performance in some cases. If the TCP/IP buffers are too

large and applications are not processing data fast enough, paging can increase.

The goal is to specify a value large enough to avoid flow control, but not so large

that the buffer accumulates more data than the system can process.

The default buffer size is 8 KB. The maximum size is 8 MB. The optimal buffer size

depends on several network environment factors including types of switches and

systems, acknowledgment timing, error rates and network topology, memory size,

and data transfer size. When data transfer size is extremely large, you might want

to set the buffer sizes up to the maximum value to improve throughput, reduce the

occurrence of flow control, and reduce CPU cost.

Buffer sizes for the socket connections between the Web server and WebSphere

Application Server are set at 64KB. In most cases this value is adequate.

Flow control can be an issue when an application uses either the IBM Developer

Kit for Java(TM) JDBC driver or the IBM Toolbox for Java JDBC driver to access a

remote database. If the data transfers are large, flow control can consume a large

amount of CPU time. If you use the IBM Toolbox for Java JDBC driver, you can

use custom properties to configure the buffer sizes for each data source. It is

recommended that you specify large buffer sizes, for example,1 MB.

Some system-wide settings can override the default 8 KB buffer size for sockets.

With some applications, for exmaple, WebSphere Commerce Suite, a buffer size of

180 KB reduces flow control and typically does not adversely affect paging. The

optimal value is dependent on specific system characteristics. You might need to

try several values before you determine the ideal buffer size for your system. To

change the system wide value, perform the following steps:

v Run the Change TCP/IP Attribute, CHGTCPA command.

28 IBM WebSphere Application Server, Version 6.0.2: Tuning guide

http://www-912.ibm.com/supporthome.nsf/document/16533356

v On the Change TCP/IP Attributes window, press F4. The buffer sizes are

displayed as the TCP receive and send buffer sizes.

v Type new values.

v Save your changes.

v Recycle TCP/IP.

v Monitor CPU and paging rates to determine if they are within recommended

system guidelines.

Repeat this process until you determine the ideal buffer size.

The TCP/IP buffer sizes are changed. Repeat this process until you determine the

ideal buffer size.

For more information about TCP/IP performance, see Chapter 5 of the

Performance Capabilities Reference. Links to several editions of the Performance

Capabilities Reference are in the Performance Management Resource Library.

Tuning Java virtual machines

The application server, being a Java process, requires a Java virtual machine (JVM)

to run, and to support the Java applications running on it. As part of configuring

an application server, you can fine-tune settings that enhance system use of the

JVM. In addition to the following tuning parameters, see also Java memory tuning

tips.

A JVM provides the runtime execution environment for Java based applications.

WebSphere Application Server is a combination of a JVM runtime environment and

a Java based server runtime. It can run on JVMs from different JVM providers. To

determine the JVM provider on which your Application Server is running, issue

the java –fullversion command from within your WebSphere Application Server

install_root/java/bin directory. You can also check the SystemOut.log from one

of your servers. When an application server starts, Websphere Application Server

writes information about the JVM, including the JVM provider information, into

this log file.

From a JVM tuning perspective, there are two main types of JVMs:

v IBM JVMs

v Sun HotSpot based JVMs, including Sun HotSpot JVM on Solaris and HP’s JVM

for HP-UX

Even though JVM tuning is dependent on the JVM provider general tuning

concepts apply to all JVMs. These general concepts include:

v Compiler tuning. All JVMs use Just In Time (JIT) compilers to compile Java byte

codes into native instructions during server run-time.

v Java memory or heap tuning. The JVM memory management function, or

garbage collection provides one of the biggest opportunities for improving JVM

performance.

v Class loading tuning.
v Optimize the startup performance and the runtime performance In some

environments, it is more important to optimize the startup performance of your

WebSphere Application Server rather than the runtime performance. In other

environments, it is more important to optimize the runtime performance. By

Chapter 5. Tuning the application serving environment 29

http://www-1.ibm.com/servers/eserver/iseries/perfmgmt/resource.htm

default, IBM JVMs are optimized for runtime performance while HotSpot based

JVMs are optimized for startup performance.

The behavior of the Java JIT compiler has the biggest influence over rather

startup or runtime performance are optimized. The initial optimization level

used by the compiler influences the length of time it takes to compile a class

method and the length of time it takes to start the server. For faster startups,

you can reduce the initial optimization level that the compiler uses. This means

that the runtime performance of your applications may be degraded because the

class methods are now compiled at a lower optimization level.

It is hard to provide a specific runtime performance impact statement because

the compilers might recompile class methods during runtime execution based

upon the compiler’s determination that recompiling might provide better

performance. Ultimately, the size of the application will have a major influence

on the amount of runtime degradation. Smaller applications have a higher

probability of having their methods recompiled. Bigger applications are less

likely to have their methods recompiled. The default settings for IBM JVMs use

a high optimization level for the initial compiles. You can use the following IBM

JVM option if you need to change this behavior:

-Xquickstart

This setting influences how the IBM JVM uses a lower optimization level for

class method compiles, which provides for faster server startups, at the expense

of runtime performance. If this parameter is not specified, the IBM JVM defaults

to starting with a high initial optimization level for compiles. This setting

provides faster runtime performance at the expense of slower server starts.

 Default: High initial compiler optimizations level

Recommended: High initial compiler optimizations level

Usage: -Xquickstart can provide faster server

startup times.

JVMs based on Sun’s Hotspot technology initially compile class methods with a

low optimization level. Use the following JVM option to change this behavior:

-server

JVMs based on Sun’s Hotspot technology initially compile class methods with a

low optimization level. These JVMs use a simple complier and an optimizing JIT

compiler. Normally the simple JIT compiler is used. However you can use this

option to make the optimizing compiler the one that is used. This change will

significantly increases the performance of the server but the server takes longer

to warm up when the optimizing compiler is used.

 Default: Simple compiler

Recommended: Optimizing compiler

Usage: -server enables the optimizing compiler.

v Set the heap size The following command line parameters are useful for setting

the heap size.

– -Xms

This setting controls the initial size of the Java heap. Properly tuning this

parameter reduces the overhead of garbage collection, improving server

response time and throughput. The default setting for this option is typically

too low, resulting in a high number of minor garbage collections

 Default: 50MB

30 IBM WebSphere Application Server, Version 6.0.2: Tuning guide

Recommended: Workload specific, but higher than the

default.

Usage: -Xms256m sets the initial heap size to 256

megabytes

– -Xmx

This setting controls the maximum size of the Java heap. Properly tuning this

parameter can reduce the overhead of garbage collection, improving server

response time and throughput. The default setting for this is typically too low,

resulting in a high number of minor garbage collections.

 Default: 256MB

Recommended: Workload specific, but higher than the

default.

Usage: -Xmx512m sets the maximum heap size to

512 megabytes

– -Xlp

This setting can be used with the IBM JVM to allocate the heap using large

pages. However, if you use this setting your operating system must be

configured to support large pages. Using large pages can reduce the CPU

overhead needed to keep track of heap memory and might also allow the

creation of a larger heap.

See “Tuning operating systems” on page 40 for more information about

tuning your operating system.

The size you should specify for the heap depends on your heap usage over time.

In cases where the heap size changes frequently, you might improve

performance if you specify the same value for the Xms and Xmx parameters.

v Tune the IBM JVM’s garbage collector

Use the Java -X option to see the list of memory options.

– -Xgcpolicy

Setting gcpolicy to optthruput disables concurrent mark. If you do not have

pause time problems, denoted by erratic application response times, you

should get the best throughput using this option. Setting gcpolicy to

optavgpause enables concurrent mark with its default values. This setting

alleviates erratic application response times caused by normal garbage

collection. However, this option might decrease overall throughput.

 Default: optthruput

Recommended: optthruput

Usage: Xgcpolicy:optthruput

– -Xnoclassgc

By default the JVM unloads a class from memory when there are no live

instances of that class left, but this can degrade performance. Turning off class

garbage collection eliminates the overhead of loading and unloading the same

class multiple times.

If a class is no longer needed, the space that it occupies on the heap is

normally used for the creation of new objects. However, if you have an

application that handles requests by creating a new instance of a class and if

requests for that application come in at random times, it is possible that when

the previous requester is finished, the normal class garbage collection will

Chapter 5. Tuning the application serving environment 31

clean up this class by freeing the heap space it occupied, only to have to

re-instantiate the class when the next request comes along. In this situation

you might want to use this option to disable the garbage collection of classes.

 Default: class garbage collection enabled

Recommended: class garbage collection disabled

Usage: Xnoclassgc disables class garbage collection

For additional information, see the following DeveloperWorks article:

 http://www.ibm.com/developerworks/java/
v Tune the Sun JVM’s garbage collector

On the Solaris platform, the WebSphere Application Server runs on the Sun

Hotspot JVM rather than the IBM JVM. It is important to use the correct tuning

parameters with the Sun JVM in order to utilize its performance optimizing

features.

The Sun HotSpot JVM relies on generational garbage collection to achieve

optimum performance. The following command line parameters are useful for

tuning garbage collection.

– -XX:SurvivorRatio

The Java heap is divided into a section for old (long lived) objects and a

section for young objects. The section for young objects is further subdivided

into the section where new objects are allocated (eden) and the section where

new objects that are still in use survive their first few garbage collections

before being promoted to old objects (survivor space). Survivor Ratio is the

ratio of eden to survivor space in the young object section of the heap.

Increasing this setting optimizes the JVM for applications with high object

creation and low object preservation. Since WebSphere Application Server

generates more medium and long lived objects than other applications, this

setting should be lowered from the default.

 Default: 32

Recommended: 16

Usage: -XX:SurvivorRatio=16

– -XX:PermSize

The section of the heap reserved for the permanent generation holds all of the

reflective data for the JVM. This size should be increased to optimize the

performance of applications that dynamically load and unload a lot of classes.

Setting this to a value of 128MB eliminates the overhead of increasing this

part of the heap.

 Recommended: 128 MB

Usage: XX:PermSize=128m sets perm size to 128

megabytes.

– -Xmn

This setting controls how much space the young generation is allowed to

consume on the heap. Properly tuning this parameter can reduce the

overhead of garbage collection, improving server response time and

throughput. The default setting for this is typically too low, resulting in a

high number of minor garbage collections. Setting this setting too high can

cause the JVM to only perform major (or full) garbage collections. These

usually take several seconds and are extremely detrimental to the overall

32 IBM WebSphere Application Server, Version 6.0.2: Tuning guide

http://www.ibm.com/developerworks/java/

performance of your server. You must keep this setting below half of the

overall heap size to avoid this situation.

 Default: 2228224 bytes

Recommended: Approximately 1/4 of the total heap size

Usage: -Xmn256m sets the size to 256 megabytes.

– -Xnoclassgc

By default the JVM unloads a class from memory when there are no live

instances of that class left, but this can degrade performance. Turning off class

garbage collection eliminates the overhead of loading and unloading the same

class multiple times.

If a class is no longer needed, the space that it occupies on the heap is

normally used for the creation of new objects. However, if you have an

application that handles requests by creating a new instance of a class and if

requests for that application come in at random times, it is possible that when

the previous requester is finished, the normal class garbage collection will

clean up this class by freeing the heap space it occupied, only to have to

re-instantiate the class when the next request comes along. In this situation

you might want to use this option to disable the garbage collection of classes.

 Default: class garbage collection enabled

Recommended: class garbage collection disabled

Usage: Xnoclassgc disables class garbage collection

For additional information on tuning the Sun JVM, see Performance

Documentation for the Java HotSpot VM.

v Tune the HP JVM’s garbage collector

The HP JVM relies on generational garbage collection to achieve optimum

performance. The following command line parameters are useful for tuning

garbage collection.

– -Xoptgc

This setting optimizes the JVM for applications with many short-lived objects.

If this parameter is not specified, the JVM usually does a major (full) garbage

collection. Full garbage collections can take several seconds and can

significantly degrade server performance.

 Default: off

Recommended: on

Usage: -Xoptgc enables optimized garbage

collection.

– -XX:SurvivorRatio

The Java heap is divided into a section for old (long lived) objects and a

section for young objects. The section for young objects is further subdivided

into the section where new objects are allocated (eden) and the section where

new objects that are still in use survive their first few garbage collections

before being promoted to old objects (survivor space). Survivor Ratio is the

ratio of eden to survivor space in the young object section of the heap.

Increasing this setting optimizes the JVM for applications with high object

creation and low object preservation. Since WebSphere Application Server

generates more medium and long lived objects than other applications, this

setting should be lowered from the default.

Chapter 5. Tuning the application serving environment 33

http://java.sun.com/docs/hotspot
http://java.sun.com/docs/hotspot

Default: 32

Recommended: 16

Usage: -XX:SurvivorRatio=16

– -XX:PermSize

The section of the heap reserved for the permanent generation holds all of the

reflective data for the JVM. This size should be increased to optimize the

performance of applications which dynamically load and unload a lot of

classes. Specifying a value of 128 megabytes eliminates the overhead of

increasing this part of the heap.

 Default: 0

Recommended: 128 megabytes

Usage: -XX:PermSize=128m sets PermSize to 128

megabytes

– -XX:+ForceMmapReserved

By default the Java heap is allocated ″lazy swap.″ This saves swap space by

allocating pages of memory as needed, but this also forces the use of 4KB

pages. This allocation of memory can spread the heap across hundreds of

thousands of pages in large heap systems. This command disables ″lazy

swap″ and allows the operating system to use larger memory pages, thereby

optimizing access to the memory making up the Java heap.

 Default: off

Recommended: on

Usage: -XX:+ForceMmapReserved will disable ″lazy

swap″.

– -Xmn

This setting controls how much space the young generation is allowed to

consume on the heap. Properly tuning this parameter can reduce the

overhead of garbage collection, improving server response time and

throughput. The default setting for this is typically too low, resulting in a

high number of minor garbage collections.

 Default: No default

Recommended: Approximately 3/4 of the total heap size

Usage: -Xmn768m sets the size to 768 megabytes

– Virtual Page Size

Setting the Java virtual machine instruction and data page sizes to 64MB can

improve performance.

 Default: 4MB

Recommended: 64MB

34 IBM WebSphere Application Server, Version 6.0.2: Tuning guide

Usage: Use the following command. The command

output provides the current operating

system characteristics of the process

executable:

chatr +pi64M +pd64M /opt/WebSphere/

AppServer/java/bin/PA_RISC2.0/

native_threads/java

– -Xnoclassgc

By default the JVM unloads a class from memory when there are no live

instances of that class left, but this can degrade performance. Turning off class

garbage collection eliminates the overhead of loading and unloading the same

class multiple times.

If a class is no longer needed, the space that it occupies on the heap is

normally used for the creation of new objects. However, if you have an

application that handles requests by creating a new instance of a class and if

requests for that application come in at random times, it is possible that when

the previous requester is finished, the normal class garbage collection will

clean up this class by freeing the heap space it occupied, only to have to

re-instantiate the class when the next request comes along. In this situation

you might want to use this option to disable the garbage collection of classes.

 Default: class garbage collection enabled

Recommended: class garbage collection disabled

Usage: Xnoclassgc disables class garbage collection

For additional information on tuning the HP virtual machine, see Java

technology software HP-UX 11i.

v Tune HP’s JVM for HP-UX Set the following options to improve application

performance:

-XX:SchedulerPriorityRange=SCHED_NOAGE

-Djava.nio.channels.spi.SelectorProvider=sun.nio.ch.DevPollSelectorProvider

-XX:-ExtraPollBeforeRead

Tuning transport channel services

The transport channel services manage client connections and I/O processing for

HTTP and JMS requests. These new I/O services are based on new non-blocking

I/O features available in Java™. These services provide a highly scalable

foundation to WebSphere Application Server request processing.

Key features of the new transport channel services include:

v Scalability, which enables the WebSphere Application Server to handle many

concurrent requests.

v Asynchronous request processing, which provides a many-to-one mapping of

client requests to Web container threads

v Resource sharing and segregation, which enables thread pools to be shared

between the Web container and a messaging service.

v Improved usability and

v Incorporation of autonomic tuning and configuration functions.

Chapter 5. Tuning the application serving environment 35

http://www.hp.com/products1/unix/java/
http://www.hp.com/products1/unix/java/

Changing the default values for settings on one or more of the TCP, HTTP, or Web

container transport channels associated with a transport chain can improve the

performance of that chain.

v Adjust TCP transport channel settings. In the administration console, click

Servers > Application servers > server_name > Ports. Then click View associated

transports for the appropriate port.

1. Select the transport chain whose properties you are changing.

2. Click on the TCP transport channel defined for that chain.

3. Leave the Maximum open connections parameter set to the default value.

This parameter controls the maximum number of connections that are

available for a server’s use. It should be left at the default value of 20000,

which is the maximum number of connections allowed. The transport

channel service by default manages high client connection counts and

requires no tuning.

4. If client connections are being closed without data being written back to

the client, change the value specified for the Inactivity timeout parameter.

This parameter controls the maximum number of connections available for a

server’s use. Upon receiving a new connection, the TCP transport channel

waits for enough data to arrive to dispatch the connection to the protocol

specific channels above the TCP transport channel. If not enough data is

received during the time period specified for the Inactivity timeout

parameter, the TCP transport channel closes the connection.

The default value for this parameter is 60 seconds, which is adequate for

most applications. You should increase the value specified for this parameter

if your workload involves a lot of connections and all of these connections

can not be serviced in 60 seconds.

5. Assign a thread pool to a specific HTTP port. Each TCP transport channel is

assigned to a particular thread pool. Thread pools can be shared between one

or more TCP transport channels as well as with other components. The

WebContainer

WebContainer
Channel

TCP Channel

Thread 1 Thread X

HTTP Channel

Request 1 Request 2 Request N

The WebContainer Channel provides a
dispatching layer between the channel
and the servlet/JSP container

The HTTP Channel provides a HTTP
protocol support for the WebSphere Web
serving capabilities.

The TCP Channel manages client
connections providing and
asynchronous I/O layer between
clients and WebSphere threads. The
mapping of client connections to
threads is generally many to one.

Figure 1. Transport Channel Service

36 IBM WebSphere Application Server, Version 6.0.2: Tuning guide

default settings for a TCP transport channel is to have all HTTP based traffic

assigned to the WebContainer thread pool and all other traffic assigned to the

Default thread pool. Use the Thread pool pull-down to assign a particular

thread pool to each TCP transport channel. The default settings for this

parameter has all HTTP based traffic assigned to the WebContainer thread

pool and all other traffic is assigned to the Default thread pool. (Thread pool

collection describes how to create additional thread pools.)

6. Tune the size of your thread pools. By default, a thread pool can have a

minimum of 10 threads and a maximum of 50 maximum threads. To adjust

these values, click on Thread pools > threadpool_name and adjust the values

specified for the Minimum Size and Maximum Size parameters for that

thread pool.

Typical applications usually do not need more than 10 threads per processor.

One exception is if there is some off server condition, such as a very slow

backend request, that causes a server thread to wait for the backend request

to complete. In such a case, CPU usage is usually low and increasing the

workload does not increase CPU throughput. Thread dumps show nearly all

threads in a call out to the backend resource. If this condition exists, and the

backend is tuned correctly, try increasing the minimum number of threads in

the pooll until you see improvements in throughput and thread dumps show

threads in other areas of the runtime besides the backend call.

The setting for the Grow as needed parameter should not be changed unless

your backend is prone to hanging for long periods of time. This condition

might indicate that all of your runtime threads are blocked waiting for the

backend instead of processing other work that does not involve the hung

backend.
v Adjust HTTP transport channel settings. In the administration console, click

Servers > Application servers > server_name > Ports. Then click View associated

transports for the appropriate port.

1. Select the transport chain whose properties you are changing.

2. Click on the HTTP transport channel defined for that chain.

3. Tune HTTP keep-alive. The Use persistent (keep-alive) connections setting

controls whether or not connections are left open between requests. Leaving

the connections open can save setup and teardown costs of sockets if your

workload has clients that send multiple requests. The default value is true

and is the optimal setting in most cases.

If your clients only send single requests over substantially long periods of

time, it is probably better to disable this option and close the connections

right away rather than to have the HTTP transport channel setup the

timeouts to close the connection at some later time.

4. Change the value specified for the Maximum persistent requests parameter

to increase the number of requests that can flow over a connection before

it is closed. When the Use persistent (keep-alive) connections option is

enabled, the Maximum persistent requests parameter controls the number of

requests that can flow over a connection before it is closed. The default value

is 100. This value should be set to a value such that most, if not all, clients

always have an open connection when they make multiple requests during

the same session. A proper setting for this parameter helps to eliminate

unnecessary setting up and tearing down of sockets.

For test scenarios in which the client will never close a socket or where

sockets are always proxy or Web servers in front of your application server, a

value of -1 will disable the processing which limits the number of requests

Chapter 5. Tuning the application serving environment 37

over a single connection. The persistent timeout will still shutdown some idle

sockets and protect your server from running out of open sockets.

5. Change the value specified for the Persistent timeout parameter to increase

the length of time that a connection is held open before being closed due

to inactivity. The Persistent timeout parameter controls the length of time

that a connection is held open before being closed because there is no

activity on that connection. The default value is 30 seconds This parameter

should be set to a value that keeps enough connections open so that most

clients can obtain a connection available when they need to make a request.

6. If clients are having trouble completing a request because it takes them

more than 60 seconds to send their data, change the value specified for the

Read timeout parameter. Some clients pause more than 60 seconds while

sending data as part of a request. To ensure they are able to complete their

requests, change the value specified for this parameter to a length of time in

seconds that is sufficient for the clients to complete the transfer of data. Be

careful when changing this value that you still protect the server from clients

who send incomplete data and thereby utilize resources (sockets) for an

excessive amount of time.

7. If some of your clients require more than 60 seconds to receive data being

written to them, change the value specified for the Write timeout

parameter. Some clients are slow and require more than 60 seconds to

receive data that is sent to them. To ensure they are able to obtain all of their

data, change the value specified for this parameter to a length of time in

seconds that is sufficient for all of the data to be received. Be careful when

changing this value that you still protect the server from malicious clients.
v Adjust Web container transport channel settings. In the administration console,

click Servers > Application servers > server_name > Ports. Then click View

associated transports for the appropriate port.

1. Select the transport chain whose properties you are changing.

2. Click on the Web container transport channel defined for that chain.

3. If multiple writes are required to handle responses to the client, change

the value specified for the Write buffer size parameter to a value that is

more appropriate for your clients. The Write buffer size parameter controls

the maximum amount of data per thread that the Web container buffers

before sending the request on for processing. The default value is 32768

bytes, which is sufficient for most applications. If the size of a response is

greater than the size of the write buffer, the response will be chunked and

written back in multiple TCP writes.

If you need to change the value specified for this parameter, make sure the

new value enables most requests to be written out in a single write. To

determined an appropriate value for this parameter, look at the size of the

pages that are returned and add some additional bytes to account for the

HTTP headers.
v Click Apply and then Save to save these changes.

Checking hardware configuration and settings

An optimal hardware configuration enables applications to get the greatest benefit

from performance tuning. The hardware speed impacts all types of applications

and is critical to overall performance.

The following parameters include considerations for selecting and configuring the

hardware on which the application servers run.

38 IBM WebSphere Application Server, Version 6.0.2: Tuning guide

v Optimize disk speed

– Description: Disk speed and configuration have a dramatic effect on the

performance of application servers running applications that are heavily

dependent on the database support, using extensive messaging, or processing

workflow. The disk input or output subsystems that are optimized for

performance, for example Redundant Array of Independent Disks (RAID)

array, high-speed drives, and dedicated caches, are essential components for

optimum application server performance in these environments.

Application servers with fewer disk requirements can benefit from a mirrored

disk drive configuration that improves reliability and has good performance.

– Recommendation: Spread the disk processing across as many disks as

possible to avoid contention issues that typically occur with 1- or 2-disk

systems. Placing the database tables on disks that are separate from the disks

that are used for the database log files reduces disk contention and improve

throughput.
– Description: Disk speed and the number of disk arms have a significant effect

on application server performance in the following cases:

- Your application is heavily dependent on database support .

- Your application uses messaging extensively.
– Recommendation: Use disk I/O subsystems that are optimized for

performance, for example, Redundant Array of Independent Disks (RAID).

Distribute the disk processing across as many disks as possible to avoid

contention issues that occur with 1 or 2 disk systems. For more information

about disk arms and how they can affect performance, see the iSeries Disk

Arm Requirements documentation.
v Increase processor speed and processor cache

– Description: In the absence of other bottlenecks, increasing the processor

speed often helps throughput and response times. A processor with a larger

L2 or L3 cache yields higher throughput, even if the processor speed is the

same as a CPU with a smaller L2 or L3 cache.

– Description: In the absence of other bottlenecks, increasing the processing

power can improve throughput, response times, or both. On WebSphere

Application Server for i5/OS, processing power can be related to the

Commercial Processing Workload (CPW) value of the system. For more

information about CPW values, see the Performance Capabilities Reference

Manual in the Performance Management Resource Library Web site.
v Increase system memory

– Description: Increase memory to prevent the system from paging memory to

the disk to improve performance. Allow a minimum of 256 MB of memory

for each processor and 512 MB per application server. Adjust the available

memory when the system pages and the processor utilization is low because

of the paging. The memory access speed might depend on the number and

placement of the memory modules. Check the hardware manual to make sure

that your configuration is optimal.

– Recommendation: Use 256 MB of memory for each processor and 512 MB per

application server. Some applications might require more memory.
– Description: If a large number of page faults occur, performing the following

tasks to improve performance:

- Increase the memory available to WebSphere Application Server.

- Move WebSphere Application Server to another memory pool.

- Remove jobs from the WebSphere Application Server memory pool

Chapter 5. Tuning the application serving environment 39

http://www-1.ibm.com/servers/eserver/iseries/perfmgmt/pdf/V5R2FiSArmct.pdf
http://www-1.ibm.com/servers/eserver/iseries/perfmgmt/pdf/V5R2FiSArmct.pdf
http://www-1.ibm.com/servers/eserver/iseries/perfmgmt/resource.htm
http://www-1.ibm.com/servers/eserver/iseries/perfmgmt/resource.htm

– Recommendation: To determine the current page fault level, run the Work

with System Status (WRKSYSSTS) command from an i5/OS command line.

For information about the minimum memory requirements, see the IBM

Support Web site.
v Run network cards and network switches at full duplex

– Description: Run network cards and network switches at full duplex and use

the highest supported speed. Full duplex is much faster than half duplex.

Verify that the network speed of adapters, cables, switches, and other devices

can accommodate the required throughput. Some Web sites might require

multiple gigabit links.

– Recommendation Make sure that the highest speed is in use on 10/100/1000

Ethernet networks.
v Verify that the activity levels for storage pools are sufficient

– Description: Verify that the activity levels for storage pools are sufficient.

Increasing these values can prevent threads from transitioning into the

ineligible condition.

– Recommendation

- To modify the activity level for the storage pool in which you are running

WebSphere Application Server, run the following WRKSYSSTS command

from the command line:

WRKSYSSTS ASTLVL(*INTERMED)

- Perform the following steps to set the QMAXACTLVL system value to a

value equal to or greater than the total activity level for all pools, or

*NOMAX:

v Run the following WRKSYSSTS command from the command line:

WRKSYSSTS ASTLVL(*INTERMED)

v Adjust the value in the Max Active column.

 Related tasks

 “Tuning operating systems”

 Tuning the z/OS operating system
 Related information

 http://www-1.ibm.com/servers/eserver/iseries/perfmgmt/resource.htm

Tuning operating systems

The following tuning parameters are specific to operating systems. Because these

operating systems are not WebSphere Application Server products, be aware that

the products can change and results can vary.

Use the following links to go to the appropriate operating system to tune:

Note: Check your operating system documentation to determine how to make the

tuning parameters changes permanent and if a reboot is required.

Tuning Windows systems

This topic describes how to tune Windows 2000, Windows XP, and Windows 2003

operating systems to optimize the performance of WebSphere Application Server.

Because Windows operating systems are not WebSphere Application Server

products, be aware that the products can change and results can vary.

When you have a performance concern, check the operating system settings to

determine if they are appropriate for your application.

40 IBM WebSphere Application Server, Version 6.0.2: Tuning guide

http://www-306.ibm.com/software/webservers/appserv/doc/latest/prereq.html
http://www-306.ibm.com/software/webservers/appserv/doc/latest/prereq.html
http://www-1.ibm.com/servers/eserver/iseries/perfmgmt/resource.htm

v TcpTimedWaitDelay

– Description: Determines the time that must elapse before TCP/IP can release

a closed connection and reuse its resources. This interval between closure and

release is known as the TIME_WAIT state or twice the maximum segment

lifetime (2MSL) state. During this time, reopening the connection to the client

and server costs less than establishing a new connection. By reducing the

value of this entry, TCP/IP can release closed connections faster and provide

more resources for new connections. Adjust this parameter if the running

application requires rapid release, the creation of new connections, or an

adjustment because of a low throughput caused by multiple connections in

the TIME_WAIT state.

– How to view or set:

1. Use the regedit command, access the

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\

Services\TCPIP\Parameters registry subkey, and create a new

REG_DWORD value named TcpTimedWaitDelay.

2. Set the value to decimal 30, which is Hex 0x0000001e. This value sets the

wait time to 30 seconds.

3. Stop and restart the system.
– Default value: 0xF0, which sets the wait time to 240 seconds (4 minutes).

– Recommended value: A minimum value of 0x1E, which sets the wait time to

30 seconds.
v MaxUserPort

– Description: Determines the highest port number that TCP/IP can assign

when an application requests an available user port from the system.

– How to view or set:

1. Use the regedit command, access the

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\

Services\TCPIP\Parameters registry subkey, and create a new

REG_DWORD value named MaxUserPort.

2. Set this value to at least decimal 32768.

3. Stop and restart the system.
– Default value: None

– Recommended value: At least decimal 32768.
v MaxConnect Backlog

– Description: If many connection attempts are received simultaneously,

increase the default number of pending connections that are supported by the

operating system.

– How to view or set:

1. Use the regedit command and access the

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\AFD\Parameters

registry subkey

2. Create and set (and create if necessary) the following values:

"EnableDynamicBacklog"=dword:00000001

"MinimumDynamicBacklog"=dword:00000020

"MaximumDynamicBacklog"=dword:00001000

"DynamicBacklogGrowthDelta"=dword:00000010

3. These values request a minimum of 20 and a maximum of 1000 available

connections. The number of available connections is increased by 10 each

time that there are fewer than the minimum number of available

connections.

4. Stop and restart the system.
v KeepAliveInterval

Chapter 5. Tuning the application serving environment 41

– Description: Determines how often TCP repeats keep-alive transmissions

when no response is received.

– How to view or set:

1. Use the regedit command, access the

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\AFD\Parameters

registry subkey, and create a new REG_DWORD value named

KeepAliveInterval.

2. Set this value to 1 second.

3. Stop and restart the system.
– Default value: 1 second

– Recommended value: None

v TcpMaxDataRetranmission

– Description: Determines how many times TCP retransmits an

unacknowledged data segment on an existing connection.

– How to view or set:

1. Use the regedit command, access the

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters

registry subkey, and edit or create a new REG_DWORD value named

TcpMaxDataretranmissions.

2. Set this value to 5 seconds

3. Stop and restart the system.
– Default value: 5 second

– Recommended value: None

v TPC/IP acknowledgements

– TCP/IP can be the source of some significant remote method delays. You can

increase TCP performance by immediately acknowledging incoming TCP

segments, in all situations.

Complete the following steps to immediately acknowledge incoming TCP

segments on a server that runs a Microsoft Windows 2000 operating system:

1. Start the Registry Editor (regedit.exe).

2. Locate and click the following registry subkey:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters\Interfaces\

3. On the Edit menu, click Add Value, and create the following registry

value:

Value name: TcpDelAckTicks

Data type: REG_DWORD

Value data: 0

Quit Registry Editor.

4. Restart your Windows operating system.

Similarly, to immediately acknowledge incoming TCP segments on a server

that runs a Microsoft Windows XP or Windows Server 2003 operating system:

1. Start the Registry Editor (regedit.exe).

2. Locate and then click the following registry subkey:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters\Interfaces\

3. On the Edit menu, click New > DWORD Value.

4. Name the new value, TcpAckFrequency, and assign it a value of 1.

5. Close the Registry Editor.

6. Restart your Windows operating system.
v Large page support

– Description: Using large pages can reduce the CPU overhead of managing a

large JVM heap.

– How to view or set: The Windows operating system provides large page

support by default. Use the -Xlp JVM option to make use of this support.

42 IBM WebSphere Application Server, Version 6.0.2: Tuning guide

This tuning procedure improves performance of WebSphere Application Server on

Windows 2000, Windows XP, and Windows 2003 operating systems.

After tuning your operating system for performance, consult other tuning topics

for various tuning tips.

 Related tasks

 “Tuning Linux systems”

This topic describes how to tune the Linux operating system to optimize the

performance of your WebSphere Application Server. Because the Linux

operating system is not a WebSphere Application Server product, be aware that

it can change and results can vary.

 “Tuning AIX systems” on page 45

This topic describes how to tune the AIX operating system to optimize the

performance of your WebSphere Application Server. Because the AIX operating

system is not a WebSphere Application Server product, be aware that it can

change and results can vary.

 “Tuning Solaris systems” on page 48

The following tuning parameters are specific to the Solaris operating system.

Because the Solaris operating system is not a WebSphere Application Server

product, be aware that it can change and results vary.

 “Tuning HP-UX systems” on page 51

This topic describes how to tune the HP-UX operating system to optimize the

performance of your WebSphere Application Server. Because the HP-UX

operating system is not a WebSphere Application Server product, be aware that

it can change and results vary

Tuning Linux systems

This topic describes how to tune the Linux operating system to optimize the

performance of your WebSphere Application Server. Because the Linux operating

system is not a WebSphere Application Server product, be aware that it can change

and results can vary.

When you have a performance concern, check the operating system settings to

determine if these settings are appropriate for your application.

v timeout_timewait parameter

– Description: Determines the time that must elapse before TCP/IP can release

a closed connection and reuse its resources. This interval between closure and

release is known as the TIME_WAIT state or twice the maximum segment

lifetime (2MSL) state. During this time, reopening the connection to the client

and server cost less than establishing a new connection. By reducing the value

of this entry, TCP/IP can release closed connections faster, providing more

resources for new connections. Adjust this parameter if the running

application requires rapid release, the creation of new connections, and a low

throughput due to many connections sitting in the TIME_WAIT state.

– How to view or set:

Issue the following command to set the timeout_timewait parameter to 30

seconds:

echo 30 > /proc/sys/net/ipv4/tcp_fin_timeout

v SUSE Linux Enterprise Server 8 (SLES 8) SP2A - sched_yield_scale tuning

– Description: The Linux scheduler is very sensitive to excessive context

switching, so fixes are integrated into the SLES 8 kernel distribution to

introduce delay when a thread yields processing. This fix is automatically

enabled in SLES 8 SP3, but must be enabled explicitly in SLES 8 SP2A or later.

Chapter 5. Tuning the application serving environment 43

– How to view or set:

1. Upgrade your SLES 8 service pack to SP2A.

2. Issue the sysctl -w sched_yield_scale=1 command .
– Default value: 0

– Recommended value: 1

v RedHat Advanced Server 2.1 kernel update

– Description: Kernel updates for RedHat Advanced Server 2.1 implemented

changes that affect WebSphere Application Server performance, especially

memory-to-memory HTTP session replication.

– How to view or set:

1. Issue the uname -a command

2. If you are running any kernel prior to 2.4.9-e.23, upgrade at least to the

RedHat Advanced Server 2.1 kernel, but preferably to the latest supported.
– Default value: 2.4.9-e.3

– Recommended value: 2.4.9-e.23

v Linux file descriptors (ulimit)

– Description: Specifies the number of open files that are supported. The

default setting is typically sufficient for most applications. If the value set for

this parameter is too low, a file open error, memory allocation failure, or

connection establishment error might be displayed.

– How to view or set: Check the UNIX reference pages on the ulimit command

for the syntax of different shells. To set the ulimit command to 8000 for the

KornShell shell (ksh), issue the ulimit -n 8000 command. Use the ulimit -a

command to display the current values for all limitations on system resources.

– Default value: For SUSE Linux Enterprise Server 9 (SLES 9), the default is

1024.

– Recommended value: 8000

v Connection backlog

– Description: Change the following parameters when a high rate of incoming

connection requests result in connection failures:

echo 3000 > /proc/sys/net/core/netdev_max_backlog

echo 3000 > /proc/sys/net/core/somaxconn

v TCP_KEEPALIVE_INTERVAL

– Description: Determines the wait time between isAlive interval probes.

– How to view or set: Issue the following command to set the value:

cd /proc/sys/net/ipv4 edit tcp_keepalive_intv

– Default value: 75 seconds

– Recommended value: 15 seconds
v TCP_KEEPALIVE_PROBES

– Description: Determines the number of probes before timing out.

– How to view or set: Issue the following command to set the value:

edit tcp_keepalive_probes

– Default value: 9 seconds

– Recommended value: 5 seconds
v Allocating large pages for Java virtual machine (JVM) heap (tested with SLES

9)

Some applications require a very large heap for optimal performance. The CPU

overhead of managing a large heap can be reduced by using the ″large page″

support that is provided by the CPU and operating system. The following

example assumes a large page size of 4MB and a desired heap size of 2300MB.

1. Set the following three settings by a sysctl.conf file.

a. Set the number of large pages (2300MB = 575 * 4MB) by issuing the

following command:

44 IBM WebSphere Application Server, Version 6.0.2: Tuning guide

vm.nr_hugepages = 575

b. Set the maximum shared segment size to 2300MB plus a little more

(about 95MB) (2511724800 = 2300 * 1048576 + 100000000) by issuing the

following command:

kernal.shmmax = 2511724800

c. Set the total amount of memory to be shared by issuing the following

command:

kernal.shmall = 2511724800

2. Specify the -Xlp JVM option so the JVM heap can utilize large pages.

3. Set the Xmx JVM option to 2300MB.

4. Relocate the program text to a lower virtual memory address to provide

more address space for a larger heap. Run the following command to

relocate the text in the script that invokes the JVM or in a .profile file:

echo "0x10000000" > /proc/self/mapped_base

This tuning procedure improves performance of WebSphere Application Server on

the Linux operating system.

After tuning your operating system for performance, consult other tuning topics

for various tuning tips.

 Related tasks

 “Tuning Windows systems” on page 40

This topic describes how to tune Windows 2000, Windows XP, and Windows

2003 operating systems to optimize the performance of WebSphere Application

Server. Because Windows operating systems are not WebSphere Application

Server products, be aware that the products can change and results can vary.

 “Tuning AIX systems”

This topic describes how to tune the AIX operating system to optimize the

performance of your WebSphere Application Server. Because the AIX operating

system is not a WebSphere Application Server product, be aware that it can

change and results can vary.

 “Tuning Solaris systems” on page 48

The following tuning parameters are specific to the Solaris operating system.

Because the Solaris operating system is not a WebSphere Application Server

product, be aware that it can change and results vary.

 “Tuning HP-UX systems” on page 51

This topic describes how to tune the HP-UX operating system to optimize the

performance of your WebSphere Application Server. Because the HP-UX

operating system is not a WebSphere Application Server product, be aware that

it can change and results vary

Tuning AIX systems

This topic describes how to tune the AIX operating system to optimize the

performance of your WebSphere Application Server. Because the AIX operating

system is not a WebSphere Application Server product, be aware that it can change

and results can vary.

v TCP_TIMEWAIT

– Description: Determines the time that must elapse before TCP/IP can release

a closed connection and reuse its resources. This interval between closure and

release is known as the TIME_WAIT state or twice the maximum segment

lifetime (2MSL) state. During this time, reopening the connection to the client

and server costs less than establishing a new connection. By reducing the

Chapter 5. Tuning the application serving environment 45

value of this entry, TCP/IP can release closed connections faster, providing

more resources for new connections. Adjust this parameter, if the running

application requires rapid release or the creation of new connections, or if a

low throughput occurs due to many connections sitting in the TIME_WAIT

state.

– How to view or set:

Issue the following command to set TCP_TIMEWAIT state to 15 seconds:

/usr/sbin/no –o tcp_timewait =1

v AIX operating systems with DB2

– Description: Separating your DB2 log files from the physical database files

can boost performance. You can also separate the log and the database files

from the drive that contains the Journaled File System (JFS) service. AIX uses

specific volume groups and file systems for the JFS logging.

– How to view or set: Use the AIX filemon utility to view all the file system

input and output and to strategically select the file system for the DB2 log

files. Set the DB2 log location according to the “DB2 tuning parameters” on

page 85 topic.

– Default value: The default location for the DB2 log files is often the same

disk drive where the database tables are stored.

– Recommended value: Move the files to a disk that is separate from the DB2

data and has the minimum input or output activity.
v AIX file descriptors (ulimit)

– Description: Specifies the number of open files that are permitted. The

default setting is typically sufficient for most applications. If the value set for

this parameter is too low, errors might occur when opening files or

establishing connections. A Memory allocation error might be displayed. To

prevent WebSphere Application Server from running short on resources,

remove the upper limits (ulimit) for resources on the user account that the

WebSphere Application Server process runs on.

– How to view or set: Perform the following steps to change the ulimit settings:

1. Open the command window.

2. Type smitty users to open the AIX configuration program.

3. Select Change or Show Characteristics of a user.

4. Type the name of the user account that WebSphere Application Server

runs on.

5. Press Enter.

6. Change the following settings to the indicated value:

 Soft FILE Size -1

 Soft CPU Time -1

 Soft STACK Size -1

 Soft CORE File Size -1

 Hard FILE Size -1

 Hard CPU Time -1

 Hard STACK Size -1

 Hard CORE File Size -1

7. Press Enter to save changes.

8. Log out and log in your account.

9. Restart WebSphere Application Server.
– Default value: For the AIX operating system, the default setting is 2000.

– Recommended value: Unlimited
v AIX TCP_KEEPIDLE

– Description: The keepAlive packet ensures that a connection stays in an

active/ESTABLISHED state.

46 IBM WebSphere Application Server, Version 6.0.2: Tuning guide

– How to view or set: Use the no command to determine the current value or

to set the value. The change is effective until the next time you restart the

machine. To permanently change the value, add the no command to the

/etc/rc.net directory. For example:

no -o tcp_keepidle=600

– Default value: 14400 milliseconds.

– Recommended value: 600 milliseconds.
v TCP_KEEPINTVL

– Description: Specifies the interval between packets that are sent to validate

the connection.

– How to view or set: Use the following command to set the value to 5

seconds:

no -o tcp_keepintvl=10

– Default value: 150(1/2 seconds)

– Recommended value: 10(1/2 seconds)

v TCP_KEEPINIT

– Description: Specifies the initial timeout value for TCP connection.

– How to view or set: Use the following command to set the value to 20

seconds:

no -o tcp_keepinit=40

– Default value: 150(1/2 seconds)

– Recommended value: 40(1/2 seconds)

v Allocating large pages for Java virtual machines heap

Some applications require a very large heap for optimal performance. Reduce

the CPU overhead of managing a large heap by using large page support that is

provided by the CPU and the operating system. The following steps allocate 4

GB of RAM as large pages:

1. As root user, run the following commands to reserve 4 GB of large page:

vmo -r -o lgpg_regions=256 -o lgpg_size=16777216

bosboot -ad /dev/ipldevice

reboot -q

2. After reboot, run the following command to enable large page support on

the AIX operating system:

vmo -p -o v_pinshm=1

3. As root user, add the following capabilities for the user:

 chuser capabilities=CAP_BYPASS_RAC_VMM,CAP_PROPAGATE $USER

4. Add the -Xlp Java options to the Java command.

5. Validate large page support is used with the following command:

 vmstat -l 1

Note: The ″alp″ column is non-zero when the application is running.
v Other AIX information

– Consider the other AIX operating system settings that are not within the

scope of this document. You can adjust the following additional settings:

- Adapter transmit and receive queue

- TCP/IP socket buffer

- IP protocol mbuf pool performance

- Update file descriptors

- Update the scheduler

For more information about AIX operating systems, see Performance:

Resources for learning.

Chapter 5. Tuning the application serving environment 47

This tuning procedure improves performance of WebSphere Application Server on

the AIX operating system.

After tuning your operating system for performance, consult the other tuning

topics for various tuning tips.

 Related tasks

 “Tuning Windows systems” on page 40

This topic describes how to tune Windows 2000, Windows XP, and Windows

2003 operating systems to optimize the performance of WebSphere Application

Server. Because Windows operating systems are not WebSphere Application

Server products, be aware that the products can change and results can vary.

 “Tuning Linux systems” on page 43

This topic describes how to tune the Linux operating system to optimize the

performance of your WebSphere Application Server. Because the Linux

operating system is not a WebSphere Application Server product, be aware that

it can change and results can vary.

 “Tuning Solaris systems”

The following tuning parameters are specific to the Solaris operating system.

Because the Solaris operating system is not a WebSphere Application Server

product, be aware that it can change and results vary.

 “Tuning HP-UX systems” on page 51

This topic describes how to tune the HP-UX operating system to optimize the

performance of your WebSphere Application Server. Because the HP-UX

operating system is not a WebSphere Application Server product, be aware that

it can change and results vary

Tuning Solaris systems

The following tuning parameters are specific to the Solaris operating system.

Because the Solaris operating system is not a WebSphere Application Server

product, be aware that it can change and results vary.

On the Solaris operating system, WebSphere Application Server runs on the Sun

Hotspot Java virtual machine (JVM). It is important to use the correct tuning

parameters with the Sun JVM to utilize its performance optimizing features. Refer

to the Tuning Java virtual machines topic for more information about tuning the

JVM. Also, consider the following parameters that are specific to the Solaris

operating system to ensure that WebSphere Application Server has enough

resources.

v Solaris file descriptors (ulimit)

– Description: Specifies the maximum number of open files supported. If the

value of this parameter is too low, a Too many files open error is displayed

in the WebSphere Application Server stderr.log file.

– How to view or set: Check the UNIX reference pages on the ulimit command

for the syntax of different shells. For the KornShell (ksh) shell use the ulimit

-n 1024 command. Use the ulimit -a command to display the current settings.

Use the ulimit -n 2000 command to set the values.

– Default value: None

– Recommended value: 8000

v Solaris TCP_TIME_WAIT_INTERVAL

– Description: Notifies TCP/IP on how long to keep the connection control

blocks closed. After the applications complete the TCP/IP connection, the

control blocks are kept for the specified time. When high connection rates

occur, a large backlog of the TCP/IP connections accumulates and can slow

server performance. The server can stall during certain peak periods. If the

48 IBM WebSphere Application Server, Version 6.0.2: Tuning guide

server stalls, the netstat command shows that many of the sockets that are

opened to the HTTP server are in the CLOSE_WAIT or FIN_WAIT_2 state.

Visible delays can occur for up to four minutes, during which time the server

does not send any responses, but CPU utilization stays high, with all of the

activities in system processes.

– How to view or set: Use theget command to determine the current interval

and the set command to specify an interval of 30 seconds. For example:

ndd -get /dev/tcp tcp_time_wait_interval

ndd -set /dev/tcp tcp_time_wait_interval 30000

– Default value: The default time wait interval for a Solaris operating system is

240000 milliseconds, which is equal to 4 minutes.

– Recommended value: 60000 milliseconds
v Solaris TCP_FIN_WAIT_2_FLUSH_INTERVAL

– Description: Specifies the timer interval prohibiting a connection in the

FIN_WAIT_2 state to remain in that state. When high connection rates occur,

a large backlog of TCP/IP connections accumulates and can slow server

performance. The server can stall during peak periods. If the server stalls,

using the netstat command shows that many of the sockets opened to the

HTTP server are in the CLOSE_WAIT or FIN_WAIT_2 state. Visible delays

can occur for up to four minutes, during which time the server does not send

any responses, but CPU utilization stays high, with all of the activity in

system processes.

– How to view and set: Use theget command to determine the current interval

and the set command to specify an interval of 67.5 seconds. For example,

ndd -get /dev/tcp tcp_fin_wait_2_flush_interval

ndd -set /dev/tcp tcp_fin_wait_2_flush_interval 67500

– Default value: 675000 milliseconds

– Recommended value: 67500 milliseconds
v Solaris TCP_KEEPALIVE_INTERVAL

– Description: The keepAlive packet ensures that a connection stays in an

active and established state.

– How to view or set: Use the ndd command to determine the current value or

to set the value. For example:

ndd -set /dev/tcp tcp_keepalive_interval 300000

– Default value: 72000 milliseconds

– Recommended value: 15000 milliseconds
v Solaris TCP_KEEPALIVE_PROBES

– Description: Specifies the kernel how many TCP keepalive probes to send out

before it decides if a specific connection is broken.

– How to view or set: Use the ndd command to determine the current value or

to set the value. For example:

ndd -set /dev/tcp tcp_keepalive_probes 5000

– Default value: 9000 milliseconds

– Recommended value: 5000 milliseconds
v Solaris kernel semsys:seminfo_semume

– Description: Limits the maximum semaphore undo entries per process.

Because this setting specifies a maximum value, the parameter does not cause

the use of additional memory unless it is needed.

– How to view or set: This value is displayed as the semume parameter if

the/usr/sbin/sysdef command is run. There can be an entry in the

/etc/system file for this tuning parameter. Set this parameter through the

/etc/system entry:

set semsys:seminfo_semume = 200

– Default value: 10

Chapter 5. Tuning the application serving environment 49

– Recommended value: 200

v Solaris kernel semsys:seminfo_semopm

– Description: Displays as the semume parameter if the /usr/sbin/sysdef

command is run. An entry in the /etc/system file can exist for this tuning

parameter. This number is the maximum value of System V semaphore

operations per semop call. The default value for this option is too low for

highly concurrent systems.

– How to view or set: Set this parameter through the /etc/system entry:

semsys:seminfo_semopm = 16384

– Default value: None

– Recommended value: 16384

v Connection backlog

– Description: Change the following parameter when a high rate of incoming

connection requests result in connection failures:

ndd -get /dev/tcp tcp_conn_req_max_q

ndd -set /dev/tcp tcp_conn_req_max_q 8000

– Default value: For Solaris 8, the default value is 128.

– Recommended value: 8000

:

v Large page support

Using large pages can reduce the CPU overhead of managing a large JVM heap.

With Solaris 9, large page support is provided by default. No operating system

or JVM parameters are necessary to make use of large pages for the JVM heap.

With Solaris 8, the Intimate Shared Memory (ISM) feature must be utilized to

provide large page support. See the http://java.sun.com/docs/hotspot/ism.html

Web site for instructions to enable large page support.

This tuning procedure improves the performance of WebSphere Application Server

on the Solaris operating system.

After tuning your operating system for performance, consult other tuning topics

for various tuning tips.

 Related tasks

 “Tuning Windows systems” on page 40

This topic describes how to tune Windows 2000, Windows XP, and Windows

2003 operating systems to optimize the performance of WebSphere Application

Server. Because Windows operating systems are not WebSphere Application

Server products, be aware that the products can change and results can vary.

 “Tuning Linux systems” on page 43

This topic describes how to tune the Linux operating system to optimize the

performance of your WebSphere Application Server. Because the Linux

operating system is not a WebSphere Application Server product, be aware that

it can change and results can vary.

 “Tuning AIX systems” on page 45

This topic describes how to tune the AIX operating system to optimize the

performance of your WebSphere Application Server. Because the AIX operating

system is not a WebSphere Application Server product, be aware that it can

change and results can vary.

 “Tuning HP-UX systems” on page 51

This topic describes how to tune the HP-UX operating system to optimize the

performance of your WebSphere Application Server. Because the HP-UX

operating system is not a WebSphere Application Server product, be aware that

it can change and results vary

50 IBM WebSphere Application Server, Version 6.0.2: Tuning guide

http://java.sun.com/docs/hotspot/ism.html

Tuning HP-UX systems

This topic describes how to tune the HP-UX operating system to optimize the

performance of your WebSphere Application Server. Because the HP-UX operating

system is not a WebSphere Application Server product, be aware that it can change

and results vary

On the HP-UX operating system, WebSphere Application Server runs on the Java

virtual machine (JVM), which is based on the technology of Sun HotSpot JVM.

Properly tuning this JVM significantly affects WebSphere Application Server

performance by fully utilizing its performance optimizing characteristics. See the

“Tuning Java virtual machines” on page 29 topic for details on setting up the JVM

on the HP-UX system. It is also important to change some parameters that are

specific to the HP-UX operating system to prevent WebSphere Application Server

from being deprived of resources.

When you have a performance concern, check the operating system settings to

determine if they are appropriate for your application.

v

Tuning the HP operating system with the DB2 type 2 JDBC driver

When using the type 2 Java Database Connectivity (JDBC) driver on the HP

operating system with DB2, you can increase the performance of WebSphere

Application Server by preallocating the DB2 trace segment. Perform the

following steps:

1. Before starting Application Server, switch to the user that is associated with

the DB2 instance.

2. Run the db2trc alloc command.

3. Start Application Server.

Usage note: Use the type 4 driver for best performance and compatibility.

Another issue with the type 2 JDBC driver on the HP operating system is code

page conversion. Creating the database using the UTF-8 code set avoids this

problem and significantly increases performance. See the database

documentation for instructions on creating databases with a specific code set.

Refer to “DB2 tuning parameters” on page 85 for information about DB2 tuning

parameters.

The HP performance tuning parameters

Modify HP-UX 11i settings to significantly improve WebSphere Application

Server performance. For additional information about the HP performance

tuning parameters, see Performance: Resources for learning.

– Java virtual machine (JVM) virtual page size

- Description: Sets the JVM instruction and data page sizes to 64 MB to

improve performance.

- How to view or set: Use the chatr +pi64M +pd64M

/opt/WebSphere/AppServer/java/bin/PA_RISC2.0/native_threads/java

command. The command output provides the current operating system

characteristics of the process executable.

- Default value: 4 MB, if not assigned

- Recommended value: 64 MB
– HP-UX 11i TCP_CONN_REQUEST_MAX

- Description: Specifies the maximum number of connection requests that

the operating system can queue when the server does not have available

threads. When high connection rates occur, a large backlog of TCP/IP

connection requests builds up and client connections are dropped. Adjust

Chapter 5. Tuning the application serving environment 51

this setting when clients start to time out after waiting to connect. Verify

this situation by issuing the netstat -p tcp command. Look for the

following value: connect requests dropped due to full queue

- How to view or set: Set this parameter by using the ndd -set /dev/tcp

tcp_conn_request_max 8192 command.

- Default value: 4096

- Recommended value: In most cases the default is sufficient. Consider

adjusting this value to 8192, if the default proves inadequate.
– HP-UX 11i kernel parameter recommendations

- Description: One of the main functions of kernel parameters is to control

the number of available resources. It is important to alter the HPUX kernel

parameters to ensure that WebSphere Application Server has enough

resources available to run optimally. Use the kernel parameter settings in

the following table. Set these parameters using graphical System

Administration Manager. Type sam at the command line to launch the

utility.

 Kernel parameter WebSphere

Application Server

setting

DB2 setting Oracle setting

maxuprc -- 512 --

maxfiles 2,048 -- --

maxfiles_lim 2,048 -- --

nkthread 10,000 -- --

max_thread_proc 2,048 -- --

nproc -- 1,028 --

nflocks -- 8,192 --

ninode -- 2,048 --

nfile -- 8,192 --

msgseg -- 32,767 --

msgmnb -- 65,535 --

msgmax -- 65,535 --

msgtql -- 1,024 --

msgmap -- 258 --

msgmni -- 256 --

msgssz -- 16 --

semmni -- 512 70

semmap -- 514 --

semmns -- 1,024 200

semmnu -- 1,024 --

shmmax -- 966,367,642 1 GB

shmmseg -- 16 10

shmmni -- 300 100

- How to view or set: Use the HP-UX SAM utility to set the kernel

parameters. See the documentation for your operating system for

directions.

- Default value: None

- Recommended value: See table

52 IBM WebSphere Application Server, Version 6.0.2: Tuning guide

– TCP_KEEPALIVE_INTERVAL

- Description: Determines the interval between probes.

- How to view or set: Use the ndd command to determine the current value

or to set the value. For example:

ndd -set /dev/tcp tcp_keepalive_interval 15000

- Default value: None

- Recommended value: 15000 milliseconds
– TCP_KEEPALIVE_KILL

- Description: Determines the maximum number of times to probe before

dropping.

- How to view or set: Use the ndd command to determine the current value

or to set the value. For example:

ndd -set /dev/tcp tcp_keepalive_kill 5000

- Default value: None

- Recommended value: 5000 milliseconds
v Keeping current with the operating system and Java patches is one of the most

important things you can do to optimize the performance of a server. For the

latest Java patches, visit the following Web site:

HP-UX Patch Information

Also, for the latest operating system quality pack, visit the following Web site:

Support Plus: Quality Pack Bundles

This tuning procedure improves performance of WebSphere Application Server on

the HP-UX operating system.

After tuning your operating system for performance, consult the other tuning

topics for various tuning tips.

 Related tasks

 “Tuning Windows systems” on page 40

This topic describes how to tune Windows 2000, Windows XP, and Windows

2003 operating systems to optimize the performance of WebSphere Application

Server. Because Windows operating systems are not WebSphere Application

Server products, be aware that the products can change and results can vary.

 “Tuning Linux systems” on page 43

This topic describes how to tune the Linux operating system to optimize the

performance of your WebSphere Application Server. Because the Linux

operating system is not a WebSphere Application Server product, be aware that

it can change and results can vary.

 “Tuning AIX systems” on page 45

This topic describes how to tune the AIX operating system to optimize the

performance of your WebSphere Application Server. Because the AIX operating

system is not a WebSphere Application Server product, be aware that it can

change and results can vary.

 “Tuning Solaris systems” on page 48

The following tuning parameters are specific to the Solaris operating system.

Because the Solaris operating system is not a WebSphere Application Server

product, be aware that it can change and results vary.

Chapter 5. Tuning the application serving environment 53

http://www.hp.com/products1/unix/java/patches/index.html
http://www.software.hp.com/SUPPORT_PLUS/qpk.html

Tuning Web servers

WebSphere Application Server provides plug-ins for several Web server brands and

versions. Each Web server operating system combination has specific tuning

parameters that affect the application performance. Following is a list of tuning

parameters specific to Web servers. The listed parameters may not apply to all of

the supported Web servers. Check your Web server documentation before using

any of these parameters.

v Tune the IBM HTTP Server 2.0.47.1, Apache 2.0.48, and IBM HTTP Server 6.0.

Monitoring the CPU utilization and checking the IBM HTTP Server error_log

and http_plugin.log files can help you diagnose Web server performance

problems.

You can also configure the IBM HTTP Server to show a status page:

– Edit the IBM HTTP Server httpd.conf file and remove the comment character

(#) from the following lines in this file:

#LoadModule status_module, modules/ApacheModuleStatus.dll,

#<Location/server-status>

#SetHandler server-status

#</Location>

– Save the changes and restart the IBM HTTP Server.

– In a Web browser, go to: http://yourhost/server-status. Alternatively, click

Reload to update status.

(Optional) If the browser supports refresh, go to http://your_host/server-
status?refresh=5 to refresh every five seconds.

– (Optional) If the browser supports refresh, go to http://your_host/server-
status?refresh=5 to refresh every five seconds.

All of these Web servers allocate a thread to handle each client connection.

Ensuring that enough threads are available for the maximum number of

concurrent client connections helps prevent this tier from being a bottleneck. The

settings for these Web servers can be tuned by making changes to the httpd.conf

file on the Web server system.

You can check the IBM HTTP Server error_log file to see if there are any

warnings about having reached the maximum number of clients (MaxClients).

There are several parameters, depending on the specific operating system

platform, that determine the maximum number of clients the Web server

supports. See http://httpd.apache.org/docs-
2.0/mod/mpm_common.html#maxclients for a description of the MaxClients

parameters.

v Support thousands of concurrent clients. It is not unusual for a single IBM

HTTP Server system to support thousands of concurrent clients. If your

requirements are to support more concurrent clients than the number of threads

that are supported by the Web server operating system and hardware, consider

using multiple Web servers.

v Respond to a Connection Refused error message. Some clients might receive a

Connection Refused error message if there is a sudden increase in the number of

clients. Increasing the ListenBacklog and StartServer parameters can reduce or

eliminate this error.

– The ListenBacklog parameter indicates to the operating system the maximum

allowed number of pending connections. Although the IBM HTTP Server

default is 511, the actual value can be much higher or lower depending on the

corresponding operating system parameter. To handle large numbers of

simultaneous connections, this parameter and the corresponding OS

parameter might need to be set to the number (possibly thousands) of

54 IBM WebSphere Application Server, Version 6.0.2: Tuning guide

http://httpd.apache.org/docs-2.0/mod/mpm_common.html#maxclients
http://httpd.apache.org/docs-2.0/mod/mpm_common.html#maxclients

expected simultaneous connections. (See “Tuning operating systems” on page

40 for additional information on how to tune your operating system.

– The StartServers parameter indicates the number of IBM HTTP Server

processes to initially start. Pre-starting these IBM HTTP Server

threads/processes reduces the chance of a user having to wait for a new

process to start. You should set this parameter to a value equal to the

MinSpareServers parameter so that the minimum number of IBM HTTP

Server processes needed for this client load is started immediately.
v Prevent the frequent creation and destruction of client threads/processes as the

number of users change. You can a use the MinSpareServers and

MaxSpareServers to specify the minimum and maximum number of servers

(client threads/processes) that can exist in an idle state. To prevent frequent

creation and destruction of client threads/processes as the number of users

change, set this range large enough to include the maximum number of

simultaneous users.

v Change the setting on the Web server’s Access logging parameter to reduce

the load on the Web server. If you do not need to log every access to the

Application Server, change the default value of the Web server’s Access logging

parameter. This change will reduce the load on the Web server.

v Modify the settings of the Load balancing option and Retry interval Web

server plug-in properties to improve performance. You can improve the

performance of IBM HTTP Server (with the WebSphere Web server plug-in) by

modifying the following Web server plug-in configuration properties:

– Load balancing option, which specifies the load balancing option that the

plug-in uses in sending requests to the various application servers associated

with that Web server.

The goal of the default load balance option, Round Robin, is to provide an

even distribution of work across cluster members. Round Robin works best

with Web servers that have a single process sending requests to the

Application Server. If the Web server is using multiple processes to send

requests to the Application Server, the Random option can sometimes yield a

more even distribution of work across the cluster.

– Retry interval. which specifies the length of time to wait before trying to

connect to a server that has been marked temporarily unavailable.

The plug-in marks a server temporarily unavailable if the connection to the

server fails. Although a default value is 60 seconds, you might have to lower

this value in order to increase throughput under heavy load conditions.

Lowering the RetryInterval might help when the IBM HTTP Server is

configured to have fewer than 10 threads per process.

How can lowering the RetryInterval affect throughput? If the plug-in attempts

to connect to a particular application server while the application server

threads are busy handling other connections, which happens under heavy

load conditions, the connection might time out, causing the plug-in to mark

the server temporarily unavailable. If the same plug-in process has other

connections open to the same server and a response is received on one of

these connections, the server is marked again. If there are only a few threads

per IBM HTTP Server process, there might not be an established connection

to this application server . When this situation occurs, the plug-in must wait

for the entire retry interval.

Note: Although lowering the RetryInterval can improve performance, if all

the application servers are running, a low value can have an adverse

affect when one of the application servers is down. In this case, each

Chapter 5. Tuning the application serving environment 55

IBM HTTP Server process attempts to connect and fail more frequently,

resulting in increased latency and decreased overall throughput.
Making these changes can help the IBM HTTP Server to support more

WebSphere Application Server users. To modify these properties, in the

administrative console, click Servers > Web Servers >Web_server_name > Plug-in

properties > Request routing . (See Web server plug-in tuning tips For more

information on tuning the plug-in.)

For more information about tuning heavily loaded Web servers, see Performance:

Resources for learning

 Related tasks

 Communicating with Web servers

The WebSphere Application Server works with a Web server to route requests

for dynamic content, such as servlets, from Web applications. The Web servers

are necessary for directing traffic from browsers to the applications that run in

WebSphere Application Server. The Web server plug-in uses the XML

configuration file to determine whether a request is from the Web server or the

Application Server.

Tuning WebSphere applications

This topic provides quick links to information about tuning specific WebSphere

application types, and the services and containers that support them.

Note: The WebSphere Application Server documentation contains a finite set of

tuning topics to which the following table provides links. Installing the

documentation plug-ins for additional components, such as Service

integration, might add new entries to the information table of contents. The

new entries will not be shown in the table. To see the complete set of

application tuning topics available in this information center installation,

expand Tuning performance > Tuning WebSphere applications in the table

of contents.

56 IBM WebSphere Application Server, Version 6.0.2: Tuning guide

Product architecture and programming model, at a glance

 Application serving

environment -- See Tuning

the application serving

environment

WebSphere applications WebSphere applications

Servers

v Application servers

v Java virtual machines

v Transport channels

v Web servers

v More server types

v Core groups

v Workload balancing

Environment

v Hardware

v Operating system

v Virtual hosts

v Variable settings

v Shared libraries

v Replication domains

System administration

v Administrative clients

v Configuration files

v Domains (cells, nodes)

Performance tools

v Monitoring

v Tuning performance

Troubleshooting tools

v Diagnostic tools

v Support and self-help

The product subsystems are

discussed in the Product

architecture. For the most

part, they do not depend on

the type of applications

being deployed

Services

v Security

v Naming

v ORB

v ORB

v Transactions

J2EE applications

v Web applications >

Sessions

v EJB applications

Clients

v Client applications

v Web clients

v Web services clients

v Administrative clients

Web services

v Web services and Service

Oriented Architecture

(SOA)

v Web services security

v Web services security

J2EE resources

v Data access resources

v Messaging resources

v Mail, URLs, and more

WebSphere extensions

v ActivitySessions

v Application profiling

v Asynchronous beans

v Dynamic caching

v Dynamic and EJB query

v Internationalization

v Object pools

v Scheduler

v Startup beans

v Work area

 Related concepts

 Chapter 5, “Tuning the application serving environment,” on page 25

This topic describes the benefits of tuning for optimal performance, highlights

the tunable parameters of the major WebSphere Application Server components,

and provides insight about how these parameters affect performance.

Chapter 5. Tuning the application serving environment 57

Web applications

Tuning session management

WebSphere Application Server session support has features for tuning session

performance and operating characteristics, particularly when sessions are

configured in a distributed environment. These options support the administrator

flexibility in determining the performance and failover characteristics for their

environment.

The table summarizes the features, including whether they apply to sessions

tracked in memory, in a database, with memory-to-memory replication, or all.

Click a feature for details about the feature. Some features are easily manipulated

using administrative settings; others require code or database changes.

 Feature or option Goal Applies to sessions in

memory, database, or

memory-to-memory

Write frequency Minimize database write

operations.

Database and

Memory-to-Memory

Session affinity Access the session in the

same application server

instance.

All

Multirow schema Fully utilize database

capacities.

Database

Base in-memory session pool

size

Fully utilize system capacity

without overburdening

system.

All

Write contents Allow flexibility in

determining what session

data to write

Database and

Memory-to-Memory

Scheduled invalidation Minimize contention between

session requests and

invalidation of sessions by

the Session Management

facility. Minimize write

operations to database for

updates to last access time

only.

Database and

Memory-to-Memory

Tablespace and row size Increase efficiency of write

operations to database.

Database (DB2 only)

 Related concepts

 Sessions

A session is a series of requests to a servlet, originating from the same user at

the same browser.
 Related tasks

 Task overview: Managing HTTP sessions

 Chapter 5, “Tuning the application serving environment,” on page 25

This topic describes the benefits of tuning for optimal performance, highlights

the tunable parameters of the major WebSphere Application Server components,

and provides insight about how these parameters affect performance.

Configuring scheduled invalidation:

58 IBM WebSphere Application Server, Version 6.0.2: Tuning guide

Instead of relying on the periodic invalidation timer that runs on an interval based

on the session timeout parameter, you can set specific times for the session

management facility to scan for invalidated sessions in a distributed environment.

When used with distributed sessions, this feature has the following benefits:

v You can schedule the scan for invalidated sessions for times of low application

server activity, avoiding contention between invalidation scans of database or

another WebSphere Application Server instance and read and write operations to

service HTTP session requests.

v Significantly fewer external write operations can occur when running with the

End of Service Method Write mode because the last access time of the session

does not need to be written out on each HTTP request. (Manual Update options

and Time Based Write options already minimize the writing of the last access

time.)

Usage considerations

v With scheduled invalidation configured, HttpSession timeouts are not strictly

enforced. Instead, all invalidation processing is handled at the configured

invalidation times.

v HttpSessionBindingListener processing is handled at the configured invalidation

times unless the HttpSession.invalidate method is explicitly called.

v The HttpSession.invalidate method immediately invalidates the session from

both the session cache and the external store.

v The periodic invalidation thread still runs with scheduled invalidation. If the

current hour of the day does not match one of the configured hours, sessions

that have exceeded the invalidation interval are removed from cache, but not

from the external store. Another request for that session results in returning that

session back into the cache.

v When the periodic invalidation thread runs during one of the configured hours,

all sessions that have exceeded the invalidation interval are invalidated by

removal from both the cache and the external store.

v The periodic invalidation thread can run more than once during an hour and

does not necessarily run exactly at the top of the hour.

v If you specify the interval for the periodic invalidation thread using the

HttpSessionReaperPollInterval custom property, do not specify a value of more

than 3600 seconds (1 hour) to ensure that invalidation processing happens at

least once during each hour.
 Related reference

 “Tuning session management” on page 58

Configuring write contents:

In session management, you can configure which session data is written to the

database or to another WebSphere instance, depending on whether you are using

database persistent sessions or memory to memory replication. This flexibility

allows for fewer code changes for the JavaServer Pages (JSP) writer when the

application will be operating in a clustered environment. The following options are

available in Session Management for tuning what is to be written back:

v Write changed (the default) - Write only session data properties that have been

updated through setAttribute method and removeAttribute method calls.

v Write all - Write all session data properties.

The Write all setting might benefit servlet and JSP writers who change Java

objects’ states that reside as attributes in HttpSession and do not call

HttpSession.setAttribute method.

Chapter 5. Tuning the application serving environment 59

However, the use of Write all could result in more data being written back than is

necessary. If this situation applies to you, consider combining the use of Write all

with Time-based write to boost performance overall. As always, be sure to

evaluate the advantages and disadvantages for your installation.

With either Write Contents setting, when a session is first created, complete session

information is written, including all of the objects bound to the session. When

using database session persistence, in subsequent session requests, what is written

to the database depends on whether a single-row or multi-row schema has been

set for the session database, as follows:

 Write Contents setting Behavior with single-row

schema

Behavior with multirow

schema

Write changed If any session attribute is

updated, all objects bound to

the session are written.

Only the session data

modified through

setAttribute method or

removeAttribute method

calls is written.

Write all All bound session attributes

are written.

All session attributes that

currently reside in the cache

are written. If the session has

never left the cache, all

session attributes are written.

1. Go to the appropriate level of Session Management.

2. Click Distributed Environment Settings

3. Click Custom Tuning Parameters.

4. Select Custom Settings, and click Modify.

5. Select the appropriate write contents setting.

 Related reference

 “Tuning session management” on page 58

Configuring write frequency:

In the Session Management facility, you can configure the frequency for writing

session data to the database or to a WebSphere instance, depending on whether

you use database distributed sessions or memory-to-memory replication. This

flexibility enables you to weigh session performance gains against varying degrees

of failover support. The following options are available in the Session Management

facility for tuning write frequency:

v End of service servlet- Write session data at the end of the servlet service

method call.

v Manual update- Write session data only when the servlet calls the

IBMSession.sync method.

v Time based (the default) - Write session data at periodic intervals, in seconds

(called the write interval).

When a session is first created, session information is always written at the end of

the service call.

Using the time based write or manual update options can result in loss of data in

failover scenarios since the backup copy of the session in the persistent store (for

example, a database or another JVM) may not be in sync with the session in the

session cache.

60 IBM WebSphere Application Server, Version 6.0.2: Tuning guide

Related reference

 “Tuning session management” on page 58

Base in-memory session pool size: The base in-memory session pool size number

has different meanings, depending on session support configuration:

v With in-memory sessions, session access is optimized for up to this number of

sessions.

v With distributed sessions (meaning, when sessions are stored in a database or in

another WebSphere Application Server instance); it also specifies the cache size

and the number of last access time updates saved in manual update mode.

For distributed sessions, when the session cache has reached its maximum size and

a new session is requested, the Session Management facility removes the least

recently used session from the cache to make room for the new one.

General memory requirements for the hardware system, and the usage

characteristics of the e-business site, determines the optimum value.

Note that increasing the base in-memory session pool size can necessitate

increasing the heap sizes of the Java processes for the corresponding WebSphere

Application Servers.

Overflow in non-distributed sessions

By default, the number of sessions maintained in memory is specified by base

in-memory session pool size. If you do not wish to place a limit on the number of

sessions maintained in memory and allow overflow, set overflow to true.

Allowing an unlimited amount of sessions can potentially exhaust system memory

and even allow for system sabotage. Someone could write a malicious program

that continually hits your site and creates sessions, but ignores any cookies or

encoded URLs and never utilizes the same session from one HTTP request to the

next.

When overflow is disallowed, the Session Management facility still returns a

session with the HttpServletRequest getSession(true) method when the memory

limit is reached, and this is an invalid session that is not saved.

With the WebSphere Application Server extension to HttpSession,

com.ibm.websphere.servlet.session.IBMSession, an isOverflow method returns true

if the session is such an invalid session. An application can check this status and

react accordingly.

 Related concepts

 Sessions

A session is a series of requests to a servlet, originating from the same user at

the same browser.
 Related reference

 “Tuning session management” on page 58

Controlling write operations:

You can manually control when modified session data is written out to the

database or to another WebSphere Application Server instance by using the sync

method in the com.ibm.websphere.servlet.session.IBMSession interface. This

interface extends the javax.servlet.http.HttpSession interface. By calling the sync

Chapter 5. Tuning the application serving environment 61

method from the service method of a servlet, you send any changes in the session

to the external location. When manual update is selected as the write frequency

mode, session data changes are written to an external location only if the

application calls the sync method. If the sync method is not called, session data

changes are lost when a session object leaves the server cache. When end of service

servlet or time based is the write frequency mode, the session data changes are

written out whenever the sync method is called. If the sync method is not called,

changes are written out at the end of service method or on a time interval basis

based on the write frequency mode that is selected.

 IBMSession iSession = (IBMSession) request.getSession();

 iSession.setAttribute("name", "Bob");

 //force write to external store

 iSession.sync()

If the database is down or is having difficulty connecting during an update to

session values, the sync method always makes three attempts before it finally

creates a BackedHashtable.getConnectionError error. For each connection attempt

that fails, the BackedHashtable.StaleConnectionException is created and can be

found in the sync method. If the database opens during any of these three

attempts, the session data in the memory is then persisted and committed to the

database.

However, if the database is still not up after the three attempts, then the session

data in the memory is persisted only after the next check for session invalidation.

Session invalidation is checked by a separate thread that is triggered every five

minutes. The data in memory is consistent unless a request for session data is

issued to the server between these events. For example, if the request for session

data is issued within five minutes, then the previous persisted session data is sent.

Sessions are not transactional resources. Because the sync method is associated

with a separate thread than the client, the exception that is created does not

propagate to the client, which is running on the primary thread. Transactional

integrity of data can be maintained through resources such as enterprise beans.

 Related reference

 “Tuning session management” on page 58

Tuning parameter settings:

Use this page to set tuning parameters for distributed sessions.

 To view this administrative console page, click Servers > Application servers

>server_name> Web container settings > Session management >Distributed

environment settings >Custom tuning parameters.

 Related tasks

 Chapter 5, “Tuning the application serving environment,” on page 25

This topic describes the benefits of tuning for optimal performance, highlights

the tunable parameters of the major WebSphere Application Server components,

and provides insight about how these parameters affect performance.
 Related reference

 “Tuning session management” on page 58

Tuning level:

62 IBM WebSphere Application Server, Version 6.0.2: Tuning guide

Specifies that the session management facility provides certain predefined settings

that affect performance.

 Select one of these predefined settings or customize a setting. To customize a

setting, select one of the predefined settings that comes closest to the setting

desired, click Custom settings, make your changes, and then click OK.

Very high (optimize for performance)

 Write frequency Time based

Write interval 300 seconds

Write contents Only updated attributes

Schedule sessions cleanup true

First time of day default 0

Second time of day default 2

High

 Write frequency Time based

Write interval 300 seconds

Write contents All session attributes

Schedule sessions cleanup false

Medium

 Write frequency End of servlet service

Write contents Only updated attributes

Schedule sessions cleanup false

Low (optimize for failover)

 Write frequency End of servlet service

Write contents All session attributes

Schedule sessions cleanup false

Custom settings

 Write frequency default Time based

Write interval default 10 seconds

Write contents default All session attributes

Schedule sessions cleanup default false

Tuning parameter custom settings:

Use this page to customize tuning parameters for distributed sessions.

 To view this administrative console page, click Servers > Application servers >

server_nameWeb container settings > Session management > Distributed

environment settings > Custom tuning parameters > Custom settings.

 Related tasks

 Chapter 5, “Tuning the application serving environment,” on page 25

This topic describes the benefits of tuning for optimal performance, highlights

Chapter 5. Tuning the application serving environment 63

the tunable parameters of the major WebSphere Application Server components,

and provides insight about how these parameters affect performance.
 Related reference

 “Tuning parameter settings” on page 62

Use this page to set tuning parameters for distributed sessions.

 “Tuning session management” on page 58

Write frequency:

Specifies when the session is written to the persistent store.

 End of servlet service A session writes to a database or another

WebSphere Application Server instance after

the servlet completes execution.

Manual update A programmatic sync on the IBMSession

object is required to write the session data to

the database or another WebSphere

Application Server instance.

Time based Session data writes to the database or

another WebSphere Application Server

instance based on the specified Write interval

value. Default: 10 seconds

Write contents:

Specifies whether updated attributes are only written to the external location or all

of the session attributes are written to the external location, regardless of whether

or not they changed. The external location can be either a database or another

application server instance.

 Only updated attributes Only updated attributes are written to the

persistent store.

All session attribute All attributes are written to the persistent

store.

Schedule sessions cleanup:

Specifies when to clean the invalid sessions from a database or another application

server instance.

 Specify distributed sessions cleanup

schedule

Enables the scheduled invalidation process

for cleaning up the invalidated HTTP

sessions from the external location. Enable

this option to reduce the number of updates

to a database or another application server

instance required to keep the HTTP sessions

alive. When this option is not enabled, the

invalidator process runs every few minutes

to remove invalidated HTTP sessions.

When this option is enabled, specify the two

hours of a day for the process to clean up the

invalidated sessions in the external location.

Specify the times when there is the least

activity in the application servers. An

external location can be either a database or

another application server instance.

64 IBM WebSphere Application Server, Version 6.0.2: Tuning guide

First Time of Day (0 - 23) Indicates the first hour during which the

invalidated sessions are cleared from the

external location. Specify this value as a

positive integer between 0 and 23. This value

is valid only when schedule invalidation is

enabled.

Second Time of Day (0 - 23) Indicates the second hour during which the

invalidated sessions are cleared from the

external location. Specify this value as a

positive integer between 0 and 23. This value

is valid only when schedule invalidation is

enabled.

Web services

Tuning Web services security for version 6.0.x applications

The Java Cryptography Extension (JCE) is integrated into the software

development kit (SDK) version 1.4.x and is no longer an optional package.

However, due to export and import regulations, the default Java Cryptography

Extension (JCE) jurisdiction policy file shipped with the SDK enables you to use

strong, but limited, cryptography only. To enforce this default policy, WebSphere

Application Server uses a JCE jurisdiction policy file that might introduce a

performance impact. The default JCE jurisdiction policy might have a performance

impact on the cryptographic functions that are supported by Web services security.

If you have Web services applications that use transport level security for XML

encryption or digital signatures, you might encounter performance degradation

over previous releases of WebSphere Application Server. However, IBM and Sun

Microsystems provide versions of these jurisdiction policy files that do not have

restrictions on cryptographic strengths. If you are permitted by your governmental

import and export regulations, download one of these jurisdiction policy files.

After downloading one of these files, the performance of JCE and Web Services

security might improve.

For WebSphere Application Server platforms using IBM Developer Kit, Java

Technology Edition Version 1.4.2, including the AIX, Linux, and Windows

platforms, you can obtain unlimited jurisdiction policy files by completing the

following steps:

1. Go to the following Web site:

http://www.ibm.com/developerworks/java/jdk/security/index.html

2. Click Java 1.4.2

3. Click IBM SDK Policy files.

The Unrestricted JCE Policy files for SDK 1.4 Web site is displayed.

4. Enter your user ID and password or register with IBM to download the policy

files. The policy files are downloaded onto your machine.

For WebSphere Application Server platforms using the Sun-based Java

Development Kit (JDK) Version 1.4.2, including the Solaris environments and the

HP-UX platform, you can obtain unlimited jurisdiction policy files by completing

the following steps:

1. Go to the following Web site: http://java.sun.com/j2se/1.4.2/download.html

2. Click Other Downloads.

Chapter 5. Tuning the application serving environment 65

http://www.ibm.com/developerworks/java/jdk/security/index.html
http://java.sun.com/j2se/1.4.2/download.html

3. Locate the Java Cryptography Extension (JCE) Unlimited Strength Jurisdiction

Policy Files 1.4.2 information and click Download. The policy files are

downloaded onto your machine.

After following either of these sets of steps, two Java Archive (JAR) files are placed

in the JVM jre/lib/security/ directory.

Tuning Web services security for version 5.x applications

The Java Cryptography Extension (JCE) is integrated into the software

development kit (SDK) version 1.4.x and is no longer an optional package.

However, due to export and import regulations, the default Java Cryptography

Extension (JCE) jurisdiction policy file shipped with the SDK enables you to use

strong, but limited, cryptography only. To enforce this default policy, WebSphere

Application Server uses a JCE jurisdiction policy file that might introduce a

performance impact. The default JCE jurisdiction policy might have a performance

impact on the cryptographic functions that are supported by Web services security.

If you have Web services applications that use transport level security for XML

encryption or digital signatures, you might encounter performance degradation

over previous releases of WebSphere Application Server. However, IBM and Sun

Microsystems provide versions of these jurisdiction policy files that do not have

restrictions on cryptographic strengths. If you are permitted by your governmental

import and export regulations, download one of these jurisdiction policy files.

After downloading one of these files, the performance of JCE and Web Services

security might improve.

For WebSphere Application Server platforms using IBM Developer Kit, Java

Technology Edition Version 1.4.2, including the AIX, Linux, and Windows

platforms, you can obtain unlimited jurisdiction policy files by completing the

following steps:

1. Go to the following Web site:

http://www.ibm.com/developerworks/java/jdk/security/index.html

2. Click Java 1.4.2

3. Click IBM SDK Policy files.

The Unrestricted JCE Policy files for SDK 1.4 Web site is displayed.

4. Enter your user ID and password or register with IBM to download the policy

files. The policy files are downloaded onto your machine.

For WebSphere Application Server platforms using the Sun-based Java

Development Kit (JDK) Version 1.4.2, including the Solaris environments and the

HP-UX platform, you can obtain unlimited jurisdiction policy files by completing

the following steps:

1. Go to the following Web site: http://java.sun.com/j2se/1.4.2/download.html

2. Click Other Downloads.

3. Locate the Java Cryptography Extension (JCE) Unlimited Strength Jurisdiction

Policy Files 1.4.2 information and click Download. The policy files are

downloaded onto your machine.

After following either of these sets of steps, two Java Archive (JAR) files are placed

in the JVM jre/lib/security/ directory.

Monitoring the performance of Web services applications

This topic explains how to monitor the performance of a Web service that is

implemented in the WebSphere Application Server.

66 IBM WebSphere Application Server, Version 6.0.2: Tuning guide

http://www.ibm.com/developerworks/java/jdk/security/index.html
http://java.sun.com/j2se/1.4.2/download.html

You can use the Performance Monitoring Infrastructure (PMI) to measure the time

required to process Web services requests. To monitor the performance of a Web

services application, follow the steps in this task:

1. Enable PMI services in an application server through the administrative

console. Select the Web module named webServicesModule in step 7.

2. Monitor performance with Tivoli Performance Monitor In the left pane of the

performance view, expand the host and server. Select Web Services. Run the

Web services client application.

PMI provides detailed statistics that can help you gain clear insight into the

runtime behavior and performance of Web services. Performance counters enable

you to see key performance data for each individual Web service including:

v The number of requests dispatched to an implementation bean

v The number of requests dispatched with successful replies

v The average time in milliseconds to process full requests

v The average time in milliseconds between receiving the request and dispatching

it to the bean

v The average time in milliseconds between the dispatch and receipt of a reply

from the bean. This represents the time spent in business logic.

v The average time in milliseconds between the receipt of a reply from a bean to

the return of a result to the client

v The average size of the SOAP request

v The average size of the SOAP reply

To read about other Web services PMI counters, see PMI data organization.

If your Web services applications are using security, see the information about Java

Cryptography Extension (JCE) Unlimited Strength Jurisdiction Policy Files in

Tuning Web services security.

If you are having problems with your Web services applications, read about

problems and solutions in Troubleshooting Web services.

 Related tasks

 Chapter 5, “Tuning the application serving environment,” on page 25

This topic describes the benefits of tuning for optimal performance, highlights

the tunable parameters of the major WebSphere Application Server components,

and provides insight about how these parameters affect performance.

 Enabling PMI using the administrative console

 Monitoring performance with Tivoli Performance Viewer (TPV)

The Tivoli Performance Viewer (TPV) enables administrators and programmers

to monitor the overall health of WebSphere Application Server without leaving

the administrative console.
 Related reference

 Web services client to Web container optimized communication

To improve performance, there is an optimized communication path between a

Web services client application and a Web container that are located in the same

application server process. Requests from the Web services client that are

normally sent to the Web container using a network connection are delivered

directly to the Web container using an optimized local path. The local path is

available because the Web services client application and the Web container are

running in the same process.

 wsdeploy command

Chapter 5. Tuning the application serving environment 67

Web services performance best practices: Web services are developed and

deployed based on standards provided by the Web Services for Java 2 Platform,

Enterprise Edition (J2EE) specification, as is the mechanism used to access a Web

service. This article explains performance considerations for Web services

supported by this specification.

When you develop or deploy a Web service, several artifacts are required,

including a Web Services Description Language (WSDL) file. The WSDL file

describes the format and syntax of the Web service input and output SOAP

messages. When a Web service is implemented in the WebSphere Application

Service runtime, the SOAP message is translated based on the J2EE request. The

J2EE-based response is then translated back to a SOAP message.

The most critical performance consideration is the translation between the

XML-based SOAP message and the Java object. Performance is high for a Web

service implementation in WebSphere Application Server, however, application

design, deployment and tuning can be improved. See Monitoring the performance

of Web services applications for more information about analyzing and tuning Web

services.

If you are using Web service application that was developed for a WebSphere

Application Server version prior to Version 6.0, you can achieve better performance

by running the wsdeploy command. The wsdeploy command regenerates Web

services artifact classes to increase the serialization and deserialization

performance.

Basic considerations for a high-performance Web services

application

The following are basic considerations you should know when designing a Web

services application:

v Reduce the Web services requests by using a few highly functional APIs, rather

than several simple APIs.

v Design your WSDL file interface to limit the size and complexity of SOAP

messages.

v Use the document/literal style argument when you generate the WSDL file.

v Leverage the caching capabilities offered for WebSphere Application Server.

v Test the performance of your Web service.

Additional Web services performance features that you can

leverage

v In-process optimizations for Web services to optimize communication path

between a Web services client application and a Web container that are located

in the same application server process. For details and enabling this feature see

Web services client to Web container optimized communication

v Access to Web services over multiple transport protocols extends existing

JAX-RPC capabilities to support non-SOAP bindings such as RMI/IIOP and JMS.

These alternative transports can improve performance and quality of service

aspects for Web services. For more detailed information see RMI-IIOP using

JAX-RPC.

v The SOAP with Attachments API for Java (SAAJ) 1.2 provides a low-level

programming model for Web services relative to JAX-RPC. The SAAJ 1.2 API

provides features to create and process SOAP requests using a low-level XML

API. SAAJ 1.2 supports just-in-time parsing and other internal algorithms. For

information about SAAJ 1.2 or Web services programming see SOAP with

Attachments API for Java.

68 IBM WebSphere Application Server, Version 6.0.2: Tuning guide

v The Web services tooling generates higher performance custom deserializers for

all JAX-RPC beans. Redeploying a V5.x application into the V6 runtime can

decrease the processing time for large messages.

v Serialization and deserialization runtime is enhanced to cache frequently used

serializers and deserializers. This can decrease the processing time for large

messages.

v The performance of WS-security encryption and digital signature validation is

improved because of the use of the SAAJ 1.2 implementation.

IBM provides considerable documentation and best practices for Web services

application design and development that details these items and more. For a list of

key Web sites that discuss performance best practices, see Web services: Resources

for learning.

Service integration

Setting tuning properties of a messaging engine

Use this task to set the tuning properties for a messaging engine.

You can set the following property to improve the performance of a messaging

engine:

 Name Value

sib.trm.retry The messaging engine to messaging engine

connection retry interval in seconds. The

retry interval is the time delay left between

attempts to contact neighboring messaging

engines with which communications contact

should exist. The default retry interval is 30

seconds.

To set the tuning properties for a messaging engine, use the administrative console

to complete the following steps:

1. In the navigation pane, click Service integration → Buses [Content Pane] →

bus_name → [Additional Properties] Messaging engines → engine_name →

[Additional Properties] Custom properties.

2. Type the name of the property that you want to set.

3. Type the value that you want to set for that property.

4. Click OK.

5. Save your changes to the master configuration.

6. Restart the messaging engine for the changes to take effect.

Tuning and problem solving for messaging engine data stores

Use this task to obtain an overview of improving the performance of messaging

engine data stores and understanding problems that can occur with a data store.

For more information about tuning and problem solving for messaging engine data

stores, see the following topics:

v “Tuning the JDBC data source of a messaging engine” on page 70

v “Controlling the memory buffers used by a messaging engine” on page 70

v Sharing connections to benefit from one-phase commit optimization

v Diagnosing problems with data store exclusive access locks

v “Diagnosing problems with your data store configuration” on page 72

Chapter 5. Tuning the application serving environment 69

v “Avoiding failover problems when you use DB2 v8.2 with HADR as your data

store” on page 73

Tuning the JDBC data source of a messaging engine:

Use this task to tune the JDBC data source of a messaging engine for messaging

performance on a service integration bus.

 Consider whether you need to configure the connection pool for the JDBC data

source to achieve your requirements for messaging performance.

The messaging engine uses the connection pool to obtain its connections to the

database. With a heavy workload, a messaging engine might require a large

number of concurrent connections to avoid delays waiting for connections to

become available in the pool. For example, a very heavily loaded messaging engine

might need 50 or more connections. Perform the following steps to configure the

connection pool to meet your performance requirements:

1. Ensure that the configuration of your relational database management system

(RDBMS) permits the number of connections that you require. Refer to the

documentation for your RDBMS for more information.

2. Use the WebSphere administrative console to set the connection pool

parameters. Navigate to the General properties for your data source and click

Additional properties → Connection pool properties

a. Set the Maximum connections to the number of connections you require,

for example, at least 50. The default number of connections is 10.

Tip: If your messaging engine times out when requesting a database

connection, check the error log. If the error log contains error message

CWSIS1522E, increase the number of connections and ensure that the

configuration of your RDBMS permits that number of connections.

b. Set the Purge policy to EntirePool. This policy enables the connection pool

to release all connections when the messaging engine stops.

Important: You must set this value if the messaging engine can failover in a

cluster.

Controlling the memory buffers used by a messaging engine:

Use this task to control the sizes of the memory buffers used by a messaging

engine.

 Every messaging engine manages two memory buffers that contain messages and

message-related data. You can set the following properties to improve the

interaction of a messaging engine with its data store.

70 IBM WebSphere Application Server, Version 6.0.2: Tuning guide

Name Value

sib.msgstore.discardableDataBufferSize The size in bytes of the data buffer used by

the messaging engine to contain data for

which the quality of service attribute is best

effort nonpersistent. The messaging engine

holds this data entirely within this memory

buffer and never writes this data to the data

store. When the messaging engine adds data

to this buffer, for example when the

messaging engine receives a best effort

nonpersistent message from a client, the

messaging engine might discard data

already in the buffer to make space. This

behavior enables the messaging engine to

discard best effort nonpersistent messages.

The discardable data buffer contains all data

for which the quality of service attribute is

best effort nonpersistent. That data

comprises data both that is involved in

active transactions, and any other best effort

nonpersistent that the messaging engine has

neither discarded nor consumed. The

messaging engine can discard only data that

is not involved in active transactions.

Tip: If the messaging engine attempts to

add data to the discardable data buffer

when insufficient space remains after

discarding all the data that is not involved

in active transaction, the messaging engine

throws a

com.ibm.ws.sib.msgstore.OutOfCacheSpace

exception. Client applications can catch this

exception, wrapped inside API-specific

exceptions such as javax.jms.JMSException.

The sib.msgstore.discardableDataBufferSize

property of the messaging engine controls

the size of the discardable data buffer. You

specify the value of this property in bytes.

The default value is 320000, which is

approximately 320 kilobytes.

Chapter 5. Tuning the application serving environment 71

Name Value

sib.msgstore.cachedDataBufferSize The size in bytes of the data buffer used by

the messaging engine to contain data for

which the quality of service attribute is better

than best effort nonpersistent and which is

held in the data store. The purpose of the

cached data buffer is to optimize the

performance of the messaging engine by

caching in memory the data that the

messaging engine might otherwise need to

read from the data store. As it writes data to

the data store and reads from the data store,

the messaging engine attempts to add that

data to the cached data buffer. The

messaging engine might discard data

already in the buffer to make space.

The sib.msgstore.cachedDataBufferSize

property of the messaging engine controls

the size of the cached data buffer. You

specify the value of this property in bytes.

The default value is 320000, which is

approximately 320 kilobytes.

sib.msgstore.transactionSendLimit The maximum number of operations that

the messaging engine includes in each

transaction. For example, each JMS send or

receive is an operation that counts towards

the transaction send limit. The default value

is 100.

Attention: The messaging engine uses approximate calculations to manage the

data it holds in the memory buffers. Neither of the DataBufferSize properties

gives an accurate indication of the amount of memory that the messaging engine

consumes in the JVM heap. The messaging engine can consume considerably more

heap storage than the DataBufferSize properties indicate.

To set the properties of a messaging engine to improve its interaction with its data

store, use the administrative console to complete the following steps:

1. In the navigation pane, click Service integration → Buses [Content Pane] →

bus_name → [Additional Properties] Messaging engines → engine_name →

[Additional Properties] Custom properties.

2. Type the name of the property that you want to set.

3. Type the value that you want to set for that property.

4. Click OK.

5. Save your changes to the master configuration.

Remember: When you change any of these properties, the new values do not take

effect until you restart the messaging engine.

Diagnosing problems with your data store configuration:

Use this task to diagnose problems that are caused by your data store

configuration.

72 IBM WebSphere Application Server, Version 6.0.2: Tuning guide

The following problems depend on the database that you use with your data store

configuration and the level of that database:

v Examine this section if your messaging engine uses an Oracle 9i database for its

data store and your messaging engine fails to start. If the messaging engine fails

with the following message, where XXXXXXXX is the schema for the table, ensure

that your Oracle installation is at 9.2.0.4, or higher:

CWSIS1530E: The data type, 1,111, was found instead of the expected type,

2,004, for column, LONG_DATA, in table, XXXXXXXX.SIB000.

v Examine this section if your messaging engine uses a Sybase database for its

data store. When you create your Sybase server:

– Ensure that you create the database server with a page size of at least 4k.

– Ensure that you set the lock scheme property on your server to the value

datarows. This avoids the possibility of a deadlock on the data store tables.
v Examine this section if your messaging engine uses an Informix database for its

data store and the messaging engine is unable to access its data store. When you

configure your messaging engine to use an Informix database, ensure that you

specify the schema name in lower case. For a full description of the configuring

procedure, refer to Configuring a messaging engine to use a data source.

Avoiding failover problems when you use DB2 v8.2 with HADR as your data

store:

Use this task to avoid problems that can occur when a messaging engine that is

configured to use DB2 v8.2 with HADR for its data store terminates if the DB2

database fails over.

 If you configure a messaging engine to use DB2 v8.2 with HADR for its data store

and a DB2 failover occurs, the application server on which the messaging engine is

running might stop. The cause of this problem is that the messaging engine does

not treat the DB2 failover as a transient communications error.

When you configure a messaging engine to use DB2 v8.2 with HADR for its data

store ensure that the messaging engine can restart automatically following an

application server failure. Choose the option that is appropriate for your

configuration:

v If you are running a single server, WebSphere Application Server provides no

failover support. Consider other high availability provisions.

v If you are running the Network Deployment version without clustering, the

default configuration for the node agent ensures automatic restart.

v If you are running the Network Deployment version with clustering, peer

recovery restarts the messaging engine. Ensure that you have configured the

high availability policy to enable peer recovery.

Setting tuning properties for a mediation

Use this task to tune a mediation for performance using the administrative console.

Before you begin this task, you should review the guidance on when it is

appropriate to tune a mediation for performance in the topic Guidance for tuning

mediations for performance.

You can set the following tuning properties to improve the performance of a

mediation:

Chapter 5. Tuning the application serving environment 73

Name Value

sib:SkipCloneBeforeMediate Whether you want to omit the cloning of

messages before they are processed by the

mediation. Either true or false.

sib:SkipWellFormedCheck Whether you want to omit the well formed

check that is performed on messages after

they have been processed by the mediation.

Either true or false.

Note: This property is overridden for

messages that have the delivery option

assured persistent, and a well formed check

is always performed.

You can set the following tuning property to improve the performance of a

mediation:

 Name Value

sib:SkipWellFormedCheck Whether you want to omit the well formed

check that is performed on messages after

they have been processed by the mediation.

Either true or false.

Note: This property is overridden for

messages that have the delivery option

assured persistent, and a well formed check

is always performed.

To set, or unset, one or more tuning properties for a mediation, use the

administrative console to complete the following steps:

1. Display the mediation context information:

a. In the navigation pane, click Service integration → Buses

b. In the content pane, click the name of the service integration bus.

c. Under Additional Properties, click Mediations.

d. In the content pane, select the name of the mediation for which you want to

configure tuning information.

e. Under Additional Properties, click Context information.
2. In the content pane, click New.

3. Type the name of the property in the Name field.

4. Select the type Boolean in the list box.

5. Type true in the Context Value field to set the property, or type false to unset

the property.

6. Click OK.

7. Save your changes to the master configuration.

Enabling CMP entity beans and messaging engine data stores to

share database connections

Use this task to enable container-managed persistence (CMP) entity beans to share

the database connections used by the data store of a messaging engine. This has

been estimated as a potential performance improvement of 15% for overall

message throughput, but can only be used for entity beans connected to the

application server that contains the messaging engine.

74 IBM WebSphere Application Server, Version 6.0.2: Tuning guide

To enable CMP entity beans to share the database connections used by the data

store of a messaging engine, complete the following steps:

1. Configure the data store to use a data source that is not XA-capable. For more

information about configuring a data store, see Configuring a JDBC data

source.

2. Select the Share data source with CMP option.

This option is provided on the JMS connection factory used to connect to the

service integration bus that hosts the bus destination that is used to store and

process messages for the CMP bean.

This option is provided on the JMS connection factory or JMS activation

specification used to connect to the service integration bus that hosts the bus

destination that is used to store and process messages for the CMP bean.

For example, to select the option on a unified JMS connection factory, complete

the following steps:

a. Display the default messaging provider. In the navigation pane, expand

Resources → JMS Providers → Default Messaging Provider.

b. Optional: Change the Scope check box to set the level at which the

connection factory is to be visible, according to your needs.

c. In the content pane, under Additional Properties, click JMS connection

factories

d. Optional: To create a new unified JMS connection factory, click New.

Specify the following properties for the connection factory:

Name Type the name by which the connection factory is known for

administrative purposes.

JNDI name

Type the JNDI name that is used to bind the connection factory into

the name space.

Bus name

Type the name of the service integration bus that the connection

factory is to create connections to. This service integration bus hosts

the destinations that the JMS queues and topics are assigned to.
e. Optional: To change the properties of an existing connection factory, click

one of the connection factories displayed. This displays the properties for

the connection factory in the content pane.

f. Select the check box for the Share data source with CMP field

g. Click OK.

h. Save your changes to the master configuration.

The JMS connection factory can only be used to connect to a “local” messaging

engine that is in the application server on which the CMP beans are deployed.

3. Deploy the CMP beans onto the application server that contains the messaging

engine, and specify the same data source as used by the messaging engine. You

can use the administrative consoles to complete the following steps:

a. Optional: To determine the data source used by the messaging engine, click

Servers → Application servers → server_name → Messaging engines →

engine_name → Data store The Data source name field displays the name

of the data source; by default:

jdbc/com.ibm.ws.sib/engine_name

b. Click Applications → Install New Application

Chapter 5. Tuning the application serving environment 75

c. On the first Preparing for application install page, specify the full path

name of the source application file (.ear file otherwise known as an EAR

file), then click Next

d. On the second Preparing for application install page, complete the following

steps:

1) Select the check box for the Generate Default Bindings property. Data

source bindings (for EJB 1.1 JAR files) are generated based on the JNDI

name, data source user name password options. This results in default

data source settings for each EJB JAR file. No bean-level data source

bindings are generated.

2) Under Connection Factory Bindings, click the check box for the Default

connection factory bindings: property, then type the JNDI name for the

data source and optionally select a Resource authorization value.

3) Click Next

4. If your application uses EJB modules that contain Container Managed

Persistence (CMP) beans that are based on the EJB 1.x specification, for Step:

Provide default datasource mapping for modules containing 1.x entity beans,

specify a JNDI name for the default data source for the EJB modules. The

default data source for the EJB modules is optional if data sources are specified

for individual CMP beans.

5. If your application has CMP beans that are based on the EJB 1.x specification,

for Step: Map datasources for all 1.x CMP, specify a JNDI name for data

sources to be used for each of the 1.x CMP beans. The data source attribute is

optional for individual CMP beans if a default data source is specified for the

EJB module that contains CMP beans. If neither a default data source for the

EJB module nor a data source for individual CMP beans are specified, then a

validation error displays after you click Finish (step 13) and the installation is

cancelled.

6. Complete other panels as needed.

7. On the Summary panel, verify the cell, node, and server onto which the

application modules will install:

a. Beside Cell/Node/Server, click Click here.

b. Verify the settings on the Map modules to servers page displayed. Ensure

that the application server that is specified contains the messaging engine

and its data store.

c. Specify the Web servers as targets that will serve as routers for requests to

this application. This information is used to generate the plug-in

configuration file (plugin-cfg.xml) for each Web server.

d. Click Finish.

For more information about installing applications, see Installing application files

with the console.

Tuning service integration messaging

Use this task to set tuning properties that control the performance of

message-driven beans and other messaging applications deployed to use service

integration technologies.

To optimize the performance of messaging with service integration technologies,

such as message-driven beans that use the default messaging provider, you can use

the following parameters set through the WebSphere administrative console or

command line interfaces.

76 IBM WebSphere Application Server, Version 6.0.2: Tuning guide

On z/OS, the performance of messaging applications is affected by the number of

servants, which can vary dynamically, and the distribution of work between

servants. For more information about configuring and managing the number of

servants and the distribution of work between servants, see Tuning the application

serving environment.

v Providing sufficient threads to maximize the throughput of messages.

There is a trade-off between providing sufficient threads to maximize the

throughput of messages and configuring excessive threads, which can lead to

CPU starvation of the threads in the application server. If you notice that the

throughput for express nonpersistent, reliable nonpersistent, or reliable persistent

messaging has fallen as a result of increasing the size of the default thread pool,

then you should decrease the size of the thread pool and reassess the message

throughput.

1. To be able to view the available message count for a queue, you need to

enable runtime AvailableMessageCount statistics for the queue. If you restart

administrative server, you need to enable AvailableMessageCount statistics

again because such runtime settings are not preserved when the server is

restarted.

To enable AvailableMessageCount statistics using the administrative console,

complete the following steps:

a. In the navigation pane, click Monitoring and Tuning → Performance

Monitoring Infrastructure (PMI)

b. In the content pane, click server_name

c. Click the Runtime tab.

d. In the Currently monitored statistic set, click Custom

e. On the Custom monitoring level panel, click SIB Service → SIB

Messaging Engines → messageEngine_name → Destinations → Queues →

queue_name

f. Select the AvailableMessageCount option.

g. Click the Enable button at the top of the panel.
2. To view the available message count, you can use the administrative console

to complete the following steps:

a. In the navigation pane, click Monitoring and Tuning → Performance

Viewer → Current activity

b. In the content pane, click server_name

c. Click Performance Modules → SIB Service → SIB Messaging Engines →

messageEngine_name → Destinations → Queues → queue_name

d. Click the View Module(s) button at the top of the Resource Selection

panel, located on the left side. This displays the AvailableMessageCount

data in the Data Monitoring panel, located on the right side.

You can use the Data Monitoring panel to manage the collection of

monitoring data; for example, you can use the buttons to start or stop

logging, or to change the data displayed as either a table or graph.
3. To view or change the number of threads in the default thread pool for an

application server, you can use the administrative console to complete the

following steps:

a. In the navigation pane, click Servers → Application servers

b. In the content pane, click server_name

c. Under Additional properties, click Thread Pools → Default. By default the

Minimum size value is set to 5 and the Maximum size value is set to 20.

The best performance is obtained by setting the Maximum size value to

Chapter 5. Tuning the application serving environment 77

the expected maximum concurrency for all message-driven beans. For

high throughput using a single message-driven bean, 41 was found to be

the optimal Maximum size value.

d. To change the Maximum size value, type the new value in the Maximum

size field then click OK. Finally, save your changes to the master

configuration.
v Reducing the number of OutOfCacheSpace errors in the SystemOut.log file.

OutOfCacheSpace errors in the SystemOut.log file indicate that the discardable

data buffer used by the messaging engine is overflowing. For best effort

nonpersistent messages, the messaging engine starts to discard messages when

this buffer is full. You can increase the size of this data buffer to allow more best

effort nonpersistent data to be handled before the messaging engine begins to

discard the messages.

For more information about tuning the size of the discardable data buffer, set by

the sib.msgstore.discardableDataBufferSize property of a messaging engine, see

“Controlling the memory buffers used by a messaging engine” on page 70.

v Tuning the messaging engine data store (not required for Cloudscape).

To improve the performance of messaging throughput of a messaging engine

data store, you can tune the JDBC connection pool and statement cache size. In

tests of high throughput MDB workloads, the following changes provided a 10%

gain in throughput.

1. The messaging engine uses a connection pool for managing the JDBC

connections to its data store. Tuning the size of the pool can improve the

messaging throughput.

To view or change the size of the connection pool, you can use the

administrative console to complete the following steps:

a. In the navigation pane, click Resources → JDBC Providers

b. In the content pane, click jdbc_provider_name

c. Under Additional properties, click Data sources → data_source_name

d. Under Additional properties, click Connection pool properties

e. View the Maximum connections property and the Minimum connections

property. By default, these properties are set to Maximum connections=10

and Minimum connections=1. Setting the value of both these properties

to 50 is recommended. For especially high throughput workloads, setting

the value of both these properties up to 100 can be beneficial. You may

need to configure the underlying database to accept this many concurrent

connections.

f. To change the value of a property, type a new value in the property field

then click OK. Finally, save your changes to the master configuration.
2. The statement cache contains recently used prepared statements to remove

the costs associated with repeated preparation of statements. Tuning the size

of the cache helps prevent useful entries from being discarded to make room

for new entries.

To view or change the size of the statement cache, you can use the

administrative console to complete the following steps:

a. In the navigation pane, click Resources → JDBC Providers

b. In the content pane, click jdbc_provider_name

c. Under Additional properties, click Data sources → data_source_name

d. Under Additional properties, click WebSphere Application Server data

source properties

78 IBM WebSphere Application Server, Version 6.0.2: Tuning guide

e. View the Statement cache size property. By default, the value of this

property is set to 10. For high throughput JMS messaging, a value of 40 is

recommended.

f. To change the value of the property, type a new value in the property

field then click OK. Finally, save your changes to the master

configuration.
v Using a remote DB2 Universal Database.

By default, messaging engines are configured to use Cloudscape as the

underlying data store database. Changing to a DB2 database, especially a remote

database, significantly improves performance. This is of particular benefit on

systems with more than two CPUs. A remote DB2 database provides a 50%

higher throughput than a local DB2 database, for the same total (application

server plus database) CPU utilization.

v Tuning reliability levels for messages.

The reliability level chosen for the messages has a significant impact on

performance. In order of decreasing performance (fastest first), the reliability

levels are: Best-Effort Nonpersistent, Express Nonpersistent, Reliable

Nonpersistent, Reliable Persistent, and Assured Persistent. For MDB

point-to-point messaging, best-effort nonpersistent throughput is more than 6

times greater than assured persistent.

For more information about reliability levels, see Message reliability levels. For

the relative performance of the different reliability levels, see the WebSphere

Application Server performance report.

v Tuning MDB performance with the default messaging provider.

For information about tuning the throttling of message-driven beans, including

controlling the maximum number of instances of each message-driven bean and

the message batch size for serial delivery, see Configuring MDB throttling on the

default messaging provider.

Tuning the SIBWS

You can use the administrative console or a Jacl script to tune performance settings

for the service integration bus Web services enablement (SIBWS).

To improve the performance of the SIBWS, you can tune the following parameters:

v The Java virtual machine heap size (to help ensure there is enough memory

available to process large messages, or messages with large attachments).

v The maximum permitted number of concurrent clients. (That is, the maximum

number of instances of a message-driven bean that are permitted by the

activation specification for the service integration technologies resource adapter).

v The maximum batch size for batches of messages to be delivered to a client. (By

default, only a single message is delivered to a message-driven bean instance at

one time. You can improve performance by allowing messages to be sent in

batches to a message-driven bean).

v The number of threads available to service requests for each client. (That is, the

number of threads available in the default thread pool and the Web container

thread pool for a given application server).

To tune the SIBWS, complete one of the following two main steps:

v Optional: To use the administrative console to tune the SIBWS, complete the

following steps:

1. Use the topic Tuning Java virtual machines to set the JVM heap size to a

larger value than the default value (256 megabytes). The value should

generally be as large as possible without incurring paging.

Chapter 5. Tuning the application serving environment 79

2. Use the topic Tuning service integration messaging to tune the maximum

number of instances of a message-driven bean, the maximum batch size for

batches of messages for a bean, and the number of threads available to

service requests for a bean:

– In the administrative console navigation pane, click Resources → Resource

adapters → SIB JMS Resource Adapter → J2C activation specification →

SIBWS_OUTBOUND_MDB, then set maxConcurrency to n and

maxBatchSize to 5 (where n is the maximum permitted number of

instances of a message-driven bean).

– In the administrative console navigation pane, click Servers → Application

servers → server_name → Thread Pools, then set the number of threads in

the default and WebContainer thread pools to a maximum of n-1 threads

and a minimum of some figure approaching the maximum (to reduce lock

contention).
v To use a Jacl script to tune the SIBWS, create and run a script based on the

following example script:

puts "****Configuring server thread pools ****"

if {[llength $argv] !=1} {

 puts "ERROR: Incorrect usage."

 puts ""

 puts {Usage: wsadmin -f configure-soapservice1.jacl serverName}

 puts ""

 puts "Where:"

 puts ""

 puts " serverName = name of server"

 exit

}

#---

#--- Setup the arguments

#---

#--- Get args

set serverName [lindex $argv 0]

#---

#--- Set the thread pool sizes and the JVM heap size

#---

set serverId [$AdminConfig getid /Server:$serverName/]

#--- First the threadPools....

puts "Modifying Server ThreadPool Sizes for $serverName"

set inactivityTimeout [list inactivityTimeout 120000]

set isGrowable [list isGrowable false]

set maximumSize [list maximumSize 150]

set minimumSize [list minimumSize 145]

set threadPoolList [list $inactivityTimeout \

 $isGrowable \

 $maximumSize \

 $minimumSize \

]

set threadpools [$AdminConfig list ThreadPool $serverId]

foreach pool $threadpools {

 set modifyToggle 0

 #puts [$AdminConfig showAttribute $pool name]

 if {[string compare [$AdminConfig showAttribute $pool name] WebContainer] == 0} {

 set modifyToggle 1

 #puts "WebContainer ThreadPool found for server $serverName"

 }

80 IBM WebSphere Application Server, Version 6.0.2: Tuning guide

if {[string compare [$AdminConfig showAttribute $pool name] Default] == 0} {

 set modifyToggle 1

 #puts "Default ThreadPool found for server $serverName"

 }

 if {$modifyToggle == 1} {

 puts "modifying threadpool [$AdminConfig showAttribute $pool name]"

 $AdminConfig modify $pool $threadPoolList

 }

}

puts "ThreadPool modifications complete"

#--- Now the JVM heap size

set heapSize 1536

puts "Modifying JVM Heap size to $heapSize for server $serverName"

set initialHeapSize [list initialHeapSize $heapSize]

set maximumHeapSize [list maximumHeapSize $heapSize]

set jvmModifications [list $initialHeapSize $maximumHeapSize]

set processDef [$AdminConfig list ProcessDef $serverId]

set jvm [$AdminConfig list JavaVirtualMachine $processDef]

$AdminConfig modify $jvm $jvmModifications

puts "Heap size modification complete"

#--

#--- Modify the J2CActivationSpec for the service integration technologies Resource adapter

#--

puts "Modifying the J2CActivationSpec"

set actSpec [$AdminConfig getid /J2CActivationSpec:SIBWS_OUTBOUND_MDB/]

set propSet [$AdminConfig showAttribute $actSpec resourceProperties]

set propSet [lindex $propSet 0]

set maxConcurrency [list value 200]

set maxConcurrency [list $maxConcurrency]

set maxBatchSize [list value 5]

set maxBatchSize [list $maxBatchSize]

foreach propId $propSet {

 if { [string compare [$AdminConfig showAttribute $propId name] maxConcurrency] == 0} {

 $AdminConfig modify $propId $maxConcurrency

 puts "Custom property changed : [$AdminConfig showall $propId] "

 }

 if { [string compare [$AdminConfig showAttribute $propId name] maxBatchSize] == 0} {

 $AdminConfig modify $propId $maxBatchSize

 puts "Custom property changed : [$AdminConfig showall $propId] "

 }

}

puts "J2CActivationSpec modifications complete"

puts "Saving actions..."

$AdminConfig save

Data access resources

EJB Container Cache tuning

Monitoring Tivoli Performance Viewer (TPV) is a great way to diagnose if the EJB

Container Cache size setting is tuned correctly for your application. If the

Chapter 5. Tuning the application serving environment 81

application has filled the cache causing evictions to occur, TPV will show a very

high rate of ejbStores() being called and probably a lower than expected CPU

utilization on the application server machine.

All applications using enterprise beans should have this setting adjusted from the

default if the following formula works out to more than 2000.

EJB_Cache_Size = (Largest number of Option B or C Entity Beans enlisted in a

transaction * maximum number of concurrent transactions) +

(Largest number of unique Option A Entity Beans expected to be accessed during

typical application workload) +

(Number of stateful Session Beans active during typical workload) +

(Number of stateless SessionBean types used during typical workload)

Where:

Option B and C Entity Beans are only held in the EJB cache during the lifetime

of the transaction they are enlisted in. Therefore, the first term in the formula

computes the average EJB cache requirements for these types of beans.

Option A Entity Beans are held in the EJB cache indefinitely, and are only removed

 from the cache if there start to become more beans in the cache than the cache

size has been set to.

Stateful Session Beans are held in the EJB cache until they are removed by the

application, or their session timeout value is reached.

Only a single stateless Session Bean instance for each EJB type is held in the

cache during the time any methods are being executed on that stateless Session

Bean. If two or more methods are being executed simultaneously on the same

stateless Session Bean type, each method executes on its own bean instance, but

only one cache location is used for all of these instances.

This calculates the upper bound on the maximum possible number of enterprise

beans active at one time inside the application server. Because the EJB Containers

cache is built to contain all these beans for performance optimizations, best

performance can be achieved by setting this cache size to be larger than the

number resulting from the calculation above.

<tuning parameter>

This setting can be found under Servers > Application Servers > serverName >

 EJB Container > EJB Cache Settings

Also while adjusting the EJB Cache Size, the EJB Container management thread

parameter can be tuned to meet the needs of the application. The management

thread is controlled through the Clean Up Interval setting. This setting controls

how frequently a daemon thread inside of WebSphere Application Server wakes up

and attempts to remove bean instances from the cache that have not been used

recently, attempting to keep the number of bean instances at or below the cache

size. This allows the EJB container to place and look up items in the cache as

quickly as possible. It normally is best to leave this interval set to the default,

however, in some cases, it may be worthwhile to see if there is a benefit to

reducing this interval.

EJB Container Pool Size

If the application is using the majority of the instances in the pool, TPV indicates

this. When this occurs, then the size of those bean pools that are being exhausted

should be increased. This can be done by adding the following parameter in the

JVM’s custom properties tag .

-Dcom.ibm.websphere.ejbcontainer.poolSize=<application_name>#<module_name>#

<enterprisebean_name>=<minSize>,<maxSize>

82 IBM WebSphere Application Server, Version 6.0.2: Tuning guide

where:

 <application_name> is the J2EE application name as defined in the application

archive (.ear) file deployment descriptor, for the bean whose pool size is being

set

<module_name> is the .jar file name of the EJB module, for the bean whose pool size

 is being set,

<bean_name> is the J2EE Enterprise Bean name as defined in the EJB module

deployment descriptor, for the bean whose pool size is being set

<minSize> is the number of bean instances the container maintains in the pool,

 irrespective of how long the beans have been in the pool (beans greater than this

 number are cleared from the pool over time to optimize memory usage)

<maxSize> is the number of bean instances in the pool where no more bean instances

 are placed in the pool after they are used (that is, once the pool is at this

 size, any additional beans are discarded rather than added into the pool --

this ensures the number of beans in the pool has an upper limit so memory usage

does not grow in an unbounded fashion).

To keep the number of instances in the pool at a fixed size, minSize and maxSize

can be set to the same number. Note that there is a separate instance pool for

every EJB type running in the application server, and that every pool starts out

with no instances in it - that is, the number of instances grows as beans are

used and then placed in the pool. When a bean instance is needed by the container

and no beans are available in the pool, the container creates a new bean

instance, uses it, then places that instance in the pool (unless there are

already maxSize instances in the pool).

For example, the statement

-Dcom.ibm.websphere.ejbcontainer.poolSize=ivtApp#ivtEJB.jar#ivtEJBObject=125,1327

would set a minSize of 125 and a maxSize of 1327 on the bean named "ivtEJBObject"

within the ivtEJB.jar file, in the application "ivtApp".

Where ivtApp is replaced by the actual application name, ivtEJB.jar is replaced by

the jar containing the bean that needs to have its pool size increased, and

ivtEJBObject is the bean name of the enterprise bean whose pool size should be

increased. The 125,1327 is the minimum and maximum number of beans that will

be held in the pool. These should be set so no more evictions occur from the pool

and in most cases should be set equal if memory is plentiful because no growth

and shrinkage of the pool will occur.

EJB Container Primary Key Mutation

Application developers and administrators should have a good idea of how their

application handles the creation of primary key objects for use by

container-managed persistence (CMP) beans and bean-managed persistence (BMP)

beans inside of WebSphere Application Server. The IBM EJB Container uses the

primary key of an Entity bean as an identifier inside of many internal data

structures to optimize performance. However, the EJB Container must copy these

primary key objects upon the first access to the bean to ensure that the objects

stored in the internal caches are separate from the ones used in an application, in

case the application changes or mutates the primary key, to keep the internal

structures consistent.

If the application does not mutate any of the primary keys used to create and

access entity beans after they are created, then a special flag can be used that

allows the EJB Container to skip the copy of the primary key object, thus saving

CPU cycles and increasing performance. This mechanism can be enabled at your

own risk by adding the following –D property to the JVM custom property field.

Chapter 5. Tuning the application serving environment 83

<tuning parameter>

-Dcom.ibm.websphere.ejbcontainer.noPrimaryKeyMutation=true

The performance benefit of this optimization depends on the application. If the

application uses primitive types for enterprise beans’ primary keys there will be no

gain because these objects are already immutable and the copy mechanism takes

this into account. If, however, the application uses many complex primary keys

(that is, And object for a primary key or multiple fields) then this parameter can

yield significant improvements.

Persistence Manager Deferred Insert on EJB Create

The IBM Persistence manager is used by the EJB Container to persist data to the

database from CMP entity beans. When creating entity beans by calling the

ejbCreate() method, by default the Persistence manager immediately inserts the

empty row with only the primary key in the database. In most cases applications,

after creating the bean, modify fields in the bean created or in other beans inside

of the same transaction. If the user wishes to postpone the insert into the database

until the end of the transaction, so that it will eliminate one trip to the database,

they may set this –D flag inside of the JVM custom properties field. The data will

still be inserted into the database and consistency will be maintained.

<tuning parameter>

-Dcom.ibm.ws.pm.deferredcreate=true

The performance benefit of this optimization depends on the application. If the EJB

applications transactions are very insert intensive the application could benefit

largely from this optimization. If the application performs very few inserts then the

benefit of this optimization will be much less.

Persistence Manager Database Batch Update on EJB Update

When an EJB application accesses multiple CMP beans inside of a single

transaction, depending on the operations performed on the beans (updates, inserts,

reads), the number of operations issued to the database will correspond directly to

the operations performed on the CMP beans. If the database system you are using

supports batching of update statements you can enable this flag and gain a

performance boost on all interactions with the database that involve more than two

updates in a single transaction. This flag will let the persistence manager add all

the update statements into one single batch statement which will then be issued to

the database. This saves round trips to the database, thus increasing performance.

If the user knows their application exhibits the behavior of updating multiple CMP

beans in a single transaction and the database supports batch updates they may set

this –D flag inside of the JVM custom properties field.

<tuning parameter>

-Dcom.ibm.ws.pm.batch=true

The performance benefit of this optimization depends on the application. If the

application never or infrequently updates CMP beans or only updates a single

bean per transaction there will be no performance gain. If the application updates

multiple beans per transaction then this parameter will benefit your applications

performance.

Database performance tuning

Database performance tuning can dramatically affect the throughput of your

application. For example, if your application requires high concurrency (multiple,

simultaneous interactions with backend data), an improperly tuned database can

84 IBM WebSphere Application Server, Version 6.0.2: Tuning guide

result in a bottleneck. Database access threads accumulate in a backlog when the

database is not configured to accept a sufficient number of incoming requests.

Because WebSphere Application Server supports the integration of many different

database products, each one with unique tuning configurations, consult your

database vendor documentation for comprehensive tuning information. This

information center provides introductory material on DB2 tuning parameters for

your convenience.

Tuning parameters vary according to the type of database you are using. DB2

tuning tips for z/OS are provided for your convenience. Because DB2 is not a

WebSphere Application Server product and can change, consider these descriptions

as suggestions.

Tuning parameters vary according to the type of database you are using. If you

run DB2 UDB for iSeries, consult the DB2 UDB tuning parameters article as a

starting point reference.

DB2 tuning parameters

DB2 has many parameters that you can configure to optimize database

performance. For complete DB2 tuning information, refer to the DB2 UDB

Administration Guide: Performance document.

DB2 logging

v Description: DB2 has corresponding log files for each database that provides

services to administrators, including viewing database access and the number of

connections. For systems with multiple hard disk drives, you can gain large

performance improvements by setting the log files for each database on a

different hard drive from the database files.

v How to view or set: At a DB2 command prompt, issue the command: db2

update db cfg for [database_name] using newlogpath

[fully_qualified_path].

v Default value: Logs reside on the same disk as the database.

v Recommended value: Use a separate high-speed drive, preferably performance

enhanced through a redundant array of independent disk (RAID) configuration.

For more information about using AIX with DB2 see “Tuning AIX systems” on

page 45.

DB2 configuration advisor

Located in the DB2 Control Center, this advisor calculates and displays

recommended values for the DB2 buffer pool size, the database, and the database

manager configuration parameters, with the option of applying these values. See

more information about the advisor in the online help facility within the Control

Center.

Number of connections to DB2 - MaxAppls and MaxAgents

When configuring the data source settings for the databases, confirm the DB2

MaxAppls setting is greater than the maximum number of connections for the data

source. If you are planning to establish clones, set the MaxAppls value as the

maximum number of connections multiplied by the number of clones. The same

relationship applies to the session manager number of connections. The MaxAppls

setting must be equal to or greater than the number of connections. If you are

Chapter 5. Tuning the application serving environment 85

using the same database for session and data sources, set the MaxAppls value as

the sum of the number of connection settings for the session manager and the data

sources.

For example, MaxAppls = (number of connections set for the data source +

number of connections in the session manager) multiplied by the number of

clones.

After calculating the MaxAppls settings for the WebSphere Application Server

database and each of the application databases, verify that the MaxAgents setting

for DB2 is equal to or greater than the sum of all of the MaxAppls values. For

example, MaxAgents = sum of MaxAppls for all databases.

DB2 buffpage

v Description: Improves database system performance. Buffpage is a database

configuration parameter. A buffer pool is a memory storage area where database

pages containing table rows or index entries are temporarily read and changed.

Data is accessed much faster from memory than from disk.

v How to view or set: To view the current value of buffpage for database x, issue

the DB2 command get db cfg for x and look for the value BUFFPAGE. To set

BUFFPAGE to a value of n, issue the DB2 command update db cfg for x using

BUFFPAGE n and set NPAGES to -1 as follows:

db2 <-- go to DB2 command mode, otherwise the following "select" does not work as is

 connect to x <-- (where x is the particular DB2 database name)

 select * from syscat.bufferpools

 (and note the name of the default, perhaps: IBMDEFAULTBP)

 (if NPAGES is already -1, there is no need to issue following command)

 alter bufferpool IBMDEFAULTBP size -1

 (re-issue the above "select" and NPAGES now equals -1)

You can collect a snapshot of the database while the application is running and

calculate the buffer pool hit ratio as follows:

1. Collect the snapshot:

a. Issue the update monitor switches using bufferpool on command.

b. Make sure that bufferpool monitoring is on by issuing the get monitor

switches command.

c. Clear the monitor counters with the reset monitor all command.
2. Run the application.

3. Issue the get snapshot for all databases command before all applications

disconnect from the database, otherwise statistics are lost.

4. Issue the update monitor switches using bufferpool off command.

5. Calculate the hit ratio by looking at the following database snapshot

statistics:

– Buffer pool data logical reads

– Buffer pool data physical reads

– Buffer pool index logical reads

– Buffer pool index physical reads
v Default value: 250

v Recommended value: Continue increasing the value until the snapshot shows a

satisfactory hit rate.

The buffer pool hit ratio indicates the percentage of time that the database

manager did not need to load a page from disk to service a page request. That is,

the page is already in the buffer pool. The greater the buffer pool hit ratio, the

lower the frequency of disk input and output. Calculate the buffer pool hit ratio as

follows:

v P = buffer pool data physical reads + buffer pool index physical reads

v L = buffer pool data logical reads + buffer pool index logical reads

86 IBM WebSphere Application Server, Version 6.0.2: Tuning guide

v Hit ratio = (1-(P/L)) * 100%

DB2 query optimization level

v Description: Sets the amount of work and resources that DB2 puts into

optimizing the access plan. When a database query runs in DB2, various

methods are used to calculate the most efficient access plan. The range is from 0

to 9. An optimization level of 9 causes DB2 to devote a lot of time and all of its

available statistics to optimizing the access plan.

v How to view or set: The optimization level is set on individual databases and

can be set with either the command line or with the DB2 Control Center. Static

SQL statements use the optimization level that is specified on the prep and bind

commands. If the optimization level is not specified, DB2 uses the default

optimization as specified by the dft_queryopt setting. Dynamic SQL statements

use the optimization class that is specified by the current query optimization

special register, which is set using the SQL Set statement. For example, the

following statement sets the optimization class to 1:

Set current query optimization = 1

If the current query optimization register is not set, dynamic statements are

bound using the default query optimization class.

v Default value: 5

v Recommended value: Set the optimization level for the needs of the application.

Use high levels only when there are very complicated queries.

DB2 reorgchk

v Description: Obtains the current statistics for data and rebinding. Use this

parameter because SQL statement performance can deteriorate after many

updates, deletes or inserts.

v How to view or set: Use the DB2 reorgchk update statistics on table all

command to perform the runstats operation on all user and system tables for

the database to which you are currently connected. Rebind packages using the

bind command. If statistics are available, issue the db2 -v ″select tbname, nleaf,

nlevels, stats_time from sysibm.sysindexes″ command on DB2 CLP. If no

statistic updates exist, nleaf and nlevels are -1, and stats_time has an empty

entry (for example: ″-″). If the runstats command was previously run, the

real-time stamp from completion of the runstats operation also displays under

stats_time. If you think the time shown for the previous runstats operation is too

old, run the runstats command again.

v Default value: None

v Recommended value: None

DB2 locktimeout

v Description: Specifies the number of seconds that an application waits to obtain

a lock. Setting this property helps avoid global deadlocks for applications.

v How to view or set: To view the current value of the lock timeout property for

database xxxxxx, issue the DB2 get db cfg for xxxxxx command and look for the

value, LOCKTIMEOUT. To set LOCKTIMEOUT to a value of n, issue the DB2

update db cfg for xxxxxx command using LOCKTIMEOUT n, where xxxxxx is

the name of the application database and n is a value between 0 and 30 000

inclusive.

v Default value: -1, meaning lock timeout detection is turned off. In this situation,

an application waits for a lock if one is not available at the time of the request,

until either of the following events occurs:

– The lock is granted

– A deadlock occurs

Chapter 5. Tuning the application serving environment 87

v Recommended value: If your database access pattern tends toward a majority of

writes, set this value so that it gives you early warning when a timeout occurs.

A setting of 30 seconds suits this purpose. If your pattern tends toward a

majority of reads, either accept the default lock timeout value, or set the

property to a value greater than 30 seconds.

DB2 maxlocks

v Description: Specifies the percentage of the lock list that is reached when the

database manager performs escalation, from row to table, for the locks held by

the application. Although the escalation process does not take much time,

locking entire tables versus individual rows decreases concurrency, and

potentially decreases overall database performance for subsequent attempts to

access the affected tables.

v How to view or set: To view the current value of the maxlocks property for

database xxxxxx, issue the DB2 get db cfg for xxxxxx command and look for the

MAXLOCKS value. To set MAXLOCKS to a value of n, issue the DB2 update db

cfg for xxxxxx command using MAXLOCKS n, where xxxxxx is the name of the

application database and n is a value between 1 and 100 inclusive.

v Default value: Refer to the current database information for property default

values per operating system.

v Recommended value: If lock escalations are causing performance concerns, you

might need to increase the value of this parameter or the locklist parameter,

which is described in the following paragraph. You can use the database system

monitor to determine if lock escalations are occurring.

DB2 locklist

v Description: Specifies the amount of storage that is allocated to the lock list.

v How to view or set: To view the current value of the locklist property for

database xxxxxx, issue the DB2 get db cfg for xxxxxx command and look for the

LOCKLIST value . To set LOCKLIST to a value of n, issue the DB2 update db

cfg for xxxxxx command using LOCKLIST n, where xxxxxx is the name of the

application database and n is a value between 4 and 60 000 inclusive.

v Default value: Refer to the current database information for property default

values per operating system.

v Recommended value: If lock escalations are causing performance concerns, you

might need to increase the value of this parameter or the maxlocks parameter,

which is described in the previous paragraph. You can use the database system

monitor to determine if lock escalations are occurring. Refer to the DB2

Administration Guide: Performance document for more details.
 Related tasks

 Chapter 5, “Tuning the application serving environment,” on page 25

This topic describes the benefits of tuning for optimal performance, highlights

the tunable parameters of the major WebSphere Application Server components,

and provides insight about how these parameters affect performance.
 Related information

 http://www-306.ibm.com/software/sw-library/literature/db2/

 http://www-306.ibm.com/software/data/db2/udb/support/manualsv8/

Tuning parameters for data access resources

For better application performance, you can tune some data access resources

through the WebSphere Application Server administrative console.

Tune these properties of data sources and connection pools to optimize the

performance of transactions between your application and datastore.

88 IBM WebSphere Application Server, Version 6.0.2: Tuning guide

http://www-306.ibm.com/software/sw-library/literature/db2/
http://www-306.ibm.com/software/data/db2/udb/support/manualsv8/

Data source tuning

To view the administrative console page where you configure the following

properties, click Resources > JDBC Providers > JDBC_provider > Data sources >

data_source > WebSphere Application Server connection properties.

Enable JMS one phase optimization support

If your application does not use JMS messaging, do not select this option.

Activating this support enables the Java Message Service (JMS) to get

optimized connections from the data source. Activating this support also

prevents JDBC applications from obtaining connections from the data

source. For further explanation of JMS one phase support, refer to the

article entitled ″Sharing connections to benefit from one phase commit

optimization″ in this information center.

Statement cache size

Specifies the number of statements that can be cached per connection.

 The WebSphere Application Server data source optimizes the processing of

prepared statements and callable statements by caching those statements that

are not being used in an active connection. Both statement types help

reduce overhead for transactions with backend data.

v A prepared statement is a precompiled SQL statement that is stored in a

PreparedStatement object. Application Server uses this object to run the

SQL statement multiple times, as required by your application run time,

with values that are determined by the run time.

v A callable statement is an SQL statement that contains a call to a stored

procedure, which is a series of precompiled statements that perform a

task and return a result. The statement is stored in the

CallableStatement object. Application Server uses this object to run a

stored procedure multiple times, as required by your application run

time, with values that are determined by the run time.

In general, the more statements your application has, the larger the cache

should be. Be aware, however, that specifying a larger statement cache size

than needed wastes application memory and does not improve

performance.

 Determine the value for your cache size by adding the number of uniquely

prepared statements and callable statements (as determined by the SQL

string, concurrency, and the scroll type) for each application that uses this

data source on a particular server. This value is the maximum number of

possible statements that can be cached on a given connection over the life

of the server. Additional information about this setting...

 Default: For most databases the default is 10. Zero means there is no cache

statement.

Connection pool tuning

To view the administrative console page where you configure the following

properties, click Resources > JDBC Providers > JDBC_provider > Data sources >

data_source > Connection pool settings.

Maximum connections

Specifies the maximum number of physical connections that can be created

in this pool. These are the physical connections to the backend datastore.

Chapter 5. Tuning the application serving environment 89

When this number is reached, no new physical connections are created;

requestors must wait until a physical connection that is currently in use is

returned to the pool.

 For optimal performance, set the value for the connection pool lower than

the value for the Web container threadpool size. Lower settings, such as 10

to 30 connections, might perform better than higher settings, such as 100.

Additional information about this and related settings...

 Default: 10

Minimum connections

Specifies the minimum number of physical connections to maintain. Until

this number is exceeded, the pool maintenance thread does not discard

physical connections.

 If you set this property for a higher number of connections than your

application ultimately uses at run time, you do not waste application

resources. WebSphere Application Server does not create additional

connections to achieve your minimum setting. Of course, if your

application requires more connections than the value you set for this

property, application performance diminishes as connection requests wait

for fulfillment. Additional information about this and related settings...

 Default: 1

Messaging

Setting tuning properties of a messaging engine

Use this task to set the tuning properties for a messaging engine.

You can set the following property to improve the performance of a messaging

engine:

 Name Value

sib.trm.retry The messaging engine to messaging engine

connection retry interval in seconds. The

retry interval is the time delay left between

attempts to contact neighboring messaging

engines with which communications contact

should exist. The default retry interval is 30

seconds.

To set the tuning properties for a messaging engine, use the administrative console

to complete the following steps:

1. In the navigation pane, click Service integration → Buses [Content Pane] →

bus_name → [Additional Properties] Messaging engines → engine_name →

[Additional Properties] Custom properties.

2. Type the name of the property that you want to set.

3. Type the value that you want to set for that property.

4. Click OK.

5. Save your changes to the master configuration.

6. Restart the messaging engine for the changes to take effect.

90 IBM WebSphere Application Server, Version 6.0.2: Tuning guide

Tuning and problem solving for messaging engine data stores

Use this task to obtain an overview of improving the performance of messaging

engine data stores and understanding problems that can occur with a data store.

For more information about tuning and problem solving for messaging engine data

stores, see the following topics:

v “Tuning the JDBC data source of a messaging engine” on page 70

v “Controlling the memory buffers used by a messaging engine” on page 70

v Sharing connections to benefit from one-phase commit optimization

v Diagnosing problems with data store exclusive access locks

v “Diagnosing problems with your data store configuration” on page 72

v “Avoiding failover problems when you use DB2 v8.2 with HADR as your data

store” on page 73

Tuning the JDBC data source of a messaging engine:

Use this task to tune the JDBC data source of a messaging engine for messaging

performance on a service integration bus.

 Consider whether you need to configure the connection pool for the JDBC data

source to achieve your requirements for messaging performance.

The messaging engine uses the connection pool to obtain its connections to the

database. With a heavy workload, a messaging engine might require a large

number of concurrent connections to avoid delays waiting for connections to

become available in the pool. For example, a very heavily loaded messaging engine

might need 50 or more connections. Perform the following steps to configure the

connection pool to meet your performance requirements:

1. Ensure that the configuration of your relational database management system

(RDBMS) permits the number of connections that you require. Refer to the

documentation for your RDBMS for more information.

2. Use the WebSphere administrative console to set the connection pool

parameters. Navigate to the General properties for your data source and click

Additional properties → Connection pool properties

a. Set the Maximum connections to the number of connections you require,

for example, at least 50. The default number of connections is 10.

Tip: If your messaging engine times out when requesting a database

connection, check the error log. If the error log contains error message

CWSIS1522E, increase the number of connections and ensure that the

configuration of your RDBMS permits that number of connections.

b. Set the Purge policy to EntirePool. This policy enables the connection pool

to release all connections when the messaging engine stops.

Important: You must set this value if the messaging engine can failover in a

cluster.

Controlling the memory buffers used by a messaging engine:

Use this task to control the sizes of the memory buffers used by a messaging

engine.

 Every messaging engine manages two memory buffers that contain messages and

message-related data. You can set the following properties to improve the

interaction of a messaging engine with its data store.

Chapter 5. Tuning the application serving environment 91

Name Value

sib.msgstore.discardableDataBufferSize The size in bytes of the data buffer used by

the messaging engine to contain data for

which the quality of service attribute is best

effort nonpersistent. The messaging engine

holds this data entirely within this memory

buffer and never writes this data to the data

store. When the messaging engine adds data

to this buffer, for example when the

messaging engine receives a best effort

nonpersistent message from a client, the

messaging engine might discard data

already in the buffer to make space. This

behavior enables the messaging engine to

discard best effort nonpersistent messages.

The discardable data buffer contains all data

for which the quality of service attribute is

best effort nonpersistent. That data

comprises data both that is involved in

active transactions, and any other best effort

nonpersistent that the messaging engine has

neither discarded nor consumed. The

messaging engine can discard only data that

is not involved in active transactions.

Tip: If the messaging engine attempts to

add data to the discardable data buffer

when insufficient space remains after

discarding all the data that is not involved

in active transaction, the messaging engine

throws a

com.ibm.ws.sib.msgstore.OutOfCacheSpace

exception. Client applications can catch this

exception, wrapped inside API-specific

exceptions such as javax.jms.JMSException.

The sib.msgstore.discardableDataBufferSize

property of the messaging engine controls

the size of the discardable data buffer. You

specify the value of this property in bytes.

The default value is 320000, which is

approximately 320 kilobytes.

92 IBM WebSphere Application Server, Version 6.0.2: Tuning guide

Name Value

sib.msgstore.cachedDataBufferSize The size in bytes of the data buffer used by

the messaging engine to contain data for

which the quality of service attribute is better

than best effort nonpersistent and which is

held in the data store. The purpose of the

cached data buffer is to optimize the

performance of the messaging engine by

caching in memory the data that the

messaging engine might otherwise need to

read from the data store. As it writes data to

the data store and reads from the data store,

the messaging engine attempts to add that

data to the cached data buffer. The

messaging engine might discard data

already in the buffer to make space.

The sib.msgstore.cachedDataBufferSize

property of the messaging engine controls

the size of the cached data buffer. You

specify the value of this property in bytes.

The default value is 320000, which is

approximately 320 kilobytes.

sib.msgstore.transactionSendLimit The maximum number of operations that

the messaging engine includes in each

transaction. For example, each JMS send or

receive is an operation that counts towards

the transaction send limit. The default value

is 100.

Attention: The messaging engine uses approximate calculations to manage the

data it holds in the memory buffers. Neither of the DataBufferSize properties

gives an accurate indication of the amount of memory that the messaging engine

consumes in the JVM heap. The messaging engine can consume considerably more

heap storage than the DataBufferSize properties indicate.

To set the properties of a messaging engine to improve its interaction with its data

store, use the administrative console to complete the following steps:

1. In the navigation pane, click Service integration → Buses [Content Pane] →

bus_name → [Additional Properties] Messaging engines → engine_name →

[Additional Properties] Custom properties.

2. Type the name of the property that you want to set.

3. Type the value that you want to set for that property.

4. Click OK.

5. Save your changes to the master configuration.

Remember: When you change any of these properties, the new values do not take

effect until you restart the messaging engine.

Diagnosing problems with your data store configuration:

Use this task to diagnose problems that are caused by your data store

configuration.

Chapter 5. Tuning the application serving environment 93

The following problems depend on the database that you use with your data store

configuration and the level of that database:

v Examine this section if your messaging engine uses an Oracle 9i database for its

data store and your messaging engine fails to start. If the messaging engine fails

with the following message, where XXXXXXXX is the schema for the table, ensure

that your Oracle installation is at 9.2.0.4, or higher:

CWSIS1530E: The data type, 1,111, was found instead of the expected type,

2,004, for column, LONG_DATA, in table, XXXXXXXX.SIB000.

v Examine this section if your messaging engine uses a Sybase database for its

data store. When you create your Sybase server:

– Ensure that you create the database server with a page size of at least 4k.

– Ensure that you set the lock scheme property on your server to the value

datarows. This avoids the possibility of a deadlock on the data store tables.
v Examine this section if your messaging engine uses an Informix database for its

data store and the messaging engine is unable to access its data store. When you

configure your messaging engine to use an Informix database, ensure that you

specify the schema name in lower case. For a full description of the configuring

procedure, refer to Configuring a messaging engine to use a data source.

Avoiding failover problems when you use DB2 v8.2 with HADR as your data

store:

Use this task to avoid problems that can occur when a messaging engine that is

configured to use DB2 v8.2 with HADR for its data store terminates if the DB2

database fails over.

 If you configure a messaging engine to use DB2 v8.2 with HADR for its data store

and a DB2 failover occurs, the application server on which the messaging engine is

running might stop. The cause of this problem is that the messaging engine does

not treat the DB2 failover as a transient communications error.

When you configure a messaging engine to use DB2 v8.2 with HADR for its data

store ensure that the messaging engine can restart automatically following an

application server failure. Choose the option that is appropriate for your

configuration:

v If you are running a single server, WebSphere Application Server provides no

failover support. Consider other high availability provisions.

v If you are running the Network Deployment version without clustering, the

default configuration for the node agent ensures automatic restart.

v If you are running the Network Deployment version with clustering, peer

recovery restarts the messaging engine. Ensure that you have configured the

high availability policy to enable peer recovery.

Setting tuning properties for a mediation

Use this task to tune a mediation for performance using the administrative console.

Before you begin this task, you should review the guidance on when it is

appropriate to tune a mediation for performance in the topic Guidance for tuning

mediations for performance.

You can set the following tuning properties to improve the performance of a

mediation:

94 IBM WebSphere Application Server, Version 6.0.2: Tuning guide

Name Value

sib:SkipCloneBeforeMediate Whether you want to omit the cloning of

messages before they are processed by the

mediation. Either true or false.

sib:SkipWellFormedCheck Whether you want to omit the well formed

check that is performed on messages after

they have been processed by the mediation.

Either true or false.

Note: This property is overridden for

messages that have the delivery option

assured persistent, and a well formed check

is always performed.

You can set the following tuning property to improve the performance of a

mediation:

 Name Value

sib:SkipWellFormedCheck Whether you want to omit the well formed

check that is performed on messages after

they have been processed by the mediation.

Either true or false.

Note: This property is overridden for

messages that have the delivery option

assured persistent, and a well formed check

is always performed.

To set, or unset, one or more tuning properties for a mediation, use the

administrative console to complete the following steps:

1. Display the mediation context information:

a. In the navigation pane, click Service integration → Buses

b. In the content pane, click the name of the service integration bus.

c. Under Additional Properties, click Mediations.

d. In the content pane, select the name of the mediation for which you want to

configure tuning information.

e. Under Additional Properties, click Context information.
2. In the content pane, click New.

3. Type the name of the property in the Name field.

4. Select the type Boolean in the list box.

5. Type true in the Context Value field to set the property, or type false to unset

the property.

6. Click OK.

7. Save your changes to the master configuration.

Enabling CMP entity beans and messaging engine data stores to

share database connections

Use this task to enable container-managed persistence (CMP) entity beans to share

the database connections used by the data store of a messaging engine. This has

been estimated as a potential performance improvement of 15% for overall

message throughput, but can only be used for entity beans connected to the

application server that contains the messaging engine.

Chapter 5. Tuning the application serving environment 95

To enable CMP entity beans to share the database connections used by the data

store of a messaging engine, complete the following steps:

1. Configure the data store to use a data source that is not XA-capable. For more

information about configuring a data store, see Configuring a JDBC data

source.

2. Select the Share data source with CMP option.

This option is provided on the JMS connection factory used to connect to the

service integration bus that hosts the bus destination that is used to store and

process messages for the CMP bean.

This option is provided on the JMS connection factory or JMS activation

specification used to connect to the service integration bus that hosts the bus

destination that is used to store and process messages for the CMP bean.

For example, to select the option on a unified JMS connection factory, complete

the following steps:

a. Display the default messaging provider. In the navigation pane, expand

Resources → JMS Providers → Default Messaging Provider.

b. Optional: Change the Scope check box to set the level at which the

connection factory is to be visible, according to your needs.

c. In the content pane, under Additional Properties, click JMS connection

factories

d. Optional: To create a new unified JMS connection factory, click New.

Specify the following properties for the connection factory:

Name Type the name by which the connection factory is known for

administrative purposes.

JNDI name

Type the JNDI name that is used to bind the connection factory into

the name space.

Bus name

Type the name of the service integration bus that the connection

factory is to create connections to. This service integration bus hosts

the destinations that the JMS queues and topics are assigned to.
e. Optional: To change the properties of an existing connection factory, click

one of the connection factories displayed. This displays the properties for

the connection factory in the content pane.

f. Select the check box for the Share data source with CMP field

g. Click OK.

h. Save your changes to the master configuration.

The JMS connection factory can only be used to connect to a “local” messaging

engine that is in the application server on which the CMP beans are deployed.

3. Deploy the CMP beans onto the application server that contains the messaging

engine, and specify the same data source as used by the messaging engine. You

can use the administrative consoles to complete the following steps:

a. Optional: To determine the data source used by the messaging engine, click

Servers → Application servers → server_name → Messaging engines →

engine_name → Data store The Data source name field displays the name

of the data source; by default:

jdbc/com.ibm.ws.sib/engine_name

b. Click Applications → Install New Application

96 IBM WebSphere Application Server, Version 6.0.2: Tuning guide

c. On the first Preparing for application install page, specify the full path

name of the source application file (.ear file otherwise known as an EAR

file), then click Next

d. On the second Preparing for application install page, complete the following

steps:

1) Select the check box for the Generate Default Bindings property. Data

source bindings (for EJB 1.1 JAR files) are generated based on the JNDI

name, data source user name password options. This results in default

data source settings for each EJB JAR file. No bean-level data source

bindings are generated.

2) Under Connection Factory Bindings, click the check box for the Default

connection factory bindings: property, then type the JNDI name for the

data source and optionally select a Resource authorization value.

3) Click Next

4. If your application uses EJB modules that contain Container Managed

Persistence (CMP) beans that are based on the EJB 1.x specification, for Step:

Provide default datasource mapping for modules containing 1.x entity beans,

specify a JNDI name for the default data source for the EJB modules. The

default data source for the EJB modules is optional if data sources are specified

for individual CMP beans.

5. If your application has CMP beans that are based on the EJB 1.x specification,

for Step: Map datasources for all 1.x CMP, specify a JNDI name for data

sources to be used for each of the 1.x CMP beans. The data source attribute is

optional for individual CMP beans if a default data source is specified for the

EJB module that contains CMP beans. If neither a default data source for the

EJB module nor a data source for individual CMP beans are specified, then a

validation error displays after you click Finish (step 13) and the installation is

cancelled.

6. Complete other panels as needed.

7. On the Summary panel, verify the cell, node, and server onto which the

application modules will install:

a. Beside Cell/Node/Server, click Click here.

b. Verify the settings on the Map modules to servers page displayed. Ensure

that the application server that is specified contains the messaging engine

and its data store.

c. Specify the Web servers as targets that will serve as routers for requests to

this application. This information is used to generate the plug-in

configuration file (plugin-cfg.xml) for each Web server.

d. Click Finish.

For more information about installing applications, see Installing application files

with the console.

Tuning service integration messaging

Use this task to set tuning properties that control the performance of

message-driven beans and other messaging applications deployed to use service

integration technologies.

To optimize the performance of messaging with service integration technologies,

such as message-driven beans that use the default messaging provider, you can use

the following parameters set through the WebSphere administrative console or

command line interfaces.

Chapter 5. Tuning the application serving environment 97

On z/OS, the performance of messaging applications is affected by the number of

servants, which can vary dynamically, and the distribution of work between

servants. For more information about configuring and managing the number of

servants and the distribution of work between servants, see Tuning the application

serving environment.

v Providing sufficient threads to maximize the throughput of messages.

There is a trade-off between providing sufficient threads to maximize the

throughput of messages and configuring excessive threads, which can lead to

CPU starvation of the threads in the application server. If you notice that the

throughput for express nonpersistent, reliable nonpersistent, or reliable persistent

messaging has fallen as a result of increasing the size of the default thread pool,

then you should decrease the size of the thread pool and reassess the message

throughput.

1. To be able to view the available message count for a queue, you need to

enable runtime AvailableMessageCount statistics for the queue. If you restart

administrative server, you need to enable AvailableMessageCount statistics

again because such runtime settings are not preserved when the server is

restarted.

To enable AvailableMessageCount statistics using the administrative console,

complete the following steps:

a. In the navigation pane, click Monitoring and Tuning → Performance

Monitoring Infrastructure (PMI)

b. In the content pane, click server_name

c. Click the Runtime tab.

d. In the Currently monitored statistic set, click Custom

e. On the Custom monitoring level panel, click SIB Service → SIB

Messaging Engines → messageEngine_name → Destinations → Queues →

queue_name

f. Select the AvailableMessageCount option.

g. Click the Enable button at the top of the panel.
2. To view the available message count, you can use the administrative console

to complete the following steps:

a. In the navigation pane, click Monitoring and Tuning → Performance

Viewer → Current activity

b. In the content pane, click server_name

c. Click Performance Modules → SIB Service → SIB Messaging Engines →

messageEngine_name → Destinations → Queues → queue_name

d. Click the View Module(s) button at the top of the Resource Selection

panel, located on the left side. This displays the AvailableMessageCount

data in the Data Monitoring panel, located on the right side.

You can use the Data Monitoring panel to manage the collection of

monitoring data; for example, you can use the buttons to start or stop

logging, or to change the data displayed as either a table or graph.
3. To view or change the number of threads in the default thread pool for an

application server, you can use the administrative console to complete the

following steps:

a. In the navigation pane, click Servers → Application servers

b. In the content pane, click server_name

c. Under Additional properties, click Thread Pools → Default. By default the

Minimum size value is set to 5 and the Maximum size value is set to 20.

The best performance is obtained by setting the Maximum size value to

98 IBM WebSphere Application Server, Version 6.0.2: Tuning guide

the expected maximum concurrency for all message-driven beans. For

high throughput using a single message-driven bean, 41 was found to be

the optimal Maximum size value.

d. To change the Maximum size value, type the new value in the Maximum

size field then click OK. Finally, save your changes to the master

configuration.
v Reducing the number of OutOfCacheSpace errors in the SystemOut.log file.

OutOfCacheSpace errors in the SystemOut.log file indicate that the discardable

data buffer used by the messaging engine is overflowing. For best effort

nonpersistent messages, the messaging engine starts to discard messages when

this buffer is full. You can increase the size of this data buffer to allow more best

effort nonpersistent data to be handled before the messaging engine begins to

discard the messages.

For more information about tuning the size of the discardable data buffer, set by

the sib.msgstore.discardableDataBufferSize property of a messaging engine, see

“Controlling the memory buffers used by a messaging engine” on page 70.

v Tuning the messaging engine data store (not required for Cloudscape).

To improve the performance of messaging throughput of a messaging engine

data store, you can tune the JDBC connection pool and statement cache size. In

tests of high throughput MDB workloads, the following changes provided a 10%

gain in throughput.

1. The messaging engine uses a connection pool for managing the JDBC

connections to its data store. Tuning the size of the pool can improve the

messaging throughput.

To view or change the size of the connection pool, you can use the

administrative console to complete the following steps:

a. In the navigation pane, click Resources → JDBC Providers

b. In the content pane, click jdbc_provider_name

c. Under Additional properties, click Data sources → data_source_name

d. Under Additional properties, click Connection pool properties

e. View the Maximum connections property and the Minimum connections

property. By default, these properties are set to Maximum connections=10

and Minimum connections=1. Setting the value of both these properties

to 50 is recommended. For especially high throughput workloads, setting

the value of both these properties up to 100 can be beneficial. You may

need to configure the underlying database to accept this many concurrent

connections.

f. To change the value of a property, type a new value in the property field

then click OK. Finally, save your changes to the master configuration.
2. The statement cache contains recently used prepared statements to remove

the costs associated with repeated preparation of statements. Tuning the size

of the cache helps prevent useful entries from being discarded to make room

for new entries.

To view or change the size of the statement cache, you can use the

administrative console to complete the following steps:

a. In the navigation pane, click Resources → JDBC Providers

b. In the content pane, click jdbc_provider_name

c. Under Additional properties, click Data sources → data_source_name

d. Under Additional properties, click WebSphere Application Server data

source properties

Chapter 5. Tuning the application serving environment 99

e. View the Statement cache size property. By default, the value of this

property is set to 10. For high throughput JMS messaging, a value of 40 is

recommended.

f. To change the value of the property, type a new value in the property

field then click OK. Finally, save your changes to the master

configuration.
v Using a remote DB2 Universal Database.

By default, messaging engines are configured to use Cloudscape as the

underlying data store database. Changing to a DB2 database, especially a remote

database, significantly improves performance. This is of particular benefit on

systems with more than two CPUs. A remote DB2 database provides a 50%

higher throughput than a local DB2 database, for the same total (application

server plus database) CPU utilization.

v Tuning reliability levels for messages.

The reliability level chosen for the messages has a significant impact on

performance. In order of decreasing performance (fastest first), the reliability

levels are: Best-Effort Nonpersistent, Express Nonpersistent, Reliable

Nonpersistent, Reliable Persistent, and Assured Persistent. For MDB

point-to-point messaging, best-effort nonpersistent throughput is more than 6

times greater than assured persistent.

For more information about reliability levels, see Message reliability levels. For

the relative performance of the different reliability levels, see the WebSphere

Application Server performance report.

v Tuning MDB performance with the default messaging provider.

For information about tuning the throttling of message-driven beans, including

controlling the maximum number of instances of each message-driven bean and

the message batch size for serial delivery, see Configuring MDB throttling on the

default messaging provider.

Tuning the SIBWS

You can use the administrative console or a Jacl script to tune performance settings

for the service integration bus Web services enablement (SIBWS).

To improve the performance of the SIBWS, you can tune the following parameters:

v The Java virtual machine heap size (to help ensure there is enough memory

available to process large messages, or messages with large attachments).

v The maximum permitted number of concurrent clients. (That is, the maximum

number of instances of a message-driven bean that are permitted by the

activation specification for the service integration technologies resource adapter).

v The maximum batch size for batches of messages to be delivered to a client. (By

default, only a single message is delivered to a message-driven bean instance at

one time. You can improve performance by allowing messages to be sent in

batches to a message-driven bean).

v The number of threads available to service requests for each client. (That is, the

number of threads available in the default thread pool and the Web container

thread pool for a given application server).

To tune the SIBWS, complete one of the following two main steps:

v Optional: To use the administrative console to tune the SIBWS, complete the

following steps:

1. Use the topic Tuning Java virtual machines to set the JVM heap size to a

larger value than the default value (256 megabytes). The value should

generally be as large as possible without incurring paging.

100 IBM WebSphere Application Server, Version 6.0.2: Tuning guide

2. Use the topic Tuning service integration messaging to tune the maximum

number of instances of a message-driven bean, the maximum batch size for

batches of messages for a bean, and the number of threads available to

service requests for a bean:

– In the administrative console navigation pane, click Resources → Resource

adapters → SIB JMS Resource Adapter → J2C activation specification →

SIBWS_OUTBOUND_MDB, then set maxConcurrency to n and

maxBatchSize to 5 (where n is the maximum permitted number of

instances of a message-driven bean).

– In the administrative console navigation pane, click Servers → Application

servers → server_name → Thread Pools, then set the number of threads in

the default and WebContainer thread pools to a maximum of n-1 threads

and a minimum of some figure approaching the maximum (to reduce lock

contention).
v To use a Jacl script to tune the SIBWS, create and run a script based on the

following example script:

puts "****Configuring server thread pools ****"

if {[llength $argv] !=1} {

 puts "ERROR: Incorrect usage."

 puts ""

 puts {Usage: wsadmin -f configure-soapservice1.jacl serverName}

 puts ""

 puts "Where:"

 puts ""

 puts " serverName = name of server"

 exit

}

#---

#--- Setup the arguments

#---

#--- Get args

set serverName [lindex $argv 0]

#---

#--- Set the thread pool sizes and the JVM heap size

#---

set serverId [$AdminConfig getid /Server:$serverName/]

#--- First the threadPools....

puts "Modifying Server ThreadPool Sizes for $serverName"

set inactivityTimeout [list inactivityTimeout 120000]

set isGrowable [list isGrowable false]

set maximumSize [list maximumSize 150]

set minimumSize [list minimumSize 145]

set threadPoolList [list $inactivityTimeout \

 $isGrowable \

 $maximumSize \

 $minimumSize \

]

set threadpools [$AdminConfig list ThreadPool $serverId]

foreach pool $threadpools {

 set modifyToggle 0

 #puts [$AdminConfig showAttribute $pool name]

 if {[string compare [$AdminConfig showAttribute $pool name] WebContainer] == 0} {

 set modifyToggle 1

 #puts "WebContainer ThreadPool found for server $serverName"

 }

Chapter 5. Tuning the application serving environment 101

if {[string compare [$AdminConfig showAttribute $pool name] Default] == 0} {

 set modifyToggle 1

 #puts "Default ThreadPool found for server $serverName"

 }

 if {$modifyToggle == 1} {

 puts "modifying threadpool [$AdminConfig showAttribute $pool name]"

 $AdminConfig modify $pool $threadPoolList

 }

}

puts "ThreadPool modifications complete"

#--- Now the JVM heap size

set heapSize 1536

puts "Modifying JVM Heap size to $heapSize for server $serverName"

set initialHeapSize [list initialHeapSize $heapSize]

set maximumHeapSize [list maximumHeapSize $heapSize]

set jvmModifications [list $initialHeapSize $maximumHeapSize]

set processDef [$AdminConfig list ProcessDef $serverId]

set jvm [$AdminConfig list JavaVirtualMachine $processDef]

$AdminConfig modify $jvm $jvmModifications

puts "Heap size modification complete"

#--

#--- Modify the J2CActivationSpec for the service integration technologies Resource adapter

#--

puts "Modifying the J2CActivationSpec"

set actSpec [$AdminConfig getid /J2CActivationSpec:SIBWS_OUTBOUND_MDB/]

set propSet [$AdminConfig showAttribute $actSpec resourceProperties]

set propSet [lindex $propSet 0]

set maxConcurrency [list value 200]

set maxConcurrency [list $maxConcurrency]

set maxBatchSize [list value 5]

set maxBatchSize [list $maxBatchSize]

foreach propId $propSet {

 if { [string compare [$AdminConfig showAttribute $propId name] maxConcurrency] == 0} {

 $AdminConfig modify $propId $maxConcurrency

 puts "Custom property changed : [$AdminConfig showall $propId] "

 }

 if { [string compare [$AdminConfig showAttribute $propId name] maxBatchSize] == 0} {

 $AdminConfig modify $propId $maxBatchSize

 puts "Custom property changed : [$AdminConfig showall $propId] "

 }

}

puts "J2CActivationSpec modifications complete"

puts "Saving actions..."

$AdminConfig save

Security

Tuning security configurations

Performance issues typically involve trade-offs between function and speed.

Usually, the more function and the more processing involved, the slower the

102 IBM WebSphere Application Server, Version 6.0.2: Tuning guide

performance. Consider what type of security is necessary and what you can

disable in your environment. For example, if your application servers are running

in a Virtual Private Network (VPN), consider whether you can disable Secure

Sockets Layer (SSL). If you have a lot of users, can they be mapped to groups and

then associated to your J2EE roles? These questions are things to consider when

designing your security infrastructure.

Complete the following steps for general security tuning:

1. Consider disabling Java 2 Security Manager if you know exactly what code is

put onto your server and you do not need to protect process resources.

Remember that in doing so, you put your local resources at some risk.

2. Consider disabling security (realizing that this might cause a security exposure)

for the specific application server that does not require resource protection

because some application servers do not have protected resources. If the

application server needs to go downstream with credentials, however, this

action might not be feasible. There are two ways to disable security. Use either

of the following two procedures and then restart the application server:

Using the administrative console

a. Click Servers > Application servers > server_name.

b. Under Security, click Server security. Under Additional properties,

click Server-level security.

c. Disable the Enable global security option.

Using the command line

a. Type wsadmin.sh -conntype NONE.

b. When the system command prompt redisplays, type securityoff.
3. Consider propagating new security settings to all nodes before restarting the

deployment manager and node agents to change the new security policy.

If your security configurations are not consistent across all servers, you get

access denied errors. Therefore, you must propagate new security settings when

enabling or disabling global security in a Network Deployment environment.

Configuration changes are generally propagated using configuration

synchronization. If auto-synchronization is enabled, you can wait for the

automatic synchronization interval to pass, or you can force synchronization

before the synchronization interval expires. If you are using manual

synchronization, you must synchronize all nodes.

If the cell is in a configuration state (the security policy is mixed with nodes

that have security enabled and disabled) you can use the syncNode utility to

synchronize the nodes where the new settings are not propagated.

Refer to the article, Enabling global security in the WebSphere Application

Server Network Deployment package for more detailed information about

enabling security in a distributed environment.

4. Consider increasing the cache and token time-out if you feel your environment

is secure enough. By doing so, you have to re-authenticate less often. This

action supports subsequent requests to reuse the credentials that already are

created. The downside of increasing the token time-out is the exposure of

having a token hacked and providing the hacker more time to hack into the

system before the token expires. You can use security cache properties to

determine the initial size of the primary and secondary hashtable caches, which

affect the frequency of rehashing and the distribution of the hash algorithms.

See the article “Security cache properties” on page 106 for a list of these

properties.

Chapter 5. Tuning the application serving environment 103

5. Consider changing your administrative connector from Simple Object Access

Protocol (SOAP) to Remote Method Invocation (RMI) because RMI uses stateful

connections while SOAP is completely stateless. Run a benchmark to determine

if the performance is improved in your environment.

6. Use the wsadmin script to complete the access IDs for all the users and groups

to speed up the application startup. Complete this action if applications contain

many users, or groups, or if applications are stopped and started frequently.

7. Consider tuning the Object Request Broker (ORB) because it is a factor in

enterprise bean performance with or without security enabled. Refer to ORB

tuning guidelines.

8. If using SSL, then enable the SSL session tracking mechanism option as

described in the article, Session management settings.

9. In some cases, using the unrestricted Java Cryptography Extension (JCE) policy

file can improve performance. Refer to the article, Tuning Web services security.

Tuning CSIv2:

1. Consider using Secure Sockets Layer (SSL) client certificates instead of a user

ID and password to authenticate Java clients. Because you are already making

the SSL connection, using mutual authentication adds little overhead while

removing the service context containing the user ID and password completely.

2. If you send a large amount of data that is not very security sensitive, reduce

the strength of your ciphers. The more data you have to bulk encrypt and the

stronger the cipher, the longer this action takes. If the data is not sensitive, do

not waste your processing with 128-bit ciphers.

3. Consider putting just an asterisk (*) in the trusted server ID list (meaning trust

all servers) when you use Identity Assertion for downstream delegation. Use

SSL mutual authentication between servers to provide this trust. Adding this

extra step in the SSL handshake performs better than having to fully

authenticate the upstream server and check the trusted list. When an asterisk is

used, the identity token is trusted. The SSL connection trusts the server by way

of client certificate authentication.

4. Ensure that stateful sessions are enabled for Common Secure Interoperability

Version 2 (CSIv2). This is the default, but only requires authentication on the

first request and any subsequent token expirations.

5. If you are only communicating with WebSphere Application Server Version 5 or

higher servers, make the Active Authentication Protocol CSI, instead of CSI and

SAS. This action removes an interceptor invocation for every request on both

the client and server sides.

6. For a pure Java client, you can disable the creation of server sockets used for

Object Request Broker (ORB) callbacks. Do this step only if you are

communicating with servers running WebSphere Application Server, Version 5

or later.

a. In the sas.client.props file, add

com.ibm.CSI.claimTransportAssocSSLTLSRequired=false and

com.ibm.CSI.claimTransportAssocSSLTLSSupported=false.

b. Set the active protocol to csiv2 instead of both in the sas.client.props file.

The protocol property changes to com.ibm.CSI.protocol=csiv2.

Tuning LDAP authentication:

1. Select the Ignore case for authorization option in the WebSphere Application

Server Lightweight Directory Access Protocol (LDAP) User Registry

configuration, when case-sensitivity is not important.

104 IBM WebSphere Application Server, Version 6.0.2: Tuning guide

2. Select the Reuse connections option in the WebSphere Application Server

LDAP User Registry configuration.

3. Check to see which caches your LDAP server has and take advantage of them.

This action is best with LDAP servers that do not change frequently.

4. Choose the directory type of either IBM Tivoli Directory Server or SecureWay, if

you are using an IBM Tivoli Directory Server. The IBM Tivoli Directory Server

yields improved performance because it is programmed to use the new group

membership attributes to improve group membership searches. However, it is

required that authorization is case insensitive to use IBM Tivoli Directory

Server.

5. Choose either iPlanet Directory Server (also known as Sun ONE) or Netscape

as the directory if you are an iPlanet Directory user. Using the iPlanet Directory

Server directory increases performance in group membership lookup. However,

only use Role for group mechanisms.

Tuning Web authentication:

1. Consider increasing the cache and token time-out if you feel your environment

is secure enough. The Web authentication information is stored in these caches

and as long as the authentication information is in the cache, the login module

is not invoked to authenticate the user. This supports subsequent requests to

reuse the credentials already created. The downside of increasing the token

time-out is the exposure of having a token stolen and providing the thief more

time to hack into the system before the token expires.

See the article “Security cache properties” on page 106 for a list of these

properties.

2. Consider enabling single signon (SSO). SSO is only available when you select

LTPA as the authentication mechanism in the Global security panel. When you

select SSO, a single authentication to one application server is enough to make

requests to multiple application servers in the same SSO domain. There are

some situations where SSO is not desirable and should not be used in those

situations.

3. Consider disabling or enabling the Web Inbound Security Attribute

Propagation option on the SSO panel if the function is not required. In some

cases, having the function enabled improves performance. This improvement is

most likely for higher volume cases where a considerable number of user

registry calls reduces performance. In other cases, having the feature disabled

improves performance. This improvement is most likely when the user registry

calls do not take considerable resources.

Tuning authorization:

1. Consider mapping your users to groups in the user registry. Then associate the

groups with your Java 2 Platform, Enterprise Edition (J2EE) roles. This

association greatly improves performance as the number of users increases.

2. Judiciously assign method-permissions for enterprise beans. For example, you

can use an asterisk (*) to indicate all methods in the method-name element.

When all the methods in enterprise beans require the same permission, use an

asterisk (*) for the method-name to indicate all methods. This indication

reduces the size of deployment descriptors and reduces the memory required to

load the deployment descriptor. It also reduces the search time during

method-permission match for the enterprise beans method.

3. Judiciously assign security-constraints for servlets. For example, you can use

the URL pattern *.jsp to apply the same authentication data constraints to

indicate all JSP files. For a given URL, the exact match in the deployment

descriptor takes precedence over the longest path match. Use the extension

Chapter 5. Tuning the application serving environment 105

match (*.jsp, *.do, *.html) if there is no exact match and longest path match

for a given URL in the security constraints.

There is always a trade off between performance, feature and security. Security

typically adds more processing time to your requests, but for a good reason. Not

all security features are required in your environment. When you decide to tune

security, you should create a benchmark before making any change to ensure the

change is improving performance.

In a large scale deployment, performance is very important. Running benchmark

measurements with different combinations of features can help you to determine

the best performance versus the benefit configuration for your environment.

Continue to run benchmarks if anything changes in your environment, to help

determine the impact of these changes.

Security cache properties: The following security cache custom properties

determine whether the authentication cache is enabled or disabled. If the

authentication cache is enabled, as recommended, these custom properties specify

the initial size of the primary and secondary hash table caches, which affect the

frequency of rehashing and the distribution of the hash algorithms. To specify

these security cache properties, complete the following steps:

1. Click Servers > Application Servers > server_name .

2. Under Server infrastructure, click Java and Process Management > Process

definition > Control or Servant.

3. Under Additional properties, click Java Virtual Machine > Custom Properties

4. Click New to specify a new custom property.

Important: The com.ibm.websphere.security.util.tokenCacheSize and

com.ibm.websphere.security.util.LTPAValidationCacheSize properties

were replaced with the com.ibm.websphere.security.util.authCacheSize

property.

WebSphere Application Server includes the following security cache custom

properties:

com.ibm.websphere.security.util.authCacheEnabled

Specifies whether to disable the authentication cache. It is recommended

that you leave the authentication cache enabled for performance reasons.

However, you might disable the authentication cache for debug or

measurement purposes.

 Default: True

com.ibm.websphere.security.util.authCacheSize

Specifies the initial size of the primary and secondary hash table caches. A

higher number of available hash values might decrease the occurrence of

hash collisions. A hash collision results in a linear search for the hash

bucket, which might decrease the retrieval time. If several entries compose

a hash table cache, you can might consider creating a table with a larger

capacity that supports more efficient hash entries instead of allowing

automatic rehashing determine the growth of the table. Rehashing causes

every entry to move each time.

 Default: 200

Type: Integer

106 IBM WebSphere Application Server, Version 6.0.2: Tuning guide

Related reference

 Example: User revocation from a cache

 Chapter 5, “Tuning the application serving environment,” on page 25

This topic describes the benefits of tuning for optimal performance, highlights

the tunable parameters of the major WebSphere Application Server components,

and provides insight about how these parameters affect performance.

Secure Sockets Layer performance tips: The following are two types of Secure

Sockets Layer (SSL) performance:

v Handshake

v Bulk encryption and decryption

When an SSL connection is established, an SSL handshake occurs. After a

connection is made, SSL performs bulk encryption and decryption for each

read-write. The performance cost of an SSL handshake is much larger than that of

bulk encryption and decryption.

To enhance SSL performance, decrease the number of individual SSL connections

and handshakes.

Decreasing the number of connections increases performance for secure

communication through SSL connections, as well as non-secure communication

through simple TCP/IP connections. One way to decrease individual SSL

connections is to use a browser that supports HTTP 1.1. Decreasing individual SSL

connections can be impossible if you cannot upgrade to HTTP 1.1.

Another common approach is to decrease the number of connections (both TCP/IP

and SSL) between two WebSphere Application Server components. The following

guidelines help to verify the HTTP transport of the application server is configured

so that the Web server plug-in does not repeatedly reopen new connections to the

application server:

v Verify that the maximum number of keep alives are, at minimum, as large as the

maximum number of requests per thread of the Web server (or maximum

number of processes for IBM HTTP Server on UNIX). Make sure that the Web

server plug-in is capable of obtaining a keep alive connection for every possible

concurrent connection to the application server. Otherwise, the application server

closes the connection after a single request is processed. Also, the maximum

number of threads in the Web container thread pool should be larger than the

maximum number of keep alives, to prevent the keep alive connections from

consuming the Web container threads.

Note: HTTP Transports have been deprecated. For instructions on how to set a

maximum keep alive value for channel based configurations, see HTTP

transport channel settings.

v Increase the maximum number of requests per keep alive connection. The

default value is 100, which means the application server closes the connection

from the plug-in after 100 requests. The plug-in then has to open a new

connection. The purpose of this parameter is to prevent denial of service attacks

when connecting to the application server and preventing continuous send

requests to tie up threads in the application server.

v Use a hardware accelerator if the system performs several SSL handshakes.

Hardware accelerators currently supported by WebSphere Application Server

only increase the SSL handshake performance, not the bulk encryption and

Chapter 5. Tuning the application serving environment 107

decryption. An accelerator typically only benefits the Web server because Web

server connections are short-lived. All other SSL connections in WebSphere

Application Server are long-lived.

The IBM Cryptographic Coprocessor is not supported for use with WebSphere

Application Server. However, you can use the IBM Cryptographic Coprocessor

to improve SSL performance for other products, such as IBM HTTP Server for

iSeries, which is powered by Apache.

v Use an alternative cipher suite with better performance.

The performance of a cipher suite is different with software and hardware. Just

because a cipher suite performs better in software does not mean a cipher suite

will perform better with hardware. Some algorithms are typically inefficient in

hardware (for example, DES and 3DES), however, specialized hardware can

provide efficient implementations of these same algorithms.

The performance of bulk encryption and decryption is affected by the cipher

suite used for an individual SSL connection. The following chart displays the

performance of each cipher suite. The test software calculating the data was Java

Secure Socket Extension (JSSE) for both the client and server software, which

used no crypto hardware support. The test did not include the time to establish

a connection, but only the time to transmit data through an established

connection. Therefore, the data reveals the relative SSL performance of various

cipher suites for long running connections.

Before establishing a connection, the client enables a single cipher suite for each

test case. After the connection is established, the client times how long it takes to

write an integer to the server and for the server to write the specified number of

bytes back to the client. Varying the amount of data had negligible effects on the

relative performance of the cipher suites.

0

100

200

300

400

SSL_RSA_WITH_RC4_128_MD5

SSL_RSA_WITH_RC4_128_SHA

SSL_RSA_WITH_DES_CBC_SHA

SSL_RSA_WITH_3DES_EDE_CBC_SHA

SSL_DHE_RSA_WITH_DES_CBC_SHA

SSL_DHE_RSA_WITH_3DES_EDE_CBC_SHA

SSL_DHE_DSS_WITH_DES_CBC_SHA

SSL_DHE_DSS_WITH_3DES_EDE_CBC_SHA

SSL_RSA_EXPORT_WITH_RC4_40_MD5

SSL_RSA_EXPORT_WITH_DES40_CBC_SHA

SSL_RSA_EXPORT_WITH_RC2_CBC_40_MD5

SSL_DHE_RSA_EXPORT_WITH_DES40_CBC_SHA

SSL_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA

SSL_RSA_WITH_NULL_MD5

SSL_RSA_WITH_NULL_SHA

NONE(TCP/IP no SSL)

An analysis of the above data reveals the following:

v Bulk encryption performance is only affected by what follows the WITH in the

cipher suite name. This is expected since the portion before the WITH identifies

the algorithm used only during the SSL handshake.

v MD5 and SHA are the two hash algorithms used to provide data integrity. MD5

is generally faster than SHA, however, SHA is more secure than MD5.

v DES and RC2 are slower than RC4. Triple DES is the most secure, but the

performance cost is high when using only software.

108 IBM WebSphere Application Server, Version 6.0.2: Tuning guide

v The cipher suite providing the best performance while still providing privacy is

SSL_RSA_WITH_RC4_128_MD5. Even though

SSL_RSA_EXPORT_WITH_RC4_40_MD5 is cryptographically weaker than

RSA_WITH_RC4_128_MD5, the performance for bulk encryption is the same.

Therefore, as long as the SSL connection is a long-running connection, the

difference in the performance of high and medium security levels is negligible. It

is recommended that a security level of high be used, instead of medium, for all

components participating in communication only among WebSphere Application

Server products. Make sure that the connections are long running connections.

Tuning security:

Enabling security decreases performance. The following tuning parameters provide

ways to minimize this performance impact.

While it is not practical to run WebSphere Application Server for z/OS without

security enabled, it is possible to perform certain tuning techniques to make the

Application Server run better on z/OS. These techniques are documented in detail

in Security tuning tips for z/OS.

v Disable security on any application servers that do not need security. You can

disable security in the administrative console by clicking Security > Global

Security and deselecting the Enable global security option.

v Fine-tune the Cache timeout value on the Global security panel in the

administrative console. For more information, see Global security settings.

v Configure the security cache properties. For more information, see “Security

cache properties” on page 106.

v Enable the Enable SSL ID tracking option on the Session management panel in

the administrative console. For more information, see Session management

settings.

v Improve the performance of Web services security by downloading a Java

Cryptography Extension (JCE) unlimited jurisdiction policy file that does not

have restrictions on cryptography strength. For more information, see “Tuning

Web services security for version 6.0.x applications” on page 65.

v Modify the RACF security settings as documented in the RACF tuning tips for

z/OS article.

v Read the Secure Sockets Layer performance tips and “Tuning security

configurations” on page 102 articles for more information.

v Read the “Tuning security configurations” on page 102 article for more

information.

Object Request Broker

Object Request Broker tuning guidelines

Use the guidelines in this document any time the Object Request Broker (ORB) is

used in a workload.

The ORB is used whenever enterprise beans are accessed through a remote

interface. If you experience particularly high or low CPU consumption, you might

have a problem with the value of one of the following parameters. Examine these

core tuning parameters for every application deployment.

 Related tasks

 Chapter 5, “Tuning the application serving environment,” on page 25

This topic describes the benefits of tuning for optimal performance, highlights

Chapter 5. Tuning the application serving environment 109

the tunable parameters of the major WebSphere Application Server components,

and provides insight about how these parameters affect performance.
 Related reference

 Object Request Broker service settings

Use this page to configure the Java Object Request Broker (ORB) service.

Thread pool adjustments:

Size

Tune the size of the ORB thread pool according to your workload. Avoid

suspending threads because they have no work ready to process. If threads do not

have work ready to process, CPU time is consumed by calling the Object.wait

method, performing a context switch. Tune the thread pool size so that threads are

not waiting long enough to get destroyed from remaining idle too long.

The thread pool size is dependent on your workload and system. In typical

configurations, applications need 10 or fewer threads per processor.

However, if your application is performing a very slow backend request, like a

request to a database system, a server thread blocks waiting for the backend

request to complete. With backend requests, CPU use is fairly low. In this case,

increasing the load does not increase CPU use or throughput. Your thread dumps

indicate that nearly all the threads are in a call out to the backend resource. In this

case, consider increasing the number of threads per processor until throughput

improves and thread dumps show that the threads are in other areas of the run

time besides the backend call. You should adjust the number of threads only if

your backend resource is tuned correctly.

The Allow thread allocation beyond maximum thread size parameter also affects

thread pool size, but do not use this parameter unless your back end stops for long

periods of time, causing the blocking of all the run-time threads waiting for the

backend system instead of processing other work that does not involve the

backend system.

You can adjust the thread pool size settings in the administrative console. Click

Servers > Application servers > server_name > Container services > ORB service >

Thread pool. You can adjust the minimum and maximum number of threads. See

Thread pool settings for more information.

Pass by reference:

Specifies how the ORB passes parameters. If enabled, the ORB passes parameters

by reference instead of by value, to avoid making an object copy. If you do not

enable the pass by reference option, a copy of the parameter passes rather than the

parameter object itself. This can be expensive because the ORB must first make a

copy of each parameter object.

 If the Enterprise JavaBeans (EJB) client and server are installed in the same

WebSphere Application Server instance, and the client and server use remote

interfaces, enabling the pass by reference option can improve performance up to

50%. The pass by reference option helps performance only where non-primitive

object types are passed as parameters. Therefore, int and floats are always copied,

regardless of the call model.

110 IBM WebSphere Application Server, Version 6.0.2: Tuning guide

CAUTION:

Enable this property with caution because unexpected behavior can occur. If an

object reference is modified by the callee, the caller’s object is modified as well,

since they are the same object.

If you use command-line scripting, the full name of this system property is

com.ibm.CORBA.iiop.noLocalCopies.

 Data type Boolean

Default Not enabled (false)

The use of this option for enterprise beans with remote interfaces violates EJB

Specification, Version 2.0 (see section 5.4). Object references passed to EJB methods

or to EJB home methods are not copied and can be subject to corruption.

Consider the following example:

Iterator iterator = collection.iterator();

MyPrimaryKey pk = new MyPrimaryKey();

while (iterator.hasNext()) {

 pk.id = (String) iterator.next();

 MyEJB myEJB = myEJBHome.findByPrimaryKey(pk);

}

In this example, a reference to the same MyPrimaryKey object passes into

WebSphere Application Server with a different ID value each time. Running this

code with pass by reference enabled causes a problem within the application server

because multiple enterprise beans are referencing the same MyPrimaryKey object.

To avoid this problem, set the

com.ibm.websphere.ejbcontainer.allowPrimaryKeyMutation system property to

true when the pass by reference option is enabled. Setting the pass by reference

option to true causes the EJB container to make a local copy of the PrimaryKey

object. As a result, however, a small portion of the performance advantage of

setting the pass by reference option is lost.

As a general rule, any application code that passes an object reference as a

parameter to an enterprise bean method or to an EJB home method must be

scrutinized to determine if passing that object reference results in loss of data

integrity or in other problems.

After examining your code, you can enable the pass by reference option by setting

the com.ibm.CORBA.iiop.noLocalCopies system property to true. You can also

enable the pass by reference option in the administrative console. Click Servers >

Application servers > server_name> Container services > ORB Service and select

Pass by reference.

Fragment size: The ORB separates messages into fragments to send over the ORB

connection. You can configure this fragment size through the

com.ibm.CORBA.FragmentSize parameter.

To determine and change the size of the messages that transfer over the ORB and

the number of required fragments, perform the following steps:

1. In the administrative console, enable ORB tracing in the ORB Properties page.

See Object Request Broker service settings for more information.

2. Enable ORBRas tracing from the logging and tracing page.

3. Increase the trace file sizes because tracing can generate a lot of data.

Chapter 5. Tuning the application serving environment 111

4. Restart the server and run at least one iteration (preferably several) of the case

that you are measuring.

5. Look at the traceable file and do a search for Fragment to follow: Yes.

This message indicates that the ORB transmitted a fragment, but it still has at

least one remaining fragment to send before the entire message arrives. A

Fragment to follow: No value indicates that the particular fragment is the last

in the entire message. This fragment can also be the first, if the message fit

entirely into one fragment.

If you go to the spot where Fragment to follow: Yes is located, you find a

block that looks similar to the following example:

 Fragment to follow: Yes

Message size: 4988 (0x137C)

--

Request ID: 1411

This example indicates that the amount of data in the fragment is 4988 bytes

and the Request ID is 1411. If you search for all occurrences of Request ID:

1411, you can see the number of fragments that are used to send that particular

message. If you add all the associated message sizes, you have the total size of

the message that is being sent through the ORB.

6. You can configure the fragment size by setting the

com.ibm.CORBA.FragmentSize property. See Object Request Broker custom

properties for more information.

Interceptors: Interceptors are ORB extensions that can set up the context before

the ORB runs a request. For example, the context might include transactions or

activity sessions to import. If the client creates a transaction, and then flows the

transaction context to the server, then the server imports the transaction context

onto the server request through the interceptors.

Most clients do not start transactions or activity sessions, so most systems can

benefit from removing the interceptors that are not required.

To remove the interceptors, manually edit the server.xml file and remove the

interceptor lines that are not needed from the ORB section.

Connection Cache Adjustments: Depending on an application server’s workload,

and throughput or response-time requirements, you might need to adjust the size

of the ORB’s connection cache. Each entry in the connection cache is an object that

represents a distinct TCP/IP socket endpoint, identified by the hostname or

TCP/IP address, and the port number used by the ORB to send a GIOP request or

a GIOP reply to the remote target endpoint. The purpose of the connection cache is

to minimize the time required to establish a connection by reusing ORB connection

objects for subsequent requests or replies. (The same TCP/IP socket is used for the

request and corresponding reply.)

For each application server, the number of entries in the connection cache relates

directly to the number of concurrent ORB connections. These connections consist of

both the inbound requests made from remote clients and outbound requests made

by the application server. When the server-side ORB receives a connection request,

it uses an existing connection from an entry in the cache, or establishes a new

connection and adds an entry for that connection to the cache.

112 IBM WebSphere Application Server, Version 6.0.2: Tuning guide

The ORB Connection cache maximum and Connection cache minimum properties

are used to control the maximum and minimum number of entries in the

connection cache at a given time. When the number of entries reaches the value

specified for the Connection cache maximum property, and a new connection is

needed, the ORB creates the requested connection, adds an entry to the cache and

searches for and attempts to remove up to five inactive connection entries from the

cache. Because the new connection is added before inactive entries are removed, it

is possible for the number of cache entries to temporarily exceed the value

specified for the Connection cache maximum property.

An ORB connection is considered inactive if the TCP/IP socket stream is not in use

and there are no GIOP replies pending for any requests made on that connection.

As the application workload diminishes, the ORB closes the connections and

removes the entries for these connections from the cache. The ORB continues to

remove entries from the cache until the number of remaining entries is at or below

the value specified for the Connection cache maximum property. The number of

cache entries is never less then the value specified for the Connection cache

minimum property, which must be at least five connections less than the value

specified for the Connection cache maximum property.

Adjustments to the connection cache in the client-side ORB are usually not

necessary because only a small number of connections are made on that side.

JNI Reader Threads: By default, the ORB uses a Java thread for processing each

inbound connection request it receives. As the number of concurrent requests

increases, the storage consumed by a large number of reader threads increases and

can become a bottleneck in resource-constrained environments. Eventually, the

number of Java threads created can cause out-of-memory exceptions if the number

of concurrent requests exceeds the system’s available resources.

To help address this potential problem, you can configure the ORB to use JNI

reader threads where a finite number of reader threads, implemented using native

OS threads instead of Java threads, are created during ORB initialization. JNI

reader threads rely on the native OS TCP/IP asynchronous mechanism that enables

a single native OS thread to handle I/O events from multiple sockets at the same

time. The ORB manages the use of the JNI reader threads and assigns one of the

available threads to handle the connection request, using a round-robin algorithm.

Ordinarily, JNI reader threads should only be configured when using Java threads

is too memory-intensive for your application environment.

The number of JNI reader threads you should allocate for an ORB depends on

many factors and varies significantly from one environment to another, depending

on available system resources and workload requirements. The following potential

benefits might be achieved if you use JNI threads:

v Because a fixed number of threads is allocated, memory usage is reduced. This

reduction provides significant benefit in environments with unusually large and

sustained client-request workloads.

v The time needed to dynamically create and destroy Java threads is eliminated

because a fixed number of JNI threads is created and allocated during ORB

initialization.

v Each JNI thread can handle up to 1024 socket connections and interacts directly

with the asynchronous I/O native OS mechanism, which might provide

enhanced performance of network I/O processing.

Chapter 5. Tuning the application serving environment 113

Learn about WebSphere programming extensions

Use this section as a starting point to investigate the WebSphere programming

model extensions for enhancing your application development and deployment.

See Learn about WebSphere applications: Overview and new features for an

introduction to each WebSphere extension.

ActivitySessions How do I?... Overview Samples

Application profiling How do I?... Overview Samples

Asynchronous beans How do I?... Overview Samples

Dynamic caching How do I?... Overview

Dynamic query How do I?... Overview Samples

Internationalization How do I?... Overview Samples

Object pools How do I?... Overview

Scheduler How do I?... Overview Samples

Startup beans How do I?... Overview

Work areas How do I?... Overview

 Related concepts

 Learn about WebSphere applications: Overview and new features

Use the Learn about WebSphere applications section as a starting point to

study technologies used in and by applications deployed on the application

server.

Dynamic cache

Managing cache entries stored on a disk:

Use this page to set Java virtual machine (JVM) custom properties to maintain

cache entries that are saved to disk.

 Steps for this task

You can set the custom properties globally to affect all cache instances, or you can

set the custom property on a single cache instance. In most cases, set the properties

on the individual cache instances. To set the custom properties on the default cache

instance, use the global option. If you set the same property both globally and on a

cache instance, the value that is set on the cache instance overrides the global

value.

To configure the custom properties on a single object cache instance or servlet

cache instance, perform the following steps:

1. In the administrative console, click one of the following paths:

v To configure a servlet cache instance, click Resources > Cache instances >

Servlet cache instances > servlet_cache_instance_name > Custom properties >

New.

114 IBM WebSphere Application Server, Version 6.0.2: Tuning guide

v To configure an object cache instance, click Resources > Cache instances >

Object cache instances > object_cache_instance_name > Custom properties >

New.
2. Type the name of the custom property. When configuring these custom

properties on a single cache instance, you do not use the full property path. For

example, type htodCleanupFrequency to configure the

com.ibm.ws.cache.CacheConfig.htodCleanupFrequency custom property.

3. Type a valid value for the property in the Value field.

4. Save the property and restart WebSphere Application Server.

To configure the custom property globally across all configured cache instances,

perform the following steps:

1. In the administrative console, click Servers > Application servers > server_name

> Java and process management > Process definition > Java virtual machine

> Custom properties > New.

2. Type the name of the custom property (for example,

com.ibm.ws.cache.CacheConfig.htodCleanupFrequency) in the Name field.

3. Type a valid value for the property in the Value field.

4. Save the property and restart WebSphere Application Server.

com.ibm.ws.cache.CacheConfig.htodCleanupFrequency

Use this property to change the amount of time between disk cache cleanup.

By default, the disk cache cleanup is scheduled to run at midnight to remove

expired cache entries and cache entries that have not been accessed in the past 24

hours. However, if you have thousands of cache entries that might expire within

one or two hours, the files that are in the disk cache can grow large and become

unmanageable. Use the com.ibm.ws.cache.CacheConfig.htodCleanupFrequency

custom property to change the time interval between disk cache cleanup.

 Units minutes

For example, a value of 60 means 60

minutes between each disk cache cleanup.

Default 0

The disk cache cleanup occurs at midnight

every 24 hours.

Tune the delay offload function

Use these properties to tune the delay offload function for the disk cache. The

delay offload function uses extra memory buffers for dependency IDs and

templates to delay the disk offload and minimize the input and output operations.

However, if most of your cache IDs are longer than 100 bytes, the delay offload

function might use too much memory. Use any combination of the following

properties to tune your configuration:

v To increase or decrease the in-memory limit of cache IDs for dependency ID and

template buffers, use the

com.ibm.ws.cache.CacheConfig.htodDelayOffloadEntriesLimit custom property.

Chapter 5. Tuning the application serving environment 115

v To disable the disk cache delay offload function, use the

com.ibm.ws.cache.CacheConfig.htodDelayOffload custom property. Disabling

this property saves all cache entries to disk immediately after removing them

from the memory cache.

com.ibm.ws.cache.CacheConfig.htodDelayOffloadEntriesLimit

Use this property to specify the number of different cache IDs that can be saved in

memory for the dependency ID and template buffers. Consider increasing this

value if you have a lot of memory in your server and you want to increase the

performance of your disk cache.

 Units number of cache IDs

For example, a value of 1000 means that

each dependency ID or template ID can

have up to 1000 different cache IDs in

memory.

Default 1000

Minimum 100

com.ibm.ws.cache.CacheConfig.htodDelayOffload

Use this property to specify if extra memory buffers should be used in memory for

dependency IDs and templates to delay disk offload and to minimize input and

output operations to the disk. This property is enabled by default. However,

consider disabling this property if your cache IDs are larger than 100 bytes because

this option might use too much memory when it buffers your data. If you set this

property to false, all the cache entries are copied to disk immediately after they

are removed from the memory cache.

 Default true

 Related reference

 Troubleshooting tips for the dynamic cache service

The dynamic cache service works within an application server Java virtual

machine (JVM), intercepting calls to cacheable objects. This article describes

some common runtime and configuration problems and remedies.

Tuning dynamic cache with the cache monitor:

Use this task to interpret cache monitor statistics to improve the performance of

the dynamic cache service.

 Verify that dynamic cache is enabled and that the cache monitor application is

installed on your application server. See Displaying cache information to configure

the cache monitor application.

Use the cache monitor to watch cache hits versus misses. By comparing these two

values, you can determine how much dynamic cache is helping your application,

and if you can take any additional steps to further improve performance and

decrease the cost of processing for your application server.

1. Start cache monitor and click on Cache Statistics. You can view the following

cache statistics:

116 IBM WebSphere Application Server, Version 6.0.2: Tuning guide

Cache statistic Description

Cache Size The maximum number of entries that the

cache can hold.

Used Entries The number of cache entries used.

Cache Hits The number of request responses that are

served from the cache.

Cache Misses The number of request responses that are

cacheable but cannot be served from the

cache.

LRU Evictions The number of cache entries removed to

make room for new cache entries.

Explicit Removals The number of cache entries removed or

invalidated from the cache based on cache

policies or were deleted from the cache

through the cache monitor.

2. You can also view the following cache configuration values:

 Cache configuration value Description

Default priority Specifies the default priority for all cache

entries. Lower priority entries are moved

from the cache before higher priority entries

when the cache is full. You can specify the

priority for individual cache entries in the

cache policy.

Servlet Caching Enabled If servlet caching is enabled, results from

servlets and JavaServer Pages (JSP) files are

cached. See Configuring servlet caching for

more information.

Disk Offload Enabled Specifies if entries that are being removed

from the cache are saved to disk. See

Configuring dynamic cache disk offload for

more information.

3. Wait for the application server to add data to the cache. You want the number

of used cache entries in the cache monitor to be as high as it can go. When the

number of used entries is at its highest, the cache can serve responses to as

many requests as possible.

4. When the cache has a high number of used entries, reset the statistics. Watch

the number of cache hits versus cache misses. If the number of hits is far

greater than the number of misses, your cache configuration is optimal. You do

not need to take any further actions. If you find a higher number of misses

with a lower number of hits, the application server is working hard to generate

responses instead of serving the request using a cached value. The application

server might be making database queries, or running logic to respond to the

requests.

5. If you have a large number of cache misses, increase the number of cache hits

by improving the probability that a request can be served from the cache. To

improve the number of cache hits, you can increase the cache size or configure

additional cache policies. See Dynamic cache service settings to increase the

cache size and Configuring cacheable objects with the cachespec.xml file for

information about configuring cache policies.

By using the cache monitor application, you optimized the performance of the

dynamic cache service.

Chapter 5. Tuning the application serving environment 117

See Task overview: Using the dynamic cache service to improve performance for

more information about the dynamic cache.

 Related concepts

 Cache monitor

Cache monitor is an installable Web application that provides a real-time view

of the current state of dynamic cache. You use it to help verify that dynamic

cache is operating as expected. The only way to manipulate the data in the

cache is by using the cache monitor. It provides a GUI interface to manually

change data.
 Related tasks

 Troubleshooting the dynamic cache service

Work area

Work area service performance considerations: The work area service is designed

to address complex data passing patterns that can quickly grow beyond convenient

maintenance. A work area is a note pad that is accessible to any client that is

capable of looking up Java Naming Directory Interface (JNDI). After a work area is

established, data can be placed there for future use in any subsequent method calls

to both remote and local resources.

You can utilize a work area when a large number of methods require common

information or if information is only needed by a method that is significantly

further down the call graph. The former avoids the need for complex parameter

passing models where the number of arguments passed becomes excessive and

hard to maintain. You can improve application function by placing the information

in a work area and subsequently accessing it independently in each method,

eliminating the need to pass these parameters from method to method. The latter

case also avoids unnecessary parameter passing and helps to improve performance

by reducing the cost of marshalling and de-marshalling these parameters over the

Object Request Broker (ORB) when they are only needed occasionally throughout

the call graph.

When attempting to maximize performance by using a work area, cache the

UserWorkArea partition that is retrieved from JNDI wherever it is accessed. You

can reduce the time spent looking up information in JNDI by retrieving it once and

keeping a reference for the future. JNDI lookup takes time and can be costly.

Additional caching mechanisms available to a user-defined partition are defined by

the configuration property, ″Deferred Attribute Serialization″. This mechanism

attempts to minimize the number of serialization and deserialization calls. See

Work area partition service for further explanation of this configuration attribute.

The maxSendSize and maxReceiveSize configuration parameters can affect the

performance of the work area. Setting these two values to 0 (zero) effectively turns

off the policing of the size of context that can be sent in a work area. This action

can enhance performance, depending on the number of nested work areas an

application uses. In applications that use only one work area, the performance

enhancement might be negligible. In applications that have a large number of

nested work areas, there might be a performance enhancement. However, a user

must note that by turning off this policing it is possible that an extremely large

amount of data might be sent to a server.

Performance is degraded if you use a work area as a direct replacement to passing

a single parameter over a single method call. The reason is that you incur more

118 IBM WebSphere Application Server, Version 6.0.2: Tuning guide

overhead than just passing that parameter between method calls. Although the

degradation is usually within acceptable tolerances and scales similarly to passing

parameters with regard to object size, consider degradation a potential problem

before utilizing the service. As with most functional services, intelligent use of the

work areas yields the best results.

The work area service is a tool to simplify the job of passing information from

resource to resource, and in some cases can improve performance by reducing the

overhead that is associated with a parameter passing when the information is only

sparsely accessed within the call graph. Caching the instance retrieved from JNDI

is important to effectively maximize performance during runtime.

 Related concepts

 Work area partition service

The work area partition service is an extension of the work area service that

allows the creation of multiple custom work areas. The work area partition

service is an optional service to users. Any user that currently uses the work

area service and the UserWorkArea partition can continue using it in the same

manner. The UserWorkArea partition is created automatically (if it has not been

disabled) by the work area partition service. By allowing a user the option to

create their own work area partition through the work area partition service,

they can have more control over configuration and access to their partition.
 Related reference

 UserWorkArea interface

 The Work area partition manager interface
 Related information

 Work area service - Overview

Chapter 5. Tuning the application serving environment 119

120 IBM WebSphere Application Server, Version 6.0.2: Tuning guide

Chapter 6. Troubleshooting performance

This topic illustrates that solving a performance problem is an iterative process and

shows how to troubleshoot performance problems.

It is recommended that you review the tuning parameter hot list before reading

this topic.

Solving a performance problem is frequently an iterative process of:

v Measuring system performance and collecting performance data

v Locating a bottleneck

v Eliminating a bottleneck

This process is often iterative because when one bottleneck is removed the

performance is now constrained by some other part of the system. For example,

replacing slow hard disks with faster ones might shift the bottleneck to the CPU of

a system.

Measuring system performance and collecting performance data

Begin by choosing a benchmark, a standard set of operations to run. This

benchmark exercises those application functions experiencing performance

problems. Complex systems frequently need a warm-up period to cache objects,

optimize code paths, and so on. System performance during the warm-up period is

usually much slower than after the warm-up period. The benchmark must be able

to generate work that warms up the system prior to recording the measurements

that are used for performance analysis. Depending on the system complexity, a

warm-up period can range from a few thousand transactions to longer than 30

minutes.

If the performance problem under investigation only occurs when a large number

of clients use the system, then the benchmark must also simulate multiple users.

Another key requirement is that the benchmark must be able to produce repeatable

results. If the results vary more than a few percent from one run to another,

consider the possibility that the initial state of the system might not be the same

for each run, or the measurements are made during the warm-up period, or that

the system is running additional workloads.

Several tools facilitate benchmark development. The tools range from tools that

simply invoke a URL to script-based products that can interact with dynamic data

generated by the application. IBM Rational has tools that can generate complex

interactions with the system under test and simulate thousands of users. Producing

a useful benchmark requires effort and needs to be part of the development

process. Do not wait until an application goes into production to determine how to

measure performance.

The benchmark records throughput and response time results in a form to allow

graphing and other analysis techniques. The performance data that is provided by

WebSphere Performance Monitoring Infrastructure (PMI) helps to monitor and

tune the application server performance. Request metrics is another sources of

performance data that is provided by WebSphere Application Server. Request

© Copyright IBM Corp. 2005 121

metrics allows a request to be timed at WebSphere Application Server component

boundaries, enabling a determination of the time that is spent in each major

component.

Locating a bottleneck

Consult the following scenarios and suggested solutions:

v Scenario: Poor performance occurs with only a single user.

Suggested solution: Utilize request metrics to determine how much each

component is contributing to the overall response time. Focus on the component

accounting for the most time. Use Tivoli Performance Viewer to check for

resource consumption, including frequency of garbage collections. You might

need code profiling tools to isolate the problem to a specific method.

v Scenario: Poor performance only occurs with multiple users.

Suggested solution: Check to determine if any systems have high CPU, network

or disk utilization and address those. For clustered configurations, check for

uneven loading across cluster members.

v Scenario: None of the systems seems to have a CPU, memory, network, or disk

constraint but performance problems occur with multiple users.

Suggested solutions:

– Check that work is reaching the system under test. Ensure that some external

device does not limit the amount of work reaching the system. Tivoli

Performance Viewer helps determine the number of requests in the system.

– A thread dump might reveal a bottleneck at a synchronized method or a large

number of threads waiting for a resource.

– Make sure that enough threads are available to process the work both in IBM

HTTP Server, database, and the application servers. Conversely, too many

threads can increase resource contention and reduce throughput.

– Monitor garbage collections with Tivoli Performance Viewer or the verbosegc

option of your Java virtual machine. Excessive garbage collection can limit

throughput.

Eliminating a bottleneck

Consider the following methods to eliminate a bottleneck:

v Reduce the demand

v Increase resources

v Improve workload distribution

v Reduce synchronization

Reducing the demand for resources can be accomplished in several ways. Caching

can greatly reduce the use of system resources by returning a previously cached

response, thereby avoiding the work needed to construct the original response.

Caching is supported at several points in the following systems:

v IBM HTTP Server

v Command

v Enterprise bean

v Operating system

Application code profiling can lead to a reduction in the CPU demand by pointing

out hot spots you can optimize. IBM Rational and other companies have tools to

perform code profiling. An analysis of the application might reveal areas where

some work might be reduced for some types of transactions.

122 IBM WebSphere Application Server, Version 6.0.2: Tuning guide

Change tuning parameters to increase some resources, for example, the number of

file handles, while other resources might need a hardware change, for example,

more or faster CPUs, or additional application servers. Key tuning parameters are

described for each major WebSphere Application Server component to facilitate

solving performance problems. Also, the performance advisors can provide advice

on tuning a production system under a real or simulated load.

Workload distribution can affect performance when some resources are

underutilized and others are overloaded. WebSphere Application Server workload

management functions provide several ways to determine how the work is

distributed. Workload distribution applies to both a single server and

configurations with multiple servers and nodes.

Workload distribution can affect performance when some resources are

underutilized and others are overloaded. WebSphere Application Server workload

management functions provide several ways to determine how the work is

distributed. Workload distribution applies to both a single server and

configurations with multiple servers and nodes.

Some critical sections of the application and server code require synchronization to

prevent multiple threads from running this code simultaneously and leading to

incorrect results. Synchronization preserves correctness, but it can also reduce

throughput when several threads must wait for one thread to exit the critical

section. When several threads are waiting to enter a critical section, a thread dump

shows these threads waiting in the same procedure. Synchronization can often be

reduced by: changing the code to only use synchronization when necessary;

reducing the path length of the synchronized code; or reducing the frequency of

invoking the synchronized code.

Additional references

IBM WebSphere V6: Performance, Scalability, and High Availability Concepts

WebSphere Application Server Performance Web site

All SPEC jAppServer2004 Results Published by SPEC.

Chapter 6. Troubleshooting performance 123

http://www.redbooks.ibm.com/workshops/GR0551?Open
http://www-306.ibm.com/software/webservers/appserv/was/performance.html
http://www.spec.org/jAppServer2004/results/jAppServer2004.html

124 IBM WebSphere Application Server, Version 6.0.2: Tuning guide

Notices

References in this publication to IBM products, programs, or services do not imply

that IBM intends to make these available in all countries in which IBM operates.

Any reference to an IBM product, program, or service is not intended to state or

imply that only IBM’s product, program, or service may be used. Any functionally

equivalent product, program, or service that does not infringe any of IBM’s

intellectual property rights may be used instead of the IBM product, program, or

service. Evaluation and verification of operation in conjunction with other

products, except those expressly designated by IBM, is the user’s responsibility.

IBM may have patents or pending patent applications covering subject matter in

this document. The furnishing of this document does not give you any license to

these patents. You can send license inquiries, in writing, to:

 IBM Director of Intellectual Property & Licensing

 IBM Corporation

 North Castle Drive

 Armonk, NY 10504-1785

 USA

© Copyright IBM Corp. 2005 125

126 IBM WebSphere Application Server, Version 6.0.2: Tuning guide

Trademarks and service marks

For trademark attribution, visit the IBM Terms of Use Web site

(http://www.ibm.com/legal/us/).

© Copyright IBM Corp. 2005 127

http://www.ibm.com/legal/us/

	Contents
	How to send your comments
	Chapter 1. How do I tune performance?
	Chapter 2. Planning ahead for performance
	Application design consideration

	Chapter 3. Taking advantage of performance functions
	Chapter 4. Obtaining performance advice from the performance advisors
	Why use the performance advisors?
	Choosing the right performance advisor for the purpose
	Runtime Performance Advisor
	Tivoli Performance Viewer advisor

	Using the Runtime Performance Advisor
	Runtime Performance Advisor configuration settings
	Restart
	Enable automatic heap dump collection
	Enable Runtime Performance Advisor
	Calculation Interval
	Maximum warning sequence
	Number of processors

	Advice configuration settings
	Advice name
	Advice applied to component
	Advice status
	Advice status

	Viewing the Runtime Performance Advisor recommendations
	Understanding the lightweight memory leak detection
	Enabling the lightweight memory leak detection

	Getting the automated heap dump generation support
	Enabling automated heap dump generation
	Generating heap dumps manually
	Locating and analyzing heap dumps

	Using the performance advisor in Tivoli Performance Viewer
	Performance advisor report in Tivoli Performance Viewer
	Message
	Performance data in the upper panel

	Chapter 5. Tuning the application serving environment
	Tuning parameter hot list
	Tuning TCP/IP buffer sizes
	Tuning Java virtual machines
	Tuning transport channel services
	Checking hardware configuration and settings
	Tuning operating systems
	Tuning Windows systems
	Tuning Linux systems
	Tuning AIX systems
	Tuning Solaris systems
	Tuning HP-UX systems

	Tuning Web servers
	Tuning WebSphere applications
	Web applications
	Tuning session management
	Configuring scheduled invalidation
	Configuring write contents
	Configuring write frequency
	Base in-memory session pool size
	Controlling write operations
	Tuning parameter settings
	Tuning parameter custom settings

	Web services
	Tuning Web services security for version 6.0.x applications
	Tuning Web services security for version 5.x applications
	Monitoring the performance of Web services applications
	Web services performance best practices

	Service integration
	Setting tuning properties of a messaging engine
	Tuning and problem solving for messaging engine data stores
	Tuning the JDBC data source of a messaging engine
	Controlling the memory buffers used by a messaging engine
	Diagnosing problems with your data store configuration
	Avoiding failover problems when you use DB2 v8.2 with HADR as your data store

	Setting tuning properties for a mediation
	Enabling CMP entity beans and messaging engine data stores to share database connections
	Tuning service integration messaging
	Tuning the SIBWS

	Data access resources
	EJB Container Cache tuning
	Database performance tuning
	DB2 tuning parameters
	Tuning parameters for data access resources

	Messaging
	Setting tuning properties of a messaging engine
	Tuning and problem solving for messaging engine data stores
	Tuning the JDBC data source of a messaging engine
	Controlling the memory buffers used by a messaging engine
	Diagnosing problems with your data store configuration
	Avoiding failover problems when you use DB2 v8.2 with HADR as your data store

	Setting tuning properties for a mediation
	Enabling CMP entity beans and messaging engine data stores to share database connections
	Tuning service integration messaging
	Tuning the SIBWS

	Security
	Tuning security configurations
	Tuning CSIv2
	Tuning LDAP authentication
	Tuning Web authentication
	Tuning authorization
	Security cache properties
	Secure Sockets Layer performance tips
	Tuning security

	Object Request Broker
	Object Request Broker tuning guidelines
	Thread pool adjustments
	Pass by reference
	Fragment size
	Interceptors
	Connection Cache Adjustments
	JNI Reader Threads

	Learn about WebSphere programming extensions
	Dynamic cache
	Managing cache entries stored on a disk
	Tuning dynamic cache with the cache monitor

	Work area
	Work area service performance considerations

	Chapter 6. Troubleshooting performance
	Notices
	Trademarks and service marks

