
WebSphere® Application Server-Network Deployment, Version 6

Troubleshooting and support

���

Note

Before using this information, be sure to read the general information under “Notices” on page 273.

Compilation date: December 8, 2004

© Copyright International Business Machines Corporation 2004. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

How to send your comments . vii

Chapter 1. Overview and new features for troubleshooting 1

Overview: Troubleshooting . 1

What is new for troubleshooters . 2

Troubleshooting by component . 4

Web module or application server dies or hangs . 4

Web Container troubleshooting tips . 6

JSP source code shown by the Web server . 6

JSP engine troubleshooting tips . 7

HTTP session manager troubleshooting tips . 8

Problems creating or using HTTP sessions . 9

Enterprise bean and EJB container troubleshooting tips 11

Cannot access an enterprise bean from a servlet, a JSP file, a stand-alone program, or another

client . 12

A client program does not work . 15

Universal Discovery, Description, and Integration, Web Service, and SOAP component

troubleshooting tips . 16

Errors returned to a client sending a SOAP request 16

JDBC and data source troubleshooting tips . 17

DB2 troubleshooting tips . 19

Cannot access a data source . 19

Sybase troubleshooting tips . 35

Errors in messaging . 38

Errors connecting to WebSphere MQ and creating WebSphere MQ queue connection factory . . . 38

Naming services component troubleshooting tips . 39

Cannot look up an object hosted by WebSphere Application Server from a servlet, JSP file, or other

client . 40

Object request broker component troubleshooting tips 43

Messaging component troubleshooting tips . 55

Chapter 2. How do I troubleshoot? . 57

Chapter 3. Debugging applications . 61

Debugging with the Application Server Toolkit . 62

Chapter 4. Adding logging and tracing to your application 63

Logging and tracing with Java logging . 63

Loggers . 64

Log handlers . 65

Log levels . 66

Log filters . 66

Log formatters . 66

Configuring logging properties using the administrative console 67

Configuring logging properties for an application . 71

Sample security . 72

Using loggers in an application . 72

The Common Base Event in WebSphere Application Server 81

Types of problem determination events . 82

The structure of the Common Base Event . 82

Sample Common Base Event instance . 92

Sample Common Base Event template . 93

Component Identification for Problem Determination 93

© Copyright IBM Corp. 2004 iii

Logging Common Base Events in WebSphere Application Server 94

Programming with the JRas framework . 101

Understanding the JRas facility . 101

JRas Extensions . 103

JRas Messages and Trace event types . 111

Instrumenting an application with JRas extensions 113

Chapter 5. Diagnosing problems (using diagnosis tools) 121

Message reference . 121

CORBA minor codes . 122

Working with message logs . 122

Viewing the JVM logs . 123

Interpreting the JVM logs . 123

Configuring the JVM logs . 125

Process logs . 127

Viewing the service log . 128

Configuring the service log . 129

Detecting hung threads in J2EE applications . 130

Adjusting the hang detection policy of a running server 131

Configuring the hang detection policy . 131

Working with trace . 132

Enabling tracing and logging . 132

Managing the application server trace service . 137

Interpreting trace output . 137

Diagnostic trace service settings . 138

Log and trace settings . 140

Working with troubleshooting tools . 141

Gathering information with the Collector tool . 141

First Failure Data Capture tool . 144

Log Analyzer . 144

IBM Support Assistant . 154

Obtaining help from IBM . 155

Diagnosing and fixing problems: Resources for learning 155

Debugging Service details . 156

Enable service at server startup . 157

JVM debug port . 157

JVM debug arguments . 157

Debug class filters . 157

BSF debug port . 157

BSF logging level . 157

Configuration problem settings . 157

Configuration document validation . 157

Enable Cross validation . 157

Configuration Problems . 157

Scope . 157

Message . 158

Explanation . 158

User action . 158

Target Object . 158

Severity . 158

Local URI . 158

Full URI . 158

Validator classname . 158

Chapter 6. Learn about WebSphere applications 159

Web applications . 159

iv IBM WebSphere Application Server-Network Deployment, Version 6: Troubleshooting and support

Troubleshooting tips for Web application deployment 159

EJB applications . 160

Access intent exceptions . 160

Frequently asked questions: Access intent . 161

Important file for message-driven beans . 162

Client applications . 162

Application client troubleshooting tips . 162

Web services . 167

Troubleshooting Web services . 167

Troubleshooting the Web Services Invocation Framework 179

UDDI Registry troubleshooting . 184

Data access resources . 187

Connection and connection pool statistics . 187

Example: Connection factory lookup . 188

Database exceptions resulting from foreign key conflicts, or deadlock when entity beans are

configured for optimistic concurrency control . 191

Example: Using the Java Management Extensions API to create a JDBC driver and data source for

container-managed persistence . 191

Example: Using the Java Management Extensions API to create a JDBC driver and data source for

bean-managed persistence, session beans, or servlets 196

Vendor-specific data sources minimum required settings 199

Messaging resources . 219

Troubleshooting WebSphere messaging . 219

Mail, URLs, and other J2EE resources . 222

Enabling debugger for a mail session . 222

Security . 223

Troubleshooting authorization providers . 223

Troubleshooting security configurations . 226

Naming and directory . 252

Troubleshooting name space problems . 252

Object Request Broker . 260

Object Request Broker communications trace . 260

Transactions . 263

Troubleshooting transactions . 263

Transaction service exceptions . 263

Exceptions thrown for transactions involving both single- and two-phase commit resources 264

Learn about WebSphere programming extensions . 264

ActivitySessions . 265

Application profiling . 265

Dynamic cache . 265

Internationalization . 268

Notices . 273

Trademarks and service marks . 275

Contents v

vi IBM WebSphere Application Server-Network Deployment, Version 6: Troubleshooting and support

How to send your comments

Your feedback is important in helping to provide the most accurate and highest quality information.

v To send comments on articles in the WebSphere Application Server Information Center

1. Display the article in your Web browser and scroll to the end of the article.

2. Click on the Feedback link at the bottom of the article, and a separate window containing an e-mail

form appears.

3. Fill out the e-mail form as instructed, and click on Submit feedback .

v To send comments on PDF books, you can e-mail your comments to: wasdoc@us.ibm.com or fax

them to 919-254-0206.

Be sure to include the document name and number, the WebSphere Application Server version you are

using, and, if applicable, the specific page, table, or figure number on which you are commenting.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information

in any way it believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 2004 vii

viii IBM WebSphere Application Server-Network Deployment, Version 6: Troubleshooting and support

Chapter 1. Overview and new features for troubleshooting

This topic summarizes the contents and organization of the troubleshooting documentation, including links

to conceptual overviews and descriptions of new features.

v “Overview: Troubleshooting”

v “What is new for troubleshooters” on page 2

Sections in the troubleshooting documentation:

 Chapter 3, “Debugging applications,” on page 61

This topic describes how to use Java logging for generating your application logging. Designers

and developers of applications that run with or under WebSphere Application Server, such as

servlets, JavaServer Pages (JSP) files, enterprise beans, client applications, and their supporting

classes, might find it useful.

 Chapter 4, “Adding logging and tracing to your application,” on page 63

This topic describes how to use Java logging for generating your application logging. Designers

and developers of applications that run with or under WebSphere Application Server, such as

servlets, JavaServer Pages (JSP) files, enterprise beans, client applications, and their supporting

classes, might find it useful.

 Chapter 5, “Diagnosing problems (using diagnosis tools),” on page 121

This topic describes skills and tools for collecting, displaying, and diagnosing troubleshooting data.

It includes dumps, messages, logging, tracing, and debugging.

 Troubleshooting by task

This topic summarizes how to detect, confirm, and solve the problem, based on what you were

trying to do when the problem occurred.

 Troubleshooting WebSphere applications

For various components that might have failed, this topic summarizes how to detect, confirm, and

solve the resulting problem. The instructions are specific to various application types. For example,

you can focus on troubleshooting access problems for an enterprise bean application, or a

problem that displayed as soon as you enabled security.

Overview: Troubleshooting

This topic provides links to conceptual overviews of troubleshooting problems involving deployed

applications and the application serving environment.

 “What is new for troubleshooters” on page 2

 This topic provides an overview of new and changed features in troubleshooting tools and support.

Chapter 5, “Diagnosing problems (using diagnosis tools),” on page 121

 This topic provides a place to start your search for troubleshooting information.

 Presentations from Education on Demand

 v Where to start with problem determination

v Serviceability enhancements

Troubleshooting overview

Troubleshooting is the process of finding and eliminating the cause of a problem. Whenever you have a

problem with your IBM software, the troubleshooting process begins as soon as you ask yourself what

happened? A basic troubleshooting strategy at a high level involves:

1. Recording the symptoms.

© Copyright IBM Corp. 2004 1

http://www.ibm.com/developerworks/websphere/library/tutorials/ondemand/
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/PD/Presentations/WASv6_PD_Overview/player.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/PD/Presentations/WASv6_Serviceability/player.html

2. Recreating the problem.

3. Eliminating possible causes.

4. Using diagnostic tools.

Recording the symptoms of the problem

Depending on the type of problem you have whether it be with your application, your server, or your tools,

you might receive a message that indicates something is wrong. Always record the error message that you

see. As simple as this sounds, error messages sometimes contain cryptic codes that might make more

sense as you investigate your problem further. You might also receive multiple error messages that look

similar but have subtle differences. By recording the details of each one, you can learn more about where

your problem exists.

Recreating the problem

Think back to what steps you were doing that led you to this problem. Try those steps again to see if you

can easily recreate this problem. If you have a consistently repeatable test case, you will have an easier

time determining what solutions are necessary.

v How did you first notice the problem?

v Did you do anything different that made you notice the problem?

v Is the process that is causing the problem a new procedure, or has it worked successfully before?

v If this worked before what has changed? The change can refer to any type of change made to the

system, ranging from adding new hardware or software, to configuration changes to existing software.

v What was the first symptom of the problem you witnessed? Were there other symptoms occurring

around that point of time?

v Does the same problem occur elsewhere? Is only one machine experiencing the problem or are multiple

machines experiencing the same problem?

v What messages are being generated that could indicate what the problem is?

Eliminating possible causes

Narrow the scope of your problem by eliminating components that are not causing the problem. By using a

process of elimination, you can simplify your problem and avoid wasting time in areas that are not culprits.

Consult the information in this product and other available resources to help you with your elimination

process.

v Has anyone else experienced this problem? See the topic on searching knowledge bases.

v Is there a fix you can download? See the topic on getting fixes.

v You can use the WebSphere Application Server Troubleshooting Guide to work through the cause of a

problem

Using diagnostic tools

As a more advanced task, there are various tools that you can use to analyze and diagnose problems with

your system. To learn how to use these tools see Chapter 5, “Diagnosing problems (using diagnosis

tools),” on page 121.

What is new for troubleshooters

This topic highlights what is new or changed in Version 6 for users who are going to use the

troubleshooting tools and serviceability features.

2 IBM WebSphere Application Server-Network Deployment, Version 6: Troubleshooting and support

The biggest change in troubleshooting support and serviceability is increased ability to automatically

detect and recover from problems. Many serviceability improvements are described in the Education on

Demand presentation:Serviceability enhancements.

The troubleshooting section has been revamped and expanded to include extensive support information,

including the ability to search live, Web-based support resources by using the customized query fields in

the ″Web search″ page.

 New troubleshooting technology on the Support site v MustGather: Read first for all WebSphere Application

Server products

v Troubleshooting Guide for WebSphere Application

Server

Improved message text, new message prefixes Messages for key product components used during

installation, migration, and initial configuration have been

improved. Additional components have messages now.

Message prefixes have changed. The message reference

provides a mapping of Version 5.1.x prefixes to Version

6.0.x prefixes.

Java logging framework from JSR47 is exploited In J2SE 1.4, the Java logging framework was introduced

via JSR47. In WebSphere Application Server, messages

and trace logged to both JRAS and JSR47 logging APIs

are passed into the JSR47 logging infrastructure. This

allows JSR47 Handlers connected to the root JSR47

Logger to receive all WebSphere Application Server log

content. JSR47 and JRAS Logger levels can be controlled

via the admin console troubleshooting section.

WebSphere Application Server also builds its logs from

the JSR47 framework by connecting its Handlers to the

root Logger.

The JSR47 Logging infrastructure allows for flexible

pluggability of custom Handlers into the logging

infrastructure to enable custom logs. By appropriate

configuration, the Handlers can receive WebSphere

Application Server’s logged events, and events logged to

Loggers instantiated by your applications.

See “Logging and tracing with Java logging” on page 63.

JRAS is deprecated The JRAS API is deprecated. Users are directed to use

the JSR47 logging infrastructure instead. See Deprecated

features in Version 6.0 for more information about this and

other deprecated items.

Chapter 1. Overview and new features for troubleshooting 3

ftp://ftp.software.ibm.com/software/eod/WAS_6-0/PD/Presentations/WASv6_Serviceability/player.html
http://www.ibm.com/support/docview.wss?rs=180&context=SSEQTP&uid=swg21145599
http://www.ibm.com/support/docview.wss?rs=180&context=SSEQTP&uid=swg21145599
http://www.ibm.com/support/docview.wss?rs=180&context=SSEQTP&uid=swg27005324
http://www.ibm.com/support/docview.wss?rs=180&context=SSEQTP&uid=swg27005324

Common Base Events describe system situations Common Base Events are data structures used to

describe situations that occur in the system. Common

Base Events are used for various purposes, including

representing things such as business events, configuration

events, error events, and so on. The WebSphere

Application Server now uses Common Base Events as the

internal representation of logged messages.

Common Base Events are logged via JSR47 and as such

can be received and operated on from JSR47 Handlers.

Handlers which are not programmed to the Common Base

Event specification will also be able to consume these

events as CommonBaseEventLogRecords. Handlers

which are programmed to the Common Base Event

specification can take advantage of fields within the

Common Base Events.

See “The Common Base Event in WebSphere Application

Server” on page 81.

Thread names can be included in logs Thread name has been added to the Advanced log format

and Log Analyzer format. The advanced log format is

available as an output format for the trace log and system

out log. The thread name is now included in this format to

enable easier correlation with other types of diagnostic

data. The log analyzer format is available as an output

format for the trace log. The thread name is now included

in this format to enable easier correlation with other types

of diagnostic data.

Troubleshooting by component

Select a component from the list.

Web module or application server dies or hangs

If an application server dies (its process spontaneously closes), or freezes (its Web modules stop

responding to new requests):

v Isolate the problem by installing Web modules on different servers, if possible.

v Read the Monitoring performance with Tivoli performance viewer (formerly resource analyzer) topic. You

can use the performance viewer to determine which resources have reached their maximum capacity,

such as Java heap memory (indicating a possible memory leak) and database connections. If a

particular resource appears to have reached its maximum capacity, review the application code for a

possible cause:

– If database connections are used and never freed, ensure that application code performs a close()

on any opened Connection object within a finally{} block.

– If there is a steady increase in servlet engine threads in use, review application synchronized code

blocks for possible deadlock conditions.

– If there is a steady increase in a JVM heap size, review application code for memory leak

opportunities, such as static (class-level) collections, that can cause objects to never get

garbage-collected.
v As an alternative to using the performance viewer to detect memory leak problems, enable verbose

garbage collection on the application server. This feature adds detailed statements to the JVM error log

file of the application server about the amount of available and in-use memory. To set up verbose

garbage collection:

4 IBM WebSphere Application Server-Network Deployment, Version 6: Troubleshooting and support

1. Select Servers > Application Servers > server_name > Process Definition > Java Virtual

Machine, and enable Verbose Garbage Collection.

2. Stop and restart the application server.

3. Periodically, or after the application server stops, browse the log file for garbage collection

statements. Look for statements beginning with ″allocation failure″. The string indicates that a need

for memory allocation has triggered a JVM garbage collection (freeing of unused memory).

Allocation failures themselves are normal and not necessarily indicative of a problem. The allocation

failure statement is followed by statements showing how many bytes are needed and how many are

allocated.

If there is a steady increase in the total amount of free and used memory (the JVM keeps allocating

more memory for itself), or if the JVM becomes unable to allocate as much memory as it needs

(indicated by the bytes needed statement), there might be a memory leak.
v If either the performance viewer or verbose garbage collection output indicates that the application

server is running out of memory, one of the following problems might be present:

– There is a memory leak in application code that you must address. To pinpoint the cause of a

memory leak, enable the RunHProf function in the Servers > Application Servers > server_name >

Process Definition > Java Virtual Machine pane of the problem application server:

- In the same JVM pane, set the HProf Arguments field to a value similar to

depth=20,file=heapdmp.txt. This value shows exception stacks to a maximum of 20 levels, and

saves the heapdump output to the install_root/bin/heapdmp.txt file.

- Save the settings.

- Stop and restart the application server.

- Reenact the scenario or access the resource that causes the hang or crash, if possible. Stop the

application server. If this is not possible, wait until the hang or crash happens again and stop the

application server.

- Examine the file into which the heapdump was saved. For example, examine the

install_root/bin/heapdmp.txt file:

v Search for the string, ″SITES BEGIN″. This finds the location of a list of Java objects in

memory, which shows the amount of memory allocated to the objects.

v The list of Java objects occurs each time there was a memory allocation in the JVM. There is a

record of what type of object the memory instantiated and an identifier of a trace stack, listed

elsewhere in the dump, that shows the Java method that made the allocation.

v The list of Java object is in descending order by number of bytes allocated. Depending on the

nature of the leak, the problem class should show up near the top of the list, but this is not

always the case. Look throughout the list for large amounts of memory or frequent instances of

the same class being instantiated. In the latter case, use the ID in the trace stack column to

identify allocations occurring repeatedly in the same class and method.

v Examine the source code indicated in the related trace stacks for the possibility of memory

leaks.
– The default maximum heap size of the application server needs to be increased.

v If an application server spontaneously dies, look for a Java thread dump file. The JVM creates the file in

the product directory structure, with a name like javacore[number].txt.

v Force an application to create a thread dump (or javacore). Here is the process for forcing a thread

dump, which is different from the process in earlier releases of the product:

1. Using the wsadmin command prompt, get a handle to the problem application server: wsadmin>set

jvm [$AdminControl completeObjectName type=JVM,process=server1,*]

2. Generate the thread dump: wsadmin>$AdminControl invoke $jvm dumpThreads.

3. Look for an output file in the installation root directory with a name like javacore.date.time.id.txt.
v Browse the thread dump for clues:

– If the JVM creates the thread dump as it closes (the thread dump is not manually forced), there

might be ″error″ or ″exception information″ strings at the beginning of the file. These strings indicate

the thread that caused the application server to die.

– The thread dump contains a snapshot of each thread in the process, starting in the section labeled

″Full thread dump.″

- Look for threads with a description that contains ″state:R″. Such threads are active and running

when the dump is forced, or the process exited.

Chapter 1. Overview and new features for troubleshooting 5

- Look for multiple threads in the same Java application code source location. Multiple threads from

the same location might indicate a deadlock condition (multiple threads waiting on a monitor) or an

infinite loop, and help identify the application code with the problem.

If these steps do not fix your problem, search to see if the problem is known and documented, using the

methods identified in the available online support (hints and tips, technotes, and fixes) topic. If you find

that your problem is not known, contact IBM support to report it.

For current information available from IBM Support on known problems and their resolution, see the IBM

Support page.

IBM Support has documents that can save you time gathering information needed to resolve this problem.

Before opening a PMR, see the IBM Support page.

Web Container troubleshooting tips

If you are having problems starting a Web module, or accessing resources within a particular Web module:

v View the JVM logs and process logs for the application server which hosts the problem Web modules,

and look for messages in the JVM output file which indicate that the web module has started

successfully. You should see messages similar to the following:

WebContainer A SRVE0161I: IBM WebSphere Application Server - Web Container.

Copyright IBM Corp. 1998-2002

WebContainer A SRVE0169I: Loading Web Module: [module_name]

ApplicationMg A WSVR0221I: Application started: [application_name]

HttpTransport A SRVE0171I: Transport http is listening on port [port_number]

[server_name] open for e-business in [install_root]/log/[server_name]/SystemOut.log

v For specific problems that can cause servlets, HTML files, and JavaServer Pages (JSP) files not to be

served, seeWeb resource (JSP file, servlet, HTML file, image) does not display .

v Use the Log Analyzer tool to browse the service log (activity.log) file for clues.

v For a detailed trace of the run-time behavior of the Web container, enable trace for the component

com.ibm.ws.webcontainer.*.

If none of these steps fixes your problem, check to see if the problem has been identified and documented

by looking at the available online support (hints and tips, technotes, and fixes). If you don’t find your

problem listed there contact IBM support.

For current information available from IBM Support on known problems and their resolution, see the IBM

Support page.

IBM Support has documents that can save you time gathering information needed to resolve this problem.

Before opening a PMR, see the IBM Support page.

JSP source code shown by the Web server

Problem

If you share the document root of the WebSphere Application Server with the Web server document root,

a security exposure can result as the Web server might display the JSP source file as plain text.

You can use the WebSphere Web server plug-in set of rules to determine whether a given request will be

handled by the WebSphere Application Server. When an incoming request fails to match those rules, the

Web server plug-in returns control to the Web server so that the Web server can fulfill the request. In this

case, the unknown host header causes the Web server plug-in to return control to the Web server

because the rules do not indicate that the WebSphere Application Server should handle it. Therefore, the

Web server looks for the request in the Web server document root. Since the JSP source file is stored in

the document root of the Web server, the Web server finds the file and displays it as plain text.

6 IBM WebSphere Application Server-Network Deployment, Version 6: Troubleshooting and support

http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCMPB9
http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCMPB9
http://www-1.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCMPB9&q=mustgather
http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCMPDF
http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCMPDF
http://www-1.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCMPDF&q=mustgather

Suggested solution

Move the WebSphere Application Server JSP source file outside of the Web server document root. Then,

when this request comes in with the unknown host header, the plug-in returns control to the Web server

and the JSP source file is not found in the document root. Therefore, the Web server returns a 404 File

Not Found error rather than the JSP source file.

JSP engine troubleshooting tips

If you are having difficulty using the JSP engine, try these steps:

1. Determine whether other resources such as .html files or servlets are being requested and displayed

correctly. If they are not, the problem probably lies at a deeper level, such as with the HTTP server.

2. If other resources are being displayed correctly, determine whether the JSP processor has started

normally:

v Browse the JVM logs of the server hosting the JSP files you are trying to access. The following

messages indicate that the JSP processor has started normally:

Extension Processor [class com.ibm.ws.jsp.webcontainerext.JSPExtensionProcessor]

was initialized successfully.

Extension Processor [class com.ibm.ws.jsp.webcontainerext.JSPExtensionProcessor]

has been associated with patterns [*.jsp *.jspx *.jsw *.jsv].

If the JSP processor fails to load, you will see a message such as

No Extension Processor found for handling JSPs.

JSP Processor not defined. Skipping : jspfilename.

in the root_dir/logs/server_name/SystemOut.log file .

v Open the Log analyzer on the service log of the server which is hosting the JavaServer Pages file

you are trying to access and use it to browse error and warning messages.
3. If the JSP engine has started normally, the problem may be with the JSP file itself.

v The JSP may have invalid JSP syntax and could not be processed by the JSP Processor. Examine

the root_dir/logs/server_name/SystemOut.log file of the target application for invalid JSP directive

syntax messages. Errors similar to the following in a browser indicate this kind of problem:

Message: /filename.jsp(2,1)JSPG0076E: Missing required attribute page for jsp element jsp:include

This example indicates that line 2, column 1 of the named JavaServer Pages file is missing a

mandatory attribute for the jsp:include action. Similar messages are displayed for other syntax

errors.

v Examine the target application server’s SystemErr.log files for problems with invalid Java syntax.

Errors similar to Message: Unable to compile class for JSP in a browser indicate this kind of

problem.

The error message output from the Javac compiler will be found in the SystemErr.log . It might look

like:

JSPG0091E: An error occurred at line: 2 in the file: /myJsp.jsp

JSPG0093E: Generated servlet error: c:\WASROOT\temp\ ...

test.war_myJsp.java:16: myInt is already defined in com.ibm.ws.jsp20._myJsp

int myInt = 122; String myString = "number is 122"; static int myStaticInt=22;

int myInt=121;

 ^ 1 error

Correct the error in the JSP file and retry the file.

If none of these steps solves the problem, check to see if the problem is identified and documented using

the links in Diagnosing and fixing problems: Resources for learning. If you do not see a problem that

resembles yours, or if the information provided does not solve your problem, contact IBM support for

further assistance.

For current information available from IBM Support on known problems and their resolution, see the IBM

Support page.

Chapter 1. Overview and new features for troubleshooting 7

http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCC2GL
http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCC2GL

IBM Support has documents that can save you time gathering information needed to resolve this problem.

Before opening a PMR, see the IBM Support page.

HTTP session manager troubleshooting tips

If you are having problems creating or using HTTP sessions with your Web application hosted by

WebSphere Application Server, here are some steps to take:

v See HTTP session aren’t getting created or are getting dropped to see if your specific problem is

discussed.

v View the JVM logs for the application server which hosts the problem application:

– first, look at messages written while each application is starting. They will be written between the

following two messages:

Starting application: application

.....................

Application started: application

– Within this block, look for any errors or exceptions containing a package name of

com.ibm.ws.webcontainer.httpsession. If none are found, this is an indication that the session

manager started successfully.

– Error ″SRVE0054E: An error occurred while loading session context and Web application″

indicates that SessionManager didn’t start properly for a given application.

– Look within the logs for any Session Manager related messages. These messages will be in the

format SESNxxxxE and SESNxxxxW for errors and warnings, respectively, where xxxx is a number

identifying the precise error. Look up the extended error definitions in the Session Manager message

table.
v Use the Log Analyzer tool to browse the service log (activity.log) file for clues.

v See Best practices for using HTTP Sessions.

v To dynamically view the number of sessions as a Web application is running, enable performance

monitoring for HTTP sessions. This will give you an indication as to whether sessions are actually being

created.

v To learn how to view the http session counters as the application runs, see Monitoring performance with

Tivoli Performance Viewer (formerly Resource Analyzer).

v Alternatively, a special servlet can be invoked that displays the current configuration and statistics

related to session tracking. This servlet has all the counters that are in performance monitor tool and

has some additional counters.

– Servlet name: com.ibm.ws.webcontainer.httpsession.IBMTrackerDebug.

– It can be invoked from any web module which is enabled to serve by class name. For example,

using default_app,

http://localhost:9080/servlet/com.ibm.ws.webcontainer.httpsession.IBMTrackerDebug.

– If you are viewing the module via the serve-by-class-name feature, be aware that it may be viewable

by anyone who can view the application. You may wish to map a specific, secured URL to the servlet

instead and disable the serve-servlets-by-classname feature.
v Enable tracing for the HTTP Session Manager component:

– Use the trace specification com.ibm.ws.webcontainer.httpsession.*=all=enabled. Follow the

instructions for dumping and browsing the trace output to narrow the origin of the problem.

– If you are using persistent sessions based on memory replication, also enable trace for

com.ibm.ws.drs.*.
v If you are using database-based persistent sessions, look for problems related to the data source

the Session Manager relies on to keep session state information. For details on diagnosing database

related problems see Errors accessing a datasource or connection pool

Error message SRVE0079E Servlet host not found after you define a port

Error message SRVE0079E can occur after you define the port in WebContainer > HTTP Transports for a

server, indicating that you do not have the port defined in your virtual host definitions. To define the port,

1. On the administrative console, go to Environment > Virtual Hosts > default_host> Host Aliases> New

8 IBM WebSphere Application Server-Network Deployment, Version 6: Troubleshooting and support

http://www-1.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCC2GL&q=mustgather

2. Define the new port on host ″*″

The application server gets EC3 - 04130007 ABENDs

To prevent an EC3 - 04130007 abend from occuring on the application server, change the HTTP Output

timeout value. The custom property ConnectionResponseTimeout specifies the maximum number of

seconds the HTTP port for an individual server can wait when trying to read or write data. For instructions

on how to set ConnectionResponseTimeout, see HTTP transport custom properties.

If none of these steps fixes your problem, check to see if the problem has been identified and documented

by looking at the available online support (hints and tips, technotes, and fixes). If you don’t find your

problem listed there contact IBM support.

For current information available from IBM Support on known problems and their resolution, see the IBM

Support page.

IBM Support has documents that can save you time gathering information needed to resolve this problem.

Before opening a PMR, see the IBM Support page.

Problems creating or using HTTP sessions

Note: To view and update the Session Manager settings discussed here, use the administrative console.

Select the application server that hosts the problem application, then under Additional properties,

select Web Container, then Session manager.

What kind of problem are you having?

v HTTP Sessions are not getting created, or are lost between requests.

v HTTP Sessions are not persistent (session data lost when application server restarts, or not shared

across cluster).

v Session is shared across multiple browsers on same client machine.

v Session is not getting invalidated immediately after specified Session timeout interval.

v Unwanted sessions are being created by jsps.

v Session data intended for one client is seen by another client

If your problem is not described here, or none of these steps fixes the problem:

v Review Troubleshooting the HTTP Session Manager for general steps on debugging Session-manager

related problems.

v Review Managing HTTP sessions for information on how to configure the Session manager, and best

practices for using it.

v Check to see if the problem has been identified and documented by looking at the available online

support (hints and tips, technotes, and fixes).

v If you don’t find your problem listed there contact IBM support.

HTTP Sessions are not getting created, or are lost between requests

By default, the Session Manager uses cookies to store the session ID on the client between requests.

Unless you intend to avoid cookie-based session tracking, ensure that cookies are flowing between

WebSphere Application Server and the browser:

v Make sure the Enable cookies checkbox is checked under the Session tracking Mechanism property.

v Make sure cookies are enabled on the browser you are testing from or from which your users are

accessing the application.

v Check the Cookie domain specified on the SessionManager (to view the or update the cookie settings,

in the Session tracking mechanism->enable cookies property, click Modify).

– For example, if the cookie domain is set as ″.myCom.com″, resources should be accessed using that

domain name, e.g. http://www.myCom.com/myapp/servlet/sessionservlet.

Chapter 1. Overview and new features for troubleshooting 9

http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCMPDS
http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCMPDS
http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCMPDS&q=mustgather

– If the domain property is set, make sure it begins with a dot (.). Certain versions of Netscape do not

accept cookies if domain name doesn’t start with a dot. Internet Explorer honors the domain with or

without a dot. For example, if the domain name is set to mycom.com, change it to .mycom.com so

that both Netscape and Internet Explorer honor the cookie.
v Check the Cookie path specified on the SessionManager. Check whether the problem url is

hierarchially below the Cookie path specified. If not correct the Cookie path.

v If the Cookie maximum age property is set, ensure that the client (browser) machine’s date and time is

the same as the server’s, including the time zone. If the client and the server time difference is over the

″Cookie maximum age″ then every access would be a new session, since the cookie will ″expire″ after

the access.

v If you have multiple web modules within an enterprise application that track sessions:

– If you want to have different session settings among web modules in an enterprise application,

ensure that each web module specifies a different cookie name or path, or

– If Web modules within an enterprise application use a common cookie name and path, ensure that

the HTTP session settings, such as Cookie maximum age, are the same for all Web modules.

Otherwise cookie behavior will be unpredictable, and will depend upon which application creates the

session. Note that this does not affect session data, which is maintained separately by Web module.
v Check the cookie flow between browser and server:

1. On the browser, enable ″cookie prompt″. Hit the servlet and make sure cookie is being prompted.

2. On the server, enable SessionManager trace. Enable tracing for the HTTP Session Manager

component, by using the trace specification ″com.ibm.ws.webcontainer.httpsession.*=all=enabled″.

After trace is enabled, excericise your session-using servlet or jsp, then follow the instructions for

dumping and browsing the trace output .

3. Access the session servlet from the browser.

4. The browser will prompt for the cookie; note the jsessionid.

5. Reload the servlet, note down the cookie if a new cookie is sent.

6. Check the session trace and look for the session id and trace the request by the thread. Verify that

the session is stable across web requests:

– Look for getIHttpsession(...) which is start of session request.

– Look for releaseSesson(..) which is end of servlet request.
v If you are using URL rewriting instead of cookies:

– Ensure there are no static HTML pages on your application’s navigation path.

– Ensure that your servlets and jsp files are implementing URL rewriting correctly. For details and an

example see Session tracking options.
v If you are using SSL as your session tracking mechanism:

– Ensure that you have SSL enabled on your IBM HTTP Server or iPlanet HTTP server.

– Review Session tracking with SSL information.
v If you are in a clustered (multiple node) environment, ensure that you have session persistence

enabled.

HTTP Sessions are not persistent

If your HTTP sessions are not persistent, that is session data is lost when the application server restarts or

is not shared across the cluster:

v Check the Datasource.

v Check the SessionManager’s Persistence Settings properties:

– If you intend to take advantage of Session Persistence, verify that Persistence is set to Databaseor

Memory to Memory Replication.

– If you are using Database-based persistence:

- Check the jndi name of the datasource specified correctly on SessionManager.

- Specify correct userid and password for accessing the database.

Note that these settings have to be checked against the properties of an existing Data Source in

the admin console. The Session Manager does not automatically create a session database for

you.

- The Datasource should be non-JTA, i.e. non XA enabled.

- Check the JVM logs for appropriate database error messages.

10 IBM WebSphere Application Server-Network Deployment, Version 6: Troubleshooting and support

- With DB2, for row sizes other than 4k make sure specified row size matches the DB2 page size.

Make sure tablespace name is specified correctly.
– If you are using memory-based persistence, available in a network-deployment (multiple application

server) configuration only:

- Review .

- Review the Internal Replication Domains properties of your Session manager.

Session is shared across multiple browsers on same client machine

This behavior is browser-dependent. It varies between browser vendors, and also may change according

to whether a browser is launched as a new process or as a subprocess of an existing browser session (for

example by hitting Ctl-N on Windows).

The Cookie maximum age property of the Session Manager also affects this behavior, if cookies are used

as the session-tracking mechanism. If the maximum age is set to some positive value, all browser

instances share the cookies, which are persisted to file on the client for the specifed maximum age time.

Session is not getting invalidated immediately after specified Session timeout interval

The SessionManager invalidation process thread runs every x seconds to invalidate any invalid sessions,

where x is determined based on the Session timeout interval specified in the Session manager properties.

For the default value of 30 minutes , x is around 300 seconds. In this case, it could take up to 5 minutes

(300 seconds) beyond the timeout threshold of 30 minutes for a particular session to become invalidated.

Unwanted sessions are being created by jsps

As required by the JavaServer Page specification, jsps by default perform a request.getSession(true), so

that a session is created if none exists for the client. To prevent jsps from creating a new session, set the

session scope to false in the jsp file using the page directive as follows:

<% @page session="false" %>

Session data intended for one client is seen by another client

In rare situations, usually due to application errors, session data intended for one client might be seen by

another client. This situation is referred to as session data crossover. When the DebugSessionCrossover

custom property is set to true, code is enabled to detect and log instances of session data crossover.

Checks are performed to verify that only the session associated with the request is accessed or

referenced. Messages are logged if any discrepancies are detected. These messages provide a starting

point for debugging this problem. This additional checking is only performed when running on the

WebSphere-managed dispatch thread, not on any user-created threads.

For additional information on how to set this property, see article, Web container custom properties.

For current information available from IBM Support on known problems and their resolution, see the IBM

Support page.

IBM Support has documents that can save you time gathering information needed to resolve this problem.

Before opening a PMR, see the IBM Support page.

Enterprise bean and EJB container troubleshooting tips

If you are having problems starting an EJB container, or encounter error messages or exceptions that

appear to be generated on by an EJB container, follow these steps to resolve the problem:

v Browse the relevant log files for clues:

Chapter 1. Overview and new features for troubleshooting 11

http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCMPDS
http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCMPDS
http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCMPDS&q=mustgather

– Use the Administrative Console to verify that the application server which hosts the container is

running.

– Browse the JVM log files for the application server which hosts the container. Look for the message

server server_name open for e-business in the SystemOut.log . If it does not appear, or if you see

the message problems occurred during startup, browse the SystemErr.log for details.

– Browse the system log files for the application server which hosts the container.
v Use the Log Analyzer tool to browse the service log file for more information.

v Enable tracing for the EJB Container component, by using the following trace specification

EJBContainer=all=enabled. Follow the instructions for dumping and browsing the trace output to narrow

the origin of the problem.

If none of these steps solves the problem, check to see if the problem is identified and documented using

the links in Diagnosing and fixing problems: Resources for learning. If you do not see a problem that

resembles yours, or if the information provided does not solve your problem, contact IBM support for

further assistance.

For current information available from IBM Support on known problems and their resolution, see the IBM

Support page.

IBM Support has documents that can save you time gathering information needed to resolve this problem.

Before opening a PMR, see the IBM Support page.

Cannot access an enterprise bean from a servlet, a JSP file, a

stand-alone program, or another client

What kind of error are you seeing?

v javax.naming.NameNotFoundException: Name name not found in context ″local″ message when

access is attempted

v BeanNotReentrantException is thrown

v CSITransactionRolledbackException / TransactionRolledbackException is thrown

v Call fails, Stack trace beginning EJSContainer E Bean method threw exception [exception_name]

found in JVM log file.

v Call fails, ObjectNotFoundException or ObjectNotFoundLocalException when accessing stateful

session EJB found in JVM log file.

v Attempt to start CMP EJB module fails with javax.naming.NameNotFoundException:

dataSourceName

v Transaction [tran ID] has timed out after 120 seconds error accessing EJB.

v

v Symptom: CNTR0001W: A Stateful SessionBean could not be passivated

v Symptom: org.omg.CORBA.BAD_PARAM: Servant is not of the expected type. minor code:

4942F21E completed: No returned to client program when attempting to execute an EJB method

If the client is remote to the enterprise bean, which means, running in a different application server or as a

stand-alone client, browse the JVM logs of the application server hosting the enterprise bean as well as

log files of the client.

If you do not see a problem that resembles yours, or if the information provided does not solve your

problem, perform these steps:

1. If the problem appears to be name-service related, which means that you see a

NameNotFoundException, or a message ID beginning with NMSV, see these topics for more

information:

v “Cannot look up an object hosted by WebSphere Application Server from a servlet, JSP file, or other

client” on page 40

v “Naming services component troubleshooting tips” on page 39
2. Check to see if the problem is identified and documented using the links in Diagnosing and fixing

problems: Resources for learning.

12 IBM WebSphere Application Server-Network Deployment, Version 6: Troubleshooting and support

http://www-1.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCMPAH
http://www-1.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCMPAH
http://www-1.ibm.com/support/search.wss?tc=SSEQTP&tc1=SSCMPAH&rs=180&q=mustgather

If you still cannot fix your problem, see“Obtaining help from IBM” on page 155 for further assistance.

ObjectNotFoundException or ObjectNotFoundLocalException when accessing stateful session EJB

A possible cause of this problem is that the stateful session bean timed out and was removed by the

container. This event must be addressed in the code, according to the EJB 2.1 specification (available at

http://java.sun.com/products/ejb/docs.html), section 7.6.2, Dealing with exceptions.

Stack trace beginning "EJSContainer E Bean method threw exception [exception_name]" found in

JVM log file

If the exception name indicates an exception thrown by an IBM class that begins with ″com.ibm...″, then

search for the exception name within the information center, and in the online help as described below. If

″exception name″ indicates an exception thrown by your application, contact the application developer to

determine the cause.

javax.naming.NameNotFoundException: Name name not found in context "local"

A possible reason for this exception is that the enterprise bean is not local (not running in the same Java

virtual machine [JVM] or application server) to the client JSP, servlet, Java application, or other enterprise

bean, yet the call is to a ″local″ interface method of the enterprise bean . If access worked in a

development environment but not when deployed to WebSphere Application Server, for example, it might

be that the enterprise bean and its client were in the same JVM in development, but are in separate

processes after deployment.

To resolve this problem, contact the developer of the enterprise bean and determine whether the client call

is to a method in the local interface for the enterprise bean. If so, have the client code changed to call a

remote interface method, or to promote the local method into the remote interface.

References to enterprise beans with local interfaces are bound in a name space local to the server

process with the URL scheme of local:. To obtain a dump of a server local: name space, use the name

space dump utility described in the article ″“Name space dump utility for java:, local: and server name

spaces” on page 255.″

BeanNotReentrantException is thrown

This problem can occur because client code (typically a servlet or JSP file) is attempting to call the same

stateful SessionBean from two different client threads. This situation often results when an application

stores the reference to the stateful session bean in a static variable, uses a global (static) JSP variable to

refer to the stateful SessionBean reference, or stores the stateful SessionBean reference in the HTTP

session object. The application then has the client browser issue a new request to the servlet or JSP file

before the previous request has completed.

To resolve this problem, ask the developer of the client code to review the code for these conditions.

CSITransactionRolledbackException / TransactionRolledbackException is thrown

An enterprise bean container throws these high-level exceptions to indicate that an enterprise bean call

could not successfully complete. When this exception is thrown, browse the JVM logs to determine the

underlying cause.

Some possible causes include:

v The enterprise bean might throw an exception that was not declared as part of its method signature.

The container is required to roll back the transaction in this case. Common causes of this situation are

where the enterprise bean or code that it calls throws a NullPointerException,

ArrayIndexOutOfBoundsException, or other Java runtime exception, or where a BMP bean encounters a

Chapter 1. Overview and new features for troubleshooting 13

http://java.sun.com/products/ejb/docs.html

JDBC error. The resolution is to investigate the enterprise bean code and resolve the underlying

exception, or to add the exception to the problem method signature.

v A transaction might attempt to do additional work after being placed in a ″Marked Rollback″,

″RollingBack″, or ″RolledBack″ state. Transactions cannot continue to do work after they are set to one

of these states. This situation occurs because the transaction has timed out which, often occurs

because of a database deadlock. Work with the application database management tools or

administrator to determine whether database transactions called by the enterprise bean are timing out.

v A transaction might fail on commit due to dangling work from local transactions. The local transaction

encounters some ″dangling work″ during commit. When a local transactions encounters an ″unresolved

action″ the default action is to ″rollback″. You can adjust this action to ″commit″ in an assembly tool.

Open the enterprise bean .jar file (or the EAR file containing the enterprise bean) and select the

Session Beans or Entity Beans object in the component tree on the left. The Unresolved Action property

is on the IBM Extensions tab of the container properties.

Attempt to start EJB module fails with "javax.naming.NameNotFoundException

dataSourceName_CMP"exception

This problem can occur because:

v When the DataSource resource was configured, container managed persistence was not selected.

– To confirm this problem, in the administrative console, browse the properties of the data source given

in the NameNotFoundException. On the Configuration panel, look for a check box labeled Container

Managed Persistence.

– To correct this problem, select the check box for Container Managed Persistence.
v If container managed persistence is selected, it is possible that the CMP DataSource could not be

bound into the namespace.

– Look for additional naming warnings or errors in the status bar, and in the hosting application server

JVM logs. Check any further naming-exception problems that you find by looking at the topic “Cannot

look up an object hosted by WebSphere Application Server from a servlet, JSP file, or other client”

on page 40.

Transaction [tran ID] has timed out after 120 seconds accessing an enterprise bean

This error can occur when a client executes a transaction on a CMP or BMP enterprise bean.

v The default timeout value for enterprise bean transactions is 120 seconds. After this time, the

transaction times out and the connection closes.

v If the transaction legitimately takes longer than the specified timeout period, go to Manage Application

Servers > server_name, select the Transaction Service properties page, and look at the property

Total transaction lifetime timeout. Increase this value if necessary and save the configuration.

Symptom:CNTR0001W: A Stateful SessionBean could not be passivated

This error can occur when a Connection object used in the bean is not closed or nulled out.

To confirm this is the problem, look for an exception stack in the JVM log for the EJB container that hosts

the enterprise bean, and looks similar to:

[time EDT] <ThreadID> StatefulPassi W CNTR0001W:

A Stateful SessionBean could not be passivated: StatefulBeanO

(BeanId(XXX#YYY.jar#ZZZZ, <ThreadID>),

state = PASSIVATING) com.ibm.ejs.container.passivator.StatefulPassivator@<ThreadID>

java.io.NotSerializableException: com.ibm.ws.rsadapter.jdbc.WSJdbcConnection

 at java.io.ObjectOutputStream.outputObject((Compiled Code))

 at java.io.ObjectOutputStream.writeObject(ObjectOutputStream.java(Compiled Code))

 at java.io.ObjectOutputStream.outputClassFields((Compiled Code))

 at java.io.ObjectOutputStream.defaultWriteObject((Compiled Code))

 at java.io.ObjectOutputStream.outputObject((Compiled Code))

 at java.io.ObjectOutputStream.writeObject(ObjectOutputStream.java(Compiled Code))

 at com.ibm.ejs.container.passivator.StatefulPassivator.passivate((Compiled Code))

14 IBM WebSphere Application Server-Network Deployment, Version 6: Troubleshooting and support

at com.ibm.ejs.container.StatefulBeanO.passivate((Compiled Code)

 at com.ibm.ejs.container.activator.StatefulASActivationStrategy.atUnitOfWorkEnd

 ((Compiled Code))

 at com.ibm.ejs.container.activator.Activator.unitOfWorkEnd((Compiled Code))

 at com.ibm.ejs.container.ContainerAS.afterCompletion((Compiled Code)

where XXX,YYY,ZZZ is the Bean’s name, and <ThreadID> is the thread ID for that run.

To correct this problem, the application must close all connections and set the reference to null for all

connections. Typically this activity is done in the ejbPassivate() method of the bean. See the enterprise

bean specification mandating this requirement, specifically section 7.4 in the EJB specification Version 2.1.

Also, note that the bean must have code to reacquire these connections when the bean is reactivated.

Otherwise, there are NullPointerExceptions when the application tries to reuse the connections.

Symptom: org.omg.CORBA.BAD_PARAM: Servant is not of the expected type. minor code:

4942F21E completed: No

This error can be returned to a client program when the program attempts to execute an EJB method.

Typically this problem is caused by a mismatch between the interface definition and implementation of the

client and server installations, respectively.

Another possible cause is when an application server is set up to use a single class loading scheme. If an

application is uninstalled while the application server remains active, the classes of the uninstalled

application are still loaded in the application server. If you change the application, redeploy and reinstall it

on the application server, the previously loaded classes become back level. The back level classes cause

a code version mismatch between the client and the server.

To correct this problem:

1. Change the application server class loading scheme to multiple.

2. Stop and restart the application server and try the operation again.

3. Make sure the client and server code version are the same.

A client program does not work

What kind of problem are you seeing?

ActiveX client fails to display ASP files, or WebSphere Application Server resources (JSP files,

servlet, or HTML pages),or both

A possible cause of this problem is that both IIS for serving Active Server Pages (ASP) files and an HTTP

server that supports WebSphere Application Server (such as IBM HTTP Server) are deployed on the same

host. This deployment leads to misdirected HTTP traffic if both servers are listening on the same port

(such as the default port 80).

To resolve this problem, either:

v Open the IIS administrative panel, and edit the properties of the default Web server to change the port

number to a value other than 80

v Install IIS and the HTTP server on separate servers.

For current information available from IBM Support on known problems and their resolution, see the IBM

Support page.

IBM Support has documents that can save you time gathering information needed to resolve this problem.

Before opening a PMR, see the IBM Support page.

Chapter 1. Overview and new features for troubleshooting 15

http://www-1.ibm.com/support/search.wss?tc=SSEQTP&tc1=SSC3NAD&rs=180
http://www-1.ibm.com/support/search.wss?tc=SSEQTP&tc1=SSC3NAD&rs=180
http://www-1.ibm.com/support/search.wss?tc=SSEQTP&tc1=SSC3NAD&rs=180&q=mustgather

Universal Discovery, Description, and Integration, Web Service, and

SOAP component troubleshooting tips

If you are having problems deploying or executing applications that use WebSphere Application Server

Web Services, Universal Discovery, Description, and Integration (UDDI), or SOAP, try these steps:

v Review the troubleshooting documentation for messaging in the information center:

– WSIF troubleshooting tips
v Investigate the following areas for SOAP-related problems:

– View the JVM logs for the target application server, and run the Log Analyzer on the server’s service

log.

– View the error log of the HTTP server to which the SOAP request is sent.

– View the run-time behavior of the SOAP component in more detail, by enabling trace for

org.apache.soap.* and com.ibm.*.soap*.

– Browse the Web site http://xml.apache.org/soap/ for FAQs and known SOAP issues.

If none of these steps solves the problem, check to see if the problem has been identified and

documented using the links in Diagnosing and fixing problems: Resources for learning. If you do not see a

problem that resembles yours, or if the information provided does not solve your problem, contact IBM

support for further assistance.

For current information available from IBM Support on known problems and their resolution, see the IBM

Support page.

IBM Support has documents that can save you time gathering information needed to resolve this problem.

Before opening a PMR, see the IBM Support page.

Errors returned to a client sending a SOAP request

What kind of problem are you seeing?

v SOAPException: faultCode=SOAP-ENV:Client; msg=Error opening socket; java.net.ConnectException:

Connection refused: connect

v javax.security.cert.CertPathBuilderException: No end-entity certificate matching the selection criteria

could be found.

If none of these errors match the one you see:

v Browse the target application server log files. (installation_directory/server_name/SystemErr.log and

SystemOut.log for clues. See “Viewing the JVM logs” on page 123 for more information.

v Look up any error or warning messages in the message table.

v See “Universal Discovery, Description, and Integration, Web Service, and SOAP component

troubleshooting tips” for more information.

If you do not see a problem that resembles yours, or if the information provided does not solve your

problem, see“Obtaining help from IBM” on page 155.

SOAPException: faultCode=SOAP-ENV:Client; msg=Error opening socket;

java.net.ConnectException: Connection refused: connect

The most likely cause of this refused connection is that it was sent to the default port, 80, and an HTTP

server is not installed or configured.

To verify this situation, send the message directly to the SOAP port; for example, to

http://hostname:9080. If the message is sent correctly, there are two ways to resolve the problem:

v Continue specifying port 9080 on SOAP requests.

v If an HTTP server is not installed, install one and the associated plug-in component.

v If an HTTP server is installed:

– Regenerate the HTTP plug-in configuration in the administrative console by clicking Environment >

Update WebServer Plugin, and restarting the HTTP server.

16 IBM WebSphere Application Server-Network Deployment, Version 6: Troubleshooting and support

http://xml.apache.org/soap/
http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCR4XC
http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCR4XC
http://www-1.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCR4XC&q=mustgather

– If the problem persists, view the HTTP server access and error logs, as well as the

plugin_install_root/logs/web_server_name/http_plugin.log file for more information.

javax.security.cert.CertPathBuilderException: No end-entity certificate matching the selection

criteria could be found

This error usually indicates that new or updated security keys are needed. The security key files are:

v SOAPclient

v SOAPserver

v sslserver.p12

In an installed application, these files are located in the:

install_dir/installedApps/application_name.ear/soapsec.war/key/ directory. After replacing these files, you

must stop and restart the application.

To replace these files in a SOAP-enabled application that is not yet installed:

v Expand the application_name.ear file.

v Expand the soapsec.war file.

v Replace the security key files in thekey/ directory.

v After you replace these files, install the application and restart the server.

For current information available from IBM Support on known problems and their resolution, see the IBM

Support page.

IBM Support has documents that can save you time gathering information needed to resolve this problem.

Before opening a PMR, see the IBM Support page.

JDBC and data source troubleshooting tips

To see whether your specific problem has been addressed, review the Cannot access a data source topic.

If you cannot find your problem described there, investigate the problem further by using the following

instructions to enable tracing for relevant WebSphere Application Server components.

This topic includes the following sections:

v Trace strings for JDBC data sources

v JDBC trace properties

Trace strings for JDBC data sources

Turn on JDBC tracing by using the following trace strings:

v com.ibm.ws.database.logwriter Trace string for databases that use the GenericDataStoreHelper. You

can also use this trace string for unsupported databases.

v com.ibm.ws.db2.logwriter Trace string for DB2 databases.

v com.ibm.ws.oracle.logwriter Trace string for Oracle databases.

v com.ibm.ws.cloudscape.logwriter Trace string for Cloudscape databases.

v com.ibm.ws.informix.logwriter Trace string for Informix databases.

v com.ibm.ws.sqlserver.logwriter Trace string for Microsoft SQL Server databases.

v com.ibm.ws.sybase.logwriter Trace string for Sybase databases.

The trace group that includes the trace strings is WAS.database.

JDBC trace properties

Use a back-end database that supports JDBC tracing. Setting trace strings does not result in a trace if the

database does not support JDBC tracing. The following databases offer JDBC tracing at this time:

v DB2

Chapter 1. Overview and new features for troubleshooting 17

http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCR4XC
http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCR4XC
http://www-1.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCR4XC&q=mustgather

v Oracle

v SQL Server

Set the level of trace desired for DB2 Universal database and Oracle as custom properties on the

datasource.

v DB2 Universal JDBC driver provider Custom properties for DB2 are:

– traceLevel Possible traceLevel values are:

- TRACE_NONE = 0

- TRACE_CONNECTION_CALLS = 1

- TRACE_STATEMENT_CALLS = 2

- TRACE_RESULT_SET_CALLS = 4

- TRACE_DRIVER_CONFIGURATION = 16

- TRACE_CONNECTS = 32

- TRACE_DRDA_FLOWS = 64

- TRACE_RESULT_SET_META_DATA = 128

- TRACE_PARAMETER_META_DATA = 256

- TRACE_DIAGNOSTICS = 512

- TRACE_SQLJ = 1024

- TRACE_ALL = -1

Note: This trace level provides real data that sets to the PreparedStatement or gets from the

ResultSet object.

– traceFile Use this property to integrate the DB2 trace with the WebSphere Application Server trace.

If you do not set the value, traces are integrated. Otherwise, DB2 traces are directed to the desired

file. You can dynamically enable or disable trace. You can run an application and turn on the DB2

trace if there is a problem. Use the run time trace enablement provided with the Application Server

by specifying a trace string of com.ibm.ws.db2.logwriter=all=enabled.
v Oracle JDBC provider Custom properties for Oracle are:

– oraclelogCategoryMask Controls the output category. The default is 47, which is

(OracleLog.USER_OPER 1 | OracleLog.PROG_ERROR 2 | OracleLog.ERROR 4 |

OracleLog.WARNING 8 | OracleLog.DEBUG1 32).

Possible values are:

- OracleLog.USER_OPER 1

- OracleLog.PROG_ERROR 2

- OracleLog.ERROR 4

- OracleLog.WARNING 8

- OracleLog.FUNCTION 16

- OracleLog.DEBUG1 32

- OracleLog.SQL_STR 128

– oraclelogModuleMask Controls which modules write debug output. The default is 1, which is

OracleLog.MODULE_DRIVER 1.

Possible values are:

- OracleLog.MODULE_DRIVER 1,

- OracleLog.MODULE_DBACCESS 2

– oraclelogPrintMask Controls which information to print with each trace message. The default is 62,

which is ([OracleLog.FIELD_OBJECT for 9i / OracleLog.FIELD_CONN for 8i] 32 |

OracleLog.FIELD_CATEGORY 16 | OracleLog.FIELD_SUBMOD 8 | OracleLog.FIELD_MODULE 4 |

OracleLog.FIELD_TIME 2).

Possible values are:

- OracleLog.FIELD_TIME 2

- OracleLog.FIELD_MODULE 4

- OracleLog.FIELD_SUBMOD 8

- OracleLog.FIELD_CATEGORY 16

- OracleLog.FIELD_OBJECT 32

- OracleLog.FIELD_THREAD 64

18 IBM WebSphere Application Server-Network Deployment, Version 6: Troubleshooting and support

Notes for Oracle JDBC tracing:

1. Oracle 9i requires the use of classes12_g.zip to display traces. With Oracle8i, the classes12_g.zip

is optional.

2. You can dynamically enable or disable trace. You can run an application and turn on the Oracle

trace if there is a problem. Use the run-time trace enablement provided with the WebSphere

Application Server products, by specifying a trace string of com.ibm.ws.oracle.logwriter=all=enabled.

If JDBC tracing does not provide enough information to isolate and fix your problem, check to see if the

problem has been identified and documented by looking at the available online support (hints and tips,

technotes, and fixes). If you do not find your problem listed there, contact IBM Support.

For current information available from IBM Support on known problems and their resolution, see the IBM

Support page.

IBM Support has documents that can save you time gathering information needed to resolve this problem.

Before opening a PMR, see the IBM Support page.

DB2 troubleshooting tips

Illegal conversion occurs on any VARCHAR FOR BIT DATA column in a container-managed

persistent bean

When enterprise beans with container-managed persistent (CMP) types that have any VARCHAR FOR

BIT DATA columns defined on a DB2 table are deployed in the DB2 universal JDBC type 4 driver to

persist the data, an SQLException of illegal conversion is thrown at run time. This exception only occurs

when you use the DB2 universal JDBC type 4 driver and with the deferPrepares property being set to true.

When the deferPrepares property is set to true, the DB2 universal JDBC type 4 driver uses the standard

JDBC data mapping.

Currently, the generated deployed code does not follow the standard JDBC specification mapping. The

failure at execution time is because of a problem in the tool that prepared the enterprise beans for

execution.

To avoid receiving this exception, choose one of the following options:

v Set the deferPrepares property to false in the data source configuration.

v Do not use the DB2 universal JDBC type 4 driver if your table has any VARCHAR FOR BIT DATA or

LONG VARCHAR FOR BIT DATA columns. Use the DB2 legacy CLI-based JDBC driver to persist the

data. Refer to DB2 V8.1 readme for more details.

For current information available from IBM Support on known problems and their resolution, see the IBM

Support page.

IBM Support has documents that can save you time gathering information needed to resolve problems.

Before opening a PMR, see the IBM Support page.

Cannot access a data source

What kind of database are you trying to access?

v Oracle

v DB2

v SQL Server

v Cloudscape

v Sybase

v General data access problems

If the errors described in the previous articles do not match the errors you see:

Chapter 1. Overview and new features for troubleshooting 19

http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCMP9Y
http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCMP9Y
http://www-1.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCMP9Y&q=mustgather
http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCMP9Y
http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCMP9Y
http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCMP9Y&q=mustgather

1. Browse the log files of the application server that contains the application, for clues. By default these

files are install_root/server_name/SystemErr.log and SystemOut.log.

2. Browse the Helper Class property of the data source to verify that it is correct and that it is on the

WebSphere Application Server class path. Mysterious errors or behavior might result from a missing or

misnamed Helper Class name. If WebSphere Application Server cannot load the specified class, it

uses a default helper class that might not function correctly with your database manager.

3. Verify that the Java Naming and Directory Interface (JNDI) name of the data source matches the

name used by the client attempting to access it. If error messages indicate that the problem might be

naming-related, such as referring to the name server or naming service, or including error IDs

beginning with NMSV, look at the Naming related problems and Troubleshooting the naming service

component topics.

4. Enable tracing for the resource adapter using the trace specification, RRA=all=enabled. Follow the

instructions for dumping and browsing the trace output, to narrow the origin of the problem.

If none of these steps fixes your problem, see if the problem is identified and documented in available

online support (hints and tips, technotes, and fixes). If none of the online resources listed in the topic

describes your problem, see “Obtaining help from IBM” on page 155.

General data access problems

v An exception ″IllegalConnectionUseException″ occurs

v WTRN0062E: An illegal attempt to enlist multiple one phase capable resources has occurred.

v ConnectionWaitTimeoutException.

v com.ibm.websphere.ce.cm.StaleConnectionException: [IBM][CLI Driver] SQL1013N The database alias

name or database name ″NULL″ could not be found. SQLSTATE=42705

v java.sql.SQLException: java.lang.UnsatisfiedLinkError:

v ″J2CA0030E: Method enlist caught java.lang.IllegalStateException″ wrapped in error ″WTRN0063E: An

illegal attempt to enlist a one phase capable resource with existing two phase capable resources has

occurred″ when attempting to execute a transaction.

v java.lang.UnsatisfiedLinkError:xaConnect exception when attempting a database operation

v ″J2CA0114W: No container-managed authentication alias found for connection factory or datasource

datasource″ when attempting a database operation

v An error is thrown if you use the ws_ant command to perform the database customization for Structured

Query Language in Java on HP platforms

IllegalConnectionUseException

This error can occur because a connection obtained from a WAS40DataSource is being used on more

than one thread. This usage violates the J2EE 1.3 programming model, and an exception generates when

it is detected on the server. This problem occurs for users accessing a data source through servlets or

bean-managed persistence (BMP) enterprise beans.

To confirm this problem, examine the code for connection sharing. Code can inadvertently cause sharing

by not following the programming model recommendations, for example by storing a connection in an

instance variable in a servlet, which can cause use of the connection on multiple threads at the same time.

WTRN0062E: An illegal attempt to enlist multiple one phase capable resources has occurred

This error can occur because:

v An attempt was made to share a single-phase connection, when each getConnection method has

different connection properties; such as the AccessIntent. This attempt causes a non-shareable

connection to be created.

v An attempt was made to have more than one unshareable connection participate in a global transaction,

when the data source is not an XA resource.

v An attempt was made to have a one-phase resource participate in a global transaction while an XA

resource or another one-phase resource already participated in this global transaction.

20 IBM WebSphere Application Server-Network Deployment, Version 6: Troubleshooting and support

– Within the scope of a global transaction you try to get a connection more than once and at least one

of the resource-refs you use specifies that the connection is unshareable, and the data source is not

configured to support two-phase commit transactions. It does not support an XAResource. If you do

not use a resource-ref, you default to unshareable connections.

– Within the scope of a global transaction you try to get a connection more than once and at least one

of the resource-refs you use specifies that the connection is shareable and the data source is not

configured to support two-phase commit transactions. That is, it does not support an XAResource. In

addition, even though you specify that connections are shareable, each getConnection request is

made with different connection properties (such as IsolationLevel or AccessIntent). In this case, the

connections are not shareable, and multiple connections are handed back.

– Multiple components (servlets, session beans, BMP entity beans, or CMP entity beans) are accessed

within a global transaction. All use the same data source, all specify shareable connections on their

resource-refs, and you expect them to all share the same connection. If the properties are different,

you get multiple connections. AccessIntent settings on CMP beans change their properties. To share

a connection, the AccessIntent setting must be the same. For more information about CMP beans

sharing a connection with non-CMP components, see the Data access application programming

interface support and Example: Accessing data using IBM extended APIs to share connections

between container-managed and bean-managed persistence beans topics in the DataAccess section

of the information center.

To correct this error:

v Check what your client code passes in with its getConnection requests, to ensure they are consistent

with each other.

v Check the connection sharing scope from the resource binding, using the .

– If you are running an unshareable connection scope, verify that your data source is an XA data

source.

– If you are running a shareable connection scope, verify that all connection properties, including

AccessIntent, are sharable.
v Check the JDBC provider implementation class from the Manage JDBC resource panel of the

administrative console to ensure that it is a class that supports XA-type transactions.

ConnectionWaitTimeoutException accessing a data source or resource adapter

If your application receives exceptions like a com.ibm.websphere.ce.cm.ConnectionWaitTimeoutException

or com.ibm.websphere.ce.j2c.ConnectionWaitTimeoutException when attempting to access a WebSphere

Application Server data source or JCA-compliant resource adapter, respectively, some possible causes

are:

v The maximum number of connections for a given pool is set too low. The demand for concurrent use of

connections is greater then the configured maximum value for the connection pool. One indication that

this situation is the problem is that you receive these exceptions regularly, but your CPU utilization is

not high. This exception indicates that there are too few connections available to keep the threads in the

server busy.

v Connection Wait Time is set too low. Current demand for connections is high enough such that

sometimes there is not an available connection for short periods of time. If your connection wait timeout

value is too low, you might timeout shortly before a user returns a connection back to the pool.

Adjusting the connection wait time can give you some relief. One indication of this problem is that you

use close to the maximum number of connections for an extended period and receiving this error

regularly.

v You are not closing some connections or you are returning connections back to the pool at a very slow

rate. This situation can happen when using unshareable connections, when you forget to close them, or

you close them long after you are finished using them, keeping the connection from returning to the

pool for reuse. The pool soon becomes empty and all applications get

ConnectionWaitTimeoutExceptions. One indication of this problem is you run out of connections in the

connection pool and you receive this error on most requests.

Chapter 1. Overview and new features for troubleshooting 21

v You are driving more load than the server or backend system have resources to handle. In this case

you must determine which resources you need more of and upgrade configurations or hardware to

address the need. One indication of this problem is that the application or database server CPU is

nearly 100% busy.

To correct these problems, either:

v Modify an application to use fewer connections

v Properly close the connections.

v Change the pool settings of MaxConnections or ConnnectionWaitTimeout.

v Adjust resources and their configurations.

com.ibm.websphere.ce.cm.StaleConnectionException: [IBM][CLI Driver] SQL1013N The database

alias name or database name "NULL" could not be found. SQLSTATE=42705

This error occurs when a data source is defined but the databaseName attribute and the corresponding

value are not added to the custom properties panel.

To add the databaseName property:

1. Click Resources>Manage JDBC Providers link in the administrative console.

2. Select the JDBC provider that supports the problem data source.

3. Select Data Sources and then select the problem data source.

4. Under Additional properties click Custom Properties.

5. Select the databaseName property, or add one if it does not exist, and enter the actual database

name as the value.

6. Click Apply or OK, and then click Save from the action bar.

7. Access the data source again.

java.sql.SQLException: java.lang.UnsatisfiedLinkError:

This error indicates that the directory containing the binary libraries which support a database are not

included in the LIBPATH environment variable for the environment in which the WebSphere Application

Server starts.

The path containing the DBM vendor libraries vary by dbm. One way to find them is by scanning for the

missing library specified in the error message. Then you can correct the LIBPATH variable to include the

missing directory, either in the .profile of the account from which WebSphere Application Server is

executed, or by adding a statement in a .sh file which then executes the startServer program.

"J2CA0030E: Method enlist caught java.lang.IllegalStateException" wrapped in error "WTRN0063E:

An illegal attempt to enlist a one phase capable resource with existing two phase capable

resources has occurred" when attempting to execute a transaction.

This error can occur when last participant support (LPS) is missing or disabled. LPS allows a one-phase

capable resource and a two-phase capable resource to enlist within the same transaction.

LPS is only available if the following are true:

v WebSphere Application Server Programming Model Extensions (PME) is installed. PME is included in

the Application Server Integration Server product.

v The Additional Integration Server Extensions option is enabled when PME is installed. If you perform a

typical installation, this function is enabled by default. If you perform a custom installation, you have the

option to disable this function, which disables LPS.

v The application enlisting the one-phase resource is deployed with the Accept heuristic hazard option

enabled. This deployment is done through the Assembly Service Toolkit. To enable this option in the

Assembly Service Toolkit:

1. Load the EAR file into the Assembly Service Toolkit.

22 IBM WebSphere Application Server-Network Deployment, Version 6: Troubleshooting and support

2. If the EAR file is actually a JTEE1.2 EAR then it must be upgraded to a JTEE1.3 EAR by clicking

File> Convert EAR from the .

3. Select the EAR file in the left-hand panel of the Assembly Service Toolkit.

4. Select the WAS Integration Server tab in the bottom right window panel of the Assembly Service

Toolkit

5. Ensure that the Accept heuristic hazard option is selected.

6. Save the EAR file.

java.lang.UnsatisfiedLinkError:xaConnect exception when attempting a database operation

This problem has two main causes:

v The most common cause is that the jdbc driver which supports connectivity to the database is missing,

or is not the correct version, or that native libraries which support the driver are on the system’s path.

– To resolve this problem on a Windows platform, verify that the JDBC driver jar file is on the system

PATH environment variable:

- If you are using DB2,verify that at least the DB2 client product has been installed on the

WebSphere host

v On DB2 version 7.2 or earlier, the file where the client product is installed on the WebSphere

Application Server is db2java.zip. Verify that the usejdbc2.bat program has been executed after

the database install and after any upgrade to the database product.

v On DB2 version 8.1 or later, use the DB2 Universal JDBC Provider Driver when defining a

JDBC provider in WebSphere Application Server. The driver file is db2jcc.jar. If you use the type

2 (default) option, verify that at least the DB2 client product is installed on the WebSphere

Application Server host. If you specify the type 4 option, the DB2 client does not need to be

installed, but the file db2jcc.jar still must be present.

When specifying the location of the driver file, it is recommended to that you specify the path

and file name of the target DB2 installation, rather than simply copying the file to a local

directory, if possible. Otherwise, you may be exposed to problems if the target DB2 installation

is upgraded and the driver used by WebSphere Application Server is not. If you choose DB2

Legacy CLI-based type 2 JDBC Driver when defining a JDBC provider in WebSphere

Application Server, then you must still follow the steps to ensure that you have the correct

version of the db2java.zip file (see instructions for DB2 7.2 or earlier).

– On a Unix platform, ensure that any native libraries required to support the database client of your

database product are specified in the LD_LIBRARY_PATH environment variable in the profile of the

account under which WebSphere Application Server executes.

If you are using DB2 The native library is libdb2jdbc.so. The best way to ensure that this library is

accessed correctly by WebSphere is to call the db2profile script supplied with DB2 from the .profile

script of the account (such as ″root″) under which WebSphere runs.

- If you are using DB2 version 7.2 or earlier, ensure that the usejdbc2,script provided with DB2 is

called from the profile of the account under which WebSphere Application server is launched.

- If you are using DB2 version 8.1 or later, see the previous instructions for the Windows operating

system.

v If the database manager is DB2, you may have chosen the option to create a 64-bit instance. A 64-bit

configuration is not supported. If this has happened, remove the database instance and create a new

one with the default 32-bit setting.

Note: For general help in configuring JDBC drivers and data sources in WebSphere Application Server,

see the topic Accessing data from applications.

Chapter 1. Overview and new features for troubleshooting 23

"J2CA0114W: No container-managed authentication alias found for connection factory or

datasource datasource" when attempting a database operation

This error might occur in the SystemOut.log file when you run an application to access a data source after

creating the data source using JACL script.

The error message occurs because the JACL script did not set container-managed authentication alias for

CMP connection factory. The JACL is missing the following line:

$AdminConfig create MappingModule $cmpConnectorFactory "{mappingConfigAlias

DefaultPrincipalMapping}{authDataAlias $authDataAlias}

To correct this problem, add the missing line to the JACL script and run the script again. See Example:

Creating a JDBC provider and data source using Java Management Extensions API and the scripting tool

for a sample JACL script.

An error is thrown if you use the ws_ant command to perform the database customization for

Structured Query Language in Java on HP platforms

If you use the ws_ant command to perform the database customization for Structured Query Language in

Java (SQLJ) on HP platforms, you can receive an error similar to the following:

[java] [ibm][db2][jcc][sqlj]

[java] [ibm][db2][jcc][sqlj] Begin Customization

[java] [ibm][db2][jcc][sqlj] encoding not supported!!

The cause of this error might be that your databases were created using the HP default character set. The

Java Common Client (JCC) driver depends on the software development kit (SDK) to perform the

codepage conversions. The SDK shipped with this product, however, does not support the HP default

codepage.

You need to set your LANG to the ISO locale before creating the databases. It should be similar to the

following:

export LANG=en_US.iso88591

Refer to the DB2 Tech Notes at http://www-3.ibm.com/software/data/db2/udb/ad/v8/bldg/t0004877.htm

for details.

Problems accessing an Oracle data source

What kind of error do you see when you try to access your Oracle-based data source

v An Invalid Oracle URL is specified

v ″DSRA0080E: An exception was received by the Data Store Adapter. See original exception message:

ORA-00600″ when connecting to or using an Oracle data source.

v ″DSRA8100E: Unable to get a {0} from the DataSource. Explanation: See the linkedException for more

information.″

v An ″Error while trying to retrieve text for error″ message occurs when connecting to an Oracle data

source.

v A java.lang.UnsatisfiedLinkError occurs when connecting to an Oracle data source.

v The exception java.lang.NullPointerException or an ″internal error: oracle.jdbc.oci8.OCIEnv″ occurs

when connecting to an Oracle data source.

v WSVR0016W: Classpath entry, ${ORACLE_JDBC_DRIVER_PATH}/classes12.zip, in Resource, Oracle

JDBC Thin Driver, located at cells/BaseApplicationServerCell/nodes/wasrtp/resources.xml has an invalid

variable.

An invalid Oracle URL is specified

This error might be caused by an incorrectly specified URL on the URL property of the target data source.

24 IBM WebSphere Application Server-Network Deployment, Version 6: Troubleshooting and support

Examine the URL property for the data source object in the administrative console. For the 8i OCI driver,

verify that oci8 is used in the URL. For the 9i OCI driver, you can use either oci8 or oci.

Examples of Oracle URLs:

v For the thin driver: jdbc:oracle:thin:@hostname.rchland.ibm.com:1521:IBM

v For the thick (OCI) driver: jdbc:oracle:oci8:@tnsname1

"DSRA0080E: An exception was received by the data store adapter. See original exception

message: ORA-00600" when connecting to or using an Oracle data source "DSRA0080E: An

exception was received by the data store adapter. See original exception message: ORA-00600"

when connecting to or using an Oracle data source "DSRA0080E: An exception was received by

the Data Store Adapter. See original exception message: ORA-00600" when connecting to or using

an Oracle data source

A possible reason for this exception is that the version of the Oracle JDBC driver being used is older than

the Oracle database. It is possible that more than one version of the Oracle JDBC driver is configured on

the WebSphere Application Server.

Examine the version of the JDBC driver. Sometimes you can determine the version by looking at the class

path to determine what directory the driver is in.

If you cannot determine the version this way, use the following program to determine the version. Before

running the program, set the class path to the location of your JDBC driver files.

import java.sql.*;

 import oracle.jdbc.driver.*;

 class JDBCVersion

 {

 public static void main (String args[])

 throws SQLException

 {

 // Load the Oracle JDBC driver

 DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());

 // Get a connection to a database

 Connection conn = DriverManager.getConnection

 ("jdbc:oracle:thin:@appaloosa:1521:app1","sys","change_on_install");

 // Create Oracle DatabaseMetaData object

 DatabaseMetaData meta = conn.getMetaData();

 // gets driver info:

 System.out.println("JDBC driver version is " + meta.getDriverVersion());

 }

 }

If the driver and the database are at different versions, replace the JDBC driver with the correct version. If

multiple drivers are configured, remove any that occur at the incorrect level.

DSRA8100E: Unable to get a {0} from the DataSource. Explanation: See the linkedException for

more information.

When using an oracle thin driver, Oracle throws a ″java.sql.SQLException: invalid arguments in call″ error

if no user name or password is specified when getting a connection. If you see this error while running

WebSphere Application Server, the alias is not set.

To remove the exception, define the alias on the data source.

"Error while trying to retrieve text for error" error when connecting to an Oracle data source

The most likely cause of this error is that the Oracle 8i OCI driver is being used with an ORACLE_HOME

property that is either not set or is set incorrectly.

Chapter 1. Overview and new features for troubleshooting 25

To correct the error, examine the user profile that WebSphere Application Server is running under to verify

that the $ORACLE_HOME environment variable is set correctly.

"java.lang.UnsatisfiedLinkError:" connecting to an Oracle data source

The environment variable LIBPATH might not be set or is set incorrectly, if your data source throws an

UnsatisfiedLinkError error, and the full exception indicates that the problem is related to an Oracle

module, as in the following examples.

Example of invalid an LIBPATH for the 8i driver:

Exception in thread "main" java.lang.UnsatisfiedLinkError:

/usr/WebSphere/AppServer/java/jre/bin/libocijdbc8.so:

load ENOENT on shared library(s)

/usr/WebSphere/AppServer/java/jre/bin/libocijdbc8.so libclntsh.a

Example of an invalid LIBPATH for the 9i driver:

Exception in thread "main" java.lang.UnsatisfiedLinkError:

no ocijdbc9 (libocijdbc9.a or .so) in java.library.path

at java.lang.ClassLoader.loadLibrary(ClassLoader.java(Compiled Code))

at java.lang.Runtime.loadLibrary0(Runtime.java:780)

To correct the problem, examine the user profile under which the WebSphere Application Server is running

to verify that the LIBPATH environment variable includes Oracle libraries. Scan for the lobocijdbc8.so file

to find the right directory.

java.lang.NullPointerException referencing 8i classes, or " internal error: oracle.jdbc.oci8. OCIEnv"

connecting to an Oracle data source

The problem might be that the 9i OCI driver is being used on an AIX 32-bit machine, the LIBPATH is set

correctly, but the ORACLE_HOME environment variable is not set or is set incorrectly. You can encounter

an exception similar to either of the following when your application attempts to connect to an Oracle data

source:

Exception example for the java.lang.NullPointerException:

Exception in thread "main" java.lang.NullPointerException

at oracle.jdbc.oci8.OCIDBAccess.check_error(OCIDBAccess.java:1743)

at oracle.jdbc.oci8.OCIEnv.getEnvHandle(OCIEnv.java:69)

at oracle.jdbc.oci8.OCIDBAccess.logon(OCIDBAccess.java:452)

at oracle.jdbc.driver.OracleConnection. <init>(OracleConnection.java:287)

Exception example for the java.sql.SQLException:

Exception in thread "main" java.sql.SQLException:

internal error: oracle.jdbc.oci8. OCIEnv@568b1d21

at oracle.jdbc.dbaccess.DBError.throwSqlException(DBError.java:184)

at oracle.jdbc.dbaccess.DBError.throwSqlException(DBError.java:226)

at oracle.jdbc.oci8.OCIEnv.getEnvHandle(OCIEnv.java:79)

To correct the problem, examine the user profile that WebSphere Application Server is running under to

verify that it has the $ORACLE_HOME environment variable set correctly, and that the $LIBPATH includes

$ORACLE_HOME/lib.

WSVR0016W: Classpath entry, ${ORACLE_JDBC_DRIVER_PATH}/classes12.zip, in Resource, Oracle

JDBC Thin Driver, located at cells/BaseApplicationServerCell/nodes/wasrtp/resources.xml has an

invalid variable

This error occurs when there is no environment variable defined for the property,

ORACLE_JDBC_DRIVER_PATH.

26 IBM WebSphere Application Server-Network Deployment, Version 6: Troubleshooting and support

Verify this problem in the administrative console. Go to Environment > Manage WebSphere Variables to

verify whether the variable ORACLE_JDBC_DRIVER_PATH is defined.

To correct the problem, click New and define the variable. For example, name :

ORACLE_JDBC_DRIVER_PATH , value : c:\oracle\jdbc\lib Use a value that names the directory in your

operating system and directory structure that contains the classes12.zip file.

Problems accessing a DB2 database

What kind of problem are you having accessing your DB2 database?

v SQL0567N ″DB2ADMIN″ is not a valid authorization ID. SQLSTATE=42602.

v SQL0805N Package ″package name″ was not found.

v SQL0805N Package ″NULLID.SQLLC300″ was not found. SQLSTATE=51002.

v SQL30082N Attempt to establish connection failed with security reason ″17″ (″UNSUPPORTED

FUNCTION’) SQLSTATE=08001

v SQLException, with ErrorCode -99,999 and SQLState 58004, with Java ″StaleConnectionException:

COM.ibm.db2.jdbc.DB2Exception: [IBM][CLI Driver] CLI0119E Unexpected system failure.

SQLSTATE=58004″ using WAS40-type data source.

v Error message java.lang.reflect.InvocationTargetException: com.ibm.ws.exception.WsException:

DSRA0023E: The DataSource implementation class ″COM.ibm.db2.jdbc.DB2XADataSource″ could not be

found. when trying to access a DB2 database

v CLI0119E System error. SQLSTATE=58004 - DSRA8100 : Unable to get a XAconnection, or

DSRA0011E: Exception: COM.ibm.db2.jdbc.DB2Exception: [IBM][CLI Driver] CLI0119E Unexpected

system failure. SQLSTATE=58004.

v COM.ibm.db2.jdbc.DB2Exception: [IBM][CLI Driver][DB2/NT] SQL0911N The current transaction has

been rolled back because of a deadlock or timeout. Reason code ″2″. SQLSTATE=40001.

v ″COM.ibm.db2.jdbc.DB2ConnectionPoolDataSource″ could not be found for data source (data_source).

v

v java.sql.SQLException: Failure in loading T2 native library db2jcct2 DSRA0010E: SQL State = null,

Error Code = -99,999

v Lock contention exception occurs in database when data source implementation type is XA

v ″DSRA8050W: Unable to find the DataStoreHelper class specified″ exception occurs when trying to use

a DB2 Universal Datasource in a mixed release cell.

v Check the IBM support page for information on problems that occur when using connection pooling with

DB2.

SQL0567N "DB2ADMIN " is not a valid authorization ID. SQLSTATE=42602

If you encounter this error when attempting to access a DB2 Universal Database (UDB):

1. Verify that your user name and password in the data source properties page in the administrative

console are correct.

2. Ensure that the user ID and password do not contain blank characters before, in between, or after.

SQL0805N Package package-name was not found

Possible reasons for these exceptions:

v If the package name is NULLID.SQLLC300, see SQL0805N Package ″NULLID.SQLLC300″ was not

found. SQLSTATE=51002. for the reason.

v You are attempting to use an XA-enabled JDBC driver on a DB2 database that is not XA-ready.

To correct the problem on a DB2 Universal Database (UDB), run this one-time procedure, using the

db2cmd interface while connected to the database in question:

1. DB2 bind @db2ubind.lst blocking all grant public

2. DB2 bind @db2cli.lst blocking all grant public

The db2ubind.lst and db2cli.lst files are in the bnd directory of your DB2 installation root. Run the

commands from that directory.

Chapter 1. Overview and new features for troubleshooting 27

http://www-1.ibm.com/support/docview.wss?uid=swg21106851

SQL0805N Package "NULLID.SQLLC300" was not found. SQLSTATE=51002

This error can occur because:

v The underlying database was dropped and recreated.

v DB2 was ugpraded and its packages are not rebound correctly.

To resolve this problem, rebind the DB2 packages by running the db2cli.lst script found in the bnd

directory. For example: db2>@db2cli.lst.

SQL30082N Attempt to establish connection failed with security reason "17" ("UNSUPPORTED

FUNCTION’) SQLSTATE=08001

This error can occur when the security mechanism specified by the client is not valid for this server. Some

typical examples:

v The client sent a new password value to a server that does not support the change password function.

v The client sent SERVER_ENCRYPT authentication information to a server that does not support

password encryption.

v The client sent a userid, but no password, to a server that does not support authentication by userid

only.

v The client has not specified an authentication type, and the server has not responded with a supported

type. This can include the server returning multiple types from which the client is unable to choose.

To resolve this problem, ensure that your client and server use the same security mechanism. For

example, if this is an error on your data source, verify that you have assigned a user id and password or

authentication alias.

SQLException, with ErrorCode -99,999 and SQLState 58004, with Java "StaleConnectionException:

COM.ibm.db2.jdbc.DB2Exception: [IBM][CLI Driver] CLI0119E Unexpected system failure.

SQLSTATE=58004", when using WAS40-type data source

An unexpected system failure usually occurs when running in XA mode (two-phase commit). Among the

many possible causes are:

v An invalid username or password was provided.

v The database name is incorrect.

v Some DB2 packages are corrupted.

To determine whether you have a user name or password problem, look in the db2diag.log file to view the

actual error message and SQL code. A message like the following example, with an SQLCODE of -1403,

indicates an invalid user ID or password:

2002-07-26-14.19.32.762905 Instance:db2inst1 Node:000

PID:9086(java) Appid:*LOCAL.db2inst1.020726191932

XA DTP Support sqlxa_open Probe:101

DIA4701E Database "POLICY2" could not be opened

for distributed transaction processing.

String Title: XA Interface SQLCA PID:9086 Node:000

SQLCODE = -1403

To resolve these problems:

1. Correct your user name and password. If you specify your password on the GUI for the data source,

ensure that the user name and password you specify on the bean are correct. The user name and

password you specify on the bean overwrite whatever you specify when creating the data source.

2. Use the correct database name.

3. Rebind the packages (in the bnd directory) as follows:

db2connect to dbname

c:\SQLLIB\bnd>DB2 bind @db2ubind.lst blocking all grant public

c:\SQLLIB\bnd>DB2 bind @db2cli.lst blocking all grant public

28 IBM WebSphere Application Server-Network Deployment, Version 6: Troubleshooting and support

4. Ensure that the \WebSphere\AppServer\properties\wsj2cdpm.properties file has the right user ID and

password.

Error message java.lang.reflect.InvocationTargetException: com.ibm.ws.exception.WsException:

DSRA0023E: The DataSource implementation class "COM.ibm.db2.jdbc.DB2XADataSource" could not be

found. when trying to access a DB2 database

One possible reason for this exception is that a user is attempting to use a JDBC 2.0 DataSource, but

DB2 is not JDBC 2.0-enabled. This situation frequently happens with new installations of DB2 because

DB2 provides separate drivers for JDBC 1.X and 2.0, with the same physical file name. By default, the

JDBC 1.X driver is on the class path.

To confirm this problem:

v On Windows systems, look for the inuse file in the java12 directory in your DB2 installation root. If the

file missing, you are using the JDBC 1.x driver.

v On UNIX systems, check the class path for your data source. If the class path does not point to the

db2java.zip file in the java12 directory, you are using the JDBC 1.x driver.

To correct this problem:

v On Windows systems, stop DB2. Run the usejdbc2.bat file from the java12 directory in your DB2

instalation root. Run this file from a command line to verify that it completes successfully.

v On UNIX systems, change the class path for your data source to point to the db2java.zip file in the

java12 directory of your DB2 installation root.

CLI0119E System error. SQLSTATE=58004 - DSRA8100 : Unable to get a XAconnection or

DSRA0011E: Exception: COM.ibm.db2.jdbc.DB2Exception: [IBM][CLI Driver] CLI0119E Unexpected

system failure. SQLSTATE=5800

If you encounter this error when attempting to access a DB2 Universal Database (UDB) data source:

1. Check your user name and password custom properties in the data source properties page in the

administrative console. Verify that they are correct.

2. Ensure the user ID and password do not contain any blank characters, before, in between, or after.

3. Check that the WAS.policy file exists for the application, for example,

D:\WebSphere\AppServer\installedApps\markSection.ear\META-INF\was.policy.

4. View the entire exception listing for an underlying SQL error, and look it up using the DBM vendor

message reference.

If you encounter this error while running DB2 on Red Hat Linux, the max queues system wide parameter

is too low to support DB2 while it acquires the necessary resources to complete the transaction. When this

problem exists, the exceptions J2CA0046E and DSRA0010E can precede the exception DSRA8100E.

To correct this problem, edit the /proc/sys/kernal/msgmni file to increase the value of the max queues

system wide parameter to a value greater than 128.

COM.ibm.db2.jdbc.DB2Exception: [IBM][CLI Driver][DB2/NT] SQL0911N The current transaction has

been rolled back because of a deadlock or timeout. Reason code "2". SQLSTATE=40001

This problem is probably an application-caused DB2 deadlock, particularly if you see an error similar to the

following when accessing a DB2 data source:

ERROR CODE: -911

COM.ibm.db2.jdbc.DB2Exception: [IBM][CLI Driver][DB2/NT] SQL0911N

The current transaction has been rolled back because of a deadlock or timeout.

Reason code "2". SQLSTATE=40001

To diagnose the problem:

1. Execute these DB2 commands:

Chapter 1. Overview and new features for troubleshooting 29

a. db2 update monitor switches using LOCK ON

b. db2 get snapshot for LOCKS on dbName >

The directory_name\lock_snapshot.log now has the DB2 lock information.

2. Turn off the lock monitor by executing: db2 update monitor switches using LOCK OFF

To verify that you have a deadlock:

1. Look for an application handle that has a lock-wait status, and then look for the ID of the agent

holding lock to verify the ID of the agent.

2. Go to that handle to verify it has a lock-wait status, and the ID of the agent holding the lock for it. If it

is the same agent ID as the previous one, then you know that you have a circular lock (deadlock).

To resolve the problem:

1. Examine your application and use a less restrictive isolation level if no concurrency access is needed.

2. Use caution when changing the accessIntent value to move to a lower isolation level. This change

can result in data integrity problems.

3. For DB2/UDB Version 7.2 and earlier releases, you can set the DB2_RR_TO_RS flag from the DB2

command line window to eliminate unnecessary deadlocks, such as when the accessIntent defined on

the bean method is too restrictive, for example, PessimisticUpdate. The DB@_RR_TO_RS setting has

two impacts:

v If RR is your chosen isolation level, it is effectively downgraded to RS.

v If you choose another isolation level, and the DB2_RR_TO_RS setting is on, a scan skips over

rows that are deleted but not committed, even though the row might qualify for the scan. The

skipping behavior affects the RR, Read Stability (RS), and Cursor Stability (CS) isolation levels.

For example, consider the scenario where transaction A deletes the row with column1=10 and

transaction B does a scan where column1>8 and column1<12. With DB2_RR_TO_RS off, transaction

B waits for transaction A to commit or rollback. If transaction A rolls back, the row with column1=10 is

included in the result set of the transaction B query. With DB2_RR_TO_RS on, transaction B does not

wait for transaction A to commit or rollback. Transaction B immediately receives query results that do

not include the deleted row. Setting DB2_RR_TO_RS effectively changes locking behavior, thus

avoiding deadlocks.

"COM.ibm.db2.jdbc.DB2ConnectionPoolDataSource" could not be found for data source

([data-source-name])"

This error is denoted by message DSRA8040I: Failed to connect to the DataSource.

This error usually occurs when the class path of the DB2 JDBC driver is set correctly to

${DB2_JDBC_DRIVER_PATH}/db2java.zip but the environment variable DB2_JDBC_DRIVER_PATH is not

set.

This error can also occur if you are using DB2 Version 7.1 or 7.2 and you have not yet run usejdbc2. This

might be the problem if your path is correct but you still receive this error.

To confirm this problem:

1. Go to the Manage WebSphere Variables panel.

2. Select Environment to verify that there is no entry for the variable DB2_JDBC_DRIVER_PATH.

To correct this problem: Add the variable DB2_JDBC_DRIVER_PATH with value equal to the directory

path containing the db2java.zip file.

If the path is correct and you need to run usejdbc2, refer to Configuring WebSphere Application Server for

DB2 access.

30 IBM WebSphere Application Server-Network Deployment, Version 6: Troubleshooting and support

java.sql.SQLException: Failure in loading T2 native library db2jcct2 DSRA0010E: SQL State = null,

Error Code = -99,999

The Failure in loading message indicates one of two things:

v Usually this happens when the machine was not rebooted after installing DB2. Reboot the machine

getting the error and try it again.

v The DB2 context is not getting set up correctly for the user running WebSphere Application Server.

Source the db2profile file on the machine, and ensure that the environment contains pointers to the DB2

native libraries.

Lock contention exception occurs in database when data source implementation type is XA

Note: Because a lock contention exception can be caused by many factors, consider the following

explanation and recommended response as a strategy for eliminating the possible reasons for your

lock contention problem.

 Symptom A lock contention exception occurs in a DB2 database that

your application accesses through a data source of

implementation type XA.

Problem Your application is trying to access database records that

are locked by an XA transaction that is in ended (e) state,

but cannot be prepared by the transaction manager.

Description An XA transaction to DB2 that ends, but cannot be

prepared, is in ended (e) state. Because it is not

considered to be in doubt, the transaction manager cannot

recover this transaction. DB2 does not return it in the list

of in doubt transactions. DB2 also does not roll the

transaction back immediately; it waits until all connections

to the database are released. During this period of

inaction, the transaction continues to hold locks on the

database.

Due to certain policies of WebSphere Application Server

workload management, your application server might not

disconnect all connections from the database to allow

rollback of the transaction. Therefore the ended

transaction persists in locking the same database records.

If your application attempts to access these locked

records, a lock contention exception occurs in DB2.

Recommended response DB2 Version 8.2 is shipped with a sample application that

connects to a defined DB2 server and uses the available

DB2 APIs to obtain a list of these particular ended

transactions. The application offers a configuration setting

that enables you to designate an amount of time after

which the application rolls these transactions back. Locate

the sample application in the sqllib/samples/db2xamon.c

directory of DB2 Version 8.2 and run it.

"DSRA8050W: Unable to find the DataStoreHelper class specified" exception occurs when trying to

use a DB2 Universal Datasource in a mixed release cell.

This error usually occurs when you are using WebSphere Application Server Version 6 in conjunction with

a previous version and attempt to create a DB2 Universal Datasource on the previous version.

This can happen because the DB2 Universal Datasource was not available on Version 5 and previous

versions, but the Version 6 administrative console allows you to build one.

Chapter 1. Overview and new features for troubleshooting 31

To correct this problem: create the datasource on Version 6.

Problems accessing a SQL server data source

What kind of problem are you having accessing your SQL Server database?

v ERROR CODE: 20001 and SQL STATE: HY000.

v Application fails with message stating ″Cannot find stored procedure...″

v ERROR CODE: SQL5042 when running a Java application

ERROR CODE: 20001 and SQL STATE: HY000 accessing SQLServer database

The problem might be that the distributed transaction coordinator service is not started. Look for an error

similar to the following example when attempting to access an SQL server database:

ERROR CODE: 20001

SQL STATE: HY000

java.sql.SQLException: [Microsoft][SQLServer JDBC Driver]

[SQLServer]xa_open (0) returns -3

at com.microsoft.jdbc.base.BaseExceptions.createException(Unknown Source) ...

at com.microsoft.jdbcx.sqlserver.SQLServerDataSource.getXAConnection

(Unknown Source) ...

To confirm this problem:

1. Go to the Windows Control Panel and click Services(or click Control Panel > Administrative Tools

> Services)

2. Verify whether the service Distributed Transaction Coordinator or DTC is started.

3. If not, start the Distributed Transaction Coordinator service.

Application fails with message stating "Cannot find stored procedure..." accessing an SQLServer

database

This error can occur because the stored procedures for the Java Transaction API (JTA) feature are not

installed on the Microsoft SQL Server.

To resolve the problem: Repeat the installation for the stored procedures for the JTA feature, according to

the ConnectJDBC installation guide.

ERROR CODE: SQL5042 when running a Java application

This error can occur when you configure your application to run in the following manner:

1. you use a type 2 (application) driver running on the gateway to the OS 390

2. your application is an XA application.

OS 390 does not use XA, but uses SPM. To resolve the problem:

1. Check your dbm cfg to see that the SPM is not started on the gateway.

2. Assign a port and set the db2comm variable to TCPIP.

3. Update the dbm cfg value SPM_NAME to use your machine name.

4. Start the SPM on the gateway.

Problems accessing a Cloudscape database

What kind of problem are you having accessing your Cloudscape database?

v Unexpected IOException wrapped in SQLException, accessing Cloudscape database.

v The ″Select for update″ operatioin on one row causes table to become locked, triggering a deadlock

condition.

v ″ERROR XSDB6: Another instance of Cloudscape might have already booted the database

databaseName.″ error starting application server.

32 IBM WebSphere Application Server-Network Deployment, Version 6: Troubleshooting and support

v Error ″The version of the IBM Universal JDBC driver in use is not licensed for connectivity to

Cloudscape databases″

v Running an application causes a runtime exception which produces an unreadable message.

Tip: Cloudscape errorCodes (2000, 3000, 4000) indicate levels of severity, not specific error conditions. In

diagnosing Cloudscape problems, pay attention to the given sqlState value.

Unexpected IOException wrapped in SQLException, accessing Cloudscape database

This problem can occur because Cloudscape databases use a large number of files. Some operating

systems, such as the Solaris Operating Environment, limit the number of files an application can open at

one time. If the default is a low number, such as 64, you can get this exception.

If your operating system lets you configure the number of file descriptors, you can correct the problem by

setting the number to a high value, such as 1024.

The "select for update" operation causes table lock and deadlock when accessing Cloudscape

If a select for update operation on one row locks the entire table, which creates a deadlock condition,

there might be undefined indexes on that table. The lack of an index on the columns you use in the where

clause can cause Cloudscape to create a table lock rather than a row level lock.

To resolve this problem, create an index on the affected table.

ERROR XSDB6: Another instance of Cloudscape may have already booted the database "database"

This problem occurs because Cloudscape embedded framework only allows one Java virtual machine

(JVM) to access the database instance at a time.

To resolve this problem:

1. Verify that you do not have other JDBC client programs, such as ij or cview running on that database

instance, when WebSphere Application Server is running.

2. Verify that you do not use the same instance of the database for more than one data source or use the

networkServer framework, which doesn’t have this limitation.

3. If there are no connections to Cloudscape, delete the db.lck lock file. This file can be found in the

directory where the Cloudscape database is mounted, under the schema directory. For example, if the

database is mounted at /myCloudscapeDB, issue the command: rm

/myCloudscapeDB/schemaName/db.lck

Error ″The version of the IBM Universal JDBC driver in use is not licensed for connectivity to Cloudscape

databases″

Error "The version of the IBM Universal JDBC driver in use is not licensed for connectivity to

Cloudscape databases"

At the client runtime, an error similar to the following occurs:

The version of the IBM Universal JDBC driver in use is not

licensed for connectivity to Cloudscape databases. To connect

to this DB2 server, please obtain a licensed copy of the IBM DB2

Universal Driver for JDBC and SQLJ. An appropriate license file

db2jcc_license_*.jar for this target platform must be installed to

the application classpath. Connectivity to Cloudscape databases is

enabled by any of the following license files:

{ db2jcc_license_c.jar, b2jcc_license_cu.jar, db2jcc_license_cisuz.jar }

The problem occurs because an incorrect JDBC driver jar file name is specified in the class path for JDBC

provider. For example, the jar file name may have an extra ’_’, as follows:

Chapter 1. Overview and new features for troubleshooting 33

${UNIVERSAL_JDBC_DRIVER_PATH}/db2jcc_license__cu.jar

To resolve the problem:

1. Correct the UNIVERSAL_JDBC_DRIVER_PATH jar file name in the JACL script

2. Restart the cluster.

3. Rerun the client.

Running an application causes a runtime exception which produces an unreadable message.

At client runtime, you may receive a message similar to the following: Caused by:

com.ibm.db2.jcc.a.SqlException: DB2 SQL error: SQLCODE: -1, SQLSTATE: 42X05, SQLERRMC:

ANNUITYHOLDER20^T42X05

The problem occurs because the property retrieveMessagesfromServerOnGetMessage, which is required

by WebSphere Application Server, has not been set.

To resolve the problem, on the admininstrative console

1. Click Resources -> JDBC Providers

2. Click on a Cloudscape provider

3. Scroll down and click on Data Sources

4. Select your data source (or add a new one)

5. Scroll down and select Custom Properties

6. If the property retrieveMessagesFromServerOnGetMessage already exists, set its value to true. If the

property does not exist, select Newand add the property retrieveMessagesFromServerOnGetMessage

with a value true

7. Rerun the client

The SystemOut.log will now generate readable messages so that you can resolve the underlying problem.

Problems accessing a Sybase data source

What kind of problem are you having accessing your Sybase database?

v ″Sybase Error 7713: Stored Procedure can only be executed in unchained transaction mode″ error.

v ″JZ0XS: The server does not support XA-style transactions. Please verify that the transaction feature is

enabled and licensed on this server.″

v A container managed persistence (CMP) enterprise bean is causing exceptions.

"Sybase Error 7713: Stored Procedure can only be executed in unchained transaction mode" error

This error occurs when either:

v The JDBC attempts to put the connection in autocommit(true) mode.

v A stored procedure is not created in a compatible mode.

To fix the autocommit(true) mode problem, let the application change the connection to chained mode

using the Connection.setAutoCommit(false) mode, or use a set chained on language command.

To resolve the stored procedure problem, use the sp_procxmode procedure_name "anymode" command.

"JZ0XS: The server does not support XA-style transactions. Please verify that the transaction

feature is enabled and licensed on this server."

This error occurs when XA-style transactions are attempted on a server that does not have Distributed

Transaction Management (DTM) installed.

34 IBM WebSphere Application Server-Network Deployment, Version 6: Troubleshooting and support

To resolve this problem, use the instructions in the Sybase Manual titled: Using Adaptive Server

Distributed Transaction Management Features to enable Distributed Transaction Management (DTM). The

main steps in this procedure are:

1. Install the DTM option.

2. Check the license.dat file to verify that the DTM option is installed.

3. Restart the license manager.

4. Enable DTM in ISQL.

5. Restart the ASE service.

A container managed persistence (CMP) enterprise bean is causing exceptions

This error is caused by improper use of reserved words. Reserved words cannot be used as column

names.

To correct this problem: Rename the variable to remove the reserved word. You can find a list of reserved

words in the Sybase Adaptive Server Enterprise Reference Manual; Volume 1: Building Blocks, Chapter 4.

This manual is available online at: http://manuals.sybase.com/onlinebooks/group-as/asg1250e/refman.

Sybase troubleshooting tips

This article describes how to diagnose the following problems related to Sybase:

v Executing the DatabaseMetaData.getBestRowIdentifier() method in an XA transaction causes errors

v Sybase requirements for using the escapes and DatabaseMetaData methods

v Database deadlocks and XA_PROTO errors occur when using Sybase

v Executing a stored procedure containing a SELECT INTO command causes exception

v Error is incorrectly reported about IMAGE to VARBINARY conversion

v JDBC 1.0 standard methods are not implemented and generate a SQL exception when used

v Sybase transaction manager fails after trying to alleviate deadlock error

v Starting an XA transaction when the autoCommit value of the connection is false causes error

v Sybase does not throw an exception when an incorrect database name is specified

Executing the DatabaseMetaData.getBestRowIdentifier() method in an XA transaction causes errors

Executing the DatabaseMetaData.getBestRowIdentifier() method while in an XA transaction causes the

following errors:

SQL Exception: The ’CREATE TABLE’ command is not allowed within a

multi-statement transaction in the ’tempdb’ database. Calling

DatabaseMetaData.getBestRowIdentifier()

Currently, this method fails when using Sybase. This problem occurs with other methods as well, including:

v getBestRowIdentifier();

v getVersionColumns();

v getTablePrivileges();

v getProcedureColumns();

v getPrimaryKeys();

v getIndexInfo();

v getImportedKeys();

v getExportedKeys();

v getCrossReference();

v getColumns();

v getColumnPrivileges();

Case 10880427 has been opened with Sybase to resolve this problem.

Chapter 1. Overview and new features for troubleshooting 35

http://manuals.sybase.com/onlinebooks/group-as/asg1250e/refman

Sybase requirements for using the escapes and DatabaseMetaData methods

To use the escapes and DatabaseMetaData methods, you must install stored procedures on the Adaptive

Server Enterprise or Adaptive Server Anywhere database where you want to use these methods. These

stored procedures are also required by some of the connection methods.

To check for the presence of LOCATE ():

1. Open a Sybase isql command prompt.

2. Type the command use master.

3. Type the command go.

4. Type the SQL command and select * from jdbc_function_escapes.

5. Type the command go.

The following appears:

escape_name map_string

 abs abs(%1)

 acos acos(%1)

 asin asin(%1)

 atan atan(%1)

 atan2 atn2(%1, %2)

 ceiling ceiling(%1)

::

locate charindex ((convert (varchar, %1)), (convert (varchar, %2)))

If the function does not exist, upgrade jConnect to at least Version 5.2 EBF 10635 and run the following

command:

java IsqlApp -U sa -P -S jdbc:sybase:Tds:hostname:4100 -I %JDBC_HOME%\sp\sql_server12.sql -c go

Database deadlocks and XA_PROTO errors occur when using Sybase

When using Sybase with the IBM WebSphere Application Server, do one of the following to prevent

database deadlocks and errors:

v Change the transaction isolation level on the connection to TRANSACTION_READ_COMMITTED. Set

the isolation level on the connection for unshareable connections or, for shareable connections, define

the isolation levels in the resource reference for your data source using an assembly tool.

v Modify Sybase by doing one of the following:

– If you want to use the existing tables, modify the table locking scheme using the alter table table

name lock datarows command to get a row lock level granularity.

– If you want to set the system-wide locking scheme to data rows, all subsequently created tables

inherit that value and have a locking scheme of data rows.

Note: You must drop your original databases and tables.

Executing a stored procedure containing a SELECT INTO command causes exception

An attempt to execute a stored procedure containing a SELECT INTO command results in the following

exception:

SVR-ERROR: SQL Exception SELECT INTO command not allowed within multi-statement transaction

Case 10868947 has been opened with Sybase to resolve this problem.

Error is incorrectly reported about IMAGE to VARBINARY conversion

The following error is incorrectly reported:

36 IBM WebSphere Application Server-Network Deployment, Version 6: Troubleshooting and support

com.sybase.jdbc2.jdbc.SybSQLException: Implicit conversion from data type ’IMAGE’ to ’VARBINARY’ is not allowed.

 Use the CONVERT function to run this query.

The error is about a VARBINARY column only and causes confusion if you also have an IMAGE column.

Do one of the following to work around this problem:

v Use a PreparedStatement.setBytes() method instead of a PreparedStatement.setBinaryStream() method

v Use a LONG VARBINARY for the column type if you want to continue using the setBinaryStream()

method. You might want to make this change because the size limit for VARBINARY is 255 bytes.

For example:

// ***************CORRECTION*****************************

 // setBinaryStream fails for column type of VARBINARY , use setBytes() instead

 //stmt4.setBinaryStream(8,new java.io.ByteArrayInputStream(tempbyteArray),tempbyteArray.length);

 stmt4.setBytes(8,tempbyteArray);

JDBC 1.0 standard methods are not implemented and generate a SQL exception when used

The following JDBC 1.0 standard methods are not implemented and generate a SQL exception when

used:

v ResultSetMetaData.getSchemaName()

v ResultSetMetaData.getTableName() (implemented only for text and image datatypes)

v ResultSetMetaData.getCatalogName()

Sybase transaction manager fails after trying to alleviate a deadlock error

If an application encounters a deadlock, Sybase detects the deadlock and throws an exception. Because

of this detection, the transaction manager calls an xa_end with a TMFAIL in it.

The call succeeds, but causes another Sybase exception, XAERR_PROTO. This exception only appears in the

error log and does not cause any functional problems. All applications should continue to run, therefore no

workaround is necessary.

Case 10869169 has been opened with Sybase to resolve this problem.

Starting an XA transaction when the autoCommit value of the connection is false causes error

The exception thrown is javax.transaction.xa.XAException with stack trace similar to the following:

 at com.sybase.jdbc2.jdbc.SybXAResource.sendRPC(SybXAResource.java:711)

 at com.sybase.jdbc2.jdbc.SybXAResource.sendRPC(SybXAResource.java:602)

 at com.sybase.jdbc2.jdbc.SybXAResource.start(SybXAResource.java:312)

This problem affects you when you do both local and global transactions. If, in a local transaction, the

autoCommit default value is set to false, and a global or XA transaction starts (either a user transaction

started by you, or a container transaction started by a container), the exception occurs.

This problem is a Sybase bug as the start() method can fail unexpectedly, regardless of the value of

autoCommit. Currently, there is no workaround for this problem, therefore it is not recommended that you

mix local and global transactions. Case 10880792 has been opened to resolve this problem.

Sybase does not throw an exception when an incorrect database name is specified

Verify that your database name is correctly entered on the data source properties.

Most databases (DB2, Oracle, Informix , MS SQL Server and Cloudscape) throw an exception when the

database specified does not exist. But Sybase does not throw an exception when an incorrect database

name is specified. Sybase generates an SQL warning and then connects to the default database. If you

Chapter 1. Overview and new features for troubleshooting 37

misspell the requested database name, Sybase connects you to the master or the default database where

the table you requested is not found.

Back to Databases-Sybase

Back to Known problems and workarounds

If none of these steps fixes your problem, check to see if the problem has been identified and documented

by looking at the available online support (hints and tips, technotes, and fixes). If you do not find your

problem listed there, contact IBM Support.

For current information available from IBM Support on known problems and their resolution, see the IBM

Support page.

IBM Support has documents that can save you time gathering information needed to resolve this problem.

Before opening a PMR, see the IBM Support page.

Errors in messaging

What kind of problem are you seeing?

v javax.jms.JMSException: MQJMS2008: failed to open MQ queue in JVM log.

v SVC: jms.BrokerCommandFailedExceptfailed: 3008.

If you do not see a problem that resembles yours, or if the information provided does not solve your

problem, see “Messaging component troubleshooting tips” on page 55. If you are still unable to resolve the

problem, see “Obtaining help from IBM” on page 155.

javax.jms.JMSException: MQJMS2008: failed to open MQ queue in JVM log

This error can occur when the MQ queue name is not defined in the internal Java Message Service (JMS)

server queue names list. This problem can occur if a WebSphere Application Server queue destination is

created, without adding the queue name to the internal JMS server queue names list.

To resolve this problem:

1. Open the WebSphere Application Server administrative console.

2. Click Servers > Manage Application Servers > server_name> Server Components > JMS Servers.

3. Add the queue name to the list.

4. Save the changes and restart the server.

SVC: jms.BrokerCommandFailedExceptfailed: 3008

One possible cause for this error is that you logged on to a Windows 2000 system as an administrator.

To correct this problem, log out and log in again as a user, rather than an administrator.

For current information available from IBM Support on known problems and their resolution, see the IBM

Support page.

IBM Support has documents that can save you time gathering information needed to resolve this problem.

Before opening a PMR, see the IBM Support page.

Errors connecting to WebSphere MQ and creating WebSphere MQ

queue connection factory

If this problem does not resembles yours, or if the information provided does not solve your problem, see

Troubleshooting WebSphere Messaging. If you are still unable to resolve the problem, contact IBM support

for further assistance.

The following exception may occur when trying to create the MDBListener instance:

38 IBM WebSphere Application Server-Network Deployment, Version 6: Troubleshooting and support

http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCMP9Y
http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCMP9Y
http://www-1.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCMP9Y&q=mustgather
http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCMPBU
http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCMPBU
http://www-1.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCMPBU&q=mustgather

6/23/03 22:45:58:232 CDT] 673106a8 MsgListenerPo W WMSG0049E:

Failed to start MDB PSSampleMDB against listener port SamplePubSubListenerPort

[6/23/03 22:47:58:289 CDT] 673106a8 FreePool E J2CA0046E:

Method createManagedConnctionWithMCWrapper caught an exception

during creation of the ManagedConnection for resource

JMS$SampleJMSQueueConnectionFactory, throwing ResourceAllocationException.

Original exception: javax.resource.spi.ResourceAdapterInternalException:

 createQueueConnection failed

com.ibm.mq.MQException: MQJE001: An MQException occurred:

Completion Code 2, Reason 2009

MQJE003: IO error transmitting message buffer at

com.ibm.mq.MQManagedConnectionJ11.(MQManagedConnectionJ11.java:239)

This problem occurs because the MQ manager userid does not have write access to the /tmp directory. To

correct this problem, before you use a Jacl procedure to configure WebSphere Application Server

resources and install an application:

1. Ensure that all applications have write access to /tmp directory. Use the chmod 1777 command on the

directory if necessary.

2. Create another subdirectory under /tmp (for example, /tmp/mydir). Use this directory as a ″working

directory″ for the Jacl.

3. Restart the server.

Applications that use messaging on startup should start successfully.

Naming services component troubleshooting tips

Naming is a J2EE service which publishes and provides access to resources such as connection pools,

enterprise beans, and message listeners to client processes. If you have problems in accessing a resource

which otherwise appears to be healthy, the naming service might be involved. To investigate problems with

the WebSphere Application Server Naming service:

v Browse the JVM logs for the server which is hosting the resource you are trying to access. Messages

starting with NMSV are related to the Naming Service.

v Open the Log Analyzer on the service log of the server which is hosting the resource you are trying to

access and use it to browse error and warning messages.

v With WebSphere Application Server running, run the dumpNameSpace command for Windows systems, or

the dumpNameSpace.sh command for UNIX systems, and pipe, redirect, or ″more″ the output so that it is

easily viewed. This command results in a display of objects in the WebSphere Application Server

namespace, including the directory path and object name.

Note: The dumpNameSpace command does not dump all of the objects in the distributed namespace. It

only dumps the objects that are in the local namespace of the process against which the

command was run.

v If the object a client needs to access does not appear, use the administrative console to verify that:

– The server hosting the target resource is started.

– The Web module or EJB container, if applicable, hosting the target resource is running.

– The JNDI name of the target resource is correct and updated.

– If the problem resource is remote, that is, not on the same node as the Name Server node, that the

JNDI name is fully qualified, including the host name. This is especially applicable to Network

Deployment configurations
v View detailed information on the run-time behavior of the WebSphere Application Server Naming service

by enabling trace on the following components and reviewing the output:

– com.ibm.ws.naming.*

– com.ibm.websphere.naming.*
v If you see an exception that appears to be CORBA related (″CORBA″ appears as part of the exception

name) look for a naming-services-specific CORBA minor code, further down in the exception stack, for

information on the real cause of the problem. For a list of naming service exceptions and explanations,

see the class com.ibm.websphere.naming.WsnCorbaMinorCodes in the Javadoc.

Chapter 1. Overview and new features for troubleshooting 39

If none of these steps solve the problem:

v For specific problems that can cause access to named object hosted in WebSphere Application Server

to fail, see Cannot look up an object hosted by WebSphere Application Server from a servlet, JSP file,

or other client.

v Check to see if the problem has been identified and documented using the links in Diagnosing and

fixing problems: Resources for learning.

v If you do not see a problem that resembles yours, or if the information provided does not solve your

problem, contact IBM support for further assistance.

For current information available from IBM Support on known problems and their resolution, see the IBM

Support page.

IBM Support has documents that can save you time gathering information needed to resolve this problem.

Before opening a PMR, see the IBM Support page.

Cannot look up an object hosted by WebSphere Application Server

from a servlet, JSP file, or other client

To resolve problems encountered when a servlet, JSP file, stand-alone application or other client attempts

to access an enterprise bean, ConnectionPool, or other named object hosted by WebSphere Application

Server, you must first verify that the target server can be accessed from the client:

v From a command prompt on the client’s server, enter ″ping server_name″ and verify connectivity.

v Use the WebSphere Application Server administrative console to verify that the target resource’s

application server and, if applicable, EJB module or Web module, is started.

Continue only if there is no problem with connectivity and the target resource appears to be running.

What kind of error are you seeing?

v NameNotFoundException from JNDI lookup operation

v CannotInstantiateObjectException from JNDI lookup operation

v Message NMSV0610I appears in the server’s log file, indicating that some Naming exception has

occurred

v OperationNotSupportedException from JNDI Context operation.

v ″WSVR0046E: Failed to bind″ error, with Original exception:

″org.omg.CosNaming.NamingContextPackage.AlreadyBound″.

v ConfigurationException from ″new InitialContext″ operation or from a JNDI Context operation with a

URL name.

v ServiceUnavailableException from ″new InitialContext″ operation.

v CommunicationException thrown from a ″new InitialContext″ operation.

v NMSV0605E: A Reference object looked up from the context...

If you do not see a problem that resembles yours, or if the information provided does not solve your

problem, contact IBM support for further assistance.

NameNotFoundException from JNDI lookup operation

If you encounter this exception in trying to access an enterprise bean, data source, messaging resource,

or other resource:

v Browse the properties of the target object in the administrative console, and verify that the jndi name it

specifies matches the JNDI name the client is using.

v If you are looking up an object that resides on a server different from the one from which the initial

context was obtained, you must use the fully qualified name.

– If access is from another server object such as a servlet accessing an enterprise bean and you are

using the default context, not specifying the fully qualified JNDI name, you may get this error if the

object is being hosted on a different server.

40 IBM WebSphere Application Server-Network Deployment, Version 6: Troubleshooting and support

http://www-1.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCMPCG
http://www-1.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCMPCG

– If access is from a stand-alone client, it may be that the object you are attempting access is on a

server different from the server from which you obtained the initial context.

To correct this problem, use the fully-qualified JNDIname:

v If the object is in a single server: cell/nodes/nodeName/servers/serverName/jndiName. Objects are not

supported in this release.

v If the object is on a server cluster: cell/clusters/clusterName/jndiName.

CannotInstantiateObjectException from JNDI lookup operation

If you encounter this exception in trying to access an enterprise bean, data source, messaging resource,

or other resource, possible causes include:

v A serialized Java object is being looked up, but the necessary classes required to deserialize it are not

in the runtime environment.

v A Reference object is being looked up, and the associated factory used to process it as part of the

lookup processing is failing.

To determine the precise cause of the problem:

v Look in the JVM logs of the server hosting the target resource. Look for exceptions immediately

preceding the CannotInstantiateObjectException. If it is a java.lang.NoClassDefFoundError or

java.lang.ClassNotFoundException, make sure the class referenced in the error message can be

located by the class loader.

v Print out the stack trace for the root cause and look for the factory class. It will be called by

javax.naming.NamingManager.getObjectInstance(). The reason for the failure will depend on the

factory implementation, and may require you to contact the developer of the factory class.

Message NMSV0610I appears in the server’s log file, indicating that some Naming exception has

occurred

This error is informational only and is provided in case the exception is related to an actual problem. Most

of the time, it is not. If it is, the log file should contain adjacent entries to provide context.

v If no problems are being experienced, ignore this message. Also ignore the message if the problem you

are experiencing does not appear to be related to the exception being reported and if there are no other

adjacent error messages in the log.

v If a problem is being experienced, look in the log for underlying error messages.

v The information provided in message NMSV0610I can provide valuable debug data for other adjacent

error messages posted in response to the Naming exception that occurred.

OperationNotSupportedException from JNDI Context operation

This error has two possible causes:

v An update operation, such as a bind, is being performed with a name that starts with ″java:comp/env″.

This context and its subcontexts are read-only contexts.

v A Context bind or rebind operation of a non-CORBA object is being performed on a remote name space

that does not belong to WebSphere Application Server. Only CORBA objects can be bound to these

CosNaming name spaces.

To determine which of these errors is causing the problem, check the full exception message.

WSVR0046E: Failed to bind, ejb/jndiName: ejb/jndiName. Original exception :

org.omg.CosNaming.NamingContextPackage.AlreadyBound

This error occurs two enterprise bean server applications were installed on the same server such that a

binding name conflict occurred. That is, a jndiName value is the same in the two applications’ deployment

descriptors. The error will surface during server startup when the second application using that jndiName

value is started.

Chapter 1. Overview and new features for troubleshooting 41

To verify that this is the problem, examine the deployment descriptors for all enterprise bean server

applications running in the server in search for a jndiName that is specified in more than one enterprise

bean application.

To correct the problem, change any duplicate jndiName values to ensure that each enterprise bean in the

server process is bound with a different name.

ConfigurationException from "new InitialContext" operation or from a JNDI Context operation with

a URL name

If you are attempting to obtain an initial JNDI context, a configuration exception can occur because an

invalid JNDI property value was passed to the InitialContext constructor. This includes JNDI properties set

in the System properties or in some jndi.properties file visible to the class loader in effect. A malformed

provider URL is the most likely property to be incorrect. If the JNDI client is being run as a thin client such

that the CLASSPATH is set to include all of the individual jar files required, make sure the .jar file containing

the properties file com/ibm/websphere/naming/jndiprovider.properties is in the CLASSPATH.

If the exception is occurring from a JNDI Context call with a name in the form of a URL, the current JNDI

configuration may not be set up properly so that the required factory class name cannot be determined, or

the factory may not be visible to the class loader currently in effect. If the name is a Java: URL, the JNDI

client must be running in a J2EE client or server environment. That is, the client must be running in a

container.

Check the exception message to verify the cause.

If the exception is being thrown from the InitialContext constructor, correct the property setting or the

CLASSPATH.

If the exception is being thrown from a JNDI Context method, make sure the property

java.naming.factory.url.pkgs includes the package name for the factory required for the URL scheme in

the name. URL names with the Java scheme can only be used while running in a container.

ServiceUnavailableException from "new InitialContext" operation

This exception indicates that some unexpected problem occurred while attempting to contact the name

server to obtain an initial context. The ServiceUnavailableException, like all NamingException objects, can

be queried for a root cause. Check the root cause for more information. It is possible that some of the

problems described for CommunicationExceptions may also result in a ServiceUnavailableException.

Since this exception is triggered by an unexpected error, there is no probable cause to confirm. If the root

cause exception does not indicate what the probable cause is, investigate the possible causes listed for

CommunicationExceptions.

CommunicationException thrown from a "new InitialContext" operation

The name server identified by the provider URL cannot be contacted to obtain the initial JNDI context.

There are many possible causes for this problem, including:

v The host name or port in the provider URL is incorrect.

v The host name cannot be resolved into an IP address by the domain name server, or the IP address

does not match the IP address which the server is actually running under.

v A firewall on the client or server is preventing the port specified in the provider URL from being used.

To correct this problem:

v Make sure the provider URL and the network configurations on the client and server machines are

correct.

42 IBM WebSphere Application Server-Network Deployment, Version 6: Troubleshooting and support

v Make sure the host name can be resolved into an IP address which can be reached by the client

machine. You can do this using the ping command.

v If you are running a firewall, make sure that use of the port specified in the provider URL will be

allowed.

Object request broker component troubleshooting tips

This article describes how to diagnose problems related to the WebSphere Application Server Object

Request Broker (ORB) component by explaining:

v How to enable tracing for the ORB component.

v What log files to examine for more information.

v Information on the Java packages containing the ORB Service.

v ORB-related tools.

v Where to find configurable settings.

v A listing of CORBA minor codes generated by this component.

Enabling tracing for the Object Request Broker component

The object request broker (ORB) service is one of the WebSphere Application Server run time services.

Tracing of messages sent and received by the ORB is a useful starting point for troubleshooting the ORB

service. You can selectively enable or disable tracing of ORB messages for each server in a WebSphere

Application Server installation, and for each application client.

This tracing is referred to by WebSphere Application Server support as a comm trace, and is different from

the general purpose trace facility. The trace facility, which shows the detailed run-time behavior of product

components, may be used alongside comm trace for other product components, or for the ORB

component. The trace string associated with the ORB service is ″ORBRas=all=enabled″.

You can enable and disable comm tracing using the administrative console or by manually editing the

server.xml file for the server be trace. You must stop and restart the server for the configuration change to

take effect.

For example, using the administrative console:

v Navigate to the desired server by clicking Servers > Application Servers >server_name > Container

services > ORB Service, and select the ORB tracing. Click OK, and then click Save to save your

settings. Restart the server for the new settings to take effect. Or,

v Locate the server.xml file for the selected server, for example:

install_dir/config/cells/nodename/nodes/nodename/servers/servername/server.xml.

v Locate the services entry for the ORB service (xmi:type=″orb:ObjectRequestBroker″) and set

commTraceEnabled=″true″.

To enable ORB tracing for client applications, you must specify two ORB properties in the command line

used to launch the client application:

v If you are using the WebSphere Application Server launcher, launchClient, use the option -CCD or

v If you are using the java command directly, use the -D option to specify these parameters:

– com.ibm.CORBA.Debug=true

– com.ibm.CORBA.CommTrace=true

ORB tracing output for thin clients can be directed by setting com.ibm.CORBA.Debug.Output =

debugOutputFilename parameter in the command line.

Log files and messages associated with Object Request Broker

Messages and trace information for the ORB are captured primarily in two logs:

v The install_dir/logs/servername/trace.log file for output from communications tracing and tracing

the behavior of the ORBRas component

Chapter 1. Overview and new features for troubleshooting 43

v The JVM logs for each application server, for WebSphere Application Server error and warning

messages

The following message in the SystemOut.log file indicates the successful start of the Application Server

and its ORB service:

WSVR0001I: Server server1 open for e-business

When communications tracing is enabled, a message similar to the following example in the

install_dir/logs/servername/trace.log file, indicates that the ORB service has started successfully. The

message also shows the start of a listener thread, which is waiting for requests on the specified local port.

com.ibm.ws.orbimpl.transport.WSTransport startListening(ServerConnectionData connectionData)

P=693799:O=0:CT a new ListenerThread has been started for

ServerSocket[addr=0.0.0.0/0.0.0.0,port=0,localport=1360]

If tracing of the Object Adapter has been enabled (com.ibm.ejs.oa.*=all=enabled), the following message

in the trace.log indicates that the ORB service has started successfully:

EJSORBImpl < initializeORB

The ORB service is one of the first services started during the WebSphere Application Server initialization

process. If it is not properly configured, other components such as naming, security, and node agent, are

not likely to start successfully. This is obvious in the JVM logs or trace.log of the affected application

server.

Java packages containing the Object Request Broker service

The ORB service resides in the following Java packages:

v com.ibm.com.CORBA.*

v com.ibm.rmi.*

v com.ibm.ws.orb.*

v com.ibm.ws.orbimpl.*

v org.omg.CORBA.*

v javax.rmi.CORBA.*

JAR files that contain the previously mentioned packages include:

v install_dir/java/jre/lib/ext/ibmorb.jar

v install_dir/java/jre/lib/ext/iwsorbutil.jar

v install_dir/lib/iwsorb.jar

Tools used with Object Request Broker

The tools used to compile Java remote interfaces to generate language bindings used by the ORB at

runtime reside in the following Java packages:

v com.ibm.tools.rmic.*

v com.ibm.idl.*

The JAR file that contains the packages is install_dir/java/lib/ibmtools.jar.

Object Request Broker properties

The ORB service requires a number of ORB properties for correct operation. It is not necessary for most

users to modify these properties, and it is recommended that only your system administrator modify them

when required.. Consult IBM Support personnel for assistance. The properties reside in the

orb.properties file, located at install_dir/java/jre/lib/orb.properties.

44 IBM WebSphere Application Server-Network Deployment, Version 6: Troubleshooting and support

CORBA minor codes

The CORBA specification defines standard minor exception codes for use by the ORB when a system

exception is thrown. In addition, the object management group (OMG) assigns each vendor a unique prefix

value for use in vendor-proprietary minor exception codes. Minor code values assigned to IBM and used

by the ORB in the WebSphere Application Server follow. The minor code value is in decimal and

hexadecimal formats. The column labeled minor code reason gives a short description of the condition

causing the exception. Currently there is no documentation for these errors beyond the minor code reason.

If you require technical support from IBM, the minor code helps support engineers determine the source of

the problem.

 Table 1. Decimal minor exception codes 1229066320 to 1229066364

Decimal Hexadecimal Minor code reason

1229066320 0x49421050 HTTP_READER_FAILURE

1229066321 0x49421051 COULD_NOT_INSTANTIATE_CLIENT_SSL_SOCKET_FACTORY

1229066322 0x49421052 COULD_NOT_INSTANTIATE_SERVER_SSL_SOCKET_FACTORY

1229066323 0x49421053 CREATE_LISTENER_FAILED_1

1229066324 0x49421054 CREATE_LISTENER_FAILED_2

1229066325 0x49421055 CREATE_LISTENER_FAILED_3

1229066326 0x49421056 CREATE_LISTENER_FAILED_4

1229066327 0x49421057 CREATE_LISTENER_FAILED_5

1229066328 0x49421058 INVALID_CONNECTION_TYPE

1229066329 0x49421059 HTTPINPUTSTREAM_NO_ACTIVEINPUTSTREAM

1229066330 0x4942105a HTTPOUTPUTSTREAM_NO_OUTPUTSTREAM

1229066331 0x4942105b CONNECTIONINTERCEPTOR_INVALID_CLASSNAME

1229066332 0x4942105c NO_CONNECTIONDATA_IN_CONNECTIONDATACARRIER

1229066333 0x4942105d CLIENT_CONNECTIONDATA_IS_INVALID_TYPE

1229066334 0x4942105e SERVER_CONNECTIONDATA_IS_INVALID_TYPE

1229066335 0x4942105f NO_OVERLAP_OF_ENABLED_AND_DESIRED_CIPHER_SUITES

1229066352 0x49421070 CAUGHT_EXCEPTION_WHILE_CONFIGURING_SSL_CLIENT_SOCKET

1229066353 0x49421071 GETCONNECTION_KEY_RETURNED_FALSE

1229066354 0x49421072 UNABLE_TO_CREATE_SSL_SOCKET

1229066355 0x49421073 SSLSERVERSOCKET_TARGET_SUPPORTS_LESS_THAN_1

1229066356 0x49421074 SSLSERVERSOCKET_TARGET_REQUIRES_LESS_THAN_1

1229066357 0x49421075 SSLSERVERSOCKET_TARGET_LESS_THAN_TARGET_REQUIRES

1229066358 0x49421076 UNABLE_TO_CREATE_SSL_SERVER_SOCKET

1229066359 0x49421077 CAUGHT_EXCEPTION_WHILE_CONFIGURING_SSL_SERVER_SOCKET

1229066360 0x49421078 INVALID_SERVER_CONNECTION_DATA_TYPE

1229066361 0x49421079 GETSERVERCONNECTIONDATA_RETURNED_NULL

1229066362 0x4942107a GET_SSL_SESSION_RETURNED_NULL

1229066363 0x4942107b GLOBAL_ORB_EXISTS

1229066364 0x4942107c CONNECT_TIME_OUT

 Table 2. Decimal minor exception codes 1229123841 to 1229124249

Decimal Hexadecimal Minor code reason

1229123841 0x4942f101 DSIMETHOD_NOTCALLED

1229123842 0x4942f102 BAD_INV_PARAMS

1229123843 0x4942f103 BAD_INV_RESULT

1229123844 0x4942f104 BAD_INV_CTX

1229123845 0x4942f105 ORB_NOTREADY

1229123879 0x4942f127 PI_NOT_POST_INIT

1229123880 0x4942f128 INVALID_EXTENDED_PI_CALL

1229123969 0x4942f181 BAD_OPERATION_EXTRACT_SHORT

Chapter 1. Overview and new features for troubleshooting 45

Table 2. Decimal minor exception codes 1229123841 to 1229124249 (continued)

1229123970 0x4942f182 BAD_OPERATION_EXTRACT_LONG

1229123971 0x4942f183 BAD_OPERATION_EXTRACT_USHORT

1229123972 0x4942f184 BAD_OPERATION_EXTRACT_ULONG

1229123973 0x4942f185 BAD_OPERATION_EXTRACT_FLOAT

1229123974 0x4942f186 BAD_OPERATION_EXTRACT_DOUBLE

1229123975 0x4942f187 BAD_OPERATION_EXTRACT_LONGLONG

1229123976 0x4942f188 BAD_OPERATION_EXTRACT_ULONGLONG

1229123977 0x4942f189 BAD_OPERATION_EXTRACT_BOOLEAN

1229123978 0x4942f18a BAD_OPERATION_EXTRACT_CHAR

1229123979 0x4942f18b BAD_OPERATION_EXTRACT_OCTET

1229123980 0x4942f18c BAD_OPERATION_EXTRACT_WCHAR

1229123981 0x4942f18d BAD_OPERATION_EXTRACT_STRING

1229123982 0x4942f18e BAD_OPERATION_EXTRACT_WSTRING

1229123983 0x4942f18f BAD_OPERATION_EXTRACT_ANY

1229123984 0x4942f190 BAD_OPERATION_INSERT_OBJECT_1

1229123985 0x4942f191 BAD_OPERATION_INSERT_OBJECT_2

1229123986 0x4942f192 BAD_OPERATION_EXTRACT_OBJECT_1

1229123987 0x4942f193 BAD_OPERATION_EXTRACT_OBJECT_2

1229123988 0x4942f194 BAD_OPERATION_EXTRACT_TYPECODE

1229123989 0x4942f195 BAD_OPERATION_EXTRACT_PRINCIPAL

1229123990 0x4942f196 BAD_OPERATION_EXTRACT_VALUE

1229123991 0x4942f197 BAD_OPERATION_GET_PRIMITIVE_TC_1

1229123992 0x4942f198 BAD_OPERATION_GET_PRIMITIVE_TC_2

1229123993 0x4942f199 BAD_OPERATION_INVOKE_NULL_PARAM_1

1229123994 0x4942f19a BAD_OPERATION_INVOKE_NULL_PARAM_2

1229123995 0x4942f19b BAD_OPERATION_INVOKE_DEFAULT_1

1229123996 0x4942f19c BAD_OPERATION_INVOKE_DEFAULT_2

1229123997 0x4942f19d BAD_OPERATION_UNKNOWN_BOOTSTRAP_METHOD

1229123998 0x4942f19e BAD_OPERATION_EMPTY_ANY

1229123999 0x4942f19f BAD_OPERATION_STUB_DISCONNECTED

1229124000 0x4942f1a0 BAD_OPERATION_TIE_DISCONNECTED

1229124001 0x4942f1a1 BAD_OPERATION_DELEGATE_DISCONNECTED

1229124097 0x4942f201 NULL_PARAM_1

1229124098 0x4942f202 NULL_PARAM_2

1229124099 0x4942f203 NULL_PARAM_3

1229124100 0x4942f204 NULL_PARAM_4

1229124101 0x4942f205 NULL_PARAM_5

1229124102 0x4942f206 NULL_PARAM_6

1229124103 0x4942f207 NULL_PARAM_7

1229124104 0x4942f208 NULL_PARAM_8

1229124105 0x4942f209 NULL_PARAM_9

1229124106 0x4942f20a NULL_PARAM_10

1229124107 0x4942f20b NULL_PARAM_11

1229124108 0x4942f20c NULL_PARAM_12

1229124109 0x4942f20d NULL_PARAM_13

1229124110 0x4942f20e NULL_PARAM_14

1229124111 0x4942f20f NULL_PARAM_15

1229124112 0x4942f210 NULL_PARAM_16

1229124113 0x4942f211 NULL_PARAM_17

1229124114 0x4942f212 NULL_PARAM_18

1229124115 0x4942f213 NULL_PARAM_19

46 IBM WebSphere Application Server-Network Deployment, Version 6: Troubleshooting and support

Table 2. Decimal minor exception codes 1229123841 to 1229124249 (continued)

1229124116 0x4942f214 NULL_PARAM_20

1229124117 0x4942f215 NULL_IOR_OBJECT

1229124118 0x4942f216 NULL_PI_NAME

1229124119 0x4942f217 NULL_SC_DATA

1229124126 0x4942f21e BAD_SERVANT_TYPE

1229124127 0x4942f21f BAD_EXCEPTION

1229124128 0x4942f220 BAD_MODIFIER_LIST

1229124129 0x4942f221 NULL_PROP_MGR

1229124130 0x4942f222 INVALID_PROPERTY

1229124131 0x4942f223 ORBINITREF_FORMAT

1229124132 0x4942f224 ORBINITREF_MISSING_OBJECTURL

1229124133 0x4942f225 ORBDEFAULTINITREF_FORMAT

1229124134 0x4942f226 ORBDEFAULTINITREF_VALUE

1229124135 0x4942f227 OBJECTKEY_SERVERUUID_LENGTH

1229124136 0x4942f228 OBJECTKEY_SERVERUUID_NULL

1229124137 0x4942f229 BAD_REPOSITORY_ID

1229124138 0x4942f22a BAD_PARAM_LOCAL_OBJECT

1229124139 0x4942f22b NULL_OBJECT_IOR

1229124140 0x4942f22c WRONG_ORB

1229124141 0x4942f22d NULL_OBJECT_KEY

1229124142 0x4942f22e NULL_OBJECT_URL

1229124143 0x4942f22f NOT_A_NAMING_CONTEXT

1229124225 0x4942f281 TYPECODEIMPL_CTOR_MISUSE_1

1229124226 0x4942f282 TYPECODEIMPL_CTOR_MISUSE_2

1229124227 0x4942f283 TYPECODEIMPL_NULL_INDIRECTTYPE

1229124228 0x4942f284 TYPECODEIMPL_RECURSIVE_TYPECODES

1229124235 0x4942f28b TYPECODEIMPL_KIND_INVALID_1

1229124236 0x4942f28c TYPECODEIMPL_KIND_INVALID_2

1229124237 0x4942f28d TYPECODEIMPL_NATIVE_1

1229124238 0x4942f28e TYPECODEIMPL_NATIVE_2

1229124239 0x4942f28f TYPECODEIMPL_NATIVE_3

1229124240 0x4942f290 TYPECODEIMPL_KIND_INDIRECT_1

1229124241 0x4942f291 TYPECODEIMPL_KIND_INDIRECT_2

1229124242 0x4942f292 TYPECODEIMPL_NULL_TYPECODE

1229124243 0x4942f293 TYPECODEIMPL_BODY_OF_TYPECODE

1229124244 0x4942f294 TYPECODEIMPL_KIND_RECURSIVE_1

1229124245 0x4942f295 TYPECODEIMPL_COMPLEX_DEFAULT_1

1229124246 0x4942f296 TYPECODEIMPL_COMPLEX_DEFAULT_2

1229124247 0x4942f297 TYPECODEIMPL_INDIRECTION

1229124248 0x4942f298 TYPECODEIMPL_SIMPLE_DEFAULT

1229124249 0x4942f299 TYPECODEIMPL_NOT_CDROS

 Table 3. Decimal minor exception codes 1229124250 to 1229125764

Decimal Hexadecimal Minor code reason

1229124250 0x4942f29a TYPECODEIMPL_NO_IMPLEMENT_1

1229124251 0x4942f29b TYPECODEIMPL_NO_IMPLEMENT_2

1229124357 0x4942f305 CONN_PURGE_REBIND

1229124358 0x4942f306 CONN_PURGE_ABORT

1229124359 0x4942f307 CONN_NOT_ESTABLISH

1229124360 0x4942f308 CONN_CLOSE_REBIND

1229124368 0x4942f310 WRITE_ERROR_SEND

Chapter 1. Overview and new features for troubleshooting 47

Table 3. Decimal minor exception codes 1229124250 to 1229125764 (continued)

1229124376 0x4942f318 GET_PROPERTIES_ERROR

1229124384 0x4942f320 BOOTSTRAP_SERVER_NOT_AVAIL

1229124392 0x4942f328 INVOKE_ERROR

1229124481 0x4942f381 BAD_HEX_DIGIT

1229124482 0x4942f382 BAD_STRINGIFIED_IOR_LEN

1229124483 0x4942f383 BAD_STRINGIFIED_IOR

1229124485 0x4942f385 BAD_MODIFIER_1

1229124486 0x4942f386 BAD_MODIFIER_2

1229124488 0x4942f388 CODESET_INCOMPATIBLE

1229124490 0x4942f38a LONG_DOUBLE_NOT_IMPLEMENTED_1

1229124491 0x4942f38b LONG_DOUBLE_NOT_IMPLEMENTED_2

1229124492 0x4942f38c LONG_DOUBLE_NOT_IMPLEMENTED_3

1229124496 0x4942f390 COMPLEX_TYPES_NOT_IMPLEMENTED

1229124497 0x4942f391 VALUE_BOX_NOT_IMPLEMENTED

1229124498 0x4942f392 NULL_STRINGIFIED_IOR

1229124865 0x4942f501 TRANS_NS_CANNOT_CREATE_INITIAL_NC_SYS

1229124866 0x4942f502 TRANS_NS_CANNOT_CREATE_INITIAL_NC

1229124867 0x4942f503 GLOBAL_ORB_EXISTS

1229124868 0x4942f504 PLUGINS_ERROR

1229124869 0x4942f505 INCOMPATIBLE_JDK_VERSION

1229124993 0x4942f581 BAD_REPLYSTATUS

1229124994 0x4942f582 PEEKSTRING_FAILED

1229124995 0x4942f583 GET_LOCAL_HOST_FAILED

1229124996 0x4942f584 CREATE_LISTENER_FAILED

1229124997 0x4942f585 BAD_LOCATE_REQUEST_STATUS

1229124998 0x4942f586 STRINGIFY_WRITE_ERROR

1229125000 0x4942f588 BAD_GIOP_REQUEST_TYPE_1

1229125001 0x4942f589 BAD_GIOP_REQUEST_TYPE_2

1229125002 0x4942f58a BAD_GIOP_REQUEST_TYPE_3

1229125003 0x4942f58b BAD_GIOP_REQUEST_TYPE_4

1229125005 0x4942f58d NULL_ORB_REFERENCE

1229125006 0x4942f58e NULL_NAME_REFERENCE

1229125008 0x4942f590 ERROR_UNMARSHALING_USEREXC

1229125009 0x4942f591 SUBCONTRACTREGISTRY_ERROR

1229125010 0x4942f592 LOCATIONFORWARD_ERROR

1229125011 0x4942f593 BAD_READER_THREAD

1229125013 0x4942f595 BAD_REQUEST_ID

1229125014 0x4942f596 BAD_SYSTEMEXCEPTION

1229125015 0x4942f597 BAD_COMPLETION_STATUS

1229125016 0x4942f598 INITIAL_REF_ERROR

1229125017 0x4942f599 NO_CODEC_FACTORY

1229125018 0x4942f59a BAD_SUBCONTRACT_ID

1229125019 0x4942f59b BAD_SYSTEMEXCEPTION_2

1229125020 0x4942f59c NOT_PRIMITIVE_TYPECODE

1229125021 0x4942f59d BAD_SUBCONTRACT_ID_2

1229125022 0x4942f59e BAD_SUBCONTRACT_TYPE

1229125023 0x4942f59f NAMING_CTX_REBIND_ALREADY_BOUND

1229125024 0x4942f5a0 NAMING_CTX_REBINDCTX_ALREADY_BOUND

1229125025 0x4942f5a1 NAMING_CTX_BAD_BINDINGTYPE

1229125026 0x4942f5a2 NAMING_CTX_RESOLVE_CANNOT_NARROW_TO_CTX

1229125032 0x4942f5a8 TRANS_NC_BIND_ALREADY_BOUND

48 IBM WebSphere Application Server-Network Deployment, Version 6: Troubleshooting and support

Table 3. Decimal minor exception codes 1229124250 to 1229125764 (continued)

1229125033 0x4942f5a9 TRANS_NC_LIST_GOT_EXC

1229125034 0x4942f5aa TRANS_NC_NEWCTX_GOT_EXC

1229125035 0x4942f5ab TRANS_NC_DESTROY_GOT_EXC

1229125036 0x4942f5ac TRANS_BI_DESTROY_GOT_EXC

1229125042 0x4942f5b2 INVALID_CHAR_CODESET_1

1229125043 0x4942f5b3 INVALID_CHAR_CODESET_2

1229125044 0x4942f5b4 INVALID_WCHAR_CODESET_1

1229125045 0x4942f5b5 INVALID_WCHAR_CODESET_2

1229125046 0x4942f5b6 GET_HOST_ADDR_FAILED

1229125047 0x4942f5b7 REACHED_UNREACHABLE_PATH

1229125048 0x4942f5b8 PROFILE_CLONE_FAILED

1229125049 0x4942f5b9 INVALID_LOCATE_REQUEST_STATUS

1229125050 0x4942f5ba NO_UNSAFE_CLASS

1229125051 0x4942f5bb REQUEST_WITHOUT_CONNECTION_1

1229125052 0x4942f5bc REQUEST_WITHOUT_CONNECTION_2

1229125053 0x4942f5bd REQUEST_WITHOUT_CONNECTION_3

1229125054 0x4942f5be REQUEST_WITHOUT_CONNECTION_4

1229125055 0x4942f5bf REQUEST_WITHOUT_CONNECTION_5

1229125056 0x4942f5c0 NOT_USED_1

1229125057 0x4942f5c1 NOT_USED_2

1229125058 0x4942f5c2 NOT_USED_3

1229125059 0x4942f5c3 NOT_USED_4

1229125512 0x4942f788 BAD_CODE_SET

1229125520 0x4942f790 INV_RMI_STUB

1229125521 0x4942f791 INV_LOAD_STUB

1229125522 0x4942f792 INV_OBJ_IMPLEMENTATION

1229125523 0x4942f793 OBJECTKEY_NOMAGIC

1229125524 0x4942f794 OBJECTKEY_NOSCID

1229125525 0x4942f795 OBJECTKEY_NOSERVERID

1229125526 0x4942f796 OBJECTKEY_NOSERVERUUID

1229125527 0x4942f797 OBJECTKEY_SERVERUUIDKEY

1229125528 0x4942f798 OBJECTKEY_NOPOANAME

1229125529 0x4942f799 OBJECTKEY_SETSCID

1229125530 0x4942f79a OBJECTKEY_SETSERVERID

1229125531 0x4942f79b OBJECTKEY_NOUSERKEY

1229125532 0x4942f79c OBJECTKEY_SETUSERKEY

1229125533 0x4942f79d INVALID_INDEXED_PROFILE_1

1229125534 0x4942f79e INVALID_INDEXED_PROFILE_2

1229125762 0x4942f882 UNSPECIFIED_MARSHAL_1

1229125763 0x4942f883 UNSPECIFIED_MARSHAL_2

1229125764 0x4942f884 UNSPECIFIED_MARSHAL_3

 Table 4. Decimal minor exception codes 1299125765 to 1229125906

Decimal Hexadecimal Minor code reason

1229125765 0x4942f885 UNSPECIFIED_MARSHAL_4

1229125766 0x4942f886 UNSPECIFIED_MARSHAL_5

1229125767 0x4942f887 UNSPECIFIED_MARSHAL_6

1229125768 0x4942f888 UNSPECIFIED_MARSHAL_7

1229125769 0x4942f889 UNSPECIFIED_MARSHAL_8

1229125770 0x4942f88a UNSPECIFIED_MARSHAL_9

1229125771 0x4942f88b UNSPECIFIED_MARSHAL_10

Chapter 1. Overview and new features for troubleshooting 49

Table 4. Decimal minor exception codes 1299125765 to 1229125906 (continued)

1229125772 0x4942f88c UNSPECIFIED_MARSHAL_11

1229125773 0x4942f88d UNSPECIFIED_MARSHAL_12

1229125774 0x4942f88e UNSPECIFIED_MARSHAL_13

1229125775 0x4942f88f UNSPECIFIED_MARSHAL_14

1229125776 0x4942f890 UNSPECIFIED_MARSHAL_15

1229125777 0x4942f891 UNSPECIFIED_MARSHAL_16

1229125778 0x4942f892 UNSPECIFIED_MARSHAL_17

1229125779 0x4942f893 UNSPECIFIED_MARSHAL_18

1229125780 0x4942f894 UNSPECIFIED_MARSHAL_19

1229125781 0x4942f895 UNSPECIFIED_MARSHAL_20

1229125782 0x4942f896 UNSPECIFIED_MARSHAL_21

1229125783 0x4942f897 UNSPECIFIED_MARSHAL_22

1229125784 0x4942f898 UNSPECIFIED_MARSHAL_23

1229125785 0x4942f899 UNSPECIFIED_MARSHAL_24

1229125786 0x4942f89a UNSPECIFIED_MARSHAL_25

1229125787 0x4942f89b UNSPECIFIED_MARSHAL_26

1229125788 0x4942f89c UNSPECIFIED_MARSHAL_27

1229125789 0x4942f89d UNSPECIFIED_MARSHAL_28

1229125790 0x4942f89e UNSPECIFIED_MARSHAL_29

1229125791 0x4942f89f UNSPECIFIED_MARSHAL_30

1229125792 0x4942f8a0 UNSPECIFIED_MARSHAL_31

1229125793 0x4942f8a1 UNSPECIFIED_MARSHAL_32

1229125794 0x4942f8a2 UNSPECIFIED_MARSHAL_33

1229125795 0x4942f8a3 UNSPECIFIED_MARSHAL_34

1229125796 0x4942f8a4 UNSPECIFIED_MARSHAL_35

1229125797 0x4942f8a5 UNSPECIFIED_MARSHAL_36

1229125798 0x4942f8a6 UNSPECIFIED_MARSHAL_37

1229125799 0x4942f8a7 UNSPECIFIED_MARSHAL_38

1229125800 0x4942f8a8 UNSPECIFIED_MARSHAL_39

1229125801 0x4942f8a9 UNSPECIFIED_MARSHAL_40

1229125802 0x4942f8aa UNSPECIFIED_MARSHAL_41

1229125803 0x4942f8ab UNSPECIFIED_MARSHAL_42

1229125804 0x4942f8ac UNSPECIFIED_MARSHAL_43

1229125805 0x4942f8ad UNSPECIFIED_MARSHAL_44

1229125806 0x4942f8ae UNSPECIFIED_MARSHAL_45

1229125807 0x4942f8af UNSPECIFIED_MARSHAL_46

1229125808 0x4942f8b0 UNSPECIFIED_MARSHAL_47

1229125809 0x4942f8b1 UNSPECIFIED_MARSHAL_48

1229125810 0x4942f8b2 UNSPECIFIED_MARSHAL_49

1229125811 0x4942f8b3 UNSPECIFIED_MARSHAL_50

1229125812 0x4942f8b4 UNSPECIFIED_MARSHAL_51

1229125813 0x4942f8b5 UNSPECIFIED_MARSHAL_52

1229125814 0x4942f8b6 UNSPECIFIED_MARSHAL_53

1229125815 0x4942f8b7 UNSPECIFIED_MARSHAL_54

1229125816 0x4942f8b8 UNSPECIFIED_MARSHAL_55

1229125817 0x4942f8b9 UNSPECIFIED_MARSHAL_56

1229125818 0x4942f8ba UNSPECIFIED_MARSHAL_57

1229125819 0x4942f8bb UNSPECIFIED_MARSHAL_58

1229125820 0x4942f8bc UNSPECIFIED_MARSHAL_59

1229125821 0x4942f8bd UNSPECIFIED_MARSHAL_60

1229125822 0x4942f8be UNSPECIFIED_MARSHAL_61

50 IBM WebSphere Application Server-Network Deployment, Version 6: Troubleshooting and support

Table 4. Decimal minor exception codes 1299125765 to 1229125906 (continued)

1229125823 0x4942f8bf UNSPECIFIED_MARSHAL_62

1229125824 0x4942f8c0 UNSPECIFIED_MARSHAL_63

1229125825 0x4942f8c1 UNSPECIFIED_MARSHAL_64

1229125826 0x4942f8c2 UNSPECIFIED_MARSHAL_65

1229125827 0x4942f8c3 UNSPECIFIED_MARSHAL_66

1229125828 0x4942f8c4 READ_OBJECT_EXCEPTION_2

1229125841 0x4942f8d1 UNSUPPORTED_IDLTYPE

1229125842 0x4942f8d2 DSI_RESULT_EXCEPTION

1229125844 0x4942f8d4 IIOPINPUTSTREAM_GROW

1229125847 0x4942f8d7 NO_CHAR_CONVERTER_1

1229125848 0x4942f8d8 NO_CHAR_CONVERTER_2

1229125849 0x4942f8d9 CHARACTER_MALFORMED_1

1229125850 0x4942f8da CHARACTER_MALFORMED_2

1229125851 0x4942f8db CHARACTER_MALFORMED_3

1229125852 0x4942f8dc CHARACTER_MALFORMED_4

1229125854 0x4942f8de INCORRECT_CHUNK_LENGTH

1229125856 0x4942f8e0 CHUNK_OVERFLOW

1229125858 0x4942f8e2 CANNOT_GROW

1229125859 0x4942f8e3 CODESET_ALREADY_SET

1229125860 0x4942f8e4 REQUEST_CANCELLED

1229125861 0x4942f8e5 WRITE_TO_STREAM_1

1229125862 0x4942f8e6 WRITE_TO_STREAM_2

1229125863 0x4942f8e7 WRITE_TO_STREAM_3

1229125864 0x4942f8e8 WRITE_TO_STREAM_4

1229125865 0x4942f8e9 PROXY_MARSHAL_FAILURE

1229125866 0x4942f8ea PROXY_UNMARSHAL_FAILURE

1229125867 0x4942f8eb INVALID_START_VALUE

1229125868 0x4942f8ec INVALID_CHUNK_STATE

1229125869 0x4942f8ed NULL_CODEBASE_IOR

1229125889 0x4942f901 DSI_NOT_IMPLEMENTED

1229125890 0x4942f902 GETINTERFACE_NOT_IMPLEMENTED

1229125891 0x4942f903 SEND_DEFERRED_NOTIMPLEMENTED

1229125893 0x4942f905 ARGUMENTS_NOTIMPLEMENTED

1229125894 0x4942f906 RESULT_NOTIMPLEMENTED

1229125895 0x4942f907 EXCEPTIONS_NOTIMPLEMENTED

1229125896 0x4942f908 CONTEXTLIST_NOTIMPLEMENTED

1229125902 0x4942f90e CREATE_OBJ_REF_BYTE_NOTIMPLEMENTED

1229125903 0x4942f90f CREATE_OBJ_REF_IOR_NOTIMPLEMENTED

1229125904 0x4942f910 GET_KEY_NOTIMPLEMENTED

1229125905 0x4942f911 GET_IMPL_ID_NOTIMPLEMENTED

1229125906 0x4942f912 GET_SERVANT_NOTIMPLEMENTED

 Table 5. Decimal minor exception codes 1229125907 to 1229126567

Decimal Hexadecimal Minor code reason

1229125907 0x4942f913 SET_ORB_NOTIMPLEMENTED

1229125908 0x4942f914 SET_ID_NOTIMPLEMENTED

1229125909 0x4942f915 GET_CLIENT_SUBCONTRACT_NOTIMPLEMENTED

1229125913 0x4942f919 CONTEXTIMPL_NOTIMPLEMENTED

1229125914 0x4942f91a CONTEXT_NAME_NOTIMPLEMENTED

1229125915 0x4942f91b PARENT_NOTIMPLEMENTED

1229125916 0x4942f91c CREATE_CHILD_NOTIMPLEMENTED

Chapter 1. Overview and new features for troubleshooting 51

Table 5. Decimal minor exception codes 1229125907 to 1229126567 (continued)

1229125917 0x4942f91d SET_ONE_VALUE_NOTIMPLEMENTED

1229125918 0x4942f91e SET_VALUES_NOTIMPLEMENTED

1229125919 0x4942f91f DELETE_VALUES_NOTIMPLEMENTED

1229125920 0x4942f920 GET_VALUES_NOTIMPLEMENTED

1229125922 0x4942f922 GET_CURRENT_NOTIMPLEMENTED_1

1229125923 0x4942f923 GET_CURRENT_NOTIMPLEMENTED_2

1229125924 0x4942f924 CREATE_OPERATION_LIST_NOTIMPLEMENTED_1

1229125925 0x4942f925 CREATE_OPERATION_LIST_NOTIMPLEMENTED_2

1229125926 0x4942f926 GET_DEFAULT_CONTEXT_NOTIMPLEMENTED_1

1229125927 0x4942f927 GET_DEFAULT_CONTEXT_NOTIMPLEMENTED_2

1229125928 0x4942f928 SHUTDOWN_NOTIMPLEMENTED

1229125929 0x4942f929 WORK_PENDING_NOTIMPLEMENTED

1229125930 0x4942f92a PERFORM_WORK_NOTIMPLEMENTED

1229125931 0x4942f92b COPY_TK_ABSTRACT_NOTIMPLEMENTED

1229125932 0x4942f92c PI_CLIENT_GET_POLICY_NOTIMPLEMENTED

1229125933 0x4942f92d PI_SERVER_GET_POLICY_NOTIMPLEMENTED

1229125934 0x4942f92e ADDRESSING_MODE_NOTIMPLEMENTED_1

1229125935 0x4942f92f ADDRESSING_MODE_NOTIMPLEMENTED_2

1229125936 0x4942f930 SET_OBJECT_RESOLVER_NOTIMPLEMENTED

1229125937 0x4942f931 DISCONNECTED_SERVANT_1

1229125938 0x4942f932 DISCONNECTED_SERVANT_2

1229125939 0x4942f933 DISCONNECTED_SERVANT_3

1229125940 0x4942f934 DISCONNECTED_SERVANT_4

1229125941 0x4942f935 DISCONNECTED_SERVANT_5

1229125942 0x4942f936 DISCONNECTED_SERVANT_6

1229125943 0x4942f937 DISCONNECTED_SERVANT_7

1229125944 0x4942f938 GET_INTERFACE_DEF_NOT_IMPLEMENTED

1229126017 0x4942f981 MARSHAL_NO_MEMORY_1

1229126018 0x4942f982 MARSHAL_NO_MEMORY_2

1229126019 0x4942f983 MARSHAL_NO_MEMORY_3

1229126020 0x4942f984 MARSHAL_NO_MEMORY_4

1229126021 0x4942f985 MARSHAL_NO_MEMORY_5

1229126022 0x4942f986 MARSHAL_NO_MEMORY_6

1229126023 0x4942f987 MARSHAL_NO_MEMORY_7

1229126024 0x4942f988 MARSHAL_NO_MEMORY_8

1229126025 0x4942f989 MARSHAL_NO_MEMORY_9

1229126026 0x4942f98a MARSHAL_NO_MEMORY_10

1229126027 0x4942f98b MARSHAL_NO_MEMORY_11

1229126028 0x4942f98c MARSHAL_NO_MEMORY_12

1229126029 0x4942f98d MARSHAL_NO_MEMORY_13

1229126030 0x4942f98e MARSHAL_NO_MEMORY_14

1229126031 0x4942f98f MARSHAL_NO_MEMORY_15

1229126032 0x4942f990 MARSHAL_NO_MEMORY_16

1229126033 0x4942f991 MARSHAL_NO_MEMORY_17

1229126034 0x4942f992 MARSHAL_NO_MEMORY_18

1229126035 0x4942f993 MARSHAL_NO_MEMORY_19

1229126036 0x4942f994 MARSHAL_NO_MEMORY_20

1229126037 0x4942f995 MARSHAL_NO_MEMORY_21

1229126038 0x4942f996 MARSHAL_NO_MEMORY_22

1229126039 0x4942f997 MARSHAL_NO_MEMORY_23

1229126040 0x4942f998 MARSHAL_NO_MEMORY_24

52 IBM WebSphere Application Server-Network Deployment, Version 6: Troubleshooting and support

Table 5. Decimal minor exception codes 1229125907 to 1229126567 (continued)

1229126041 0x4942f999 MARSHAL_NO_MEMORY_25

1229126042 0x4942f99a MARSHAL_NO_MEMORY_26

1229126043 0x4942f99b MARSHAL_NO_MEMORY_27

1229126044 0x4942f99c MARSHAL_NO_MEMORY_28

1229126045 0x4942f99d MARSHAL_NO_MEMORY_29

1229126046 0x4942f99e MARSHAL_NO_MEMORY_30

1229126047 0x4942f99f MARSHAL_NO_MEMORY_31

1229126401 0x4942fb01 RESPONSE_TIMED_OUT

1229126402 0x4942fb02 FRAGMENT_TIMED_OUT

1229126529 0x4942fb81 NO_SERVER_SC_IN_DISPATCH

1229126530 0x4942fb82 NO_SERVER_SC_IN_LOOKUP

1229126531 0x4942fb83 NO_SERVER_SC_IN_CREATE_DEFAULT_SERVER

1229126532 0x4942fb84 NO_SERVER_SC_IN_SETUP

1229126533 0x4942fb85 NO_SERVER_SC_IN_LOCATE

1229126534 0x4942fb86 NO_SERVER_SC_IN_DISCONNECT

1229126539 0x4942fb8b ORB_CONNECT_ERROR_1

1229126540 0x4942fb8c ORB_CONNECT_ERROR_2

1229126541 0x4942fb8d ORB_CONNECT_ERROR_3

1229126542 0x4942fb8e ORB_CONNECT_ERROR_4

1229126543 0x4942fb8f ORB_CONNECT_ERROR_5

1229126544 0x4942fb90 ORB_CONNECT_ERROR_6

1229126545 0x4942fb91 ORB_CONNECT_ERROR_7

1229126546 0x4942fb92 ORB_CONNECT_ERROR_8

1229126547 0x4942fb93 ORB_CONNECT_ERROR_9

1229126548 0x4942fb94 ORB_REGISTER_1

1229126549 0x4942fb95 ORB_REGISTER_2

1229126553 0x4942fb99 ORB_REGISTER_LOCAL_1

1229126554 0x4942fb9a ORB_REGISTER_LOCAL_2

1229126555 0x4942fb9b LOCAL_SERVANT_LOOKUP

1229126556 0x4942fb9c POA_LOOKUP_ERROR

1229126557 0x4942fb9d POA_INACTIVE

1229126558 0x4942fb9e POA_NO_SERVANT_MANAGER

1229126559 0x4942fb9f POA_NO_DEFAULT_SERVANT

1229126560 0x4942fba0 POA_WRONG_POLICY

1229126561 0x4942fba1 FINDPOA_ERROR

1229126562 0x4942fba2 ADAPTER_ACTIVATOR_EXCEPTION

1229126563 0x4942fba3 POA_SERVANT_ACTIVATOR_LOOKUP_FAILED

1229126564 0x4942fba4 POA_BAD_SERVANT_MANAGER

1229126565 0x4942fba5 POA_SERVANT_LOCATOR_LOOKUP_FAILED

1229126566 0x4942fba6 POA_UNKNOWN_POLICY

1229126567 0x4942fba7 POA_NOT_FOUND

 Table 6. Decimal minor exception codes 1229126568 to 1330446377

Decimal Hexadecimal Minor code reason

1229126568 0x4942fba8 SERVANT_LOOKUP

1229126569 0x4942fba9 SERVANT_IS_ACTIVE

1229126570 0x4942fbaa SERVANT_DISPATCH

1229126571 0x4942fbab WRONG_CLIENTSC

1229126572 0x4942fbac WRONG_SERVERSC

1229126573 0x4942fbad SERVANT_IS_NOT_ACTIVE

1229126574 0x4942fbae POA_WRONG_POLICY_1

Chapter 1. Overview and new features for troubleshooting 53

Table 6. Decimal minor exception codes 1229126568 to 1330446377 (continued)

1229126575 0x4942fbaf POA_NOCONTEXT_1

1229126576 0x4942fbb0 POA_NOCONTEXT_2

1229126577 0x4942fbb1 POA_INVALID_NAME_1

1229126578 0x4942fbb2 POA_INVALID_NAME_2

1229126579 0x4942fbb3 POA_INVALID_NAME_3

1229126580 0x4942fbb4 POA_NOCONTEXT_FOR_PREINVOKE

1229126581 0x4942fbb5 POA_NOCONTEXT_FOR_CHECKING_PREINVOKE

1229126582 0x4942fbb6 POA_NOCONTEXT_FOR_POSTINVOKE

1229126657 0x4942fc01 LOCATE_UNKNOWN_OBJECT

1229126658 0x4942fc02 BAD_SERVER_ID_1

1229126659 0x4942fc03 BAD_SERVER_ID_2

1229126660 0x4942fc04 BAD_IMPLID

1229126665 0x4942fc09 BAD_SKELETON_1

1229126666 0x4942fc0a BAD_SKELETON_2

1229126673 0x4942fc11 SERVANT_NOT_FOUND_1

1229126674 0x4942fc12 SERVANT_NOT_FOUND_2

1229126675 0x4942fc13 SERVANT_NOT_FOUND_3

1229126676 0x4942fc14 SERVANT_NOT_FOUND_4

1229126677 0x4942fc15 SERVANT_NOT_FOUND_5

1229126678 0x4942fc16 SERVANT_NOT_FOUND_6

1229126679 0x4942fc17 SERVANT_NOT_FOUND_7

1229126687 0x4942fc1f SERVANT_DISCONNECTED_1

1229126688 0x4942fc20 SERVANT_DISCONNECTED_2

1229126689 0x4942fc21 NULL_SERVANT

1229126690 0x4942fc22 ADAPTER_ACTIVATOR_FAILED

1229126692 0x4942fc24 ORB_DESTROYED

1229126693 0x4942fc25 DYNANY_DESTROYED

1229127170 0x4942fe02 CONNECT_FAILURE_1

1229127171 0x4942fe03 CONNECT_FAILURE_2

1229127172 0x4942fe04 CONNECT_FAILURE_3

1229127173 0x4942fe05 CONNECT_FAILURE_4

1229127297 0x4942fe81 UNKNOWN_CORBA_EXC

1229127298 0x4942fe82 RUNTIMEEXCEPTION

1229127299 0x4942fe83 UNKNOWN_SERVER_ERROR

1229127300 0x4942fe84 UNKNOWN_DSI_SYSEX

1229127301 0x4942fe85 UNEXPECTED_CHECKED_EXCEPTION

1229127302 0x4942fe86 UNKNOWN_CREATE_EXCEPTION_RESPONSE

1229127312 0x4942fe90 UNKNOWN_PI_EXC

1229127313 0x4942fe91 UNKNOWN_PI_EXC_2

1229127314 0x4942fe92 PI_ARGS_FAILURE

1229127315 0x4942fe93 PI_EXCEPTS_FAILURE

1229127316 0x4942fe94 PI_CONTEXTS_FAILURE

1229127317 0x4942fe95 PI_OP_CONTEXT_FAILURE

1229127326 0x4942fe9e USER_DEFINED_ERROR

1229127327 0x4942fe9f UNKNOWN_RUNTIME_IN_BOOTSTRAP

1229127328 0x4942fea0 UNKNOWN_THROWABLE_IN_BOOTSTRAP

1229127329 0x4942fea1 UNKNOWN_RUNTIME_IN_INSAGENT

1229127330 0x4942fea2 UNKNOWN_THROWABLE_IN_INSAGENT

1229127331 0x4942fea3 UNEXPECTED_IN_PROCESSING_CLIENTSIDE_INTERCEPTOR

1229127332 0x4942fea4 UNEXPECTED_IN_PROCESSING_SERVERSIDE_INTERCEPTOR

1229127333 0x4942fea5 UNEXPECTED_PI_LOCAL_REQUEST

54 IBM WebSphere Application Server-Network Deployment, Version 6: Troubleshooting and support

Table 6. Decimal minor exception codes 1229126568 to 1330446377 (continued)

1229127334 0x4942fea6 UNEXPECTED_PI_LOCAL_RESPONSE

1330446336 0x4f4d0000 OMGVMCID

1330446337 0x4f4d0001 FAILURE_TO_REGISTER_OR_LOOKUP_VALUE_FACTORY

1330446338 0x4f4d0002 RID_ALREADY_DEFINED_IN_IFR

1330446339 0x4f4d0003 IN_INVOCATION_CONTEXT

1330446340 0x4f4d0004 ORB_SHUTDOWN

1330446341 0x4f4d0005 NAME_CLASH_IN_INHERITED_CONTEXT

1330446342 0x4f4d0006 SERVANT_MANAGER_EXISTS

1330446343 0x4f4d0007 INS_BAD_SCHEME_NAME

1330446344 0x4f4d0008 INS_BAD_ADDRESS

1330446345 0x4f4d0009 INS_BAD_SCHEME_SPECIFIC_PART

1330446346 0x4f4d000a INS_OTHER

1330446348 0x4f4d000c POLICY_FACTORY_EXISTS

1330446350 0x4f4d000e INVALID_PI_CALL

1330446351 0x4f4d000f SERVICE_CONTEXT_ID_EXISTS

1330446353 0x4f4d0011 POA_DESTROYED

1330446359 0x4f4d0017 NO_TRANSMISSION_CODE

1330446362 0x4f4d001a INVALID_SERVICE_CONTEXT

1330446363 0x4f4d001b NULL_OBJECT_ON_REGISTER

1330446364 0x4f4d001c INVALID_COMPONENT_ID

1330446365 0x4f4d001d INVALID_IOR_PROFILE

1330446375 0x4f4d0027 INVALID_STREAM_FORMAT_1

1330446376 0x4f4d0028 NOT_VALUE_OUTPUT_STREAM

1330446377 0x4f4d0029 NOT_VALUE_INPUT_STREAM

If none of these steps fixes your problem, check to see if the problem has been identified and documented

by looking at the available online support (hints and tips, technotes, and fixes). If you do not find your

problem listed there, contact IBM Support.

For current information available from IBM Support on known problems and their resolution, see the IBM

Support page.

IBM Support has documents that can save you time gathering information needed to resolve this problem.

Before opening a PMR, see the IBM Support page.

Messaging component troubleshooting tips

Problems deploying or executing applications which use the WebSphere Application Server

messaging capabilities

If you are having problems deploying or executing applications which use the WebSphere Application

Server messaging capabilities, review these articles in the WebSphere Application Server information

center:

v “Troubleshooting WebSphere messaging” on page 219

v “Troubleshooting message-driven beans” on page 221

v “Troubleshooting transactions” on page 263

On a Linux platform, embedded messaging does not get removed after uninstalling the product

On a Linux platform, you may find that embedded messaging is not removed when you uninstall the

product silently using the SetRetainMQToTrue.active=false option.

Chapter 1. Overview and new features for troubleshooting 55

http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCMPCT
http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCMPCT
http://www-1.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCMPCT&q=mustgather

To prevent this problem, either issue the uninstall command from a local machine, or use ssh instead of

telnet to logon to the machine where you issue the uninstall command. For details on the uninstall

command, see uninstall command.

To correct this problem after logging in, issue the following command for a real root login: su -

If none of these steps solves the problem, check to see if the problem has been identified and

documented using the links in Diagnosing and fixing problems: Resources for learning. If you do not see a

problem that resembles yours, or if the information provided does not solve your problem, contact IBM

support for further assistance.

For current information available from IBM Support on known problems and their resolution, see the IBM

Support page.

IBM Support has documents that can save you time gathering information needed to resolve this problem.

Before opening a PMR, see the IBM Support page.

56 IBM WebSphere Application Server-Network Deployment, Version 6: Troubleshooting and support

http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCMPBU
http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCMPBU
http://www-1.ibm.com/support/search.wss?tc=SSEQTP&tc1=SSCMPBU&q=mustgather

Chapter 2. How do I troubleshoot?

 Legend for ″How do I?...″ links

 Documentation Show me Tell me Guide me Teach me

Refer to the detailed

steps and reference

Watch a brief

multimedia

demonstration

View the presentation

for an overview

Be led through the

console pages

Perform the tutorial

with sample code

Approximate time:

Varies

Approximate time: 3

to 5 minutes

Approximate time:

10 minutes+

Approximate time:

1/2 hour+

Approximate time: 1

hour+

--

 Set traces, logs, and other controls

 Use trace to obtain detailed information about the execution of product components, including

application servers, clients, and other processes in the environment.

 Documentation

v Console

v Scripting

Show me Tell me

--

 Work with message logs

 WebSphere Application Server can write system messages to several general purpose logs. These

include the JVM logs, the process logs and the IBM service log.

 Documentation Show me

--

 Detect hung threads

 A common error in J2EE applications is a hung thread. The hang detection option is turned on by

default. You can configure a hang detection policy to accommodate your applications and

environment so that potential hangs can be reported, providing earlier detection of failing servers.

When a hung thread is detected, the product notifies you so that you can troubleshoot the

problem.

 Documentation Teach me

--

 Detect product configuration file problems

 Use an administrative console page to identify and view problems that exist in the current

configuration.

 Documentation

--

© Copyright IBM Corp. 2004 57

ftp://ftp.software.ibm.com/software/eod/WAS_6-0/PD/Simulations/WASv6_PD.viewlet/WASv6_PD_viewlet_swf.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/PD/Presentations/WASv6_PD_Overview/player.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/PD/Simulations/WASv6_PD.viewlet/WASv6_PD_viewlet_swf.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/PD/LabInstructions/WASv6_Hung_Thread_Lab.pdf

Troubleshoot problems that occur during a task

 Troubleshoot problems that crop up during a main task such as migrating, installing, administering,

securing, or deploying applications.

 Documentation

--

 Troubleshoot particular WebSphere application problems

 Expand Troubleshooting > Troubleshooting WebSphere applications in the information center

table of contents for information about troubleshooting specific application components and their

administrative configurations (such as EJB container settings).

 --

 Debug WebSphere applications during development

 In order to debug your application, you must use your application development tool (such as

WebSphere Studio Application Developer) to create a Java project or a project with a Java nature.

You must then import the program that you want to debug into the project.

 Documentation

--

 Add tracing and logging to your applications

 Designers and developers of applications that run on the application server might find it useful to

use Java logging for generating their application logging. This approach has advantages over

simply adding System.out.println statements to your code.

 Documentation

--

 Collect troubleshooting details for IBM Support

 WebSphere Application Server includes a number of troubleshooting tools that are designed to

help you isolate the source of problems. Many of these tools are designed to generate information

to be used by IBM Support, and their output might not be understandable by the customer.

 Documentation

--

 Using JSR47 for logging

 The Logging API Specification (or Java logging), which is defined with Java Specification Request

(JSR) 47, is the logging toolkit that is provided by the java.util.logging package. Java logging

provides a standard logging API for your applications.

 Documentation

--

 Using JSR47 for logging: Writing a handler

 There may be occasions when you only want to propagate log records to your own log handlers,

rather than participate in integrated logging; in other words, to use a stand alone log handler.

58 IBM WebSphere Application Server-Network Deployment, Version 6: Troubleshooting and support

Documentation

--

 Using JSR47 for logging: Writing a formatter

 A formatter formats events according to type. Handlers are associated with one or more

formatters.

 Documentation

--

 Using JSR47 for logging: Writing a filter

 A Filter provides optional, secondary control over what is logged, beyond the control provided by

the level.

 Documentation

--

 Using JSR47 for logging: Configuring access logs

 Before applications can log diagnostic information, you need to specify how you want the server to

handle log output, and what level of logging you require. Using the administrative console, you can

enable or disable a particular log, specify where log files are stored and how many log files are

kept, and specify a format for log output. You can also set a log level for each logger.

 Documentation

--

 Using Common Base Events for logging

 WebSphere Application Server uses Common Base Events within its logging framework. Common

Base Events can be created explicitly and logged via the Java logging API, or can be created

implicitly by using the Java logging API directly. For Common Base Event creation, the application

server environment provides a Common Base Event factory with a Content Handler that provides

both runtime data and template data for Common Base Events.

 Documentation

--

 Creating Common Base Events

 In cases where the events generated by the Java logging API are insufficient to describe the event

that needs to be captured, Common Base Events can be created using the Common Base Event

factory APIs. When you create a Common Base Event you can add data to the Common Base

Event before it is logged. WebSphere Application Server is configured to use an event factory that

automatically populates WebSphere Application Server specific information into the Common Base

Events that it generates.

 Documentation

--

Chapter 2. How do I troubleshoot? 59

60 IBM WebSphere Application Server-Network Deployment, Version 6: Troubleshooting and support

Chapter 3. Debugging applications

To debug your application, you must use your application development tool (such as Rational Application

Developer) to create a Java project or a project with a Java nature. You must then import the program that

you want to debug into the project. By following the steps below, you can import the WebSphere

Application Server examples into a Java project.

There are two debugging styles available:

v Step-by-step debugging mode prompts you whenever the server calls a method on a Web object. A

dialog lets you step into the method or skip it. In the dialog, you can turn off step-by-step mode when

you are finished using it.

v Breakpoints debugging mode lets you debug specific parts of programs. Add breakpoints to the part of

the code that you must debug and run the program until one of the breakpoints is encountered.

Breakpoints actually work with both styles of debugging. Step-by-step mode just lets you see which Web

objects are being called without having to set up breakpoints ahead of time.

You need not import an entire program into your project. However, if you do not import all of your program

into the project, some of the source might not compile. You can still debug the project. Most features of the

debugger work, including breakpoints, stepping, and viewing and modifying variables. You must import any

source that you want to set breakpoints in.

The inspect and display features in the source view do not work if the source has build errors. These

features let you select an expression in the source view and evaluate it.

 1. Create a Java Project by opening the New Project dialog.

 2. Select Java from the left side of the dialog and Java Project in the right side of the dialog.

 3. Click Next and then specify a name for the project (such as WASExamples).

 4. Press Finish to create the project.

 5. Select the new project, choose File > Import > File System, then Next to open the import file

system dialog.

 6. Select the directory Browse pushbutton and go to the following directory:

installation_root\installedApps\node_name \DefaultApplication.ear\DefaultWebApplication.war.

 7. Select the checkbox next to DefaultWebApplication.war in the left side of the Import dialog and then

click Finish. This will import the JavaServer Pages files and Java source for the examples into your

project.

 8. Add any JAR files needed to build to the Java Build Path. To do this, select Properties from the

right-click menu. Choose the Java Build Path node and then select the Libraries tab. Use the Add

External JARs pushbutton to add the following JAR files:

v installation_root\installedApps\node_name\DefaultApplication.ear\Increment.jar.

Once you have added this JAR file, select it and use the Attach Source pushbutton to attach

Increment.jar as the source - Increment.jar contains both the source and class files.

v installation_root\lib\j2ee.jar

v installation_root\lib\pagelist.jar

v installation_root\\lib\webcontainer.jar

Click OK when you have added all of the JARs.

 9. You can set some breakpoints in the source at this time if you like, however, it is not necessary as

step-by-step mode will prompt you whenever the server calls a method on a Web object.

Step-by-step mode is explained in more detail below.

10. To start debugging, you need to start the WebSphere Application Server in debug mode and make

note of the JVM debug port. The default value of the JVM debug port is 7777.

© Copyright IBM Corp. 2004 61

11. Once the server is started, switch to the debug perspective by selecting Window > Open

Perspective > Debug. You can also enable the debug launch in the Java Perspective by choosing

Window > Customize Perspective and selecting the Debug and Launch checkboxes in the Other

category.

12. Select the workbench toolbar Debug pushbutton and then select WebSphere Application Server

Debug from the list of launch configurations. Click the New pushbutton to create a new configuration.

13. Give your configuration a name and select the project to debug (your new WASExamples project).

Change the port number if you did not start the server on the default port (7777).

14. Click Debug to start debugging.

15. Load one of the examples in your browser (for example, http://localhost:9080/hitcount).

To learn more about debugging, launch the Application Server Toolkit, select Help > Help Contents and

choose the Debugger Guide bookshelf entry. To learn about known limitations and problems that are

associated with the Application Server Toolkit, see the Application Server Toolkit release notes. For current

information available from IBM Support on known problems and their resolution, see the IBM Support

page.

IBM Support has documents that can save you time gathering information needed to resolve this problem.

Before opening a PMR, see the IBM Support page.

Debugging with the Application Server Toolkit

The Application Server Toolkit, included with the WebSphere Application Server on a separately-installable

CD, includes debugging functionality that is built on the Eclipse workbench. Documentation for the

Application Server Toolkit is provided with that product. To learn more about the debug components,

launch the Application Server Toolkit, select Help > Help Contents and choose the Debugger Guide

bookshelf entry.

The Application Server Toolkit includes the following:

The WebSphere Application Server debug adapter

which allows you to debug Web objects that are running on WebSphere Application Server and

that you have launched in a browser. These objects include enterprise beans, JavaServer Pages

files, and servlets.

The JavaScript debug adapter

which enables server-side JavaScript debugging.

The Compiled language debugger

which allows you to detect and diagnose errors in compiled-language applications.

The Java development tools (JDT) debugger

which allows you to debug Java code.

All of the debug components in the Application Server Toolkit can be used for debugging locally and for

remote debugging.

To learn more about the debug components, launch the Application Server Toolkit, select Help > Help

Contents and choose the Debugger Guide bookshelf entry. To learn more about Log and Trace

Analyzer, launch the Application Server Toolkit, and select Help > Help Contents. To learn about known

limitations and problems that are associated with the Application Server Toolkit, see the Application Server

Toolkit release notes.

62 IBM WebSphere Application Server-Network Deployment, Version 6: Troubleshooting and support

http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCMPDF
http://www-1.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCMPDF&q=mustgather

Chapter 4. Adding logging and tracing to your application

Deprecation: The JRas framework that is described in this information center is deprecated. However, you

can achieve the same results using Java logging.

Designers and developers of applications that run with or under WebSphere Application Server, such as

servlets, JavaServer Pages (JSP) files , enterprise beans, client applications, and their supporting classes,

might find it useful to use Java logging for generating their application logging.

This approach has advantages over simply adding System.out.println statements to your code:

v Your messages are displayed in the WebSphere Application Server standard log files, using standard

message format with additional data, such as a date and time stamp that are added automatically.

v You can more easily correlate problems and events in your own application to problems and events that

are associated with WebSphere Application Server components.

v You can take advantage of the WebSphere Application Server log file management features.

v You can view your messages with the Log Analyzer tool.

Application

code

Application

code

com.xyz.abc.def

(Logger)

com.xyz.abc.ghi

(Logger)

com.xyz.abc

(Logger)

root

(Logger)

User Handler1

(Handler)

Output

device

User Handler2

(Handler)

Output

device

WAS

Handlers

Output

device

com.ibm.ws

(Logger)

com.ibm.ws.xyz

(Logger)

Service

broker

Applications

WAS

Applications

WAS

Application

code

JRAS API

(deprecated)

Anonymous

(Logger)

Logging and tracing with Java logging

Developing, deploying and maintaining applications are complex tasks. When an application encounters an

unexpected condition it might not be able to complete a requested operation. You might want the

application to inform the administrator that the operation has failed and tell the administrator why the

operation failed. This information enables the administrator to take the proper corrective action. Application

developers might need to gather detailed information that relates to the path of a running application to

determine the root cause of a failure that is due to a code bug. The facilities that are used for these

purposes are typically referred to as logging and tracing.

Java logging is the logging toolkit that is provided by the java.util.logging package. Java logging provides a

standard logging API for your applications.

Message logging (messages) and diagnostic trace (trace) are conceptually similar, but do have important

differences. These differences are important for application developers to understand to use these tools

properly. The following operational definitions of messages and trace are provided.

© Copyright IBM Corp. 2004 63

Message

A message entry is an informational record that is intended for end users, systems administrators,

and support personnel to view. The text of the message must be clear, concise, and interpretable

by an end user. Messages are typically localized, meaning they are displayed in the national

language of the end user. Although the destination and lifetime of messages might be

configurable, some level of message logging should be enabled in normal system operation.

Message logging should be used judiciously because of performance considerations and the size

of the message repository.

Trace A trace entry is an information record that is intended for service engineers or developers to use.

As such, a trace record might be considerably more complex, verbose and detailed than a

message entry. Localization support is typically not used for trace entries. Trace entries can be

fairly inscrutable, understandable only by the appropriate developer or service personnel. It is

assumed that trace entries are not written during normal runtime operation, but can be enabled as

needed to gather diagnostic information.

To use Java logging, see the following topics:

v “Configuring logging properties using the administrative console” on page 67.

See the Java documentation for the java.util.logging class for a full description of the syntax and the

construction of logging methods.

Loggers

Loggers are used by applications and runtime components to capture message and trace events. When

situations occur that are significant either due to a change in state (for example when a server has

completed startup) or because a potential problem has been detected (such as a timeout waiting for a

resource) a message will be written to the logs. Trace events are logged in debugging scenarios, where a

developer needs a clear view of what is occurring in each component to understand what might be going

wrong. Logged events are often the only events available when a problem is first detected, and are used

during both problem recovery and problem resolution.

Loggers are organized hierarchically. Each logger can have zero or more child loggers.

Loggers can be associated with a resource bundle. If specified, the resource bundle is used by the logger

to localize messages logged to it. If the resource bundle is not specified, a logger will use the same

resource bundle as its parent.

Loggers can be configured with a level. If specified the level is compared by the logger to incoming events

-- events less severe than the level set for the logger are ignored by the logger. If the level is not specified,

a logger will take on the level used by its parent. The default level for loggers is Level.INFO.

Loggers can have zero or more attached handlers. If supplied, all events logged to the logger will be

passed to the attached handlers (for more details see “Log handlers” on page 65). Handlers write events

to output destinations such as log files or network sockets. When a logger has finished passing a logged

event to all of the handlers attached to that logger, the logger then passes the event to the handlers

attached to the parents of the logger. This process will stop if a parent logger has been configured not to

use its parent handlers. Handlers in WebSphere Application Server are attached to the root logger. Set the

useParentHandlers logger property to false to prevent the logger from writing events to handlers that are

higher up in the hierarchy.

Loggers can have a Filter. If supplied, the filter is invoked for each incoming event to tell the logger

whether or not to ignore it.

Applications interact directly with loggers to log events. To obtain or create a logger, a call is made to the

Logger.getLogger method with a name for the logger. Typically, the logger name is either the package

qualified class name or the name of the package that the logger is used by. The hierarchical logger

64 IBM WebSphere Application Server-Network Deployment, Version 6: Troubleshooting and support

namespace is automatically created by using the dots in the logger name. For example, the logger

″com.ibm.websphere.ras″ has a parent logger named ″com.ibm.websphere″, which has a parent named

″com.ibm″, and so on. The parent at the top of the hierarchy is referred to as the root logger. This root

logger is created during initialization. The root logger is the parent of the logger ″com″.

Loggers are structured in a hierarchy. Every logger except the root logger has one parent. Each logger

can also have 0 or more children. A logger inherits log handlers, resource bundle names, and event

filtering settings from its parent in the hierarchy. The logger hierarchy is managed by the LogManager

function.

Loggers create log records. A log record is the container object for the data of an event. This object is

used by filters, handlers, and formatters in the logging infrastructure.

The logger provides several sets of methods for generating log messages. Some log methods take only a

level and enough information to construct a message. Other, more complex logp (log precise) methods

support the caller in passing class name and method name attributes in addition to the level and message

information. The logrb (log with ResourceBundle) methods add the capability of specifying a

ResourceBundle as well as the level, message information, class name and method name. Using methods

such as severe, warning, fine, finer, and finest you can log a message at a particular level. For a complete

list of methods, see the java.util.logging documentation at http://java.sun.com/j2se/.

Log handlers

Handlers write log record objects to an output device. Some examples of an output device are log files,

sockets, and notification mechanisms.

Loggers can have zero or more attached handlers. All objects logged to the logger will be passed to the

attached handlers, if handlers are supplied.

Handlers can be configured with a level. The handler compares the level specified in the logged object to

the level specified for the handler. If the level of the logged object is less severe than the level set in the

handler, the object is ignored by the handler. The default Level for handlers is ALL.

Handlers can have a filter. If a filter is supplied, the filter is invoked for each incoming object to tell the

handler whether or not to ignore it.

Handlers can have a formatter. If a formatter is supplied, the formatter controls how the logged objects are

formatted. For example, the formatter could decide to first include the timestamp, followed by a string

representation of the level, followed by the message included in the logged object. The handler writes this

formatted representation to the output device.

Both loggers and handlers can have levels and filters, and an logged object must pass all of these in order

to be output. For example, you can set the logger level to FINE, but if the handler level is set at

WARNING, then only WARNING level messages will appear in the output for that handler. Conversely, if

your log handler is set to output all messages (level=All), but the logger level is set to WARNING, then the

logger never sends messages lower than WARNING to the log handler.

WebSphere Application Server uses the following set of log handlers that are available to all loggers:

v Diagnostic trace

v JMX notification object

v Service log

v SystemErr

v SystemOut

Chapter 4. Adding logging and tracing to your application 65

http://java.sun.com/j2se/1.4.2/docs/api/java/util/logging/Logger.html

For instructions on how to configure these log handlers, see “Configuring logging properties using the

administrative console” on page 67

Log levels

Levels control which events are processed by Java logging. WebSphere Application Server controls the

levels of all loggers in the system. The level value is set from configuration data when the logger is

created and can be changed at run time from the administrative console (see “Configuring logging

properties using the administrative console” on page 67. If a level is not set in the configuration data, a

level is obtained by proceeding up the hierarchy until a parent with a level value is found. You can also set

a level for each handler to indicate which events are published to an output device. When you change the

level for a logger in the administrative console, the change is propagated to the children of the logger.

Levels are cumulative; a logger can process logged objects at the level that has been set for the logger,

and at all levels above the set level. Valid levels are:

 Level Content / Significance

Off No events are logged.

Fatal Task cannot continue and component cannot function.

Severe Task cannot continue but component can still function

Warning Potential error or impending error

Audit Significant event affecting server state or resources

Info General information outlining overall task progress

Config Configuration change or status

Detail General information detailing subtask progress

Fine Trace information - General trace + method entry / exit /

return values

Finer Trace information - Detailed trace

Finest Trace information - A more detailed trace - Includes all

the detail needed to debug problems

All All events are logged. If you have created custom levels,

″All″ would include your custom levels, and could provide

a more detailed trace than ″finest″.

For instructions on how to set logging levels, see “Configuring logging properties using the administrative

console” on page 67

Note: Trace information, which are events at levels Fine, Finer and Finest, can only be written to the trace

log. Therefore, if you do not enable diagnostic trace, setting the log detail level to Fine, Finer or

Finest will not have an effect on the data that is logged.

Log filters

A filter provides an optional, secondary control over what is logged, beyond the control that is provided by

setting the level. Applications can apply a filter mechanism to control logging output through the logging

APIs. An example of filter usage is to suppress all the events with a particular message key.

A filter is attached to a logger or log handler using the appropriate setFilter method. For a complete list of

methods, see the java.util.logging documentation at http://java.sun.com/j2se/

Log formatters

This article describes what a log formatter is.

66 IBM WebSphere Application Server-Network Deployment, Version 6: Troubleshooting and support

http://java.sun.com/j2se/1.4.2/docs/api/java/util/logging/Logger.html

Handlers may be configured with a formatter, which knows how to format log records. The event

(represented by the log record object) is passed to the appropriate formatter by the handler. The formatter

returns formatted output to the handler, which then writes it to the output device.

The formatter is responsible for rendering the event for output. This usually means the formatter uses the

ResourceBundle specified in the event to look up the message in the appropriate language.

Formatters are attached to handlers using the setFormatter method.

WebSphere Application Server allows you to configure the formatter to be used with trace, SystemOut.log,

and SystemErr.log log files:

v Basic (Compatible) - Preserves only basic trace information. The option allows you to minimize the

amount of space taken up by the trace output.

v Advanced - Preserves more specific trace information. Advanced allows you to see detailed trace

information for use in troubleshooting and problem determination.

v Log Analyzer - Preserves trace information in a format that is compatible with the Log Analyzer tool, so

that you can use the trace output as input to the Log Analyzer tool.

You can select a formatter for a handler using the administrative console panels. See “Diagnostic trace

service settings” on page 138 for details.

You can find the java.util.logging documentation at http://java.sun.com/j2se/.

Configuring logging properties using the administrative console

Use this task to browse or change the properties of Java logging.

Before applications can log diagnostic information, you need to specify how you want the server to handle

log output, and what level of logging you require. Using the administrative console, you can enable or

disable a particular log, specify where log files are stored and how many log files are kept, and specify a

format for log output. You can also set a log level for each logger.

You can change the log configuration statically or dynamically. Static configuration changes affect

applications when you start or restart the application server. Dynamic (or run-time) configuration changes

apply immediately.

When a log is created, the level value for that log is set from the configuration data. If no configuration

data is available for a particular log name, the level for that log is obtained from the parent of the log. If no

configuration data exists for the parent log, the parent of that log is checked, and so on up the tree, until a

log with a non-null Level value is found. When you change the level of a log, the change is propagated to

the children of the log, which recursively propagate the change to their children, as necessary.

To configure loggers and log handlers for use by Java logging, use the administrative console to complete

the following steps:

1. Set the output properties for a log:

a. In the navigation pane, click Servers > Application Servers.

b. Click the name of the server that you want to work with.

c. Under Troubleshooting, click Logging and tracing.

d. Click the name of a system log to configure (Diagnostic Trace, JVM Logs, Process Logs or IBM

Service Logs).

e. To make a static change to the system log configuration, click the Configuration tab. To change

the configuration dynamically, click the Runtime tab.

f. Change the properties for the selected log according to your needs.

g. Click Apply.

Chapter 4. Adding logging and tracing to your application 67

http://java.sun.com/j2se/1.4.2/docs/api/java/util/logging/Logger.html

h. Click OK.

2. Set the logging levels for your logs.

a. In the navigation pane, click Servers > Application Servers.

b. Click the name of the server that you want to work with.

c. Under Troubleshooting, click Logging and tracing.

d. Click Change Log Detail levels.

e. To make a static change to the configuration, click the Configuration tab. A list of well-known

components, packages, and groups is displayed. To change the configuration dynamically, click the

Runtime tab. The list of components, packages, and groups displays all the components that are

currently registered on the running server.

f. Select a component, package, or group to set a logging level. See “Log level settings” for a

description of each level.

g. Click Apply.

h. Click OK.

3. To have static configuration changes take effect, stop then restart the Application Server.

Log level settings

Use this page to configure and manage log level settings.

Using log levels you can control which events are processed by Java logging. When you change the level

for a logger, the change is propagated to the children of the logger.

Change Log Detail Levels

Specifies tracing details.

 Enter a log detail level that specifies the components, packages, or groups to trace. The log detail

level string must conform to the specific grammar described below. You can enter the log detail

level string directly, or generate it using the graphical trace interface.

 If you select the configuration tab, a list of well-known components, packages, and groups is

displayed. This list might not be exhaustive.

 If you select the runtime tab, the list of components, packages, and groups is displayed will all

such components currently registered on the running server. This list is static; you will not see your

application logger names on the runtime tab.

 The format of the log detail level specification is:

<component> = <level>

where <component> is the component for which to set a log detail level, and <level> is one of the

valid logger levels (off, fatal, severe, warning, audit, info, config, detail, fine, finer, finest, all).

Separate multiple log detail level specifications with colons (:).

 Components correspond to Java packages and classes, or to collections of Java packages. Use *

as a wildcard to indicate components that include all classes in all packages contained by the

specified component. For example:

* Specifies all traceable code running in the application server, including WebSphere Application

Server system code and customer code.

com.ibm.ws.*

specifies all classes whose package name begins with com.ibm.ws.

com.ibm.ws.classloader.JarClassLoader

Specifies only the JarClassLoader class.

68 IBM WebSphere Application Server-Network Deployment, Version 6: Troubleshooting and support

Note: An error can occur when setting a log detail level specification from the administrative

console if selections are made from both the Groups and Components lists. In some cases,

the selection made from one list is lost when adding a selection from the other list. To work

around this problem, enter the desired log detail level specification directly into the log

detail level entry field.

Select a component or group to set a log detail level. The table below lists the valid levels for application

servers at WebSphere Application Server Version 6 and higher, and the valid logging and trace levels for

earlier versions:

 Version 6 Logging Level Logging Level pre-Version

6

Trace Level pre-Version 6 Content / Significance

Off Off All disabled* Logging is turned off.

* In Version 6, a trace level

of All disabled will turn off

trace, but will not turn off

logging. Logging will be

enabled from the Info level.

Fatal Fatal - Task cannot continue and

component/ application/

server cannot function.

Severe Error - Task cannot continue but

component/ application/

server can still function.

This level can also indicate

an impending fatal error.

Warning Warning - Potential error or impending

error. This level can also

indicate a progressive

failure (for example, the

potential leaking of

resources).

Audit Audit - Significant event affecting

server state or resources

Info Info - General information

outlining overall task

progress

Config - - Configuration change or

status

Detail - - General information

detailing subtask progress

Fine - Event Trace information - General

trace + method entry / exit /

return values

Finer - Entry/Exit Trace information - Detailed

trace

Finest - Debug Trace information - A more

detailed trace that includes

all the detail that is needed

to debug problems

Chapter 4. Adding logging and tracing to your application 69

All All enabled All events are logged. If you

create custom levels, ″All″

would include those levels,

and could provide a more

detailed trace than ″finest″.

When you enable a logging level in version 6, you are also enabling all of the levels above it. For

example, if you set the logging level to warning on your version 6 application server, then warning, severe

and fatal events will be processed.

Note: Trace information, which are events at levels Fine, Finer and Finest, can only be written to the trace

log. Therefore, if you do not enable diagnostic trace, setting the log detail level to Fine, Finer or

Finest will not have an effect on the data that is logged.

HTTP error and NCSA access log settings

To view this administrative console page, click Application servers > > server name > HTTP error and

NCSA access logging .

Use this panel to configure an HTTP error log and NCSA access logs for an HTTP transport channel.

The HTTP error log logs HTTP errors. The level of error logging that occurs is dependent on the value

selected for the Error log level field.

The NCSA access log contains a record of all inbound client requests that the HTTP transport channel

handles. All of the messages contained in these logs are in NCSA format.

After you have configured the HTTP error log and the NCSA access logs, make sure the Enable NCSA

access logging field is selected for the HTTP channels for which you want logging to take place. To view

the settings for an HTTP channel, click Servers > Application Servers >server > Web Container

Transport Chains > HTTP Inbound Channel.

Enable service at server startup: When selected, either an NCSA access log or an HTTP error log, or

both will be initialized when the server is started.

Enable access logging: When selected, a record of inbound client requests that the HTTP transport

channel handles is kept in the NCSA access log.

Access log file path: Specifies the directory path and name of the NCSA access log. Standard variable

substitutions, such as $(SERVER_LOG_ROOT), can be used when specifying the directory path.

Access log maximum size: Specifies the maximum size, in megabytes, of the NCSA access log file.

When this size is reached, an archive log named logfile_name.1 is created. However, every subsequent

time that the original log file overflows this archive file is overwritten with the most current version of the

original log file.

NCSA access log format: Specifies the NCSA format is used when logging client access information. If

Common is selected, the log entries contain the requested resource and a few other pieces of information,

but does not contain referral, user agent, or cookie information. If Combined in selected, referral, user

agent, and or cookie information is included.

Enable error logging: When selected, HTTP errors that occur while the HTTP channel processes client

requests are recorded in the HTTP error log.

Error log file path: Specifies the directory path and name of the HTTP error log. Standard variable

substitutions, such as $(SERVER_LOG_ROOT), can be used when specifying the directory path.

70 IBM WebSphere Application Server-Network Deployment, Version 6: Troubleshooting and support

Error log maximum size: Specifies the maximum size, in megabytes, of the HTTP error log file. When

this size is reached, an archive log named logfile_name.1 is created. However, every subsequent time that

the original log file overflows this archive file is overwritten with the most current version of the original log

file.

Error log level:

Specifies the type of error messages that are included in the HTTP error log.

 You can select:

Critical

Only critical failures that stop the Application Server from functioning properly are logged.

Error Errors in responses to clients are logged. These errors require Application Server administrator

intervention if they are caused by server configuration settings.

Warning

Information on general errors, such as socket exceptions, that occur while handling client requests

are logged. These errors do not typically require Application Server administrator intervention.

Information

The status of the various tasks performed while handling client requests is logged.

Debug

More verbose task status information is logged. This level of logging is not intended to replace

RAS logging for debugging problems, but does provide a steady status report on the progress of

individual client requests. If this level of logging is selected, you must specify a large enough log

file size in the Error log maximum size field to contain all of the information that is logged.

Configuring logging properties for an application

The logger.properties file allows you to set logger attributes for specific loggers. The properties file is

loaded the first time the method Logger.getLogger(loggername) is called within an application.

When an application calls the Logger.getLogger method for the first time, all the available logger

properties files are loaded. Applications can provide logger.properties files in:

v the META-INF directory of the JAR file for the application

v directories included in the class path of application module

v directories included in the application class path

The properties file contains two categories of parameters - Logger control and Logger data:

v Logger control information

– minimum localization level - minimum LogRecord level for which localization will be attempted

– group - logical group that this component belongs to

– eventfactory - The Common Base Event template file to use with the event factory. Note that the

naming convention for this template is the fully qualified component name, with a file extension of

“.event.xml”. For example, a template that applies to package com.ibm.compXYZ would be called

com.ibm.compXYZ.event.xml

v Logger data information

– product name

– organization name

– component name

– extensions – additional properties

Chapter 4. Adding logging and tracing to your application 71

Sample logger.properties file

In the following sample, event factory com.ibm.xyz.MyEventFactory will be used by any loggers in the

com.ibm.websphere.abc package or any sub-packages which do not override this value in their own

configuration file.

com.ibm.websphere.abc.eventfactory=com.ibm.xyz.MyEventFactory

Sample security

Purpose

The sample security policy that follows grants access to the file system and runtime classes. Include this

security policy, with the entry permission java.util.logging.LoggingPermission "control", in the

META-INF directory of your application if you want to allow the application to programmatically alter

controlled properties of loggers and handlers.

//

//

// WebSphere Application Server Security Policy

//

//

//

// Allow all access to the file system and runtime classes

//

grant codeBase "file:${application}" {

 permission java.util.logging.LoggingPermission "control";

};

Using loggers in an application

This article describes how to use Java logging within an application.

To instrument an application using Java logging, perform the following steps:

1. Create the necessary handler, formatter, and filter classes, if you need your own log files.

2. If localized messages will be used by the application, create a resource bundle as described in

“Creating log resource bundles and message files” on page 76.

3. In the application code, get a reference to a logger instance as described in “Using a logger.”

4. Insert the appropriate message and trace logging statements in the application as described in “Using

a logger.”

Using a logger

There are various ways in which to log messages or trace using Java logging. The following guidelines will

help you to use Java logging to log messages and add tracing:

1. Use level WsLevel and above for messages, and lower levels for Trace. The WebSphere Application

Server Extension API (the com.ibm.websphere.logging package) contains the WsLevel class.

v For messages use:

WsLevel.FATAL

Level.SEVERE

Level.WARNING

WsLevel.AUDIT

Level.INFO

Level.CONFIG

WsLevel.DETAIL

v For trace use:

Level.FINE

Level.FINER

Level.FINEST

72 IBM WebSphere Application Server-Network Deployment, Version 6: Troubleshooting and support

2. Use the logp method instead of log or logrb since logp accepts parameters for class name and

method name. The log and logrb methods will generally try to infer this information, but the

performance penalty is prohibitive.

3. Avoid using the logrb method since this leads to inefficient caching of resource bundles which results

in poor performance.

4. Use the isLoggable method to avoid creating data for a logging call that will not get logged. For

example:

if (logger.isLoggable(Level.FINEST)) {

 String s = dumpComponentState(); // some expensive to compute method

 logger.logp(Level.FINEST, className, methodName, "componentX state dump:\n{0}", s);

 }

The following sample applies to localized messages:

// note - generally avoid use of FINE, FINER, FINEST levels for messages

to be consistent with WebSphere Application Server

String componentName = "com.ibm.websphere.componentX";

String resourceBundleName = "com.ibm.websphere.componentX.Messages";

Logger logger = Logger.getLogger(componentName, resourceBundleName);

// "Convenience" methods - not generally recommended due to lack of class / method names

// - can’t specify message substitution parameters

// - can’t specify class/method names

if (logger.isLoggable(Level.SEVERE))

 logger.severe("MSG_KEY_01");

if (logger.isLoggable(Level.WARNING))

 logger.warning("MSG_KEY_01");

if (logger.isLoggable(Level.INFO))

 logger.info("MSG_KEY_01");

if (logger.isLoggable(Level.CONFIG))

 logger.config("MSG_KEY_01");

// "log" methods - not generally recommended due to lack of class / method names

// - enable use of WebSphere Application Server specific levels

// - enable use of message substitution parameters

// - can’t specify class/method names

if (logger.isLoggable(WsLevel.FATAL))

 logger.log(WsLevel.FATAL, "MSG_KEY_01", "parameter 1");

if (logger.isLoggable(Level.SEVERE))

 logger.log(Level.SEVERE, "MSG_KEY_01", "parameter 1");

if (logger.isLoggable(Level.WARNING))

 logger.log(Level.WARNING, "MSG_KEY_01", "parameter 1");

if (logger.isLoggable(WsLevel.AUDIT))

 logger.log(WsLevel.AUDIT, "MSG_KEY_01", "parameter 1");

if (logger.isLoggable(Level.INFO))

 logger.log(Level.INFO, "MSG_KEY_01", "parameter 1");

if (logger.isLoggable(Level.CONFIG))

 logger.log(Level.CONFIG, "MSG_KEY_01", "parameter 1");

if (logger.isLoggable(WsLevel.DETAIL))

 logger.log(WsLevel.DETAIL, "MSG_KEY_01", "parameter 1");

// "logp" methods - the recommended way to log

// - enable use of WebSphere Application Server specific levels

Chapter 4. Adding logging and tracing to your application 73

// - enable use of message substitution parameters

// - enable use of class/method names

if (logger.isLoggable(WsLevel.FATAL))

 logger.logp(WsLevel.FATAL, className, methodName, "MSG_KEY_01", "parameter 1");

if (logger.isLoggable(Level.SEVERE))

 logger.logp(Level.SEVERE, className, methodName, "MSG_KEY_01", "parameter 1");

if (logger.isLoggable(Level.WARNING))

 logger.logp(Level.WARNING, className, methodName, "MSG_KEY_01", "parameter 1");

if (logger.isLoggable(WsLevel.AUDIT))

 logger.logp(WsLevel.AUDIT, className, methodName, "MSG_KEY_01", "parameter 1");

if (logger.isLoggable(Level.INFO))

 logger.logp(Level.INFO, className, methodName, "MSG_KEY_01", "parameter 1");

if (logger.isLoggable(Level.CONFIG))

 logger.logp(Level.CONFIG, className, methodName, "MSG_KEY_01", "parameter 1");

if (logger.isLoggable(WsLevel.DETAIL))

 logger.logp(WsLevel.DETAIL, className, methodName, "MSG_KEY_01", "parameter 1");

// "logrb" methods - not generally recommended due to diminished performance of switching resource bundles on the fly

// - enable use of WebSphere Application Server specific levels

// - enable use of message substitution parameters

// - enable use of class/method names

String resourceBundleNameSpecial = "com.ibm.websphere.componentX.MessagesSpecial";

if (logger.isLoggable(WsLevel.FATAL))

 logger.logrb(WsLevel.FATAL, className, methodName, resourceBundleNameSpecial, "MSG_KEY_01", "parameter 1");

if (logger.isLoggable(Level.SEVERE))

 logger.logrb(Level.SEVERE, className, methodName, resourceBundleNameSpecial, "MSG_KEY_01", "parameter 1");

if (logger.isLoggable(Level.WARNING))

 logger.logrb(Level.WARNING, className, methodName, resourceBundleNameSpecial, "MSG_KEY_01", "parameter 1");

if (logger.isLoggable(WsLevel.AUDIT))

 logger.logrb(WsLevel.AUDIT, className, methodName, resourceBundleNameSpecial, "MSG_KEY_01", "parameter 1");

if (logger.isLoggable(Level.INFO))

 logger.logrb(Level.INFO, className, methodName, resourceBundleNameSpecial, "MSG_KEY_01", "parameter 1");

if (logger.isLoggable(Level.CONFIG))

 logger.logrb(Level.CONFIG, className, methodName, resourceBundleNameSpecial, "MSG_KEY_01", "parameter 1");

if (logger.isLoggable(WsLevel.DETAIL))

 logger.logrb(WsLevel.DETAIL, className, methodName, resourceBundleNameSpecial, "MSG_KEY_01", "parameter 1");

For trace, (or content that is not localized), the following sample applies:

// note - generally avoid use of FATAL, SEVERE, WARNING, AUDIT, INFO, CONFIG, DETAIL levels for trace

// to be consistent with WebSphere Application Server

String componentName = "com.ibm.websphere.componentX";

Logger logger = Logger.getLogger(componentName);

// Entering / Exiting methods - recommended for non trivial methods

if (logger.isLoggable(Level.FINER))

 logger.entering(className, methodName);

if (logger.isLoggable(Level.FINER))

 logger.entering(className, methodName, "method param1");

if (logger.isLoggable(Level.FINER))

74 IBM WebSphere Application Server-Network Deployment, Version 6: Troubleshooting and support

logger.exiting(className, methodName);

if (logger.isLoggable(Level.FINER))

 logger.exiting(className, methodName, "method result");

// Throwing method - not generally recommended due to lack of message - use logp with a throwable parameter instead

if (logger.isLoggable(Level.FINER))

 logger.throwing(className, methodName, throwable);

// "Convenience" methods - not generally recommended due to lack of class / method names

// - can’t specify message substitution parameters

// - can’t specify class/method names

if (logger.isLoggable(Level.FINE))

 logger.fine("This is my trace");

if (logger.isLoggable(Level.FINER))

 logger.finer("This is my trace");

if (logger.isLoggable(Level.FINEST))

 logger.finest("This is my trace");

// "log" methods - not generally recommended due to lack of class / method names

// - enable use of WebSphere Application Server specific levels

// - enable use of message substitution parameters

// - can’t specify class/method names

if (logger.isLoggable(Level.FINE))

 logger.log(Level.FINE, "This is my trace", "parameter 1");

if (logger.isLoggable(Level.FINER))

 logger.log(Level.FINER, "This is my trace", "parameter 1");

if (logger.isLoggable(Level.FINEST))

 logger.log(Level.FINEST, "This is my trace", "parameter 1");

// "logp" methods - the recommended way to log

// - enable use of WebSphere Application Server specific levels

// - enable use of message substitution parameters

// - enable use of class/method names

if (logger.isLoggable(Level.FINE))

 logger.logp(Level.FINE, className, methodName, "This is my trace", "parameter 1");

if (logger.isLoggable(Level.FINER))

 logger.logp(Level.FINER, className, methodName, "This is my trace", "parameter 1");

if (logger.isLoggable(Level.FINEST))

 logger.logp(Level.FINEST, className, methodName, "This is my trace", "parameter 1");

// "logrb" methods - not applicable for trace logging since no localization is involved

Understanding the logger hierarchy

WebSphere Application Server handlers are attached to the Java root logger in the logger hierarchy. As a

result, any request from anywhere in the logger tree can be processed by WebSphere Application Server

handlers. WebSphere Application Server handlers will process both standard log records and WebSphere

Application Server log records. You can configure the system to:

v Forward all application logging requests to the WebSphere Application Server handlers. This is the

default behavior.

Chapter 4. Adding logging and tracing to your application 75

v Forward all application logging requests to your own custom handlers. To do this, set

useParentHandlers to false on one of your custom loggers, and then attach your handlers to that

logger.

v Forward all application logging requests to both WebSphere Application Server handlers, and your

custom handlers, but do not forward WebSphere Application Server logging requests to your custom

handlers. To do this, set useParentHandlers to true on one of your non-root custom loggers (true is the

default setting) , and then attach your handlers to that logger.

v Forward all WebSphere Application Server logging requests to both WebSphere Application Server

handlers, and your custom handlers. WebSphere Application Server logging requests are always

forwarded to WebSphere Application Server handlers. To forward WebSphere Application Server

requests to your custom handlers, attach your custom handlers to the Java root logger, so that they are

at the same level in the hierarchy as the WebSphere Application Server handlers.

The example below shows how these requirements can be met using the Java logging infrastructure.

Application

code

Application

code

com.xyz.abc.def

(Logger)

com.xyz.abc.ghi

(Logger)

com.xyz.abc

(Logger)

root

(Logger)

User Handler1

(Handler)

Output

device

User Handler2

(Handler)

Output

device

WAS

Handlers

Output

device

com.ibm.ws

(Logger)

com.ibm.ws.xyz

(Logger)

Service

broker

Applications

WAS

Applications

WAS

Application

code

JRAS API

(deprecated)

Anonymous

(Logger)

Creating log resource bundles and message files

Every method that accepts messages will localize those messages. The mechanism for providing localized

messages is the Resource Bundle support provided by the IBM Developer Java Technology Edition. If you

are not familiar with resource bundles as implemented by the Developer’s Kit, you can get more

information from various texts, or by reading the Javadoc for the java.util.ResourceBundle,

java.util.ListResourceBundle and java.util.PropertyResourceBundle classes, as well as the

java.text.MessageFormat class.

The PropertyResourceBundle is the preferred mechanism to use.

You can forward messages that are written to the internal WebSphere Application Server logs to other

processes for display. For example, messages displayed on the administrator console, which can be

running in a different location than the server process, can be localized using the late binding process.

Late binding means that WebSphere Application Server does not localize messages when they are logged,

but defers localization to the process that displays the message.

To properly localize the message, the displaying process must have access to the resource bundle where

the message text is stored. This means that you must package the resource bundle separately from the

application, and install it in a location where the viewing process can access it.

76 IBM WebSphere Application Server-Network Deployment, Version 6: Troubleshooting and support

By default, the WebSphere Application Server runtime localizes all the messages when they are logged.

This eliminates the need to pass a .jar file to the application, unless you need to localize in a different

location. However, you can use the early binding technique to localize messages as they are logged. An

application that uses early binding must localize the message before logging it. The application looks up

the localized text in the resource bundle and formats the message. Use the early binding technique to

package the application’s resource bundles with the application.

To create a resource bundle, perform the following steps.

1. Create a text properties file that lists message keys and the corresponding messages. The properties

file must have the following characteristics:

v Each property in the file is terminated with a line-termination character.

v If a line contains only white space, or if the first non-white space character of the line is the pound

sign symbol (#) or exclamation mark (!), the line is ignored. The # and ! characters can therefore be

used to put comments into the file.

v Each line in the file, unless it is a comment or consists only of white space, denotes a single

property. A backslash (\) is treated as the line-continuation character.

v The syntax for a property file consists of a key, a separator, and an element. Valid separators

include the equal sign (=), colon (:), and white space ().

v The key consists of all characters on the line from the first non-white space character to the first

separator. Separator characters can be included in the key by escaping them with a backslash (\),

but doing this is not recommended, because escaping characters is error prone and confusing. It is

instead recommended that you use a valid separator character that does not appear in any keys in

the properties file.

v White space after the key and separator is ignored until the first non-white space character is

encountered. All characters remaining before the line-termination character define the element.

See the Java documentation for the java.util.Properties class for a full description of the syntax and

construction of properties files.

2. The file can then be translated into localized versions of the file with language-specific file names (for

example, a file named DefaultMessages.properties can be translated into

DefaultMessages_de.properties for German and DefaultMessages_ja.properties for Japanese).

3. When the translated resource bundles are available, put the bundle in a directory that is part of the

application’s classpath.

4. When a message logger is obtained from the log manager, it can be configured to use a particular

resource bundle. Messages logged via the Logger() API will use this resource bundle when message

localization is performed. At run time, the user’s locale setting is used to determine the properties file

from which to extract the message specified by a message key, thus ensuring that the message is

delivered in the correct language.

5. If the message loggers msg() method is called, a resource bundle name must be explicitly provided.

The application locates the resource bundle based on the file’s location relative to any directory in the

classpath. For instance, if the property resource bundle named DefaultMessages.properties is located in

the baseDir/subDir1/subDir2/resources directory and baseDir is in the class path, the name

subdir1.subdir2.resources.DefaultMessage is passed to the message logger to identify the resource

bundle.

Developing log resource bundles:

Resource bundle sample

You can create resource bundles in several ways. The best and easiest way is to create a properties file

that supports a PropertiesResourceBundle. This sample shows how to create such a properties file.

For this sample, four localizable messages are provided. The properties file is created and the key-value

pairs inserted into it. All the normal properties files conventions and rules apply to this file. In addition, the

creator must be aware of other restrictions imposed on the values by the Java MessageFormat class. For

example, apostrophes must be ″escaped″ or they will cause a problem. Also avoid use of non-portable

Chapter 4. Adding logging and tracing to your application 77

characters. WebSphere Application Server does not support usage of extended formatting conventions that

the MessageFormat class supports, such as {1, date} or {0,number, integer}.

Assume that the base directory for the application that uses this resource bundle is ″baseDir″ and that this

directory will be in the classpath. Assume that the properties file is stored in a subdirectory of baseDir that

is not in the classpath (e.g. baseDir/subDir1/subDir2/resources). In order to allow the messages file to

be resolved, the name subDir1.subDir2.resources.DefaultMessage is used to identify the

PropertyResourceBundle and is passed to the message logger.

For this sample, the properties file is named DefaultMessages.properties.

Contents of DefaultMessages.properties file

MSG_KEY_00=A message with no substitution parameters.

MSG_KEY_01=A message with one substitution parameter: parm1={0}

MSG_KEY_02=A message with two substitution parameters: parm1={0}, parm2 = {1}

MSG_KEY_03=A message with three parameter: parm1={0}, parm2 = {1}, parm3={2}

Once the file DefaultMessages.properties is created, the file can be sent to a translation center where the

localized versions will be generated.

Creating a custom log handler

There may be occasions when you only want to propagate log records to your own log handlers, rather

than participate in integrated logging. To use a stand alone log handler, set the ″useParentHandlers″ flag

to false in your application.

The mechanism for creating a customer handler is the Handler class support provided by the IBM

Developer Java Technology Edition. If you are not familiar with handlers as implemented by the

Developer’s Kit, you can get more information from various texts, or by reading the Javadoc for

java.util.logging.

The following is a sample of a custom handler:

import java.io.FileOutputStream;

import java.io.PrintWriter;

import java.util.logging.Handler;

import java.util.logging.LogRecord;

/**

 * MyCustomHandler outputs contents to a specified file

 */

public class MyCustomHandler extends Handler {

 FileOutputStream fileOutputStream;

 PrintWriter printWriter;

 public MyCustomHandler(String filename) {

 super();

 // check input parameter

 if (filename == null)

 filename = "mylogfile.txt";

 try {

 // initialize the file

 fileOutputStream = new FileOutputStream(filename);

 printWriter = new PrintWriter(fileOutputStream);

 }

 catch (Exception e) {

 // implement exception handling...

 }

 }

 /* (non-Javadoc)

78 IBM WebSphere Application Server-Network Deployment, Version 6: Troubleshooting and support

* @see java.util.logging.Handler#publish(java.util.logging.LogRecord)

 */

 public void publish(LogRecord record) {

 // ensure that this LogRecord should be logged by this Handler

 if (!isLoggable(record))

 return;

 // Output the formatted data to the file

 printWriter.println(getFormatter().format(record));

 }

 /* (non-Javadoc)

 * @see java.util.logging.Handler#flush()

 */

 public void flush() {

 printWriter.flush();

 }

 /* (non-Javadoc)

 * @see java.util.logging.Handler#close()

 */

 public void close() throws SecurityException {

 printWriter.close();

 }

}

Creating a custom filter

A Filter provides optional, secondary control over what is logged, beyond the control provided by the level.

The mechanism for creating a customer filter is the Filter interface support provided by the IBM Developer

Java Technology Edition. If you are not familiar with filters as implemented by the Developer’s Kit, you can

get more information from various texts, or by reading the Javadoc for java.util.logging.

The following is an example of a custom filter:

import java.util.Vector;

import java.util.logging.Filter;

import java.util.logging.LogRecord;

/**

 * MyCustomFilter rejects any LogRecords whose Level is not contained in the

 * configured list of Levels.

 */

public class MyCustomFilter implements Filter {

 private Vector acceptableLevels;

 public MyCustomFilter(Vector acceptableLevels) {

 super();

 this.acceptableLevels = acceptableLevels;

 }

 /* (non-Javadoc)

 * @see java.util.logging.Filter#isLoggable(java.util.logging.LogRecord)

 */

 public boolean isLoggable(LogRecord record) {

 return (acceptableLevels.contains(record.getLevel()));

 }

}

Creating a custom formatter

A formatter formats events. Handlers are associated with one or more formatters.

Chapter 4. Adding logging and tracing to your application 79

The mechanism for creating a customer formatter is the Formatter class support provided by the IBM

Developer Java Technology Edition. If you are not familiar with formatters as implemented by the

Developer’s Kit, you can get more information from various texts, or by reading the Javadoc for

java.util.logging.

The following is an example of a custom formatter:

import java.util.Date;

import java.util.logging.Formatter;

import java.util.logging.LogRecord;

/**

 * MyCustomFormatter formats the LogRecord as follows:

 * date level localized message with parameters

 */

public class MyCustomFormatter extends Formatter {

 public MyCustomFormatter() {

 super();

 }

 public String format(LogRecord record) {

 // Create a StringBuffer to contain the formatted record

 // start with the date.

 StringBuffer sb = new StringBuffer();

 // Get the date from the LogRecord and add it to the buffer

 Date date = new Date(record.getMillis());

 sb.append(date.toString());

 sb.append(" ");

 // Get the level name and add it to the buffer

 sb.append(record.getLevel().getName());

 sb.append(" ");

 // Get the formatted message (includes localization

 // and substitution of paramters) and add it to the buffer

 sb.append(formatMessage(record));

 return sb.toString();

 }

}

Using custom handlers, filters, and formatters

In some cases you may wish to have your own custom log files. Adding custom handlers, filters, and

formatters enables you to customize your logging environment beyond what can be achieved by

configuration of the default WebSphere Application Server logging infrastructure.

The following example demonstrates how to add a new handler to process requests to the

com.myCompany subtree of loggers (see“Understanding the logger hierarchy” on page 75). The main

method in this sample gives an example of how to use the newly configured logger.

import java.util.Vector;

import java.util.logging.Filter;

import java.util.logging.Formatter;

import java.util.logging.Handler;

import java.util.logging.Level;

import java.util.logging.Logger;

public class MyCustomLogging {

 public MyCustomLogging() {

 super();

 }

80 IBM WebSphere Application Server-Network Deployment, Version 6: Troubleshooting and support

public static void initializeLogging() {

 // Get the logger which we wish to attach a custom Handler to

 String defaultResourceBundleName = "com.myCompany.Messages";

 Logger logger = Logger.getLogger("com.myCompany", defaultResourceBundleName);

 // Set up a custom Handler (see MyCustomHandler example)

 Handler handler = new MyCustomHandler("MyOutputFile.log");

 // Set up a custom Filter (see MyCustomFilter example)

 Vector acceptableLevels = new Vector();

 acceptableLevels.add(Level.INFO);

 acceptableLevels.add(Level.SEVERE);

 Filter filter = new MyCustomFilter(acceptableLevels);

 // Set up a custom Formatter (see MyCustomFormatter example)

 Formatter formatter = new MyCustomFormatter();

 // Connect the filter and formatter to the handler

 handler.setFilter(filter);

 handler.setFormatter(formatter);

 // Connect the handler to the logger

 logger.addHandler(handler);

 // avoid sending events logged to com.myCompany showing up in WebSphere

 // Application Server logs

 logger.setUseParentHandlers(false);

 }

 public static void main(String[] args) {

 initializeLogging();

 Logger logger = Logger.getLogger("com.myCompany");

 logger.info("This is a test INFO message");

 logger.warning("This is a test WARNING message");

 logger.logp(Level.SEVERE, "MyCustomLogging", "main", "This is a test SEVERE message");

 }

}

When the above program is executed, the output of the program is written to the MyOutputFile.log file. The

content of the log is in the expected log file, as controlled by the custom handler, and is formatted as

defined by the custom formatter. The warning message has been filtered out, as specified by the

configuration of the custom filter. The output is as follows:

C:\>type MyOutputFile.log

Sat Sep 04 11:21:19 EDT 2004 INFO This is a test INFO message

Sat Sep 04 11:21:19 EDT 2004 SEVERE This is a test SEVERE message

The Common Base Event in WebSphere Application Server

This topic describes how WebSphere Application Server takes advantage of the Common Base Events.

An application creates an event object whenever something happens that either should be recorded for

later analysis or which may require additional work to be triggered. An event is a structured notification that

reports information related to a situation. An event reports three kinds of information:

v The situation itself (what has happened)

v The identity of the affected component (for example, the server that has shut down)

v The identity of the component that is reporting the situation (which might be the same as the affected

component)

Chapter 4. Adding logging and tracing to your application 81

The application creating the event object is called the event source. Event sources can use a common

structure for the event. The accepted standard for such a structure is called the Common Base Event. The

Common Base Event is a XML document defined as part of the Autonomic Computing initiative. The

Common Base Event defines common fields, the values they can take and the exact meanings of these

values.

The Common Base Event model is a standard defining a common representation of events that is

intended for use by enterprise management and business applications. This standard, developed by the

IBM Autonomic Computing Architecture Board, supports encoding of logging, tracing, management, and

business events using a common XML-based format, making it possible to correlate different types of

events that originate from different applications. For more information about the Common Base Event

model, see the Common Base Event specification (Canonical Situation Data Format: The Common Base

Event V1.0.1). The common event infrastructure currently supports version 1.0.1 of the specification.

The basic concept behind the Common Base Event model is the situation. A situation can be anything that

happens anywhere in the computing infrastructure, such as a server shutdown, a disk-drive failure, or a

failed user login. The Common Base Event model defines a set of standard situation types that

accommodate most of the situations that might arise (for example, StartSituation and CreateSituation).

The Common Base Event should contain all of the information needed by the consumers to understand

the event. This includes information about the runtime environment, the business environment and the

instance of the application object that created the event.

For complete details on the Common Base Event format, see the XML schema included in the Common

Base Event specification document, at ftp://www6.software.ibm.com/software/developer/library/ac-
toolkitdg.pdf .

Types of problem determination events

This topic describes types of problem determination events.

Problem determination involves using multiple types of data, including at least two different classes of

event data, log events and diagnostic events.

Log events, which are also referred to as message events, are typically emitted by components of a

business application during normal deployment and operations. Log events may identify problems, but

these events are also normally available and emitted while an application and its components are in

production mode. The target audience for log and message events is users and administrators of the

application and the components that make up the application. Log events are normally the only events

available when a problem is first detected, and are typically used during both problem recovery and

problem resolution.

Diagnostic events, which are commonly referred to as trace events, are used to capture internal diagnostic

information about a component, and are usually not emitted or available during normal deployment and

operations. The target audience for diagnostic events is the developers of the components that make up

the business application. Diagnostic events are typically used when trying to resolve problems within a

component, such as a software failure, but are sometimes used to diagnose other problems, especially

when the information provided by the log events is not sufficient to resolve the problem. Diagnostic events

are typically used when trying to resolve a problem.

Common Base Events are primarily used to represent log events.

The structure of the Common Base Event

A Common Base Event contains several structural elements. These are:

v Common header information

82 IBM WebSphere Application Server-Network Deployment, Version 6: Troubleshooting and support

ftp://www6.software.ibm.com/software/developer/library/ac-toolkitdg.pdf
ftp://www6.software.ibm.com/software/developer/library/ac-toolkitdg.pdf

v Component Identification (both source and reporter)

v Situation information

v Message data

v Extended data

v Context data

v Associated events and association engine

Each of these structural elements has its own embedded elements and attributes.

The following table presents a summary of all fields in the Common Base Event and their usage

requirements for problem determination events. It shows whether a particular element or attribute is

required, recommended, optional, prohibited, or discouraged for log events, and the base specification.

 Field Name Log Events Base Specification

Version Required Required

creationTime Required Required

severity Required Optional

Msg Required Optional

sourceComponentId* Required Required

sourceComponentId.location Required Required

sourceComponentId.locationType Required Required

sourceComponentId.component Required Required

sourceComponentId.subComponent Required Required

sourceComponentId.componentIdType Required Required

sourceComponentId.componentType Required Required

sourceComponentId.application Recommended Optional

sourceComponentId.instanceId Recommended Optional

sourceComponentId.processId Recommended Optional

sourceComponentId.threadId Recommended Optional

sourceComponentId.executionEnvironment Optional Optional

situation* Required Required

situation.categoryName Required Required

situation.situationType* Required Required

situation.situationType.reasoningScope Required Required

situation.situationType.(specific

Situation Type elements)

Required Required

msgDataElement* Recommended Optional

msgDataElement .msgId Recommended Optional

msgDataElement .msgIdType Recommended Optional

msgDataElement .msgCatalogId Recommended Optional

msgDataElement .msgCatalogTokens Recommended Optional

msgDataElement .msgCatalog Recommended Optional

msgDataElement .msgCatalogType Recommended Optional

msgDataElement .msgLocale Recommended Optional

extensionName Recommended Optional

Chapter 4. Adding logging and tracing to your application 83

localInstanceId Optional Optional

globalInstanceId Optional Optional

priority Discouraged Optional

repeatCount Optional Optional

elapsedTime Optional Optional

sequenceNumber Optional Optional

reporterComponentId* Optional Optional

reporterComponentId.location Required (2) Required (2)

reporterComponentId.locationType Required (2) Required (2)

reporterComponentId.component Required (2) Required (2)

reporterComponentId.subComponent Required (2) Required (2)

reporterComponentId.componentIdType Required (2) Required (2)

reporterComponentId.componentType Required (2) Required (2)

reporterComponentId.instanceId Optional Optional

reporterComponentId.processId Optional Optional

reporterComponentId.threadId Optional Optional

reporterComponentId.application Optional Optional

reporterComponentId.executionEnvironment Optional Optional

extendedDataElements* Note 3 Optional

contextDataElements* Note 4 Optional

associatedEvents* Note 5 Optional

Note:

1. Items followed by an asterisk (*) are elements that consist of sub-elements and attributes. The

fields in those elements are listed in the table directly following the parent element name.

2. Some of the elements are optional, but when included, they include sub-elements and attributes

that are required. For example, reporterComponentId is of type ComponentIdentification. The

component attribute in ComponentIdentification is required. Therefore, the

reporterComponentId.component attribute is required, but only when the parent element

(reporterComponentId) is included.

3. The extendedDataElements element can be included multiple times to supply extended data

information. See the Extended Data section for more information on required and recommended

extended data element values.

4. The contextDataElements element can be included multiple times to supply context data

information.

5. The associatedEvents element can be included multiple times to supply correlation data. There

are no recommended uses of this element for the producers of problem determination data, and

it is in fact discouraged.

Common Header Information

The common header information in the Common Base Event includes the following information about an

event:

v the version of this Common Base Event (version).

v the date and time when the event was generated (creationTime).

v the severity of the condition (situation) identified by the event (severity and priority).

84 IBM WebSphere Application Server-Network Deployment, Version 6: Troubleshooting and support

v the type of event that was captured (extensionName).

v identifiers that can be used to quickly identify a specific event within a set of events (localInstanceId and

globalInstanceId).

v information that allows a system to efficiently report multiple events of the same type, by consolidating

those events into a single event (repeatCount and elapsedTime).

v sequence information that allows a system to order a set of events in other ways than time of capture

(sequenceNumber).

The Common Base Event specification [CBE101] provides information on the required format of these

fields and the Common Base Event Developer‘s Guide [CBEBASE] provides general usage guidelines.

This article will provide additional information about how to format and use these fields for problem

determination events, which should be used to clarify and extend the information provided in the other

documents.

severity

All problem determination events must provide an indication as to the relative severity of the condition

(situation) being reported by providing appropriate values for the severity field in the Common Base

Event. The severity field is required for problem determination events. This is more restrictive than the

base specification for the Common Base Event, which lists this as an optional field because effective

and efficient problem determination requires the ability to quickly identify the information needed to

resolve a problem as well as prioritize the problems that need to be addressed. Typically the following

values are used for problem determination events:

 10 Information Log information events (normal

conditions, events supplied to clarify

operations, for example, state

transitions, operational changes).

These events typically do not require

administrator action or intervention.

20 Harmless Similar to Information events, but

used to capture ’audit‘ items, such as

state transitions or operational

changes. These events typically do

not require administrator action or

intervention.

30 Warning Warnings typically represent

recoverable errors, for example a

failure that the system was able to

correct. These events may require

administrator action or intervention.

40 Minor Minor errors describe events that

represent an unrecoverable error

within a component. The failure

affects the component‘s ability to

service some requests. The business

application is able to continue to

perform its normal functions, but its

overall operation may be degraded.

These events require administrator

action or intervention to address the

condition.

Chapter 4. Adding logging and tracing to your application 85

50 Critical Critical errors describe events that

represent an unrecoverable error

within a component. The failure

significantly affects the component‘s

ability to service most requests. The

business application is able to

continue most (but not all) of its

normal functions and its overall

operation may be degraded. These

events require administrator action or

intervention to address the condition.

60 Fatal Fatal errors describe events that

represent an unrecoverable error

within a component. The failure

usually results in the complete failure

of the component. The business

application may be able to continue

some normal functions, but its overall

operation may be degraded. These

events require administrator action or

intervention to address the condition.

msg

Refer to “Message Data” on page 90 for information on this attribute.

priority

The usage of the priority field is discouraged for problem determination events. The severity field is

typically used to communicate and evaluate the importance of problem determination events. When

the priority field is used, it should only be used to enhance the information provided in severity field,

i.e. prioritize events of the same severity.

extensionName

The extensionName field is used to communicate the ’type‘ of event being reported, for example, what

general class of events is being reported. In many cases this field provides an indication of what

additional data should be expected to be supplied with the event (for example, optional data values).

repeatCount

The repeatCount field is valid for problem determination events, but is not typically used or supplied by

the event producers. This field is used for data reduction/consolidation by event management and

analysis systems.

elapsedTime

The elapsedTime field is valid for problem determination events, but is not typically used or supplied

by the event producers. This field is used for data reduction/consolidation by event management and

analysis systems.

sequenceNumber

The sequenceNumber field is valid for problem determination events. It is typically only used by event

producers when the granularity of the event time stamp (the creationTime field) is not sufficient in

ordering events. In other words, the sequenceNumber field is typically used to sequence events that

have the same time stamp value.

Note: Event management and analysis systems may use the sequenceNumber field for a number of

reasons, including providing alternative sequencing, not necessarily based on time stamp. The

recommendations here are provided primarily for event producers.

86 IBM WebSphere Application Server-Network Deployment, Version 6: Troubleshooting and support

Component Identification (Source and Reporter)

The component identification fields in the Common Base Event are used to indicate which component in

the system is experiencing the condition described by the event (the sourceComponentId) and which

component emitted the event (the reporterComponentId). Typically, these are the same component, in

which case only the sourceComponentId is supplied. Some notes and scenarios on when these two

elements in the Common Base Event should be used:

v the sourceComponentId is always used to identify the component experiencing the condition described

by the event.

v the reporterComponentId is used to identify the component that actually produced and emitted the

event. This element is typically only used within events emitted by a component that is monitoring

another component and providing operational information regarding that component. The monitoring

component (for example, a Tivoli agent or hardware device driver) is identified by the

reporterComponentId and the component being monitored (for example, a monitored server or hardware

device) is identified by the sourceComponentId.

A potential misuse of the reporterComponentId is to identify a component that provides event

conversion or management services for a component, for example, identifying an adapter that

transforms the events captured by a component into Common Base Event format. The event conversion

function is considered an extension of the component and should NOT be identified separately.

The information used to identify a component in the system is the same, regardless of whether it is the

source component or reporter component:

 location locationType Component Location Identifies the location of the

component.

component componentType Component Name Identifies the asset name of the

component, as well as the type of

component.

subcomponent Subcomponent Name Identifies a specific part (i.e.

subcomponent) of a component, e.g.

a software module or hardware part.

application Business Application Name Identifies the business application or

process the component is a part of

and provides services for.

instanceId Operational Instance Identifies the operational instance of a

component, i.e. the actual running

instance of the component.

processId threadId Operational Instance Identifies the operational instance of a

component within the context of a

software operating system, i.e. the

operating system process and thread

running when the event was

produced.

executionEnvironment Operational Instance Component

Location

Provides additional information about

the operational instance of a

component or its location by

identifying the name of the

environment hosting the operational

instance of the component (e.g. the

operating system name for a software

application, the application server

name for a J2EE application, or the

hardware server type for a hardware

part).

Chapter 4. Adding logging and tracing to your application 87

The Common Base Event specification [CBE101] provides information on the required format of these

fields and the Common Base Event Developer‘s Guide [CBEBASE] provides general usage guidelines.

This section will provide additional information about how to format and use some of these fields for

problem determination events, which should be used to clarify and extend the information provided in the

other documents.

Component

The component field in a problem determination event is used to identify the manageable asset

associated with the event. A manageable asset is open for interpretation, but a good working definition

is a manageable asset represents a hardware or software component that can be separately obtained

or developed, deployed, managed and serviced. Examples of typical component names are:

v IBM eServer xSeries model x330

v IBM WebSphere Application Server#5.1 (5.1 is the version number)

v Microsoft Windows 2000

v The name of an internally developed software application for a component

subComponent

The subcomponent field in a problem determination event identifies the specific part of a component

associated with the event. The subcomponent name is typically not a manageable asset, but provides

internal diagnostic information when diagnosing an internal defect within a component, i.e. ’What part

failed?‘. Examples of typical subcomponents and their names are:

v Intel Pentium processor within a server system (“Intel Pentium IV Processor”)

v the EJB container within a web application server (“EJB container”)

v the task manager within an operating system (“Linux Kernel Task Manager”)

v the name of a Java class and method (“myclass.mycompany.com” or

“myclass.mycompany.com.methodname()”).

The format of a subcomponent name is determined by the component, but it is recommended that the

convention shown above for naming a Java class or the combination of a Java class and method is

followed. Subcomponent is a required field in the Common Base Event.

componentIdType

The componentIdType field is required by the base Common Base Event specification, but provides

minimal value for problem determination events. The only recommendation regarding this field for

problem determination events is to discourage the use of the “application” value. The

componentIdType field identifies the type of component; the application is identified by the application

field.

application

The application field is listed as an optional value within the Common Base Event specification, but it

should be provided within problem determination events whenever it is available. The only reason this

is not a required field for problem determination events is there are instances where the issuing

component may not be aware of the overall business application.

instanceId

The instanceId field is listed as an optional value within the Common Base Event specification, but it

should be provided within problem determination events whenever it is available.

 The instanceID should always be provided when a software component is being identified and should

identify the operational instance of the component (for example, which operation instance of an

installed software image is actually associated with the event). This value should also be provided for

hardware components, but not all hardware components support the concept of operational instances.

 The format of the supplied value is defined by the component, but must be a value that can be used

by an analysis system (either human or programmatic) to identify the specific running instance of the

identified component. Examples include:

v cell\node\server name for the IBM WebSphere Application Server

88 IBM WebSphere Application Server-Network Deployment, Version 6: Troubleshooting and support

v deployed EAR file name for a Java EJB

v serial number for a hardware processor

processId

The processId field is listed as an optional value within the Common Base Event specification, but it

should be provided for problem determination events whenever it is available and applicable. It should

always be provided for software-generated events, and should identify the operating system process

associated with the component identified in the event. The format of the thread ID should match the

format of the operating system (or other execution environment, such as a Java Virtual Machine). This

field is typically not applicable or used for events emitted by hardware (for example, firmware).

threadId

The threadId field is listed as an optional value within the Common Base Event specification, but it

should be provided for problem determination events whenever it is available and applicable. It should

always be provided for software-generated events, and should identify the operating system thread

that was active when the event was detected or issued. A notable exception to this recommendation is

some operating systems or execution environments do not support threads. The format of the thread

ID should match the format of the operating system (or other execution environment, such as a Java

Virtual Machine). This field is typically not applicable or used for events emitted by hardware (for

example, firmware).

executionEnvironment

The executionEnvironment field, when used, should identify the immediate execution environment used by

the component being identified. Some examples are:

v the operating system name when the component is a native software application.

v the operating system/Java Virtual Machine name when the component is a Java J2SE application.

v the web server name when the component is a servlet.

v the portal server name when the component is a portlet.

v the application server name when the component is an EJB.

The Common Base Event specification [CBE101] provides information on the required format of these

fields and the Common Base Event Developer‘s Guide [CBEBASE] provides general usage guidelines.

Situation Information

The situation information is used to classify the condition being reported by an event into a common set of

situations. The Common Base Event specification [CBE101] provides information on the set of situations

defined for the Common Base Event, along with the values and formats used to describe these situations.

The Common Base Event Developer‘s Guide [CBEBASE] provides general usage guidelines.

There are a few recommendations for situation information for problem determination events, such as:

v Whenever possible, use the situation categorizations and qualifiers described in the base Common

Base Event specification. Avoid using your own situation definitions as much as possible.

v Not all messages and logs can be classified using the situation definitions supplied in the base

Common Base Event specification. You can use the OtherSituation categorization to provide your own

situation information, but the recommended course of action for problem determination events is to use

the ReportSituation categorization, with reportCategory=Log.

v Warning events can be confusing. A warning event (i.e. an event with severity=warning) typically

indicates a recoverable failure, but the situation settings can be interpreted as unrecoverable failures

(e.g. ConnectSituation, successDisposition=UNSUCCESSFUL). The appropriate situation categorization

should always be used and the severity setting will indicate the severity of the situation, i.e. whether the

component recovered from the failure.

v The recommended setting for the reasoningScope value is EXTERNAL for all message events.

Chapter 4. Adding logging and tracing to your application 89

Message Data

All problem determination Common Base Events must provide human readable text describing the specific

event being reported within the msg field of the Common Base Event. The text associated with events

representing actual messages or log entries is expected to be internationalized (in other words, translated

and localized). We strongly recommend including the msgDataElement element in the Common Base

Event whenever internationalized text is provided in the event. This element provides information about

how the message text was created and how it should be interpreted, and is particularly invaluable when

trying to interpret the event programmatically or when trying to interpret the message independent of the

locale or language used to format the message text.

Note: Readers of this section of the document should be familiar with the concepts associated with

creating internationalized messages (in other words, messages that are translated and localized). A

good source of education on these concepts is provided by the documentation associated with

internationalization of Java information and the usage of resource bundles within the Java

language.

The msgDataElement element in the Common Base Event includes the following information about the

text (i.e. the value of the msg field) provided with an event:

v The locale of the supplied message text, which identifies how the locale-independent fields within the

message were formatted, as well as the language of the message (msgLocale).

v A locale-independent identifier associated with the message that can be used to interpret the message

independent of the message language, message locale, and how the message was formatted (msgId

and msgIdType).

v Information on how a translated message was created, including:

– The identifier used to retrieve the message template (msgCatalogId).

– The name and type of message catalog used to retrieve the message template (msgCatalog and

msgCatalogType).

– Any locale-independent information that was inserted into the message template to create the final

message (msgCatalogTokens).

The Common Base Event specification [CBE101] provides information on the required format of these

fields and the Common Base Event Developer‘s Guide [CBEBASE] provides general usage guidelines.

This section will provide additional information about how to format and use these fields for problem

determination events, which should be used to clarify and extend the information provided in the other

documents.

msg

All message, log, and trace events must provide a human-readable message in the msg field of the

Common Base Event. The msg field is required for problem determination events (both log events and

diagnostic events). This is more restrictive than the base specification for the Common Base Event,

which lists this as an optional field; because effective and efficient problem determination requires the

ability to quickly identify the condition being reported by the event. The format and usage of this

message is component-specific, but the following general guidelines should be followed:

v The message text supplied with messages and log events is expected to be internationalized.

v The locale of the supplied message text should be provided using the msgLocale field in the

msgDataElement element of the Common Base Event.

v Additional information regarding the format and construction of internationalized messages should

be provided whenever possible, using the msgDataElement element of the Common Base Event.

msgLocale

The message locale should be provided whenever message text is provided within the Common Base

Event (as is the case with all problem determination events). The msgLocale field is listed as an

optional value within the Common Base Event specification, but it should be provided within problem

90 IBM WebSphere Application Server-Network Deployment, Version 6: Troubleshooting and support

determination events whenever it is available. The only reason this is not a required field for problem

determination events is there are instances where the locale information is not provided or available

when formatting the Common Base Event.

msgId and msgIdType

Several companies include within internationalized message text a locale-independent identifier that

can be used to interpret the condition being described by the message text, independent of the

language of the message. For example, most messages issued by IBM software look like ″IEE890I

WTO Buffers in console backup storage = 1024″, where a unique, locale-independent identifier

″IEE890I″ precedes the translated message text. This identifier provides a way to uniquely detect and

identify a message independent of the location (and language) where it was issued, meaning it is

invaluable for locale-independent and programmatic analysis. The msgId field is listed as an optional

value within the Common Base Event specification, but it must be provided within problem

determination events whenever this identifier is included in the message text. Likewise, the msgIdType

field is listed as an optional value within the Common Base Event specification, but it must be

provided within problem determination events whenever a value is supplied for msgId. These fields

should not be supplied when the message text has not been translated or localized, for example, for

trace events.

msgCatalogId

The msgCatalogId field is listed as an optional value within the Common Base Event specification, but

it should be provided whenever the Common Base Event includes localized or translated message

text, for example when providing problem determination events representing issued messages or log

events. It is not a required field for problem determination events because not all problem

determination events include translated message text, and there are cases where the value is not

provided or available when formatting the Common Base Event. This field should not be supplied

when the message text has not been translated or localized, for example, for trace events.

msgCatalogTokens

The msgCatalogTokens field is listed as an optional value within the Common Base Event

specification, but it should be provided whenever the Common Base Event includes localized or

translated message text, for example when providing problem determination events representing

issued messages or log events. It is not a required field for problem determination events because not

all problem determination events include translated message text, and there are cases where the

value is not provided or available when formatting the Common Base Event. This value contains the

list of locale independent values (message tokens) inserted into the localized message text when

creating a translated message. It is very difficult to extract these values from a translated message

without having knowledge of the translated message template used to create the message, meaning

having these values separate from the message text is invaluable for locale-independent and

programmatic analysis of the data supplied in the message text. This field should not be supplied

when the message text has not been translated or localized, e.g. for trace events. Note: The Common

Base Event provides several mechanisms for providing additional data about an event, including this

field, extended data elements, and extensions to the schema. The msgCatalogTokens field should

always be used to supply the list of message tokens included in the message text associated with an

event. These values can also be supplied in other parts of the Common Base Event as well, but they

must be included in this field.

msgCatalog and msgCatalogType

The msgCatalog and msgCatalogType fields are listed as optional values within the Common Base

Event specification, but they should be provided whenever the Common Base Event includes localized

or translated message text, for example when providing problem determination events representing

issued messages or log events. They are not required fields for problem determination events because

not all problem determination events include translated message text, and there are cases where the

values are not provided or available when formatting the Common Base Event. These fields should not

be supplied when the message text has not been translated or localized, for example, for trace events.

Chapter 4. Adding logging and tracing to your application 91

Extended Data

The base information included in a Common Base Event may not be sufficient to represent all of the

information captured by a component when creating a problem determination event. The Common Base

Event provides several methods for including this additional data, including extending the Common Base

Event schema or supplying one or more ExtendedDataElement elements within the Common Base Event.

We recommend using the latter approach, ExtendedDataElement elements.

An ExtendedDataElement element is used to represent a single data item, and a Common Base Event

can contain more than one of these elements (essentially one for each additional data item). A hint to the

number and type of ExtendedDataElement elements is supplied by the extensionName value, but this is

only a hint. The usage of the attributes in the ExtendedDataElement element for problem determination

events is the same as those for any other Common Base Event.

Sample Common Base Event instance

The XML document shown below is an example of a Common Base Event (CBE) instance generated by a

WebSphere Application Server application.

<CommonBaseEvent creationTime="2004-09-18T04:03:28.484Z"

 globalInstanceId="myhost:1095479647062:1899"

 msg="WSVR0024I: Server server1 stopped"

 severity="10"

 version="1.0.1">

 ... several extendedDataElements for WebSphere Application Server internal use only ...

<sourceComponentId component="com.ibm.ws.runtime.component.ServerCollaborator"

 componentIdType="Unknown"

 executionEnvironment="Windows 2000[x86]#5.0"

 instanceId="myhost\myhost\server1"

 location="myhost"

 locationType="Hostname"

 processId="1095479647062"

 subComponent="Unknown"

 threadId="Alarm : 0"

 componentType="http://www.ibm.com/namespaces/autonomic/WebSphereApplicationServer"/>

 <msgDataElement msgLocale="en_US">

 <msgCatalogTokens value="server1"/>

 <msgId>WSVR0024I< /msgId>

 <msgCatalogId>WSVR0024I< /msgCatalogId>

 <msgCatalog>com.ibm.ws.runtime.runtime< /msgCatalog>

 </msgDataElement>

 <situation categoryName="ReportSituation">

 <situationType xsi:type="ReportSituation" reasoningScope="EXTERNAL" reportCategory="LOG"/>

 </situation>

</CommonBaseEvent>

Note that there are a number of extendedDataElement elements in the actual XML which are used by

WebSphere Application Server, but which are not for use by applications as they may change without

notice in future releases.

The CommonBaseEvent element defines the CBE instance. This element has a set of attributes that are

common for all CBEs. This includes the extensionName attribute that defines the type or class of the CBE

instance, the creation time, severity and priority.

Nested within the CommonBaseEvent element are elements giving more detail about the situation. The

first of these is the situation element. This is a standardized classification of the situation.

92 IBM WebSphere Application Server-Network Deployment, Version 6: Troubleshooting and support

The CommonBaseEvent element also includes the sourceComponentId and the (optional)

reporterComponentId elements. The sourceComponentId describes where the situation occurred; the

reporterComponentId describes where the situation was detected. If the sourceComponentId and

reporterComponentId are the same, the reporterComponentId is omitted.

The attributes of both the sourceComponentId and the reporterComponentId elements are the same. They

identify the component‘s type, name, operating system and network location. The content of these

attributes provides vertical correlation of the stack of IT resources active when the when the CBE was

created.

Also included in the CommonBaseEvent element are contextDataElements that describe the context in

which the situation occurred. This context correlates CBE instances that were part of the same piece of

work. This is called horizontal correlation since an instance of a particular context type correlates events at

the same level of abstraction (for example at the business level, or at the application level, or at the

middleware level.)

Finally, there are the extended data elements. These contain additional data used to describe to situation.

In this example, there is an extended data element added by WebSphere Application Server to describe

the J2EE component that generated the CBE instance and some application data.

Sample Common Base Event template

Components that use the WebSphere Application Server event factory home can include a Common Base

Event template XML file to provide data to populate Common Base Events. Template information is used

by the content handler to fill in blanks in the Common Base Event when the Common Base Event

complete method is called. Information that is already supplied in the event will not be overridden if the

same field is supplied in the template.

The following is an example of a Common Base Event template:

<?xml version="1.0" encoding="UTF-8"?>

<TemplateEvent

 version="1.0.1"

 xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance

 xsi:noNamespaceSchemaLocation="templateEvent.xsd">

 <CommonBaseEvent

 <sourceComponentId application="My Application" component="com.ibm.componentX"/>

 <extendedDataElements name="Sample ExtendedDataElement name" type="string">

 <values>Sample ExtendedDataElement value</values>

 </extendedDataElements>

 </CommonBaseEvent>

</TemplateEvent>

Component Identification for Problem Determination

This topic describes types of problem determination events.

A business application is made up of multiple components. A component can be made up of several

internal subcomponents. Consistent application of these concepts is critical for effective problem

determination of a business application; all of the parts of the application must use the same concepts and

assumptions when creating and formatting events. The following definitions and examples should be used

when creating Common Base Events for problem determination.

Business Application

A business application is the business logic and business data used to address a set of specific

business requirements. A business application consists of several components of multiple types,

combined in a unique manner by an enterprise, to provide the functions and resources needed to

Chapter 4. Adding logging and tracing to your application 93

address those requirements. The primary creator and manager of a business application is the

enterprise, and each enterprise or company creates unique business applications. Examples of

business applications are the Payroll Application for the ACME Corporation and the Inventory

Application for Spacely Sprockets.

Components

A business application is created and managed by the enterprise as a set of components.

Components are deployable assets, developed either by the enterprise or a vendor, managed by the

enterprise. A components may be created by the enterprise, typically for usage within a specific

business application. For example, the ACME Corporation may create a set of enterprise beans to

represent the business logic required by their Payroll Application. A component may also be an asset

produced by a vendor and acquired by an enterprise. Examples of these components are hardware

products, such as IBM eServers or Sun Solaris systems, or software products, such as IBM

WebSphere Application Server, Oracle Database Servers.

Subcomponents

A specific component, depending on its complexity, may consist of several subcomponents. For

example, the IBM WebSphere Application Server consists of many subcomponents, such as the

enterprise bean container and the servlet engine. Subcomponent information is typically used only by

the creator of the component to service the component, and as such are not separately deployable or

manageable resources in the enterprise. The enterprise may deploy a change or update to a

subcomponent, but only upon guidance from the component vendor and as part of the vendor‘s

component. For example, a software fix for the enterprise bean container of the IBM WebSphere

Application Server is packaged and deployed as a software update to the IBM WebSphere Application

Server. Replacement of the processor in an IBM eServer is deployed as a physical part, but only as a

part of the original deployed component, the IBM eServer.

Logging Common Base Events in WebSphere Application Server

This topic describes how WebSphere Application Server takes advantage of the Common Base Events.

WebSphere Application Server uses Common Base Events within its logging framework. Common Base

Events can be created explicitly and then logged via the Java logging API, or can be created implicitly by

using the Java logging API directly. For Common Base Event creation, the application server environment

provides a Common Base Event factory with a Content Handler that provides both runtime data and

template data for Common Base Events.

Using the Common Base Event API with the Java Logging API to log Common

Base Events

In cases where the events generated by the Java logging API are insufficient to describe the event that

needs to be captured, Common Base Events can be created using the Common Base Event factory APIs.

When you create a Common Base Event you can add data to the Common Base Event before it is

94 IBM WebSphere Application Server-Network Deployment, Version 6: Troubleshooting and support

logged. The following diagram illustrates how application code can create and log CommonBaseEvents:

Application
Code EventFactory

ContentHandler

Runtime Data

CBE
XML

Template

Logger

Handler

Output
Device

CommonBaseEventLogRecord

CommonBaseEvent

The steps for generating a Common Base Event are as follows:

1. Application code invokes createCommonBaseEvent method on EventFactory to create a

CommonBaseEvent.

2. Application code wraps CommonBaseEvent in a CommonBaseEventLogRecord, and adds event

specific data.

3. Application code calls CommonBaseEvent‘s complete() method.

4. CommonBaseEvent invokes ContentHandler‘s completeEvent() method.

5. ContentHandler adds XML template data to CommonBaseEvent (including for example, the component

name). Note that not all ContentHandlers support templates.

6. ContentHandler adds runtime data to CommonBaseEvent (including for example, the current thread

name).

7. Application code passes CommonBaseEventLogRecord to Logger using Logger.log method.

8. Logger passes CommonBaseEventLogRecord to Handlers.

9. Handlers format data and write to output device.

WebSphere Application Server is configured to use an event factory that automatically populates

WebSphere Application Server specific information into the Common Base Events that it generates. In

general it is good practice to create events using the WebSphere Application Server default Common Base

Event factory because this ensures consistency of Common Base Event content across events. However,

other Common Base Event factories can be create and used. See “Configuring Common Base Events for

an application” on page 98 for details on how to create and use custom event factories.

Common Base Event factory context:

The event factory context provides a service to look up event factory homes. The event factory context

can be retrieved using a call to EventFactoryContext.getInstance(). Using this class, you can look up the

event factory homes by name, and avoid the need to include the typed home in code. The

EventFactoryHome must be located on the classpath to be found. The EventFactoryContext also stores an

EventFactoryHome as a default, which can be obtained with a call to

EventFactoryContext.getInstance().getEventFactoryHome().

In WebSphere Application Server, the EventFactoryContext is configured with a default EventFactoryHome

which is associated to a ContentHandler capable of supplying both event template information, as well as

WebSphere Application Server runtime default information.

Chapter 4. Adding logging and tracing to your application 95

More details can be found in the javadoc for org.eclipse.hyades.logging.events.cbe.EventFactory.

Common Base Event factory home:

Event Factory homes provide Event Factory instantiation based on a unique factory name. Event Factory

home implementations are tightly coupled with content handlers which are used to populate Common

Base Events with template or default data. Event Factory instances are maintained by the associated

Event Factory home based on their unique name. For example, when application code requests a named

Event Factory, the newly created Event Factory instance is returned and persisted for future requests for

that named Event Factory. An abstract Event Factory home class provides the implementation for the APIs

in the Event Factory home interface. Implementers extend the abstract Event Factory home class and

implement the createContentHandler() API to create a typed content handler based on the type of the

Event Factory home implementation.

In the WebSphere Application Server, the default Event Factory home obtained with a call to

EventFactoryContext.getInstance().getEventFactoryHome() is associated with a ContentHandler capable of

supplying both event template information, as well as WebSphere Application Server runtime default

information.

More details can be found in the javadoc for org.eclipse.hyades.logging.events.cbe.EventFactoryHome at

www.eclipse.org/hyades.

Common Base Event factory:

Event factories allow you to create Common Base Events and complete event properties using associated

content handlers. Content handlers populate data into Common Base Events when the Common Base

Event invokes the complete() method. All event properties set by the application code have priority over all

properties specified by the content handler. Event factory implementations are tightly coupled with the

content handler instance, which is associated with the event factory when the event factory is instantiated.

Factory instances can only be retrieved from their associated event factory home. Event factory instances

are retrieved and maintained based on unique names. Event factory names are hierarchal; they are

represented using the standard Java dot-delimited name-space naming conventions.

More details can be found in the javadoc for org.eclipse.hyades.logging.events.cbe.EventFactory at

www.eclipse.org/hyades.

Common Base Event content handler:

Content handlers populate data into Common Base Events when the Common Base Event complete()

method is invoked. Content handlers can be associated with Common Base Event templates which

provide default information to transfer into each Common Base Event. Content handlers may also provide

any other information that is relevant to completing the population of the Common Base Event, such as

runtime defaults deemed to be appropriate.

The use of content handlers is recommended to ensure consistency of field usage in the Common Base

Event within a component or within a set of components sharing the same runtime. For example, some

content handlers allow a template to be specified. If used consistently across a component, this would

ensure that all events for that component would have the same template info filled in. Similarly, some

content handlers can also supply runtime information to their associated Common Base Events. If

consistently used throughout the entire runtime, this would ensure that all events use runtime data in a

similar fashion.

The event factory home used in the WebSphere Application Server runtime is associated with a content

handler that both reads from a template, and supplies runtime data. It is recommended that components

use Event Factories obtained from this event factory home with their own templates, giving consistency

between application events and server events.

96 IBM WebSphere Application Server-Network Deployment, Version 6: Troubleshooting and support

More details can be found in the javadoc for org.eclipse.hyades.logging.events.cbe.ContentHandler at

www.eclipse.org/hyades.

Using the Java Logging API to Generate and Log Common Base Events

In the WebSphere Application Server, the Java logging API (java.util.logging) automatically creates

Common Base Events for events logged at level WsLevel.DETAIL or above (including WsLevel.DETAIL,

Level.CONFIG, Level.INFO, WsLevel.AUDIT, Level.WARNING, Level.SEVERE, and WsLevel.FATAL).

These Common Base Events are created using the event factory associated with the Logger to which the

message was logged. If no event factory is specified, WebSphere Application Server uses a default event

factory which will automatically fill in WebSphere Application Server specific information.

The java.util.logging.Logger class provides a variety of methods with which data can be logged. The

WebSphere Application Server uses a special implementation of the Logger class that automatically

creates Common Base Events for the following methods:

v config

v info

v warning

v severe

v log - all variants except log(LogRecord) when used with WsLevel.DETAIL or more severe levels

v logp - when used with WsLevel.DETAIL or more severe levels

v logrb - when used with WsLevel.DETAIL or more severe levels

WebSphere Application Server logger implementation is only used for named loggers (for example, loggers

instantiated with calls such as Logger.getLogger(″com.xyz.SomeLoggerName″)). Loggers instantiated with

calls to Logger.getAnonymousLogger() and Logger.getLogger(″″), or Logger.global do not use the

WebSphere implementation, and do not automatically create Common Base Events for logging requests

made to them. LogRecords logged directly with Logger.log(LogRecord) are not automatically converted by

WebSphere‘s Loggers into Common Base Events.

The following diagram illustrates how application code can create log CommonBaseEvents:

Application
Code

EventFactory
ContentHandler

Runtime Data

CBE
XML

Template

Logger

Handler

Output
Device

CommonBaseEventLogRecord

CommonBaseEvent

The Java logging API processing of named Loggers and message level events proceeds as follows:

 1. Application code invokes named Logger (WsLevel.DETAIL or above) with event specific data.

 2. Logger creates a CommonBaseEvent using createCommonBaseEvent method on EventFactory

associated to the Logger (see Configuring Common Base Events for an application).

Chapter 4. Adding logging and tracing to your application 97

3. Logger creates a CommonBaseEvent using EventFactory associated to the Logger

 4. Logger wraps CommonBaseEvent in a CommonBaseEventLogRecord, and adds event specific data.

 5. Logger calls CommonBaseEvent‘s complete() method.

 6. CommonBaseEvent invokes ContentHandler‘s completeEvent() method.

 7. ContentHandler adds XML template data to CommonBaseEvent (including for example, the

component name). Note that not all ContentHandlers support templates.

 8. ContentHandler adds runtime data to CommonBaseEvent (including for example, the current thread

name).

 9. Logger passes CommonBaseEventLogRecord to Handlers.

10. Handlers format data and write to Output Device.

Configuring Common Base Events for an application

The logger.properties file allows you to set logger attributes for your component. The properties file is

loaded the first time the method Logger.getLogger(loggername) is called within an application. The

logger.properties file must be either on the WebSphere Application Server class path, or the context class

path. See “Configuring logging properties for an application” on page 71 for details on the logger.properties

file

To use the Common Base Events standard for events generated by your application, include the

eventfactory property in your logger.properties file. The event factory property specifies the name of the

Common Base Event template to use with the event factory. See “Sample Common Base Event template”

on page 93 for details on the Common Base Event template. Note that the naming convention for this is

the fully qualified component name with the extension “.event.xml”. For example, a template that applies to

package com.ibm.compXYZ would be called “com.ibm.compXYZ.event.xml”

Sample logger.properties file

In the following sample, event factory com.ibm.xyz.MyEventFactory will be used by any loggers in the

com.ibm.websphere.abc package or any sub-packages which do not have their own configuration file.

com.ibm.websphere.abc.eventfactory=com.ibm.xyz.MyEventFactory

Common Base Event content generated when using the WebSphere Application

Server default event factory

When no other event factory is configured for a logger, the WebSphere Application Server uses its default

event factory for creation of Common Base Events. The content handler associated with the default event

factory populates fields as follows:

 Field Value Notes

CommonBaseEvent.globalInstanceId unique record id only set if

CommonBaseEvent.globalInstanceId

was null before completeEvent() was

called

CommonBaseEvent.msg localized message based on

MsgDataElement

only set if CommonBaseEvent.msg

was null before completeEvent() was

called

CommonBaseEvent.severity set based on value of Level set on

CommonBaseEventLogRecord if level

>= Level.SEVERE set to 50 else if

level >= Level.WARNING set to 30

default set to 10

only set if

CommonBaseEvent.severity was null

before completeEvent() was called

98 IBM WebSphere Application Server-Network Deployment, Version 6: Troubleshooting and support

Field Value Notes

CommonBaseEvent.Component-

Identification.component

set based on value of LoggerName

set on CommonBaseEventLogRecord

only set if

CommonBaseEvent.Component-

Identification.component was null

before completeEvent() was called

CommonBaseEvent.Component-

Identification.componentIdType

″Unknown″ only set if

CommonBaseEvent.Component-

Identification.componentIdType was

null before completeEvent() was

called

CommonBaseEvent.Component-

Identification.executionEnvironment

OSname[OSarch]#OSversion only set if

CommonBaseEvent.Component-

Identification.executionEnvironment

was null before completeEvent() was

called

CommonBaseEvent.Component-

Identification.instanceId

cellName\nodeName\serverName only set if

CommonBaseEvent.Component-

Identification.instanceId was null

before completeEvent() was called

only set in a server environment

(ignored in a client application)

CommonBaseEvent.Component-

Identification.location

hostname only set if both

CommonBaseEvent.Component-

Identification.location and

CommonBaseEvent.Component-

Identification.locationType were null

before completeEvent() was called

CommonBaseEvent.Component-

Identification.locationType

″Hostname″ only set if both

CommonBaseEvent.Component-

Identification.location and

CommonBaseEvent.Component-

Identification.locationType were null

before completeEvent() was called

CommonBaseEvent.Component-

Identification.processId

internally generated representation of

process number

only set if

CommonBaseEvent.Component-

Identification.processId was null

before completeEvent() was called

CommonBaseEvent.Component-

Identification.subComponent

set based on values of

sourceClassName and

sourceMethodName set on

CommonBaseEventLogRecord

sourceClassName.sourceMethodName

CommonBaseEvent.Component-

Identification.subComponent was null

before completeEvent() was called

and both sourceClassName and

sourceMethodName were set

CommonBaseEvent.Component-

Identification.threadId

set to value of JVM thread name only set if

CommonBaseEvent.Component-

Identification.threadId was null before

completeEvent() was called

CommonBaseEvent.Component-

Identification.componentType

″http://www.ibm.com/namespaces/-

autonomic/WebSphereApplication-

Server″

only set if

CommonBaseEvent.Component-

Identification.componentType was null

before completeEvent() was called

CommonBaseEvent.MsgData-

Element.msgLocale

set based on default locale of JVM only set if CommonBaseEvent.msg

was null before completeEvent() was

called

Chapter 4. Adding logging and tracing to your application 99

Field Value Notes

CommonBaseEvent.Situation.

-categoryName

″ReportSituation″ only set if

CommonBaseEvent.Situation was null

before completeEvent() was called

CommonBaseEvent.Situation.

-situationType.type

″ReportSituation″ only set if

CommonBaseEvent.Situation was null

before completeEvent() was called

CommonBaseEvent.Situation.

-situationType.reasoningScope

″EXTERNAL″ only set if

CommonBaseEvent.Situation was null

before completeEvent() was called

CommonBaseEvent.Situation.

-situationType.reportCategory

″LOG″ only set if

CommonBaseEvent.Situation was null

before completeEvent() was called

Note that the sourceComponentIdentification is populated if no reporterComponentIdentification exists

when completeEvent is invoked on the ContentHandler, otherwise the reporterComponentIdentification will

be populated instead.

The same content handler that WebSphere Application Server uses for generating its events can be used

in your applications. Event factory instances can be obtained as follows:

EventFactory eventFactory = EventFactoryContext.getInstance().getEventFactoryHome().getEventFactory(factoryName);

where factoryName is the name of the CommonBaseEvent template you wish to use with the factory.

The factoryName can also be specified as a configuration parameter for a logger. See “Configuring

Common Base Events for an application” on page 98 for more details.

Best Practices for Logging Common Base Events in WebSphere Application

Server

The following practices will ensure consistent use of Common Base Events within your components and

between your components and WebSphere Application Server components:

v Use a different Logger for each component. Sharing loggers across components gets in the way of

being able to associate Loggers with component specific information

v Associate Loggers with event templates that specify source component identification. This ensures that

the source of all events created with the Logger is properly identified.

v Use the same template for directly created Common Base Events (events created using the Common

Base Event factories) and indirectly created Common Base Events (events created using the Java

logging API) within the same component.

v Avoid calling the complete method on CommonBaseEvents until you are finished adding data to the

CommonBaseEvent and are ready to log it. This ensures that any decisions made by the

ContentHandler based on data already in the event will be made using the final data.

The following sample logger.properties file entry demonstrates how to associate Logger

com.ibm.componentX with event factory com.ibm.componentX:

com.ibm.componentX.eventfactory=com.ibm.componentX

The following sample code demonstrates the use of the same event factory setting for direct (Part 1) and

indirect (Part 2) Common Base Event logging:

<?xml version="1.0" encoding="UTF-8"?>

<TemplateEvent

 version="1.0.1"

 xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance

100 IBM WebSphere Application Server-Network Deployment, Version 6: Troubleshooting and support

xsi:noNamespaceSchemaLocation="templateEvent.xsd">

 <CommonBaseEvent

 <sourceComponentId application="My application" component="com.ibm.componentX"/>

 <extendedDataElements CommonBaseEventname="Sample ExtendedDataElement name" type="string">

 <values>Sample ExtendedDataElement value</values>

 </extendedDataElements>

 < /CommonBaseEvent>

< /TemplateEvent>

Programming with the JRas framework

The JRas framework described in this task and its sub-tasks is deprecated. However, you can achieve

similar results using Java logging.

Use the JRas extensions to incorporate message logging and diagnostic trace into WebSphere Application

Server applications. The JRas extensions are based on the stand-alone JRas logging toolkit.

1. Retrieve a reference to the JRas manager.

2. Retrieve message and trace loggers by using methods on the returned manager.

3. Call the appropriate methods on the returned message and trace loggers to create message and trace

entries, as appropriate.

Understanding the JRas facility

Note: The JRas framework described in this task and its sub-tasks is deprecated. However, you can

achieve similar results using Java logging.

Developing, deploying and maintaining applications are complex tasks. For example, when a running

application encounters an unexpected condition it might not be able to complete a requested operation. In

such a case you might want the application to inform the administrator that the operation has failed and

give information as to why. This enables the administrator to take the proper corrective action. Those who

develop or maintain applications might need to gather detailed information relating to the execution path of

a running application in order to determine the root cause of a failure that is due to a code bug. The

facilities that are used for these purposes are typically referred to as message logging and diagnostic

trace.

Message logging (messages) and diagnostic trace (trace) are conceptually quite similar, but do have

important differences. It is important for application developers to understand these differences in order to

use these tools properly. To start with, the following operational definitions of messages and trace are

provided.

Message

A message entry is an informational record intended to be viewed by end users, systems

administrators and support personnel. The text of the message must be clear, concise and

interpretable by an end user. Messages are typically localized, meaning they are displayed in the

national language of the end user. Although the destination and lifetime of messages might be

configurable, some level of message logging is always enabled in normal system operation.

Message logging must be used judiciously due to both performance considerations and the size of

the message repository.

Trace A trace entry is an information record that is intended to be used by service engineers or

developers. As such a trace record may be considerably more complex, verbose and detailed than

a message entry. Localization support is typically not used for trace entries. Trace entries may be

fairly inscrutable, understandable only by the appropriate developer or service personnel. It is

assumed that trace entries are not written during normal runtime operation, but may be enabled as

needed to gather diagnostic information.

Chapter 4. Adding logging and tracing to your application 101

WebSphere Application Server provides a message logging and diagnostic trace API that can be used by

applications. This API is based on the stand-alone JRas logging toolkit which was developed by IBM. The

stand-alone JRas logging toolkit is a collection of interfaces and classes that provide message logging and

diagnostic trace primitives. These primitives are not tied to any particular product or platform. The

stand-alone JRas logging toolkit provides a limited amount of support (typically referred to as systems

management support), including log file configuration support based on property files.

As designed, the stand-alone JRas logging toolkit does not contain the support required for integration into

the WebSphere Application Server runtime or for usage in a J2EE environment. To overcome these

limitations, WebSphere Application Server provides a set of extension classes to address these

shortcomings. This collection of extension classes is referred to as the JRas extensions. The JRas

extensions do not modify the interfaces introduced by the stand-alone JRas logging toolkit, but simply

provide the appropriate implementation classes. The conceptual structure introduced by the stand-alone

JRas logging toolkit is described below. It is equally applicable to the JRas extensions.

JRas Concepts

The following is a basic overview of important concepts and constructs introduced by the stand-alone JRas

logging toolkit. It is not meant to be an exhaustive overview of the capabilities of this logging toolkit, nor is

it intended to be a detailed discussion of usage or programming paradigms. More detailed information,

including code examples, is available in JRas extensions and its subtopics, including in the javadoc for the

various interfaces and classes that make up the logging toolkit.

Event Types

The stand-alone JRas logging toolkit defines a set of event types for messages and a set of event

types for trace. Examples of message types include informational, warning and error. Examples of

trace types include entry, exit and trace.

Event Classes

The stand-alone JRas logging toolkit defines both message and trace event classes.

Loggers

A logger is the primary object with which the user code interacts. Two types of loggers are defined.

These are message loggers and trace loggers. The set of methods on message loggers and trace

loggers are different, since they provide different functionality. Message loggers create only

message records and trace loggers create only trace records. Both types of loggers contain masks

that indicates which categories of events the logger should process and which it should ignore.

Although every JRas logger is defined to contain both a message and trace mask, the message

logger only uses the message mask and the trace logger only uses the trace mask. For example,

by setting a message logger’s message mask to the appropriate state, it can be configured to

process only Error messages and ignore Informational and Warning messages. Changing the state

of a message logger’s trace mask has no effect.

 A logger contains one or more handlers to which it forwards events for further processing. When

the user calls a method on the logger, the logger will compare the event type specified by the

caller to its current mask value. If the specified type passes the mask check, the logger will create

an event object to capture the information relating to the event that was passed to the logger

method. This information may include information such as the names of the class and method

which is logging the event, a message and parameters to log, among others. Once the logger has

created the event object, it forwards the event to all handlers currently registered with the logger.

 Methods that are used within the logging infrastructure itself should not make calls to the logger

method. When an application uses an object that extends a thread class, implements the

hashCode(), and makes a call to the logging infrastructure from that method, the result is a

recursive loop.

Handlers

A handler provides an abstraction over an output device or event consumer. An example is a file

handler, which knows how to write an event to a file. The handler also contains a mask that is

used to further restrict the categories of events the handler will process. For example, a message

logger may be configured to pass both warning and error events, but a handler attached to the

102 IBM WebSphere Application Server-Network Deployment, Version 6: Troubleshooting and support

message logger may be configured to only pass error events. Handlers also include formatters,

which the handler invokes to format the data in the passed event before it is written to the output

device.

Formatters

Handlers are configured with formatters, which know how to format events of certain types. A

handler may contain multiple formatters, each of which knows how to format a specific class of

event. The event object is passed to the appropriate formatter by the handler. The formatter

returns formatted output to the handler, which then writes it to the output device.

JRas Extensions

The JRas framework described in this task and its sub-tasks is deprecated. However, you can achieve

similar results using Java logging.

JRas extensions

The stand-alone JRas logging toolkit defines interfaces and provides a variety of concrete classes that

implement these interfaces. Since the stand-alone JRas logging toolkit was developed as a general

purpose toolkit, the implementation classes do not contain the configuration interfaces and methods

necessary for use in the WebSphere Application Server product. In addition, many of the implementation

classes are not written appropriately for use in a J2EE environment. To overcome these shortcomings,

WebSphere Application Server provides the appropriate implementation classes that allow integration into

the WebSphere Application Server environment. The collection of these implementation classes is referred

to as the JRas extensions.

Usage Model

You can use the JRas extensions in three distinct operational modes:

Integrated

In this mode, message and trace records are written only to logs defined and maintained by the

WebSphere Application Server runtime. This is the default mode of operation and is equivalent to

the WebSphere Application Server 4.0 mode of operation.

stand-alone

In this mode, message and trace records are written solely to stand-alone logs defined and

maintained by the user. You control which categories of events are written to which logs, and the

format in which entries are written. You are responsible for configuration and maintenance of the

logs. Message and trace entries are not written to WebSphere Application Server runtime logs.

Combined

In this mode message and trace records are written to both WebSphere Application Server runtime

logs and to stand-alone logs that you must define, control, and maintain. You can use filtering

controls to determine which categories of messages and trace are written to which logs.

The JRas extensions are specifically targeted to an integrated mode of operation. The integrated mode of

operation can be appropriate for some usage scenarios, but there many scenarios are not adequately

addressed by these extensions. Many usage scenarios require a stand-alone or combined mode of

operation instead. A set of user extension points has been defined that allow the JRas extensions to be

used in either a stand-alone or combined mode of operations.

JRas extension classes

The JRas framework described in this task and its sub-tasks is deprecated. However, you can achieve

similar results using Java logging.

WebSphere Application Server provides a base set of implementation classes that collectively are referred

to as the JRas extensions. Many of these classes provide the appropriate implementations of loggers,

handlers and formatters for use in a WebSphere Application Server environment. As previously noted, this

Chapter 4. Adding logging and tracing to your application 103

collection of classes is targeted at an Integrated mode of operation. If you choose to use the JRas

extensions in either stand-alone or combined mode, you can reuse the logger and manager class provided

by the extensions, but you must provide your own implementations of handlers and formatters.

WebSphere Application Server Message and Trace loggers

The message and trace loggers provided by the stand-alone JRas logging toolkit cannot be directly used

in the WebSphere Application Server environment. The JRas extensions provide the appropriate logger

implementation classes. Instances of these message and trace logger classes are obtained directly and

exclusively from the WebSphere Application Server Manager class, described below. You cannot directly

instantiate message and trace loggers. Obtaining loggers in any manner other than directly from the

Manager is not allowed. Doing so is a direct violation of the programming model.

The message and trace loggers instances obtained from the WebSphere Application Server Manager class

are subclasses of the RASMessageLogger() and RASTraceLogger() classes provided by the stand-alone

JRas logging toolkit. The RASMessageLogger() and RASTraceLogger() classes define the set of methods

that are directly available. Public methods introduced by the JRas extensions logger subclasses cannot be

called directly by user code. Doing so is a violation of the programming model.

Loggers are named objects and are identified by name. When the Manager class is called to obtain a

logger, the caller is required to specify a name for the logger. The Manager class maintains a

name-to-logger instance mapping. Only one instance of a named logger will ever be created within the

lifetime of a process. The first call to the Manager with a particular name will result in the logger being

created and configured by the Manager. The Manager will cache a reference to the instance, then return it

to the caller. Subsequent calls to the Manager that specify the same name will result in a reference to the

cached logger being returned. Separate namespaces are maintained for message and trace loggers. This

means a single name can be used to obtain both a message logger and a trace logger from the Manager,

without ambiguity, and without causing a namespace collision.

In general, loggers have no predefined granularity or scope. A single logger could be used to instrument

an entire application. Or users may determine that having a logger per class is more desirable. Or the

appropriate granularity may lie somewhere in between. Partitioning an application into logging domains is

rightfully determined by the application writer.

The WebSphere Application Server logger classes obtained from the Manager are thread-safe. Although

the loggers provided as part of the stand-alone JRas logging toolkit implement the serializable interface, in

fact loggers are not serializable. Loggers are stateful objects, tied to a Java virtual machine instance and

are not serializable. Attempting to serialize a logger is a violation of the programming model.

Please note that there is no provision for allowing users to provide their own logger subclasses for use in

a WebSphere Application Server environment.

WebSphere Application Server handlers

WebSphere Application Server provides the appropriate handler class that is used to write message and

trace events to the WebSphere Application Server run-time logs. You cannot configure the WebSphere

Application Server handler to write to any other destination. The creation of a WebSphere Application

Server handler is a restricted operation and not available to user code. Every logger obtained from the

Manager comes preconfigured with an instance of this handler already installed. You can remove the

WebSphere Application Server handler from a logger when you want to run in stand-alone mode. Once

you have removed it, you cannot add the WebSphere Application Server handler again to the logger from

which it was removed (or any other logger). Also, you cannot directly call any method on the WebSphere

Application Server handler. Attempting to create an instance of the WebSphere Application Server handler,

to call methods on the WebSphere Application Server handler or to add a WebSphere Application Server

handler to a logger by user code is a violation of the programming model.

104 IBM WebSphere Application Server-Network Deployment, Version 6: Troubleshooting and support

WebSphere Application Server formatters

The WebSphere Application Server handler comes preconfigured with the appropriate formatter for data

that is written to WebSphere Application Server logs. The creation of a WebSphere Application Server

formatter is a restricted operation and not available to user code. No mechanism exists that allows the

user to obtain a reference to a formatter installed in a WebSphere Application Server handler, or to change

the formatter a WebSphere Application Server handler is configured to use.

WebSphere Application Server manager

WebSphere Application Server provides a Manager class located in the com.ibm.websphere.ras package.

All message and trace loggers must be obtained from this Manager. A reference to the Manager is

obtained by calling the static Manager.getManager() method. Message loggers are obtained by calling the

createRASMessageLogger() method on the Manager. Trace loggers are obtained by calling the

createRASTraceLogger() method on the Manager class.

The manager also supports a group abstraction that is useful when dealing with trace loggers. The group

abstraction allows multiple, unrelated trace loggers to be registered as part of a named entity called a

group. WebSphere Application Server provides the appropriate systems management facilities to

manipulate the trace setting of a group, similar to the way the trace settings of an individual trace logger.

For example, suppose component A consist of 10 classes. Suppose each class is configured to use a

separate trace logger. Suppose all 10 trace loggers in the component are registered as members of the

same group (for example Component_A_Group). You can then turn on trace for a single class. Or you can

turn on trace for all 10 classes in a single operation using the group name if you want a component trace.

Group names are maintained within the namespace for trace loggers.

Extending the JRas framework

Since the Jras extensions classes do not provide the flexibility and behavior required for many scenarios,

a variety of extension points have been defined. You are allowed to write your own implementation classes

to obtain the required behavior.

Note: The JRas framework described in this task and its sub-tasks is deprecated. However, you can

achieve similar results using Java logging.

In general, the JRas extensions require you to call the Manager class to obtain a message logger or trace

logger. No provision is made to allow you to provide your own message or trace logger subclasses. In

general, user-provided extensions cannot be used to affect the integrated mode of operation. The behavior

of the integrated mode of operation is solely determined by the WebSphere Application Server run-time

and the JRas extensions classes.

Handlers

The stand-alone JRas logging toolkit defines the RASIHandler interface. All handlers must implement this

interface. You can write your own handler classes that implement the RASIHandler interface. You should

directly create instances of user-defined handlers and add them to the loggers obtained from the Manager.

The stand-alone JRas logging toolkit provides several handler implementation classes. These handler

classes are inappropriate for usage in the J2EE environment. You cannot directly use or subclass any of

the Handler classes provided by the stand-alone JRas logging toolkit. Doing so is a violation of the

programming model.

Formatters

The stand-alone JRas logging toolkit defines the RASIFormatter interface. All formatters must implement

this interface. You can write your own formatter classes that implement the RASIFormatter interface. You

Chapter 4. Adding logging and tracing to your application 105

can only add these classes to a user-defined handler. WebSphere Application Server handlers cannot be

configured to use user-defined formatters. Instead, directly create instances of your formatters and add

them to the your handlers appropriately.

As with handlers, the stand-alone JRas logging toolkit provides several formatter implementation classes.

Direct usage of these formatter classes is not supported.

Message event types

The stand-alone JRas toolkit defines message event types in the RASIMessageEvent interface. In addition,

the WebSphere Application Server reserves a range of message event types for future use. The

RASIMessageEvent interface defines three types, with values of 0x01, 0x02, and 0x04. The values 0x08

through 0x8000 are reserved for future use. You can provide your own message event types by extending

this interface appropriately. User-defined message types must have a value of 0x1000 or greater.

Message loggers retrieved from the Manager have their message masks set to pass or process all

message event types defined in the RASIMessageEvent interface. In order to process user-defined message

types, you must manually set the message logger mask to the appropriate state by user code after the

message logger has been obtained from the Manager. WebSphere Application Server does not provide

any built-in systems management support for managing any message types.

Message event objects

The stand-alone JRas toolkit provides a RASMessageEvent implementation class. When a message logging

method is called on the message logger, and the message type is currently enabled, the logger creates

and distributes an event of this class to all handlers currently registered with that logger.

You can provide your own message event classes, but they must implement the RASIEvent interface. You

must directly create instances of such user-defined message event classes. Once it is created, pass your

message event to the message logger by calling the message logger’s fireRASEvent() method directly.

WebSphere Application Server message loggers cannot directly create instances of user-defined types in

response to calling a logging method (msg(), message()...) on the logger. In addition, instances of

user-defined message types are never processed by the WebSphere Application Server handler. You

cannot create instances of the RASMessageEvent class directly.

Trace event types

The stand-alone JRas toolkit defines trace event types in the RASITraceEvent interface. You can provide

your own trace event types by extending this interface appropriately. In such a case you must ensure that

the values for the user-defined trace event types do not collide with the values of the types defined in the

RASITraceEvent interface.

Trace loggers retrieved from the Manager typically have their trace masks set to reject all types. A different

starting state can be specified by using WebSphere Application Server systems management facilities. In

addition, the state of the trace mask for a logger can be changed at run-time using WebSphere Application

Server systems management facilities.

In order to process user-defined trace types, the trace logger mask must be manually set to the

appropriate state by user code. WebSphere Application Server systems management facilities cannot be

used to manage user-defined trace types, either at start time or run-time.

Trace event objects

The stand-alone JRas toolkit provides a RASTraceEvent implementation class. When a trace logging

method is called on the WebSphere Application Server trace logger and the type is currently enabled, the

logger creates and distributes an event of this class to all handlers currently registered with that logger.

106 IBM WebSphere Application Server-Network Deployment, Version 6: Troubleshooting and support

You can provide your own trace event classes. Such trace event classes must implement the RASIEvent

interface. You must create instances of such user-defined event classes directly. Once it is created, pass

the trace event to the trace logger by calling the trace logger’s fireRASEvent() method directly.

WebSphere Application Server trace loggers cannot directly create instances of user-defined types in

response to calling a trace method (entry(), exit(), trace()) on the trace logger. In addition, instances of

user-defined trace types are never processed by the WebSphere Application Server handler. You cannot

create instances of the RASTraceEvent class directly.

User defined types, user defined events and WebSphere Application Server

By definition, the WebSphere Application Server handler will process user-defined message or trace types,

or user-defined message or trace event classes. Message and trace entries of either a user-defined type

or user-defined event class cannot be written to the WebSphere Application Server run-time logs.

Writing User Extensions:

The JRas framework described in this task and its sub-tasks is deprecated. However, you can achieve

similar results using Java logging.

General Considerations

You can configure the WebSphere Application Server to use Java 2 security to restrict access to protected

resources such as the file system and sockets. Since user written extensions typically access such

protected resources, user written extensions must contain the appropriate security checking calls, using

AccessController doPrivileged() calls. In addition, the user written extensions must contain the

appropriate policy file. In general, it is recommended that you locate user written extensions in a separate

package. It is your responsibility to restrict access to the user written extensions appropriately.

Writing a handler

User written handlers must implement the RASIHandler interface. The RASIHandler interface extends the

RASIMaskChangeGenerator interface, which extends the RASIObject interface. A short discussion of the

methods introduced by each of these interfaces follows, along with implementation pointers. For more in

depth information on any of the particular interfaces or methods, see the corresponding product javadoc.

RASIObject interface

The RASIObject interface is the base interface for stand-alone JRas logging toolkit classes that are stateful

or configurable, such as loggers, handlers and formatters.

v The stand-alone JRas logging tookit supports rudimentary properties-file based configuration. To

implement this configuration support, the configuration state is stored as a set of key-value pairs in a

properties file. The methodspublic Hashtable getConfig() and public void setConfig(Hashtable ht)

are used to get and set the configuration state. The JRas extensions do not support properties based

configuration and it is recommended that these methods be implemented as no-operations. You can

implement your own properties based configuration using these methods.

v Loggers, handlers and formatters can be named objects. For example, the JRas extensions require the

user to provide a name for the loggers that are retrieved from the manager. You can name your

handlers. The methods public String getName() and public void setName(String name) are provided

to get or set the name field. The JRas extensions currently do not call these methods on user handlers.

You can implement these methods as you want, including as no operations.

v Loggers, handlers and formatters can also contain a description field. The methods public String

getDescription() and public void setDescription(String desc) can be used to get or set the

description field. The JRas extensions currently do not use the description field. You can implement

these methods as you want, including as no operations.

Chapter 4. Adding logging and tracing to your application 107

v The method public String getGroup() is provided for usage by the RASManager. Since the JRas

extensions provide their own Manager class, this method is never called. It is recommended you

implement this as a no-operation.

RASIMaskChangeGenerator interface

The RASIMaskChangeGenerator interface is the interface that defines the implementation methods for

filtering of events based on a mask state. This means that it is currently implemented by both loggers and

handlers. By definition, an object that implements this interface contains both a message mask and a trace

mask, although both need not be used. For example, message loggers contain a trace mask, but the trace

mask is never used since the message logger never generates trace events. Handlers however can

actively use both mask values. For example a single handler could handle both message and trace

events.

v The methods public long getMessageMask() and public void setMessageMask(long mask) are used to

get or set the value of the message mask. The methods public long getTraceMask() and public void

setTraceMask(long mask) are used to get or set the value of the trace mask.

In addition, this interface introduces the concept of calling back to interested parties when a mask changes

state. The callback object must implement the RASIMaskChangeListener interface.

v The methods public void addMaskChangeListener(RASIMaskChangeListener listener) and public

void removeMaskChangeListener(RASIMaskChangeListener listener) are used to add or remove

listeners to the handler. The method public Enumeration getMaskChangeListeners() returns an

Enumeration over the list of currently registered listeners. The method public void

fireMaskChangedEvent(RASMaskChangeEvent mc) is used to call back all the registered listeners to inform

them of a mask change event.

For efficiency reasons, the Jras extensions message and trace loggers implement the

RASIMaskChangeListener interface. The logger implementations maintain a ″composite mask″ in addition to

the logger’s own mask. The logger’s composite mask is formed by logically or’ing the appropriate masks of

all handlers that are registered to that logger, then and’ing the result with the logger’s own mask. For

example, the message logger’s composite mask is formed by or’ing the message masks of all handlers

registered with that logger, then and’ing the result with the logger’s own message mask.

This means that all handlers are required to properly implement these methods. In addition, when a user

handler is instantiated, the logger it is to be added to should be registered with the handler using the

addMaskChangeListener() method. When either the message mask or trace mask of the handler is

changed, the logger must be called back to inform it of the mask change. This allows the logger to

dynamically maintain the composite mask.

The RASMaskChangedEvent class is defined by the stand-alone JRas logging toolkit. Direct usage of that

class by user code is allowed in this context.

In addition the RASIMaskChangeGenerator introduces the concept of caching the names of all message and

trace event classes that the implementing object will process. The intent of these methods is to allow a

management program such as a GUI to retrieve the list of names, introspect the classes to determine the

event types that they might possibly process and display the results. The JRas extensions do not ever call

these methods, so they can be implemented as no operations, if desired.

v The methods public void addMessageEventClass(String name) and public void

removeMessageEventClass(String name) can be called to add or remove a message event class name

from the list. The method public Enumeration getMessageEventClasses() will return an enumeration

over the list of message event class names. Similarly, the public void addTraceEventClass(String

name) and public void removeTraceEventClass(String name) can be called to add or remove a trace

event class name from the list. The method public Enumeration getTraceEventClasses() will return an

enumeration over the list of trace event class names.

108 IBM WebSphere Application Server-Network Deployment, Version 6: Troubleshooting and support

RASIHandler interface

The RASIHandler interface introduces the methods that are specific to the behavior of a handler.

The RASIHandler interface as provided by the stand-alone JRas logging toolkit supports handlers that run

in either a synchronous or asynchronous mode. In asynchronous mode, events are typically queued by the

calling thread and then written by a worker thread. Since spawning of threads is not allowed in the

WebSphere Application Server environment, it is expected that handlers will not queue or batch events,

although this is not expressly prohibited.

v The methods public int getMaximumQueueSize() and public void setMaximumQueueSize(int size)

throw IllegalStateException are provided to manage the maximum queue size. The method public

int getQueueSize() is provided to query the actual queue size.

v The methods public int getRetryInterval() and public void setRetryInterval(int interval)

support the notion of error retry, which again implies some type of queueing.

v The methods public void addFormatter(RASIFormatter formatter), public void

removeFormatter(RASIFormatter formatter) and public Enumeration getFormatters() are provided to

manage the list of formatters that the handler can be configured with. Different formatters can be

provided for different event classes, if appropriate.

v The methods public void openDevice(), public void closeDevice() and public void stop() are

provided to manage the underlying device that the handler abstracts.

v The methods public void logEvent(RASIEvent event) and public void writeEvent(RASIEvent event)

are provided to actually pass events to the handler for processing.

Writing a formatter

User written formatters must implement the RASIFormatter interface. The RASIFormatter interface extends

the RASIObject interface. The implementation of the RASIObject interface is the same for both handlers

and formatters. A short discussion of the methods introduced by the RASIFormatter interface follows. For

more in depth information on the methods introduced by this interface, see the corresponding product API

documentation.

RASIFormatter interface

v The methods public void setDefault(boolean flag) and public boolean isDefault() are used by

the concrete RASHandler classes provided by the stand-alone JRas logging toolkit to determine if a

particular formatter is the default formatter. Since these RASHandler classes must never be used in a

WebSphere Application Server environment, the semantic significance of these methods can be

determined by the user.

v The methods public void addEventClass(String name), public void removeEventClass(String name)

and public Enumeration getEventClasses() are provided to determine which event classes a formatter

can be used to format. You can provide the appropriate implementations as you see fit.

v The method public String format(RASIEvent event) is called by handler objects and returns a

formatted String representation of the event.

Programming model summary

The programming model described in this section builds upon and summarizes some of the concepts

already introduced. This section also formalizes usage requirements and restrictions. Use of the

WebSphere Application Server JRas extensions in a manner that does not conform to the following

programming guidelines is prohibited.

Note: The JRas framework described in this task and its sub-tasks is deprecated. However, you can

achieve similar results using Java logging.

As described previously, you can use the WebSphere Application Server JRas extensions in three distinct

operational modes. The programming models concepts and restrictions apply equally across all modes of

operation.

Chapter 4. Adding logging and tracing to your application 109

v You must not use implementation classes provided by the stand-alone JRas logging toolkit directly,

unless specifically noted otherwise. Direct usage of those classes is not supported. IBM Support will

provide no diagnostic aid or bug fixes relating to direct usage of classes provided by the stand-alone

JRas logging toolkit.

v You must obtain message and trace loggers directly from the Manager class. You cannot directly

instantiate loggers.

v There is no provision that allows you to replace the WebSphere Application Server message and trace

logger classes.

v You must guarantee that the logger names passed to the Manager are unique, and follow the naming

constraints documented below. Once a logger is obtained from the Manager, you must not attempt to

change the name of the logger by calling the setName() method.

v Named loggers can be used more than once. For any given name, the first call to the Manager results

in the Manager creating a logger that is associated with that name. Subsequent calls to the Manager

that specify the same name result in a reference to the existing logger being returned.

v The Manager maintains a hierarchical namespace for loggers. It is recommended but not required that

a dot-separated, fully qualified class name be used to identify any given logger. Other than dots or

periods, logger names cannot contain any punctuation characters, such as asterisk (*), comma(.),

equals sign(=), colon(:), or quotes.

v Group names must comply with the same naming restrictions as logger names.

v The loggers returned from the Manager are subclasses of the RASMessageLogger and

RASTraceLogger provided by the stand-alone JRas logging toolkit. You are allowed to call any public

method defined by the RASMessageLogger and RASTraceLogger classes. You are not allowed to call

any public method introduced by the provided subclasses.

v If you want to operate in either stand-alone or combined mode, you must provide your own Handler

and Formatter subclasses. You are not allowed to use the Handler and Formatter classes provided by

the stand-alone JRas logging toolkit. User written handlers and formatters must conform to the

documented guidelines.

v Loggers obtained from the manager come with a WebSphere Application Server handler installed. This

handler will write message and trace records to logs defined by the WebSphere Application Server

runtime. Manage these logs using the provided systems management interfaces.

v You can programmatically add and remove user-defined handlers from a logger at any time. Multiple

additions and removals of user defined handlers are allowed. You are responsible for creating an

instance of the handler to add, configuring the handler by setting the handler’s mask value and

formatter appropriately, then adding the handler to the logger using the addHandler() method. You are

responsible for programmatically updating the masks of user-defined handlers as appropriate.

v You may get a reference to the handler installed within a logger by calling the getHandlers() method

on the logger and processing the results. You must not call any methods on the handler obtained in this

fashion. You are allowed to remove the WebSphere Application Server handler from the logger by

calling the logger’s removeHandler() method, passing in the reference to the WebSphere Application

Server handler. Once removed, the WebSphere Application Server handler cannot be re-added to the

logger.

v You are allowed to define your own message type. The behavior of user-defined message types and

restrictions on their definitions is discussed in Extending the JRas framework.

v You are allowed to define your own message event classes. The usage of user-defined message

event classes is discussed in Extending the JRas framework.

v You are allowed to define your own trace types. The behavior of user-defined trace types and

restrictions on your definitions is discussed in Extending the JRas framework.

v You are allowed to define your own trace event classes. The usage of user-defined trace event classes

is discussed in Extending the JRas framework.

v You must programmatically maintain the bits in the message and trace logger masks that correspond to

any user-defined types. If WebSphere Application Server facilities are being used to manage the

predefined types, these updates must not modify the state of any of the bits corresponding to those

types. If you are assuming ownership responsibility for the predefined types then you can change all

bits of the masks.

110 IBM WebSphere Application Server-Network Deployment, Version 6: Troubleshooting and support

JRas Messages and Trace event types

This section describes JRas message and trace event types.

The JRas framework described in this task and its sub-tasks is deprecated. However, you can achieve

similar results using Java logging.

Event types

The base message and trace event types defined by the stand-alone JRas logging toolkit are not the

same as the ″native″ types recognized by the WebSphere Application Server run-time. Instead the basic

JRas types are mapped onto the native types. This mapping may vary by platform or edition. The mapping

is discussed below.

Platform Message Event Types

The message event types that are recognized and processed by the WebSphere Application Server

runtime are defined in the RASIMessageEvent interface provided by the stand-alone JRas logging toolkit.

These message types are mapped onto the native message types as follows.

 WebSphere Application Server native type JRas RASIMessageEvent type

Audit TYPE_INFO, TYPE_INFORMATION

Warning TYPE_WARN, TYPE_WARNING

Error TYPE_ERR, TYPE_ERROR

Platform Trace Event Types

The trace event types recognized and processed by the WebSphere Application Server runtime are

defined in the RASITraceEvent interface provided by the stand-alone JRas logging toolkit. The

RASITraceEvent interface provides a rich and overly complex set of types. This interface defines both a

simple set of levels, as well as a set of enumerated types.

v For a user who prefers a simple set of levels, RASITraceEvent provides TYPE_LEVEL1, TYPE_LEVEL2, and

TYPE_LEVEL3. The implementations provide support for this set of levels. The levels are hierarchical (that

is, enabling level 2 will also enable level 1, enabling level 3 also enables levels 1 and 2).

v For users who prefer a more complex set of values that can be OR’d together, RASITraceEvent provides

TYPE_API, TYPE_CALLBACK, TYPE_ENTRY_EXIT, TYPE_ERROR_EXC, TYPE_MISC_DATA, TYPE_OBJ_CREATE,

TYPE_OBJ_DELETE, TYPE_PRIVATE, TYPE_PUBLIC, TYPE_STATIC, and TYPE_SVC.

The trace event types are mapped onto the native trace types as follows:

Mapping WebSphere Application Server trace types to JRas RASITraceEvent ″Level″ types.

 WebSphere Application Server native type JRas RASITraceEvent level type

Event TYPE_LEVEL1

EntryExit TYPE_LEVEL2

Debug TYPE_LEVEL3

Mapping WebSphere Application Server trace types to JRas RASITraceEvent enumerated types.

 WebSphere Application Server native type JRas RASITraceEvent enumerated types

Event TYPE_ERROR_EXC, TYPE_SVC, TYPE_OBJ_CREATE,

TYPE_OBJ_DELETE

Chapter 4. Adding logging and tracing to your application 111

EntryExit TYPE_ENTRY_EXIT, TYPE_API, TYPE_CALLBACK,

TYPE_PRIVATE, TYPE_PUBLIC, TYPE_STATIC

Debug TYPE_MISC_DATA

For simplicity, it is recommended that one or the other of the tracing type methodologies is used

consistently throughout the application. For users who decide to use the non-level types, it is further

recommended that you choose one type from each category and use those consistently throughout the

application to avoid confusion.

Message and Trace parameters

The various message logging and trace method signatures accept parameter types of Object, Object[]

and Throwable. WebSphere Application Server will process and format the various parameter types as

follows.

Primitives

Primitives, such as int and long are not recognized as subclasses of Object and cannot be

directly passed to one of these methods. A primitive value must be transformed to a proper Object

type (Integer, Long) before being passed as a parameter.

Object toString() is called on the object and the resulting String is displayed. The toString() method

should be implemented appropriately for any object passed to a message logging or trace method.

It is the responsibility of the caller to guarantee that the toString() method does not display

confidential data such as passwords in clear text, and does not cause infinite recursion.

Object[]

The Object[] is provided for the case when more than one parameter is passed to a message

logging or trace method. toString() is called on each Object in the array. Nested arrays are not

handled. (i.e. none of the elements in the Object array should be an array).

Throwable

The stack trace of the Throwable is retrieved and displayed.

Array of Primitives

An array of primitive (e.g. byte[], int[] is recognized as an Object, but is treated somewhat as a

second cousin of Object by Java code. In general, arrays of primitives should be avoided, if

possible. If arrays of primitives are passed, the results are indeterminate and may change

depending on the type of array passed, the API used to pass the array and the release of the

product. For consistent results, user code should preprocess and format the primitive array into

some type of String form before passing it to the method. If such preprocessing is not performed,

the following may result.

v [B@924586a0b - This is deciphered as ″a byte array at location X″. This is typically returned

when an array is passed as a member of an Object[]. It is the result of calling toString() on

the byte[].

v Illegal trace argument : array of long. This is typically returned when an array of primitives is

passed to a method taking an Object.

v 01040703... : the hex representation of an array of bytes. Typically this may be seen when a

byte array is passed to a method taking a single Object. This behavior is subject to change and

should not be relied on.

v ″1″ ″2″ ... : The String representation of the members of an int[] formed by converting each

element to an Integer and calling toString on the Integers. This behavior is subject to change

and should not be relied on.

v [Ljava.lang.Object;@9136fa0b : An array of objects. Typically this is seen when an array

containing nested arrays is passed.

Controlling message logging

Writing a message to a WebSphere Application Server log requires that the message type passes three

levels of filtering or screening.

112 IBM WebSphere Application Server-Network Deployment, Version 6: Troubleshooting and support

1. The message event type must be one of the message event types defined in the RASIMessageEvent

interface.

2. Logging of that message event type must be enabled by the state of the message logger’s mask.

3. The message event type must pass any filtering criteria established by the WebSphere Application

Server run-time itself.

When a WebSphere Application Server logger is obtained from the Manager, the initial setting of the mask

is to forward all native message event types to the WebSphere Application Server handler. It is possible to

control what messages get logged by programmatically setting the state of the message logger’s mask.

Some editions of the product allow the user to specify a message filter level for a server process. When

such a filter level is set, only messages at the specified severity levels are written to WebSphere

Application Server logs. This means that messages types that pass the message logger’s mask check

may be filtered out by the WebSphere Application Server itself.

Controlling Tracing

Each edition of the product provides a mechanism for enabling or disabling trace. The various editions

may support static trace enablement (trace settings are specified before the server is started), dynamic

trace enablement (trace settings for a running server process can be dynamically modified) or both.

Writing a trace record to a WebSphere Application Server requires that the trace type passes three levels

of filtering or screening.

1. The trace event type must be one of the trace event types defined in the RASITraceEvent interface.

2. Logging of that trace event type must be enabled by the state of the trace logger’s mask.

3. The trace event type must pass any filtering criteria established by the WebSphere Application Server

run-time itself.

When a logger is obtained from the Manager, the initial setting of the mask is to suppress all trace types.

The exception to this rule is the case where the WebSphere Application Server run-time supports static

trace enablement and a non-default startup trace state for that trace logger has been specified. Unlike

message loggers, the WebSphere Application Server may dynamically modify the state of a trace loggers

trace mask. WebSphere Application Server will only modify the portion of the trace logger’s mask

corresponding to the values defined in the RASITraceEvent interface. WebSphere Application Server will

not modify undefined bits of the mask that may be in use for user defined types.

When the dynamic trace enablement feature available on some platforms is used, the trace state change

is reflected both in the Application Server run-time and the trace loggers trace mask. If user code

programmatically changes the bits in the trace mask corresponding to the values defined by in the

RASITraceEvent interface, the trace logger’s mask state and the run-time state will become unsynchronized

and unexpected results will occur. Therefore, programmatically changing the bits of the mask

corresponding to the values defined in the RASITraceEvent interface is not allowed.

Instrumenting an application with JRas extensions

The JRas framework described in this task and its sub-tasks is deprecated. However, you can achieve

similar results using Java logging.

To instrument an application using the WebSphere Application Server JRas extensions, perform the

following steps:

1. Determine the mode the extensions will be used in: integrated, stand-alone or combined.

2. If the extensions will be used in either stand-alone or combined mode, create the necessary handler

and formatter classes.

3. If localized messages will be used by the application, create a resource bundle as described in

Creating JRas resource bundles and message files.

Chapter 4. Adding logging and tracing to your application 113

4. In the application code, get a reference to the Manager class and create the manager and logger

instances as described in Creating JRas manager and logger instances.

5. Insert the appropriate message and trace logging statements in the application as described in

Creating JRas manager and logger instances.

Creating JRas resource bundles and message files

The JRas framework described in this task and its sub-tasks is deprecated. However, you can achieve

similar results using Java logging.

The WebSphere Application Server message logger provides the message() and msg() methods to allow

the user to log localized messages. In addition, it provides the textMessage() method for logging of

messages that are not localized. Applications can use either or both, as appropriate.

The mechanism for providing localized messages is the Resource Bundle support provided by the IBM

Developer Java Technology Edition. If you are not familiar with resource bundles as implemented by the

Developer’s Kit, you can get more information from various texts, or by reading the Javadoc for the

java.util.ResourceBundle, java.util.ListResourceBundle and java.util.PropertyResourceBundle

classes, as well as the java.text.MessageFormat class.

The PropertyResourceBundle is the preferred mechanism to use. In addition, note that the JRas

extensions do not support the extended formatting options such as {1, date} or {0,number, integer} that are

provided by the MessageFormat class.

You can forward messages that are written to the internal WebSphere Application Server logs to other

processes for display. For example, messages displayed on the administrator console, which can be

running in a different location than the server process, can be localized using the late binding process.

Late binding means that WebSphere Application Server does not localize messages when they are logged,

but defers localization to the process that displays the message.

To properly localize the message, the displaying process must have access to the resource bundle where

the message text is stored. This means that you must package the resource bundle separately from the

application, and install it in a location where the viewing process can access it. If you do not want to take

these steps, you can use the early binding technique to localize messages as they are logged.

The two techniques are described as follows:

Early binding

The application must localize the message before logging it. The application looks up the localized

text in the resource bundle and formats the message. When formatting is complete, the application

logs the message using the textMessage() method. Use this technique to package the

application’s resource bundles with the application.

Late binding

The application can choose to have the WebSphere Application Server runtime localize the

message in the process where it is displayed. Using this technique,the resource bundles are

packaged in a stand-alone .jar file, separately from the application. You must then install the

resource bundle .jar file on every machine in the installation from which an administrator’s

console or log viewing program might be run. You must install the .jar file in a directory that is

part of the extensions classpath. In addition, if you forward logs to IBM service, you must also

forward the .jar file containing the resource bundles.

To create a resource bundle, perform the following steps.

1. Create a text properties file that lists message keys and the corresponding messages. The properties

file must have the following characteristics:

v Each property in the file is terminated with a line-termination character.

114 IBM WebSphere Application Server-Network Deployment, Version 6: Troubleshooting and support

v If a line contains only white space, or if the first non-white space character of the line is the pound

sign symbol (#) or exclamation mark (!), the line is ignored. The # and ! characters can therefore be

used to put comments into the file.

v Each line in the file, unless it is a comment or consists only of white space, denotes a single

property. A backslash (\) is treated as the line-continuation character.

v The syntax for a property file consists of a key, a separator, and an element. Valid separators

include the equal sign (=), colon (:), and white space ().

v The key consists of all characters on the line from the first non-white space character to the first

separator. Separator characters can be included in the key by escaping them with a backslash (\),

but doing this is not recommended, because escaping characters is error prone and confusing. It is

instead recommended that you use a valid separator character that does not appear in any keys in

the properties file.

v White space after the key and separator is ignored until the first non-white space character is

encountered. All characters remaining before the line-termination character define the element.

See the Java documentation for the java.util.Properties class for a full description of the syntax and

construction of properties files.

2. The file can then be translated into localized versions of the file with language-specific file names (for

example, a file named DefaultMessages.properties can be translated into

DefaultMessages_de.properties for German and DefaultMessages_ja.properties for Japanese).

3. When the translated resource bundles are available, write them to a system-managed persistent

storage medium. Resource bundles are then used to convert the messages into the requested national

language and locale.

4. When a message logger is obtained from the JRas manager, it can be configured to use a particular

resource bundle. Messages logged via the message() API will use this resource bundle when message

localization is performed. At run time, the user’s locale setting is used to determine the properties file

from which to extract the message specified by a message key, thus ensuring that the message is

delivered in the correct language.

5. If the message loggers msg() method is called, a resource bundle name must be explicitly provided.

The application locates the resource bundle based on the file’s location relative to any directory in the

classpath. For instance, if the property resource bundle named DefaultMessages.properties is located in

the baseDir/subDir1/subDir2/resources directory and baseDir is in the class path, the name

subdir1.subdir2.resources.DefaultMessage is passed to the message logger to identify the resource

bundle.

Developing JRas resource bundles:

The JRas framework described in this task and its sub-tasks is deprecated. However, you can achieve

similar results using Java logging.

Resource bundle sample

You can create resource bundles in several ways. The best and easiest way is to create a properties file

that supports a PropertiesResourceBundle. This sample shows how to create such a properties file.

For this sample, four localizable messages are provided. The properties file is created and the key-value

pairs inserted into it. All the normal properties files conventions and rules apply to this file. In addition, the

creator must be aware of other restrictions imposed on the values by the Java MessageFormat class. For

example, apostrophes must be ″escaped″ or they will cause a problem. Also avoid use of non-portable

characters. WebSphere Application Server does not support usage of extended formatting conventions that

the MessageFormat class supports, such as {1, date} or {0,number, integer}.

Assume that the base directory for the application that uses this resource bundle is ″baseDir″ and that this

directory will be in the classpath. Assume that the properties file is stored in a subdirectory of baseDir that

is not in the classpath (e.g. baseDir/subDir1/subDir2/resources). In order to allow the messages file to

Chapter 4. Adding logging and tracing to your application 115

be resolved, the name subDir1.subDir2.resources.DefaultMessage is used to identify the

PropertyResourceBundle and is passed to the message logger.

For this sample, the properties file is named DefaultMessages.properties.

Contents of DefaultMessages.properties file

MSG_KEY_00=A message with no substitution parameters.

MSG_KEY_01=A message with one substitution parameter: parm1={0}

MSG_KEY_02=A message with two substitution parameters: parm1={0}, parm2 = {1}

MSG_KEY_03=A message with three parameter: parm1={0}, parm2 = {1}, parm3={2}

Once the file DefaultMessages.properties is created, the file can be sent to a translation center where the

localized versions will be generated.

Creating JRas manager and logger instances

You can use the JRas extensions in integrated, stand-alone, or combined mode. Configuration of the

application will vary depending on the mode of operation, but usage of the loggers to log message or trace

entries is identical in all modes of operation.

Note: The JRas framework described in this task and its sub-tasks is deprecated. However, you can

achieve similar results using Java logging.

Integrated mode is the default mode of operation. In this mode, message and trace events are sent to the

WebSphere Application Server logs. See Setting up for integrated JRas operation for information on

configuring for this mode of operation.

In the combined mode, message and trace events are logged to both WebSphere Application Server and

user-defined logs. See Setting up for combined JRas operation for more information on configuring for this

mode of operation.

In the stand-alone mode, message and trace events are logged only to user-defined logs. See Setting up

for stand-alone JRas operation for more information on configuring for this mode of operation.

Using the message and trace loggers

Regardless of the mode of operation, the use of message and trace loggers is the same. See Creating

JRas resource bundles and message files for more information on using message and trace loggers.

Using a message logger

The message logger is configured to use the DefaultMessages resource bundle. Message keys must be

passed to the message loggers if the loggers are using the message() API.

msgLogger.message(RASIMessageEvent.TYPE_WARNING, this,

 methodName, "MSG_KEY_00");

... msgLogger.message(RASIMessageEvent.TYPE_WARN, this,

 methodName, "MSG_KEY_01", "some string");

If message loggers use the msg() API, you can specify a new resource bundle name.

msgLogger.msg(RASIMessageEvent.TYPE_ERR, this, methodName,

 "ALT_MSG_KEY_00", "alternateMessageFile");

You can also log a text message. If you are using the textMessage API, no message formatting is done.

msgLogger.textMessage(RASIMessageEvent.TYPE_INFO, this, methodName,"String and Integer",

"A String", new Integer(5));

Using a trace logger

Since trace is normally disabled, trace methods should be guarded for performance reasons.

116 IBM WebSphere Application Server-Network Deployment, Version 6: Troubleshooting and support

private void methodX(int x, String y, Foo z)

{

 // trace an entry point. Use the guard to make sure tracing is enabled.

Do this checking before we waste cycles gathering parameters to be traced.

 if (trcLogger.isLoggable(RASITraceEvent.TYPE_ENTRY_EXIT) {

 // since I want to trace 3 parameters, package them up in an Object[]

 Object[] parms = {new Integer(x), y, z};

 trcLogger.entry(RASITraceEvent.TYPE_ENTRY_EXIT, this, "methodX", parms);

 }

... logic

 // a debug or verbose trace point

 if (trcLogger.isLoggable(RASITraceEvent.TYPE_MISC_DATA) {

 trcLogger.trace(RASITraceEvent.TYPE_MISC_DATA, this, "methodX" "reached here");

 }

 ...

 // Another classification of trace event. Here an important state change

has been detected, so a different trace type is used.

 if (trcLogger.isLoggable(RASITraceEvent.TYPE_SVC) {

 trcLogger.trace(RASITraceEvent.TYPE_SVC, this, "methodX", "an important event");

 }

 ...

 // ready to exit method, trace. No return value to trace

 if (trcLogger.isLoggable(RASITraceEvent.TYPE_ENTRY_EXIT)) {

 trcLogger.exit(RASITraceEvent.TYPE_ENTRY_EXIT, this, "methodX");

 }

}

Setting up for integrated JRas operation

The JRas framework described in this task and its sub-tasks is deprecated. However, you can achieve

similar results using Java logging.

In the integrated mode of operation, message and trace events are sent to WebSphere Application Server

logs. This is the default mode of operation.

1. Import the requisite JRas extensions classes

import com.ibm.ras.*;

import com.ibm.websphere.ras.*;

2. Declare logger references.

private RASMessageLogger msgLogger = null;

private RASTraceLogger trcLogger = null;

3. Obtain a reference to the Manager and create the loggers. Since loggers are named singletons, you

can do this in a variety of places. One logical candidate for enterprise beans is the ejbCreate()

method. For example, for the enterprise bean named ″myTestBean″, place the following code in the

ejbCreate() method.

com.ibm.websphere.ras.Manager mgr = com.ibm.websphere.ras.Manager.getManager();

msgLogger = mgr.createRASMessageLogger("Acme", "WidgetCounter", "RasTest",

 myTestBean.class.getName());

// Configure the message logger to use the message file created

// for this application.

msgLogger.setMessageFile("acme.widgets.DefaultMessages");

trcLogger = mgr.createRASTraceLogger("Acme", "Widgets", "RasTest",

 myTestBean.class.getName());

mgr.addLoggerToGroup(trcLogger, groupName);

Setting up for combined JRas operation

The JRas framework described in this task and its sub-tasks is deprecated. However, you can achieve

similar results using Java logging.

Chapter 4. Adding logging and tracing to your application 117

In combined mode, messages and trace are logged to both WebSphere Application Server logs and

user-defined logs. The following sample assumes that you have written a user defined handler named

SimpleFileHandler and a user defined formatter named SimpleFormatter. It also assumes that you are not

using user defined types or events.

1. Import the requisite JRas extensions classes

import com.ibm.ras.*;

import com.ibm.websphere.ras.*;

2. Import the user handler and formatter.

import com.ibm.ws.ras.test.user.*;

3. Declare the logger references.

private RASMessageLogger msgLogger = null;

 private RASTraceLogger trcLogger = null;

4. Obtain a reference to the Manager, create the loggers and add the user handlers. Since loggers are

named singletons, you can obtain a reference to the loggers in a number of places. One logical

candidate for enterprise beans is the ejbCreate() method. Make sure that multiple instances of the

same user handler are not accidentally inserted into the same logger. Your initialization code must

handle this. The following sample is a message logger sample. The procedure for a trace logger is

similar.

com.ibm.websphere.ras.Manager mgr = com.ibm.websphere.ras.Manager.getManager();

 msgLogger = mgr.createRASMessageLogger("Acme", "WidgetCounter", "RasTest",

 myTestBean.class.getName());

 // Configure the message logger to use the message file defined

 // in the ResourceBundle sample.

 msgLogger.setMessageFile("acme.widgets.DefaultMessages");

 // Create the user handler and formatter. Configure the formatter,

 // then add it to the handler.

 RASIHandler handler = new SimpleFileHandler("myHandler", "FileName");

 RASIFormatter formatter = new SimpleFormatter("simple formatter");

 formatter.addEventClass("com.ibm.ras.RASMessageEvent");

 handler.addFormatter(formatter);

 // Add the Handler to the logger. Add the logger to the list of the

 //handlers listeners, then set the handlers

 // mask, which will update the loggers composite mask appropriately.

 // WARNING - there is an order dependency here that must be followed.

 msgLogger.addHandler(handler);

 handler.addMaskChangeListener(msgLogger);

 handler.setMessageMask(RASIMessageEvent.DEFAULT_MESSAGE_MASK);

Setting up for stand-alone JRas operation

The JRas framework described in this task and its sub-tasks is deprecated. However, you can achieve

similar results using Java logging.

In stand-alone mode, messages and traces are logged only to user-defined logs. The following sample

assumes that you have a user-defined handler named SimpleFileHandler and a user-defined formatter

named SimpleFormatter. It is also assumes that no user-defined types or events are being used.

1. Import the requisite JRas extensions classes

import com.ibm.ras.*;

import com.ibm.websphere.ras.*;

2. Import the user handler and formatter.

import com.ibm.ws.ras.test.user.*;

3. Declare the logger references.

private RASMessageLogger msgLogger = null;

 private RASTraceLogger trcLogger = null;

118 IBM WebSphere Application Server-Network Deployment, Version 6: Troubleshooting and support

4. Obtain a reference to the Manager, create the loggers and add the user handlers. Since loggers are

named singletons, you can obtain a reference to the loggers in a number of places. One logical

candidate for enterprise beans is the ejbCreate() method. Make sure that multiple instances of the

same user handler are not accidentally inserted into the same logger. Your initialization code must

handle this. The following sample is a message logger sample. The procedure for a trace logger is

similar.

com.ibm.websphere.ras.Manager mgr = com.ibm.websphere.ras.Manager.getManager();

 msgLogger = mgr.createRASMessageLogger("Acme", "WidgetCounter", "RasTest",

 myTestBean.class.getName());

 // Configure the message logger to use the message file defined in

 //the ResourceBundle sample.

 msgLogger.setMessageFile("acme.widgets.DefaultMessages");

 // Get a reference to the Handler and remove it from the logger.

 RASIHandler aHandler = null;

 Enumeration enum = msgLogger.getHandlers();

 while (enum.hasMoreElements()) {

 aHandler = (RASIHandler)enum.nextElement();

 if (aHandler instanceof WsHandler)

 msgLogger.removeHandler(wsHandler);

 }

 // Create the user handler and formatter. Configure the formatter,

 // then add it to the handler.

 RASIHandler handler = new SimpleFileHandler("myHandler", "FileName");

 RASIFormatter formatter = new SimpleFormatter("simple formatter");

 formatter.addEventClass("com.ibm.ras.RASMessageEvent");

 handler.addFormatter(formatter);

 // Add the Handler to the logger. Add the logger to the list of the

 // handlers listeners, then set the handlers

 // mask, which will update the loggers composite mask appropriately.

 // WARNING - there is an order dependency here that must be followed.

 msgLogger.addHandler(handler);

 handler.addMaskChangeListener(msgLogger);

 handler.setMessageMask(RASIMessageEvent.DEFAULT_MESSAGE_MASK);

Chapter 4. Adding logging and tracing to your application 119

120 IBM WebSphere Application Server-Network Deployment, Version 6: Troubleshooting and support

Chapter 5. Diagnosing problems (using diagnosis tools)

The purpose of this section is to aid you in understanding why your enterprise application, application

server, or WebSphere Application Server is not working and to help you resolve the problem. Unlike

performance tuning which focuses on solving problems associated with slow processes and un-optimized

performance, problem determination focuses on finding solutions to functional problems.

 1. For tips on investigating common problems organized according to tasks within WebSphere

Application server, see Troubleshooting by task.

 2. For tips on how to investigate common kinds of problems based on the component that is causing the

problem, see Troubleshooting by component.

 3. If you already have an error message and want to quickly look up its explanation and recommended

response, look up the message by selecting the Reference view of the information center navigation

and expanding Messages.

 4. For help in knowing where to find error and warning messages, interpreting messages, and

configuring log files, see Working with message logs.

 5. Difficult problems can require the use of tracing, which exposes the low-level flow of control and

interactions between components. For help in understanding and using traces, see Working with

trace.

 6. For help in adding log and trace capability to your own application, see “Logging and tracing with

Java logging” on page 63.

 7. For help in using settings or tools to help you diagnose the problem, see Working with

troubleshooting tools. Some of these tools are bundled with the product, and others are freely

downloadable.

 8. To find out how to look up documented problems, common mistakes, WebSphere Application Server

prerequisites, and other problem-determination information on the WebSphere Application Server

public web site, or to obtain technical support from IBM, see Obtaining help from IBM.

 9. The IBM Developer Kit and Runtime Environment, Java 2 Technology Edition, Version 1.4.1

Diagnostics Guide describes debugging techniques and the diagnostic tools that are available to help

you solve problems with Java. It also gives guidance on how to submit problems to IBM. You can find

the guide at http://www.ibm.com/developerworks/java/jdk/diagnosis/.

10. For current information available from IBM Support on known problems and their resolution, see the

IBM Support page.

11. IBM Support has documents that can save you time gathering information needed to resolve this

problem. Before opening a PMR, see the IBM Support page.

Message reference

You can log WebSphere Application Server system messages from a variety of sources, including

application server components and applications. Messages logged by application server components and

associated IBM products start with a unique message identifier that indicates the component or application

that issued the message. The message identifier can be either 8 or 9 characters in length and has the

form:

CCCC1234X

where:

CCCC is a four character alphabetic component or application identifier.

1234 is a four character numeric identifier used to identify the specific message for that component.

X is an optional alphabetic severity indicator. (I=Informational, W=Warning, E=Error)

To view the messages generated by WebSphere Application Server components, select the Reference

view of the information center navigation and expand the topic Messages.

© Copyright IBM Corp. 2004 121

http://www.ibm.com/developerworks/java/jdk/diagnosis/
http://www.ibm.com/developerworks/java/jdk/diagnosis/
http://www.ibm.com/developerworks/java/jdk/diagnosis/
http://www.ibm.com/support/
http://www.ibm.com/support/search.wss?rs=180&q=mustgather

CORBA minor codes

Overview

Common Object Request Broker Architecture (CORBA) is an industry-wide standard for object-oriented

communication between processes, which is supported in several programming languages. Several

subcomponents of WebSphere Application Server use CORBA to communicate across processes.

When a CORBA process fails, that is a request from one process to another cannot be sent, completed, or

returned, a high-level exception is created, such as TransactionRolledBackException: CORBA

TRANSACTION_ROLLEDBACK. To show the underlying cause of the failure, applications that use

CORBA services generate minor codes that are written to the exception stack. Look for ″minor code″ in

the exception stack to locate these exceptions.

Minor codes that are used by WebSphere Application Server components

 Range Related subcomponent Where to find details

0x49424300-0x494243FF Security “Security components troubleshooting

tips” on page 240

0x49421050-0x4942105F,

0x49421070-0x4942107F

ORB services “Object request broker component

troubleshooting tips” on page 43

0x4f4d and above Standard CORBA exceptions http://www.omg.org

0x49421080-0x4942108F Naming services See Reference: Generated API

documentation for information about

the

ws.code.naming.src.com.

ibm.websphere.naming.

WsnCorbaMinorCodes

class.

0x49421080-0x4942108F Workload Management See Reference: Generated API

documentation for information about

the

com.ibm.websphere.wlm.

WsCorbaMinorCodes

class.

Working with message logs

WebSphere Application Server can write system messages to several general purpose logs. These include

the JVM logs, the process logs and the IBM service log.

The JVM logs are created by redirecting the System.out and System.err streams of the JVM to

independent log files. WebSphere Application Server writes formatted messages to the System.out stream.

In addition, applications and other code can write to these streams using the print() and println()

methods defined by the streams. Some Developer Kit built-ins such as the printStackTrace() method on

the Throwable class can also write to these streams. Typically, the System.out log is used to monitor the

health of the running application server. The System.out log can be used for problem determination, but it

is recommended to use the IBM Service log and the advanced capabilities of the Log Analyzer instead.

The System.err log contains exception stack trace information that is useful when performing problem

analysis.

122 IBM WebSphere Application Server-Network Deployment, Version 6: Troubleshooting and support

http://www.omg.org

Since each application server represents a JVM, there is one set of JVM logs for each application server

and all of its applications, located by default in the

installation_root/profiles/profile_name/logs/server_name directory. In the case of a WebSphere

Application Server Network Deployment configuration, JVM logs are also created for the deployment

manager and each node manager, since they also represent JVMs.

The process logs are created by redirecting the stdout and stderr streams of the process to independent

log files. Native code, including the Java virtual machine (JVM) itself writes to these files. As a general

rule, WebSphere Application Server does not write to these files. However, these logs can contain

information relating to problems in native code or diagnostic information written by the JVM.

As with JVM logs, there is a set of process logs for each application server, since each JVM is an

operating system process, and in the case of a WebSphere Application Server Network Deployment

configuration, a set of process logs for the deployment manager and each node manager.

The IBM service log contains both the WebSphere Application Server messages that are written to the

System.out stream and some special messages that contain extended service information that is normally

not of interest, but can be important when analyzing problems. There is one service log for all WebSphere

Application Server JVMs on a node, including all application servers. The IBM Service log is maintained in

a binary format and requires a special tool to view. This viewer, the Log Analyzer, provides additional

diagnostic capabilities. In addition, the binary format provides capabilities that are utilized by IBM support

organizations.

In addition to these general purpose logs, WebSphere Application Server contains other specialized logs

that are specific to a particular component or activity. For example, the HTTP server plug-in maintains a

special log. Normally, these logs are not of interest, but you might be instructed to examine one or more of

these logs while performing specific problem determination procedures. For details on how and when to

view the plug-in log, see HTTP server and Application Server are working separately, but requests are not

passing from HTTP server to Application Server.

Viewing the JVM logs

The JVM logs are written as plain text files. Therefore there are no special requirements to view these

logs. They are located in the installation_directory/profiles/profile_name/logs/server_name

directory, and by default are named SystemOut.log and SystemErr.log.

There are two techniques that you can use to view the JVM logs for an application server:

v Use the adminstrative console. This supports viewing the JVM logs from a remote machine.

v Use a text editor on the machine where the logs are stored.

1. View the JVM logs from the administrative console.

a. Start the administrative console.

b. Click Troubleshooting > Logs and Trace in the console navigation tree. To view the logs for a

particular server, click on the server name to select it, then click JVM Logs.

c. Select the runtime tab.

d. Click View corresponding to the log you want to view.

2. View the JVM logs from the machine where they are stored.

a. Go to the machine where the logs are stored.

b. Open the file in a text editor or drag and drop the file into an editing and viewing program.

Interpreting the JVM logs

The JVM logs contain print data written by applications. The application can write this data written directly

in the form of System.out.print(), System.err.print(), or other method calls. The application can also

Chapter 5. Diagnosing problems (using diagnosis tools) 123

write data indirectly by calling a JVM function, such as an Exception.printStackTrace(). In addition, the

System.out JVM log contains system messages written by the WebSphere Application Server.

You can format application data to look like WebSphere Application Server system messages by using the

Installed Application Output field of the JVM Logs properties panel, or as plain text with no additional

formatting . WebSphere Application Server system messages are always formatted.

Depending on how the JVM log is configured, formatted messages can be written to the JVM logs in either

basic or advanced format.

Message formats

Formatted messages are written to the JVM logs in one of two formats:

Basic Format

The format used in earlier versions of WebSphere Application Server.

Advanced Format

Extends the basic format by adding information about an event, when possible.

Basic and advanced format fields

Basic and Advanced Formats use many of the same fields and formatting techniques. The various fields

that may be found in these formats follow:

TimeStamp

The timestamp is formatted using the locale of the process where it is formatted. It includes a fully

qualified date (for example YYMMDD) , 24 hour time with millisecond precision and a time zone.

ThreadId

An 8 character hexadecimal value generated from the hash code of the thread that issued the

message.

ThreadName

The name of the Java thread that issued the message or trace event.

ShortName

The abbreviated name of the logging component that issued the message or trace event. This is

typically the class name for WebSphere Application Server internal components, but can be some

other identifier for user applications.

LongName

The full name of the logging component that issued the message or trace event. This is typically

the fully qualified class name for WebSphere Application Server internal components, but can be

some other identifier for user applications.

EventType

A one character field that indicates the type of the message or trace event. Message types are in

upper case. Possible values include:

F A Fatal message.

E An Error message.

W A Warning message.

A An Audit message.

I An Informational message.

C An Configuration message.

D A Detail message.

O A message that was written directly to System.out by the user application or internal

components.

R A message that was written directly to System.err by the user application or internal

components.

Z A placeholder to indicate the type was not recognized.
ClassName

The class that issued the message or trace event.

124 IBM WebSphere Application Server-Network Deployment, Version 6: Troubleshooting and support

MethodName

The method that issued the message or trace event.

Organization

The organization that owns the application that issued the message or trace event.

Product

The product that issued the message or trace event.

Component

The component within the product that issued the message or trace event.

Basic format

Message events displayed in basic format use the following format. The notation <name> indicates

mandatory fields that will always appear in the basic format message. The notation [name] indicates

optional or conditional fields that will be included if they can be determined.

<timestamp><threadId><shortName><eventType>[className][methodName]<message>

Advanced format

Message events displayed in advanced format use the following format. The notation <name> is used to

indicate mandatory fields that will always appear in the advanced format for message entries. The notation

[name] is used to indicate optional or conditional fields that will be included if they can be determined.

<timestamp><threadId><eventType><UOW><source=longName>[className]

[methodName]<Organization><Product><Component>[thread=threadName]

<message>

Configuring the JVM logs

Use the administrative console to configure the JVM logs for an application server. Configuration changes

for the JVM logs that are made to a running application server are not applied until the next restart of the

application server.

1. Start the administrative console

2. Click Troubleshooting > Logging and Tracing, then click server > JVM Logs.

3. Select the Configuration tab.

4. Scroll through the panel to display the attributes for the stream to configure.

5. Change the appropriate configuration attributes and click Apply.

6. Save your configuration changes.

Java virtual machine (JVM) log settings

Use this page to view and modify the settings for the Java virtual machine (JVM) System.out and

System.err logs.

To view this administrative console page, click Troubleshooting > Logs and Trace >server name > JVM

Logs.

View and modify the settings for the Java Virtual Machine (JVM) System.out and System.err logs for this

managed process. The JVM logs are created by redirecting the System.out and System.err streams of the

JVM to independent log files. The System.out log is used to monitor the health of the running application

server. The System.err log contains exception stack trace information that is useful when performing

problem analysis. There is one set of JVM logs for each application server and all of its applications. JVM

logs are also created for the deployment manager and each node manager. Changes on the Configuration

panel will apply when the server is restarted. Changes on the Runtime panel will apply immediately.

File Name:

Chapter 5. Diagnosing problems (using diagnosis tools) 125

Specifies the name of one of the log file described on this page.

 The first file name field specifies the name of the System.out log. The second file name field specifies the

name of the System.err file.

Press the View button on the Runtime tab to view the contents of a selected log file.

The file name specified for the System.out log or the System.err log must have one of the following

values:

filename

The name of a file in the file system. It is recommended that you use a fully qualified file name. If

the file name is not fully qualified, it is considered to be relative to the current working directory for

the server. Each stream must be configured with a dedicated file. For example, you cannot redirect

both System.out and System.err to the same physical file.

 If the directory containing the file already exists, the user ID under which the server is running

requires read/write access to the directory. If the directory does not exist, it will be created with the

proper permissions. The user id under which the server is running must have authority to create

the directory.

console

This is a special file name used to redirect the stream to the corresponding process stream. If this

value is specified for System.out, the file is redirected to stdout. If this value is specified for

System.err, the file is redirected to stderr.

none Discards all data written to the stream. Specifying none is equivalent to redirecting the stream to

dev/null on a UNIX system.

The default path for filename is the value of the variable SERVER_LOG_ROOT. To see the value of the

SERVER_LOG_ROOT variable:

1. On the administrative console, select Environment > WebSphere Variables

2. Click on the Server radio button, and then click Apply. The value of the SERVER_LOG_ROOT

variable appears in the resulting list.

To change the value of SERVER_LOG_ROOT:

1. Select SERVER_LOG_ROOT

2. Enter a new path in the Value field

3. Click Apply

4. Save the configuration. You will have to restart the server for the change to take effect.

You can also change the location and name of the ${SERVER_LOG_ROOT}/SystemOut.log and

${SERVER_LOG_ROOT}/SystemErr.log files to any other absolute path and filename (for example,

/tmp/myLogfile.log).

File formatting:

Specifies the format to use in saving the System.out file.

Log file rotation: Use this set of configuration attributes to configure the System.out or System.err log

file to be self-managing.

A self-managing log file writes messages to a file until reaching either the time or size criterion. At the

specified time or when the file reaches the specified size, logging temporarily suspends while the log file

rolls over, which involves closing and renaming the saved file. The new saved file name is based on the

original name of the file plus a timestamp qualifier that indicates when the renaming occurs. Once the

126 IBM WebSphere Application Server-Network Deployment, Version 6: Troubleshooting and support

renaming completes, a new, empty log file with the original name reopens and logging resumes. All

messages remain after the log file rollover, although a single message can split across the saved and the

current file.

You can only configure a log to be self-managing if the corresponding stream is redirected to a file.

File Size

Click this attribute for the log file to manage itself based on its file size. Automatic roll over occurs

when the file reaches the specified size you specify in the maximum size field.

Maximum Size

Specify the maximum size of the file in megabytes. When the file reaches this size, it rolls over.

 This attribute is only valid if you click File size.

Time Click this attribute for the log file to manage itself based on the time of day. At the time specified in

the start time field, the file rolls over.

Start Time

Specify the hour of the day, from 1 to 24, when the periodic rollover algorithm starts for the first

time after an Application Server restart. The algorithm loads at Application Server startup. Once

started at the (start time field) hour, the rollover algorithm rolls the file every (repeat time field)

hours. This rollover pattern continues without adjustment until the Application Server stops.

Note: The rollover always occurs at the beginning of the specified hour of the day. The first hour

of the day, which starts at 00:00:00 (midnight), is hour 1 and the last hour of the day, which

starts at 23:00:00, is hour 24. Therefore, if you want log files to roll over at midnight, set the

start time to 1.
Repeat Time

Specify the number of hours, from 1 to 24, when a periodic rollover occurs.

Repeat time

Specifies the number of hours after which the log file rolls over. Valid values range from 1 to 24.

Configure a log file to roll over by time, by size, or by time and size. Click File Size and Time to roll the

file at the first matching criterion. For example, if the repeat time field is 5 hours and the maximum file size

is 2 MB, the file rolls every 5 hours, unless it reaches 2 MB before the interval elapses. After the size

rollover, the file continues to roll at each interval.

Maximum Number of Historical Log Files: Specifies the number of historical (rolled) files to keep. The

stream writes to the current file until it rolls. At rollover, the current file closes and is saved as a new name

consisting of the current name plus the rollover timestamp. The stream then reopens a new file with the

original name to continue writing. The number of historical files grows from zero to the value of the

maximum number of historical files field. The next rollover deletes the oldest historical file.

Installed Application Output: Specifies whether System.out or System.err print statements issued from

application code are logged and formatted.

Show application print statements

Click this field to show messages that applications write to the stream using print and println

stream methods. WebSphere Application Server system messages always appear.

Format print statements

Click this field to format application print statement like WebSphere Application Server system

messages.

Process logs

WebSphere Application Server processes contain two output streams that are accessible to native code

running in the process. These streams are the stdout and stderr streams. Native code, including the JVM,

may write data to these process streams. In addition, the JVM provided System.out and System.err

streams can be configured to write their data to these streams also.

Chapter 5. Diagnosing problems (using diagnosis tools) 127

By default, the stdout and stderr streams are redirected to log files at application server startup, which

contain text written to the stdout and stderr streams by native modules (.dlls, .exes, UNIX libraries,

and other modules). By default, these files are stored as

installation_root/logs/applicationServerName/native_stderr.log and native_stdout.log.

Viewing the service log

The service log is a special log written in a binary format. You cannot view the log directly using a text

editor. You should never directly edit the service log, as doing so will corrupt the log. To move the service

log from one machine to another, you must use a mechanism like FTP, which supports binary file transfer.

You can view the service log in two ways:

v It is recommended that you use the Log Analyzer tool to view the service log. This tool provides

interactive viewing and analysis capability that is helpful in identifying problems.

v If you are unable to use the Log Analyzer tool, you can use the Showlog tool to convert the contents of

the service log to a text format that you can then write to a file or dump to the command shell window.

The steps for using the Showlog tool are described in “Showlog Script.”

Showlog Script

The service log is a special log written in a binary format. You cannot view the log directly using a text

editor. You should never directly edit the service log, as doing so will corrupt the log. To move the service

log from one machine to another, you must use a mechanism like FTP, which supports binary file transfer.

You can view the service log by using the Showlog script to convert the contents of the service log to a

text format that you can then write to a file or dump to the command shell window.

To run the showlog script:

1. Open a shell window on the machine where the service log resides.

2. Change the directory to install_directory/bin where install_directory is the fully qualified path where the

WebSphere Application Server product is installed.

3. Run the showlog script:

On Windows systems, the script is named showlog.bat.

Displaying user instructions

Run the showlog script with no parameters to display usage instructions. On Windows systems, the script

is named

showlog.bat

Displaying the service log contents to the shell window

Use the invocation

 showlog service_log_filename

If the service log is not in the default location, you must fully qualify the service_log_filename

Format and write the service log contents to a file

Use the invocation

 showlog service_log_filename output_filename

If the service log is not in the default location, you must fully qualify the service_log_filename

128 IBM WebSphere Application Server-Network Deployment, Version 6: Troubleshooting and support

Using the showlog command to view Common Base Events

The showlog command converts the system activity.log file from binary format into plain text. Use the

following showlog commands to produce output in Common Base Event XML format.

1. On a Windows platform: showlog -format=CBE-XML-1.0.1 filename

2. On a UNIX platform: showlog.sh -format=CBE-XML-1.0.1 filename

Configuring the service log

By default, the service log is shared among all server processes for a node. The configuration values for

the service log are inherited by each server process from the node configuration. You can configure a

separate service log for each server process by overriding the configuration values at the server level.

1. Start the administrative console.

2. Click Troubleshooting > Logs and Trace > server_name > IBM Service Logs.

3. Select the Enable box to enable the service log, clear the check box to disable the log.

4. Set the name for the service log. The default name is install_directory/logs/activity.log. If the

name is changed, the run time requires write access to the new file, and the file must use the .log

extension.

5. Set the maximum file size. Specifies the number of megabytes to which the file can grow. When the

file reaches this size, it wraps, replacing the oldest data with the newest data.

6. Set the message filter level to the desired state.

7. Save the configuration.

8. Restart the server to apply the configuration changes.

IBM service log settings

To view this administrative console page, click Troubleshooting > Logs and Trace > server name > IBM

Service Logs.

Use this panel to configure the IBM service log, also known as the activity log. The IBM service log

contains both the WebSphere Application Server messages that are written to the System.out stream and

some special messages that contain extended service information that can be important when analyzing

problems. There is one service log for all WebSphere Application Server Java virtual machines (JVMs) on

a node, including all application servers. and their node agent (if present). A separate activity log is created

for a deployment manager in its own logs directory. The IBM Service log is maintained in a binary format.

Use the Log Analyzer or Showlog tool to view the IBM service log.

Enable service log:

Specifies creation of a log file by the IBM Service log.

File Name:

Specifies the name of the file used by the IBM Service log.

Maximum File Size:

Specifies the maximum size in megabytes of the service log file. The default value is 2 megabytes.

 When this size is reached, the service log wraps in place. Note that the service log does not roll over to a

new log file like the JVM logs.

Message Filtering:

This setting has no effect. Log level details can now be used to control both message and trace filtering.

Chapter 5. Diagnosing problems (using diagnosis tools) 129

Enable Correlation ID:

Specifies the generation of a correlation ID that is logged with each message.

 You can use the correlation ID to correlate activity to a particular client request, or correlate activities on

multiple application servers.

Detecting hung threads in J2EE applications

A common error in J2EE applications is a hung thread. A hung thread can result from a simple software

defect (such as an infinite loop) or a more complex cause (for example, a resource deadlock). System

resources, such as CPU time, might be consumed by this hung transaction when threads run unbounded

code paths, such as when the code is running in an infinite loop. Alternately, a system can become

unresponsive even though all resources are idle, as in a deadlock scenario. Unless an end user or a

monitoring tool reports the problem, the system may remain in this degraded state indefinitely.

The hang detection option for WebSphere Application Server is turned on by default. You can configure a

hang detection policy to accommodate your applications and environment so that potential hangs can be

reported, providing earlier detection of failing servers. When a hung thread is detected, WebSphere

Application Server notifies you so that you can troubleshoot the problem.

Using the hang detection policy, you can specify a time that is too long for a unit of work to complete. The

thread monitor checks all managed threads in the system (for example, Web container threads and object

request broker (ORB) threads) . Unmanaged threads, which are threads created by applications, are not

monitored.

When WebSphere Application Server detects that a thread has been active longer than the time defined

by the thread monitor threshold, the application server takes the following actions:

v Logs a warning in the WebSphere Application Server System.Out log file that indicates the name of the

thread that is hung and how long it has already been active. The following message is written to the log:

WSVR0605W: Thread threadname has been active for hangtime and may be hung. There are totalthreads

threads in total in the server that may be hung.

where: threadname is the name that appears in a JVM thread dump, hangtime gives an approximation

of how long the thread has been active and totalthreads gives an overall assessment of the system

threads.

v Issues a Java Management Extensions (JMX) notification. This notification enables third-party tools to

catch the event and take appropriate action, such as triggering a JVM thread dump of the server, or

issuing an electronic page or e-mail. The following JMX notification events are defined in the

com.ibm.websphere.management.NotificationConstants class:

– TYPE_THREAD_MONITOR_THREAD_HUNG This event is triggered by the detection of a

(potentially) hung thread.

– TYPE_THREAD_MONITOR_THREAD_CLEAR This event is triggered if a thread that was previously

reported as hung completes its work. See “Detecting hung threads in J2EE applications.”

v Triggers changes in the performance monitoring infrastructure (PMI) data counters. These PMI data

counters are used by various tools, such as the Tivoli Performance Viewer, to provide a performance

analysis.

False Alarms

If the work actually completes, a second set of messages, notifications and PMI events is produced to

identify the false alarm. The following message is written to the System.out log:

130 IBM WebSphere Application Server-Network Deployment, Version 6: Troubleshooting and support

WSVR0606W: Thread threadname was previously

reported to be hung but has completed. It was active for approximately

hangtime. There are totalthreads threads

in total in the server that still may be hung.

where threadname is the name that appears in a JVM thread dump,

hangtime gives an approximation of how long the thread has been active and

totalthreads gives an overall assessment of the system threads.

Automatic adjustment of the hang time threshold

If the thread monitor determines that too many false alarms are issued (determined by the number of pairs

of hang and clear messages), it can automatically adjust the threshold. When this adjustment occurs, the

following message is written to the System.out log:

WSVR0607W: Too many thread hangs have been falsely reported. The hang threshold is now being set to thresholdtime.

where: thresholdtime is the time (in seconds) in which a thread can be active before it is considered hung.

You can prevent WebSphere Application Server from automatically adjusting the hang time threshold. See

“Configuring the hang detection policy”

Adjusting the hang detection policy of a running server

You can adjust the thread monitor settings by using the wsadmin scripting interface. These changes take

effect immediately, but do not persist to the server configuration, and are lost when the server is restarted.

The following script provides an example of how to adjust the properties for the thread monitor using the

wsadmin tool:

Read in the interval, threshold, false alarm from the command line

set interval [lindex $argv 0]

set threshold [lindex $argv 1]

set adjustment [lindex $argv 2]

Get the object name of the server you want to change the values on

set server [$AdminControl completeObjectName "type=Server,*"]

Read in the interval and print to the console

set i [$AdminControl getAttribute $server threadMonitorInterval]

Read in the threshold and print to the console

set t [$AdminControl getAttribute $server threadMonitorThreshold]

Read in the false alarm adjustment threshold and print to the console

set a [$AdminControl getAttribute $server threadMonitorAdjustmentThreshold]

Set the new values using the command line parameters

$AdminControl setAttribute $server threadMonitorInterval ${interval}

$AdminControl setAttribute $server threadMonitorThreshold ${threshold}

$AdminControl setAttribute $server threadMonitorAdjustmentThreshold ${threshold}

Configuring the hang detection policy

The thread hang detection option is enabled by default. To adjust the hang detection policy values, or to

disable hang detection completely:

1. From the administrative console, click Servers > Application Servers > server_name

2. Under Server Infrastructure, click Administration > Custom Properties

Chapter 5. Diagnosing problems (using diagnosis tools) 131

3. Click New.

4. Add the following properties:

Name: com.ibm.websphere.threadmonitor.interval

Value: The frequency (in seconds) at which managed threads in the selected

 application server will be interrogated.

Default: 180 seconds (three minutes).

Name: com.ibm.websphere.threadmonitor.threshold

Value: The length of time (in seconds) in which a thread can be active

 before it is considered hung. Any thread that is detected as

 active for longer than this length of time is reported as hung.

Default: The default value is 600 seconds (ten minutes).

Name:com.ibm.websphere.threadmonitor.false.alarm.threshold

Value: The number of times (T) that false alarms can occur

 before automatically increasing the threshold. It is possible that a

 thread that is reported as hung eventually completes its work,

 resulting in a false alarm. A large number of these events indicates

 that the threshhold value is too small. The hang detection facility can

 automatically respond to this situation: For every T false alarms, the

 threshold T is increased by a factor of 1.5. Set the value to

 zero (or less) to disable the automatic adjustment. (Link to

 Detecting hung threads in J2EE applications for information on false alarms)

Default: 100

To disable the hang detection option, set the com.ibm.websphere.threadmonitor.interval property to

less than or equal to zero.

5. Click Apply.

6. Click OK.

7. Save the changes and make sure a file synchronization is performed before restarting the servers.

8. Restart the Application Server for the changes to take effect.

Working with trace

Use trace to obtain detailed information about the execution of WebSphere Application Server

components, including application servers, clients, and other processes in the environment. Trace files

show the time and sequence of methods called by WebSphere Application Server base classes, and you

can use these files to pinpoint the failure.

Collecting a trace is often requested by IBM technical support personnel. If you are not familiar with the

internal structure of WebSphere Application Server, the trace output might not be meaningful to you.

1. Configure an output destination to which trace data is sent.

2. Enable trace for the appropriate WebSphere Application Server or application components.

3. Run the application or operation to generate the trace data.

4. Analyze the trace data or forward it to the appropriate organization for analysis.

Enabling tracing and logging

You can configure the application server to start in a trace-enabled state by setting the appropriate

configuration properties. You can only enable trace for an application client or standalone process at

process startup.

In WebSphere Application Server version 6, a new logging infrastructure, extending Java Logging, is used.

This results in the following changes to the configuration of the logging infrastructure in WebSphere

Application Server:

132 IBM WebSphere Application Server-Network Deployment, Version 6: Troubleshooting and support

v Loggers defined in Java logging are equivalent to, and configured in the same way as, trace

components introduced in previous versions of WebSphere Application Servers. Both are referred to as

″components″.

v Both Java logging levels and WebSphere Application Server levels can be used. The following is a

complete list of valid levels, ordered in ascending order of severity:

 1. all

 2. finest or debug

 3. finer or entryExit

 4. fine or event

 5. detail

 6. config

 7. info

 8. audit

 9. warning

10. severe or error

11. fatal

12. off

v Setting the logging and tracing level for a component to all will enable all the logging for that

component. Setting the logging and tracing level for a component to off will disable all the logging for

that component.

v You can only configure a component to one level. However, configuring a component to a certain level

enables it to perform logging on the configured level and any higher severity level.

v Several levels have equivalent names: finest is equivalent to debug; finer is equivalent to entryExit; fine

is equivalent to event; severe is equivalent to error.

Java Logging does not distinguish between tracing and message logging. However, previous versions of

WebSphere Application Server have made a clear distinction between those kind of messages. In

WebSphere Application Server version 6, the differences between tracing and message logging are as

follows:

v Tracing messages are messages with lower severity (for example, tracing messages are logged on

levels fine, finer, finest, debug, entryExit, or event).

v Tracing messages are generally not localized.

v When tracing is enabled, a much higher volume of messages will be produced.

v Tracing messages provide information for problem determination.

Trace and logging strings

In WebSphere Application Server version 5.1.1 and earlier, trace strings were used for configuring tracing

only. In WebSphere Application Server version 6.0, the ″trace string″ becomes a ″logging string″; it is used

to configure both tracing and message logging.

In WebSphere Application Server version 5.1.1 and earlier, the trace service for all WebSphere Application

Server components is disabled by default. To request a change to the current state of the trace service, a

trace string is passed to the trace service. This trace string encodes the information detailing which level of

trace to enable or disable and for which components.

In WebSphere Application Server, the tracing for all components is disabled by default. To change to the

current state of the tracing and message logging, a logging string must be constructed and passed to the

server. This logging string specifies what level of trace or logging to enable or disable for specific

components.

Chapter 5. Diagnosing problems (using diagnosis tools) 133

You can type in trace strings (or logging strings), or construct them using the administrative console. Trace

and logging strings must conform to a specific grammar.

For WebSphere Application Server version 5.1.1 and earlier, the specification of this grammar is as

follows:

TRACESTRING=COMPONENT_TRACE_STRING[:COMPONENT_TRACE_STRING]*

 COMPONENT_TRACE_STRING=COMPONENT_NAME=LEVEL=STATE[,LEVEL=STATE]*

LEVEL = all | entryExit | debug | event

STATE = enabled | disabled

COMPONENT_NAME = COMPONENT | GROUP

For WebSphere Application Server version 6.0, the previous grammar is supported. However a new

grammar has been added to better represent the underlying infrastructure:

LOGGINGSTRING=COMPONENT_LOGGING_STRING[:COMPONENT_LOGGING_STRING]*

 COMPONENT_TRACE_STRING=COMPONENT_NAME=LEVEL

LEVEL = all | (finest | debug) | (finer | entryExit) | (fine | event)

| detail | config | info | audit | warning | (severe | error) | fatal | off

COMPONENT_NAME = COMPONENT | GROUP

The COMPONENT_NAME is the name of a component or group registered with the trace service logging

infrastructure. Typically, WebSphere Application Server components register using a fully qualified Java

class name, for example com.ibm.servlet.engine.ServletEngine. In addition, you can use a wildcard

character of asterisk (*) to terminate a component name and indicate multiple classes or packages. For

example, use a component name of com.ibm.servlet.* to specify all components whose names begin with

com.ibm.servlet. You can use a wildcard character of asterisk (*) at the end of the component or group

name to make the logging string applicable to all components or groups whose names start with specified

string. For example, a logging string specifying ″com.ibm.servlet.*″ as a component name will be applied

to all components whose names begin with com.ibm.servlet. When ″*″ is used by itself in place of the

component name, the level the string specifies, will be applied to all components.

Note:

v In WebSphere Application Server version 5.1.1 and earlier, you could set the level to

″all=disabled″ to disable tracing. This syntax in version 6 will result in LEVEL=info; tracing will be

disabled, but logging will be enabled.

v The logging string is processed from left to right. During the processing, part of the logging string

might be modified or removed if the levels they configure are being overridden by another part of

the logging string.

v In WebSphere Application Server version 6, ″info″ is the default level. If the specified component

is not present (*=xxx is not found), *=info is always implied. Any component that is not matched

by the trace string will have its level set to info.

v If the logging string does not start with a component logging string specifying a level for all

components, using the ″*″ in place of component name, one will be added, setting the default

level for all components.

v STATE = enabled | disabled is not needed in version 6. However, if used, it has the following

effect:

– ″enabled″ sets the logging for the component specified to the level specified

– ″disabled″ sets the logging for the component specified to one level above the level specified.

The following examples illustrate the effect that disabling has on the logging level:

134 IBM WebSphere Application Server-Network Deployment, Version 6: Troubleshooting and support

Logging string Resulting logging level Notes

com.ibm.ejs.ras=debug=disabled com.ibm.ejs.ras=finer debug (version 5) = finest (version

6)

com.ibm.ejs.ras=all=disabled com.ibm.ejs.ras=info ″all=disabled″ will disable tracing;

logging is still enabled.

com.ibm.ejs.ras=fatal=disabled com.ibm.ejs.ras=off

com.ibm.ejs.ras=off=disabled com.ibm.ejs.ras=off off is the highest severity

Examples of legal trace strings include:

 Version 5 syntax Version 6 syntax

com.ibm.ejs.ras.ManagerAdmin=

debug=enabled

com.ibm.ejs.ras.ManagerAdmin=

finest

com.ibm.ejs.ras.ManagerAdmin=

all=enabled,event=disabled

com.ibm.ejs.ras.ManagerAdmin=

detail

com.ibm.ejs.ras.*=all=enabled com.ibm.ejs.ras.*=all

com.ibm.ejs.ras.*=all=

enabled:com.ibm.ws.ras=debug=

enabled,entryexit=enabled

com.ibm.ejs.ras.*=all:com.ibm.ws.

ras=finer

Enabling trace at server startup

The diagnostic trace configuration settings for a server process determines the initial trace state for a

server process. The configuration settings are read at server startup and used to configure the trace

service. You can also change many of the trace service properties or settings while the server process is

running.

 1. Start the administrative console.

 2. Click Troubleshooting > Logging and Tracing in the console navigation tree, then click Server >

Diagnostic Trace.

 3. Click Configuration.

 4. Select the Enable Trace check box to enable trace, clear the check box to disable trace.

 5. Select whether to direct trace output to either a file or an in-memory circular buffer.

 6. If the in-memory circular buffer is selected for the trace output set the size of the buffer, specified in

thousands of entries. This is the maximum number of entries that will be retained in the buffer at any

given time.

 7. If a file is selected for trace output, set the maximum size in megabytes to which the file should be

allowed to grow. When the file reaches this size, the existing file will be closed, renamed, and a new

file with the original name reopened. The new name of the file will be based upon the original name

with a timestamp qualifier added to the name. In addition, specify the number of history files to keep.

 8. Select the desired format for the generated trace.

 9. Save the changed configuration.

10. To enter a trace string to set the trace specification to the desired state:

a. Click Troubleshooting > Logging and Tracing in the console navigation tree.

b. Select a server name.

c. Click Change Log Level Details.

d. If All Components has been enabled, you might want to turn it off, and then enable specific

components.

e. Click a component or group name. For more information see “Log level settings” on page 68 If the

selected server is not running, you will not be able to see individual component in graphic mode.

Chapter 5. Diagnosing problems (using diagnosis tools) 135

f. Enter a trace string in the trace string box.

g. Select Apply, then OK.

11. Allow enough time for the nodes to synchronize, and then start the server.

Enabling trace on a running server

You can modify the trace service state that determines which components are being actively traced for a

running server by using the following procedure.

1. Start the administrative console.

2. Click Troubleshooting > Logging and Tracing in the console navigation tree, then click server >

Diagnostic Trace.

3. Select the Runtime tab.

4. Select the Save Trace check box if you want to write your changes back to the server configuration.

5. Change the existing trace state by changing the trace specification to the desired state.

6. Configure the trace output if a change from the existing one is desired.

7. Click Apply.

Enabling trace on client and standalone applications

When standalone client applications (such as Java applications which access EJBs hosted in WebSphere

Application Server) have problems interacting with WebSphere Application Server, it may be useful to

enable tracing for the application. Enabling trace for client programs will cause the WebSphere Application

Server classes used by those applications, such as naming-service client classes, to generate trace

information. A common troubleshooting technique is to enable tracing on both the application server and

client applications, and match records according to timestamp to try to understand where a problem is

occurring.

1. To enable trace for the WebSphere Application Server classes in a client application, add the

DtraceSettingsFile=filename system property to the startup script or command of the client

application. The location of the output and the classes and detail included in the trace follow the same

rules as for adding trace to WebSphere Application Servers. For example, trace the standalone client

application program named com.ibm.sample.MyClientProgram, you would enter the following command:

java -DtraceSettingsFile=MyTraceSettings.properties com.ibm.samples.MyClientProgram

The file identified by filename must be a properties file placed in the classpath of the application client

or stand-alone process. An example file is provided in

install_root/properties/TraceSettings.properties.

You cannot use the -DtraceSettingsFile=TraceSettings.properties property to enable tracing of the

ORB component for thin clients. ORB tracing output for thin clients can be directed by setting

com.ibm.CORBA.Debug.Output = debugOutputFilename parameter in the command line.

2. You can configure the MyTraceSettings.properties file to send trace output to a file using the

traceFileName property. Specify one of two options:

v The fully qualified name of an output file. For example, traceFileName=c:\\MyTraceFile.log. You

must specify this property to generate visible output.

v stdout. When specified, output is written to System.out.

3. You can also specify a trace string for writing messages with the Trace String property, Specify a

startup trace specification similar to that available on the server. For your convenience, you can enter

multiple individual trace strings into the trace settings file, one trace string per line.

Here are the results of using each optional property setting:

v Specify a valid setting for the traceFileName property without a trace string to write messages to the

specified file or System.out only.

v Specify a trace string without a traceFileName property value to generate no output.

136 IBM WebSphere Application Server-Network Deployment, Version 6: Troubleshooting and support

v Specify both a valid traceFileName property and a trace string to write both message and trace entries

to the location specified in the traceFileName property.

Managing the application server trace service

You can manage the trace service for a server process while the server is stopped and while it is running.

You can specify which components to trace, where to send trace output, the characteristics of the trace

output device, and which format to generate trace output in.

1. Start the administrative console.

2. Click Troubleshooting > Logging and Tracing in the console navigation tree, then click server >

Diagnostic Trace

3. If the server is running, select the Runtime tab.

4. For a running server, check the Save trace check box to write your changes back to the server

configuration. If Save trace is not selected, the changes you make will apply only for the life of the

server process that is currently running.

5. Perform the desired operation:

a. Enter the file name and click Dump to dump the in-memory circular buffer.

b. To change the trace destination from a file to the in-memory circular buffer or to a different file, or

to change from the in memory circular buffer to a file, select the appropriate radio buttons, then

click Apply.

c. To change the format in which trace output is generated, select the appropriate value from the

drop-down list.

Interpreting trace output

On an application server, trace output can be directed either to a file or to an in-memory circular buffer. If

trace output is directed to the in-memory circular buffer, it must be dumped to a file before it can be

viewed.

On an application client or stand-alone process, trace output can be directed either to a file or to the

process console window.

In all cases, trace output is generated as plain text in either basic, advanced or log analyzer format as

specified by the user. The basic and advanced formats for trace output are similar to the basic and

advanced formats that are available for the JVM message logs.

Basic and advanced format fields

Basic and Advanced Formats use many of the same fields and formatting techniques. The fields that can

be used in these formats include:

TimeStamp

The timestamp is formatted using the locale of the process where it is formatted. It includes a fully

qualified date (YYMMDD), 24 hour time with millisecond precision and the time zone.

ThreadId

An 8 character hexadecimal value generated from the hash code of the thread that issued the

trace event.

ThreadName

The name of the Java thread that issued the message or trace event.

ShortName

The abbreviated name of the logging component that issued the trace event. This is typically the

class name for WebSphere Application Server internal components, but may be some other

identifier for user applications.

Chapter 5. Diagnosing problems (using diagnosis tools) 137

LongName

The full name of the logging component that issued the trace event. This is typically the fully

qualified class name for WebSphere Application Server internal components, but may be some

other identifier for user applications.

EventType

A one character field that indicates the type of the trace event. Trace types are in lower case.

Possible values include:

> a trace entry of type method entry.

< a trace entry of type method exit.

1 a trace entry of type fine or event.

2 a trace entry of type finer.

3 a trace entry of type finest, debug or dump.

Z a placeholder to indicate that the trace type was not recognized.
ClassName

The class that issued the message or trace event.

MethodName

The method that issued the message or trace event.

Organization

The organization that owns the application that issued the message or trace event.

Product

The product that issued the message or trace event.

Component

The component within the product that issued the message or trace event.

Basic format

Trace events displayed in basic format use the following format:

<timestamp><threadId><shortName><eventType>[className][methodName]<textmessage>

 [parameter 1]

 [parameter 2]

Advanced formats

Trace events displayed in advanced format use the following format:

<timestamp><threadId><eventType><UOW><source=longName>[className][methodName]

<Organization><Product><Component>[thread=threadName]

<textMessage>[parameter 1=parameterValue][parameter 2=parameterValue]

Log analyzer

Specifying the log analyzer format allows you to open trace output using the Log Analyzer. This is useful if

you are trying to correlate traces from two different server processes, because it allows you to use the

merge capability of the Log Analyzer).

Diagnostic trace service settings

To view this page, click Troubleshooting > Logs and Trace > server > Diagnostic trace.

Enable Log

Enables the log service.

If this option is not selected, the following configuration properties are not passed to the application server

trace service at server startup.

Trace Output

Specifies where trace output should be written.

138 IBM WebSphere Application Server-Network Deployment, Version 6: Troubleshooting and support

The trace output can be written directly to an output file, or stored in memory and written to a file on

demand using the Dump button found on the run-time page.

Memory Buffer

Specifies that the trace output should be written to an in-memory circular buffer. If you select this

option you must specify the following parameters:

Maximum Buffer Size

Specifies the number of entries, in thousands, that can be cached in the buffer. When this

number is exceeded, older entries are overwritten by new entries.

Dump File Name

The name of the file to which the memory buffer will be written when it is dumped. This

option is only available from the Runtime tab.
File Specifies to write the trace output to a self-managing log file.

 The self-managing log file writes messages to the file until the specified maximum file size is

reached. When the file reaches the specified size, logging is temporarily suspended and the log

file is closed and renamed. The new name is based on the original name of the file, plus a

timestamp qualifier that indicates when the renaming occurred. Once the renaming is complete, a

new, empty log file with the original name is reopened, and logging resumes. No messages are

lost as a result of the rollover, although a single message may be split across the two files.

If you select this option you must specify the following parameters:

Maximum File Size

Specifies the maximum size, in megabytes, to which the output file is allowed to grow.

 This attribute is only valid if the File Size attribute is selected. When the file reaches this size, it is

rolled over as described above.

Maximum Number of Historical Files

Specifies the maximum number of rolled over files to keep.

File Name

Specifies the name of the file to which the trace output is written.

Trace Output Format

Specifies the format of the trace output.

You can specify one of three levels for trace output:

Basic (Compatible)

Preserves only basic trace information. Select this option to minimize the amount of space taken

up by the trace output.

Advanced

Preserves more specific trace information. Select this option to see detailed trace information for

use in troubleshooting and problem determination.

Log Analyzer

Preserves trace information in a format that is compatible with the Log Analyzer tool. Select this

option if you want to use the trace output as input to the Log Analyzer tool.

Runtime tab

Specifies the format of the trace output.

Save changes to configuration

Save changes made on the runtime tab to the trace configuration as well.

 Select this box to copy run-time trace changes to the trace configuration settings as well. Saving

these changes to the trace configuration will cause the changes to persist even if the application is

restarted.

Trace Output

Specifies where trace output should be written.

Chapter 5. Diagnosing problems (using diagnosis tools) 139

The trace output can be written directly to an output file, or stored in memory and written to a file on

demand using the Dump button found on the run-time page.

Memory Buffer

Specifies that the trace output should be written to an in-memory circular buffer. If you select this

option you must specify the following parameters:

Maximum Buffer Size

Specifies the number of entries, in thousands, that can be cached in the buffer. When this

number is exceeded, older entries are overwritten by new entries.

Dump File Name

The name of the file to which the memory buffer will be written when it is dumped. This

option is only available from the Runtime tab.
File Specifies to write the trace output to a self-managing log file.

 The self-managing log file writes messages to the file until the specified maximum file size is

reached. When the file reaches the specified size, logging is temporarily suspended and the log

file is closed and renamed. The new name is based on the original name of the file, plus a

timestamp qualifier that indicates when the renaming occurred. Once the renaming is complete, a

new, empty log file with the original name is reopened, and logging resumes. No messages are

lost as a result of the rollover, although a single message may be split across the two files.

If you select this option you must specify the following parameters:

Maximum File Size

Specifies the maximum size, in megabytes, to which the output file is allowed to grow.

 This attribute is only valid if the File Size attribute is selected. When the file reaches this size, it is

rolled over as described above.

Maximum Number of Historical Files

Specifies the maximum number of rolled over files to keep.

File Name

Specifies the name of the file to which the trace output is written.

Log and trace settings

Use this page to view and configure logging and trace settings for the server.

Application Servers

This page lists application servers in the cell and the nodes holding the application servers. If you are

using the Network Deployment product, this panel also shows the status of the application servers. The

status indicates whether a server is running, stopped, or encountering problems.

When you select an application server, a panel is displayed that will allow you to choose which log or trace

task to configure for that application server.

To view this administrative console page, click Troubleshooting > Logs and Trace server_name >

service_type.

Name

Specifies the logical name of the server. For WebSphere Application Server for z/OS, this is sometimes

called the long name.

Node

Specifies the name of the node for the application server.

Version

Specifies the version for the application server.

140 IBM WebSphere Application Server-Network Deployment, Version 6: Troubleshooting and support

Status

Indicates whether the application server is started or stopped. (Network Deployment only)

Note that if the status is Unavailable, the node agent is not running in that node and you must restart the

node agent before you can start the server.

Working with troubleshooting tools

WebSphere Application Server includes a number of troubleshooting tools that are designed to help you

isolate the source of problems. Many of these tools are designed to generate information to be used by

IBM Support, and their output might not be understandable by the customer.

This section only discusses tools that are bundled with the WebSphere Application Server product. A wide

range of tools which address a variety of problems is available from the WebSphere Application Server

Technical Support Web site.

1. Select the appropriate tool for the task. For more information on the capacities of the supplied

troubleshooting tools, see the relevant articles in this section.

2. Run the tool as described in the relevant article.

3. Contact IBM Support for assistance in deciphering the output of the tool. For current information

available from IBM Support on known problems and their resolution, see the IBM Support page. IBM

Support has documents that can save you time gathering information needed to resolve this problem.

Before opening a PMR, see the IBM Support page.

Gathering information with the Collector tool

The collector tool gathers information about your WebSphere Application Server installation and packages

it in a Java archive (JAR) file that you can send to IBM Customer Support to assist in determining and

analyzing your problem. Information in the JAR file includes logs, property files, configuration files,

operating system and Java data, and the presence and level of each software prerequisite.

There are two ways to run the collector tool. The collector tool can be executed to collect summary data or

to traverse the system to gather relevant files and command results. The collector tool produces a Java

archive (JAR) file of information needed to determine and solve a problem. The collector summary option

produces a lightweight collection of version and other information that is useful when first reporting the

problem to IBM Support.

There are two phases of using the collector tool. The first phase runs the collector tool on your

WebSphere Application Server product and produces a Java archive (JAR) file . The IBM Support team

performs the second phase, which is analyzing the Java archive (JAR) file that the collector program

produces.

The collector program runs to completion as it creates the JAR file, despite any errors that it might find.

Errors might include missing files or commands. The collector tool collects as much data in the JAR file as

possible.

Collector tool

The collector tool gathers extensive information about your WebSphere Application Server installation and

packages it in a Java archive (JAR) file that you can send to IBM Customer Support to assist in

determining and analyzing your problem. Information in the JAR file includes logs, property files,

configuration files, operating system and Java data, and the absence or level of each software

prerequisite.

The collector program runs to completion despite any errors that it might find. Errors might include missing

files or commands. The collector tool collects as much data in the JAR file as possible.

Chapter 5. Diagnosing problems (using diagnosis tools) 141

http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCMPD4
http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCMPD4&q=mustgather

See “Running the collector tool” for the steps for running the collector program.

You can also run the collector summary option to create a lightweight version of the information in a text

file and on the console. The lightweight information is useful for getting started in communicating your

problem to IBM Support.

Running the collector tool:

To run the collector tool:

1. Log on to the system as root (or Administrator in a Windows platform).

2. Verify that Java 1.2.2 or higher is available in the path. The collector program requires Java code to

run. It also collects data about the IBM Developer Kit, Java Technology Edition in which it runs. If there

are multiple Developer Kits on the system, verify that the one that the WebSphere Application Server

product uses is the one in the path for the collector program. If the Developer Kit being used by the

WebSphere Application Server is not available, putting another Developer Kit in the path for the

collector program lets you collect all data except information about the Developer Kit.

3. Verify that all necessary information is in the path being used by the collector program and that you

are not running the program from within the WebSphere Application Server product installation root

directory.

a. If this system is a Linux or UNIX-based platform, verify that the path contains:

v /bin

v /sbin

v /usr/bin

v /usr/sbin

b. If this system is a Windows platform, include regedit in the path.

4. Create a work directory where you can start the collector program.

5. Make the work directory the current directory. The collector program writes its output JAR file to the

current directory. The program also creates and deletes a number of temporary files in the current

directory. Creating a work directory to run the collector program avoids naming collisions and makes

cleanup easier. You cannot run the collector tool in a directory under the WebSphere Application

Server installation directory.

6. Run the collector program by entering the command: collector from the command line.

Using the collector command with no additional parameters gathers one copy of the node data and

data from each server in the node, and stores them in a single JAR output file. To gather data from a

specific server in the node, use the command collector.bat/sh -servername servername, where

servername is the name of the problem server.

Note:

Set the path correctly to use the non-qualified version of the command. For Linux and

UNIX-based platforms, install_root/bin must be in the path to locate the collector.sh

command. For Windows platforms, install_root\bin must be in the path to locate the

collector.bat command.

The WebSphere Application Server installation root directory is determined at installation. It is

identified in the setupCmdLine.sh file (or the setupCmdLine.bat file on a Windows platform).

You can enter a fully qualified path to the collector command. For example, enter this command

in a default installation on a Windows platform:

c:\WebSphere\AppServer\bin\collector.bat

The collector program creates a log file, Collector.log, and an output JAR file in the current directory.

142 IBM WebSphere Application Server-Network Deployment, Version 6: Troubleshooting and support

The name of the JAR file is based on the hostname and package of the Application Server product, in the

format: hostname-cellname-nodename-profile.

The Collector.log log file is one of the files collected in the hostname-cellname-nodename-profile file.

Send the hostname-cellname-nodename-profile file to IBM Support for analysis.

Analyzing collector tool output

The first step in using the collector tool on your WebSphere Application Server product is to run the tool to

produce a Java archive (JAR) file as output. The second step in using the collector tool is to analyze its

output. The preferred method of performing this analysis is to send the JAR file to IBM Support for

analysis. However, you can use this topic to understand the content of the JAR file if you perform your

own analysis.

You can view the files contained in the JAR file without extracting the files from the JAR file. However, it is

easier to extract all files and view the contents of each file individually. To extract the files, use one of the

following commands:

v jar -xvf WASenv.jar

v unzip WASenv.jar

Wasenv.jar stands for the name of the JAR file that the collector tool creates.

The JAR file contains:

v A collector tool log file, collector.log

v Copies of stored WebSphere Application Server files and their full paths

v Operating system information in a directory named OS

v Java information in a directory named Java

v WebSphere Application Server information in a directory named WAS

v Collector shell script (or batch file) execution information in a directory named debug

v MQ information in a directory named MQ, if you installed WebSphere MQ or the embedded messaging

feature

v A JAR file manifest

Tips and suggestions

v Unzip the JAR file to an empty directory for easy access to the gathered files and for simplified cleanup.

v Check the collector.log file for errors:

– Some errors might be normal or expected. For example, when the collector attempts to gather files

or directories that do not exist for your specific installation, it logs an error about the missing files.

– A non-zero return code means that a command that the collector tool attempted to run does not

exist. This might be expected in some cases. If this type of error occurs repeatedly, there might

actually be a problem.
v On Linux and UNIX-based systems, the file OS/commands has the location of all commands used. If you

are missing command output, check this file to see if the command was found.

v On Linux and UNIX-based systems, the collector runs some shell scripts. The shell script output is

saved in files in the OS directory, while the corresponding debug information is saved in the debug

directory. If the output of a shell script is missing, check the corresponding file in the debug directory.

v When you issue the collector command when there are multiple installation instances, the tool that

runs depends on what is in the PATH statement. For example, if you install both the base WebSphere

Application Server and the Deployment Manager product on the same machine, the bin directory that

first appears in the PATH variable is the one that furnishes the collector tool. To work around this

problem, use a fully qualified file path when calling the collector tool as shown in this example for a

Windows platform:

c:\WebSphere\AppServer\bin\collector.bat

Chapter 5. Diagnosing problems (using diagnosis tools) 143

v On Windows systems, the OS directory contains a file named installed.out. This file contains a list of

programs found in the Add/Remove Programs list. This same information is contained in the file

Desktop\My Computer\Control Panel\Add/Remove Programs\Install/Uninstall.

Collector summary

WebSphere Application Server products include an enhancement to the collector tool beginning with

Version 5.0.2, known as the collector summary option.

The collector summary option helps you communicate with WebSphere Application Server technical staff

at IBM Support. Run the collector tool with the -Summary option to produce a lightweight text file and

console version of some of the information in the Java archive (JAR) file that the tool produces without the

-Summary parameter. You can use the collector summary option to retrieve basic configuration and

prerequisite software level information when starting a conversation with IBM Support.

The collector summary option produces version information for the WebSphere Application Server product

and the operating system as well as other information. It stores the information in the

Collector_Summary.txt file and writes it to the console. You can use the information to answer initial

questions from IBM Support or you can send the Collector_Summary.txt file directly to IBM Support.

Run the collector command to create the JAR file if IBM Support needs more information to solve your

problem.

To run the collector summary option, start from a temporary directory outside of the WebSphere

Application Server product installation root directory and enter one of the following commands.

Linux and UNIX-based platforms:

install_root/bin/collector.sh -Summary

Windows platforms:

install_root\bin\collector.bat -Summary

First Failure Data Capture tool

The First Failure Data Capture tool preserves the information generated from a processing failure and

returns control to the affected engines. The captured data is saved in a log file for use in analyzing the

problem.

The First Failure Data Capture tool is intended primarily for use by IBM Service. It runs as part of the IBM

WebSphere Application Server, and you cannot start or stop it. It is recommended that you not attempt to

configure the First Failure Data Capture tool. If you experience conditions requiring you to contact IBM

Service, your IBM Service representative will assist you in reading and analyzing the First Failure Data

Capture log.

The First Failure Data Capture tool does not affect the performance of the IBM WebSphere Application

Server.

Log Analyzer

The Log Analyzer takes one or more service or activity logs, merges all of the data, and displays the

entries. Based on its symptom database, the tool analyzes and interprets the event or error conditions in

the log entries to help you diagnose problems. Log Analyzer has a special feature enabling it to download

the latest symptom database from the IBM Web site.

To download the latest updates to the symptom database, use the File -> Update Database ->

WebSphere Application Server Symptom Database option for WebSphere Application Server, or

144 IBM WebSphere Application Server-Network Deployment, Version 6: Troubleshooting and support

WebSphere Application Server Network Deployment Symptom Database option for WebSphere

Application Server Network Deployment in the Log Analyzer interface.

About the service or activity log

The application server creates the service or activity log file from the activity of the various WebSphere

Application Server components. Log Analyzer is used to view the service or activity log file. Log Analyzer

can merge service or activity log files into one log file. The service or activity log file, activity.log, is a

binary file in the logs directory of the install_root.

You cannot view the service or activity log with a text editor. The Log Analyzer tool lets you view the file.

Viewing a service or activity log file in the absence of a graphical interface

The Log Analyzer tool cannot view remote files. If the operating system on which you are running

WebSphere Application Server does not support the use of a graphical interface, transfer the file in binary

mode to the system on which you are running the Java administrative console. Use the Log Analyzer tool

there.

In cases where transferring the file is impractical or inconvenient, use the alternate viewing tool, showlog,

to view the service or activity log file:

1. Change directory to bin directory of the install_root.

2. Run the showlog tool with no parameters to display usage instructions:

v On Windows systems, run showlog.bat.

v On UNIX systems, run showlog.sh.

To direct the service or activity log (activity.log) contents to stdout, use the showlog activity.log

command.

To dump the service or activity log to a text file for viewing with a text editor, use the showlog activity.log

textFileName command.

Accessing Log Analyzer help files

You can access Log Analyzer help files on Windows platforms, using the operating system default Internet

browser only. You cannot access the help files using an Internet browser other than the default. However,

Windows systems do let you select either Netscape or Internet Explorer as the default browser. There is

an option to let you select either Netscape or Internet Explorer as the browser to display HTML help files.

Access help files using any Internet browser on UNIX platforms. You can use such browsers as Netscape

Navigator, by explicitly setting the location of its executable in the tool Preferences dialog. The option that

appears to allow you to select either Netscape or Internet Explorer as the browser to display HTML help

files is not used on UNIX systems.

To specify the browser on UNIX platforms:

1. Click File > Preferences in the Log Analyzer tool.

2. Click Help from the General folder in the Log Analyzer Preferences dialog.

3. Set the path to the Internet browser executable in the Browser Location field.

Installing Log Analyzer silently

Installing Log Analyzer ″silently″ prevents installation messages from being displayed, but the file

responsefile.txt for silent installation needs more information to install Log Analyzer. To silently install

Log Analyzer, add the following option to this file:

-P logAnalyzerBean.active="true"

Chapter 5. Diagnosing problems (using diagnosis tools) 145

The Performance and Analysis Tools property in the file responsefile.txt needs to be set to true to

install the Log Analyzer tool. The property in the responsefile.txt is: -P

performanceAndAnalysisToolsBean.active=″true″.

Using the Log Analyzer

To view the service or activity.log using the Log Analyzer:

1. Change directory to: install_dir/bin.

2. Run the waslogbr script file. This file is named:

v waslogbr.bat on Windows systems.

v waslogbr on UNIX systems.

This script must be run from the install_dir/bin directory. This starts the Log Analyzer interface.

3. Select File -> Open.

4. Navigate to the directory containing the service or activity log file.

5. Select the service or activity log file and click Open.

6. To analyze the records, right-click on a record in the tree on the left, select UnitOfWorkView from the

right-click menu, and select Analyze. Now any records with a green check mark next to them match a

record in the symptom database. When you select a check-marked record, you will see an explanation

of the problem in the lower-right-hand pane.

Note: When starting the Log Analyzer for the first time, or after the Log Analyzer preferences files of

the users have been deleted, the following message is displayed in the Log Analyzer’s shell

window:

Cannot open input stream for waslogbrsys

You can disregard this message, as it is informational and not indicative of abnormal operation.

WebSphere Application Server includes the following Log Analyzer files for use with the WebSphere

Commerce Suite:

v install_root\bin:

– wcslogbr.bat

– wcslogbrsys.cfg

– wcslogbrsys.ini
v install_root\properties\logbr:

– wcsanalyzers.xml

– wcslogtypes.xml

– wcsrecdef.xml

You can ignore these files.

Log Analyzer main window: To view this page, launch the Log Analyzer, install_root/bin/waslogbr on

UNIX systems or install_root\bin\waslogbr.bat on Windows NT or Windows 2000 systems. Click Help >

Tasks.

The Log Analyzer takes one or more service or activity logs, merges all the data, and, by default, displays

the entries in unit of work (UOW) groupings. It analyzes event and error conditions in the log entries to

provide message explanations. The Log Analyzer main window interface has the following elements:

v Three window panes

v Status line

v Menu bar

v Pop-up actions

Window panes

The Log Analyzer window has three panes:

Logs pane (left)

146 IBM WebSphere Application Server-Network Deployment, Version 6: Troubleshooting and support

By default, Log Analyzer Logs pane displays log entries by UOW. It lists all the UOW instances

and its associated entries from the logs that you have opened. You may find the UOW grouping

useful when you are trying to find related entries in the service or activity log or when you are

diagnosing problems across multiple machines. The file name of the first log you open appears in

the pane title bar. There is a root folder and under it, each UOW has a folder icon which you can

expand to show all the entries for that UOW. All log entries without any UOW identification are

grouped into a single folder in this tree view. The UOW folders are sorted to show the UOW with

the latest timestamp at the top of the list. The entries within each UOW are listed in the reverse

sequence, that is the first (earliest) entry for that UOW is displayed at the top of the list. If you

have merged several logs in the Log Analyzer, all the log entries are merged in timestamp

sequence within each UOW folder, as if they all came from the same log.

 Every log entry is assigned an entry number, Rec_nnnn, when a log is opened in the Log

Analyzer. If more than one file is opened in the Log Analyzer (merged files), the Rec_nnnn

identification will not be unique because the number is relative to the entry sequence in the

original log file and not to the merged data that the Log Analyzer is displaying. This Rec_nnnn

appears in the first line (RecordId) in the Records pane.

 By default, each entry in this pane is color-coded to help you quickly identify the ones that have

high severity errors. The values listed here are the default values, you can configure your own

colors.

v Non-selected log entry with background color of:

– Pink indicates that it has a severity 1 error.

– Yellow indicates that it has a severity 2 error.

– White indicates that it has a severity 3 error.
v Selected log entry with background color of:

– Red indicates that it has a severity 1 error.

– Green indicates that it has a severity 2 error.

– Blue indicates that it has a severity 3 error.

These colors are configurable and can be changed in the Log Analyzer Preferences Log page.

See the help for the Severity page in the Log Analyzer Preferences notebook for different error

severity levels and for more information on how to do this.

 The Log Analyzer can display the log entries in different groupings. Use the Log Analyzer

Preferences notebook: Logs page to set the grouping filters.

 After the Analyze action has been invoked, each analyzed log entry has the following icons:

v A check icon indicates that the entry has some analysis information in one or more pages in the

Analysis pane.

v A cascading plus sign (+) icon indicates that the entry has some analysis information and that it

has a reraised or remapped exception. You may want to look at the log entry prior to this one

when diagnosing problems.

v A question mark icon indicates that the entry has either a severity 1 or 2 error but no additional

analysis information is available for it.

v An ″x″ icon indicates that the entry has a severity 3 error and it has no analysis information.
Record pane (upper right)

 When you select an entry in the Logs pane, you see the entry in the Record pane. The entry

identification appears in the pane title bar. Right-click in the Record pane to see actions that you

can perform on the selected entry. A drop down arrow next to Record lets you look at the last ten

records you have viewed. The cache for the historical data (10, by default) is set in the

Preferences General page.

Note:

v The page does not display associated analysis data for these cached records. To see

analysis information for cached data, reselect the entry from the Logs pane.

Chapter 5. Diagnosing problems (using diagnosis tools) 147

You can enable or disable line wrap mode for the Record Pane using the Log Analyzer

Preferences notebook: Record. To print contents of this pane, select Record > Print when the

Record pane is in focus.

Analysis pane (lower right)

 When the analyze action has been invoked and additional information is available, the information

will appear in the Symptom page. If the page tab is grayed out, there is no information in that

page. The pages of the Analysis pane are:

Symptom

The Log Analyzer provides a database of information on common events and errors to

help you recover from some common errors. As a part of the analyze action, if such

information is found in the database for the selected log entry, the information is displayed

in this page.

Status line

There is a status line at the bottom of the window showing the status of actions.

Menu bar

The menu bar in the Log Analyzer main window, has the following selections:

File

Open...

 Opens a new log file. You can select either a service or activity log or a previously saved

XML file. If you want the Log Analyzer to format a raw log file (by running the showlog

command) prior to opening it, name the log file with suffix.log. If the Log Analyzer finds

that the .log file contains formatted data, it skips the showlog formatting step.

 If you want to merge data from another log, select Merge with.

Merge with...

 When another log file is already opened in the Log Analyzer, use the Merge with action to

open subsequent logs. The Log Analyzer merges the data from all the logs that it opens

and displays all the entries within timestamp sequence in the UOW folders. The data

appears as if they came from one log.

 If you want the Log Analyzer to format a raw log file (by running the showlog command)

prior to opening it, name the log file with suffix.log. If the Log Analyzer finds that the .log

file contains formatted data, it skips the showlog formatting step.

Redisplay logs

To redisplay the logs using the recently set filters.

Save as...

 Saves the log as an XML file (or text file). If analyze action has been performed, all the

Symptom analysis information is also saved. If logs are merged in the Log Analyzer, the

saved file contains entries of all the merged logs in the sequence that is shown in the

Logs pane.

Note: If the merged logs have different timestamp formats, you should not save the

merged information because the Log Analyzer only recognizes a single timestamp

format for each file that it opens.
Save

 Is only enabled if the first file that you opened is an XML file. It resaves the XML file with

all the data that is currently displayed in the Log Analyzer. If analyze action has been

performed, all the Symptom analysis information is also saved. If logs are merged in the

Log Analyzer, the saved file contains entries of all the merged logs in the sequence that is

shown in the Logs pane.

148 IBM WebSphere Application Server-Network Deployment, Version 6: Troubleshooting and support

Note: If the merged logs have different timestamp formats, you should not save the

merged information because the Log Analyzer only recognizes a single timestamp

format for each file that it opens.
Print Log...

Prints all the entries that the Log Analyzer is displaying. If logs are merged in the Log

Analyzer, the output contains entries of all the merged logs in the sequence that is shown

in the Logs pane. If analyze action has been performed, all Symptom analysis information

is also printed. To print parts of the log, use Record > Print.

Close Closes the opened log.

Update Database

Updates the symptom database which is used for Symptom analysis. It downloads the

latest version of the symptom database from the URL specified in the ivblogbr.properties

file.

Preferences...

Lets you configure and change the appearance of the Log Analyzer window and its

contents.

Exit Exits the Log Analyzer and closes its window.
Edit

Copy Copies the selected text in the Record or Analysis pane to the clipboard. If you have not

selected any text, Copy does not appear in the menu.

Find Allows you to find text strings in the focused pane.
View

Logs Toggles the visibility of the Logs pane.

Record

Toggles the visibility of the Record pane.

Symptom

Toggles the visibility of the Symptom page in the Analysis pane.
Record

 All the actions under this menu applies to the focused pane.

 To select several entries, hold down the Ctrl key when making the selection. When a folder is

selected, the action applies to all the entries in that folder.

Analyze

 Retrieves and displays additional documentation on known events and event messages in

the Analysis pane (Symptom page). Select the folders and entries in the Logs pane,

right-click to select the Analyze action, or from the menu bar, select Record > Analyze.

Note: If you invoke Analyze for the root folder, then all the entries in the log that you are

viewing will be analyzed.
If some analysis information is available for an entry, it will either have a check icon or a

cascading plus sign (+) icon next to it in the Logs pane. If the analyze action has already

been performed, the selection will be grayed out.

Save to file

Saves the selected entries in the Logs pane. If folders are selected, all the entries in the

folder are saved. Any retrieved analysis information is also saved. If the focused pane is

either the Records or Analysis pane, then only information in that pane is saved.

Print

v If the focused pane is Logs, the action prints the selected folders and entries. Any

retrieved analysis information for those entries is also printed.

v If the focused pane is Record, the action prints the entry that is currently in the Record

pane. Any retrieved analysis information is not printed.

v If the focused pane is Analysis, the action prints Symptom page contents.
Windows

If you detach the Symptom page in the Analysis pane into separate windows, all windows

appear under this menu. You can select windows to bring them to the foreground.

Chapter 5. Diagnosing problems (using diagnosis tools) 149

Help Provides a list of online documentation for additional information.

Pop-up actions

In the focused pane, right-click to bring up a list of actions in a pop-up menu. Actions that you cannot

perform are grayed out. When a folder is selected in the Logs pane, the action applies to all entries in that

folder. To select several folders or entries in the Logs pane, hold down the Ctrl key when making the

selection.

Log Analyzer find window: To view this page, launch the Log Analyzer, install_root/bin/waslogbr on

UNIX systems or install_root\bin\waslogbr.bat on Windows NT or Windows 2000 systems. Click Edit >

Find.

The Log Analyzer Find window lets you look for text strings in the focused pane. For example, if you

remember the Unit of Work identification, you can enter that text string in the Find window to quickly locate

the Unit of Work folder in the Logs pane.

Log Analyzer Preferences notebook - General: To view this page, launch the Log Analyzer,

install_root/bin/waslogbr on UNIX systems or install_root\bin\waslogbr.bat on Windows NT or Windows

2000 systems. Click File > Preferences > General.

The General page of the Log Analyzer Preferences notebook lets you specify the behavior of panes in the

Log Analyzer window:

Show title bars

Shows the title bars of window and its panes.

Highlight selected pane

Highlights the pane that is in focus.

Pane history cache size

Specifies a number of records to save in the cache. The Log Analyzer keeps a history of the

(specified number of) records that you have viewed. You can use the drop down list next to

Record in the pane title bar to see these cached entries.

Note: The associated analysis data for these records are not saved. To see analysis information,

reselect the entry from the Logs pane.
Show logo at startup

Shows the logo when you start-up the Log Analyzer.

When you are finished, click OK to apply your changes and close the Preferences notebook.

Log Analyzer Preferences notebook - Appearance: To view this page, launch the Log Analyzer,

install_root/bin/waslogbr on UNIX systems or install_root\bin\waslogbr.bat on Windows NT or Windows

2000 systems. Click File > Preferences > General > Appearance.

The Appearance page of the Log Analyzer Preferences notebook lets you define the overall appearance of

the Log Analyzer. You can select the family of products and its texture schemes that you want the Log

Analyzer window to emulate.

When you are finished, click OK to apply your changes and close the Preferences notebook.

Log Analyzer Preferences notebook - Toolbars: To view this page, launch the Log Analyzer,

install_root/bin/waslogbr on UNIX systems or install_root\bin\waslogbr.bat on Windows NT or Windows

2000 systems. Click File > Preferences > General > Toolbars.

The Toolbars page of the Log Analyzer Preferences notebook lets you customize the appearance and

contents of the toolbar in the Log Analyzer window. You can select whether there is text and/or icon in the

toolbar, as well as, the functions that you want in the toolbar.

150 IBM WebSphere Application Server-Network Deployment, Version 6: Troubleshooting and support

When you are finished, click OK to apply your changes and close the Preferences notebook.

Log Analyzer Preferences notebook - Help: To view this page, launch the Log Analyzer,

install_root/bin/waslogbr on UNIX systems or install_root\bin\waslogbr.bat on Windows NT or Windows

2000 systems. Click File > Preferences > General > Help.

The Help page of the Log Analyzer Preferences notebook lets you select the browser that is to display

online help files.

For Windows, the default Web browser is used. You need not update any settings unless there are

problems when bringing up the default browser.

For AIX, HP-UX, and Solaris operating environment, you must update the following settings, especially the

full path of the browser in the Browser location entry.

Help browser

Select the Web browser you want to use.

Browser location

Select the location of the browser executable file. This should be correct by default, but if you

cannot access help then you may need to explicitly enter the browser location.

When you are finished, click OK to apply your changes and close the Preferences notebook.

Log Analyzer Preferences notebook - Proxy: To view this page, launch the Log Analyzer,

install_root/bin/waslogbr on UNIX systems or install_root\bin\waslogbr.bat on Windows NT or Windows

2000 systems. Click File > Preferences > Proxy.

The symptom database included in the Log Analyzer package contains entries for common events and

errors. New versions of the symptom database provide additional entries. Download new versions of the

database from the IBM FTP site. The URL for the FTP site is located in file:

install_dir/bin/ivblogbr.properties.

The default setting for the FTP site is:

ftp://ftp.software.ibm.com/software/websphere/info/tools/loganalyzer/symptoms/std/symptomdb.xml

You can update your symptom database in one of two ways:

1. Download a new version from the FTP site, and replace your existing database with the new version.

Your database is: install_dir/symptoms/std/symptomdb.xml.

2. Use the Log Analyzer graphical user interface (GUI) to update your database by selecting: File ->

Update database -> WebSphere Application Server Symptom Database (for WebSphere

Application Server) or WebSphere Application Server Network Deployment Symptom Database for

WebSphere Application Server Network Deployment.

Setting the proxy definition

If your organization uses a FTP or SOCKS proxy server, contact your system administrator for the host

name and port number of the proxy server.

If you use the Log Analyzer GUI to update the database, you can add a proxy definition to the Proxy

Preferences page as described below:

1. Select File -> Preferences -> Proxy.

2. Select the appropriate proxy type.

3. Enter the host name and port number of the proxy server on the Proxy panel.

If you do not use the Log Analyzer GUI, add the proxy definition to the command that launches Log

Analyzer.

v Do the following to add the proxy definition for the FTP proxy server:

Chapter 5. Diagnosing problems (using diagnosis tools) 151

– For Windows systems:

1. Modify file: install_dir\bin\waslogbr.bat.

2. Add the following text to the file:

%JAVA_HOME%\bin\java -DIVB_HOME=%USERPROFILE%/logbr ^

....

-Dftp.proxyHost=proxy_host -Dftp.proxyPort=port_number ^

– For UNIX:

1. Modify file: install_dir/bin/waslogbr.

2. Add the following text to the file:

$JAVA_HOME/bin/java -ms10m -mx255m -DIVB_HOME=$HOME/logbr \

....

-Dftp.proxyHost=proxy_host -Dftp.proxyPort=port_number \

v Do the following to add the proxy definition for the SOCKS proxy server:

– For Windows systems:

1. Modify file: install_dir\bin\waslogbr.bat.

2. Add the following text to the file:

%JAVA_HOME%\bin\java -DIVB_HOME=%USERPROFILE%/logbr ^

....

-DsocksProxyHost=proxy_host -DsocksProxyPort=port_number ^

– For UNIX:

1. Modify file: install_dir/bin/waslogbr.

2. Add the following text to the file:

$JAVA_HOME/bin/java -ms10m -mx255m -DIVB_HOME=$HOME/logbr \

....

-DsocksProxyHost=proxy_host -DsocksProxyPort=port_number \

Log Analyzer Preferences notebook -- Logs: To view this page, launch the Log Analyzer,

user_install_root/bin/waslogbr on UNIX systems or user_install_root\bin\waslogbr.bat on Windows NT or

Windows 2000 systems. Click File > Preferences > Logs.

The Logs page of the Log Analyzer Preferences notebook lets you group the entries in the logs by

different entry fields for viewing. For example, you can select to group the log entries by TimeStamp or

clientHostName when they are displayed in the Logs pane.

Primary sort field

Use this filter to set the first level of grouping when log entries are displayed in the Logs pane. By

default, the log entries are grouped by UnitOfWork.

Secondary sort field

 Use this filter to set the second level of grouping (that is, within the grouping of the primary sort

field) when log entries are displayed in the Logs pane.

 All the entries within the grouped folders are always sorted in timestamp sequence with the

earliest entry at the top of the list.

Redisplay log file immediately

Select this box to immediately regroup the logs entries (after you have clicked OK) based on the

new filter settings. The entries in the Logs Pane are redisplayed according to the new grouping. If

you want to delay the grouping, then do not select this box and, at a later time, you can use the

File > Redisplay logs... menu selection to regroup and display the log entries based on the

changed filter settings.

When you are finished, click OK to apply your changes and close the Preferences notebook.

Log Analyzer Preferences notebook -- Severity: To view this page, launch the Log Analyzer,

install_root/bin/waslogbr on UNIX systems or install_root\bin\waslogbr.bat on Windows NT or Windows

2000 systems. Click File > Preferences > Logs > Severity.

152 IBM WebSphere Application Server-Network Deployment, Version 6: Troubleshooting and support

The Severity page of the Log Analyzer Preferences notebook lets you change background colors of log

entries that appear in the Logs pane. Use colors to quickly indicate entries with high severity errors and

the currently selected entry.

Use colors to indicate severities

Select this checkbox to color-code the background of log entries and folders. When selected, the

radio button selections in this page are enabled.

Background color

 For each folder and entry in the Logs pane, there is some text describing the entry. To choose a

background color for selected log entry that has a severity 1 error, do the following:

1. Select Selected node.

2. Select Severity 1.

3. Select the color by clicking on the color Swatches. To use the default setting, click Restore

Default. To see the results of your change, look at the Preview box.

4. Click Apply to save that setting.

Repeat similar steps to change the background color for selected log entries that have severity 2

and 3 errors.

 To choose a background color for an unselected log entry that has a severity 1 error, do the

following:

1. Select Unselected node.

2. Select Severity 1.

3. Select the color by clicking on the color Swatches. To use the default setting, click Restore

Default. To see the results of your change, look at the Preview box.

4. Click Apply to save that setting.

Repeat similar steps to change the background color for unselected log entries that have severity

2 and 3 errors.

Sample

You can see the result of you color change prior to applying the change. Look at the nodes shown

in the Sample box. For color changes of selected nodes, click on the node in the sample box to

see the color change.

When you are finished, click OK to apply your changes and close the Preferences notebook.

Log Analyzer Preferences notebook -- Analyzer output: To view this page, launch the Log Analyzer,

install_root/bin/waslogbr on UNIX systems or install_root\bin\waslogbr.bat on Windows NT or Windows

2000 systems. Click File > Preferences > Analyzer output.

The Log Analyzer Preferences notebook lets you enable line wrap for information that appears in the

Analysis pane.

Set line wrap

Select the appropriate checkbox to enable line wrap for the Symptom page that appears in the

Analysis pane.

When you are finished, click OK to apply your changes and close the Preferences notebook.

Log Analyzer Preferences notebook -- Record: To view this page, launch the Log Analyzer,

install_root/bin/waslogbr on UNIX systems or install_root\bin\waslogbr.bat on Windows NT or Windows

2000 systems. Click File > Preferences > Record.

The Record page of the Log Analyzer Preferences notebook lets you set the line wrap mode for the data

that is displayed in the Record pane. It also lets you set the time and date format of the timestamp

displayed in the Record pane.

Enable line-wrap mode for record pane

Select this checkbox to enable line wrapping for the information that appears in the Record pane.

Chapter 5. Diagnosing problems (using diagnosis tools) 153

Date format

When viewing logs, this date format only changes the timestamp format that is displayed in the

Record pane. The timestamp format in the log file and the timestamp shown in the Logs pane are

not affected by this setting.

Time format

When viewing logs, this time format only changes the timestamp format that is displayed in the

Record pane. The timestamp format in the log file and the timestamp shown in the Logs pane are

not affected by this setting.

When you are finished, click OK to apply your changes and close the Preferences notebook.

Installing the Log Analyzer silently:

To silently install the Log Analyzer, you must set the relevant properties in the responsefile.txt file.

1. Add the following option to the responsefile.txt file:

v -P logAnalyzerBean.active="true"

2. Set the Performance and Analysis Tools property in the responsefile.txt file to true for the Log

Analyzer to install. The property in the responsefile.txt file is:

v -P performanceAndAnalysisToolsBean.active="true"

Accessing the Log Analyzer help files:

For Windows platforms, you can only access the Log Analyzer help files using the operating system

default Internet browser. You cannot access the help files using any Internet browser, even though there

are options allowing you to select either Netscape or Internet Explorer and set the location of the browser

to display HTML help files.

For UNIX platforms, you can access the help files using any Internet browser, such as Netscape

Navigator, by explicitly setting the location of the browser executable in the tool Preferences dialog. The

option that seemingly allows you to select either Netscape or Internet Explorer as the browser to display

HTML help files is not used.

The following steps describe how to specify the browser on UNIX platforms:

1. In the Log Analyzer tool, select File -> Preferences

2. In the Log Analyzer Preferences dialog, click Help from theGeneral folder.

3. Set the path to the Internet browser executable in the Browser Location field.

IBM Support Assistant

The IBM Support Assistant is a tool that helps you use various IBM Support resources from within the

WebSphere Application Server administrative console. The IBM Support Assistant offers three components

to help you with software questions:

v a Search component, which helps you access pertinent Support information in multiple locations

v a Support Links component, which provides a convenient location to access various IBM Web resources

such as IBM product sites, IBM support sites and links to IBM news groups

v a Service component, which helps you submit an enhanced service request that includes key system

data to IBM.

To download the IBM Support Assistant:

1. Log into the administrative console and select Support from the top menu. This will open the product

support page, from where you can download the IBM Support Assistant and also access various IBM

Web resources such as IBM product sites, IBM support sites and links to IBM news groups.

2. Select ″Click here to download the IBM Support Assistant″ to download the tool and follow the

instructions in the README file to install the tool.

154 IBM WebSphere Application Server-Network Deployment, Version 6: Troubleshooting and support

Once the IBM Support Assistant is installed in the administrative console, you can launch it by selecting

’Support’ from the top menu in the administrative console. The search component of the IBM Support

Assistant will be displayed in a new browser window.

To learn more about how to use the IBM Support Assistant, click on the User Guide tab in the IBM Support

Assistant window.

Note: The Support link in the administrative console is a context sensitive link. When the IBM Support

Assistant is not installed, the Support link displays a link to the IBM Support Assistant download

page and various IBM Web resources for the WebSphere Application Server product. Once the IBM

Support Assistant is installed, the Support link launches the IBM Support Assistant main page.

Obtaining help from IBM

If you are not able to resolve a WebSphere Application server problem by following the steps described in

the Troubleshooting guide, by looking up error messages in the message reference, or looking for related

documentation on the online help, contact IBM Technical Support.

Purchase of WebSphere Application Server entitles you to one year of telephone support under the

Passport Advantage program. For details on the Passport Advantage program, visit

http://www.lotus.com/services/passport.nsf/WebDocs/Passport_Advantage_Home.

The number for Passport Advantage members to call for WebSphere Application Server support is

1-800-237-5511. Please have the following information available when you call:

v Your Contract or Passport Advantage number.

v Your WebSphere Application Server version and revision level, plus any installed fixes.

v Your operating system name and version.

v Your database type and version.

v Basic topology data: how many machines are running how many application servers, and so on.

v Any error or warning messages related to your problem.

IBM Support has documents that can save you time gathering information needed to resolve this problem.

Before opening a PMR, see the IBM Support page.

The Collector Tool

WebSphere Application Server comes with a built-in utility that collects logs and configuration information

into one file, the Collector Tool. IBM Technical Support may ask you to run this tool and submit the output.

Tracing

WebSphere Application Server support engineers might ask you to enable tracing on a particular

component of the product to diagnose a difficult problem. For details on how to do this, see Enabling

trace.

Consulting

For complex issues such as high availability and integration with legacy systems, education, and help in

getting started quickly with the WebSphere product family, consider using IBM consulting services. To learn

about these services, browse the Web site http://www-1.ibm.com/services/fullservice.html.

Diagnosing and fixing problems: Resources for learning

In addition to the information center, there are several Web-based resources for researching and resolving

problems related to the WebSphere Application Server.

Chapter 5. Diagnosing problems (using diagnosis tools) 155

http://www.lotus.com/services/passport.nsf/WebDocs/Passport_Advantage_Home
http://www-1.ibm.com/support/docview.wss?rs=180&context=SSEQTP&uid=swg21145599
http://www-1.ibm.com/services/fullservice.html

The WebSphere Application Server support page

The official site for providing tools and sharing knowledge about WebSphere Application Server problems

is the WebSphere Application Server support page:

http://www.ibm.com/software/webservers/appserv/support.html. Among the features it provides are:

v A search field for searching the entire support site for documentation and fixes related to a specific

exception, error message, or other problem. Use this search function before contacting IBM Support

directly.

v Hints and Tips, Technotes, and Solutions links take you to specific problems and resolutions

documented by WebSphere Application Server technical support personnel.

v A link All fixes, fix packs, refresh packs, and tools provides free WebSphere Application Server

maintenance upgrades and problem determination tools.

– fixes are software patches which address specific WebSphere Application Server defects. Selecting a

specific defect from the list in the All fixes, fix packs, refresh packs, and tools page takes you to a

description of what problem the fix addresses.

– Fix packs are bundles of multiple fixes, tested together and released as a maintenance upgrade to

WebSphere Application Server. Refresh packs are fix packs that also contain new function. If you

select a fix pack from this page, you are taken to a page describing the target platform, WebSphere

Application Server prerequisite level, and other related information. Selecting the list defects link on

that page displays a list of the fixes which the fix pack includes. If you intend to install a fix which is

part of a fix pack, it is usually better to upgrade to the complete fix pack rather than to just install the

individual fix.

– Tools are free programs that help you analyze the configuration, behavior and performance of your

WebSphere Application Server installation.

Accessing WebSphere Application Server support page resources

Some resources on the WebSphere Application Server support page are marked with a key icon. To

access these resources, you must supply a user ID and password, or to register if do not already have an

ID. When registering, you are asked for your contract number, which is supplied as part of a WebSphere

Application Server purchase.

WebSphere Developer Domain

The Developer Domains are IBM-supported sites for enabling developers to learn about IBM software

products and how to use them. They contain resources such as articles, tutorials, and links to newsgroups

and user groups. You can reach the WebSphere Developer Domain at

http://www7b.software.ibm.com/wsdd/.

The IBM Support page

IBM Support has documents that can save you time gathering information needed to resolve this problem.

Before opening a PMR, see the IBM Support page.

Debugging Service details

Use this page to view and modify the settings used by the Debugging Service.

To view this administrative console page, click Servers > Application Servers > server name >

Debugging Service.

The steps below describe how to enable a debug session on WebSphere Application Server. Debugging

can prove useful when your program behaves differently on the application server than on your local

system.

156 IBM WebSphere Application Server-Network Deployment, Version 6: Troubleshooting and support

http://www.ibm.com/software/webservers/appserv/support.html
http://www7b.software.ibm.com/wsdd/
http://www.ibm.com/support/search.wss?rs=180&q=mustgather

Enable service at server startup

Specifies whether the server will attempt to start the Debug service when the server starts.

JVM debug port

Specifies the port that the Java virtual machine will listen on for debug connections.

JVM debug arguments

Specifies the debugging argument string used to start the JVM in debug mode.

Debug class filters

Specifies an array of classes to ignore during debugging. When running in step-by-step mode, the

debugger will not stop in classes that match a filter entry.

BSF debug port

Specifies the port that the BSF Debug Manager listens on.

BSF logging level

Specifies the level of logging provided by the BSF Debug Manager. The valid range is 0-3, with 3 being

the highest level of logging.

Configuration problem settings

Use this page to identify and view problems that exist in the current configuration.

To view this administrative console page, click Troubleshooting > Configuration Problems in the

console navigation tree.

Click a configuration problem in the Configuration Problems table to see more information about the

problem.

Configuration document validation

Use these fields to specify the level of validation to perform on configuration documents.

Enable Cross validation

Enables cross validation of configuration documents.

Enabling cross validation enables comparison of configuration documents for conflicting settings.

Configuration Problems

Displays current configuration problem error messages. Click a message for detailed information about the

problem.

Scope

Sorts the configuration problem list by the configuration file where each error occurs. Click a message for

detailed information about the problem.

Fields that explain each configuration problem:

The following informational fields appear when you click a configuration problem message.

Chapter 5. Diagnosing problems (using diagnosis tools) 157

Message

Displays the message returned from the validator.

Explanation

A brief explanation of the problem.

User action

Specifies the recommended action to correct the problem.

Target Object

Identifies the configuration object where the validation error occurred.

Severity

Indicates the severity of the configuration error, with 1 being a severe error. Severity decreases as the

severity descriptor increases.

Local URI

Specifies the local URI of the configuration file where the error occurred.

Full URI

Specifies the full URI of the configuration file where the error occurred.

Validator classname

The classname of the validator reporting the problem.

158 IBM WebSphere Application Server-Network Deployment, Version 6: Troubleshooting and support

Chapter 6. Learn about WebSphere applications

Use this section as a starting point to investigate the technologies used in and by applications that you

deploy on the application server.

See Learn about WebSphere applications: Overview and new features for an introduction to each

technology.

Web applications How do I?... Overview Samples

EJB applications How do I?... Overview Tutorials Samples

Client applications How do I?... Overview Samples

Web services How do I?... Overview Tutorials Samples

Data access resources How do I?... Overview Tutorials Samples

Messaging resources How do I?... Overview Tutorials Samples

Mail, URLs, and other

J2EE resources

How do I?... Overview

Security How do I?... Overview Tutorials Samples

Naming and directory How do I?... Overview

Object Request Broker How do I?... Overview

Transactions How do I?... Overview Samples

ActivitySessions How do I?... Overview Samples

Application profiling How do I?... Overview Samples

Asynchronous beans How do I?... Overview Samples

Dynamic caching How do I?... Overview

Dynamic query How do I?... Overview Samples

Internationalization How do I?... Overview Samples

Object pools How do I?... Overview

Scheduler How do I?... Overview Samples

Startup beans How do I?... Overview

Work areas How do I?... Overview

Web applications

Troubleshooting tips for Web application deployment

Deployment of a Web application is successful if you can access the application by typing a Uniform

Resource Locator (URL) in a browser, or if you can access the application by following a link.

If you cannot access your application, follow these steps to eliminate some common errors that can occur

during migration or deployment.

Web module does not run in WebSphere Application Server Version 5 or 6.

 Symptom Your Web module does not run when you migrate it to Version 5 or 6

Problem In Version 4.x, the classpath setting that affected visibility was Module Visibility Mode.

In Versions 5 and 6, you must use class loader policies to set visibility.

© Copyright IBM Corp. 2004 159

Recommended response Reassemble an existing module, or change the visibility settings in the class loader

policies.

Welcome page is not visible.

 Symptom You cannot access an application with a Web path of:

 /webapp/myapp

Problem The default welcome page for a Web application is assumed to be index.html. You

cannot access the default page of the myapp application unless it is named index.html.

Recommended response To identify a different welcome page, modify the properties of the Web module during

assembly. See the article Assembling Web applications for more information.

HTML files are not found.

 Symptom Your Web application ran successfully on prior versions, but now you encounter errors

that the welcome page (typically index.html), or referenced HTML files are not found:

Error 404: File not found: Banner.html

Error 404: File not found: HomeContent.html

Problem For security and consistency reasons, Web application URLs are now case-sensitive on

all operating systems.

Suppose the content of the index page is as follows:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 5.0 Frameset//EN">

<HTML>

<TITLE>

Insurance Home Page

</TITLE>

 <frameset rows="18,80">

 <frame src="Banner.html" name="BannerFrame" SCROLLING=NO>

 <frame src="HomeContent.html" name="HomeContentFrame">

 </frameset>

</HTML>

However the actual file names in the \WebSphere\AppServer\installedApps\...

directory where the application is deployed are:

banner.html

homecontent.html

Recommended response To correct this problem, modify the index.html file to change the names Banner.html

and HomeContent.html to banner.html and homecontent.html to match the names of

the files in the deployed application.

For current information available from IBM Support on known problems and their resolution, see the IBM

Support page.

IBM Support has documents that can save you time gathering information needed to resolve this problem.

Before opening a PMR, see the IBM Support page.

EJB applications

Access intent exceptions

The following exceptions are thrown in response to the application of access intent policies:

com.ibm.ws.ejbpersistence.utilpm.PersistenceManagerException

If the method that drives the ejbLoad() method is configured to be read-only but updates are then

made within the transaction that loaded the bean’s state, an exception is thrown during invocation

of the ejbStore() method, and the transaction is rolled back. Likewise, the ejbRemove() method

160 IBM WebSphere Application Server-Network Deployment, Version 6: Troubleshooting and support

http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCR4XA
http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCR4XA
http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCR4XA&q=mustgather

cannot succeed in a transaction that is set as read-only. If an update hint is applied to methods of

entity beans with bean-managed persistence, the same behavior and exception results. The

forwarded exception object contains the message string PMGR1103E: update instance level read

only bean beanName

 This exception is also thrown if the applied access intent policy cannot be honored because a

finder, ejbSelect, or container-managed relationship (CMR) accessor method returns an inherently

read-only result. The forwarded exception object contains the message string PMGR1001: No such

DataAccessSpec - methodName

 The most common occurrence of this error is when a custom finder that contains a read-only EJB

Query Language (EJB QL) statement is called with an applied access intent of

wsPessimisticUpdate or wsPessimisticUpdate-Exclusive. These policies require the use of a USE

AND KEEP UPDATE LOCKS clause on the SQL SELECT statement to be executed, but a

read-only query cannot support USE AND KEEP UPDATE LOCKS. Other examples of read-only

queries include joins; the use of ORDER BY, GROUP BY, and DISTINCT keywords.

 To eliminate the exception, edit the EJB query so that it does not return an inherently read-only

result or change the access intent policy being applied.

v If an update access is required, change the applied access intent setting to

wsPessimisticUpdate-WeakestLockAtLoad or wsOptimisticUpdate.

v If update access is not truly required, use wsPessimisticRead or wsOptimisticRead.

v If connection sharing between entity beans is required, use wsPessimisticUpdate-
WeakestLockAtLoad or wsPessimisticRead.

com.ibm.websphere.ejb.container.CollectionCannotBeFurtherAccessed

If a lazy collection is driven after it is no longer in scope, and beyond what has already been

locally buffered, a CollectionCannotBeFurtherAccessed exception is thrown.

com.ibm.ws.exception.RuntimeWarning

If an application is configured incorrectly, a run-time warning exception is thrown as the application

starts; startup is ended. You can validate an application’s configuration by choosing the verify

function. Some examples of misconfiguration include:

v A method configured with two different access intent policies

v A method configured with an undefined access intent policy

Frequently asked questions: Access intent

I have not applied any access intent policies at all. My application runs just fine with a DB2

database, but it fails with an Oracle database with the following message:

com.ibm.ws.ejbpersistence.utilpm.PersistenceManagerException: PMGR1001E: No such

DataAccessSpec :FindAllCustomers. The backend datastore does not support the SQLStatement

needed by this AccessIntent: (pessimistic update-weakestLockAtLoad)(collections: transaction/25)

(resource manager prefetch: 0) (AccessIntentImpl@d23690a). Why?

If you have not configured access intent, all of your data is accessed under the default access intent policy

(wsPessimisticUpdate-WeakestLockAtLoad). On DB2 databases, the weakest lock is a shared one, and the

query runs without a USE AND KEEP UPDATE LOCKS clause. On Oracle databases, however, the

weakest lock is an update lock; this means that the SQL query must contain a USE AND KEEP UPDATE

LOCKS clause. However, not every SQL statement necessarily supports USE AND KEEP UPDATE

LOCKS; for example, if the query is being run against multiple tables in a join, USE AND KEEP UPDATE

LOCKS is not supported. To avoid this problem, try either of the following:

v Modify your SQL query or reconfigure your application so that an update lock is supported

v Apply an access intent policy that supports optimistic concurrency

I am calling a finder method and I get an InconsistentAccessIntentException at run time. Why?

This can occur when you use method-level access intent policies to apply more control over how a bean

instance is loaded. This exception indicates that the entity bean was previously loaded in the same

transaction. This could happen if you called a multifinder method that returned the bean instance with

Chapter 6. Learn about WebSphere applications 161

access intent policy X applied; you are now trying to load the second bean again by calling its

findByPrimaryKey method with access intent Y applied. Both methods must have the same access intent

policy applied.

Likewise, if the entity was loaded once in the transaction using an access intent policy configured on a

finder, you might have called a container-managed relationship (CMR) accessor method that returned the

entity bean configured to load using that entity’s default access intent.

To avoid this problem, ensure that your code does not load the same bean instance twice within the same

transaction with different access intent policies applied. Avoid the use of method-level access intent unless

absolutely necessary.

I have two beans in a container-managed relationship. I call findByPrimaryKey() on the first bean

and then call getBean2(), a CMR accessor method, on the returned instance. At that point, I get an

InconsistentAccessIntentException. Why?

You are probably using read-ahead. When you loaded the first bean, you caused the second bean to be

loaded under the access intent policy applied to the finder method for the first bean. However, you have

configured your CMR accessor method from the first bean to the second with a different access intent

policy. CMR accessor methods are really finder methods in disguise; the run-time environment behaves as

if you were trying to change the access intent for an instance you have already read from persistent store.

To avoid this problem, beans configured in a read-ahead hint are all driven to load with the same access

intent policy as the bean to which the read-ahead hint is applied.

I have a bean with a one-to-many relationship to a second bean. The first bean has a

pessimistic-update intent policy applied. When I try to add an instance of the second bean to the

first bean’s collection, I get an UpdateCannotProceedWithIntegrityException. Why?

The second bean probably has a read intent policy applied. When you add the second bean to the first

bean’s collection, you are not updating the first bean’s state, you are implicitly modifying the second

bean’s state. (The second bean contains a foreign key to the first bean, which is modified.)

To avoid this problem, ensure that both ends of the relationship have an update intent policy applied if you

expect to change the relationship at run time.

Important file for message-driven beans

The following file in the WAS_HOME/temp directory is important for the operation of the WebSphere

Application Server messaging service, so should not be deleted. If you do need to delete the

WAS_HOME/temp directory or other files in it, ensure that you preserve the following file:

server_name-durableSubscriptions.ser

You should not delete this file, because the messaging service uses it to keep track of durable

subscriptions for message-driven beans. If you uninstall an application that contains a

message-driven bean, this file is used to unsubscribe the durable subscription.

Client applications

Application client troubleshooting tips

This section provides some debugging tips for resolving common Java 2 Platform Enterprise Edition

(J2EE) application client problems. To use this troubleshooting guide, review the trace entries for one of

the J2EE application client exceptions, and then locate the exception in the guide. Some of the errors in

the guide are samples, and the actual error you receive can be different than what is shown here. You

might find it useful to rerun the launchClient command specifying the -CCverbose=true option. This option

provides additional information when the J2EE application client run time is initializing

162 IBM WebSphere Application Server-Network Deployment, Version 6: Troubleshooting and support

Error: java.lang.NoClassDefFoundError

 Explanation This exception is thrown when Java code cannot load the specified class.

Possible causes v Invalid or non-existent class

v Class path problem

v Manifest problem

Recommended

response

Check to determine if the specified class exists in a Java Archive (JAR) file within your

Enterprise Archive (EAR) file. If it does, make sure the path for the class is correct. For

example, if you get the exception:

java.lang.NoClassDefFoundError:

WebSphereSamples.HelloEJB.HelloHome

verify that the HelloHome class exists in one of the JAR files in your EAR file. If it exists,

verify that the path for the class is WebSphereSamples.HelloEJB.

If both the class and path are correct, then it is a class path issue. Most likely, you do not

have the failing class JAR file specified in the client JAR file manifest. To verify this situation,

perform the following steps:

1. Open your EAR file with the Application Server Toolkit or the Rational Web Developer

assembly tool, and select the Application Client.

2. Add the names of the other JAR files in the EAR file to the Classpath field.

This exception is generally caused by a missing Enterprise Java Beans (EJB) module name

from the Classpath field.

If you have multiple JAR files to enter in the Classpath field, be sure to separate the JAR

names with spaces.

If you still have the problem, you have a situation where a class is loaded from the file

system instead of the EAR file. This error is difficult to debug because the offending class is

not the one specified in the exception. Instead, another class is loaded from the file system

before the one specified in the exception. To correct this error, review the class paths

specified with the -CCclasspath option and the class paths configured with the Application

Client Resource Configuration Tool. Look for classes that also exist in the EAR file. You must

resolve the situation where one of the classes is found on the file system instead of in the

.ear file. Remove entries from the classpaths, or include the .jar files and classes in the

.ear file instead of referencing them from the file system.

If you use the -CCclasspath parameter or resource classpaths in the Application Client

Resource Configuration Tool, and you have configured multiple JAR files or classes, verify

they are separated with the correct character for your operating system. Unlike the Classpath

field, these class path fields use platform-specific separator characters, usually a colon (on

UNIX platforms) or a semi-colon (on Windows systems).

Note: The system class path is not used by the Application Client run time if you use the

launchClient batch or shell files. In this case, the system class path would not cause this

problem. However, if you load the launchClient class directly, you do have to search through

the system class path as well.

Chapter 6. Learn about WebSphere applications 163

Error: com.ibm.websphere.naming.CannotInstantiateObjectException: Exception occurred while

attempting to get an instance of the object for the specified reference object. [Root exception is

javax.naming.NameNotFoundException: xxxxxxxxxx]

 Explanation This exception occurs when you perform a lookup on an

object that is not installed on the host server. Your

program can look up the name in the local client Java

Naming and Directory Interface (JNDI) name space, but

received a NameNotFoundException exception because it

is not located on the host server. One typical example is

looking up an EJB component that is not installed on the

host server that you access. This exception might also

occur if the JNDI name you configured in your Application

Client module does not match the actual JNDI name of

the resource on the host server.

Possible causes v Incorrect host server invoked

v Resource is not defined

v Resource is not installed

v Application server is not started

v Invalid JNDI configuration

Recommended response If you are accessing the wrong host server, run the

launchClient command again with the -CCBootstrapHost

parameter specifying the correct host server name. If you

are accessing the correct host server, use the product

dumpnamespace command line tool to see a listing of the

host server JNDI name space. If you do not see the failing

object name, the resource is either not installed on the

host server or the appropriate application server is not

started. If you determine the resource is already installed

and started, your JNDI name in your client application

does not match the global JNDI name on the host server.

Use the Application Server Toolkit to compare the JNDI

bindings value of the failing object name in the client

application to the JNDI bindings value of the object in the

host server application. The values must match.

Error: javax.naming.ServiceUnavailableException: A communication failure occurred while

attempting to obtain an initial context using the provider url: ″iiop://[invalidhostname]″. Make sure

that the host and port information is correct and that the server identified by the provider URL is a

running name server. If no port number is specified, the default port number 2809 is used. Other

possible causes include the network environment or workstation network configuration. Root

exception is org.omg.CORBA.INTERNAL: JORB0050E: In Profile.getIPAddress(),

InetAddress.getByName[invalidhostname] threw an UnknownHostException. minor code: 4942F5B6

completed: Maybe

 Explanation This exception occurs when you specify an invalid host

server name.

Possible causes v Incorrect host server invoked

v Invalid host server name

Recommended response Run the launchClient command again and specify the

correct name of your host server with the

-CCBootstrapHost parameter.

164 IBM WebSphere Application Server-Network Deployment, Version 6: Troubleshooting and support

Error: javax.naming.CommunicationException: Could not obtain an initial context due to a

communication failure. Since no provider URL was specified, either the bootrap host and port of an

existing ORB was used, or a new ORB instance was created and initialized with the default

bootstrap host of ″localhost″ and the default bootstrap port of 2809. Make sure the ORB bootstrap

host and port resolve to a running name server. Root exception is

org.omg.CORBA.COMM_FAILURE: WRITE_ERROR_SEND_1 minor code: 49421050 completed: No

 Explanation This exception occurs when you run the launchClient

command to a host server that does not have the

Application Server started. You also receive this exception

when you specify an invalid host server name. This

situation might occur if you do not specify a host server

name when you run the launchClient tool. The default

behavior is for the launchClient tool to run to the local

host, because WebSphere Application Server does not

know the name of your host server. This default behavior

only works when you are running the client on the same

machine with WebSphere Application Server is installed.

Possible causes v Incorrect host server invoked

v Invalid host server name

v Invalid reference to localhost

v Application server is not started

v Invalid bootstrap port

Recommended response If you are not running to the correct host server, run the

launchClient command again and specify the name of

your host server with the -CCBootstrapHost parameter.

Otherwise, start the Application Server on the host server

and run the launchClient command again.

Error: javax.naming.NameNotFoundException: Name comp/env/ejb not found in context ″java:″

 Explanation This exception is thrown when the Java code cannot

locate the specified name in the local JNDI name space.

Possible causes v No binding information for the specified name

v Binding information for the specified name is incorrect

v Wrong class loader was used to load one of the

program classes

v A resource reference does not include any client

configuration information

Recommended response Open the EAR file with the Application Server Toolkit, and

check the bindings for the failing name. Ensure this

information is correct. If you are using Resource

References, open the EAR file with the Application Client

Resource Configuration Tool, and verify that the Resource

Reference has client configuration information and the

name of the Resource Reference exactly matches the

JNDI name of the client configuration. If the values are

correct, you might have a class loader error.

Error: java.lang.ClassCastException: Unable to load class:

org.omg.stub.WebSphereSamples.HelloEJB._HelloHome_Stub at

com.ibm.rmi.javax.rmi.PortableRemoteObject.narrow(portableRemoteObject.java:269)

 Explanation This exception occurs when the application program

attempts to narrow to the EJB home class and the class

loaders cannot find the EJB client side bindings.

Chapter 6. Learn about WebSphere applications 165

Possible causes v The files, *_Stub.class and _Tie.class, are not in the

EJB .jar file

v Class loader could not find the classes

Recommended response Look at the EJB .jar file located in the .ear file and verify

the class contains the Enterprise Java Beans (EJB) client

side bindings. These are class files with file names that

end in _Stub and _Tie. If the binding classes are in the

EJB .jar file, then you might have a class loader error.

Error: WSCL0210E: The Enterprise archive file [EAR file name] could not be found.

com.ibm.websphere.client.applicationclient.ClientContainerException:

com.ibm.etools.archive.exception.OpenFailureException

 Explanation This error occurs when the application client run time

cannot read the Enterprise Archive (EAR) file.

Possible causes The most likely cause of this error is that the system

cannot find the EAR file cannot be found in the path

specified on the launchClient command.

Recommended response Verify that the path and file name specified on the

launchclient command are correct. If you are running on

the Windows operating system and the path and file name

are correct, use a short version of the path and file name

(8 character file name and 3 character extension).

The launchClient command appears to hang and does not return to the command line when the

client application has finished.

 Explanation When running your application client using the

launchClient command the WebSphere Application

Server run time might need to display the security login

dialog. To display this dialog, WebSphere Application

Server run time creates an Abstract Window Toolkit (AWT)

thread. When your application returns from its main

method to the application client run time, the application

client run time attempts to return to the operating system

and end the Java virtual machine (JVM) code. However,

since there is an AWT thread, the JVM code will not end

until System.exit is called.

Possible causes The JVM code does not end because there is an AWT

thread. Java code requires that System.exit() be called

to end AWT threads.

Recommended response v Modify your application to call System.exit(0) as the

last statement.

v Use the -CCexitVM=true parameter when you call the

launchClient command.

For current information available from IBM Support on known problems and their resolution, see the IBM

customer support page.

IBM Support has documents that can save you time gathering information needed to resolve this problem.

Before opening a PMR, see the IBM customer support page.

166 IBM WebSphere Application Server-Network Deployment, Version 6: Troubleshooting and support

http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSC3NAD
http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSC3NAD
http://www-1.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSC3NAD&q=mustgather

Web services

Troubleshooting Web services

This topic provides an entry into the topics available to learn about ways that you can troubleshoot Web

services applications.

This topic provides information for you to troubleshoot during different steps of the development, assembly,

deployment, and security processes of a Web service.

Select the Web services topic area that you want to troubleshoot:

v Command-line tools

This topic provides information on troubleshooting the WSDL2Java command-line tool and the

Java2WSDL command-line tool.

v Java compiler errors

This topic discusses troubleshooting compiled bindings of Web services.

v Serialization or deserialization errors

This topic presents problems you might encounter performing serialization and deserialization in Web

services.

v Authentication challenges and authorization failures with Web services security

This topic discusses troubleshooting authentication and authorization when you are securing Web

services.

Troubleshooting Web services command-line tools

This topic discusses troubleshooting the WSDL2Java and Java2WSDL command-line tools that are used

when you develop Web services.

Each section in this topic is a problem that you might experience while using the WSDL2Java or

Java2WSDL tool. A solution is provided to help you troubleshoot the problem.

Multiprotocol port component restrictions with JSR109 Version 1.0 and 1.1

Java Specification Requests (JSR) 109 specification validation errors occur when deploying an enterprise

archive (EAR) file that contains a Web Services Description Language (WSDL) file with http, jms and ejb

bindings generated by the Java2WSDL tool.

The JSR 109 specification requires each port component defined in the webservices.xml deployment

descriptor file to refer to unique <servlet-class> elements in web.xml file for a JavaBeans implementation,

or a unique <session> element in ejb-jar.xml file for an Enterprise JavaBeans (EJB) implementation. The

servlet and session EJB are located in the webservices.xml file represented by <servlet-link> or <ejb-link>

element.

The WSDL2Java tool maps the ports found in a WSDL file to port components that are in the generated

webservices.xml file. If a single Web service has multiple bindings, in addition to a port for each of these

bindings, the webservices.xml file contains multiple port components that should all point to the same EJB

(<session>) or Java bean (<servlet-class>). Because of the JSR 109 restrictions, the webservices.xml file

is not valid and errors can occur during the deployment process.

The following example displays the error:

Error in <module> : CHKW6030E: Implementation class <class> referred to by port

components<port1> and <port2>. (JSR109 1.0: 7.1.2).

Here is the error with sample data:

Chapter 6. Learn about WebSphere applications 167

Error in WebSvcsInSession20EJB.jar : CHKW6030E: Implementation class WSMultiProtocol

referred to by port components WSMultiProtocolJMS and WSMultiProtocolEJB.(JSR109 1.0: 7.1.2).

You can work around the restriction by creating multiple <session> EJB definitions within the ejb-jar.xml

file that all point to the same implementation class, home interface and remote interface. You can still use

the same classes, but the ejb-jar.xml file <session> definitions that reference the classes and the

interfaces must be duplicated.

The following is an example of the webservices.xml file. Look for the classes and interfaces:

<webservices>

 <webservice-description>

 <webservice-description-name>WSMultiProtocolService</webservice-description-name>

 <wsdl-file>META-INF/wsdl/WSMultiProtocol.wsdl</wsdl-file>

 <jaxrpc-mapping file>META-INF/WSMultiProtocol_mapping.xml</jaxrpc-mapping file>

 <port-component>

 <port-component-name>WSMultiProtocolEjb</port-component-name>

 <wsdl-port>

 <namespaceURI>http://ejb.pli.tc.wssvt.ibm.com</namespaceURI>

 <localpart>WSMultiProtocolEjb</localpart>

 </wsdl-port>

 <service-endpoint-interface>com.ibm.wssvt.tc.pli.ejb.WSMultiProtocol

 </service-endpoint-interface>

 <service-impl-bean>

 <ejb-link>WSMultiProtocol</ejb-link>

 </service-impl-bean>

 </port-component>

 <port-component>

 <port-component-name>WSMultiProtocolJMS</port-component-name>

 <wsdl-port>

 <namespaceURI>http://ejb.pli.tc.wssvt.ibm.com</namespaceURI>

 <localpart>WSMultiProtocolJMS</localpart>

 </wsdlport>

 <service-endpoint-interface>com.ibm.wssvt.tc.pli.ejb.WSMultiProtocol

 </service-endpoint-interface>

 <service-impl-bean>

 <ejb-link>WSMultiProtocol_2</ejb-link>

 </service-impl_bean>

 </port-component>

 <port-component>

 <port-component-name>WSMultiProtocolJMS</port-component-name>

 <wsdl-port>

 <namespaceURI>http://ejb.pli.tc.wssvt.ibm.com</namespaceURI>

 <localpart>WSMultiProtocolJMS</localpart>

 </wsdlport>

 <service-endpoint-interface>com.ibm.wssvt.tc.pli.ejb.WSMultiProtocol

 </service-endpoint-interface>

 <service-impl-bean>

 <ejb-link>WSMultiProtocol_3</ejb-link>

 </service-impl_bean>

 </port-component>

 </webservice-description>

</webservices>

The following is an example of the ejb-jar.xml file. Look for the classes and interfaces, and how they are

duplicated:

<ejb-jar-id="ejb-jar_ID">

 <display-name>WebSvcsInsSession20EJB</display-name>

 <enterprise-beans>

 <session-id="WSMultiProtocol">

 <ejb-name>WSMultiProtocol</ejb-name>

 <home>com.ibm.wssvt.tc.pli.ejb.WSMultiProtocolHome</home>

 <remote>com.ibm.wssvt.tc.pli.ejb.WSMultiProtocol</remote>

 <ejb-class>com.ibm.wssvt.tc.pli.ejb.WSMultiProtocolWebSvcsBean</ejb-class>

 <session-type>Stateless</session-type>

168 IBM WebSphere Application Server-Network Deployment, Version 6: Troubleshooting and support

<transaction-type>Container</transaction-type>

 <ejb-ref-id="EjbRef_1082407586720">

 <description></description>

 <ejb-ref-name>ejb/BeneficiarySession</ejb-ref-name>

 <ejb-ref-type>Session</ejb-ref-type>

 <home>com.ibm.wssvt.tc.pli.ejb.BeneficiarySessionHome</home>

 <remote>com.ibm.wssvt.tc.pli.ejb.BeneficiarySession</remote>

 <ejb-link>PolicySession20EJB.jar#BeneficiarySession</ejb-link>

 </ejb-ref>

 <ejb-ref-id="EjbRef_1082407586790">

 <description></description>

 <ejb-ref-name>ejb/PolicySession</ejb-ref-name>

 <ejb-ref-type>Session</ejb-ref-type>

 <home>com.ibm.wssvt.tc.pli.ejb.PolicySessionHome</home>

 <remote>com.ibm.wssvt.tc.pli.ejb.PolicySession</remote>

 <ejb-link>PolicySession20EJB.jar#PolicySession</ejb-link>

 </ejb-ref>

 <session-id="WSMultiProtocol_2">

 <ejb-name>WSMultiProtocol_2</ejb-name>

 <home>com.ibm.wssvt.tc.pli.ejb.WSMultiProtocolHome</home>

 <remote>com.ibm.wssvt.tc.pli.ejb.WSMultiProtocol</remote>

 <ejb-class>com.ibm.wssvt.tc.pli.ejb.WSMultiProtocolWebSvcsBean</ejb-class>

 <session-type>Stateless</session-type>

 <transaction-type>Container</transaction-type>

 <ejb-ref-id="EjbRef_1082407586720_2">

 <description></description>

 <ejb-ref-name>ejb/BeneficiarySession</ejb-ref-name>

 <ejb-ref-type>Session</ejb-ref-type>

 <home>com.ibm.wssvt.tc.pli.ejb.BeneficiarySessionHome</home>

 <remote>com.ibm.wssvt.tc.pli.ejb.BeneficiarySession</remote>

 <ejb-link>PolicySession20EJB.jar#BeneficiarySession</ejb-link>

 </ejb-ref>

 <ejb-ref-id="EjbRef_1082407586790_2">

 <description></description>

 <ejb-ref-name>ejb/PolicySession</ejb-ref-name>

 <ejb-ref-type>Session</ejb-ref-type>

 <home>com.ibm.wssvt.tc.pli.ejb.PolicySessionHome</home>

 <remote>com.ibm.wssvt.tc.pli.ejb.PolicySession</remote>

 <ejb-link>PolicySession20EJB.jar#PolicySession</ejb-link>

 </ejb-ref>

 <session-id="WSMultiProtocol_3">

 <ejb-name>WSMultiProtocol_3</ejb-name>

 <home>com.ibm.wssvt.tc.pli.ejb.WSMultiProtocolHome</home>

 <remote>com.ibm.wssvt.tc.pli.ejb.WSMultiProtocol</remote>

 <ejb-class>com.ibm.wssvt.tc.pli.ejb.WSMultiProtocolWebSvcsBean</ejb-class>

 <session-type>Stateless</session-type>

 <transaction-type>Container</transaction-type>

 <ejb-ref-id="EjbRef_1082407586790_3">

 <description></description>

 <ejb-ref-name>ejb/BeneficiarySession</ejb-ref-name>

 <ejb-ref-type>Session</ejb-ref-type>

 <home>com.ibm.wssvt.tc.pli.ejb.BeneficiarySessionHome</home>

 <remote>com.ibm.wssvt.tc.pli.ejb.BeneficiarySession</remote>

 <ejb-link>PolicySession20EJB.jar#BeneficiarySession</ejb-link>

 </ejb-ref>

 <ejb-ref-id="EjbRef_1082407586790_3">

 <description></description>

 <ejb-ref-name>ejb/PolicySession</ejb-ref-name>

 <ejb-ref-type>Session</ejb-ref-type>

 <home>com.ibm.wssvt.tc.pli.ejb.PolicySessionHome</home>

 <remote>com.ibm.wssvt.tc.pli.ejb.PolicySession</remote>

Chapter 6. Learn about WebSphere applications 169

<ejb-link>PolicySession20EJB.jar#PolicySession</ejb-link>

 </ejb-ref>

 </session>

Avoiding application errors after uninstalling an interim fix, a fix pack, or a refresh pack

If an application uses functions that are provided by a particular fix and you remove the fix, the application

displays an error message. If you remove a fix, make sure that you retest your applications to check for

errors. Redeploy any applications that display an error message because of the missing fix.

For example, suppose you install a fix pack on WebSphere Application Server. Then, you create the stock

quote Web service, StockQuote. The WSDL2Java tool is used in a deployer role and generates a

ServiceLocator class that extends the AgnosticService class.

If you uninstall the fix pack, the application is using a new Web services class (AgnosticService) that the

version of WebSphere Application Server does not support. The application throws the following error:

java.lang.NoClassDefFoundError:

 Error while defining class:

 com.ibm.ws.wsfvt.test.stockquote.StockQuoteServiceLocator

 This error indicates that the class:

 com.ibm.webservices.multiprotocol.AgnosticService

 could not be located while defining the class:

 com.ibm.ws.wsfvt.test.stockquote.StockQuoteServiceLocator

You need to redeploy the application on the Application Server to emit code that does not use the

WebSphere Application Server version that is not supported by the Web services class that you use.

Using a proxy server to access the Internet while running the WSDL2Java command causes your

connection to time out

If you use an environment that requires a proxy server to access the Internet during the run of the

WSDL2Java command, the WSDL2Java command might not find the Internet information because the

proxy server has the potential to time out. For example, if the input WSDL file is located on the Internet

instead of a local drive, and you need to retrieve it from the Internet, the WSDL2Java command fails to

find the file because the proxy server times out.

You can work around this problem by editing the WSDL2Java.bat file when using a Windows operating

system or the WSDL2Java.sh file if you are using a Linux or Unix operating system. These files are located

in the <install_root>/WebSphere/AppServer/bin directory.

If you use a Windows operating system, set your proxy host and port values in the WSDL2Java.bat file:

PROXY_INFO="-Dproxy.httpHost=yourPproxyHost -Dproxy.httpPort=yourProxyPort

If you use a Linux or Unix operating system, set your proxy host and port values in the WSDL2Java.sh file:

PROXY_INFO="-Dproxy.httpHost=yourProxyHost -Dproxy.httpPort=yourProxyPort

Emitter failure error occurs when running the WSDL2Java command on a WSDL document

containing a JMS-style endpoint URL

If you run the WSDL2Java command-line tool on a WSDL document that contains a JMS-style endpoint

Web address, for example, jms:/..., the urlprotocols.jar file that contains the custom protocol handler

for the JMS protocol must be in the CLASSPATH variable statement. The error WSWS3099E: Error:

Emitter failure. Invalid endpoint address in port <x> in service <y>: <jms-url-string> is avoided

by making sure the urlprotocols.jar file is in the CLASSPATH variable statement.

To add the urlprotocols.jar file to the CLASSPATH variable statement:

170 IBM WebSphere Application Server-Network Deployment, Version 6: Troubleshooting and support

On Windows platforms, edit the install_root\bin\setupCmdLine.bat file and locate the line that sets the

WAS_CLASSPATH environment variable. Add %install_root%\lib\urlprotocols.jar to the end of the

line that sets the WAS_CLASSPATH environment variable.

On Linux and Unix platforms, edit the install_root/bin/setupCmdLine.sh file and add

$install_root/lib/urlprotocols.jar to the end of the line that sets the WAS_CLASSPATH environment

variable.

Make sure to use the proper deliminator character for your platform, for example, use a semi-colon (;) for

Windows platforms and a colon (:) for Linux and Unix platforms.

Troubleshooting Web services compiled bindings

This topic discusses troubleshooting compiled bindings of Web services that are developed and

implemented based on the Web Services for Java 2 Platform, Enterprise Edition (J2EE) specification

Each section in this topic is a problem that you might experience with compiled bindings for Web services.

A solution is provided to help you troubleshoot the problem.

Context root not recognized when mapping the default XML namespace to a Java package

When you map the default XML namespace to a Java package the context root is not recognized. If two

namespaces are the same up to the first slash, they map to the same Java package. For example, the

XML namespaces http://www.ibm.com/foo and http://www.ibm.com/bar both map to the www.ibm.com

Java package . Use the -NStoPkg option of the Java2WSDL command to specify the package for the fully

qualified namespace.

Java code to WSDL mapping cannot be reversed to the original Java code

If you find that a WSDL file that you created with the Java2WSDL command-line tool cannot be compiled

when regenerated into Java code using the WSDL2Java command-line tool, it is because the Java API for

XML-based remote procedure call (JAX-RPC) mapping from Java code to WSDL is not reversible back to

the original Java code.

To troubleshoot this problem, try specifying the -introspect option to the WSDL2Java command. The

-instrospect option indicates to the WSDL2Java command to look into existing Java classes and gather

information useful in generating artifacts that match the original Java code.

Troubleshooting the run time for a Web services client

This topic discusses troubleshooting Web services clients.

Each section in this topic is a problem that you might experience during the run-time of a Web services

client. A solution is provided to help you troubleshoot the problem.

Runtime migration error

If you installed a Web service application that was developed for a WebSphere Application Server version

prior to Version 6.0, you might get the following exception:

WSWS3701E: Error: An exception was encountered. Use wsdeploy to deploy

your application. This may correct the problem. The exception is

<exception data>.

This exception indicates that a problem occurred while running the application that was developed with

tools supported by versions prior to Version 6.0. A solution to the problem is to uninstall the application,

run the wsdeploy command and redeploy the application.

Chapter 6. Learn about WebSphere applications 171

WebServicesFault exception displays during the application server run time for certain Web

Services Description Language (WSDL) files

A WebServicesFault exception displays during the application server run time for WSDL files that define

operations with document style and literal use, and use the SOAP header to transmit the input data.

If the WSDL files define the operation with document style and literal use, and this operation maps the

input to the SOAP header, the Web services run time fails to find the correct operation for the target

service and the WebServicesFault exception displays.

To solve the problem, change the WSDL files so that the operation does not have input that uses the

SOAP header to transmit the data.

Increase the value of the ConnectionIOTimeOut parameter to avoid receiving an exception when

hosting Web services on WebSphere Application Server

When hosting Web services on WebSphere Application Server, the following exception displays:

java.net.SocketTimeOutException: Read Timed Out.

A slow network connection between the client and the Web service causes this problem. In such cases,

the HTTP socket might time out before the Web service engine completely reads the SOAP request. In the

majority of cases, a sudden increase in overall network activity causes this problem. The problem can also

occur when the client is accessing the Web service from a slow network connection and when the SOAP

request has a lot of data.

To solve the problem, increase the ConnectionIOTimeOut parameter for the Web container HTTP

transport. The default value is 5 seconds. Increase the value to 30 seconds or greater. Set the value using

the administrative console. Click Servers > Application Servers > server_name > Web Container >

HTTP Transports > port_number > Custom Properties > New. Type the following property name and

value:

v Name: ConnectionIOTimeOut

v Value: 30

If the Web service is hosted in a clustered environment, set the property on each application server in the

cluster. If your application server is listening on more than one port number, set the property on all ports.

Troubleshooting serialization and deserialization in Web services

This topic discusses problems that you can have when you perform serialization and deserialization in

Web services.

Each section in this topic is a problem that you might experience while serializing and deserializing Web

services. A solution is provided to help you troubleshoot the problem.

Time zone information in deserialized java.util.Calendar is not as expected

When the client and server are based on Java code and a java.util.Calendar instance is received, the

time zone in the received java.util.Calendar instance might be different from that of the

java.util.Calendar instance that was sent.

This difference occurs because the java.util.Calendar is encoded as an xsd:dateTime for transmission.

An xsd:dateTime is required to encode the correct time (base time plus or minus a time zone offset), but is

not required to preserve locale information, including the original time zone.

The fact that the time zone for the current locale is not preserved needs to be accounted for when

comparing Calendar instances. The java.util.Calendar class equals method checks that the time zones

are the same when determining equality. Because the time zone in a deserialized Calendar instance might

172 IBM WebSphere Application Server-Network Deployment, Version 6: Troubleshooting and support

not match the current locale, use the before and after comparison methods to test that two Calendars refer

to the same date and time as shown in the following examples:

java.util.Calendar c1 = ...// Date and time in time zone 1

java.util.Calendar c2 = ...// Same date and equivalent time, but in time zone 2

// c1 and c2 are not equal because their time zones are different

if (c1.equals (c2)) System.out.println("c1 and c2 are equal");

// but c1 and c2 do compare as "not before and not after" since they represent

the same date and time

if (!c1.after(c2) & !c1.before(c2) {

 System.out.println("c1 and c2 are equivalent");

}

Mixing Web services client and server bindings causes errors

Web Services for Java 2 Platform, Enterprise Edition (J2EE) and the Java API for XML-based remote

procedure call (JAX-RPC) do not support round-trip mapping between Java code and a Web Services

Description Language (WSDL) document for all Java types. For example, you cannot turn (serialize) a

Java Date into XML code and then turn it back (deserialize) into a Java Date. This action deserializes as

Java Calendar.

If you have a Java implementation that you create a WSDL document from, and you generate client

bindings from the WSDL document, the client classes can be different from the server classes even

though the client classes have the same package and class names. The Web service client classes must

be kept separate from the Web service server classes. For example, do not place the Web service server

bindings classes in a utility Java archive (JAR) file and then include a Web service client JAR file that

references the same utility JAR file.

If you do not keep the Web services client and server classes separate, a variety of exceptions can occur,

depending on the Java classes used. The following is a sample stack trace error that can occur:

com.ibm.ws.webservices.engine.PivotHandlerWrapper

TRAS0014I: The following exception was loggedjava.lang.NoSuchMethodError:

com.ibm.wssvt.acme.websvcs.ExtWSPolicyData: method getStartDate()Ljava/util/Date;

not found

at com.ibm.wssvt.acme.websvcs.ExtWSPolicyData_Ser.addElements

(ExtWSPolicyData_Ser.java: 210)

at com.ibm.wssvt.acme.websvcs.ExtWSPolicyData_Ser.serialize

(ExtWSPolicyData_Swer.java:29)

at com.ibm.ws.webservices.engine.encoding.SerializationContextImpl.

serializeActual (SerializationContextImpl.java 719)

at com.ibm.ws.webservices.engine.encoding.SerializationContextImpl.serialize

(SerializationContextImpl.java: 463)

The problem is caused by using an interface as shown in the following example for the service endpoint

interface in the service implementation:

package server:

public interface Test_SEI extends java.rmi.Remote {

 public java.util.Calendar getCalendar () throws java.rmi.RemoteException;

 public java.util.Date getDate() throws java.rmi.RemoteException;

}

When this interface is compiled and run through the Java2WSDL command-line tool, the WSDL document

maps the methods as shown in the following example:

<wsdl:message name="getDateResponse">

 <wsdl:part name="getDateReturn" type="xsd:dateTime"/>

</wsdl:message>

Chapter 6. Learn about WebSphere applications 173

<wsdl:message name="getCalendarResponse">

 <wsdl:part name="getCalendarReturn" type="xsd:dateTime"/>

</wsdl:message>

The JAX-RPC mapping implemented by the Java2WSDL tool has mapped both java.util.Date and

java.util.Calendar instances to the xsd:dateTime XML type . The next step is to use the generated WSDL

file to create a client for the Web service. When you run the WSDL2Java command-line tool on the

generated WSDL, the generated classes include a different version of the server.Test_SEI interface, for

example:

package server;

public interface Test_SEI extends java.rmi.Remote {

 public java.util.Calendar getCalendar() throws java.rmi.RemoteException;

 public java.util.Date getDate() throws java.rmi.RemoteException;

}

Note: The client version of the service.Test_SEI interface is different from the server version in that both

the getCalendar and getDate methods return java.util.Calendar. The serialization and deserialization code

that the client expects is the client version of the service endpoint interface. If the server version

inadvertently appears in the client CLASSPATH variable, at either compilation or run time, an error occurs.

In addition to theNoSuchMethod error, the IncompatibleClassChangeError and ClassCastException can

occur. However, almost any run-time exception can occur. The best practice is to be diligent about

separating client Web services bindings classes from server Web services bindings classes. Always place

the client bindings classes and server bindings classes in separate modules. If theses binding classes are

in the same application, place the bindings classes in utility JAR files that are not shared between

modules.

Troubleshooting authentication and authorization for Web services security based

on Web Services for J2EE

These Web services are developed and implemented based on the Web Services for Java 2 platform,

Enterprise Edition (J2EE) specification. This topic discusses the following troubleshooting authentication

and authorization when you are securing Web services:

v Authentication challenge or authorization failure is displayed

v Web services security enabled application fails to start

v Applications with Web services security enabled cannot interoperate between WebSphere Application

Server Version 6 and Version 5.0.2

Authentication challenge or authorization failure is displayed

You might encounter an authentication challenge or an authorization failure if a thread switch occurs. For

example, an application might create a new thread or a raw socket connection to a servlet might open. A

thread switch is not recommended by the Java 2 Platform, Enterprise Edition (J2EE) specification because

the security context information is stored in thread local. When a thread switch occurs, the authenticated

identity is not passed from thread local to the new thread. As a result, WebSphere Application Server

considers the identity to be unauthenticated. If you must create a new thread, you must propagate the

security context to the new thread. However, this process is not supported by WebSphere Application

Server.

Web services security enabled application fails to start

When a Web services security-enabled application fails to start, you might receive an error message

similar to the following:

174 IBM WebSphere Application Server-Network Deployment, Version 6: Troubleshooting and support

[6/19/03 11:13:02:976 EDT] 421fdaa2 KeyStoreKeyLo E WSEC5156E: An exception

while retrieving the key from KeyStore object:

java.security.UnrecoverableKeyException: Given final block not properly padded

The cause of the problem is that the keypass value or password provided for a particular key in the key

store is invalid. The key store values are specified in the KeyLocators elements of one of following binding

files: ws-security.xml, ibm-webservices-bnd.xmi or ibm-webservicesclient-bnd.xmi. Verify that the

keypass values for keys specified in the KeyLocators elements are correct.

Tracing Web services

You can trace the Web services runtime components, including an unmanaged client, managed client and

a server application. The procedure entry and exit, as well as the processing actions are traceable in the

runtime components. You can also trace user-defined exceptions, as well as SOAP messages that use

Java Message Service (JMS) or HTTP to request Web services.

The com.ibm.ws.webservices.engine.*=all=enabled specification traces the Web services runtime only.

See the step 4 for settings that you can use to trace user-defined exceptions and SOAP messages or

review Tracing SOAP messages with tcpmon to learn about tracing SOAP messages with the tcpmon

process.

The following tasks describe how you can enable trace for Web services:

1. Enable trace for a Web services unmanaged client.

a. Create a trace properties file by copying the %install_root\properties\TraceSettings.properties

file to the same directory as your client application Java archive (JAR) file.

b. Edit the properties file and change the value of traceFileName to output the trace data. For

example, traceFileName=c:\\temp\\myAppClient.trc.

c. Edit the properties file to remove com.ibm.ejs.ras.*=all=enabled and add

com.ibm.ws.webservices.engine.*=all=enabled.

d. Add the -DtraceSettingsFile=<trace_properties_file> option to the Java command line that is

used to run the client, where trace_properties_file represents the name of the properties file that

you created in the substeps a through c. For example, java

-DtraceSettingsFile=TraceSettings.properties myApp.myAppMainClass.

2. Enable trace for a Web services-managed client by invoking the launchClient command-line tool with

the following options:

-CCtrace=com.ibm.ws.webservices.engine.*=all=enabled

-CCtracefile=traceFileName For example:

%install_root%\bin\launchClient MyAppClient.ear

-CCtrace=com.ibm.ws.webservices.engine.*=all=enabled -CCtracefile=myAppClient.trc

See launchClient tool for more information.

3. Enable trace for a Web Services for J2EE server application.

a. Start WebSphere Application Server.

b. Open the administrative console.

c. Click Servers >Application Servers > server.

d. Click Diagnostic Trace Service.

e. In the Trace Specification field, delete the text *=all=enabled and add

com.ibm.ws.webservices.engine.*=all=enabled.

f. Click Save and Apply.

4. Enable trace for either SOAP messages or user-defined exceptions, or both. The following trace

specifications are used to trace SOAP messages:

v com.ibm.ws.webservices.trace.MessageTrace=all

Chapter 6. Learn about WebSphere applications 175

This specification traces the contents of a SOAP message, including the binary attachment data.

When the context-type of the SOAP message is not text/xml, the message probably contains

attachments. In this case, the message is displayed in the trace file in the hex dump format. The

following example illustrates a line in the hex dump format for non-text SOAP messages:

0000: 0D 0A 2D 2D 2D 2D 2D 2D - 3D 5F 50 61 72 74 5F 36 ..------=_Part_6

– 16 bytes of the message are displayed in each trace file line

– The first four digits are a hex number whose value is the byte offset into the SOAP message of

the first byte on the line.

– The next 16 two-digit hex numbers are the contents of each of the consecutive bytes in the

message.

– The ASCII representation of the bytes are displayed in the last 16 characters of the line, with

unprintable characters represented by a period.

v *=off:com.ibm.ws.webservices.*=all

You can trace all Web services information, including the SOAP messages and user-defined

exceptions, with this setting.

The following steps explain how to trace user-defined exceptions:

a. Enable logging of user-defined exceptions by specifying the

com.ibm.ws.webservices.trace.UserExceptionTrace=all trace string

The user-defined exceptions are not logged by default. A user-defined exception is an exception

that is defined in the Web Services Description Language (WSDL) file for an operation.

A user-defined exception often indicates an error-free condition. For example, a user-defined

exception often indicates an error-free condition. For example, the user-defined

OverdrawnException exception, can occur for the service endpoint implementation of the

makeWithdrawl() method. This exception indicates an expected condition and does not indicate an

error in the service endpoint implementation. Because these types of exceptions can occur during

normal processing, they are not logged by default.

Note: When a user-defined exception is logged, the information is sent to the trace.log file and

not to the SystemOut.log file.

You can also use the following trace strings to enable tracing for user-defined exceptions, as well

as other trace points:

v com.ibm.ws.webservices.*=all

Turns on all Web services runtime trace logs.

v com.ibm.ws.webservices.trace.*=all

Turns on MessageTrace and UserExceptionTrace.

You have enabled trace for the unmanaged clients, managed clients and the server applications.

Depending on the trace string specification, the trace can include runtime components, user-defined

exceptions and SOAP messages.

Analyze the message data.

Tracing SOAP messages with tcpmon

This topic discusses tracing SOAP messages that request Web services by using the tcpmon tool.

You can use other trace tools to trace SOAP messages, similar to how you can trace Web services

components. See Tracing Web services for more information about these other trace tools.

You can trace SOAP messages exchanged between a client and the server by installing a monitor or

sniffer application to capture the HTTP traffic between the two points. The WebSphere product provides a

utility class, com.ibm.ws.webservices.engine.utils.tcpmon, to trace the SOAP messages. The

176 IBM WebSphere Application Server-Network Deployment, Version 6: Troubleshooting and support

com.ibm.ws.webservices.engine.utils.tcpmon class redirects messages from a port, records the

messages, and forwards the messages to another port.

WebSphere Application Server typically listens on port 9080, or port 80 if you are using IBM HTTP Server.

The tcpmon process can be configured to listen on a particular port, such as 9088, while redirecting

messages to another port, such as 9080 or port 80. The client is redirected to use port 9088 to access

Web services.

Redirecting an application client to a different port is done by changing the SOAP address in the client

Web Services Description Language (WSDL) file to use port 9088 and then running the wsdeploy

command-line tool on the client enterprise archive (EAR) file to regenerate the service implementation.

Trace SOAP messages in Web services by following the actions listed in the steps for this task section.

1. Set up a development and unmanaged client run-time environment for Web services.

2. Run the java -Djava.ext.dirs=%WAS_EXT_DIRS% com.ibm.ws.webservices.engine.utils.tcpmon

command. A window labeled TCPMonitor is displayed.

3. Configure the TCPMonitor to listen on port 9088 and forward messages to port 9080.

a. In the Listen Port # field, enter 9088.

b. Click Listener.

c. In the TargetHostname field, enter localhost.

d. In the Target Port # field, enter 9080.

e. Click Add.

f. Click the Port 9088 tab that displays on the top of the page.

The messages exchanged between the client and server appear in the TCPMonitor Request and

Response pane.

Save the message data and analyze it.

Frequently asked questions about Web services

This topic presents frequently asked questions about Web services that are developed and implemented

based on the Web Services for Java 2 Platform, Enterprise Edition (J2EE) specification.

v What IBM development tools work with Web Services that are developed based on the Web Services

for J2EE specification?

v Is Web Services for J2EE technology part of the J2EE specification?

v What is the relationship between the Web Services for J2EE specification and the Web Service

Invocation Framework (WSIF)?

v What is the relationship between Apache SOAP 2.3 and the Web Services for J2EE specification?

v What standards does the Web Services for J2EE component of WebSphere Application Server Version

6.0 support?

v Does the Web Services for J2EE technology interoperate with other SOAP implementations, like .NET?

v Can I use a JavaBeans component to implement a Web service using SOAP Java Message Service

(JMS) invocation?

v Does the SOAP and JMS support interoperate with other vendors?

v How does two-way messaging with a SOAP and JMS implementation work? Can it support multiple

clients making simultaneous requests?

What IBM development tools work with Web Services that are developed based on the Web

Services for J2EE specification?

The assembly tools, Application Server Toolkit (AST) and Rational Web Developer, provide a graphical

interface for developing code artifacts, assembling the code artifacts into various archives (modules) and

configuring related Java 2 Platform, Enterprise Edition (J2EE) Version 1.2, 1.3 or 1.4 compliant

deployment descriptors.

Chapter 6. Learn about WebSphere applications 177

Is Web Services for J2EE technology part of the J2EE specification?

WebSphere Application Server Version 6.0 is based on J2EE 1.4. For WebSphere Application Server

Version 5.0.2 and Version 5.1.x, the Web Services for J2EE Version 1.0 specification is an addition to

J2EE 1.3. The J2EE specification 1.4 requires support for Web Services for J2EE Version 1.1. Minor

differences exist between the J2EE 1.3 Version (JSR-109 Version 1.0) and the J2EE 1.4 Version (JSR-109

Version 1.1).

What is the relationship between the Web Services for J2EE specification and the Web Service

Invocation Framework (WSIF)?

Web Services for J2EE and WSIF represent two different programming models for accessing Web

services. Web Services for J2EE is standard, Java-centric, and more statically bound to Web Services

Description Language (WSDL) documents because of the use of generated stubs. WSIF directly models

WSDL. WSIF is more suitable when dynamically interpreting WSDL. WebSphere Application Server

Version 6.0 leverages both technologies to achieve dynamic, high performing standards-based Web

services implementations.

What is the relationship between Apache SOAP 2.3 and the Web Services for J2EE specification?

Apache SOAP ships with WebSphere Application Server Versions 4.0 and 5.0. It continues to co-exist with

Web services that are based on the Web Services for J2EE technology. Apache SOAP is a proprietary API

and applications written for it are not portable to other SOAP implementations. Applications written

according to the Web Services for J2EE are portable to any vendor implementation that supports this

specification.

What standards does the Web Services for J2EE component of WebSphere Application Server

Version 6.0 support?

The following standards are supported by the Web Services for J2EE component of WebSphere

Application Server Version 6.0:

v SOAP Version 1.1

v Web Services Description Language (WSDL) Version 1.1

v Web Services for J2EE Version 1.1

v Java API for XML-Based RPC (JAX-RPC) Version 1.1

v SOAP with attachments API for Java (SAAJ) Version 1.2

Does the Web Services for J2EE technology interoperate with other SOAP implementations, like

.NET?

WebSphere Application Server Version 6.0 supports Web services that are consistent with the WS-I Basic

Profile 1.0, and should interoperate with any other vendor conforming to this specification.

Can I use a JavaBeans component to implement a Web service using SOAP Java Message Service

(JMS) invocation?

The SOAP and JMS support uses message-driven beans (MDB) to implement the JMS endpoint. You can

use MDBs in the Enterprise JavaBeans (EJB) container and delegated to an enterprise bean. If you want

to use a JavaBeans instead of an enterprise bean to implement the service endpoint, you must create a

facade enterprise bean that delegates to the JavaBeans implementation.

Does the SOAP and JMS support interoperate with other vendors?

No. Currently no specification exists for SOAP and JMS invocationss, therefore each vendor chooses an

implementation technique.

178 IBM WebSphere Application Server-Network Deployment, Version 6: Troubleshooting and support

How does two-way messaging with a SOAP and JMS implementation work? Can it support multiple

clients making simultaneous requests?

Before a client issues a two-way request, it creates a temporary JMS queue to receive the response. This

temporary queue is specified as the replyTo destination that is in the outgoing JMS request message. After

the server processes the request, it directs the response to the replyTo destination specified in the request

message. The client deletes the temporary queue after the response is received. The server can handle

simultaneous requests from multiple clients because each incoming request message contains the

destination to which the reply is sent.

Troubleshooting the Web Services Invocation Framework

For information on resolving WebSphere-level problems, see Diagnosing and fixing problems.

To identify and resolve Web Services Invocation Framework (WSIF)-related problems, you can use the

standard WebSphere Application Server trace and logging facilities. If you encounter a problem that you

think might be related to WSIF, you can check for error messages in the WebSphere Application Server

administrative console, and in the application server stdout.log file. You can also enable the application

server debug trace to provide a detailed exception dump.

A list of the WSIF run-time system messages, with details of what each message means, is provided in

Message reference for WSIF.

A list of the main known restrictions that apply when using WSIF is provided in WSIF - Known restrictions.

Here is a checklist of major WSIF activities, with advice on common problems associated with each

activity:

Create service

Handcrafted WSDL can cause numerous problems. To help ensure that your WSDL is valid, use a

tool such as Rational Application Developer to create your service.

Define transport mechanism

For the Java Message Service (JMS), check that you have set up the Java Naming and Directory

Interface (JNDI) correctly, and created the necessary connection factories and queues.

 For SOAP, make sure that the deployment descriptor file dds.xml is correct - preferably by creating

it using Rational Application Developer or similar tooling.

Create client - Java code

Follow the correct format for creating a WSIF service, port, operation and message. For examples

of correct code, see the Address Book Sample.

Compile code (client and service)

Check that the build path against code is correct, and that it contains the correct levels of JAR

files.

 Create a valid EAR file for your service in preparation for deployment to a Web server.

Deploy service

When you install and deploy the service EAR file, check carefully any messages given when the

service is deployed.

Server setup and start

Make sure that the WebSphere Application Server server.policy file (in the /properties

directory) has the correct security settings. For more information, see Enabling security for WSIF.

WSIF setup

Check that the wsif.properties file is correctly set up. For more information, see Maintaining the

WSIF properties file.

Run client

Either check that you have defined the class path correctly to include references to your client

classes, WSIF JAR files and any other necessary JAR files, or (preferably) run your client using

the WebSphere Application Server launchClient tool.

Chapter 6. Learn about WebSphere applications 179

http://www.w3.org/TR/2000/NOTE-SOAP-20000508/

Here is a list of common errors, and information on their probable causes:

v “No class definition” errors received when running client code.

This problem usually indicates an error in the class path setup. Check that the relevant JAR files are

included.

v “Cannot find WSDL” error.

Some likely causes are:

– The application server is not running.

– The server location and port number in the WSDL are not correct.

– The WSDL is badly formed (check the error messages in the application server stdout.log file).

– The application server has not been restarted since the service was installed.

You might also try the following checks:

– Can you load the WSDL into your Web browser from the location specified in the error message?

– Can you load the corresponding WSDL binding files into your Web browser?

v Your Web service EAR file does not install correctly onto the application server.

It is likely that the EAR file is badly formed. Verify the installation by completing the following steps:

– For an EJB binding, run the WebSphere Application Server tool \bin\dumpnamespace. This tool lists

the current contents of the JNDI directory.

– For a SOAP over HTTP binding, open the http://pathToServer/WebServiceName/admin/list.jsp

page (if you have the SOAP administration pages installed). This page lists all currently installed

Web services.

– For a SOAP over JMS binding, complete the following checks:

- Check that the queue manager is running.

- Check that the necessary queues are defined.

- Check the JNDI setup.

- Use the “display context” option in the jmsadmin tool to list the current JNDI definitions.

- Check that the Remote Procedure Call (RPC) router is running.

v There is a permissions problem or security error.

Check that the WebSphere Application Server server.policy file (in the /properties directory) has the

correct security settings. For more information, see Enabling security for WSIF.

v Using WSIF with multiple clients causes a SOAP parsing error.

Before you deploy a Web service to WebSphere Application Server, you must decide on the scope of

the Web service. The deployment descriptor file dds.xml for the Web service includes the following line:

 <isd:provider type="java" scope="Application"

You can set the Scope attribute to Application or Session. The default setting is Application, and this

value is correct if each request to the Web service does not require objects to be maintained for longer

than a single instance. If Scope is set to Application the objects are not available to another request

during the execution of the single instance, and they are released on completion. If your Web service

needs objects to be maintained for multiple requests, and to be unique within each request, you must

set the scope to Session. If Scope is set to Session, the objects are not available to another request

during the life of the session, and they are released on completion of the session. If scope is set to

Application instead of Session, you might get the following SOAP error:

SOAPException: SOAP-ENV:ClientParsing error, response was:

FWK005 parse may not be called while parsing.;

nested exception is:

[SOAPException: faultCode=SOAP-ENV:Client; msg=Parsing error, response was:

FWK005 parse may not be called while parsing.;

 targetException=org.xml.sax.SAXException:

FWK005 parse may not be called while parsing.]

v Using the same names for JMS messaging queues and queue connection factories that run on

application servers on different machines can cause JNDI lookup errors. You should not use the

same names for messaging queues and queue connection factories that run on application servers on

different machines, because WSIF always looks first for JMS destinations locally, and only uses the full

180 IBM WebSphere Application Server-Network Deployment, Version 6: Troubleshooting and support

JNDI reference if it cannot find the destination locally. For example, if you run a Web service on a

remote machine, and have an application server running locally that uses the same names for the

messaging queues and queue connection factories, then WSIF will find and use the local queues even

if the remote JNDI destination is provided in full in the WSDL service definition.

v The current WSIF default SOAP provider (the IBM Web Service SOAP provider) does not fully

interoperate with services that are running on the former (Apache SOAP) provider. This restriction

is due to the fact that the IBM Web Service SOAP provider is designed to interoperate fully with a

JAX-RPC compliant Web service, and Apache SOAP cannot provide such a service. To enable

interoperation, modify either your Web service or the WSIF default SOAP provider as described in WSIF

SOAP provider: working with legacy applications.

Trace and logging for WSIF

If you want to enable trace for the Web Services Invocation Framework (WSIF) API within WebSphere

Application Server, and have trace, stdout and stderr for the application server written to a well-known

location, see Enabling trace.

WSIF offers trace points at the opening and closing of ports, the invocation of services, and the responses

from services.

To trace the WSIF API, you need to specify the following trace string:

wsif=all=enabled

WSIF also includes a SimpleLog utility through which you can run trace when using WSIF outside of

WebSphere Application Server. To enable this utility, complete the following steps:

1. Create a file named commons-logging.properties with the following contents:

org.apache.commons.logging.LogFactory=org.apache.commons.logging.impl.LogFactoryImpl

org.apache.commons.logging.Log=org.apache.commons.logging.impl.SimpleLog

2. Create a file named simplelog.properties with the following contents:

org.apache.commons.logging.simplelog.defaultlog=trace

org.apache.commons.logging.simplelog.showShortLogname=true

org.apache.commons.logging.simplelog.showdatetime=true

3. Put both these files, and the commons-logging.jar file, on the class path.

The SimpleLog uitility writes trace to the System.err file.

WSIF (Web Services Invocation Framework) messages

This topic contains a list of the WSIF run-time system messages, with details of what each message

means.

WebSphere system messages are logged from a variety of sources, including application server

components and applications. Messages logged by application server components and associated IBM

products start with a unique message identifier that indicates the component or application that issued the

message.

For more information about the message identifier format, see the topic Message reference.

WSIF0001E: An extension registry was not found for the element type “{0}”

Explanation: Parameters: {0} element type. No extension registry was found for the element type

specified.

 User Response: Add the appropriate extension registry to the port factory in your code.

WSIF0002E: A failure occurred in loading WSDL from “{0}”

Explanation: Parameters: {0} location of the WSDL file. The WSDL file could not be found at the

location specified or did not parse correctly

Chapter 6. Learn about WebSphere applications 181

User Response: Check that the location of the WSDL file is correct. Check that any network

connections required are available. Check that the WSDL file contains valid WSDL.

WSIF0003W: An error occurred finding pluggable providers: {0}

Explanation: Parameters: {0} specific details about the error. There was a problem locating a

WSIF pluggable provider using the J2SE 1.3 JAR file extensions to support service providers

architecture. The WSIF trace file will contain the full exception details.

 User Response: Verify that a META-INF/services/org.apache.wsif.spi.WSIFProvider file exists in a

provider jar, that each class referenced in the META-INF file exists in the class path, and that each

class implements org.apache.wsif.spi.WSIFProvider. The class in error will be ignored and WSIF

will continue locating other pluggable providers.

WSIF0004E: WSDL contains an operation type “{0}” which is not supported for “{1}”

Explanation: Parameters: {0} name of the operation type specified. {1} name of the portType for

the operation. An operation type which is not supported has been specified in the WSDL.

 User Response: Remove any operations of the unsupported type from the WSDL. If the operation

is required then make sure all messages have been correctly specified for the operation.

WSIF0005E: An error occurred when invoking the method “{1}” . (“{0}”)

Explanation: Parameters: {0} name of communication type. For example EJB or Apache SOAP.

{1} name of the method that failed. An error was encountered when invoking a method on the Web

service using the communication shown in brackets.

 User Response: Check that the method exists on the Web service and that the correct parts have

been added to the operation as described in the WSDL. Network problems might be a cause if the

method is remote and so check any required connections.

WSIF0006W: Multiple WSIFProvider found supporting the same namespace URI “{0}” . Found (“{1}”

) Explanation: Parameters: {0} the namespace URI. {1} a list of the WSIFProvider found.. There

are multiple org.apache.wsif.spi.WSIFProvider classes in the service provider path that support the

same namespace URI.

 User Response: A following WSIF0007I message will be issued notifying which WSIPFProvider

will be used. Which WSIFProvider is chosen is based on settings in the wsif.properties file, or if

not defined in the properties, the last WSIFProvider found will be used. See the wsif.properties file

for more details on how to define which provider should be used to support a namespace URI.

WSIF0007I: Using WSIFProvider “{0}” for namespaceURI “{1}”

Explanation: Parameters: {0} the classname of the WSIFProvider being used. {1} the

namespaceURI the provider will be used to support.. Either a previous WSIF0006W message has

been issued or the SetDynamicWSIFProvider method has been used to override the provider used

to support a namespaceURI.

 User Response: None. See also WSIF0006W.

WSIF0008W: WSIFDefaultCorrelationService removing correlator due to timeout. ID:“{0}”

Explanation: Parameters: {0} the ID of the correlator being removed from the correlation service.

A stored correlator is being removed from the correlation service due to its timeout expiring.

 User Response: Determine why no response has been received for the asynchronous request

within the timeout period. The wsif.asyncrequest.timeout property of the wsif.properties file defines

the length of the timeout period.

WSIF0009I: Using correlation service - “{0}”

Explanation: Parameters: {0} the name of the correlation service being used. This identifies the

name of the correlation service that will be used to process asynchronous requests.

 User Response: None. If a correlation service other than the default WSIF supplied one is

required, ensure that it is correctly registered in the JNDI java:comp/wsif/WSIFCorrelationService

namespace.

WSIF0010E: Exception thrown while processing asynchronous response - “{0}”

Explanation: Parameters: {0} the error message string of the exception. While processing the

response from an executeRequestResponseAsync call an exception was thrown.

182 IBM WebSphere Application Server-Network Deployment, Version 6: Troubleshooting and support

User Response: Use the exception error message string to determine the cause of the error. The

WSIF trace will have more details on the error including the exception stack trace.

WSIF0011I: Preferred port “{0}” was not available

Explanation: Parameters: {0} the user’s preferred port. The preferred port set by the user on

org.apache.wsif.WSIFService is not available

 User Response: None unless this message appears for long periods of time in which case the

user might want to pick a different port as their preferred port.

WSIF - Known restrictions

This topic lists the main known restrictions that apply when using WSIF.

Threading

WSIF is not thread-safe.

External Standards

WSIF supports:

v SOAP Version 1.1 (not 1.2 or later).

v WSDL Version 1.1 (not 1.2 or later).

WSIF does not provide WS-I compliance, and it does not support the Java API for XML-based

Remote Procedure Calls (JAX-RPC) Version 1.1 (or later).

Full schema parsing

WSIF does not support full schema parsing. For example, WSDL references in complex types in

the schema are not handled, and attributes are not handled.

SOAP WSIF does not support:

v SOAP headers that are passed as <parts>.

v Unreferenced attachments in SOAP responses.

v Document Encoded style SOAP messages.

Note: This is not primarily a WSIF restriction. Although you can specify Document Encoded

style in WSDL, it is not generally considered to be a valid option and is not supported by

the Web Services Interoperability Organization (WS-I).

SOAP provider interoperability

The current WSIF default SOAP provider (the IBM Web Service SOAP provider) does not fully

interoperate with services that are running on the former (Apache SOAP) provider. This restriction

is due to the fact that the IBM Web Service SOAP provider is designed to interoperate fully with a

JAX-RPC compliant Web service, and Apache SOAP cannot provide such a service. For

information on how to overcome this restriction, see WSIF SOAP provider: working with legacy

applications

Type mappings

The current WSIF default SOAP provider (the IBM Web Service SOAP provider) conforms to the

JAX-RPC type mapping rules that were finalized after the former (Apache SOAP) provider was

created. The majority of types are mapped the same way by both providers. The exceptions are:

xsd:date, xsd:dateTime, xsd:hexBinary and xsd:QName. Both client and service need to use the

same mapping rules if any of these four types are used. Below is a table detailing the mapping

rules for these four types:

 XML Data Type Apache SOAP Java Mapping JAX-RPC Java Mapping

xsd:date java.util.Date Not supported

xsd:dateTime Not supported java.util.Calendar

xsd:hexBinary Hexadecimal string byte []

xsd:QName org.apache.soap.util.xml.QName javax.xml.namespace.QName

Chapter 6. Learn about WebSphere applications 183

http://www.ws-i.org/

Arrays and complex types

WSIF does not support general complex types, it only handles complex types that map to Java

Beans. To use schema complex types, you must write your own custom serializers. The specific

complex type and array support for WSIF outbound invocation of Web services is as follows:

v WSIF supports Java classes generated by WebSphere Studio Application Developer -

Integration Edition (WSAD-IE) message generators (the normal case when WSDL files are

downloaded from somewhere else). The WSAD-IE-based generation happens automatically

when you use the BPEL editor, or the generation actions available on the Enterprise Services

context menu, or the Business Integration toolbar.

v WSIF does not support Java beans generated by other tools, including the base WSAD tool.

v For WSAD-IE generated Java beans, attributes defined in the WSDL do not work. That is to say

that these attributes, although they appear in the Java beans generated to represent the

complex type, do not appear in the SOAP request created by WSIF.

v WSIF does not support arrays when they are a field of a Java bean. That is to say, WSIF only

supports an array that is passed in as a named <part>. If an array is wrappered inside a Java

bean, the array is not serialized in the same way.

Object Serialization

WSIF does not support serialization of objects across different releases.

Asynchronous invocation

WSIF supports synchronous invocation for all providers. For the JMS and the SOAP over JMS

providers, WSIF also supports asynchronous invocation. You should call the supportsAsync()

method before trying to execute an asynchronous operation.

The EJB provider

The target service of the WSIF EJB provider must be a remote-home interface, it cannot be an

EJB local-home interface. In addition, the EJB stub classes must be available on the client class

path.

Running outside WebSphere Application Server

WSIF is not supported for use outside WebSphere Application Server.

UDDI Registry troubleshooting

When the IBM WebSphere UDDI Registry is running, it might issue messages to report events or errors.

You can use these messages, described in Messages as your first aid to problem determination. If you

need more details about the causes of a problem, you can turn on tracing for UDDI, as described in:

v Turning on UDDI Registry trace

Some errors that you might encounter when setting up or using the UDDI Registry, and their causes, are

described in Common Causes of Errors in the UDDI Registry

Turning on UDDI Registry trace

To enable trace, specify com.ibm.uddi.* as the trace specifier:

’com.ibm.uddi.*=all=enabled’

This enables all types of trace for the UDDI Registry. Please refer to ″Enabling trace″ elsewhere in this

Information Center for more information about using the administrative console to enable or disable trace.

Common causes of errors in the UDDI Registry

Below are a few of the common causes of errors that might be found and their suggested solutions.

v The first start of the UDDI application may take some time to complete:

– When you start the UDDI Registry application for the first time with a new UDDI Registry database, it

must perform UDDI initialization, which occurs automatically for a default UDDI node, or when

184 IBM WebSphere Application Server-Network Deployment, Version 6: Troubleshooting and support

requested for a customized UDDI node. UDDI initialization populates the UDDI Registry with

pre-defined data and entities, and can therefore take some time to complete. This is expected

behavior. Note that this only occurs on the first start, not subsequent starts, of the UDDI application.

– If you use WSADMIN to issue a command to start the UDDI application, then depending on your

TCP timeout settings, this request might time out while waiting for UDDI to complete initialization.

The UDDI initialization and the starting of the UDDI application will continue unaffected by this

timeout, and will complete normally.
v On Unix and Linux platforms, if using DB2, run the db2profile script before issuing the startServer.sh

server1 command. This script is located within the DB2 instance home directory under sqllib and is

invoked by typing:

. /home/db2inst1/sqllib/db2profile

Note: In the above example, notice that the ’.’ is followed by a single space character.

Note: On Unix and Linux platforms the DB2 user must have a db2profile at $HOME/sqllib/db2profile

v There is a limitation concerning URL rewriting causing JavaScript syntax errors on several Web pages

in the UDDI User Console. Because of this, cookies must be enabled in client browsers, the application

server must have cookies enabled as the session tracking mechanism, and URL rewriting must be

disabled.

v If you run the uddiDeploy.jacl with the default option, and you have not first deleted the UDDI

Cloudscape database (from the databases subdirectory of your server profile) the UDDI database will

not be recreated, and you will get an error message. This error can be ignored if you did not intend to

replace the Cloudscape database.

v If attempting to use a remote DB2 database and you are experiencing problems attaching to the remote

system, one of the possible causes might be IP addressing. You should not have this problem if the

remote system is using a static IP address. If, however, the remote system is using DHCP, the two

systems must be aware of each others subnet mask.

For Windows, the subnet mask can be found by starting a Command Prompt and entering ″ipconfig″ on

the remote system. On the host system, the WINS might need to be edited to add the remote subnet

mask. To do this on Windows go to the following commands:

1. START => Network and Dial-up Connections => Local Area Network Connection 2 => Internet

Protocol (TCP/IP) and click on Properties

2. Click on ″Advanced″.

3. Click on the WINS tab and add the new subnet mask

4. Move the new subnet mask to the top of the list by highlighting it and pressing the ″Up″ arrow until it

is the top of the list of WINS addresses

On Unix platforms, you can use ifconfig to determine the subnet mask.

v If you cannot see your UDDI node in the administrative console list of available nodes, check that the

UDDI application is started on the relevant WebSphere node/server.

v If you are unable to issue UDDI requests; for example, you start the UDDI user console and get errors

when trying to publish or inquire, it is possible that:

1. the database is not currently loaded or configured. Check the output from creating the database.

2. the database is not correctly configured. Check the JDBC provider and datasource definitions are

correct. This can be validated by using the Test Connection button on the administrative console.

3. the UDDI node is not initialized. Check the UDDI node page on the administrative console. If the

entry for the node in question does not show as activated, or deactivated, try to initialize the node

having set any policies or properties first.

4. the UDDI node is currently deactivated, while UDDI runtime settings are being updated. Check the

UDDI node page on the administrative console. If the entry for the node in question shows as

deactivated, then wait for it to change to activated, and then retry the request.

Reporting problems with the UDDI Registry

If you report a problem with the IBM WebSphere UDDI Registry component to IBM, supply the following

information:

1. A detailed description of the problem.

Chapter 6. Learn about WebSphere applications 185

2. The build date and time of the version you are using. This can be obtained as follows:

v In the WAS_HOME/profiles/<profile_name>/installedApps/<cell_name> subdirectory of the

WebSphere installation location, you will find a subdirectory called

UDDI_Registry.<nodename>.<servername>.ear, where <nodename> is the name of the node into

which the UDDI Registry application is installed, and <servername> is the name of the server.

Within that subdirectory, you will find a file called version.txt. Include the contents of this file as part

of your information.

v If the UDDI Registry has been started with tracing enabled for the UDDI component, you should find

a trace entry in the WebSphere trace log that includes the strings ″getUDDIMessageLogger″ and

″UDDI Build :″ followed by the build date and time, and the build system. Also include this

information.
3. Any relevant log files and trace files.

v If the problem occurred while setting up and installing the UDDI Registry application the setup script

uddiDeploy.jacl, supply the log output from running the script. (If you did not redirect the output from

the script file to a log file, rerun the script, this time redirecting the output as described in the section

’Setting up and deploying the UDDI Registry’.) The log file is written to the directory from which you

ran the setup script.

v If the problem occurred while removing the UDDI Registry application using the remove script,

uddiRemove.jacl, supply the log output from running the script. (If you did not redirect the output

from the script file to a log file, rerun the script, this time redirecting the output as described in the

section ’Removing a user customized UDDI Registry node’ or ’Removing a default UDDI Registry

node’.) The log file is written to the directory from which you ran the remove script.

v If the problem occurred while running the UDDI Registry, enable UDDI tracing (if not already

enabled) and supply the trace log from the logs directory of the application server on which the

UDDI Registry was running. See ’Turning on UDDI Trace’ for details on how to enable UDDI tracing.

The Trace string that is most useful for initial analysis of problems by IBM is

″com.ibm.uddi.*=all=enabled″.

v Also supply the WebSphere log files system.out and system.err.

v Supply details of the version of IBM WebSphere Application Server you are running by executing the

command versioninfo (Windows) or versioninfo.sh (Unix platforms) on the application server

node and directing the output to a log file.
4. If appropriate, any application code that you are using and the output produced by the application

code.

5. UDDI utilizes First Failure Data Capture (FFDC) to capture data for unexpected UDDI errors. Run the

WebSphere collector tool to collect the FFDC data and send the resulting jar to IBM. See Running the

collector tool.

Removing a user customized UDDI Registry node:

To completely remove the UDDI Registry application from the target application server in the deployment

manager cell, run the wsadmin (wsadmin.sh on Unix Platforms) script uddiRemove.jacl, which is located in

the <WAS_install_dir>\bin directory of the deployment manager install tree.

At a command prompt enter:

wsadmin -f uddiRemove.jacl

 servername

 nodename

 > uddiremove.log

Where servername and nodename are the server and node where you have deployed the UDDI Registry

application. By default output will go to the screen, but, optionally, you can specify ’> uddiremove.log’ to

direct output to a log file. For example,

wsadmin -f uddiRemove.jacl server1 myriad

will remove the UDDI Registry application and related files from server server1 running in node myriad,

and will send any messages to the screen.

186 IBM WebSphere Application Server-Network Deployment, Version 6: Troubleshooting and support

In the case of a Network Deployment configuration, the default option cannot be used in the deployment

manager.

Data access resources

Connection and connection pool statistics

Performance Monitoring Infrastructure (PMI) method calls that are supported in the two existing

Connection Managers (JDBC and J2C) are still supported in this version of WebSphere Application Server.

The calls include:

v ManagedConnectionsCreated

v ManagedConnectionsAllocated

v ManagedConnectionFreed

v ManagedConnectionDestroyed

v BeginWaitForConnection

v EndWaitForConnection

v ConnectionFaults

v Average number of ManagedConnections in the pool

v Percentage of the time that the connection pool is using the maximum number of ManagedConnections

v Average number of threads waiting for a ManagedConnection

v Average percent of the pool that is in use

v Average time spent waiting on a request

v Number of ManagedConnections that are in use

v Number of Connection Handles

v FreePoolSize

v UseTime

Java Specification Request (JSR) 77 requires statistical data to be accessed through managed beans

(Mbeans) to facilitate this. The Connection Manager passes the ObjectNames of the Mbeans created for

this pool. In the case of Java Message Service (JMS) null is passed in. The interface used is :

PmiFactory.createJ2CPerf(

 String pmiName, // a unique Identifier for JCA /JDBC. This is the

 // ConnectionFactory name.

 ObjectName providerName,// the ObjectName of the J2CResourceAdapter

 // or JDBCProvider Mbean

 ObjectName factoryName // the ObjectName of the J2CConnectionFactory

 // or DataSourceMbean.

)

Chapter 6. Learn about WebSphere applications 187

The following Unified Modeling Language (UML) diagram shows how JSR 77 requires statistics to be

reported :

<<JavaInterface>>

<<JavaInterface>>

<<JavaInterface>>

<<JavaInterface>>

+ getConnections ()

+ getConnectionFactory ()

+ getCloseCount ()

+ getWaitTime ()

+ getFreePoolSize ()

+ getUseTime ()

+ getPoolSize ()

+ getWaitingThreadCount ()

+ getConnections ()

+ getConnectionPools ()

+ getManageConnectionFactory ()

+ getCreateCount ()

+ getConnectionPools ()

JCAStats

JCAConnectionStats

JCAConnectionPoolStats

JDBCStats

JDBCDataSource

<<JavaInterface>>

<<JavaInterface>>

+ getJdbcDataSource ()

+ getCreateCount ()

+ getWaitTime ()

+ getCloseCount ()

+ getUseTime ()

+ getPoolSize ()

+ Operation1 ()

+ getFreePoolSize ()

+ getWaitingThreadCount ()

JDBCConnectionStats

JDBCConnectionPoolStats

1

 In WebSphere Application Server Version 5.x, the JCAStats interface was implemented by the

J2CResourceAdapter Mbean, and the JDBCStats interface was implemented by the JDBCProvider Mbean.

The JCAConnectionStats and JDBCConnectionStats interfaces are not implemented because they collect

statistics for non pooled connections - which are not present in the JCA 1.0 Specification.

JCAConnectionPoolStats, and JDBCConnectionPoolStats do not have a direct implementing Mbean; those

statistics are gathered through a call to PMI. A J2C resource adapter, and JDBC provider each contain a

list of ConnectionFactory or DataSource ObjectNames, respectively. The ObjectNames are used by PMI to

find the appropriate connection pool in the list of PMI modules.

The JCA 1.5 Specification allows an exception from the matchManagedConnection() method that indicates

that the resource adapter requests that the connection not be pooled. In that case, statistics for that

connection are provided separately from the statistics for the connection pool.

Example: Connection factory lookup

import javax.resource.cci.*;

import javax.resource.ResourceException;

import javax.naming.*;

import java.util.*;

/**

 * This class is used to look up a connection factory.

 */

public class ConnectionFactoryLookup {

 String jndiName = "java:comp/env/eis/SampleConnection";

 boolean verbose = false;

 /**

 * main method

188 IBM WebSphere Application Server-Network Deployment, Version 6: Troubleshooting and support

*/

 public static void main(String[] args) {

 ConnectionFactoryLookup cfl = new ConnectionFactoryLookup();

 cfl.checkParam(args);

 try {

 cfl.lookupConnectionFactory();

 }

 catch(javax.naming.NamingException ne) {

 System.out.println("Caught this " + ne);

 ne.printStackTrace(System.out);

 }

 catch(javax.resource.ResourceException re) {

 System.out.println("Caught this " + re);

 re.printStackTrace(System.out);

 }

 }

 /**

 * This method does a simple Connection Factory lookup.

 *

 * After the Connection Factory is looked up, a connection is got from

 * the Connection Factory. Then the Connection MetaData is retrieved

 * to verfiy the connection is workable.

 */

 public void lookupConnectionFactory()

 throws javax.naming.NamingException, javax.resource.ResourceException {

 javax.resource.cci.ConnectionFactory factory = null;

 javax.resource.cci.Connection conn = null;

 javax.resource.cci.ConnectionMetaData metaData = null;

 try {

 // lookup the connection factory

 if (verbose) System.out.println("Look up the connection factory...");

 InitialContext ic = new InitialContext();

 factory = (ConnectionFactory) ic.lookup(jndiName);

 // Get connection

 if (verbose) System.out.println("Get the connection...");

 conn = factory.getConnection();

 // Get ConnectionMetaData

 metaData = conn.getMetaData();

 // Print out the metadata Informatin.

 if (verbose) System.out.println(" ** EISProductName :" + metaData.getEISProductName());

 if (verbose) System.out.println(" EISProductVersion:" + metaData.getEISProductName());

 if (verbose) System.out.println(" UserName :" + metaData.getUserName());

 System.out.println("Connection factory "+jndiName+" is successfully looked up");

 }

 catch (javax.naming.NamingException ne) {

 // Connection factory cannot be looked up.

 throw ne;

 }

 catch (javax.resource.ResourceException re) {

 // Something wrong with connections.

 throw re;

 }

 finally {

 if (conn != null) {

 try {

 conn.close();

 }

 catch (javax.resource.ResourceException re) {

Chapter 6. Learn about WebSphere applications 189

}

 }

 }

 }

 /**

 * Check and gather all the parameters.

 */

 private void checkParam(String args[]) {

 int i = 0, j;

 String arg;

 char flag;

 boolean help = false;

 // parse out the options

 while (i < args.length && args[i].startsWith("-")) {

 arg = args[i++];

 // get the database name

 if (arg.equalsIgnoreCase("-jndiName")) {

 if (i < args.length)

 jndiName = args[i++];

 else {

 System.err.println("-jndiName requires a J2C Connection Factory JNDI name");

 break;

 }

 }

 else { // check for verbose, cmp , bmp

 for (j = 1; j < arg.length(); j++) {

 flag = arg.charAt(j);

 switch (flag) {

 case ’v’ :

 case ’V’ :

 verbose = true;

 break;

 case ’h’ :

 case ’H’ :

 help = true;

 break;

 default :

 System.err.println("illegal option " + flag);

 break;

 }

 }

 }

 }

 if ((i != args.length) || help) {

 System.err.println("Usage: java ConnectionFactoryLookup [-v] [-h]");

 System.err.println(" [-jndiName the J2C Connection Factory JNDI name]");

 System.err.println("-v=verbose");

 System.err.println("-h=this information");

 System.exit(1);

 }

 }

}

190 IBM WebSphere Application Server-Network Deployment, Version 6: Troubleshooting and support

Database exceptions resulting from foreign key conflicts, or deadlock

when entity beans are configured for optimistic concurrency control

Exceptions resulting from foreign key conflicts, which signify violations of database referential

integrity

A database referential integrity (RI) policy prescribes rules for how data is written to and deleted from the

database tables to maintain relational consistency. Run-time requirements for managing bean persistence,

however, can cause an EJB application to violate RI rules, which can cause database exceptions.

Your EJB application is violating database RI if you see an exception message in your WebSphere

Application Server trace or log file that is similar to one of the following messages (which were produced in

an environment running DB2):

The insert or update value of the FOREIGN KEY table1.name_of_foreign_key_constraint

is not equal to any value of the parent key of the parent table.

or

A parent row cannot be deleted because the relationship table1.name_of_foreign_key_constraint

is not equal to any value of the parent key of the parent table.

To prevent these exceptions, you must designate the order in which entity beans update relational

database tables by defining sequence groups for the beans.

Exceptions resulting from deadlock caused by optimistic concurrency control schemes

Additionally, sequence grouping can minimize transaction rollback exceptions for entity beans that are

configured for optimistic concurrency control. Optimistic concurrency control dictates that database locks

be held for minimal amounts of time, so that a maximum number of transactions consistently have access

to the data. In such a highly available database, concurrent transactions can attempt to lock the same

table row and create deadlock. The resulting exceptions can generate messages similar to the following

(which was produced in an environment running DB2):

Unsuccessful execution caused by deadlock or timeout.

Use the sequence grouping feature to order bean persistence so that database deadlock is less likely to

occur.

Example: Using the Java Management Extensions API to create a

JDBC driver and data source for container-managed persistence

//

// "This program may be used, executed, copied, modified and distributed

without royalty for the

// purpose of developing, using, marketing, or distributing."

//

// Product 5630-A36, (C) COPYRIGHT International Business Machines Corp.,

2001, 2002

// All Rights Reserved * Licensed Materials - Property of IBM

//

import java.util.*;

import javax.sql.*;

import javax.transaction.*;

import javax.management.*;

import com.ibm.websphere.management.*;

import com.ibm.websphere.management.configservice.*;

import com.ibm.ws.exception.WsException;

/**

Chapter 6. Learn about WebSphere applications 191

* Creates a node scoped resource.xml entry for a DB2 XA datasource.

 * The datasource created is for CMP use.

 *

* We need following to run

 * set classpath=%classpath%;D:\WebSphere\AppServer\lib\wsexception.jar;

D:\WebSphere\AppServer\lib\wasjmx.jar;D:\$WAS_HOME\lib\wasx.jar

 */

public class CreateDataSourceCMP {

 String dsName = "markSection"; // ds display name , also jndi name

 and CF name

 String dbName = "SECTION"; // database name

 String authDataAlias = "db2admin"; // an authentication data alias

 String uid = "db2admin"; // userid

 String pw = "db2admin"; // password

 String dbclasspath = "D:/SQLLIB/java/db2java.zip"; // path to the db driver

 /**

 * Main method.

 */

 public static void main(String[] args) {

 CreateDataSourceCMP cds = new CreateDataSourceCMP();

 try {

 cds.run(args);

 } catch (com.ibm.ws.exception.WsException ex) {

 System.out.println("Caught this " + ex);

 ex.printStackTrace();

 //ex.getCause().printStackTrace();

 } catch (Exception ex) {

 System.out.println("Caught this " + ex);

 ex.printStackTrace();

 }

 }

 /**

 * This method creates the datasource using JMX.

* The datasource created here is only written into resources.xml.

 * It is not bound into namespace until the server is restarted,

or an application started

 */

 public void run(String[] args) throws Exception {

 try {

 // Initialize the AdminClient.

 Properties adminProps = new Properties();

 adminProps.setProperty(AdminClient.CONNECTOR_TYPE,

AdminClient.CONNECTOR_TYPE_SOAP);

 adminProps.setProperty(AdminClient.CONNECTOR_HOST, "localhost");

 adminProps.setProperty(AdminClient.CONNECTOR_PORT, "8880");

 AdminClient adminClient = AdminClientFactory.createAdminClient

(adminProps);

 // Get the ConfigService implementation.

 com.ibm.websphere.management.configservice.ConfigServiceProxy

configService =

 new com.ibm.websphere.management.configservice.ConfigServiceProxy

(adminClient);

 Session session = new Session();

 // Use this group to add to the node scoped resource.xml.

 ObjectName node1 = ConfigServiceHelper.createObjectName(null,

192 IBM WebSphere Application Server-Network Deployment, Version 6: Troubleshooting and support

"Node", null);

 ObjectName[] matches = configService.queryConfigObjects(session,

null, node1, null);

 node1 = matches[0]; // use the first node found

 // Use this group to add to the server1 scoped resource.xml.

 ObjectName server1 = ConfigServiceHelper.createObjectName(null,

"Server", "server1");

 matches = configService.queryConfigObjects(session, null,

server1, null);

 server1 = matches[0]; // use the first server found

 // Create the JDBCProvider

 String providerName = "DB2 JDBC Provider (XA)";

 System.out.println("Creating JDBCProvider " + providerName);

 // Prepare the attribute list

 AttributeList provAttrs = new AttributeList();

 provAttrs.add(new Attribute("name", providerName));

 provAttrs.add(new Attribute("implementationClassName",

"COM.ibm.db2.jdbc.DB2XADataSource"));

 provAttrs.add(new Attribute("description","DB2 JDBC2-compliant

XA Driver"));

 //create it

 ObjectName jdbcProv = configService.createConfigData(session,node1,

"JDBCProvider", "resources.jdbc:JDBCProvider",provAttrs);

 // now plug in the classpath

configService.addElement(session,jdbcProv,"classpath",dbclasspath,-1);

// Search for RRA so we can link it to the datasource

 ObjectName rra = ConfigServiceHelper.createObjectName(null,

"J2CResourceAdapter", null);

 matches = configService.queryConfigObjects(session, node1,

rra, null);

 rra = matches[0]; // use the first J2CResourceAdapter segment

for builtin_rra

 // Prepare the attribute list

 AttributeList dsAttrs = new AttributeList();

 dsAttrs.add(new Attribute("name", dsName));

 dsAttrs.add(new Attribute("jndiName", "jdbc/" + dsName));

 dsAttrs.add(new Attribute("datasourceHelperClassname",

"com.ibm.websphere.rsadapter.DB2DataStoreHelper"));

 dsAttrs.add(new Attribute("statementCacheSize", new Integer(10)));

 dsAttrs.add(new Attribute("relationalResourceAdapter", rra)); //

this is where we make the link to "builtin_rra"

 dsAttrs.add(new Attribute("description", "JDBC Datasource

for mark section CMP 2.0 test"));

 dsAttrs.add(new Attribute("authDataAlias",authDataAlias));

 // Create the datasource

 System.out.println(" ** Creating datasource");

 ObjectName dataSource = configService.createConfigData

(session,jdbcProv,"DataSource", "resources.jdbc:DataSource",dsAttrs);

 // Add a propertySet.

 AttributeList propSetAttrs = new AttributeList();

 ObjectName resourcePropertySet =configService.createConfigData

(session,dataSource,"propertySet","",propSetAttrs);

 // Add resourceProperty databaseName

 AttributeList propAttrs1 = new AttributeList();

 propAttrs1.add(new Attribute("name", "databaseName"));

 propAttrs1.add(new Attribute("type", "java.lang.String"));

 propAttrs1.add(new Attribute("value", dbName));

Chapter 6. Learn about WebSphere applications 193

configService.addElement(session,resourcePropertySet,

"resourceProperties",propAttrs1,-1);

// Now Create the corresponding J2CResourceAdapter Connection Factory object.

 ObjectName jra = ConfigServiceHelper.createObjectName(null,

"J2CResourceAdapter",null);

 // Get all the J2CResourceAdapter, and I want to add my datasource

 System.out.println(" ** Get all J2CResourceAdapter’s");

 ObjectName[] jras = configService.queryConfigObjects(session,

node1, jra, null);

 int i=0;

 for (;i< jras.length;i++) {

 System.out.println(ConfigServiceHelper.getConfigDataType(jras[i])+

" " + i + " = "

 + jras[i].getKeyProperty(SystemAttributes._WEBSPHERE_CONFIG_DATA_DISPLAY_NAME)

 + "\nFrom scope ="

 + jras[i].getKeyProperty(SystemAttributes._WEBSPHERE_CONFIG_DATA_ID));

 // quit on the first builtin_rra

 if (jras[i].getKeyProperty(SystemAttributes._WEBSPHERE_CONFIG_DATA_DISPLAY_NAME)

 .equals("WebSphere Relational Resource Adapter")) {

 break;

 }

 }

 if (i >= jras.length) {

 System.out.println("Did not find builtin_rra J2CResourceAdapter

object creating CF anyways");

 } else {

 System.out.println("Found builtin_rra J2CResourceAdapter

object at index " + i + " creating CF");

 }

 // Prepare the attribute list

 AttributeList cfAttrs = new AttributeList();

 cfAttrs.add(new Attribute("name", dsName + "_CF"));

 cfAttrs.add(new Attribute("authMechanismPreference","BASIC_PASSWORD"));

 cfAttrs.add(new Attribute("authDataAlias",authDataAlias));

 cfAttrs.add(new Attribute("cmpDatasource", dataSource)); //

this is where we make the link to DataSource’s xmi:id

 ObjectName cf = configService.createConfigData(session,jras[i],

"CMPConnectorFactory", "resources.jdbc:CMPConnectorFactory",cfAttrs);

 // ===== start Security section

 System.out.println("Creating an authorization data alias " +

authDataAlias);

 // Find the parent security object

 ObjectName security = ConfigServiceHelper.createObjectName(null,

"Security", null);

 ObjectName[] securityName = configService.queryConfigObjects(session,

null, security, null);

 security=securityName[0];

 // Prepare the attribute list

 AttributeList authDataAttrs = new AttributeList();

 authDataAttrs.add(new Attribute("alias", authDataAlias));

 authDataAttrs.add(new Attribute("userId", uid));

 authDataAttrs.add(new Attribute("password", pw));

 authDataAttrs.add(new Attribute("description","Auto created alias

for datasource"));

194 IBM WebSphere Application Server-Network Deployment, Version 6: Troubleshooting and support

//create it

 ObjectName authDataEntry = configService.createConfigData

(session,security,"authDataEntries", "JAASAuthData",authDataAttrs);

 // ===== end Security section

 // Save the session

 System.out.println("Saving session");

 configService.save(session, false);

 // reload resources.xml to bind the new datasource into the name space

 reload(adminClient,true);

 } catch (Exception ex) {

 ex.printStackTrace(System.out);

 throw ex;

 }

 }

 /**

 * Get the DataSourceConfigHelperMbean and call reload() on it

 *

 * @param adminClient

 * @param verbose true - print messages to stdout

 */

 public void reload(AdminClient adminClient,boolean verbose) {

 if (verbose) {

 System.out.println("Finding the Mbean to call reload()");

 }

 // First get the Mbean

 ObjectName handle = null;

 try {

 ObjectName queryName = new ObjectName("WebSphere:type=DataSourceCfgHelper,*");

 Set s = adminClient.queryNames(queryName, null);

 Iterator iter = s.iterator();

 if (iter.hasNext()) handle = (ObjectName)iter.next();

 } catch (MalformedObjectNameException mone) {

 System.out.println("Check the program variable queryName" + mone);

 } catch (com.ibm.websphere.management.exception.ConnectorException ce) {

 System.out.println("Cannot connect to the application server" + ce);

 }

 if (verbose) {

 System.out.println("Calling reload()");

 }

 Object result = null;

 try {

 result = adminClient.invoke(handle, "reload", new Object[] {},

new String[] {});

 } catch (MBeanException mbe) {

 if (verbose) {

 System.out.println("\tMbean Exception calling reload" + mbe);

 }

 } catch (InstanceNotFoundException infe) {

 System.out.println("Cannot find reload ");

 } catch (Exception ex) {

 System.out.println("Exception occurred calling reload()" + ex);

 }

 if (result==null && verbose) {

 System.out.println("OK reload()");

 }

 }

}

Chapter 6. Learn about WebSphere applications 195

Example: Using the Java Management Extensions API to create a

JDBC driver and data source for bean-managed persistence, session

beans, or servlets

//

// "This program may be used, executed, copied, modified and distributed

without royalty for the

// purpose of developing, using, marketing, or distributing."

//

// Product 5630-A36, (C) COPYRIGHT International Business Machines Corp.,

2001, 2002

// All Rights Reserved * Licensed Materials - Property of IBM

//

import java.util.*;

import javax.sql.*;

import javax.transaction.*;

import javax.management.*;

import com.ibm.websphere.management.*;

import com.ibm.websphere.management.configservice.*;

import com.ibm.ws.exception.WsException;

/**

 * Creates a node scoped resource.xml entry for a DB2 XA datasource.

 * The datasource created is for BMP use.

 *

 * We need following to run

 * set classpath=%classpath%;D:\WebSphere\AppServer\lib\wsexception.jar;

D:\WebSphere\AppServer\lib\wasjmx.jar;D:\$WAS_HOME\lib\wasx.jar

 */

public class CreateDataSourceBMP {

 String dsName = "markSection"; // ds display name , also jndi name and

CF name

 String dbName = "SECTION"; // database name

 String authDataAlias = "db2admin"; // an authentication data alias

 String uid = "db2admin"; // userid

 String pw = "db2admin"; // password

 String dbclasspath = "D:/SQLLIB/java/db2java.zip"; // path to the db driver

 /**

 * Main method.

 */

 public static void main(String[] args) {

 CreateDataSourceBMP cds = new CreateDataSourceBMP();

 try {

 cds.run(args);

 } catch (com.ibm.ws.exception.WsException ex) {

 System.out.println("Caught this " + ex);

 ex.printStackTrace();

 //ex.getCause().printStackTrace();

 } catch (Exception ex) {

 System.out.println("Caught this " + ex);

 ex.printStackTrace();

 }

 }

 /**

 * This method creates the datasource using JMX.

 *

196 IBM WebSphere Application Server-Network Deployment, Version 6: Troubleshooting and support

* The datasource created here is only written into resources.xml.

 * It is not bound into namespace until the server is restarted,

or an application started

 */

 public void run(String[] args) throws Exception {

 try {

 // Initialize the AdminClient.

 Properties adminProps = new Properties();

 adminProps.setProperty(AdminClient.CONNECTOR_TYPE,

AdminClient.CONNECTOR_TYPE_SOAP);

 adminProps.setProperty(AdminClient.CONNECTOR_HOST, "localhost");

 adminProps.setProperty(AdminClient.CONNECTOR_PORT, "8880");

 AdminClient adminClient = AdminClientFactory.createAdminClient

(adminProps);

 // Get the ConfigService implementation.

 com.ibm.websphere.management.configservice.ConfigServiceProxy

configService =

 new com.ibm.websphere.management.configservice.ConfigServiceProxy

(adminClient);

 Session session = new Session();

 // Use this group to add to the node scoped resource.xml.

 ObjectName node1 = ConfigServiceHelper.createObjectName(null,

"Node", null);

 ObjectName[] matches = configService.queryConfigObjects(session,

null, node1, null);

 node1 = matches[0]; // use the first node found

 // Use this group to add to the server1 scoped resource.xml.

 ObjectName server1 = ConfigServiceHelper.createObjectName(null,

"Server", "server1");

 matches = configService.queryConfigObjects(session, null, server1,

null);

 server1 = matches[0]; // use the first server found

 // Create the JDBCProvider

 String providerName = "DB2 JDBC Provider (XA)";

 System.out.println("Creating JDBCProvider " + providerName);

 // Prepare the attribute list

 AttributeList provAttrs = new AttributeList();

 provAttrs.add(new Attribute("name", providerName));

 provAttrs.add(new Attribute("implementationClassName",

"COM.ibm.db2.jdbc.DB2XADataSource"));

 provAttrs.add(new Attribute("description","DB2 JDBC2-compliant

XA Driver"));

 //create it

 ObjectName jdbcProv = configService.createConfigData(session,node1,

"JDBCProvider", "resources.jdbc:JDBCProvider",provAttrs);

 // now plug in the classpath

 configService.addElement(session,jdbcProv,"classpath",

dbclasspath,-1);

 // Search for RRA so we can link it to the datasource

 ObjectName rra = ConfigServiceHelper.createObjectName(null,

"J2CResourceAdapter", null);

 matches = configService.queryConfigObjects(session, node1, rra,

null);

 rra = matches[0]; // use the first J2CResourceAdapter segment for

Chapter 6. Learn about WebSphere applications 197

builtin_rra

 // Prepare the attribute list

 AttributeList dsAttrs = new AttributeList();

 dsAttrs.add(new Attribute("name", dsName));

 dsAttrs.add(new Attribute("jndiName", "jdbc/" + dsName));

 dsAttrs.add(new Attribute("datasourceHelperClassname",

"com.ibm.websphere.rsadapter.DB2DataStoreHelper"));

 dsAttrs.add(new Attribute("statementCacheSize", new Integer(10)));

 dsAttrs.add(new Attribute("relationalResourceAdapter", rra));

// this is where we make the link to "builtin_rra"

 dsAttrs.add(new Attribute("description", "JDBC Datasource for

mark section CMP 2.0 test"));

 dsAttrs.add(new Attribute("authDataAlias",authDataAlias));

 // Create the datasource

 System.out.println(" ** Creating datasource");

 ObjectName dataSource = configService.createConfigData(session,

jdbcProv,"DataSource", "resources.jdbc:DataSource",dsAttrs);

 // Add a propertySet.

 AttributeList propSetAttrs = new AttributeList();

 ObjectName resourcePropertySet =configService.createConfigData

(session,dataSource,"propertySet","",propSetAttrs);

 // Add resourceProperty databaseName

 AttributeList propAttrs1 = new AttributeList();

 propAttrs1.add(new Attribute("name", "databaseName"));

 propAttrs1.add(new Attribute("type", "java.lang.String"));

 propAttrs1.add(new Attribute("value", dbName));

 configService.addElement(session,resourcePropertySet,"resourceProperties",propAttrs1,-1);

 // ===== start Security section

 System.out.println("Creating an authorization data alias " +

authDataAlias);

 // Find the parent security object

 ObjectName security = ConfigServiceHelper.createObjectName(null,

"Security", null);

 ObjectName[] securityName = configService.queryConfigObjects(session,

null, security, null);

 security=securityName[0];

 // Prepare the attribute list

 AttributeList authDataAttrs = new AttributeList();

 authDataAttrs.add(new Attribute("alias", authDataAlias));

 authDataAttrs.add(new Attribute("userId", uid));

 authDataAttrs.add(new Attribute("password", pw));

 authDataAttrs.add(new Attribute("description","Auto created

alias for datasource"));

 //create it

 ObjectName authDataEntry = configService.createConfigData(session,

security,"authDataEntries", "JAASAuthData",authDataAttrs);

 // ===== end Security section

 // Save the session

 System.out.println("Saving session");

 configService.save(session, false);

 // reload resources.xml

 reload(adminClient,true);

 } catch (Exception ex) {

 ex.printStackTrace(System.out);

198 IBM WebSphere Application Server-Network Deployment, Version 6: Troubleshooting and support

throw ex;

 }

 }

 /**

 * Get the DataSourceConfigHelperMbean and call reload() on it

 *

 * @param adminClient

 * @param verbose true - print messages to stdout

 */

 public void reload(AdminClient adminClient,boolean verbose) {

 if (verbose) {

 System.out.println("Finding the Mbean to call reload()");

 }

 // First get the Mbean

 ObjectName handle = null;

 try {

 ObjectName queryName = new ObjectName("WebSphere:type=

DataSourceCfgHelper,*");

 Set s = adminClient.queryNames(queryName, null);

 Iterator iter = s.iterator();

 if (iter.hasNext()) handle = (ObjectName)iter.next();

 } catch (MalformedObjectNameException mone) {

 System.out.println("Check the program variable queryName" + mone);

 } catch (com.ibm.websphere.management.exception.ConnectorException ce) {

 System.out.println("Cannot connect to the application server" + ce);

 }

 if (verbose) {

 System.out.println("Calling reload()");

 }

 Object result = null;

 try {

 result = adminClient.invoke(handle, "reload", new Object[] {},

new String[] {});

 } catch (MBeanException mbe) {

 if (verbose) {

 System.out.println("\tMbean Exception calling reload" + mbe);

 }

 } catch (InstanceNotFoundException infe) {

 System.out.println("Cannot find reload ");

 } catch (Exception ex) {

 System.out.println("Exception occurred calling reload()" + ex);

 }

 if (result==null && verbose) {

 System.out.println("OK reload()");

 }

 }

}

Vendor-specific data sources minimum required settings

Use this table as an at-a-glance reference of JDBC providers that can be defined for use with WebSphere

Application Server Version 6.x. A list that contains detailed descriptions for all of these providers follows

the table.

Chapter 6. Learn about WebSphere applications 199

Database type JDBC Provider Transaction support

Version and other

considerations

DB2 on Windows, UNIX,

or workstation-based

LINUX

DB2 Universal JDBC

Provider

One phase only

DB2 Universal JDBC

Provider (XA)

One and two phase

DB2 legacy CLI-based Type

2 JDBC Provider

One phase only

DB2 legacy CLI-based Type

2 JDBC Provider (XA)

One and two phase

DB2 UDB for iSeries

DB2 UDB for iSeries

(Native)

One phase only Recommended for use with

WebSphere Application

Server run on iSeries

DB2 UDB for iSeries

(Native XA)

One and two phase Recommended for use with

WebSphere Application

Server run on iSeries

DB2 UDB for iSeries

(Toolbox)

One phase only Recommended for use with

WebSphere Application

Server run on Windows,

UNIX, or workstation-based

LINUX

DB2 UDB for iSeries

(Toolbox XA)

One and two phase Recommended for use with

WebSphere Application

Server run on Windows,

UNIX, or workstation-based

LINUX

DB2 legacy CLI-based Type

2 JDBC Provider

One phase only -Only for use with

WebSphere Application

Server run on Windows,

UNIX, or workstation-based

LINUX

- Requires the DB2

Connect driver (available

from DB2)

DB2 legacy CLI-based Type

2 JDBC Provider (XA)

One and two phase -Only for use with

WebSphere Application

Server run on Windows,

UNIX, or workstation-based

LINUX

- Requires the DB2

Connect driver (available

from DB2)

200 IBM WebSphere Application Server-Network Deployment, Version 6: Troubleshooting and support

Database type JDBC Provider Transaction support

Version and other

considerations

DB2 on z/OS

DB2 for z/OS Local JDBC

Provider (RRS)

One and two phase Only for use with

WebSphere Application

Server run on z/OS

DB2 Universal JDBC

Provider

One phase only Only for use with

WebSphere Application

Server run on Windows,

UNIX, or workstation-based

LINUX

DB2 Universal JDBC

Provider (XA)

One and two phase Only for use with

WebSphere Application

Server run on Windows,

UNIX, or workstation-based

LINUX

DB2 legacy CLI-based Type

2 JDBC Provider

One phase only -Only for use with

WebSphere Application

Server run on Windows,

UNIX, or workstation-based

LINUX

- Requires the DB2

Connect program (available

from DB2)

DB2 legacy CLI-based Type

2 JDBC Provider (XA)

One and two phase -Only for use with

WebSphere Application

Server run on Windows,

UNIX, or workstation-based

LINUX

- Requires the DB2

Connect program (available

from DB2)

Cloudscape

Cloudscape JDBC Provider One phase only - Not for use in clustering

environment: Cloudscape is

accessible from a single

JVM only

- Does not support Version

4 data sources

Cloudscape JDBC Provider

(XA)

One and two phase - Not for use in clustering

environment: Cloudscape is

accessible from a single

JVM only

- Does not support Version

4 data sources

Cloudscape Network Server

using Universal JDBC driver

One phase only Does not support Version 4

data sources

Informix

Informix JDBC Driver One phase only

Informix JDBC Driver (XA) One and two phase

Sybase

Sybase JDBC Driver One phase only

Sybase JDBC Driver (XA) One and two phase

Oracle

Oracle JDBC Driver One phase only

Oracle JDBC Driver (XA) One and two phase

Chapter 6. Learn about WebSphere applications 201

Database type JDBC Provider Transaction support

Version and other

considerations

MS SQL Server

DataDirect ConnectJDBC

type 4 driver for MS SQL

Server

One phase only Only for use with the

corresponding driver from

DataDirect Technologies

DataDirect ConnectJDBC

type 4 driver for MS SQL

Server (XA)

One and two phase Only for use with the

corresponding driver from

DataDirect Technologies

WebSphere embedded

ConnectJDBC driver for MS

SQL Server

One phase only - Not available for

Application Server on z/OS

- Cannot be used outside of

WebSphere Application

Server environment

WebSphere embedded

ConnectJDBC driver for MS

SQL Server (XA)

One and two phase - Not available for

Application Server on z/OS

- Cannot be used outside of

WebSphere Application

Server environment

Detailed JDBC provider list

The following list contains a description of every JDBC provider that can be defined for use with

WebSphere Application Server Version 6.x. It also shows the supported data source classes and their

required properties. Specific fields are designated for the user and password properties. Inclusion of a

property in the list does not imply that you should add it to the data source properties list. Rather, inclusion

in the list means that a value is typically required for that field.

Use these links to find your provider information:

v DB2 on Windows, UNIX, or workstation-based LINUX

v DB2 UDB for iSeries

v DB2 on z/OS, connecting to Application Server on Windows, UNIX, or workstation-based LINUX

v Cloudscape

v Informix

v Sybase

v Oracle

v MS SQL Server

DB2 on Windows, UNIX, or workstation-based LINUX

1. DB2 Universal JDBC Provider

The DB2 Universal JDBC Driver is an architecture-neutral JDBC driver for distributed and local DB2

access. Because the Universal Driver architecture is independent of any particular JDBC driver

connectivity or target platform, it allows both Java connectivity (Type 4) or Java Native Interface (JNI)

based connectivity (Type 2) in a single driver instance to DB2.

This driver only supports one phase transactions. This JDBC driver allows applications to use both

JDBC and Structured Query Language in Java (SQLJ) access.

The DB2 Universal JDBC Driver Provider supports one phase data source:

com.ibm.db2.jcc.DB2ConnectionPoolDataSource

Requires JDBC driver files:

v db2jcc.jar After you install DB2, you can find this jar file in the DB2 java directory. For Type 4

JDBC driver support from a client machine where DB2 is not installed, copy this file to the local

machine. If you install any fixes or upgrades to DB2, you must update this file as well. You must

202 IBM WebSphere Application Server-Network Deployment, Version 6: Troubleshooting and support

also set the DB2UNIVERSAL_JDBC_DRIVER_PATH path variable to point to the db2jcc.jar file.

See the Cloudscape section for more information on the DB2UNIVERSAL_JDBC_DRIVER_PATH

path variable.

Note: To find out the version of the universal driver you are using, issue this DB2 command:

java com.ibm.db2.jcc.DB2Jcc -version

The output for the above example is:

IBM DB2 JDBC Universal Driver Architecture 2.2.xx

v db2jcc_license_cu.jar This is the DB2 Universal JDBC driver license file that allows access to the

DB2 Universal database. Use this jar file or the next one to gain access to the database. This jar file

ships with WebSphere Application Server in a directory defined by

${UNIVERSAL_JDBC_DRIVER_PATH}environment variable.

v db2jcc_license_cisuz.jar This is the DB2 Universal JDBC driver license file that allows access to

the following databases:

– DB2 Universal

– DB2 for iSeries

– DB2 for z/OS

– SQLDS

The db2jcc_license_cisuz.jar does not ship with Websphere Application Server and should be

located in the same directory as the db2jcc.jar file, so that the

DB2UNIVERSAL_JDBC_DRIVER_PATH points to both.
 The classpath for this provider is set as follows:

 <classpath>${DB2UNIVERSAL_JDBC_DRIVER_PATH}/db2jcc.jar </classpath>

 <classpath>${UNIVERSAL_JDBC_DRIVER_PATH}/db2jcc_license_cu.jar</classpath>

 <classpath>${DB2UNIVERSAL_JDBC_DRIVER_PATH}/db2jcc_license_cisuz.jar</classpath>

Note: The license jar files are independent of each other; therefore, order does not matter.

Requires DataStoreHelper class:

com.ibm.websphere.rsadapter.DB2UniversalDataStoreHelper

Requires a valid authentication alias.

Requires properties:

v databaseName This is an actual database name if the driverType is set to 4, or a locally cataloged

database name if the driverType is set to 2.

v driverType The JDBC connectivity type of a data source. There are two permitted values: 2 and 4.

If you want to use Universal JDBC Type 2 driver, set this value to 2. If you want to use Universal

JDBC Type 4 driver, set this value to 4.

v serverName The TCP/IP address or host name for the Distributed Relational Database Architecture

(DRDA) server. Provide a value for this property only if your driverType is set to 4. This property is

not required if your driverType is set to 2.

v portNumber The TCP/IP port number where the DRDA server resides. Provide a value for this

property only if your driverType is set to 4. This property is not required if your driverType is set to

2.
2. DB2 Universal JDBC Provider (XA)

The DB2 Universal JDBC Provider (XA) is an architecture-neutral JDBC provider for distributed and

local DB2 access. Whether you use this provider for Java connectivity or Java Native Interface (JNI)

based connectivity depends on the version of DB2 you are running. Application Server Version 6.0

minimally requires DB2 8.1 Fix Pack 6. This version of DB2 only supports XA connectivity over the

Java Native Interface (JNI) based connectivity (Type 2) driver. In order to use XA connectivity with the

Type 4 driver, DB2 8.1 Fix Pack 7 or higher is required.

The DB2 Universal JDBC Driver (XA) supports two phase transactions and the more advanced data

source option offered by Application Server (as opposed to the other option, Version 4 data sources).

This driver also allows applications to use both JDBC and SQLJ access.

Chapter 6. Learn about WebSphere applications 203

The DB2 Universal JDBC Driver Provider supports the two phase data source:

com.ibm.db2.jcc.DB2XADataSource

Requires JDBC driver files:

v db2jcc.jar After you install DB2, you can find this .jar file in the DB2 java directory. For Type 4

JDBC driver support from a client machine where DB2 is not installed, copy this file to the local

machine. If you install any fixes or upgrades to DB2, you must update this file as well. You must

also set the DB2UNIVERSAL_JDBC_DRIVER_PATH environment variable to point to the

db2jcc.jar file. See the Cloudscape section for more information on the

DB2UNIVERSAL_JDBC_DRIVER_PATH environment variable.

Note: To find the level of universal driver you are using, issue the following DB2 command:

java com.ibm.db2.jcc.DB2Jcc -version

example output of the above:

 IBM DB2 JDBC Universal Driver Architecture 2.2.xx

v db2jcc_license_cu.jar This is the DB2 Universal JDBC driver license file that allows access to the

DB2 Universal database. Use this jar file or the next one to gain access to the database. This jar file

ships with WebSphere Application Server in the WAS_HOME/universalDriver/lib directory.

v db2jcc_license_cisuz.jar This is the DB2 Universal JDBC driver license file that allows access to

the following databases:

– DB2 Universal

– DB2 for iSeries

– DB2 for z/OS

– SQLDS

You must use the right license jar file to access a specific database backend.

Requires DataStoreHelper class:

com.ibm.websphere.rsadapter.DB2UniversalDataStoreHelper

Requires a valid authentication alias.

Requires properties:

v databaseName This is an actual database name if the driverType is set to 4, or a locally cataloged

database name if the driverType is set to 2.

v driverType The JDBC connectivity type of a data source. There are two permitted values: 2 and 4.

If you want to use Universal JDBC Type 2 XA driver, set this value to 2. If you want to use Universal

JDBC Type 4 XA driver (which requires DB2 8.1 Fix Pack 7 or higher), set this value to 4.

v serverName The TCP/IP address or host name for the Distributed Relational Database Architecture

(DRDA) server. Provide a value for this property only if your driverType is set to 4. This property is

not required if your driverType is set to 2.

v portNumber The TCP/IP port number where the DRDA server resides. Provide a value for this

property only if your driverType is set to 4. This property is not required if your driverType is set to

2.
3. DB2 legacy CLI-based Type 2 JDBC Driver

The DB2 legacy CLI-based Type 2 JDBC Driver Provider is built on top of DB2 CLI (Call Level

Interface). It uses the DB2 CLI interface to communicate with DB2 UDB servers.

DB2 legacy CLI-based Type 2 JDBC Driver supports one phase data source:

COM.ibm.db2.jdbc.DB2ConnectionPoolDataSource

Requires JDBC driver files: db2java.zip (Note: If you run SQLJ in DB2 Version 8, db2jcc.jar is also

required.)

Requires DataStoreHelper class:

com.ibm.websphere.rsadapter.DB2DataStoreHelper

Does not require a valid authentication alias if Application Server is running on the same machine as

the database. Otherwise, connectivity through this driver does require an alias.

Requires properties:

204 IBM WebSphere Application Server-Network Deployment, Version 6: Troubleshooting and support

v databaseName The name of the database from which the data source obtains connections.

Example: Sample.
4. DB2 legacy CLI-based Type 2 JDBC Driver (XA)

The DB2 legacy CLI-based Type 2 JDBC Driver (XA) is built on top of DB2 CLI (Call Level Interface).

It uses the DB2 CLI interface to communicate with DB2 UDB servers.

DB2 legacy CLI-based Type 2 JDBC Driver (XA) supports two phase data source:

COM.ibm.db2.jdbc.DB2XADataSource

Requires JDBC driver files: db2java.zip (Note: If you run SQLJ in DB2 Version 8, db2jcc.jar is also

required.)

Requires DataStoreHelper class:

com.ibm.websphere.rsadapter.DB2DataStoreHelper

Does not require a valid authentication alias if Application Server is running on the same machine as

the database. Otherwise, connectivity through this driver does require an alias.

Requires properties:

v databaseName The name of the database from which the data source obtains connections.

Example: Sample.

For more information on DB2, visit the DB2 Web site at: http://www.ibm.com/software/data/db2/.

For information on configuring WebSphere Application Server for DB2 access, see the Configuring DB2

article.

DB2 UDB for iSeries

1. DB2 UDB for iSeries (Native)

The iSeries Developer Kit for Java contains this Type 2 JDBC driver that is built on top of the iSeries

DB2 Call Level Interface (CLI) native libraries. Only use this driver for local DB2 connections on

iSeries. It is not recommended for remote access. Use this driver for iSeries V5R2, or later releases.

DB2 UDB for iSeries (Native V5R2 and later) supports one phase data source:

com.ibm.db2.jdbc.app.UDBConnectionPoolDataSource

Requires JDBC driver files: db2_classes.jar

Requires DataStoreHelper class:

com.ibm.websphere.rsadapter.DB2AS400DataStoreHelper

Does not require an authentication alias.

Requires properties:

v databaseName The name of the relational database to which the data source connections are

established. This name must appear in the iSeries Relational Database Directory. The default is

*LOCAL.
2. DB2 UDB for iSeries (Native XA)

The iSeries Developer Kit for Java contains this XA-compliant Type 2 JDBC driver built on top of the

iSeries DB2 Call Level Interface (CLI) native libraries. Only use this driver for local DB2 connections on

iSeries. It is not recommended for remote access. Use this driver for iSeries V5R2 or later releases.

DB2 UDB for iSeries (Native XA - V5R2 and later) supports two phase data source:

com.ibm.db2.jdbc.app.UDBXADataSource

Requires JDBC driver files: db2_classes.jar

Requires DataStoreHelper class:

com.ibm.websphere.rsadapter.DB2AS400DataStoreHelper

Does not require an authentication alias.

Requires properties:

Chapter 6. Learn about WebSphere applications 205

http://www-3.ibm.com/software/data/db2/

v databaseName The name of the relational database to which the data source connections are

established. This name must appear in the iSeries Relational Database Directory. The default is

*LOCAL.
3. DB2 UDB for iSeries (Toolbox)

This JDBC driver, also known as iSeries Toolbox driver for Java, is provided in the DB2 for iSeries

database server. Use this driver for remote DB2 connections on iSeries. We recommend you use this

driver instead of the IBM Developer Kit for Java JDBC Driver to access remote DB2 UDB for iSeries

systems.

DB2 UDB for iSeries (Toolbox) supports one phase data source:

com.ibm.as400.access.AS400JDBCConnectionPoolDataSource

Requires JDBC driver files: jt400.jar

Requires DataStoreHelper class:

com.ibm.websphere.rsadapter.DB2AS400DataStoreHelper

Does not require an authentication alias if WebSphere Application Server and DB2 UDB for iSeries are

installed in the same server. If they are installed in different servers, the user ID and password are

required.

Requires properties:

v serverName The name of the server from which the data source obtains connections. Example:

myserver.mydomain.com.
4. DB2 UDB for iSeries (Toolbox XA)

This XA compliant JDBC driver, also known as iSeries Toolbox XA compliant driver for Java, is

provided in the DB2 for iSeries database server. Use this driver for remote DB2 connections on

iSeries. We recommend you use this driver instead of the IBM Developer Kit for Java JDBC Driver to

access remote DB2 UDB for iSeries systems.

DB2 UDB for iSeries (Toolbox XA) supports two phase data source:

com.ibm.as400.access.AS400JDBCXADataSource

Requires JDBC driver files: jt400.jar

Requires DataStoreHelper class:

com.ibm.websphere.rsadapter.DB2AS400DataStoreHelper

Does not require an authentication alias if WebSphere Application Server and DB2 UDB for iSeries are

installed in the same server. If they are installed in different servers, the user ID and password are

required.

Requires properties:

v serverName The name of the server from which the data source obtains connections. Example:

myserver.mydomain.com.
5. DB2 legacy CLI-based Type 2 JDBC Driver

The DB2 legacy CLI-based Type 2 JDBC Driver Provider is built on top of DB2 CLI (Call Level

Interface). It uses the DB2 CLI interface to communicate with DB2 UDB servers. This provider is

intended for remote connections to DB2 running on iSeries; for use with Application Server on

Windows, UNIX, or workstation-based LINUX, it therefore requires the DB2 Connect Driver (which is

available from DB2).

DB2 legacy CLI-based Type 2 JDBC Driver supports one phase data source:

COM.ibm.db2.jdbc.DB2ConnectionPoolDataSource

Requires JDBC driver files: db2java.zip (Note: If you run SQLJ in DB2 Version 8, db2jcc.jar is also

required.)

Requires DataStoreHelper class:

com.ibm.websphere.rsadapter.DB2DataStoreHelper

Does not require a valid authentication alias.

Requires properties:

206 IBM WebSphere Application Server-Network Deployment, Version 6: Troubleshooting and support

v databaseName The name of the database from which the data source obtains connections.

Example: Sample.
6. DB2 legacy CLI-based Type 2 JDBC Driver (XA)

The DB2 legacy CLI-based Type 2 JDBC Driver (XA) is built on top of DB2 CLI (Call Level Interface).

It uses the DB2 CLI interface to communicate with DB2 UDB servers. This provider is intended for

remote connections to DB2 running on iSeries; for use with Application Server on Windows, UNIX, or

workstation-based LINUX, it therefore requires the DB2 Connect Driver (which is available from DB2).

DB2 legacy CLI-based Type 2 JDBC Driver (XA) supports two phase data source:

COM.ibm.db2.jdbc.DB2XADataSource

Requires JDBC driver files: db2java.zip (Note: If you run SQLJ in DB2 Version 8, db2jcc.jar is also

required.)

Requires DataStoreHelper class:

com.ibm.websphere.rsadapter.DB2DataStoreHelper

Does not require a valid authentication alias.

Requires properties:

v databaseName The name of the database from which the data source obtains connections.

Example: Sample.
7. DB2 UDB for iSeries (Native - Version 5 Release 1 and earlier) -- Deprecated

This JDBC provider is deprecated because it corresponds to a version of the iSeries operating system

that WebSphere Application Server Version 6.x does not support. You must now use iSeries V5R2 or a

later release of the iSeries operating system, for which the WebSphere Application Server

administrative console lists one native iSeries DB2 non-XA provider: DB2 UDB for iSeries (Native).

The iSeries Developer Kit for Java contains this Type 2 JDBC driver that is built on top of the iSeries

DB2 Call Level Interface (CLI) native libraries. Only use this driver for local DB2 connections on

iSeries. It is not recommended for remote access. Use this driver for iSeries V5R1, or earlier releases.

DB2 UDB for iSeries (Native V5R1 and earlier) supports one phase data source:

com.ibm.db2.jdbc.app.DB2StdConnectionPoolDataSource

Requires JDBC driver files: db2_classes.jar

Requires DataStoreHelper class:

com.ibm.websphere.rsadapter.DB2AS400DataStoreHelper

Does not require an authentication alias.

Requires properties:

v databaseName The name of the relational database to which the data source connections are

established. This name must appear in the iSeries Relational Database Directory. The default is

*LOCAL.
8. DB2 UDB for iSeries (Native XA - Version 5 Release 1 and earlier) -- Deprecated

This JDBC provider is deprecated because it corresponds to a version of the iSeries operating system

that WebSphere Application Server Version 6.x does not support. You must now use iSeries V5R2 or a

later release of the iSeries operating system, for which the administrative console lists one native

iSeries DB2 XA provider: DB2 UDB for iSeries (Native XA).

The iSeries Developer Kit for Java contains this XA-compliant Type 2 JDBC driver built on top of the

iSeries DB2 Call Level Interface (CLI) native libraries. Only use this driver for local DB2 connections on

iSeries. It is not recommended for remote access. Use this driver for iSeries V5R1, or earlier releases.

DB2 UDB for iSeries (Native XA - V5R1 and earlier) supports two phase data source:

com.ibm.db2.jdbc.app.DB2StdXADataSource

Requires JDBC driver files: db2_classes.jar

Requires DataStoreHelper class:

com.ibm.websphere.rsadapter.DB2AS400DataStoreHelper

Does not require an authentication alias.

Requires properties:

Chapter 6. Learn about WebSphere applications 207

v databaseName The name of the relational database to which the data source connections are

established. This name must appear in the iSeries Relational Database Directory. The default is

*LOCAL.

For more information on DB2 UDB for iSeries, visit the DB2 Web site at:

http://www.ibm.com/software/data/db2/

DB2 on z/OS, connecting to Application Server on Windows, UNIX, or workstation-based LINUX

1. DB2 Universal JDBC Provider

The DB2 Universal JDBC Driver is an architecture-neutral JDBC driver for distributed and local DB2

access. Because the Universal Driver architecture is independent of any particular JDBC driver

connectivity or target platform, it allows both Java connectivity (Type 4) or Java Native Interface (JNI)

based connectivity (Type 2) in a single driver instance to DB2. Starting with WebSphere Application

Server Version 5.0.2, the product now supports both Type 2 and Type 4 JDBC drivers. To use the Type

4 driver, you must install DB2 Version 8.1 or a later version. To use the Type 2 driver, you must install

DB2 Version 8.1 Fix Pack 2 or a later version.

This driver only supports one phase transactions. This JDBC driver allows applications to use both

JDBC and Structured Query Language in Java (SQLJ) access.

The DB2 Universal JDBC Driver Provider supports one phase data source:

com.ibm.db2.jcc.DB2ConnectionPoolDataSource

Requires JDBC driver files:

v db2jcc.jar After you install DB2, you can find this jar file in the DB2 java directory. For Type 4

JDBC driver support from a client machine where DB2 is not installed, copy this file to the local

machine. If you install any fixes or upgrades to DB2, you must update this file as well. You must

also set the DB2UNIVERSAL_JDBC_DRIVER_PATH path variable to point to the db2jcc.jar file.

See the Cloudscape section for more information on the DB2UNIVERSAL_JDBC_DRIVER_PATH

path variable.

Note: To find out the version of the universal driver you are using, issue this DB2 command:

java com.ibm.db2.jcc.DB2Jcc -version

The output for the above example is:

IBM DB2 JDBC Universal Driver Architecture 2.2.xx

v db2jcc_license_cu.jar This is the DB2 Universal JDBC driver license file that allows access to the

DB2 Universal database. Use this jar file or the next one to gain access to the database. This jar file

ships with WebSphere Application Server in a directory defined by

${UNIVERSAL_JDBC_DRIVER_PATH}environment variable.

v db2jcc_license_cisuz.jar This is the DB2 Universal JDBC driver license file that allows access to

the following databases:

– DB2 Universal

– DB2 for iSeries

– DB2 for z/OS

– SQLDS

The db2jcc_license_cisuz.jar does not ship with Websphere Application Server and should be

located in the same directory as the db2jcc.jar file, so that the

DB2UNIVERSAL_JDBC_DRIVER_PATH points to both.
 The classpath for this provider is set as follows:

 <classpath>${DB2UNIVERSAL_JDBC_DRIVER_PATH}/db2jcc.jar </classpath>

 <classpath>${DB2UNIVERSAL_JDBC_DRIVER_PATH}/db2jcc_license_cu.jar</classpath>

 <classpath>${DB2UNIVERSAL_JDBC_DRIVER_PATH}/db2jcc_license_cisuz.jar</classpath>

Note: The license jar files are independent of each other; therefore, order does not matter.

Requires DataStoreHelper class:

208 IBM WebSphere Application Server-Network Deployment, Version 6: Troubleshooting and support

http://www-3.ibm.com/software/data/db2/

com.ibm.websphere.rsadapter.DB2UniversalDataStoreHelper

Requires a valid authentication alias.

Requires properties:

v databaseName This is an actual database name if the driverType is set to 4, or a locally cataloged

database name if the driverType is set to 2.

v driverType The JDBC connectivity type of a data source. There are two permitted values: 2 and 4.

If you want to use Universal JDBC Type 2 driver, set this value to 2. If you want to use Universal

JDBC Type 4 driver, set this value to 4.

v serverName The TCP/IP address or host name for the Distributed Relational Database Architecture

(DRDA) server. Provide a value for this property only if your driverType is set to 4. This property is

not required if your driverType is set to 2.

v portNumber The TCP/IP port number where the DRDA server resides. Provide a value for this

property only if your driverType is set to 4. This property is not required if your driverType is set to

2.
2. DB2 Universal JDBC Provider (XA)

The DB2 Universal JDBC Driver (XA) is an architecture-neutral JDBC driver for distributed and local

DB2 access. In WebSphere Application Server Version 5.0.2, this driver only supports Java Native

Interface (JNI) based connectivity (Type 2) in a single driver instance to DB2. To use this driver, you

must install DB2 Version 8.1 Fix Pack 2 or a later version. This driver supports two phase transactions

and the WebSphere Application Server Version 5.0 data source. This driver allows applications to use

both JDBC and SQLJ access.

The DB2 Universal JDBC Driver Provider supports the two phase data source:

com.ibm.db2.jcc.DB2XADataSource

Requires JDBC driver files:

v db2jcc.jar After you install DB2, you can find this .jar file in the DB2 java directory. For Type 4

JDBC driver support from a client machine where DB2 is not installed, copy this file to the local

machine. If you install any fixes or upgrades to DB2, you must update this file as well. You must

also set the DB2UNIVERSAL_JDBC_DRIVER_PATH environment variable to point to the

db2jcc.jar file. See the Cloudscape section for more information on the

DB2UNIVERSAL_JDBC_DRIVER_PATH environment variable.

Note: To find the level of universal driver you are using, issue the following DB2 command:

java com.ibm.db2.jcc.DB2Jcc -version

example output of the above:

 IBM DB2 JDBC Universal Driver Architecture 2.2.xx

v db2jcc_license_cu.jar This is the DB2 Universal JDBC driver license file that allows access to the

DB2 Universal database. Use this jar file or the next one to gain access to the database. This jar file

ships with WebSphere Application Server in the WAS_HOME/universalDriver/lib directory.

v db2jcc_license_cisuz.jar This is the DB2 Universal JDBC driver license file that allows access to

the following databases:

– DB2 Universal

– DB2 for iSeries

– DB2 for z/OS

– SQLDS

You must use the right license jar file to access a specific database backend.

Requires DataStoreHelper class:

com.ibm.websphere.rsadapter.DB2UniversalDataStoreHelper

Requires a valid authentication alias.

Requires properties:

v databaseName This is a locally cataloged database name.

v driverType This is the JDBC connectivity type of a data source. If you are running a version of DB2

prior to DB2 V8.1 FP6, you are restricted to using only the type 2 driver.

Chapter 6. Learn about WebSphere applications 209

v serverName The TCP/IP address or host name for the Distributed Relational Database Architecture

(DRDA) server. Provide a value for this property only if your driverType is set to 4. This property is

not required if your driverType is set to 2.

v portNumber The TCP/IP port number where the DRDA server resides. Provide a value for this

property only if your driverType is set to 4. This property is not required if your driverType is set to

2.
3. DB2 legacy CLI-based Type 2 JDBC Driver

The DB2 legacy CLI-based Type 2 JDBC Driver Provider is built on top of DB2 CLI (Call Level

Interface). It uses the DB2 CLI interface to communicate with DB2 UDB servers. For use with

Application Server on Windows, UNIX, or workstation-based LINUX, this provider requires DB2

Connect (which is available from DB2).

DB2 legacy CLI-based Type 2 JDBC Driver supports one phase data source:

COM.ibm.db2.jdbc.DB2ConnectionPoolDataSource

Requires JDBC driver files: db2java.zip (Note: If you run SQLJ in DB2 Version 8, db2jcc.jar is also

required.)

Requires DataStoreHelper class:

com.ibm.websphere.rsadapter.DB2DataStoreHelper

Does not require a valid authentication alias.

Requires properties:

v databaseName The name of the database from which the data source obtains connections.

Example: Sample.
4. DB2 legacy CLI-based Type 2 JDBC Driver (XA)

The DB2 legacy CLI-based Type 2 JDBC Driver (XA) is built on top of DB2 CLI (Call Level Interface).

It uses the DB2 CLI interface to communicate with DB2 UDB servers. For use with Application Server

on Windows, UNIX, or workstation-based LINUX, this provider requires DB2 Connect (which is

available from DB2).

DB2 legacy CLI-based Type 2 JDBC Driver (XA) supports two phase data source:

COM.ibm.db2.jdbc.DB2XADataSource

Requires JDBC driver files: db2java.zip (Note: If you run SQLJ in DB2 Version 8, db2jcc.jar is also

required.)

Requires DataStoreHelper class:

com.ibm.websphere.rsadapter.DB2DataStoreHelper

Does not require a valid authentication alias.

Requires properties:

v databaseName The name of the database from which the data source obtains connections.

Example: Sample.

For more information on DB2 for z/OS, visit the DB2 Web site at: http://www.ibm.com/software/data/db2/.

Cloudscape

1. Cloudscape JDBC Provider

The Cloudscape JDBC Provider provides the JDBC access to the Cloudscape database. This

Cloudscape JDBC driver used the embedded framework. You cannot use any Version 4.0 data sources

with Cloudscape.

Cloudscape JDBC Provider supports one phase data source:

com.ibm.db2j.jdbc.DB2jConnectionPoolDataSource

Requires JDBC driver files: db2j.jar.

Requires DataStoreHelper class:

com.ibm.websphere.rsadapter.CloudscapeDataStoreHelper

Does not require a valid authentication alias.

210 IBM WebSphere Application Server-Network Deployment, Version 6: Troubleshooting and support

http://www-3.ibm.com/software/data/db2/

Requires properties:

v databaseName The name of the database from which the data source obtains connections. If you

do not specify a fully qualified path name, Application Server uses the default location of

WAS_HOME./cloudscape (or the equivalent default for a UNIX or LINUX environment).

– Example database path name for Windows: c:\temp\sampleDB

– Example database path name for UNIX or LINUX: /tmp/sampleDB

If no database currently exists for the path name you want to specify, simply append ;create=true

to the path name to create a database dynamically. (For example: c:\temp\sampleDB;create=true)
2. Cloudscape JDBC Provider (XA)

The Cloudscape JDBC Provider (XA) provides the XA-compliant JDBC access to the Cloudscape

database. This Cloudscape JDBC driver uses the embedded framework. You cannot use any Version

4.0 data sources with Cloudscape.

Cloudscape JDBC Provider (XA) supports two phase data source:

com.ibm.db2j.jdbc.DB2jXADataSource

Requires JDBC driver files: db2j.jar

Requires DataStoreHelper class:

com.ibm.websphere.rsadapter.CloudscapeDataStoreHelper

Does not require a valid authentication alias.

Requires properties:

v databaseName The name of the database from which the data source obtains connections. If you

do not specify a fully qualified path name, Application Server uses the default location of

WAS_HOME./cloudscape (or the equivalent default for a UNIX or LINUX environment).

– Example database path name for Windows: c:\temp\sampleDB

– Example database path name for UNIX or LINUX: /tmp/sampleDB

If no database currently exists for the path name you want to specify, simply append ;create=true

to the path name to create a database dynamically. (For example: c:\temp\sampleDB;create=true)
3. Cloudscape Network Server using Universal JDBC driver

This Cloudscape driver takes advantage of the Network Server support that the DB2 universal Type 4

JDBC driver provides. You cannot use any Version 4.0 data sources with Cloudscape.

Cloudscape uses the DB2 Universal Driver when using the Network Server. It supports one phase data

source:

 com.ibm.db2.jcc.DB2ConnectionPoolDataSource

Requires JDBC driver files:

v db2jcc.jar If you install and run DB2, you must use the db2jcc.jar file that comes with DB2. To do

that, the classpath in the JDBC template for Cloudscape network server is set to be:

<classpath>${DB2UNIVERSAL_JDBC_DRIVER_PATH}/db2jcc.jar</classpath>

<classpath>${CLOUDSCAPE_JDBC_DRIVER_PATH}/db2j.jar</classpath>

<classpath>${CLOUDSCAPE51_JDBC_DRIVER_PATH}/db2j.jar</classpath>

<classpath>${UNIVERSAL_JDBC_DRIVER_PATH}/db2jcc.jar</classpath>

which means that the db2jcc.jar from DB2 always takes precedence. Note that this also means that

you must set the DB2 environment variable DB2UNIVERSAL_JDBC_DRIVER_PATH in WebSphere

when you set up your DB2 datasource. This is instead of hard coding the path of the db2jcc.jar for

DB2 datasources.

v db2jcc_license_cu.jar This file is the DB2 Universal JDBC license file that provides access to the

Cloudscape databases using the Network Server framework. Use this file to gain access to the

database. This file ships with WebSphere and is located in ${UNIVERSAL_JDBC_DRIVER_PATH}.

Note: UNIVERSAL_JDBC_DRIVER_PATHis a WebSphere environment variable that is already

defined to the location in Websphere Application Server where the license jar file above is

Chapter 6. Learn about WebSphere applications 211

located, and will only be used if the DB2UNIVERSAL_JDBC_DRIVER_PATH is not set. DB2

users should ensure that DB2UNIVERSAL_JDBC_DRIVER_PATH is set to avoid loading

multiple vesions of the db2jcc.jar file.

Note: DB2UNIVERSAL_JDBC_DRIVER_PATH is a WebSphere environment variable that you

must set to point to the location of db2jcc.jar file (that comes with DB2). This variable is set

only if you create a db2 provider. See the DB2 section for more information on the

DB2UNIVERSAL_JDBC_DRIVER_PATH path variable.

Note: Cloudscape requires only db2jcc_license_c.jar; however, WebSphere Application Server uses

db2jcc_license_cu.jar because this works for both DB2 UDB and Cloudscape.

Requires DataStoreHelper class:

com.ibm.websphere.rsadapter.CloudscapeNetworkServerDataStoreHelper

Note: The administrative console incorrectly lists the DB2UniversalDataStoreHelper as the default

value for the DataStoreHelper class. You must change the default value to

com.ibm.websphere.rsadapter.CloudscapeNetworkServerDataStoreHelper. Also change the custom

properties, using the instructions in the customer property section.

Requires a valid authentication alias.

Requires properties:

v databaseName The name of the database from which the data source obtains connections. If you

do not specify a fully qualified path name, Application Server uses the default location of

WAS_HOME./cloudscape (or the equivalent default for a UNIX or LINUX environment).

– Example database path name for Windows: c:\temp\sampleDB

– Example database path name for UNIX or LINUX: /tmp/sampleDB

If no database currently exists for the path name you want to specify, simply append ;create=true

to the path name to create a database dynamically. (For example: c:\temp\sampleDB;create=true)

v driverType Only the Type 4 driver is allowed.

v serverName The TCP/IP address or the host name for the Distributed Relational Database

Architecture (DRDA) server.

v portNumber The TCP/IP port number where the DRDA server resides. The default value is port

1527.

v retrieveMessagesfromServerOnGetMessage This property is required by WebSphere Application

Server, not the database. The default value is false. You must set the value of this property to true,

to enable text retrieval using the SQLException.getMessage() method.

See the Cloudscape setup instructions for more information on configuring the Cloudscape Network

Server.

For more information on IBM Cloudscape, visit the Cloudscape Web site at:

http://www.ibm.com/software/data/cloudscape/

Informix

1. Informix JDBC Driver

The Informix JDBC Driver is a Type 4 JDBC driver that provides JDBC access to the Informix

database.

Informix JDBC Driver supports one phase data source:

 com.informix.jdbcx.IfxConnectionPoolDataSource

Requires JDBC driver files:

 ifxjdbc.jar

 ifxjdbcx.jar

Requires DataStoreHelper class:

com.ibm.websphere.rsadapter.InformixDataStoreHelper

Requires a valid authentication alias.

212 IBM WebSphere Application Server-Network Deployment, Version 6: Troubleshooting and support

http://www-3.ibm.com/software/data/cloudscape/

Requires properties:

v serverName The name of the Informix instance on the server. Example: ol_myserver.

v portNumber The port on which the instances listen. Example: 1526.

v ifxIFXHOST Either the IP address or the host name of the machine that is running the Informix

database to which you want to connect. Example: myserver.mydomain.com.

v databaseName The name of the database from which the data source obtains connections.

Example: Sample.

v informixLockModeWait Although not required, this property enables you to set the number of

seconds that Informix software waits for a lock. By default, Informix code throws an exception if it

cannot immediately acquire a lock. Example: 2.
2. Informix JDBC Driver (XA)

The Informix JDBC Driver (XA) is a Type 4 JDBC driver that provides XA-compliant JDBC access to

the Informix database.

Informix JDBC Driver (XA) supports two phase data source:

com.informix.jdbcx.IfxXADataSource

Requires JDBC driver files:

 ifxjdbc.jar

 ifxjdbcx.jar

Requires DataStoreHelper class:

com.ibm.websphere.rsadapter.InformixDataStoreHelper

Requires a valid authentication alias.

Requires properties:

v serverName The name of the Informix instance on the server. Example: ol_myserver.

v portNumber The port on which the instances listen. Example: 1526.

v ifxIFXHOST Either the IP address or the host name of the machine that is running the Informix

database to which you want to connect. Example: myserver.mydomain.com.

v databaseName The name of the database from which the data source obtains connections.

Example: Sample.

v informixLockModeWait Although not required, this property enables you to set the number of

seconds that Informix software waits for a lock. By default, Informix code throws an exception if it

cannot immediately acquire a lock. Example: 2.

For more information on Informix, visit the Informix Web site at: http://www.ibm.com/software/data/informix/

Sybase

1. Sybase JDBC Driver

The Sybase JDBC Driver is a Type 4 JDBC driver that provides JDBC access to the Sybase database.

Sybase JDBC Driver supports one phase data source:

com.sybase.jdbc2.jdbc.SybConnectionPoolDataSource

Requires JDBC driver files: jconn2.jar.

Requires DataStoreHelper class:

com.ibm.websphere.rsadapter.SybaseDataStoreHelper

Requires a valid authentication alias.

Requires properties:

v serverName The name of the database server. Example: myserver.mydomain.com.

v databaseName The name of the database from which the data source obtains connections.

Example: Sample.

v portNumber The TCP/IP port number through which all communications to the server take place.

Example: 4100.

v connectionProperties A custom property required for applications containing EJB 2.0 enterprise

beans. Value: SELECT_OPENS_CURSOR=true(Type: java.lang.String)
2. Sybase JDBC Driver (XA)

Chapter 6. Learn about WebSphere applications 213

http://www-3.ibm.com/software/data/informix/

The Sybase JDBC Driver (XA) is a Type 4 JDBC driver that provides XA-compliant JDBC access to

the Sybase database.

Sybase JDBC Driver (XA) supports two phase data source:

com.sybase.jdbc2.jdbc.SybXADataSource

Requires JDBC driver files: jconn2.jar.

Requires DataStoreHelper class:

com.ibm.websphere.rsadapter.SybaseDataStoreHelper

Requires a valid authentication alias.

Requires properties:

v serverName The name of the database server. Example: myserver.mydomain.com

v databaseName The name of the database from which the data source obtains connections.

Example: Sample.

v portNumber The TCP/IP port number through which all communications to the server take place.

Example: 4100.

v connectionProperties A custom property required for applications containing EJB 2.0 enterprise

beans. Value: SELECT_OPENS_CURSOR=true(Type: java.lang.String)

For more information on Sybase, visit the Sybase Web site at: http://www.sybase.com/

Oracle

1. Oracle JDBC Driver

The Oracle JDBC Driver provides JDBC access to the Oracle database. This JDBC driver supports

both Type 2 JDBC access and Type 4 JDBC access.

Oracle JDBC Driver supports one phase data source:

 oracle.jdbc.pool.OracleConnectionPoolDataSource

Requires JDBC driver files: ojdbc14.jar. (Note: If you require Oracle trace, use ojdbc14_g.jar.)

Requires DataStoreHelper class:

com.ibm.websphere.rsadapter.OracleDataStoreHelper

(Note: If you are running Oracle10g, use com.ibm.websphere.rsadapter.Oracle10gDataStoreHelper.

Requires a valid authentication alias.

Requires properties:

v URL The URL that indicates the database from which the data source obtains connections.

Example: jdbc:oracle:thin:@myServer:1521:myDatabase, where myServer is the server name, 1521

is the port it is using for communication, and myDatabase is the database name.
2. Oracle JDBC Driver (XA)

The Oracle JDBC Driver (XA) provides XA-compliant JDBC access to the Oracle database. This JDBC

driver supports both Type 2 JDBC access and Type 4 JDBC access.

Oracle JDBC Driver (XA) supports two phase data source:

oracle.jdbc.xa.client.OracleXADataSource

Requires JDBC driver files: ojdbc14.jar. (Note: If you require Oracle trace, use ojdbc14_g.jar.)

Requires DataStoreHelper class:

com.ibm.websphere.rsadapter.OracleDataStoreHelper

Requires a valid authentication alias.

Requires properties:

v URL The URL that indicates the database from which the data source obtains connections.

Example: jdbc:oracle:thin:@myServer:1521:myDatabase, where myServer is the server name, 1521

is the port it is using for communication, and myDatabase is the database name.

For more information on Oracle, visit the Oracle Web site at: http://www.oracle.com/

214 IBM WebSphere Application Server-Network Deployment, Version 6: Troubleshooting and support

http://www.sybase.com/
http://www.oracle.com/

MS SQL Server

1. DataDirect ConnectJDBC type 4 driver for MS SQL Server

DataDirect ConnectJDBC type 4 driver for MS SQL Server is a Type 4 JDBC driver that provides

JDBC access to the MS SQL Server database. This provider is for use only with the Connect JDBC

driver purchased from DataDirect Technologies.

This JDBC provider supports this data source:

 com.ddtek.jdbcx.sqlserver.SQLServerDataSource

Requires JDBC driver files:

sqlserver.jar,

base.jar and util.jar

(The spy.jar file is optional. You need this file to enable spy logging. The spy.jar file is not in the

same directory as the other three jar files. Instead, it is located in the ../spy/ directory.)

Requires DataStoreHelper class:

com.ibm.websphere.rsadapter.ConnectJDBCDataStoreHelper

Requires a valid authentication alias.

Requires properties:

v serverName The name of the server in which MS SQL Server resides. Example:

myserver.mydomain.com

v portNumber The TCP/IP port that MS SQL Server uses for communication. Port 1433 is the default.

v databaseName The name of the database from which the data source obtains connections.

Example: Sample.
2. DataDirect ConnectJDBC type 4 driver for MS SQL Server (XA)

DataDirect ConnectJDBC type 4 driver for MS SQL Server (XA) is a Type 4 JDBC driver which

provides XA-compliant JDBC access to the MS SQL Server database. This provider is for use only

with the Connect JDBC driver purchased from DataDirect Technologies.

This JDBC provider supports this data source:

com.ddtek.jdbcx.sqlserver.SQLServerDataSource.

Requires JDBC driver files:

sqlserver.jar,

base.jar and util.jar.

(The spy.jar file is optional. You need this file to enable spy logging. The spy.jar file is not in the

same directory as the other three jar files. Instead, it is located in the ../spy/ directory.)

Requires DataStoreHelper class:

com.ibm.websphere.rsadapter.ConnectJDBCDataStoreHelper

Requires a valid authentication alias.

Requires properties:

v serverName The name of the server in which MS SQL Server resides. Example:

myserver.mydomain.com

v portNumber The TCP/IP port that MS SQL Server uses for communication. Port 1433 is the default.

v databaseName The name of the database from which the data source obtains connections.

Example: Sample.

For more information on the DataDirect ConnectJDBC driver, visit the DataDirect Web site at:

http://www.datadirect-technologies.com/

3. WebSphere embedded ConnectJDBC driver for MS SQL Server

WebSphere embedded ConnectJDBC driver for MS SQL Server is a Type 4 JDBC driver that provides

JDBC access to the MS SQL Server database. This JDBC driver ships with WebSphere Application

Server. Only use this provider with the Connect JDBC driver embedded in WebSphere; it cannot be

used with a Connect JDBC driver purchased separately from DataDirect Technologies.

This JDBC provider supports this data source:

com.ibm.websphere.jdbcx.sqlserver.SQLServerDataSource.

Requires JDBC driver files:

Chapter 6. Learn about WebSphere applications 215

http://www.datadirect-technologies.com/

sqlserver.jar

base.jar and

util.jar.

(The spy.jar file is optional. You need this file to enable spy logging. The spy.jar file for the

WebSphere embedded Connect JDBC driver ships with WebSphere Application Server. All the files are

located in the WAS_HOME/lib/ directory.)

Requires DataStoreHelper class:

com.ibm.websphere.rsadapter.WSConnectJDBCDataStoreHelper

Requires a valid authentication alias.

Requires properties:

v serverName The name of the server in which MS SQL Server resides. Example:

myserver.mydomain.com

v portNumber The TCP/IP port that MS SQL Server uses for communication. Port 1433 is the default.

v databaseName The name of the database from which the data source obtains connections.

Example: Sample.
4. WebSphere embedded ConnectJDBC driver for MS SQL Server (XA)

WebSphere embedded ConnectJDBC driver for MS SQL Server (XA) is a Type 4 JDBC driver which

provides XA-compliant JDBC access to the MS SQL Server database. This JDBC driver ships with

WebSphere Application Server. Use this provider with the Connect JDBC driver embedded in

WebSphere. Do not use it with a Connect JDBC driver purchased separately from DataDirect

Technologies.

This JDBC provider supports this data source:

 com.ibm.websphere.jdbcx.sqlserver.SQLServerDataSource.

Requires JDBC driver files:

sqlserver.jar

base.jar and

util.jar.

(The spy.jar file is optional. You need this file to enable spy logging. The spy.jar file for the

WebSphere embedded Connect JDBC driver ships with WebSphere Application Server. All the files are

located in the WAS_HOME/lib/ directory.)

Requires DataStoreHelper class:

com.ibm.websphere.rsadapter.WSConnectJDBCDataStoreHelper

Requires a valid authentication alias.

Requires properties:

v serverName The name of the server in which MS SQL Server resides. Example:

myserver.mydomain.com

v portNumber The TCP/IP port that MS SQL Server uses for communication. Port 1433 is the default.

v databaseName The name of the database from which the data source obtains connections.

Example: Sample.

Whether you need to support one or two phase transactions with the WebSphere embedded Connect

JDBC XA driver, you must install Stored Procedures for the Java Transaction API (JTA) on your

machine that runs Microsoft SQL. The WebSphere Application Server installation disks provide a base

level of Stored Procedures for JTA. (You can find the most current version of the software on the

WebSphere Application Server-embedded DataDirect Technologies product update Web page.) Install

Stored Procedures for JTA by performing the following steps:

a. Determine whether you are running the 32-bit or 64-bit MS SQL Server and select the appropriate

sqljbc.dll and instjdbc.sql files.

b. Stop your MS SQL Server service.

c. Copy the sqljdbc.dll file into your %SQL_SERVER_INSTALL%\Binn\ directory.

d. Restart the MS SQL Server service.

e. Run theinstjdbc.sql script. (The script can be run by the MS SQL Server Query Analyzer or the

ISQL utility).

216 IBM WebSphere Application Server-Network Deployment, Version 6: Troubleshooting and support

You can download the latest patches and upgrades to the WebSphere embedded Connect JDBC

driver from the following FTP site:

ftp://ftp.software.ibm.com/software/websphere/info/tools/DataDirect/datadirect.htm

5. DataDirect SequeLink type 3 JDBC driver for MS SQL Server -- Deprecated

Because this JDBC provider is deprecated in WebSphere Application Server Version 6.0, it is no longer

an available option in the administrative console. In its place, use one of the Connect JDBC providers,

which are described previously in this section.

DataDirect SequeLink type 3 JDBC driver for MS SQL Server is a type 3 JDBC driver that provides

JDBC access to MS SQL Server via SequeLink server.

This JDBC provider supports this data source:

 com.ddtek.jdbcx.sequelink.SequeLinkDataSource

Requires JDBC driver files:

 sljc.jar and

 spy-sl.jar

(The JDBC driver shipped with WebSphere Application Server requires the sljc.jar and the

spy-sl.jar files. The JDBC driver purchased from DataDirect requires the sljc.jar and the spy.jar

files. The spy.jar and spy-sl.jar files are optional. You need these files to enable spy logging.)

Requires DataStoreHelper class:

com.ibm.websphere.rsadapter.SequeLinkDataStoreHelper

Requires a valid authentication alias.

Requires properties:

v serverName The name of the server in which SequeLink Server resides. Example:

myserver.mydomain.com

v portNumber The TCP/IP port that SequeLink Server uses for communication. By default, SequeLink

Server uses port 19996.

v databaseName The name of the database from which the data source obtains connections.

Example: Sample.
6. DataDirect SequeLink type 3 JDBC driver for MS SQL Server (XA) -- Deprecated

Because this JDBC provider is deprecated in WebSphere Application Server Version 6.0, it is no longer

an available option in the administrative console. In its place, use one of the Connect JDBC providers,

which are described previously in this section.

DataDirect SequeLink type 3 JDBC driver for MS SQL Server (XA) is a type 3 JDBC driver that

provides XA-compliant JDBC access to MS SQL Server via the SequeLink server.

This JDBC provider supports this data source:

com.ddtek.jdbcx.sequelink.SequeLinkDataSource

Requires JDBC driver files:

 sljc.jar and

spy-sl.jar

(The JDBC driver shipped with WebSphere Application Server requires the sljc.jar and the

spy-sl.jar files. The JDBC driver purchased from DataDirect requires the sljc.jar and the spy.jar

files. The spy.jar and spy-sl.jar files are optional. You need these files to enable spy logging.)

Requires DataStoreHelper class:

com.ibm.websphere.rsadapter.SequeLinkDataStoreHelper

Requires a valid authentication alias.

Requires properties:

v serverName The name of the server in which SequeLink Server resides. Example:

myserver.mydomain.com

v portNumber The TCP/IP port that SequeLink Server uses for communication. By default, SequeLink

Server uses port 19996.

v databaseName The name of the database from which the data source obtains connections.

Example: Sample.

Chapter 6. Learn about WebSphere applications 217

ftp://ftp.software.ibm.com/software/websphere/info/tools/DataDirect/datadirect.htm

Both of the WebSphere-embedded SequeLink JDBC drivers require installation of SequeLink Server

on all machines running MS SQL Server. See the readme.html file found in the DataDirect folder on

the WebSphere Application Server CD for instructions on how to install SequeLink Server. (Only install

SequeLink Server from the WebSphere Application Server CD if you are using the SequeLink JDBC

driver embedded in WebSphere. Otherwise, install a copy of SequeLink Server purchased from

DataDirect Technologies.)

From the following FTP site, you can download the latest patches and upgrades for the version of

SequeLink Server that is used with the WebSphere-embedded SequeLink JDBC driver:

ftp://ftp.software.ibm.com/software/websphere/info/tools/DataDirect/datadirect.htm

For more information on the DataDirect SequeLink type 3 JDBC driver, visit the DataDirect Web site at:

http://www.datadirect-technologies.com/

7. Microsoft JDBC driver for MSSQLServer 2000 -- Deprecated

Because this JDBC provider is deprecated in WebSphere Application Server Version 6.0, it is no longer

an available option in the administrative console. In its place, use one of the Connect JDBC providers,

which are described previously in this section.

Microsoft JDBC driver for MSSQLServer 2000 is a type 4 JDBC driver that provides JDBC access to

the MS SQL Server database.

This JDBC provider supports this data source:

com.microsoft.jdbcx.sqlserver.SQLServerDataSource

Requires JDBC driver files:

mssqlserver.jar,

msbase.jar and msutil.jar

(The spy.jar file is optional. You need it to enable spy logging. However, Microsoft does not ship the

spy.jar file. Contact Microsoft about this issue.)

Requires DataStoreHelper class:

com.ibm.websphere.rsadapter.ConnectJDBCDataStoreHelper

Requires a valid authentication alias.

Requires properties:

v serverName The name of the server in which MS SQL Server resides. Example:

myserver.mydomain.com

v portNumber The TCP/IP port that MS SQL Server uses for communication. Port 1433 is the default.

v databaseName The name of the database from which the data source obtains connections.

Example: Sample.
8. Microsoft JDBC driver for MSSQLServer 2000 (XA) -- Deprecated

Because this JDBC provider is deprecated in WebSphere Application Server Version 6.0, it is no longer

an available option in the administrative console. In its place, use one of the Connect JDBC providers,

which are described previously in this section.

Microsoft JDBC driver for MSSQLServer 2000 (XA) is a type 4 JDBC driver that provides XA-compliant

JDBC access to the MS SQL Server database.

This JDBC provider supports this data source:

com.microsoft.jdbcx.sqlserver.SQLServerDataSource

Requires JDBC driver files:

mssqlserver.jar,

msbase.jar and msutil.jar

(The spy.jar file is optional. You need it to enable spy logging. However, Microsoft does not ship the

spy.jar file. Contact Microsoft about this issue.)

Requires DataStoreHelper class:

com.ibm.websphere.rsadapter.ConnectJDBCDataStoreHelper

Requires a valid authentication alias.

Requires properties:

218 IBM WebSphere Application Server-Network Deployment, Version 6: Troubleshooting and support

ftp://ftp.software.ibm.com/software/websphere/info/tools/DataDirect/datadirect.htm
http://www.datadirect-technologies.com/

v serverName The name of the server in which MS SQL Server resides. Example:

myserver.mydomain.com

v portNumber The TCP/IP port that MS SQL Server uses for communication. Port 1433 is the default.

v databaseName The name of the database from which the data source obtains connections.

Example: Sample.

For more information on the Microsoft JDBC driver, visit the Microsoft Web site at:

http://www.microsoft.com/sql

Messaging resources

Troubleshooting WebSphere messaging

Use this overview task to help resolve a problem that you think is related to the WebSphere Messaging.

To identify and resolve problems that you think are related to WebSphere Messaging, you can use the

standard WebSphere Application Server troubleshooting facilities. If you encounter a problem that you

think might be related to WebSphere Messaging, complete the following stages. Some problems and their

troubleshooting are specific to whether you are using the embedded WebSphere Messaging or

WebSphere MQ as the JMS provider.

1. Check for error messages about messaging. For example, check for error messages that indicate a

problem with JMS resources.

Check in the application server’s SystemOut log at was_home\logs\server\SystemOut.

The associated message reference information provides an explanation and any user actions to

resolve the problem.

2. Check for more informational and error messages that might provide a clue to a related problem. For

example, if you have problems accessing JMS resources, check for more error messages and extra

details about any problem associated with the JMS provider or with the service integration technologies

that the default messaging provider uses.

For messages related to the resource adapter (JMS) of the default messaging provider, look for the

prefix: CWSJR. For messages related to service integration technologies, see the related reference

topics.

If your message-driven bean uses WebSphere Application Server version 5 JMS resources, look for

the prefixes: MSGS and WMSG.

3. If you suspect that problems might be related to application use of message-driven beans, see

“Troubleshooting message-driven beans” on page 221.

4. Check the Release Notes for specific problems and workarounds The section Possible Problems and

Suggested Fixes of the Release Notes, available from the WebSphere Application Server library web

site, is updated regularly to contain information about known defects and their workarounds. Check the

latest version of the Release Notes for any information about your problem. If the Release Notes do

not contain any information about your problem, you can also search the Technotes database on the

WebSphere Application Server web site.

5. Check your JMS resource configurations If the messaging services seem to be running properly, check

that the JMS resources have been configured correctly. For example, check that the JMS activation

specification against which a message-driven bean is deployed has been configured correctly. For

more information about configuring JMS resources, see Using messaging.

6. Get a detailed exception dump for messaging. If the information obtained in the preceding steps is still

inconclusive, you can enable the application server debug trace for the ″Messaging″ group to provide a

detailed exception dump.

Tips for troubleshooting WebSphere Messaging

This topic provides a set of tips to help you troubleshoot problems with WebSphere Messaging.

v An MDB listener fails to start

Chapter 6. Learn about WebSphere applications 219

http://www.microsoft.com/sql
http://www-3.ibm.com/software/webservers/appserv/infocenter.html
http://www-3.ibm.com/software/webservers/appserv/infocenter.html

v Problems running JMS applications with security enabled

v Queue manager fails to stop on Redhat Linux

v Application server fails to start in zh_TW.EUC locale on Solaris

For messaging problems specific to WebSphere Application Server version 5 nodes, see the version 5

information center and the Application Servers support web site; for example: Tips for troubleshooting

WebSphere messaging [version 5].

An MDB listener fails to start

If an MDB listener deployed against a listener port fails to start, you should see the following message:

WMSG0019E: Unable to start MDB Listener {0}, JMSDestination {1} : {2}

To troubleshoot the cause of an MDB listener not starting, check the following factors:

v Check that the administrative resources have been configured correctly; for example, use the

administrative console to check the listener port properties: Destination JNDI name and Connection

factory JNDI name. Check that other properties of the listener port, destination, and connection factory

are correct.

v Check that the queue exists and has been added to the JMS server.

v Check that the queue manager and JMS server have started.

v Check that the Remote Queue Manager Listener has started.

v If security is enabled, check that a component-managed authentication alias has been specified on the

queue connection factory or topic connection factory used by the message-driven bean. This is not

required if security is not enabled.

v Check that the user ID used to start the MDB listener is appropriately authorized.

Problems running JMS applications with security enabled

When trying to run a JMS application with security enabled, you can encounter authentication problems

indicated by error messages; for example: WMSG0019E: Unable to start MDB Listener PSSampleMDB,

JMSDestination Sample/JMS/listen : javax.jms.JMSSecurityException:. [This example indicates that the

security credentials supplied are not valid.]

The problem can be removed by doing one of the following:

v If the authentication mechanism is set to Application, then the application needs to supply valid

credentials.

v If the authentication mechanism is set to Container, then you need to configure the JMS

ConnectionFactory with a container-managed Authentication Alias and ensure that the associated

username and password are valid.

MQJMS2013 invalid security authentication supplied for MQQueueManager

If using WebSphere MQ as a JMS Provider, with JMS connection using Bindings transport mode,

and the user specified is not the current logged on user for the WebSphere Application Server

process, then the JMS Bindings authentication by WebSphere MQ throws the error MQJMS2013

invalid security authentication supplied for MQQueueManager.

 If you want to use WebSphere MQ as a JMS Provider, with JMS connection using Bindings

transport mode, set the property Transport type=BINDINGS on the WebSphere MQ Queue

Connection Factory. You must also choose one of the following options:

v To use security credentials, ensure that the user specified is the currently logged on user for the

WebSphere Application Server process.

v Do not specify security credentials. On the WebSphere MQ Connection Factory, ensure that

both the Component-managed Authentication Alias and the Container-managed

Authentication Alias properties are not set.

For more information about messaging security, see Asynchronous messaging - security considerations.

220 IBM WebSphere Application Server-Network Deployment, Version 6: Troubleshooting and support

http://www.ibm.com/software/webservers/appserv/infocenter.html
http://www.ibm.com/software/webservers/appserv/infocenter.html
http://www.ibm.com/software/webservers/support.html
http://publib.boulder.ibm.com/infocenter/ws51help/topic/com.ibm.websphere.nd.doc/info/ae/ae/rmj_prob0.html
http://publib.boulder.ibm.com/infocenter/ws51help/topic/com.ibm.websphere.nd.doc/info/ae/ae/rmj_prob0.html

Queue manager fails to stop on Redhat Linux

When trying to stop an application server on Redhat Linux, the queue manager can hang with a Java core

dump, and the last message in the SystemOut.log file is Stopping Queue manager....

This is caused by a known RedHat problem (https://bugzilla.linux.ibm.com/show_bug.cgi?id=2336), that

was introduced in libstdc++-2.96-116.7.2 and beyond.

The workaround is to go back to the libstdc++-2.96-108.1 level.

Application server fails to start in zh_TW.EUC locale on Solaris

If you have set the locale to zh_TW.EUC on Solaris, and are using WebSphere MQ as a JMS provider,

you can encounter problems that stop application servers starting up.

If you intend using WebSphere MQ as a JMS provider on Solaris, do not set the LANG and LC_ALL

variables to zh_TW.EUC (Traditional Chinese locale) to avoid problems when starting application servers.

Set the LANG and LC_ALL variables to zh_TW instead of zh_TW.EUC.

Troubleshooting message-driven beans

Use this overview task to help resolve a problem that you think is related to message-driven beans.

Message-driven beans support uses the standard WebSphere Application Server troubleshooting facilities.

If you encounter a problem that you think might be related to the message-driven beans, complete the

following steps.

1. Check for error messages about message-driven beans. For example, check for error messages that

indicate a problem with JMS resources, such as activation specifications or listener ports, that are used

by message-driven beans.

Check in the application server’s SystemOut log at was_home\logs\server\SystemOut.

The associated message reference information provides an explanation and any user actions to

resolve the problem.

2. Check for more informational and error messages that might provide a clue to a related problem. For

example, if you have problems accessing JMS resources, check for more error messages and extra

details about any problem associated with the JMS provider or with the service integration technologies

that the default messaging provider uses.

For messages related to the resource adapter (JMS) of the default messaging provider, look for the

prefix: CWSJR. For messages related to service integration technologies, see the related reference

topics.

If your message-driven bean uses WebSphere Application Server version 5 JMS resources, look for

the prefixes: MSGS and WMSG.

3. Check the Release Notes for specific problems and workarounds The section Possible Problems and

Suggested Fixes of the Release Notes, available from the WebSphere Application Server library web

site, is updated regularly to contain information about known defects and their workarounds. Check the

latest version of the Release Notes for any information about your problem. If the Release Notes does

not contain any information about your problem, you can also search the Technotes database on the

WebSphere Application Server web site.

4. If your message-driven bean is deployed against a lister port, check that message listener service has

started. The message listener service is an extension to the JMS functions of the JMS provider. It

provides a listener manager that controls and monitors one or more JMS listeners, which each monitor

a JMS destination on behalf of a deployed message-driven bean.

5. Check your JMS resource configurations If the messaging services seem to be running properly, check

that the JMS resources have been configured correctly. For example, check that the JMS activation

Chapter 6. Learn about WebSphere applications 221

http://www-3.ibm.com/software/webservers/appserv/infocenter.html
http://www-3.ibm.com/software/webservers/appserv/infocenter.html

specification against which the message-driven bean is deployed has been configured correctly. For

more information about configuring JMS resources for message-driven beans, see Administering

support for message-driven beans.

6. Get a detailed exception dump for messaging. If the information obtained in the preceding steps is still

inconclusive, you can enable the application server debug trace for the ″Messaging″ group to provide a

detailed exception dump.

Mail, URLs, and other J2EE resources

Enabling debugger for a mail session

When you need to debug a JavaMail application, you can use the JavaMail debugging feature. Enabling

the debugger triggers the JavaMail component of WebSphere Application Server to print the following data

to the stdout output stream:

v interactions with the mail servers

v properties of the mail session

This output stream is redirected to the SystemOut.log file for the specific application server.

The mail debugger functions on a per session basis. To enable the JavaMail debugging feature:

1. Open the administrative console.

2. Click Resources>Mail Providers>mail_session>Mail Session>mail session.

3. Click Debug. Debug is enabled for just that session.

4. Click Apply or OK.

The following example shows sample JavaMail debugging output:

DEBUG: not loading system providers in <java.home>/lib

DEBUG not loading optional custom providers file: /META-INF/javamail.providers

DEBUG: successfully loaded default providers

DEBUG Tables of loaded providers

DEBUG: Providers listed by Class Name:

{com.sun.mail.smtp.SMTPTransport=javax.mail.Provider[TRANSPORT,smtp,com.sun.mail.smtp.SMTPTransport,Sun

Microsystems, Inc], com.sun.mail.imap.IMAPStore=javax.mail.Provider[STORE,imap,com.sun.mail.imap.IMAPStore,Sun

Microsystems, Inc], com.sun.mail.pop3.POP3Store=javax.mail.Provider[STORE,pop3,com.sun.mail.pop3.POP3Store,Sun

Microsystems, Inc]}

DEBUG: Providers Listed By Protocol:

{imap=javax.mail.Provider[STORE,imap,com.sun.mail.imap.IMAPStore,Sun Microsystems,

Inc], pop3=javax.mail.Provider[STORE,pop3,com.sun.mail.pop3.POP3Store,Sun

Microsystems, Inc], smtp=javax.mail.Provider[TRANSPORT,smtp,com.sun.mail.smtp.SMTPTransport,Sun

Microsystems, Inc]}

DEBUG: not loading optional address map file: /META-INF/javamail.address.map

*** In SessionFactory.getObjectInstance,

 The default SessionAuthenticator is based on:

 store_user = john_smith

 store_pw = abcdef

*** In SessionFactory.getObjectInstance, parameters in the new session:

 mail.store.protocol="imap"

 mail.transport.protocol="smtp"

 mail.imap.user="john_smith"

 mail.smtp.host="smtp.coldmail.com"

 mail.debug="true"

 ws.store.password="abcdef"

 mail.from="john_smith@coldmail.com"

 mail.smtp.class="com.sun.mail.smtp.SMTPTransport"

 mail.imap.class="com.sun.mail.imap.IMAPStore"

 mail.imap.host="coldmail.com"

DEBUG: mail.smtp.class property exists and points to com.sun.mail.smtp.SMTPTransport

222 IBM WebSphere Application Server-Network Deployment, Version 6: Troubleshooting and support

DEBUG SMTP: useEhlo true, useAuth false

DEBUG: SMTPTransport trying to connect to host "smtp.coldmail.com", port 25

javax.mail.SendFailedException: Sending failed;

 nested exception is:

 javax.mail.MessagingException: Unknown SMTP host: smtp.coldmail.com;

 nested exception is

 java.net.UnknownHostException: smtp.coldmail.com

 at javax.mail.Transport.send0(Transport.java:219)

 at javax.mail.Transport.send(Transport.java:81)

 at ws.mailfvt.SendSaveTestCore.runAll(SendSaveTestCore.java:48)

 at testers.AnyTester.main(AnyTester.java:130)

This output illustrates a connection failure to a Simple Mail Transfer Protocol (SMTP) server because a

fictitious name, smtp.coldmail.com, is specified as the server name.

The following list provides tips on reading the previous sample of debugger output:

v The lines headed by DEBUG are printed by the JavaMail run-time, while the two lines headed by *** are

printed by the WebSphere environment run-time.

v The first two lines say that some configuration files are skipped. At run-time the JavaMail component

attempts to load a number of configuration files from different locations. All those files are not required.

If a required file cannot be accessed, however, the JavaMail component creates an exception. In this

sample, there is no exception and the third line announces that default providers are loaded.

v The next few lines, headed by either Providers listed by Class Name or Providers Listed by Protocols,

show the protocol providers that are loaded. The three providers that are listed are the default protocol

providers that come under the WebSphere built-in mail provider. They are the protocols SMTP, IMAP,

and POP3, respectively. If you install special protocol providers (or, in JavaMail terminology, service

providers) and these providers are used in the current mail session, you see them listed here with the

default providers.

v The two lines headed by *** and the few lines below them are printed by WebSphere Application Server

to show the configuration properties of the current mail session. Although these properties are listed by

their internal name rather than the name you establish in the administrative console, you can easily

recognize the relationships between them. For example, the property mail.store.protocol corresponds to

the Protocol Name property in the Store Access section of the mail session configuration page.

Note: Review the listed properties and values to verify that they correspond.

v The few lines above the exception stack show the JavaMail activities when sending a message. First,

the JavaMail API recognizes that the transport protocol is set to SMTP and that the provider

com.sun.mail.smtp.SMTPTransport exists. Next, the parameters used by SMTP, useEhlo and useAuth,

are shown. Finally, the log shows the SMTP provider trying to connect to the mail server

smtp.coldmail.com.

v Next is the exception stack. This data indicates that the specified mail server either does not exist or is

not functioning.

Security

Troubleshooting authorization providers

This article describes the issues you might encounter using a Java Contract for Containers (JACC)

authorization provider. Tivoli Access Manager is bundled with WebSphere Application Server as an

authorization provider. However, you also can plug in your own authorization provider.

Using Tivoli Access Manager as a Java Contract for Containers authorization provider

You might encounter the following issues when using Tivoli Access Manager as a JACC authorization

provider:

v The configuration of JACC might fail.

Chapter 6. Learn about WebSphere applications 223

v The server might fail to start after configuring JACC.

v The application might not deploy properly.

v The startServer command might fail after you have configured Tivoli Access Manager or a clean

uninstall did not take place after unconfiguring JACC.

v An ″HPDIA0202w An unknown user name was presented to Access Manager″ error might occur.

v An ″HPDAC0778E The specified user’s account is set to invalid″ error might occur.

v An WASX7017E: Exception received while running file ″InsuranceServicesSingle.jacl″ error might occur.

Using an external provider for Java Contract for Containers authorization

You might encounter the following issues when you use an external provider for JACC authorization:

v An ″HPDJA0506E Invalid argument: Null or zero-length user name field for the ACL entry″ error might

occur.

The configuration of JACC might fail

If you are having problems configuring JACC, check the following:

v Ensure that the parameters are correct. For example, there should not be a number after

TAM_Policy_server_hostname:7135, but there should be a number after

TAM_Authorization_server_hostname:7136 (for example, TAM_Authorization_server_hostname:7136:1).

v If a message such as “server can‘t be contacted” appears, it is possible that the host names or port

numbers of the Tivoli Access Manager servers are incorrect, or that the Tivoli Access Manager servers

have not been started.

v Ensure that the password for sec_master is correct.

v Check the SystemOut.log and search for the string AMAS to see if any error messages are present.

The server might fail to start after configuring JACC

If the server does not start after JACC has been configured, check the following:

v Ensure that the WebSphere Application Server and Tivoli Access Manager use the same Lightweight

Directory Access Protocol (LDAP) server.

v If the message “Policy Director Authentication failed″ appears, ensure that the:

– WebSphere Application Server LDAP serverID is the same as the “Administrator user” in the Tivoli

Access Manager JACC configuration panel.

– Tivoli Access Manager Administrator distinguished name (DN) is correct.

– Password of the Tivoli Access Manager administrator has not expired and is valid.

– Account is valid for the Tivoli Access Manager administrator.

v If a message such as “socket can‘t be opened for xxxx″ (where xxxx is a number) appears, do the

following:

1. Go to $WAS_HOME/profiles/profile_name/etc/tam.

2. Change xxxx to an available port number in amwas.commomconfig.properties, and

amwas*cellName_dmgr.properties if dmgr failed to start. If Node failed to start, change xxx to an

available port number in amwas*cellName_nodeName_.properties. If appSever failed to start,

change xxxx in Amwas*cellname_nodeName_serverName.properties.

The application might not deploy properly

When you click Save, the policy and role information is propagated to the Tivoli Access Manager policy. It

might take some time to finish. If the save fails, you must uninstall the application and then reinstall it.

224 IBM WebSphere Application Server-Network Deployment, Version 6: Troubleshooting and support

To access an application after it is installed, you must wait 30 seconds (by default) to start the application

after you save.

The startServer command might fail after you have configured Tivoli Access Manager or a clean

uninstall did not take place after unconfiguring JACC.

If the cleanup for JACC unconfiguration or start server fails after JACC has been configured, do the

following:

v Remove Tivoli Access Manager properties files from WebSphere Application Server. For each

application server in a network deployment (ND) environment with N servers defined (for example,

server1, server2), the following files must be removed:

$WAS_INSTALL/java/jre/PdPerm.properties

$WAS_INSTALL/java/jre/PdPerm.ks

$WAS_INSTALL/profiles/profile_name/etc/tam/*

v Use a utility to clear the security configuration and return the system to the state it was in before Tivoli

Access Manager JACC was configured. The utility removes all of the PDLoginModuleWrapper entries

as well as the Tivoli Access Manager authorization table entry from the security.xml file, effectively

removing the Tivoli Access Manager JACC provider. Backup security.xml before running this utility.

Enter the following commands:

$WAS_HOME/java/jre/bin/java -classpath

 ″$WAS_HOME/lib/AMJACCProvider.jar:CLASSPATH″

com.tivoli.pd.as.jacc.cfg.CleanSecXML fully_qualified_path/security.xml

An "HPDIA0202w An unknown user name was presented to Access Manager" error might occur

You might encounter the following error message if you are attempting to use an existing user in a Local

Directory Access Protocol (LDAP) user registry with Tivoli Access Manager:

AWXJR0008E Failed to create a PDPrincipal for principal mgr1.:

AWXJR0007E A Tivoli Access Manager exception was caught. Details are:

″HPDIA0202W An unknown user name was presented to Access Manager.″

To correct this error, complete the following steps:

1. On the command line, type the following information to get a Tivoli Access Manager command prompt:

pdadmin -a administrator_name -p administrator_password

The pdadmin administrator_name prompt is displayed. For example:

pdadmin -a administrator1 -p password

2. At the pdadmin command prompt, import the user from the LDAP user registry to Tivoli Access

Manager by typing the following information:

user import user_name cn=user_name,o=organization_name,c=country

For example:

user import jstar cn=jstar,o=ibm,c=us

After importing the user to Tivoli Access Manager, you must use the user modify command to set the user

account to valid. The following syntax shows how to use this command:

user modify user_name account-valid yes

Chapter 6. Learn about WebSphere applications 225

For example:

user modify jstar account-valid yes

For information on how to import a group from LDAP to Tivoli Access Manager, see the Tivoli Access

Manager documentation.

An "HPDAC0778E The specified user’s account is set to invalid" error might occur

You might encounter the following error message after you import a user to Tivoli Access Manager and

restart the client:

AWXJR0008E Failed to create a PDPrincipal for principal mgr1.:

AWXJR0007E A Tivoli Access Manager exception was caught.

Details are: "HPDAC0778E The specified user’s account is set to invalid."

To correct this error, use the user modify command to set the user account to valid. The following syntax

shows how to use this command:

user modify user_name account-valid yes

For example:

user modify jstar account-valid yes

An "HPDJA0506E Invalid argument: Null or zero-length user name field for the ACL entry" error

might occur

You might encounter an error similar to the following message when you propagate the security policy

information from the application to the provider using the wsadmin command

propagatePolicyToJACCProvider:

AWXJR0035E An error occurred while attempting to add member, cn=agent3,o=ibm,c=us, to role AgentRole

HPDJA0506E Invalid argument: Null or zero-length user name field for the ACL entry

To correct this error, create or import the user, which is mapped to the security role to the Tivoli Access

Manager. For more information on propagating the security policy information, see the documentation for

your authorization provider.

An WASX7017E: Exception received while running file "InsuranceServicesSingle.jacl" error might

occur

After the JACC provider and Tivoli Access Manager are enabled, when attempting to install the application

(which is configured with security roles using the wsadmin command), the following error might occur:

WASX7017E: Exception received while running file "InsuranceServicesSingle.jacl"; exception information:

 com.ibm.ws.scripting.ScriptingException: WASX7111E: Cannot find a match for supplied option:

"[RuleManager, , , cn=mgr3,o=ibm,c=us|cn=agent3,o=ibm,c=us, cn=ManagerGro

up,o=ibm,c=us|cn=AgentGroup,o=ibm,c=us]" for task "MapRolesToUsers

The $AdminApp task option MapRolesToUsers becomes invalid when Tivoli Access Manager is used as

the authorization server. To correct the error, change MapRolesToUsers to TAMMapRolesToUsers.

Troubleshooting security configurations

Refer to Security components troubleshooting tips for instructions on how to troubleshoot errors related to

security.

The following topics explain how to troubleshoot specific problems related to configuring and enabling

security configurations:

v Errors when configuring or enabling security

v Errors or access problems after enabling security

226 IBM WebSphere Application Server-Network Deployment, Version 6: Troubleshooting and support

v Errors trying to enable or configure Secure Socket Layer (SSL) encrypted access

v Errors after enabling Secure Sockets Layer (SSL) or SSL-related error messages

Errors when trying to configure or enable security

What kind of error are you seeing?

v “"LTPA password not set. validation failed" message displayed as error in the Administrative Console

after saving global security settings ”

v “"Validation failed for user userid. Please try again..." displayed in the Administrative Console after

saving global security settings ”

v “The setupClient.bat or setupClient.sh file is not working correctly” on page 228

v “Java HotSpot Server VM warning: Unexpected Signal 11 occurred under user-defined signal handler

0x7895710a message occurs in the native_stdout.log file when enabling security on the HP-UX11i

platform” on page 228

v “WebSphere Application Server Version 6 is not working correctly with Enterprise Workload Manager

(EWLM)” on page 228

v If you have successfully configured security (made changes, saved the configuration, and enabled

security with no errors), but are now having problems accessing Web resources or the administrative

console, refer to Errors or access problems after enabling security.

For general tips on diagnosing and resolving security-related problems, see the topic Troubleshooting the

security component.

If you do not see a problem that resembles yours, or if the information provided does not solve your

problem, contact IBM support for further assistance.

"LTPA password not set. validation failed" message displayed as error in the Administrative

Console after saving global security settings

This error can be caused if, when configuring WebSphere Application Server security, ″LTPA″ is selected

as the authentication mechanism, and the LTPA password field is not set. To resolve this problem:

v Select Security Authentication Mechanism > LTPA in the console left-hand navigation pane.

v Complete the password and confirm password fields.

v Click OK.

v Try setting Global Security again.

"Validation failed for user userid. Please try again..." displayed in the Administrative Console after

saving global security settings

This typically indicates that a setting in the User Registry configuration is not valid:

v If the user registry is LocalOS, it is likely that either the server user ID and password are invalid or the

server user ID does not have ″Act As Part of the Operating System″ (for NT) or root authority (for

UNIX). The server user ID needs this authority for authentication using the LocalOS user registry.

v If the user registry is Lightweight Directory Access Protocol (LDAP):

– Any of the settings that enable WebSphere Application Server to communicate with LDAP might be

invalid, such as the LDAP server’s user ID, password, host, port, or LDAP filter. When you select

Apply or OK on the Global Security panel, a validation routine connects to the registry just as it

would during runtime when security is enabled. This is done in order to verify any configuration

problems immediately, instead of waiting until the server restarts.

– Verify whether your LDAP server requires the Bind Distinguished Name (DN) to find the user in the

LDAP directory. If the bind distinguished name is required, you must specify a DN instead of a short

name. You can specify the bind distinguished name by clicking Security > User Registries > LDAP

in the administrative console. For example, you might add cn=root.

– Sometimes the LDAP server might be down during configuration. The best way to check this is to

issue a command line search using a utility such as ldapsearch to search for the server ID. This way

you can determine if the server is running and if the server ID is a valid entry in the LDAP. The

ldapsearch utility is installed during an LDAP or Lotus Notes installation.

Chapter 6. Learn about WebSphere applications 227

v If the user registry is Custom, double check that your implementation is in the classpath. Also, check to

see if your implementation is authenticating properly.

v Regardless of registry type, check the User Registries configuration panels to see if you can find a

configuration error:

– Go back to the User Registries configuration panels and retype the password for the server ID.
v See if there is an obvious configuration error. Double check the attributes specified.

The setupClient.bat or setupClient.sh file is not working correctly

The setupClient.bat file on Windows platforms and the setupClient.sh file on UNIX platforms incorrectly

specify the location of the SOAP security properties file.

In the setupClient.bat file, the correct location should be:

set CLIENTSOAP=-Dcom.ibm.SOAP.ConfigURL=file:%WAS_HOME%/properties/soap.client.props

In the setupClient.sh file, the CLIENTSOAP variable should be:

CLIENTSOAP=-Dcom.ibm.SOAP.ConfigURL=file:$WAS_HOME/properties/soap.client.props

In the setupClient.bat and setupClient.sh files, complete the following steps:

1. Remove the leading / after file:.

2. Change sas to soap.

Java HotSpot Server VM warning: Unexpected Signal 11 occurred under user-defined signal

handler 0x7895710a message occurs in the native_stdout.log file when enabling security on the

HP-UX11i platform

After you enable security on HP-UX 11i platforms, the following error in the native_stdout.log file occurs,

along with a core dump and WebSphere Application Server does not start:

Java HotSpot(TM) Server VM warning:

Unexpected Signal 11 occurred under user-defined signal handler 0x7895710a

To work around this error, apply the fixes recommended by HP for Java at the following URL:

http://www.hp.com/products1/unix/java/infolibrary/patches.html.

WebSphere Application Server Version 6 is not working correctly with Enterprise Workload

Manager (EWLM)

To use WebSphere Application Server Version 6 with Enterprise Workload Manager (EWLM), you must

manually update the WebSphere Application Serve server.policy files. For example:

grant codeBase "file:/<EWLM_Install_Home>/classes/ARM/arm4.jar" {

 permission java.security.AllPermission;

};

Otherwise, you might encounter a Java 2 security exception for violating the Java 2 security permission.

Refer to Configuring server.policy files for more information on configuring server.policy files.

For current information available from IBM Support on known problems and their resolution, see the IBM

Support page.

IBM Support has documents that can save you time gathering information needed to resolve this problem.

Before opening a PMR, see the IBM Support page.

Access problems after enabling security

What kind of error are you seeing?

v I cannot access all or part of the administrative console or use the wsadmin tool after enabling security

228 IBM WebSphere Application Server-Network Deployment, Version 6: Troubleshooting and support

http://www.hp.com/products1/unix/java/infolibrary/patches.html
http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCVS2E
http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCVS2E
http://www-1.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCVS2E&q=mustgather

v I cannot access a Web page after enabling security

v Authentication error accessing a Web page

v Authorization error accessing a Web page

v The client cannot access an enterprise bean after enabling security

v The client never gets prompted when accessing a secured enterprise bean

v I cannot stop an application server, node manager, or node after enabling security

v AccessControlException is reported in SystemOut.log

v After enabling single signon, I cannot log on to the administrative console

For general tips on diagnosing and resolving security-related problems, see the topic Troubleshooting the

security component.

If you do not see a problem that resembles yours, or if the information provided does not solve your

problem, see “Obtaining help from IBM” on page 155.

I cannot access all or part of the administrative console or use the wsadmin tool after enabling

security

v If you cannot access the administrative console, or view and update certain objects, look in the

SystemOut log of the application server which hosts the administrative console page for a related error

message.

v You might not have authorized your ID for administrative tasks. This problem is indicated by errors such

as:

– [8/2/02 10:36:49:722 CDT] 4365c0d9 RoleBasedAuth A CWSCJ0305A: Role based authorization

check failed for security name MyServer/myUserId,accessId MyServer/S-1-5-21-882015564-
4266526380-2569651501-1005 whileinvoking method getProcessType on resource Server and

module Server.

– Exception message: ″CWWMN0022E: Access denied for the getProcessType operation on Server

MBean″

– When running the command: wsadmin -username j2ee -password j2ee: CWWAX7246E: Cannot

establish ″SOAP″ connection to host ″BIRKT20″ because of an authentication failure. Please

ensure that user and password are correct on the command line or in a properties file.

To grant an ID administrative authority, from the administrative console, click System Administration >

Console Users and validate that the ID is a member. If it is not, add the ID with at least monitor access

privileges, for read-only access.

v Check that the enable_trusted_application flag is set to true. To check the enable_trusted_application

flag, from the Administrative Console, click Security > Global Security > Custom Properties > Enable

Trusted Application and verify that it is set to true.

I cannot access a Web page after enabling security

When secured resources are not accessible, probable causes include:

v Authentication errors - WebSphere Application Server security cannot identify the ID of the person or

process. Symptoms of authentication errors include:

On a Netscape browser:

– Authorization failed. Retry? message displays after an attempt to log in.

– Accepts any number of attempts to retry login and displays Error 401 message when Cancel is

clicked to stop retry.

– A typical browser message displays: Error 401: Basic realm=’Default Realm’.

On an Internet Explorer browser:

– Login prompt displays again after an attempt to log in.

– Allows three attempts to retry login.

– Displays Error 401 message after three unsuccessful retries.
v Authorization errors - The security function has identified the requesting person or process as not

authorized to access the secured resource. Symptoms of authorization errors include:

– Netscape browser: ″Error 403: AuthorizationFailed″ message is displayed.

Chapter 6. Learn about WebSphere applications 229

– Internet Explorer:

- ″You are not authorized to view this page″ message is displayed.

- ″HTTP 403 Forbidden″ error is also displayed.
v SSL errors - WebSphere Application Server security uses Secure Socket Layer (SSL) technology

internally to secure and encrypt its own communication, and incorrect configuration of the internal SSL

settings can cause problems. Also you might have enabled SSL encryption for your own Web

application or enterprise bean client traffic which, if configured incorrectly, can cause problems

regardless of whether WebSphere Application Server security is enabled.

– SSL related problems are often indicated by error messages which contain a statement such as:

ERROR: Could not get the initial context or unable to look up the starting

context.Exiting. followed by javax.net.ssl.SSLHandshakeException

The client cannot access an enterprise bean after enabling security

If client access to an enterprise bean fails after security is enabled:

v Review the steps for securing and granting access to resources.

v Browse the server JVM logs for errors relating to enterprise bean access and security. Look up any

errors in the message table.

Errors similar to Authorization failed for /UNAUTHENTICATED while invoking resource

securityName:/UNAUTHENTICATED;accessId:UNAUTHENTICATED not granted any of the required roles

roles indicate that:

– An unprotected servlet or JavaSever Page (JSP) file accessed a protected enterprise bean. When an

unprotected servlet is accessed, the user is not prompted to log in and the servlet runs as

UNAUTHENTICATED. When the servlet makes a call to an enterprise bean that is protected the

servlet fails.

To resolve this problem, secure the servlet that is accessing the protected enterprise bean. Make

sure the runAs property for the servlet is set to an ID that can access the enterprise bean.

– An unauthenticated Java client program is accessing an enterprise bean resource that is protected.

This situation can happen if the file read by the sas.client.props properties file used by the client

program does not have the securityEnabled flag set to true.

To resolve this problem, make sure that the sas.client.props file on the client side has its

securityEnabled flag set to true.

Errors similar to Authorization failed for valid_user while invoking resource

securityName:/username;accessId:xxxxxx not granted any of the required roles roles indicate that

a client attempted to access a secured enterprise bean resource, and the supplied user ID is not

assigned the required roles for that enterprise bean.

– Check that the required roles for the enterprise bean resource are accessed. View the required roles

for the enterprise bean resource in the deployment descriptor of the Web resource.

– Check the authorization table and make sure that the user or the group that the user belongs to is

assigned one of the required roles. You can view the authorization table for the application that

contains the enterprise bean resource using the administrative console.

If org.omg.CORBA.NO_PERMISSION exceptions occur when programmatically logging on to access a secured

enterprise bean, an authentication exception has occurred on the server. Typically the CORBA exception is

triggered by an underlying com.ibm.WebSphereSecurity.AuthenticationFailedException. To determine the

actual cause of the authentication exception, examine the full trace stack:

1. Begin by viewing the text following WSSecurityContext.acceptSecContext(), reason: in the exception.

Typically, this text describes the failure without further analysis.

2. If this action does not describe the problem, look up the CORBA minor code. The codes are listed in

the article titled Troubleshooting the security components reference.

For example, the following exception indicates a CORBA minor code of 49424300. The explanation of

this error in the CORBA minor code table reads:

authentication failed error.

In this case the user ID or password supplied by the client program is probably invalid:

230 IBM WebSphere Application Server-Network Deployment, Version 6: Troubleshooting and support

org.omg.CORBA.NO_PERMISSION: Caught WSSecurityContextException

in WSSecurityContext.acceptSecContext(), reason: Major Code[0] Minor Code[0]

Message[Exception caught invoking authenticateBasicAuthData from

SecurityServer for user jdoe. Reason:

com.ibm.WebSphereSecurity.AuthenticationFailedException] minor code:

49424300 completed: No at com.ibm.ISecurityLocalObjectBaseL13Impl.

PrincipalAuthFailReason.map_auth_fail_to_minor_code

(PrincipalAuthFailReason.java:83)

A CORBA INITIALIZE exception with CWWSA1477W: SECURITY CLIENT/SERVER CONFIGURATION MISMATCH error

embedded, is received by client program from the server.

This error indicates that the security configuration for the server differs from the client in some fundamental

way. The full exception message lists the specific mismatches. For example, the following exception lists

three errors:

Exception received: org.omg.CORBA.INITIALIZE:

 CWWSA1477W: SECURITY CLIENT/SERVER CONFIG MISMATCH:

The client security configuration (sas.client.props or

outbound settings in GUI) does not support the server security

configuration for the following reasons:

ERROR 1: CWWSA0607E: The client requires SSL Confidentiality but the

server does not support it.

ERROR 2: CWWSA0610E: The server requires SSL Integrity but the client

does not support it.

ERROR 3: CWWSA0612E: The client requires client (e.g., userid/password

or token), but the server does not support it.

 minor code: 0

 completed: No

at com.ibm.ISecurityLocalObjectBaseL13Impl.SecurityConnectionInterceptor.

getConnectionKey(SecurityConnectionInterceptor.java:1770)

In general, resolving the problem requires a change to the security configuration of either the client or the

server. To determine which configuration setting is involved, look at the text following the CWWSA error

message. For more detailed explanations and instructions, look in the message reference, by selecting the

Reference view of the information center navigation and expanding Messages in the navigation tree.

In these particular cases:

v In ERROR 1, the client is requiring SSL confidentiality but the server does not support SSL

confidentiality. Resolve this mismatch in one of two ways. Either update the server to support SSL

confidentiality or update the client so that it no longer requires it.

v In ERROR 2, the server requires SSL integrity but the client does not support SSL integrity. Resolve this

mismatch in one of two ways. Either update the server to support SSL integrity or update the client so

that it no longer requires it.

v In ERROR 3, the client requires client authentication through a user id and password, but the server

does not support this type of client authentication. Either the client or the server needs to change the

configuration. To change the client configuration, modify the SAS.CLIENT.PROPS file for a pure client or

change the outbound configuration for the server in the Security GUI. To change the configuration for

the target server, modify the inbound configuration in the Security GUI.

Similarly, an exception like org.omg.CORBA.INITIALIZE: JSAS0477W: SECURITY CLIENT/SERVER CONFIG

MISMATCH: appearing on the server trying to service a client request indicates a security configuration

mismatch between client and server. The steps for resolving the problem are the same as for the

JSAS1477W exceptions previously described.

Client program never gets prompted when accessing secured enterprise bean

Even though it appears security is enabled and an enterprise bean is secured, it can happen that the client

executes the remote method without prompting. If the remote method is protected, an authorization failure

results. Otherwise, execute the method as an unauthenticated user.

Chapter 6. Learn about WebSphere applications 231

Possible reasons for this problem include:

v The server with which you are communicating might not have security enabled. Check with the

WebSphere Application Server administrator to ensure that the server security is enabled. Access the

global security settings from within the Security section of the administrative console.

v The client does not have security enabled in the sas.client.props file. Edit the sas.client.props file to

ensure the property com.ibm.CORBA.securityEnabled is set to true.

v The client does not have a ConfigURL specified. Verify that the property com.ibm.CORBA.ConfigURL

is specified on the command line of the Java client, using the -D parameter.

v The specified ConfigURL has an invalid URL syntax, or the sas.client.props that is pointed to cannot

be found. Verify that the com.ibm.CORBA.ConfigURL property is valid, for example, similar to the

C:/WebSphere/AppServer/properties/sas.client.props file on Windows systems. Check the Java

documentation for a description of URL formatting rules. Also, validate that the file exists at the specified

path.

v The client configuration does not support message layer client authentication (user ID and password).

Verify that the sas.client.props file has one of the following properties set to true:

– com.ibm.CSI.performClientAuthenticationSupported=true

– com.ibm.CSI.performClientAuthenticationRequired=true
v The server configuration does not support message layer client authentication (user ID and password).

Check with the WebSphere Application Server administrator to verify that user ID and password

authentication is specified for the inbound configuration of the server within the System Administration

section of the administrative console administration tool.

Cannot stop an application server, node manager, or node after enabling security

If you use command line utilities to stop WebSphere Application Server processes, apply additional

parameters after enabling security to provide authentication and authorization information.

Use the ./stopServer.sh -help command to display the parameters to use.

Use the following command options after enabling security:

v ./stopServer.sh hostname -username name -password password

v ./stopNode.sh -username name -password password

v ./stopManager.sh -username name -password password

After enabling single signon, I cannot log on to the administrative console

This problem occurs when single signon (SSO) is enabled, and you attempt to access the administrative

console using the short name of the server, for example http://myserver:9060/ibm/console. The server

accepts your user ID and password, but returns you to the log on page instead of the administrative

console.

To correct this problem, use the fully qualified host name of the server, for example

http://myserver.mynetwork.mycompany.com:9060/ibm/console.

Errors after enabling security

What kind of error are you seeing?

v Authentication error accessing a Web page

v Authorization error accessing a Web page

v Error Message: CWSCJ0314E: Current Java 2 security policy reported a potential violation

v CWMSG0508E: The JMS Server security service was unable to authenticate user ID: error displayed

in SystemOut.log when starting an application server

v Error Message: CWSCJ0237E: One or more vital LTPAServerObject configuration attributes are

null or not available after enabling security and starting the application server

v An AccessControlException is reported in the SystemOut.log

v Error Message: CWSCJ0336E: Authentication failed for user {0} because of the following

exception {1}

232 IBM WebSphere Application Server-Network Deployment, Version 6: Troubleshooting and support

For general tips on diagnosing and resolving security-related problems, see the topic Troubleshooting the

security component.

If you do not see a problem that resembles yours, or if the information provided does not solve your

problem, see “Obtaining help from IBM” on page 155.

Authentication error accessing a Web page

Possible causes for authentication errors include:

v Incorrect user name or passwords. Check the user name and password and make sure they are

correct.

v Security configuration error : User registry type is not set correctly. Check the user registry

property in global security settings in the administrative console. Verify that it is the intended user

registry.

v Internal program error. If the client application is a Java standalone program, this program might not

gather or send credential information correctly.

If the user registry configuration, user ID, and password appear correct, use the WebSphere Application

Server trace to determine the cause of the problem. To enable security trace, use the

com.ibm.ws.security.*=all=enabled trace specification.

Authorization error accessing a Web page

If a user who should have access to a resource does not, there is probably a missing configuration step.

Review the steps for securing and granting access to resources.

Specifically:

v Check required roles for the accessed Web resource.

v Check the authorization table to make sure that the user, or the groups to which the user belongs, is

assigned to one of the required roles.

v View required roles for the Web resource in the deployment descriptor of the Web resource.

v View the authorization table for the application that contains the Web resource, using the administrative

console.

v Test with a user who is granted the required roles, to see if the user can access the problem resources.

v If the problem user is required to have one or more of the required roles, use the administrative console

to assign that user to required roles. Then stop and restart the application.

If the user is granted required roles, but still fails to access the secured resources, enable security trace,

using com.ibm.ws.security.*=all=enabled as the trace specification. Collect trace information for further

resolution.

Error Message: CWSCJ0314E: Current Java 2 security policy reported a potential violation on

server

If you find errors on your server similar to:

Error Message: CWSCJ0314E: Current Java 2 Security policy reported

a potential violation of Java 2 Security Permission. Please refer to

Problem Determination Guide for further information.

{0}Permission\:{1}Code\:{2}{3}Stack Trace\:{4}Code Base Location\:{5}

The Java security manager checkPermission() method has reported an exception, SecurityException.

The reported exception might be critical to the secure system. Turn on security trace to determine the

potential code that might have violated the security policy. Once the violating code is determined, verify if

the attempted operation is permitted with respect to Java 2 Security, by examining all applicable Java 2

security policy files and the application code.

Chapter 6. Learn about WebSphere applications 233

A more detailed report is enabled by either configuring RAS trace into debug mode, or specifying a Java

property.

v Check the trace enabling section for instructions on how to configure RAS trace into debug mode, or

v Specify the following property in the Application Servers > server name > ProcessDefinition > Java

Virtual Machine panel from the administrative console in the Generic JVM arguments panel:

– Add the run-time flag java.security.debug

– Valid values:

access

Print all debug information including: required permission, code, stack, and code base

location.

stack Print debug information including: required permission, code, and stack.

failure Print debug information including: required permission and code.

For a review of Java security policies and what they mean , see the Java 2 Security documentation at

http://java.sun.com/j2se/1.3/docs/guide/security/index.html .

Tip: If the application is running with a Java Mail API, this message might be benign. You can update the

installed Enterprise Application root/META-INF/was.policy file to grant the following permissions to

the application:

v permission java.io.FilePermission ″${user.home}${/}.mailcap″, ″read″;

v permission java.io.FilePermission ″${user.home}${/}.mime.types″, ″read″;

v permission java.io.FilePermission ″${java.home}${/}lib${/}mailcap″, ″read″;

v permission java.io.FilePermission ″${java.home}${/}lib${/}mime.types″, ″read″;

Error message: CWMSG0508E: The JMS Server security service was unable to authenticate user ID:"

error displayed in SystemOut.log when starting an application server

This error can result from installing the JMS messaging API sample and then enabling security. You can

follow the instructions in the Configure and Run page of the corresponding JMS sample documentation to

configure the sample to work with WebSphere Application Server security.

You can verify the installation of the message-driven bean sample by launching the installation program,

selecting Custom, and browsing the components which are already installed in the Select the features

you like to install panel. The JMS sample is shown as Message-Driven Bean Sample, under

Embedded Messaging.

You can also verify this installation by using the administrative console to open the properties of the

application server which contains the samples. Select MDBSamples and click uninstall.

Error message: CWSCJ0237E: One or more vital LTPAServerObject configuration attributes are null

or not available after enabling security and starting the application server.

This error message can result from selecting LTPA as the authentication mechanism, but not generating

the LTPA keys. The LTPA keys encrypt the LTPA token.

To resolve this problem:

1. Click System Administration > Console users > LTPA

2. Enter a password, which can be anything.

3. Enter the same password in Confirm Password.

4. Click Apply.

5. Click Generate Keys.

6. Click on Save.

234 IBM WebSphere Application Server-Network Deployment, Version 6: Troubleshooting and support

http://java.sun.com/j2se/1.3/docs/guide/security/index.html

The exception AccessControlException, is reported in the SystemOut.log

The problem is related to the Java 2 Security feature of WebSphere Application Server, the API-level

security framework that is implemented in WebSphere Application Server Version 5. An exception similar

to the following example displays. The error message and number can vary.

E CWSRV0020E: [Servlet Error]-[validator]:

Failed to load servlet:

java.security.AccessControlException: access denied

(java.io.FilePermission

C:\WebSphere\AppServer\installedApps\maeda\adminconsole.ear\adminconsole.war\

WEB-INF\validation.xml read)

For an explanation of Java 2 security, how and why to enable or disable it, how it relates to policy files,

and how to edit policy files, see the Java 2 security topic in the information center navigation. The topic

explains that Java 2 security is not only used by this product, but developers can also implement it for

their business applications. Administrators might need to involve developers, if this exception is thrown

when a client tries to access a resource hosted by WebSphere Application Server.

Possible causes of these errors include:

v Syntax errors in a policy file.

v Syntax errors in permission specifications in the ra.xml file bundled in a .rar file. This case applies to

resource adapters that support connector access to CICS or other resources.

v An application is missing the specified permission in a policy file, or in permission specifications in an

ra.xml file bundled in a .rar file

v The class path is not set correctly, preventing the permissions for the resource.xml file for SPI from

being correctly created.

v A library called by an application, or the application, is missing a doPrivileged block to support access to

a resource.

v Permission is specified in the wrong policy file.

To resolve these problems:

v Check all of the related policy files to verify that the permission shown in the exception, for example

java.io.FilePermission, is specified.

v Look for a related ParserException in the SystemOut.log file which reports the details of the syntax

error. For example:

CWSCJ0189E: Caught ParserException while creating template for application policy

C:\WAS\config\cells\xxx\nodes\xxx\app.policy .

The exception is com.ibm.ws.security.util.ParserException: line 18: expected ’;’, found ’grant’

v Look for a message similar to: CWSCJ0325W: The permission permission specified in the policy

file is unresolved.

v Check the call stack to determine which method does not have the permission. Identify the class path of

this method. If it is hard to identify the method, enable the Java2 security Report.

– Configuring RAS trace by specifying com.ibm.ws.security.core.*=all=enabled, or specifying a Java

property.java.security.debug property. Valid values for the java.security.debug property are:

access

Print all debug information including: required permission, code, stack, and code base

location.

stack Print debug information including: required permission, code, and stack.

failure Print debug information including: required permission and code.
– The report shows:

Permission

the missing permission.

Code which method has the problem.

Stack Trace

where the access violation occurred.

Chapter 6. Learn about WebSphere applications 235

CodeBaseLocation

the detail of each stack frame.

Usually, Permission and Code are enough to identify the problem. The following example illustrates a

report:

Permission:

C:\WebSphere\AppServer\logs\server1\SystemOut_02.08.20_11.19.53.log :

access denied (java.io.FilePermission

C:\WebSphere\AppServer\logs\server1\SystemOut_02.08.20_11.19.53.log delete)

Code:

 com.ibm.ejs.ras.RasTestHelper$7 in

{file:/C:/WebSphere/AppServer/installedApps/maeda/JrasFVTApp.ear/RasLib.jar

}

Stack Trace:

java.security.AccessControlException: access denied

(java.io.FilePermission C:\WebSphere\AppServer\logs\server1

\SystemOut_02.08.20_11.19.53.log delete)

 at java.security.AccessControlContext.checkPermission

 (AccessControlContext.java(Compiled Code))

 at java.security.AccessController.checkPermission

 (AccessController.java(Compiled Code))

 at java.lang.SecurityManager.checkPermission

 (SecurityManager.java(Compiled Code))

 .

Code Base Location:

com.ibm.ws.security.core.SecurityManager :

file:/C:/WebSphere/AppServer/lib/securityimpl.jar

 ClassLoader: com.ibm.ws.bootstrap.ExtClassLoader

 Permissions granted to CodeSource

(file:/C:/WebSphere/AppServer/lib/securityimpl.jar <no certificates>

 {

 (java.util.PropertyPermission java.vendor read);

 (java.util.PropertyPermission java.specification.version read);

 (java.util.PropertyPermission line.separator read);

 (java.util.PropertyPermission java.class.version read);

 (java.util.PropertyPermission java.specification.name read);

 (java.util.PropertyPermission java.vendor.url read);

 (java.util.PropertyPermission java.vm.version read);

 (java.util.PropertyPermission os.name read);

 (java.util.PropertyPermission os.arch read);

 }

 (This list continues.)

v If the method is SPI, check the resources.xml file to ensure that the class path is correct.

v To confirm that all of the policy files are loaded correctly, or what permission each class path is granted,

enable the trace with com.ibm.ws.security.policy.*=all=enabled. All loaded permissions are listed in

the trace.log file. Search for the app.policy, was.policy and ra.xml files. To check the permission list for a

class path, search for Effective Policy for classpath.

v If there are any syntax errors in the policy file or ra.xml file, correct them with the policytool. Avoid

editing the policy manually, because syntax errors can result.

v If a permission is listed as Unresolved, it does not take effect. Verify that the specified permission name

is correct.

v If the class path specified in the resource.xml file is not correct, correct it.

v If a required permission does not exist in either the policy files or the ra.xml file, examine the application

code to see if you need to add this permission. If so, add it to the proper policy file or ra.xml file.

v If the permission should not be granted outside of the specific method that is accessing this resource,

modify the code needs to use a doPrivileged block.

236 IBM WebSphere Application Server-Network Deployment, Version 6: Troubleshooting and support

v If this permission does exist in a policy file or a ra.xml file and they were loaded correctly, but the class

path still does not have the permission in its list, the location of the permission might not be correct.

Read Java 2 Security in the information center navigation carefully to determine in which policy file or

ra.xml file that permission should be specified.

Tip: If the application is running with the Java Mail API, you can update the installed Enterprise

Application root/META-INF/was.policy file to grant the following permissions to the application:

v permission java.io.FilePermission ″${user.home}${/}.mailcap″, ″read″;

v permission java.io.FilePermission ″${user.home}${/}.mime.types″, ″read″;

v permission java.io.FilePermission ″${java.home}${/}lib${/}mailcap″,″read″;

v permission java.io.FilePermission ″${java.home}${/}lib${/}mime.types″, ″read″;

Error Message: CWSCJ0336E: Authentication failed for user {0} because of the following

exception {1}

This error message results if the user ID indicated is not found in the LDAP user registry. To resolve this

problem:

1. Verify that your user ID and password are correct.

2. Verify that the user ID exists in the registry.

3. Verify that the base distinguished name (DN) is correct.

4. Verify that the user filter is correct.

5. Verify that the bind DN and the password for the bind DN are correct. If the bind DN and password are

not specified, add the missing information and retry.

6. Verify that the host name and LDAP type are correct.

Consult with the administrator of the user registry if the problem persists.

Errors trying to enable or configure Secure Socket Layer (SLL) encrypted access

What kind of error are you seeing?

v ″The Java Cryptographic Extension (JCE) files were not found.″ error when launching iKeyman.

If you do not see a problem that resembles yours, or if the information provided does not solve your

problem, contact IBM support for further assistance.

"The Java Cryptographic Extension (JCE) files were not found." error when launching iKeyman.

You may receive the following error when you attempt to start the iKeyman tool: ″The Java Cryptographic

Extension (JCE) files were not found. Please check that the JCE files have been installed in the correct

directory″. When you click OK, the iKeyman tool closes. To resolve this problem:

v Set the JAVA_HOME parameter so that is points to the Java Developer Kit that is shipped with

WebSphere Application Server.

– For example, on a Unix platform the command would be similar to: export

JAVA_HOME=/opt/WebSphere/AppServer/java

– On a Windows platform, if WebSphere Application Server is installed on your c: drive, the command

would be: set JAVA_HOME=c:\WebSphere\AppServer\java
v Rename the file install_dir/java/jre/lib/ext/gskikm.jar to gskikm.jar.org.

Errors after configuring or enabling Secure Sockets Layer

This article explains various problems you might encounter after configuring or enabling Secure Sockets

Layer (SSL).

Stopping the deployment manager after configuring Secure Sockets Layer

After configuring the Secure Sockets Layer repertoires, if you stop the deployment manager without also

stopping the node agents, you might receive the following error message when you restart the deployment

manager:

Chapter 6. Learn about WebSphere applications 237

CWWMU0509I: The server ″nodeagent″ cannot be reached. It appears to be stopped.

CWWMU0211I: Error details may be seen in the file:

 /opt/WebSphere/AppServer/logs/nodeagent/stopServer.log

The error occurs because the deployment manager did not propagate the new SSL certificate to the node

agents. Thus, the node agents are using an older certificate files than the deployment manager and the

certificate files are incompatible. To work around this problem, you must manually stop the node agent and

deployment manager processes. To end the processes on Windows platforms, use the Task Manager. On

UNIX platforms, run the command to end the process.

There are some things you need to consider when identifying the specific process that should be killed.

For each process being killed, WebSphere Application Server stores the process ID in a pid file and you

need to find these *.pid files. For example, the server1.pid for a standalone install might be found at:

<WAS_root>/AppServer/logs/server1.pid

Accessing resources using HTTPS

If you are unable to access resources using a Secure Sockets Layer (SSL) URL (beginning with https:), or

encounter error messages which indicate SSL problems, verify that your HTTP server is configured

correctly for SSL by browsing the welcome page of the HTTP server using SSL by entering the URL:

https://hostname.

If the page works with HTTP, but not HTTPS, the problem is with the HTTP server.

v Refer to the documentation for your HTTP server for instructions on correctly enabling SSL. If you are

using the IBM HTTP Server or Apache, go

to:http://www.ibm.com/software/webservers/httpservers/library.html. Click Frequently Asked

Questions> SSL.

v If you are use the IBM Key Management (IKeyman) tool to create certificates and keys, remember to

stash the password to a file when creating the KDB file with the IBM Key Management Tool.

1. Go to the directory where the KDB file was created, and see if there is a .sth file.

2. If not, open the KDB file with the IBM Key Management Tool, and click Key Database File > Stash

Password. The following message displays: The password has been encrypted and saved in the

file.

If the HTTP server handles SSL-encrypted requests successfully, or is not involved (for example, traffic

flows from a Java client application directly to an enterprise bean hosted by the WebSphere Application

Server, or the problem appears only after enabling WebSphere Application Server security), what kind of

error are you seeing?

v javax.net.ssl.SSLHandshakeException - The client and server could not negotiate the desired

level of security. Reason: handshake failure

v javax.net.ssl.SSLHandshakeException - The client and server could not negotiate the desired

level of security. Reason: unknown certificate

v javax.net.ssl.SSLHandshakeException - The client and server could not negotiate the desired

level of security. Reason: bad certificate

v org.omg.CORBA.INTERNAL: EntryNotFoundException or NTRegistryImp E CWSCJ0070E: No privilege id

configured for: error when programmatically creating a credential.

For general tips on diagnosing and resolving security-related problems, see “Security components

troubleshooting tips” on page 240

If you do not see a problem that resembles yours, or if the information provided does not solve your

problem, see “Obtaining help from IBM” on page 155

238 IBM WebSphere Application Server-Network Deployment, Version 6: Troubleshooting and support

http://www.ibm.com/software/webservers/httpservers/library.html

javax.net.ssl.SSLHandshakeException - The client and server could not negotiate the desired level

of security. Reason: handshake failure

If you see a Java exception stack similar to the following example:

[Root exception is org.omg.CORBA.TRANSIENT:

CAUGHT_EXCEPTION_WHILE_CONFIGURING_SSL_CLIENT_SOCKET:

CWWJE0080E: javax.net.ssl.SSLHandshakeException -

The client and server could not negotiate the desired level of security.

Reason: handshake failure:host=MYSERVER,port=1079 minor code: 4942F303

completed: No] at com.ibm.CORBA.transport.TransportConnectionBase.connect

(TransportConnectionBase.java:NNN)

Some possible causes are:

v Not having common ciphers between the client and server.

v Not specifying the correct protocol.

To correct these problems:

1. Review the SSL settings. Click WebSphere Administrative Console Security Settings > SSL

Configuration Repertoires > DefaultSSLSettings (or other named SSL settings).

2. Select the Secure Sockets Layer (SSL) option from the Additional Properties menu. You can also

browse the file manually by viewing the install_dir/properties/sas.client.props file.

3. Check the property specified by the com.ibm.ssl.protocol file to determine which protocol is specified.

4. Check the cipher types specified by the com.ibm.ssl.enabledCipherSuites. You might want to add more

cipher types to the list. To see which cipher suites are currently enabled: Fo to the properties page of

the SSL settings as described above, and look for the Cipher Suites property. To see the list of all

possible cipher suites, go to the properties page of the SSL settings as described above, then view the

online help for that page. From the help page, click Configure additional SSL settings.

5. Correct the protocol or cipher problem by using a different client or server protocol and cipher

selection. Typical protocols are SSL or SSLv3.

6. Make the cipher selection 40-bit instead of 128-bit. For CSIv2, set both of the following properties to

false in the sas.client.props file, or set security level=medium in the administrative console settings:

v com.ibm.CSI.performMessageConfidentialityRequired=false

v com.ibm.CSI.performMessageConfidentialitySupported=false

javax.net.ssl.SSLHandshakeException: unknown certificate

If you see a Java exception stack similar to the following example, it might be caused by not having the

personal certificate for the server in the client truststore file:

ERROR: Could not get the initial context or unable to look up

the starting context. Exiting. Exception received:

javax.naming.ServiceUnavailableException: A communication failure

occurred while attempting to obtain an initial context using the provider url:

"corbaloc:iiop:localhost:2809". Make sure that the host and port information

is correct and that the server identified by the provider url is a running

name server. If no port number is specified, the default port number 2809

is used. Other possible causes include the network environment or workstation

network configuration.

[Root exception is org.omg.CORBA.TRANSIENT:

CAUGHT_EXCEPTION_WHILE_CONFIGURING_SSL_CLIENT_SOCKET:

CWWJE0080E: javax.net.ssl.SSLHandshakeException - The client and server

could not negotiate the desired level of security. Reason: unknown

certificate:host=MYSERVER,port=1940 minor code: 4942F303 completed: No]

To correct this problem:

1. Check the client truststore file to determine if the signer certificate from the server personal certificate

is there. For a self-signed server personal certificate, the signer certificate is the public key of the

personal certificate. For a certificate authority signed server personal certificate, the signer certificate is

the root CA certificate of the CA that signed the personal certificate.

2. Add the server signer certificate to the client truststore file.

Chapter 6. Learn about WebSphere applications 239

javax.net.ssl.SSLHandshakeException: bad certificate

If you see a Java exception stack similar to the following example, it can be caused by having a personal

certificate in the client keystore used for SSL mutual authentication but not having extracted the signer

certificate into the server truststore file so that the server can trust it whenever the SSL handshake is

made:

ERROR: Could not get the initial context or unable to look up

the starting context. Exiting. Exception received:

javax.naming.ServiceUnavailableException: A communication failure occurred

while attempting to obtain an initial context using the provider url:

"corbaloc:iiop:localhost:2809". Make sure that the host and port

information is correct and that the server identified by the provider

url is a running name server. If no port number is specified, the default

port number 2809 is used.Other possible causes include the network

environment or workstation network configuration.

[Root exception is org.omg.CORBA.TRANSIENT:

CAUGHT_EXCEPTION_WHILE_CONFIGURING_SSL_CLIENT_SOCKET:

CWWJE0080E: javax.net.ssl.SSLHandshakeException

- The client and server could not negotiate the desired level of security.

Reason: bad certificate: host=MYSERVER,port=1940 minor code: 4942F303 completed:

No]

To verify this problem, check the server truststore file to determine if the signer certificate from the client

personal certificate is there. For a self-signed client personal certificate, the signer certificate is the public

key of the personal certificate. For a certificate authority signed client personal certificate, the signer

certificate is the root CA certificate of the CA that signed the personal certificate.

To correct this problem, add the client signer certificate to the server truststore file.

org.omg.CORBA.INTERNAL: EntryNotFoundException or NTRegistryImp E CWSCJ0070E: No

privilege id configured for: error when programmatically creating a credential

If you encounter the following exception in a client application attempting to request a credential from a

WebSphere Application Server using SSL mutual authentication:

ERROR: Could not get the initial context or unable to look up the

starting context. Exiting. Exception received: org.omg.CORBA.INTERNAL:

Trace from server: 1198777258 at host MYHOST on port 0 >>org.omg.CORBA.INTERNAL:

EntryNotFoundException minor code: 494210B0 completed: No at

com.ibm.ISecurityLocalObjectBaseL13Impl.PrincipalAuthFailReason.

map_auth_fail_to_minor_code(PrincipalAuthFailReason.java:99)

or a simultaneous error from the WebSphere Application Server that resembles:

[7/31/02 15:38:48:452 CDT] 27318f5 NTRegistryImp E CWSCJ0070E: No

privilege id configured for: testuser

The cause might be that the user ID sent by the client to the server is not in the user registry for that

server.

To confirm this problem, check that an entry exists for the personal certificate that is sent to the server.

Depending on the user registry mechanism, look at the native operating system user ID or Lightweight

Directory Access Protocol (LDAP) server entries.

To correct this problem, add the user ID to the user registry entry (for example, operating system, LDAP

directory, or other custom registry) for the personal certificate identity.

Security components troubleshooting tips

This document explains basic resources and steps for diagnosing security related issues in the

WebSphere Application Server, including:

240 IBM WebSphere Application Server-Network Deployment, Version 6: Troubleshooting and support

v What “Log files” to look at and what to look for in them.

v What “SDSF output logs” on page 242 to look at and what to look for in them.

v “General approach for troubleshooting security-related issues” on page 243 to isolating and resolving

security problems.

v When and how to “Trace security” on page 247.

v An overview and table of “CSIv2 CORBA Minor Codes” on page 249.

The following security-related problems are addressed elsewhere in the information center:

v Errors and access problems after enabling security

After enabling global security, there was a degradation in performance. See Enabling global security for

information about using the unrestricted policy files.

v Errors after enabling SSL, or SSL-related error messages

v Errors trying to configure and enable security

If none of these steps solves the problem, check to see if the problem has been identified and

documented using the links in Diagnosing and fixing problems: Resources for learning.

If you do not see a problem that resembles yours, or if the information provided does not solve your

problem, contact IBM support for further assistance.

Note: For an overview of WebSphere Application Server security components such as SAS or z/SAS and

how they work, see Getting started with security.

Log files

When troubleshooting the security component, browse the JVM logs for the server that hosts the resource

you are trying to access. The following is a sample of messages you would expect to see from a server in

which the security service has started successfully:

SASRas A CWWSA0001I: Security configuration initialized.

SASRas A CWWSA0002I: Authentication protocol: CSIV2/IBM

SASRas A CWWSA0003I: Authentication mechanism: SWAM

SASRas A CWWSA0004I: Principal name: MYHOSTNAME/aServerID

SASRas A CWWSA0005I: SecurityCurrent registered.

SASRas A CWWSA0006I: Security connection interceptor initialized.

SASRas A CWWSA0007I: Client request interceptor registered.

SASRas A CWWSA0008I: Server request interceptor registered.

SASRas A CWWSA0009I: IOR interceptor registered.

NameServerImp I CWNMS0720I: Do Security service listener registration.

SecurityCompo A CWSCJ0242A: Security service is starting

UserRegistryI A CWSCJ0136I: Custom Registry:com.ibm.ws.security.registry.nt.

NTLocalDomainRegistryImpl has been initialized

SecurityCompo A CWSCJ0202A: Admin application initialized successfully

SecurityCompo A CWSCJ0203A: Naming application initialized successfully

SecurityCompo A CWSCJ0204A: Rolebased authorizer initialized successfully

SecurityCompo A CWSCJ0205A: Security Admin mBean registered successfully

SecurityCompo A CWSCJ0243A: Security service started successfully

SecurityCompo A CWSCJ0210A: Security enabled true

The following is an example of messages from a server which cannot start the security service, in this

case because the administrative user ID and password given to communicate with the user registry is

wrong, or the user registry itself is down or misconfigured:

SASRas A CWWSA0001I: Security configuration initialized.

SASRas A CWWSA0002I: Authentication protocol: CSIV2/IBM

SASRas A CWWSA0003I: Authentication mechanism: SWAM

SASRas A CWWSA0004I: Principal name: MYHOSTNAME/aServerID

SASRas A CWWSA0005I: SecurityCurrent registered.

SASRas A CWWSA0006I: Security connection interceptor initialized.

SASRas A CWWSA0007I: Client request interceptor registered.

SASRas A CWWSA0008I: Server request interceptor registered.

SASRas A CWWSA0009I: IOR interceptor registered.

Chapter 6. Learn about WebSphere applications 241

NameServerImp I CWNMS0720I: Do Security service listener registration.

SecurityCompo A CWSCJ0242A: Security service is starting

UserRegistryI A CWSCJ0136I: Custom Registry:com.ibm.ws.security.

registry.nt.NTLocalDomainRegistryImpl has been initialized

Authenticatio E CWSCJ4001E: Login failed for badID/<null>

javax.security.auth.login.LoginException: authentication failed: bad user/password

The following is an example of messages from a server for which LDAP has been specified as the security

mechanism, but the LDAP keys have not been properly configured:

SASRas A CWWSA0001I: Security configuration initialized.

SASRas A CWWSA0002I: Authentication protocol: CSIV2/IBM

SASRas A CWWSA0003I: Authentication mechanism: LTPA

SASRas A CWWSA0004I: Principal name: MYHOSTNAME/anID

SASRas A CWWSA0005I: SecurityCurrent registered.

SASRas A CWWSA0006I: Security connection interceptor initialized.

SASRas A CWWSA0007I: Client request interceptor registered.

SASRas A CWWSA0008I: Server request interceptor registered.

SASRas A CWWSA0009I: IOR interceptor registered.

NameServerImp I CWNMS0720I: Do Security service listener registration.

SecurityCompo A CWSCJ0242A: Security service is starting

UserRegistryI A CWSCJ0136I: Custom Registry:com.ibm.ws.security.registry.nt.

NTLocalDomainRegistryImpl has been initialized

SecurityServe E CWSCJ0237E: One or more vital LTPAServerObject configuration

attributes are null or not available. The attributes and values are password :

LTPA password does exist, expiration time 30, private key <null>, public key <null>,

and shared key <null>.

A problem with the SSL configuration might lead to the following message. You should ensure that the

keystore location and keystore passwords are valid. Also, ensure the keystore has a valid personal

certificate and that the personal certificate public key or CA root has been extracted on put into the

truststore.

SASRas A CWWSA0001I: Security configuration initialized.

SASRas A CWWSA0002I: Authentication protocol: CSIV2/IBM

SASRas A CWWSA0003I: Authentication mechanism: SWAM

SASRas A CWWSA0004I: Principal name: MYHOSTNAME/aServerId

SASRas A CWWSA0005I: SecurityCurrent registered.

SASRas A CWWSA0006I: Security connection interceptor initialized.

SASRas A CWWSA0007I: Client request interceptor registered.

SASRas A CWWSA0008I: Server request interceptor registered.

SASRas A CWWSA0009I: IOR interceptor registered.

SASRas E CWWSA0026E: [SecurityTaggedComponentAssistorImpl.register]

Exception connecting object to the ORB. Check the SSL configuration to ensure

 that the SSL keyStore and trustStore properties are set properly. If the problem

persists, contact support for assistance. org.omg.CORBA.OBJ_ADAPTER:

ORB_CONNECT_ERROR (5) - couldn’t get Server Subcontract minor code:

4942FB8F completed: No

SDSF output logs

When troubleshooting the security component, browse the SDSF logs for the server that hosts the

resource you are trying to access. The following is a sample of messages you would expect to see from a

server in which the security service has started successfully:

 BBOM0001I com_ibm_Server_Security_Enabled: 1.

 BBOM0001I com_ibm_CSI_claimTLClientAuthenticationSupported: 1.

 BBOM0001I com_ibm_CSI_claimTLClientAuthenticationRequired: 0.

 BBOM0001I com_ibm_CSI_claimTransportAssocSSLTLSSupported: 1.

 BBOM0001I com_ibm_CSI_claimTransportAssocSSLTLSRequired: 0.

 BBOM0001I com_ibm_CSI_claimMessageConfidentialityRequired: 0.

 BBOM0001I com_ibm_CSI_claimClientAuthenticationSupported: 1.

 BBOM0001I com_ibm_CSI_claimClientAuthenticationRequired: 0.

 BBOM0001I com_ibm_CSI_claimClientAuthenticationtype:

 SAFUSERIDPASSWORD.

242 IBM WebSphere Application Server-Network Deployment, Version 6: Troubleshooting and support

BBOM0001I com_ibm_CSI_claimIdentityAssertionTypeSAF: 0.

 BBOM0001I com_ibm_CSI_claimIdentityAssertionTypeDN: 0.

 BBOM0001I com_ibm_CSI_claimIdentityAssertionTypeCert: 0.

 BBOM0001I com_ibm_CSI_claimMessageIntegritySupported: NOT SET,DEFAULT=1.

 BBOM0001I com_ibm_CSI_claimMessageIntegrityRequired: NOT SET,DEFAULT=1.

 BBOM0001I com_ibm_CSI_claimStateful: 1.

 BBOM0001I com_ibm_CSI_claimSecurityLevel: HIGH.

 BBOM0001I com_ibm_CSI_claimSecurityCipherSuiteList: NOT SET.

 BBOM0001I com_ibm_CSI_claimKeyringName: WASKeyring.

 BBOM0001I com_ibm_CSI_claim_ssl_sys_v2_timeout: NOT SET, DEFAULT=100.

 BBOM0001I com_ibm_CSI_claim_ssl_sys_v3_timeout: 600.

 BBOM0001I com_ibm_CSI_performTransportAssocSSLTLSSupported: 1.

 BBOM0001I security_sslClientCerts_allowed: 0.

 BBOM0001I security_kerberos_allowed: 0.

 BBOM0001I security_userid_password_allowed: 0.

 BBOM0001I security_userid_passticket_allowed: 1.

 BBOM0001I security_assertedID_IBM_accepted: 0.

 BBOM0001I security_assertedID_IBM_sent: 0.

 BBOM0001I nonauthenticated_clients_allowed: 1.

 BBOM0001I security_remote_identity: WSGUEST.

 BBOM0001I security_local_identity: WSGUEST.

 BBOM0001I security_EnableRunAsIdentity: 0.

 Messages beginning with BBOO0222I are common to Java WebSphere security.

They appear in both the controller and servant but are applicable to the servant.

 BBOO0222I CWSCJ0240I: Security service initialization completed successfully

 BBOO0222I CWSCJ0215I: Successfully set JAAS login provider

 configuration class to com.ibm.ws.security.auth.login.Configuration.

 BBOO0222I CWSCJ0136I: Custom

 Registry:com.ibm.ws.security.registry.zOS.SAFRegistryImpl has been initialized

 BBOO0222I CWSCJ0157I: Loaded Vendor AuthorizationTable:

 com.ibm.ws.security.core.SAFAuthorizationTableImpl

 BBOO0222I CWSCJ0243I: Security service started successfully

 BBOO0222I CWSCJ0210I: Security enabled true

General approach for troubleshooting security-related issues

When troubleshooting security-related problems, the following questions are very helpful and should be

considered:

Does the problem occur when security is disabled?

This is a good litmus test to determine that a problem is security related. However, just because a

problem only occurs when security is enabled does not always make it a security problem. More

troubleshooting is necessary to ensure the problem is really security-related.

Did security appear to initialize properly?

A lot of security code is visited during initialization. So you will likely see problems there first if the

problem is configuration related.

 The following sequence of messages generated in the SystemOut.log indicate normal code

initialization of an application server. This sequence will vary based on the configuration, but the

messages are similar:

SASRas A CWWSA0001I: Security configuration initialized.

SASRas A CWWSA0002I: Authentication protocol: CSIV2/IBM

SASRas A CWWSA0003I: Authentication mechanism: SWAM

SASRas A CWWSA0004I: Principal name: BIRKT20/pbirk

SASRas A CWWSA0005I: SecurityCurrent registered.

SASRas A CWWSA0006I: Security connection interceptor initialized.

SASRas A CWWSA0007I: Client request interceptor registered.

SASRas A CWWSA0008I: Server request interceptor registered.

SASRas A CWWSA0009I: IOR interceptor registered.

NameServerImp I CWNMS0720I: Do Security service listener registration.

SecurityCompo A CWSCJ0242A: Security service is starting

UserRegistryI A CWSCJ0136I: Custom Registry:com.ibm.ws.security.registry.nt.

NTLocalDomainRegistryImpl has been initialized

Chapter 6. Learn about WebSphere applications 243

SecurityCompo A CWSCJ0202A: Admin application initialized successfully

SecurityCompo A CWSCJ0203A: Naming application initialized successfully

SecurityCompo A CWSCJ0204A: Rolebased authorizer initialized successfully

SecurityCompo A CWSCJ0205A: Security Admin mBean registered successfully

SecurityCompo A CWSCJ0243A: Security service started successfully

SecurityCompo A CWSCJ0210A: Security enabled true

The following sequence of messages generated in the SDSF active log indicate normal code

initialization of an application server. Non-security messages have been removed from the

sequence that follows. This sequence will vary based on the configuration, but the messages are

similar:

 Trace: 2003/08/25 13:06:31.034 01 t=9EA930 c=UNK key=P8 (13007002)

 FunctionName: com.ibm.ws.security.auth.login.Configuration

 SourceId: com.ibm.ws.security.auth.login.Configuration

 Category: AUDIT

 ExtendedMessage: CWSCJ0215I: Successfully set JAAS login provider

 configuration class to com.ibm.ws.security.auth.login.Configuration.

 Trace: 2003/08/25 13:06:31.085 01 t=9EA930 c=UNK key=P8 (13007002)

 FunctionName: com.ibm.ws.security.core.SecurityDM

 SourceId: com.ibm.ws.security.core.SecurityDM

 Category: INFO

 ExtendedMessage: CWSCJ0231I: The Security component’s

 FFDC Diagnostic Module com.ibm.ws.security.core.SecurityDM

 registered success

 fully: true.

 Trace: 2003/08/25 13:06:31.086 01 t=9EA930 c=UNK key=P8 (0000000A)

 Description: Log Boss/390 Error

 from filename: ./bborjtr.cpp

 at line: 812

 error message: BBOO0222I CWSCJ0231I: The Security component’s

FFDC Diagnostic Module com.ibm.ws.security.core.SecurityDM registered

 successfully: true.

 Trace: 2003/08/25 13:06:32.426 01 t=9EA930 c=UNK key=P8 (13007002)

 FunctionName: com.ibm.ws.security.core.SecurityComponentImpl

 SourceId: com.ibm.ws.security.core.SecurityComponentImpl

 Category: INFO

 ExtendedMessage: CWSCJ0309I: Java 2 Security is disabled.

 Trace: 2003/08/25 13:06:32.427 01 t=9EA930 c=UNK key=P8 (0000000A)

 Description: Log Boss/390 Error

 from filename: ./bborjtr.cpp

 at line: 812

 error message: BBOO0222I CWSCJ0309I: Java 2 Security is disabled.

 Trace: 2003/08/25 13:06:32.445 01 t=9EA930 c=UNK key=P8 (13007002)

 FunctionName: com.ibm.ws.security.core.SecurityComponentImpl

 SourceId: com.ibm.ws.security.core.SecurityComponentImpl

 Category: INFO

 ExtendedMessage: CWSCJ0212I: WCCM JAAS configuration information

successfully pushed to login provider class.

 Trace: 2003/08/25 13:06:32.445 01 t=9EA930 c=UNK key=P8 (0000000A)

 Description: Log Boss/390 Error

 from filename: ./bborjtr.cpp

 at line: 812

 error message: BBOO0222I CWSCJ0212I: WCCM JAAS configuration

 information successfully pushed to login provider class.

 Trace: 2003/08/25 13:06:32.459 01 t=9EA930 c=UNK key=P8 (13007002)

 FunctionName: SecurityComponentImpl

 SourceId: SecurityComponentImpl

 Category: WARNING

 ExtendedMessage: BBOS1000W LTPA or ICSF are configured as the

authentication mechanism but SSO is disabled.

 Trace: 2003/08/25 13:06:32.459 01 t=9EA930 c=UNK key=P8 (0000000A)

 Description: Log Boss/390 Error

 from filename: ./bborjtr.cpp

 at line: 824

 error message: BBOS1000W LTPA or ICSF are configured as the

244 IBM WebSphere Application Server-Network Deployment, Version 6: Troubleshooting and support

authentication mechanism but SSO is disabled.

 Trace: 2003/08/25 13:06:32.463 01 t=9EA930 c=UNK key=P8 (13007002)

 FunctionName: com.ibm.ws.security.core.SecurityComponentImpl

 SourceId: com.ibm.ws.security.core.SecurityComponentImpl

 Category: INFO

 ExtendedMessage: CWSCJ0240I: Security service initialization completed

successfully

 Trace: 2003/08/25 13:06:32.463 01 t=9EA930 c=UNK key=P8 (0000000A)

 Description: Log Boss/390 Error

 from filename: ./bborjtr.cpp

 at line: 812

 error message: BBOO0222I CWSCJ0240I: Security service initialization

completed successfully

 Trace: 2003/08/25 13:06:39.718 01 t=9EA930 c=UNK key=P8 (13007002)

 FunctionName: com.ibm.ws.security.registry.UserRegistryImpl

 SourceId: com.ibm.ws.security.registry.UserRegistryImpl

 Category: AUDIT

 ExtendedMessage: CWSCJ0136I: Custom Registry:

com.ibm.ws.security.registry.zOS.SAFRegistryImpl has been initialized

 Trace: 2003/08/25 13:06:41.967 01 t=9EA930 c=UNK key=P8 (13007002)

 FunctionName: com.ibm.ws.security.core.WSAccessManager

 SourceId: com.ibm.ws.security.core.WSAccessManager

 Category: AUDIT

 ExtendedMessage: CWSCJ0157I: Loaded Vendor AuthorizationTable:

com.ibm.ws.security.core.SAFAuthorizationTableImpl

 Trace: 2003/08/25 13:06:43.136 01 t=9EA930 c=UNK key=P8 (13007002)

 FunctionName: com.ibm.ws.security.role.RoleBasedAuthorizerImpl

 SourceId: com.ibm.ws.security.role.RoleBasedAuthorizerImpl

 Category: AUDIT

 ExtendedMessage: CWSCJ0157I: Loaded Vendor AuthorizationTable:

com.ibm.ws.security.core.SAFAuthorizationTableImpl

 Trace: 2003/08/25 13:06:43.789 01 t=9EA930 c=UNK key=P8 (13007002)

 FunctionName: com.ibm.ws.security.core.SecurityComponentImpl

 SourceId: com.ibm.ws.security.core.SecurityComponentImpl

 Category: INFO

 ExtendedMessage: CWSCJ0243I: Security service started successfully

 Trace: 2003/08/25 13:06:43.789 01 t=9EA930 c=UNK key=P8 (0000000A)

 Description: Log Boss/390 Error

 from filename: ./bborjtr.cpp

 at line: 812

 error message: BBOO0222I CWSCJ0243I: Security service started successfully

 Trace: 2003/08/25 13:06:43.794 01 t=9EA930 c=UNK key=P8 (13007002)

 FunctionName: com.ibm.ws.security.core.SecurityComponentImpl

 SourceId: com.ibm.ws.security.core.SecurityComponentImpl

 Category: INFO

 ExtendedMessage: CWSCJ0210I: Security enabled true

 Trace: 2003/08/25 13:06:43.794 01 t=9EA930 c=UNK key=P8 (0000000A)

 Description: Log Boss/390 Error

 from filename: ./bborjtr.cpp

 at line: 812

 error message: BBOO0222I CWSCJ0210I: Security enabled true

 Trace: 2003/08/25 13:07:06.474 01 t=9EA930 c=UNK key=P8 (13007002)

 FunctionName: com.ibm.ws.security.core.WSAccessManager

 SourceId: com.ibm.ws.security.core.WSAccessManager

 Category: AUDIT

 ExtendedMessage: CWSCJ0157I: Loaded Vendor AuthorizationTable:

com.ibm.ws.security.core.SAFAuthorizationTableImpl

 Trace: 2003/08/25 13:07:09.315 01 t=9EA930 c=UNK key=P8 (13007002)

 FunctionName: com.ibm.ws.security.core.WSAccessManager

 SourceId: com.ibm.ws.security.core.WSAccessManager

 Category: AUDIT

 ExtendedMessage: CWSCJ0157I: Loaded Vendor AuthorizationTable:

com.ibm.ws.security.core.SAFAuthorizationTableImpl

Is there a stack trace or exception printed in the SystemOut.log?

A single stack trace tells a lot about the problem. What code initiated the code that failed? What is

the failing component? Which class did the failure actually come from? Sometimes the stack trace

Chapter 6. Learn about WebSphere applications 245

is all that is needed to solve the problem and it can pinpoint the root cause. Other times, it can

only give us a clue, and could actually be misleading. When support analyzes a stack trace, they

may request additional trace if it is not clear what the problem is. If it appears to be

security-related and the solution cannot be determined from the stack trace or problem description,

you will be asked to gather the following trace specification:

SASRas=all=enabled:com.ibm.ws.security.*=all=enabled from all processes involved.

Is this a distributed security problem or a local security problem?

v If the problem is local, that is the code involved does not make a remote method invocation,

then troubleshooting is isolated to a single process. It is important to know when a problem is

local versus distributed since the behavior of the ORB, among other components, is different

between the two. Once a remote method invocation takes place, an entirely different security

code path is entered.

v When you know that the problem involves two or more servers, the techniques of

troubleshooting change. You will need to trace all servers involved simultaneously so that the

trace shows the client and server sides of the problem. Try to make sure the timestamps on all

machines match as closely as possible so that you can find the request and reply pair from two

different processes. Enable both SAS or z/SAS and Security trace using the trace specification:

SASRas=all=enabled:com.ibm.ws.security.*=all=enabled.

For more information on enabling trace, see Enabling trace.

For more information on enabling trace, see Working with Trace
Is the problem related to authentication or authorization?

Most security problems fall under one of these two categories. Authentication is the process of

determining who the caller is. Authorization is the process of validating that the caller has the

proper authority to invoke the requested method. When authentication fails, typically this is related

to either the authentication protocol, authentication mechanism or user registry. When

authorization fails, this is usually related to the application bindings from assembly and/or

deployment and to the caller’s identity who is accessing the method and the roles required by the

method.

Is this a Web or EJB request?

 Web requests have a completely different code path than EJB requests. Also, there are different

security features for Web requests than for EJB requests, requiring a completely different body of

knowledge to resolve. For example, when using the LTPA authentication mechanism, the single

signon feature (SSO) is available for Web requests but not for EJB requests. Web requests

involve HTTP header information not required by EJB requests due to the protocol differences.

Also, the Web container (or servlet engine) is involved in the entire process. Any of these

components could be involved in the problem and all should be considered during troubleshooting,

based on the type of request and where the failure occurs.

 Secure EJB requests heavily involve the ORB and Naming components since they flow over the

RMI/IIOP protocol. In addition, when work flow management (WLM) is enabled, other behavior

changes in the code can be observed. All of these components interact closely for security to work

properly in this environment. At times, trace in any or all of these components might be necessary

to troubleshoot problems in this area. The trace specification to begin with is

SASRas=all=enabled:com.ibm.ws.security.*=all=enabled. ORB trace is also very beneficial when

the SAS/Security trace does not seem to pinpoint the problem.

Does the problem seem to be related to the Secure Sockets Layer (SSL)?

 The Secure Socket Layer (SSL) is a totally distinct separate layer of security. Troubleshooting SSL

problems are usually separate from troubleshooting authentication and/or authorization problems.

There are many things to consider. Usually, SSL problems are first time setup problems because

the configuration can be difficult. Each client must contain the server’s signer certificate. During

mutual authentication, each server must contain the client’s signer certificate. Also, there can be

protocol differences (SSLv3 vs. TLS), and listener port problems related to stale IORs (i.e., IORs

from a server reflecting the port prior to the server restarting).

246 IBM WebSphere Application Server-Network Deployment, Version 6: Troubleshooting and support

For SSL problems, we sometimes request an SSL trace to determine what is happening with the

SSL handshake. The SSL handshake is the process which occurs when a client opens a socket to

a server. If anything goes wrong with the key exchange, cipher exchange, etc. the handshake will

fail and thus the socket is invalid. Tracing JSSE (the SSL implementation used in WebSphere

Application Server) involves the following steps:

v Set the following system property on the client and server processes: -Djavax.net.debug=true.

For the server, add this to the Generic JVM Arguments property of the Java virtual machine

settings page.

v Turn on ORB trace as well.

v Recreate the problem.

The SystemOut.log of both processes should contain the JSSE trace. You will find trace similar

to the following:

SSLConnection: install <com.ibm.sslite.e@3ae78375>

>> handleHandshakeV2 <com.ibm.sslite.e@3ae78375>

>> handshakeV2 type = 1

>> clientHello: SSLv2.

SSL client version: 3.0

...

...

...

JSSEContext: handleSession[Socket[addr=null,port=0,localport=0]]

<< sendServerHello.

SSL version: 3.0

SSL_RSA_WITH_RC4_128_MD5

HelloRandom

...

...

...

<< sendCertificate.

<< sendServerHelloDone.

>> handleData <com.ibm.sslite.e@3ae78375>

>> handleHandshake <com.ibm.sslite.e@3ae78375>

>> handshakeV3 type = 16

>> clientKeyExchange.

>> handleData <com.ibm.sslite.e@3ae78375>

>> handleChangeCipherSpec <com.ibm.sslite.e@3ae78375>

>> handleData <com.ibm.sslite.e@3ae78375>

>> handleHandshake <com.ibm.sslite.e@3ae78375>

>> handshakeV3 type = 20

>> finished.

<< sendChangeCipherSpec.

<< sendFinished.

Trace security

The classes which implement WebSphere Application Server security are:

v com.ibm.ws.security.*

v com.ibm.websphere.security.*

v com.ibm.WebSphereSecurityImpl.*

v SASRas

To view detailed information on the run time behavior of security, enable trace on the following

components and review the output:

v com.ibm.ws.security.*=all=enabled:com.ibm:WebSphereSecurityImpl.*=

all=enabled:com.ibm.websphere.security.*=all=enabled. This trace statement collects the trace for

the security runtime.

v com.ibm.ws.console.security.*=all=enabled. This trace statement collects the trace for the security

center GUI.

v SASRas=all=enabled. This trace statement collects the trace for SAS (low-level authentication logic).
Fine tuning SAS traces:

If a subset of classes need to be traced for the SAS/CSIv2 component, a system property can be

specified with the class names comma separated:

com.ibm.CORBA.securityTraceFilter=SecurityConnectionInterceptorImpl, VaultImpl, ...

Chapter 6. Learn about WebSphere applications 247

Fine tuning Security traces:

If a subset of packages need to be traced, specify a trace specification more detailed than

com.ibm.ws.security.*=all=enabled. For example, to trace just dynamic policy code, you can

specify com.ibm.ws.security.policy.*=all=enabled. To disable dynamic policy trace, you can

specify com.ibm.ws.security.policy.*=all=disabled.

Configuring CSIv2, or z/SAS Trace Settings

Situations arise where reviewing trace for the CSIv2 and z/SAS authentication protocols can assist

in troubleshooting difficult problems. This section describes how to enable to CSIv2 and z/SAS

trace.

Enabling Server-Side CSIv2 and z/SAS Trace

To enable z/SAS trace in an application server, complete the following:

v Add the trace specification, SASRas=all=enabled, to the server.xml file or add it to the

Trace settings within the WebConsole GUI.

v Typically it is best to also trace the authorization security runtime in addition to the

authentication protocol runtime. To do this, use the following two trace specifications in

combination: SASRas=all=enabled:com.ibm.ws.security.*=all=enabled.

v When troubleshooting a connection type problem, it is beneficial to trace both CSIv2

and SAS or CSIv2 and z/SAS and the ORB. To do this, use the following three trace

specifications:

SASRas=all=enabled:com.ibm.ws.security.*=all=enabled:ORBRas=all=enabled.

v In addition to adding these trace specifications, for ORB trace there are a couple of

system properties that also need to be set. Go to the ORB settings in the GUI and add

the following two properties: com.ibm.CORBA.Debug=true and

com.ibm.CORBA.CommTrace=true.
Configuring CSIv2, or SAS Trace Settings

Situations arise where reviewing trace for the CSIv2 or SAS authentication protocols can assist in

troubleshooting difficult problems. This section describes how to enable to CSIv2 and SAS trace.

Enabling Client-Side CSIv2 and SAS Trace

To enable CSIv2 and SAS trace on a pure client, the following steps need to be taken:

v Edit the file TraceSettings.properties in the /WebSphere/AppServer/properties directory.

v In this file, change traceFileName= to point to the path in which you want the ouput file

created. Make sure you put a double backslash (\\) between each subdirectory. For

example, traceFileName=c:\\WebSphere\\AppServer\\logs\\sas_client.log

v In this file, add the trace specification string: SASRas=all=enabled. Any additional trace

strings can be added on separate lines.

v Point to this file from within your client application. On the Java command line where

you launch the client, add the following system property:

-DtraceSettingsFile=TraceSettings.properties.

Note: Do not give the fully qualified path to the TraceSettings.properties file. Make

sure that the TraceSettings.properties file is in your class path.
Enabling Server-Side CSIv2 and SAS Trace

To enable SAS trace in an application server, complete the following:

v Add the trace specification, SASRas=all=enabled, to the server.xml file or add it to the

Trace settings within the WebConsole GUI.

v Typically it is best to also trace the authorization security runtime in addition to the

authentication protocol runtime. To do this, use the following two trace specifications in

combination: SASRas=all=enabled:com.ibm.ws.security.*=all=enabled.

v When troubleshooting a connection type problem, it is beneficial to trace both CSIv2

and SAS or CSIv2 and z/SAS and the ORB. To do this, use the following three trace

specifications:

SASRas=all=enabled:com.ibm.ws.security.*=all=enabled:ORBRas=all=enabled.

v In addition to adding these trace specifications, for ORB trace there are a couple of

system properties that also need to be set. Go to the ORB settings in the GUI and add

the following two properties: com.ibm.CORBA.Debug=true and

com.ibm.CORBA.CommTrace=true.

248 IBM WebSphere Application Server-Network Deployment, Version 6: Troubleshooting and support

CSIv2 CORBA Minor Codes

Whatever exceptions might occur within the security code on either the client or server, the eventual

exception will become a CORBA exception. So any exception that occurs gets ″wrapped″ by a CORBA

exception, because the CORBA architecture is used by the security service for its own inter-process

communication. CORBA exceptions are generic, and indicate a problem in communication between two

components. CORBA minor codes are more specific, and indicate the underlying reason that a component

could not complete a request.

The following shows the CORBA Minor codes which a client can expect to receive after executing a

security-related request such as authentication. It also includes the CORBA exception type that the minor

code would appear in.

The following exception shows an example of a CORBA exception where the minor code is 49424300.

From the table below, this minor code indicates Authentication Failure. Typically, a descriptive message is

also included in the exception to assist in troubleshooting the problem. Here, the detailed message is

″Exception caught invoking authenticateBasicAuthData from SecurityServer for user jdoe. Reason:

com.ibm.WebSphereSecurity.AuthenticationFailedException″ which indicates that the authentication failed

for user ″jdoe″.

The completed field in the exception indicates whether the method was completed or not. In the case of a

NO_PERMISSION, the method should never get invoked, so it will always be ″completed:No″. Other

exceptions which are caught on the server side could have a completed status of ″Maybe″ or ″Yes″.

org.omg.CORBA.NO_PERMISSION: Caught WSSecurityContextException in

WSSecurityContext.acceptSecContext(),

reason: Major Code[0] Minor Code[0] Message[Exception caught invoking

authenticateBasicAuthData from SecurityServer for user jdoe. Reason:

com.ibm.WebSphereSecurity.AuthenticationFailedException] minor code: 49424300

completed: No

at com.ibm.ISecurityLocalObjectBaseL13Impl.PrincipalAuthFailReason.

map_auth_fail_to_minor_code(PrincipalAuthFailReason.java:83)

 at com.ibm.ISecurityLocalObjectBaseL13Impl.CSIServerRI.receive_request

 (CSIServerRI.java:1569)

 at com.ibm.rmi.pi.InterceptorManager.iterateReceiveRequest

 (InterceptorManager.java:739)

 at com.ibm.CORBA.iiop.ServerDelegate.dispatch(ServerDelegate.java:398)

 at com.ibm.rmi.iiop.ORB.process(ORB.java:313)

 at com.ibm.CORBA.iiop.ORB.process(ORB.java:1581)

 at com.ibm.rmi.iiop.GIOPConnection.doWork(GIOPConnection.java:1827)

 at com.ibm.rmi.iiop.WorkUnitImpl.doWork(WorkUnitImpl.java:81)

 at com.ibm.ejs.oa.pool.PooledThread.run(ThreadPool.java:91)

 at com.ibm.ws.util.CachedThread.run(ThreadPool.java:149)

The following table shows the CORBA Minor codes which a client can expect to receive after executing a

security-related request such as authentication. It also includes the CORBA exception type that the minor

code would appear in.

 Minor code name Minor code

value (in hex)

Exception type (all in the

package of org.omg.CORBA

.*)

Minor code description Retry performed (when

authenticationRe

tryEnabled=true)

AuthenticationFailed 49424300 NO_PERMISSION This is a generic

authentication failed error.

It does not give any details

about whether the userid

or password is invalid.

Some registries can

choose to use this type of

error code, others might

choose to use the next

three types which are

more specific.

Yes

Chapter 6. Learn about WebSphere applications 249

InvalidUserid 49424301 NO_PERMISSION This occurs when the

registry returns bad userid.

Yes

InvalidPassword 49424302 NO_PERMISSION This occurs when the

registry returns bad

password.

Yes

InvalidSecurityCredentials 49424303 NO_PERMISSION This is a generic error

indicating that the

credentials are bad for

whatever reason. It could

be that they don’t have the

right attributes set.

Yes, if client has BasicAuth

credential (token based

credential was rejected in the

first place).

InvalidRealm 49424304 NO_PERMISSION This occurs when the

REALM in the token

received from the client

does not match the

server’s current realm.

No

ValidationFailed 49424305 NO_PERMISSION A validation failure occurs

when a token is sent from

the client or server to a

target server but the token

format or the expiration is

invalid.

Yes, if client has BasicAuth

credential (token based

credential was rejected in the

first place).

CredentialTokenExpired 49424306 NO_PERMISSION This is more specific about

why the validation failed.

In this case, the token has

a absolute lifetime, and

this lifetime has expired.

Therefore, it is no longer a

valid token and cannot be

used.

Yes, if client has BasicAuth

credential (token based

credential was rejected in the

first place).

InvalidCredentialToken 49424307 NO_PERMISSION This is more specific about

why the validation failed.

In this case, the token

cannot be decrypted or the

data within it is not

readable.

Yes, if client has BasicAuth

credential (token based

credential was rejected in the

first place).

SessionDoesNotExist 49424308 NO_PERMISSION This indicates that the

CSIv2 session does not

exist on the server.

Typically, a retry occurs

automatically and will

successfully create a new

session.

Yes

SessionConflictingEvidence 49424309 NO_PERMISSION This indicates that a

session already exists on

the server which matches

the context_id sent over by

the client, however, the

information provided by

the client for this

EstablishContext message

is different from the

information originally

provided to establish the

session.

Yes

SessionRejected 4942430A NO_PERMISSION This indicates that the

session referenced by the

client has been previously

rejected by the server.

Yes

SecurityServerNotAvailable 4942430B NO_PERMISSION This error occurs when the

server cannot contact the

security server (whether

local or remote) in order to

authenticate or validate.

No

InvalidIdentityToken 4942430C NO_PERMISSION This error indicates that

identity cannot be obtained

from the identity token

when Identity Assertion is

enabled.

No

250 IBM WebSphere Application Server-Network Deployment, Version 6: Troubleshooting and support

IdentityServerNotTrusted 4942430D NO_PERMISSION This indicates that the

server id of the sending

server is not on the target

server’s trusted principal

list.

No

InvalidMessage 4942430E NO_PERMISSION This indicates that the

CSIv2 message format is

invalid for the receiving

server.

No

AuthenticationNotSupported 49421090 NO_PERMISSION This error occurs when a

mechanism does not

support authentication

(very rare).

No

InvalidSecurityMechanism 49421091 NO_PERMISSION This is used to indicate

that the specified security

mechanism is not known.

No

CredentialNotAvailable 49421092 NO_PERMISSION This indicates a credential

is not available when it is

required.

No

SecurityMechanismNotSupported 49421093 NO_PERMISSION This error occurs when a

security mechanism

specified in the CSIv2

token is not implemented

on the server.

No

ValidationNotSupported 49421094 NO_PERMISSION This error occurs when a

mechanism does not

support validation (such as

LocalOS). This error

should not occur since the

LocalOS credential is not a

forwardable credential,

therefore, validation should

never need to be called on

it.

No

CredentialTokenNotSet 49421095 NO_PERMISSION This is used to indicate the

token inside the credential

is null.

No

ServerConnectionFailed 494210A0 COMM_FAILURE This error is used when a

connection attempt fails.

Yes (via ORB retry)

CorbaSystemException 494210B0 INTERNAL This is a generic CORBA

specific exception in

system code.

No

JavaException 494210B1 INTERNAL This is a generic error that

indicated an unexpected

Java exception occurred.

No

ValueIsNull 494210B2 INTERNAL This is used to indicate

that a value or parameter

passed in was null.

No

EffectivePolicyNotPresent 494210B3 INTERNAL This indicates that an

effective policy object for

CSIv2 is not present. This

object is used to determine

what security configuration

features have been

specified.

No

NullPointerException 494210B4 INTERNAL This is used to indicate

that a NullPointerException

was caught in the runtime.

No

ErrorGettingClassInstance 494210B5 INTERNAL This indicates a problem

loading a class

dynamically.

No

MalFormedParameters 494210B6 INTERNAL This indicates parameters

are not valid.

No

DuplicateSecurityAttributeType 494210B7 INTERNAL A duplicate credential

attribute has been

specified during the

set_attributes operation.

No

MethodNotImplemented 494210C0 NO_IMPLEMENT A method invoked has not

been implemented.

No

Chapter 6. Learn about WebSphere applications 251

GSSFormatError 494210C5 BAD_PARAM This indicates that a GSS

encoding or decoding

routine has thrown an

exception.

No

TagComponentFormatError 494210C6 BAD_PARAM This indicates that a tag

component cannot be read

properly.

No

InvalidSecurityAttributeType 494210C7 BAD_PARAM This indicates an attribute

type specified during the

set_attributes operation is

an invalid type.

No

SecurityConfigError 494210CA INITIALIZE A problem exists between

the client and server

configuration.

No

For current information available from IBM Support on known problems and their resolution, see the IBM

Support page.

IBM Support has documents that can save you time gathering information needed to resolve this problem.

Before opening a PMR, see the IBM Support page.

Naming and directory

Troubleshooting name space problems

Many naming problems can be avoided by fully understanding the key underlying concepts of WebSphere

Application Server naming.

1. Review the key concepts of WebSphere Application Server naming, especially Name space logical

view and Lookup names support in deployment descriptors and thin clients.

2. Review the programming examples that are included in the sections explaining the JNDI and

CosNaming interfaces.

3. Read “Naming services component troubleshooting tips” on page 39 for additional general information.

4. If you “Cannot look up an object hosted by WebSphere Application Server from a servlet, JSP file, or

other client” on page 40, read this article.

dumpNameSpace tool

You can use the dumpNameSpace tool to dump the contents of a name space accessed through a name

server. The dumpNameSpace tool is based on Java Naming and Directory Interface (JNDI).

When you run the dumpNameSpace tool, the naming service must be active. The dumpNameSpace tool

cannot dump name spaces local to the server process, such as those with java: and local: URL schemes.

The local: name space contains references to enterprise beans with local interfaces. Use the name space

dump utility for java:, local: and server name spaces to dump java: and local: name spaces.

The tool dumps the server root context for the server at the specified host and port unless you specify a

non-default starting context which precludes it. The tool does not dump the server root contexts for other

servers.

Running dumpNameSpace

You can run the tool from a command line or using its program interface. This article describes

command-line invocations. To access the dumpNameSpace tool through its program interface, refer to the

class com.ibm.websphere.naming.DumpNameSpace in the WebSphere Application Server API documentation.

“Example: Invoking the name space dump tool” on page 254 illustrates running the tool from a command

line or using its program interface.

252 IBM WebSphere Application Server-Network Deployment, Version 6: Troubleshooting and support

http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCVS2E
http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCVS2E
http://www-1.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCVS2E&q=mustgather

To run the tool from a command line, enter the following command from the WebSphere/AppServer/bin

directory:

 Platform Command

UNIX dumpNameSpace.sh [[-keyword value]...]

Windows NT or later dumpNameSpace [[-keyword value]...]

If you run the dumpNameSpace tool with security enabled, a login prompt is displayed. If you cancel the

login prompt, the dumpNameSpace tool continues outbound with an ″UNAUTHENTICATED″ credential.

Thus, by default, an ″UNAUTHENTICATED″ credential is used that is equivalent to the ″Everyone″ access

authorization policy. You can modify this default setting by changing the value for the

com.ibm.CSI.performClientAuthenticationRequired property to true in the

install_dir/properties/sas.client.props file. If you change this property to true, rerun the

dumpNameSpace tool and cancel the login prompt; the authorization fails and the command does not

continue outbound.

Parameters

The keywords and associated values for the dumpNameSpace tool follow:

-host myhost.company.com

Indicates the bootstrap host or the WebSphere Application Server host whose name space you want

to dump. The value defaults to localhost. Specify a value for -host if the tool is not run from the local

machine. The -host parameter instructs the tool to connect to a server on a remote machine. For

example, run

dumpNameSpace -host myhost.mycompany.com

to display the name space of the server running on myhost.mycompany.com.

-port nnn

Indicates the bootstrap port which, if not specified, defaults to 2809.

-root { cell | server | node | host | legacy | tree | default }

Indicates the root context to use as the initial context for the dump. The applicable root options and

default root context depend on the type of name server from which the dump is being obtained.

Descriptions of root options follow:

 cell DumpNameSpace default. Dumps the tree starting at the cell root context.

server Dumps the tree starting at the server root context.

node Dumps the tree starting at the node root context. The node value is synonymous with

host.

For WebSphere Application Servers Version 4.0 or later:

 legacy DumpNameSpace default. Dumps the tree starting at the legacy root context.

host Dumps the tree starting at the bootstrap host root context. The host value is

synonymous with node.

tree Dumps the tree starting at the tree root context.

For all WebSphere Application Servers and other name servers:

 default Dumps the tree starting at the initial context which JNDI returns by default for that

server type. This is the only -root choice that is compatible with WebSphere

Application Servers prior to Version 4.0 and with non-WebSphere Application Server

name servers.

Chapter 6. Learn about WebSphere applications 253

-url some_provider_URL

Indicates the value for the java.naming.provider.url property used to get the initial JNDI context. This

option can be used in place of the -host, -port, and -root options. If the -url option is specified, the

-host, -port, and -root options are ignored.

-factory com.ibm.websphere.naming.WsnInitialContextFactory

Indicates the initial context factory to be used to get the JNDI initial context. The value defaults to

com.ibm.websphere.naming.WsnInitialContextFactory. The default value generally does not need to be

changed.

-startAt some/subcontext/in/the/tree

Indicates the path from the bootstrap host’s root context to the top level context where the dump

should begin. The tool recursively dumps subcontexts below this point. It defaults to an empty string,

that is, the bootstrap host root context.

-format { jndi | ins }

 jndi The default. Displays name components as atomic strings.

ins Shows name components parsed using Interoperable Naming Service (INS) rules

(id.kind).

-report { short | long }

 short The default. Dumps the binding name and bound object type. This output is also

provided by JNDI Context.list().

long Dumps the binding name, bound object type, local object type, and string

representation of the local object (that is, the IORs, string values, and other values that

are printed).

For objects of user-defined classes to display correctly with the long report option, you

might need to add their containing directories to the list of directories searched. Set

the environment variable WAS_USER_DIRS as shown in the following

platform-specific commands. The value can include one or more directories.

UNIX WAS_USER_DIRS=/usr/classdir1:/usr/classdir2 export WAS_USER_DIRS

Windows NT or later

set WAS_USER_DIRS=c:\classdir1;d:\classdir2

All .zip, .jar, and .class files in the specified directories can then be resolved by the

class loader when running the dumpNameSpace tool.

-traceString ″some.package.name.to.trace.*=all=enabled″

Represents the trace string with the same format as that generated by the servers. The output is sent

to the file DumpNameSpaceTrace.out.

Example: Invoking the name space dump tool

It is often helpful to view a dump of the name space to understand why a naming operation is failing. You

can invoke the name space dump tool from the command line or from a program. Examples of each

option follow.

Invoking the name space dump tool from a command line

Invoke the name space dump tool from a command line by entering either of the following commands:

dumpNameSpace -host myhost.mycompany.com -port 901

or:

254 IBM WebSphere Application Server-Network Deployment, Version 6: Troubleshooting and support

dumpNameSpace -url corbaloc:iiop:myhost.mycompany.com:901

There are several command-line options to choose from. For detailed help on the options, enter either of

the following commands:

dumpNameSpace -help

or:

dumpNameSpace -?

Invoking the name space dump tool from a Java program

You can dump name spaces from a program with the com.ibm.websphere.naming.DumpNameSpace API.

Refer to the WebSphere Application Server API documentation for details on the DumpNameSpace

program interface.

The following example illustrates how to invoke the name space dump tool from a Java program:

{

 ...

 import javax.naming.Context;

 import javax.naming.InitialContext;

 import com.ibm.websphere.naming.DumpNameSpace;

 ...

 java.io.PrintStream filePrintStream = ...

 Context ctx = new InitialContext();

 // Starting context for dump

 ctx = (Context) ctx.lookup("cell/nodes/node1/servers/server1");

 DumpNameSpace dumpUtil =

 new DumpNameSpace(filePrintStream, DumpNameSpace.SHORT);

 dumpUtil.generateDump(ctx);

 ...

}

Name space dump utility for java:, local: and server name spaces

Sometimes it is helpful to dump the java: name space for a J2EE application. You cannot use the

dumpNameSpace command line utility for this purpose because the application’s java: name space is

accessible only by that J2EE application. From the WebSphere Application Server scripting tool, you can

invoke a NameServer MBean to dump the java: name space for any J2EE application running in that

same server process.

There is another name space local to server process which you cannot dump with the dumpNameSpace

command line utility. This name space has the URL scheme of local: and is used by the container to bind

objects locally instead of through the name server. The local: name space contains references to

enterprise beans with local interfaces. There is only one local: name space in a server process. You can

dump the local: name space by invoking the NameServer MBean associated with that server process.

Name space dump options

Name space dump options are specified in the MBean invocation as a parameter in character string

format. The option descriptions follow.

-startAt some/subcontext/in/the/tree

Indicates the path from the name space root context to the top level context where the dump should

begin. The utility recursively dumps subcontexts below this point. It defaults to an empty string, that is,

the root context.

Chapter 6. Learn about WebSphere applications 255

-report {short | long}

 Option Description

short The default. Dumps the binding name and bound object type. This output is also

provided by JNDI Context.list().

long Dumps the binding name, bound object type, local object type, and string

representation of the local object (that is, the IORs, string values, and other values that

are printed).

-root {tree | host | legacy | cell | node | server | default}

Specify the root context of where the dump should start. The default value for -root is cell. This option

is only valid for server name space dumps.

 Option Description

tree Dump the tree starting at the tree root context.

host Dump the tree starting at the server host root context (synonymous with ″node″).

legacy Dump the tree starting at the legacy root context.

cell Dump the tree starting at the cell root context. This is the default option.

node Dump the tree starting at the node root context (synonymous with ″host″).

server Dump the tree starting at the server root context. This is -root default.

default Dump the tree starting at the initial context which JNDI returns by default for that

server type.

-format {jndi | ins}

 Specify the format to display name component as atomic strings or parsed according to INS rules

(id.kind). This option is only valid for server name space dumps.

 Option Description

jndi Display name components as atomic strings. This is -format default.

ins Display name components parsed according to INS rules (id.kind).

NameServer MBean invocation

1. Enter the WebSphere Application Server scripting command prompt.

Invoke a method on a NameServer MBean by using the WebSphere Application Server scripting tool.

Enter the scripting command prompt by typing the following command:

 Platform Command

UNIX wsadmin.sh

Windows NT wsadmin

Use the -help option for help on using the wsadmin command.

2. Select the NameServer MBean instance to invoke.

Execute the following script commands to select the NameServer instance you want to invoke. For

example,

set mbean [$AdminControl completeObjectName WebSphere:*,type=NameServer,cell=

 cellName,node=nodeName,process=serverName]

where cellName, nodeName, and serverName are the names of the cell, node, and server for the

MBean you want to invoke. The specified server must be running before you can invoke a method on

the MBean.

256 IBM WebSphere Application Server-Network Deployment, Version 6: Troubleshooting and support

You can see a list of all NameServer MBeans current running by issuing the following query:

$AdminControl queryNames {*:*,type=NameServer}

3. Invoke the NameServer MBean.

java: name space

Dump a java: name space by invoking the dumpJavaNameSpace method on the NameServer

MBean. Since each server application has its own java: name space, the application must be

specified on the method invocation. An application is identified by the application name,

module name, and component name. The method syntax follows:

$AdminControl invoke $mbean dumpJavaNameSpace {{appname}{modName}{compName}{opts}}

where appName is the application name, modName is the module name, and compName is

the component name of the java: name space you want to dump. The value for opts is the list

of name space dump options described earlier in this section. The list can be empty.

local: name space

Dump a java: name space by invoking the dumpLocalNameSpace method on the NameServer

MBean. Because there is only one local: name space in a server process, you have to specify

the name space dump options only.

$AdminControl invoke $mbean dumpLocalNameSpace {{opts}}

where opts is the list of name space dump options described earlier in this section. The list

can be empty.

Server name space

Dump a server name space by invoking the dumpServerNameSpace method on an application

server’s NameServer MBean. This provides an alternative way to dump the name space on an

application server, much like the dumpNameSpace command line utility.

$AdminControl invoke $mbean dumpServerNameSpace {{opts}}

where opts is the list of name space dump options described earlier in this section. The list

can be empty.

Name space dump output

Name space dump output is sent to the console. It is also written to the file DumpNameSpace.log, in the

server’s log directory.

Example: Invoking the name space dump utility for java: and local: name spaces

It is often helpful to view the dump of a java: or local: name space to understand why a naming

operation is failing. The NameServer MBean running in the application’s server process can be invoked

from the WebSphere Application Server scripting tool to generate a dump of these name spaces.

Examples of NameServer MBean calls to generate dumps of java: and local: name spaces follow.

Dumping a java: name space

Assume you want to dump the java: name space of an application component running in server server1 on

node node1 of the cell MyCell. The application name is AcctApp in module AcctApp.war, and the

component name is Acct Servlet. The following script commands generate a long format dump of the

application’s java: name space of that application:

set mbean [$AdminControl completeObjectName WebSphere:*,type=NameServer,cell=MyCell,node=node1,process=server1]

$AdminControl invoke $mbean dumpJavaNameSpace {{DefaultApplication}{Increment.jar}{Increment}{-report long}}

Dumping a local: name space

Assume you want to dump the local: name space for the server server1 on node node1 of cell MyCell.

The following script commands will generate a short format dump of that server’s local name space:

Chapter 6. Learn about WebSphere applications 257

set mbean [$AdminControl completeObjectName WebSphere:*type=NameServer,cell=MyCell,node=node1,process=server1]

$AdminControl invoke $mbean dumpLocalNameSpace {{-report short}}

Name space dump sample output

Name space dump output looks like the following example, which is the SHORT dump format:

Getting the initial context

Getting the starting context

==

Name Space Dump

 Provider URL: corbaloc:iiop:localhost:9810

 Context factory: com.ibm.websphere.naming.WsnInitialContextFactory

 Requested root context: cell

 Starting context: (top)=outpostNetwork

 Formatting rules: jndi

 Time of dump: Mon Sep 16 18:35:03 CDT 2002

==

==

Beginning of Name Space Dump

==

 1 (top)

 2 (top)/domain javax.naming.Context

 2 Linked to context: outpostNetwork

 3 (top)/cells javax.naming.Context

 4 (top)/clusters javax.naming.Context

 5 (top)/clusters/Cluster1 javax.naming.Context

 6 (top)/cellname java.lang.String

 7 (top)/cell javax.naming.Context

 7 Linked to context: outpostNetwork

 8 (top)/deploymentManager javax.naming.Context

 8 Linked to URL: corbaloc::outpost:9809/NameServiceServerRoot

 9 (top)/nodes javax.naming.Context

 10 (top)/nodes/will2 javax.naming.Context

 11 (top)/nodes/will2/persistent javax.naming.Context

 12 (top)/nodes/will2/persistent/SomeObject SomeClass

 13 (top)/nodes/will2/nodename java.lang.String

 14 (top)/nodes/will2/domain javax.naming.Context

 14 Linked to context: outpostNetwork

 15 (top)/nodes/will2/cell javax.naming.Context

 15 Linked to context: outpostNetwork

 16 (top)/nodes/will2/servers javax.naming.Context

 17 (top)/nodes/will2/servers/server1 javax.naming.Context

 18 (top)/nodes/will2/servers/will2 javax.naming.Context

 19 (top)/nodes/will2/servers/member2 javax.naming.Context

 20 (top)/nodes/will2/node javax.naming.Context

 20 Linked to context: outpostNetwork/nodes/will2

 21 (top)/nodes/will2/nodeAgent javax.naming.Context

 22 (top)/nodes/outpost javax.naming.Context

 23 (top)/nodes/outpost/node javax.naming.Context

 23 Linked to context: outpostNetwork/nodes/outpost

 24 (top)/nodes/outpost/nodeAgent javax.naming.Context

 24 Linked to URL: corbaloc::outpost:2809/NameServiceServerRoot

 25 (top)/nodes/outpost/persistent javax.naming.Context

 26 (top)/nodes/outpost/nodename java.lang.String

 27 (top)/nodes/outpost/domain javax.naming.Context

 27 Linked to context: outpostNetwork

 28 (top)/nodes/outpost/servers javax.naming.Context

 29 (top)/nodes/outpost/servers/server1 javax.naming.Context

 30 (top)/nodes/outpost/servers/server1/url javax.naming.Context

 31 (top)/nodes/outpost/servers/server1/url/CatalogDAOSQLURL

 31 java.net.URL

 32 (top)/nodes/outpost/servers/server1/mail javax.naming.Context

 33 (top)/nodes/outpost/servers/server1/mail/PlantsByWebSphere

258 IBM WebSphere Application Server-Network Deployment, Version 6: Troubleshooting and support

33 javax.mail.Session

 34 (top)/nodes/outpost/servers/server1/TransactionFactory

 34 com.ibm.ejs.jts.jts.ControlSet$LocalFactory

 35 (top)/nodes/outpost/servers/server1/servername java.lang.String

 36 (top)/nodes/outpost/servers/server1/WSsamples javax.naming.Context

 37 (top)/nodes/outpost/servers/server1/WSsamples/TechSampDatasource

 37 TechSamp

 38 (top)/nodes/outpost/servers/server1/thisNode javax.naming.Context

 38 Linked to context: outpostNetwork/nodes/outpost

 39 (top)/nodes/outpost/servers/server1/cell javax.naming.Context

 39 Linked to context: outpostNetwork

 40 (top)/nodes/outpost/servers/server1/eis javax.naming.Context

 41 (top)/nodes/outpost/servers/server1/eis/DefaultDatasource_CMP

 41 Default_CF

 42 (top)/nodes/outpost/servers/server1/eis/WSsamples javax.naming.Context

 43 (top)/nodes/outpost/servers/server1/eis/WSsamples/TechSampDatasource_CMP

 43 TechSamp_CF

 44 (top)/nodes/outpost/servers/server1/eis/jdbc javax.naming.Context

 45 (top)/nodes/outpost/servers/server1/eis/jdbc/PlantsByWebSphereDataSource_CMP

 45 PLANTSDB_CF

 46 (top)/nodes/outpost/servers/server1/eis/jdbc/petstore

 46 javax.naming.Context

 47 (top)/nodes/outpost/servers/server1/eis/jdbc/petstore/PetStoreDB_CMP

 47 PetStore_CF

 48 (top)/nodes/outpost/servers/server1/eis/jdbc/CatalogDB_CMP

 48 Catalog_CF

 49 (top)/nodes/outpost/servers/server1/jta javax.naming.Context

 50 (top)/nodes/outpost/servers/server1/jta/usertransaction

 50 java.lang.Object

 51 (top)/nodes/outpost/servers/server1/DefaultDatasource

 51 Default Datasource

 52 (top)/nodes/outpost/servers/server1/jdbc javax.naming.Context

 53 (top)/nodes/outpost/servers/server1/jdbc/CatalogDB CatalogDB

 54 (top)/nodes/outpost/servers/server1/jdbc/petstore javax.naming.Context

 55 (top)/nodes/outpost/servers/server1/jdbc/petstore/PetStoreDB

 55 PetStoreDB

 56 (top)/nodes/outpost/servers/server1/jdbc/PlantsByWebSphereDataSource

 56 PLANTSDB

 57 (top)/nodes/outpost/servers/outpost javax.naming.Context

 57 Linked to URL: corbaloc::outpost:2809/NameServiceServerRoot

 58 (top)/nodes/outpost/servers/member1 javax.naming.Context

 59 (top)/nodes/outpost/cell javax.naming.Context

 59 Linked to context: outpostNetwork

 60 (top)/nodes/outpostManager javax.naming.Context

 61 (top)/nodes/outpostManager/domain javax.naming.Context

 61 Linked to context: outpostNetwork

 62 (top)/nodes/outpostManager/cell javax.naming.Context

 62 Linked to context: outpostNetwork

 63 (top)/nodes/outpostManager/servers javax.naming.Context

 64 (top)/nodes/outpostManager/servers/dmgr javax.naming.Context

 64 Linked to URL: corbaloc::outpost:9809/NameServiceServerRoot

 65 (top)/nodes/outpostManager/node javax.naming.Context

 65 Linked to context: outpostNetwork/nodes/outpostManager

 66 (top)/nodes/outpostManager/nodename java.lang.String

 67 (top)/persistent javax.naming.Context

 68 (top)/persistent/cell javax.naming.Context

 68 Linked to context: outpostNetwork

 69 (top)/legacyRoot javax.naming.Context

 69 Linked to context: outpostNetwork/persistent

 70 (top)/persistent/AnotherObject AnotherClass

==

End of Name Space Dump

==

Chapter 6. Learn about WebSphere applications 259

Object Request Broker

Object Request Broker communications trace

The Object Request Broker (ORB) communications trace, typically referred to as CommTrace, contains the

sequence of General InterORB Protocol (GIOP) messages sent and received by the ORB when the

application is running. It might be necessary to understand the low-level sequence of client-to-server or

server-to-server interactions during problem determination. This topic uses trace entries from log examples

to explain the contents of the log and help you understand the interaction sequence. It focuses only in the

GIOP messages and does not discuss in detail additional trace information that displays when intervening

with the GIOP-message boundaries.

Location

When ORB tracing is enabled, this information is placed in the install_root/logs/trace directory.

About the ORB trace file

The following are properties of the file that is created when ORB tracing is enabled.

v Read-only

v Updated by the administrative function

v Use this file to localize and resolve ORB-related problems.

How to interpret the output

The following sections refer to sample log output found later in this topic.

Identifying information

The start of a GIOP message is identified by a line that contains either OUT GOING: or IN

COMING: depending on whether the message is sent or received by the process.

 Following the identifying line entry is a series of items, formatted for convenience, with information

extracted from the raw message that identifies the endpoints in this particular message interaction.

See lines 3-13 in both examples. The formatted items include the following:

v GIOP message type (line 3)

v Date and time that the message was recorded (line 4)

v Information that is useful to identify the thread that is running when the message records, and

other thread-specific information (line 5)

v Local and remote TCP/IP ports used for the interaction (lines 6 through 9)

v GIOP version, byte order, an indication of whether the message is a fragment, and message

size (lines 10 through 13)
Request ID, response expected and reply status

Following the introductory message information, the request ID is an integer generated by the

ORB. It is used to identify and associate each request with its corresponding reply. This

association is necessary because the ORB can receive requests from multiple clients and must be

able to associate each reply with the corresponding originating request.

v Lines 15-17 in the request example show the request ID, followed by an indication to the

receiving endpoint that a response is expected (CORBA supports sending one-way requests for

which a response is not expected.)

v Line 15 in the reply example shows the request ID; line 33 shows the reply status received after

completing the previously sent request.
Object Key

Lines 18-20 in the request example show the object key, the internal representation used by the

ORB to identify and locate the target object intended to receive the request message. Object keys

are not standardized.

260 IBM WebSphere Application Server-Network Deployment, Version 6: Troubleshooting and support

Operation

Line 21 in the request example shows the name of the operation that the target object starts in the

receiving endpoint. In this example, the specific operation requested is named _get_value.

Service context information

The service contexts in the message are also formatted for convenience. Each GIOP message

might contain a sequence of service contexts sent and received by each endpoint. Service

contexts, identified uniquely with an ID, contain data used in the specific interaction, such as

security, character code set conversion, and ORB version information. The content of some of the

service contexts is standardized and specified by OMG, while other service contexts are

proprietary and specified by each vendor. IBM-specific service contexts are identified with IDs that

begin with 0x4942.

 Lines 22-41 in the request example illustrate typical service context entries. Three service contexts

are in the request message, as shown in line 22. The ID, length of data, and raw data for each

service context is printed next. Lines 23-25 show an IBM-proprietary context, as indicated by the

0x49424D12 ID. Lines 26-41 show two standard service contexts, identified by 0x6 ID (line 26) and

the 0x1 ID (line 39).

 Lines 16-32 in the reply example illustrate two service contexts, one IBM-proprietary (line 17) and

one standardized (line 20).

 For the definition of the standardized service contexts, see the CORBA specification. Service

context 0x1 (CORBA::IOP::CodeSets) is used to publish the character code sets supported by the

ORB in order to negotiate and determine the code set used to transmit character data. Service

context 0x6 (CORBA::IOP::SendingContextRunTime) is used by Remote Method Invocation over

the Internet Inter-ORB Protocol (RMI-IIOP) to provide the receiving endpoint with the IOR for the

SendingContextRuntime object. IBM service context 0x49424D12 is used to publish ORB

PartnerVersion information to support release-to-release interoperability between sending and

receiving ORBs.

Data offset

Line 42 in the request example shows the offset, relative to the beginning of the GIOP message,

where the remainder body of the request or reply message is located. This portion of the message

is specific to each operation and varies from operation to operation. Therefore, it is not formatted,

as the specific contents are not known by the ORB. The offset is printed as an aid to quickly

locating the operation-specific data in the raw GIOP message dump, which follows the data offset.

Raw GIOP message dump

Starting at line 45 in the request example and line 36 in the reply example, a raw dump of the

entire GIOP message is printed in hexadecimal format. Request messages contain the parameters

required by the given operation and reply messages contain the return values and content of

output parameters as required by the given operation. For brevity, not all of the raw data is in the

figures.

Sample Log Entry - GIOP Request

1. OUT GOING:

3. Request Message

4. Date: April 17, 2002 10:00:43 PM CDT

5. Thread Info: P=842115:O=1:CT

6. Local Port: 1243 (0x4DB)

7. Local IP: jdoe.austin.ibm.com/192.168.1.101

8. Remote Port: 1242 (0x4DA)

9. Remote IP: jdoe.austin.ibm.com/192.168.1.101

10. GIOP Version: 1.2

11. Byte order: big endian

12. Fragment to follow: No

13. Message size: 268 (0x10C)

--

15. Request ID: 5

16. Response Flag: WITH_TARGET

17. Target Address: 0

Chapter 6. Learn about WebSphere applications 261

18. Object Key: length = 24 (0x18)

 4B4D4249 00000010 BA4D6D34 000E0008

 00000000 00000000

21. Operation: _get_value

22. Service Context: length = 3 (0x3)

23. Context ID: 1229081874 (0x49424D12)

24. Context data: length = 8 (0x8)

 00000000 13100003

26. Context ID: 6 (0x6)

27. Context data: length = 164 (0xA4)

 00000000 00000028 49444C3A 6F6D672E

 6F72672F 53656E64 696E6743 6F6E7465

 78742F43 6F646542 6173653A 312E3000

 00000001 00000000 00000068 00010200

 0000000E 3139322E 3136382E 312E3130

 310004DC 00000018 4B4D4249 00000010

 BA4D6D69 000E0008 00000000 00000000

 00000002 00000001 00000018 00000000

 00010001 00000001 00010020 00010100

 00000000 49424D0A 00000008 00000000

 13100003

39. Context ID: 1 (0x1)

40. Context data: length = 12 (0xC)

 00000000 00010001 00010100

42. Data Offset: 118

45. 0000: 47494F50 01020000 0000010C 00000005 GIOP............

46. 0010: 03000000 00000000 00000018 4B4D4249 KMBI

47. 0020: [remainder of message body deleted for brevity]

Sample Log Entry - GIOP Reply

1. IN COMING:

3. Reply Message

4. Date: April 17, 2002 10:00:47 PM CDT

5. Thread Info: RT=0:P=842115:O=1:com.ibm.rmi.transport.TCPTransportConnection

5a (line 5 broken for publication). remoteHost=192.168.1.101 remotePort=1242 localPort=1243

6. Local Port: 1243 (0x4DB)

7. Local IP: jdoe.austin.ibm.com/192.168.1.101

8. Remote Port: 1242 (0x4DA)

9. Remote IP: jdoe.austin.ibm.com/192.168.1.101

10. GIOP Version: 1.2

11. Byte order: big endian

12. Fragment to follow: No

13. Message size: 208 (0xD0)

--

15. Request ID: 5

16. Service Context: length = 2 (0x2)

17. Context ID: 1229081874 (0x49424D12)

18. Context data: length = 8 (0x8)

 00000000 13100003

20. Context ID: 6 (0x6)

21. Context data: length = 164 (0xA4)

 00000000 00000028 49444C3A 6F6D672E

 6F72672F 53656E64 696E6743 6F6E7465

 78742F43 6F646542 6173653A 312E3000

 00000001 00000000 00000068 00010200

 0000000E 3139322E 3136382E 312E3130

 310004DA 00000018 4B4D4249 00000010

 BA4D6D34 000E0008 00000001 00000000

 00000002 00000001 00000018 00000000

 00010001 00000001 00010020 00010100

 00000000 49424D0A 00000008 00000000

 13100003

33. Reply Status: NO_EXCEPTION

262 IBM WebSphere Application Server-Network Deployment, Version 6: Troubleshooting and support

36. 0000: 47494F50 01020001 000000D0 00000005 GIOP............

37. 0010: 00000000 00000002 49424D12 00000008 IBM.....

38. 0020: [remainder of message body deleted for brevity]

Transactions

Troubleshooting transactions

Use this overview task to help resolve a problem that you think is related to the Transaction service.

To identify and resolve transaction-related problems, you can use the standard WebSphere Application

Server RAS facilities. If you encounter a problem that you think might be related to transactions, complete

the following steps:

1. Check for transaction messages in the administrative console. The Transaction service produces

diagnostic messages prefixed by “WTRN”. The error message indicates the nature of the problem and

provides some detail. The associated message information provides an explanation and any user

actions to resolve the problem.

2. Check for Transaction messages in the activityerror log. Log messages produced by the Transaction

service are accompanied by Log Analyzer descriptions.

3. Check for more messages in the application server’s stdout.log. For more information about a problem,

check the stdout.log file for the application server, which should contain more error messages and

extra details about the problem.

4. Check for messages related to the application server’s transaction log directory when the problem

occurred.

Note: If you changed the transaction log directory and a problem caused the application server to fail

(with in-flight transactions) before the server was restarted properly, the server will next start

with the new log directory and be unable to automatically resolve in-flight transactions that were

recorded in the old log directory. To resolve this, you can copy the transaction logs to the new

directory then stop and restart the application server.

Transaction service exceptions

This topic lists the exceptions that can be thrown by the WebSphere Application Server transaction

service. The exceptions are listed in the following groups:

v Standard exceptions

v Heuristic exceptions

If the EJB container catches a system exception from the business method of an enterprise bean, and the

method is running within a container-managed transaction, the container rolls back the transaction before

passing the exception on to the client. For more information about how the container handles the

exceptions thrown by the business methods for beans with container-managed transaction demarcation,

see the section Exception handling in the Enterprise JavaBeans 2.0 specification. That section specifies

the container’s action as a function of the condition under which the business method executes and the

exception thrown by the business method. It also illustrates the exception that the client receives and how

the client can recover from the exception.

Standard exceptions

The standard exceptions such as TransactionRequiredException, TransactionRolledbackException, and

InvalidTransactionException are defined in the Java Transaction API (JTA) 1.0.1 Specification.

InvalidTransactionException

This exception indicates that the request carried an invalid transaction context.

Chapter 6. Learn about WebSphere applications 263

http://java.sun.com/products/ejb/docs.html
http://java.sun.com/products/jta/

TransactionRequiredException exception

This exception indicates that a request carried a null transaction context, but the target object

requires an active transaction.

TransactionRolledbackException exception

This exception indicates that the transaction associated with processing of the request has been

rolled back, or marked for roll back. Thus the requested operation either could not be performed or

was not performed because further computation on behalf of the transaction would be fruitless.

Heuristic exceptions

A heuristic decision is a unilateral decision made by one or more participants in a transaction to commit or

rollback updates without first obtaining the consensus outcome determined by the Transaction Service.

Heuristic decisions are an issue only after the participant has been prepared and the second phase of

commit processing is underway. Heuristic decisions are normally made only in unusual circumstances,

such as repeated failures by the transaction manager to communicate with a resource manage during

two-phase commit. If a heuristic decision is taken, there is a risk that the decision differs from the

consensus outcome, resulting in a loss of data integrity.

The following list provides a summary of the heuristic exceptions. For more detail, see the Java

Transaction API (JTA) 1.0.1 Specification.

HeuristicRollback exception

This exception is raised on the commit operation to report that a heuristic decision was made and

that all relevant updates have been rolled back.

HeuristicMixed exception

This exception is raised on the commit operation to report that a heuristic decision was made and

that some relevant updates have been committed and others have been rolled back.

Exceptions thrown for transactions involving both single- and

two-phase commit resources

The exceptions that can be thrown by transactions that involve single- and two-phase commit resources

are the same as those that can be thrown by transactions involving only two-phase commit resources.

The exceptions that can be thrown are listed in the WebSphere Application Server application

programming interface reference information (Javadoc).

Learn about WebSphere programming extensions

Use this section as a starting point to investigate the WebSphere programming model extensions for

enhancing your application development and deployment.

See Learn about WebSphere applications: Overview and new features for an introduction to each

WebSphere extension.

ActivitySessions How do I?... Overview Samples

Application profiling How do I?... Overview Samples

Asynchronous beans How do I?... Overview Samples

Dynamic caching How do I?... Overview

Dynamic query How do I?... Overview Samples

Internationalization How do I?... Overview Samples

Object pools How do I?... Overview

Scheduler How do I?... Overview Samples

264 IBM WebSphere Application Server-Network Deployment, Version 6: Troubleshooting and support

http://java.sun.com/products/jta/
http://java.sun.com/products/jta/

Startup beans How do I?... Overview

Work areas How do I?... Overview

ActivitySessions

Troubleshooting ActivitySessions

Use this overview task to help resolve a problem that you think is related to the ActivitySession service.

To identify and resolve ActivitySession-related problems, you can use the standard WebSphere Application

Server RAS facilities. If you encounter a problem that you think might be related to ActivitySessions,

complete the following stages:

1. Check for ActivitySession messages in the admin console. The ActivitySession service produces

diagnostic messages prefixed by “WACS”. The error message indicates the nature of the problem and

provides some detail. The associated message information provides an explanation and any user

actions to resolve the problem.

2. Check for ActivitySession messages. The ActivitySession service produces diagnostic messages

prefixed by “WACS”. The error message indicates the nature of the problem and provides some detail.

The associated message information provides an explanation and any user actions to resolve the

problem. Activity log messages produced by the ActivitySession service are accompanied by Log

Analyzer descriptions.

Check in the application server’s SystemOut log at was_home\logs\server\SystemOut for error

messages with the prefix WACS. If needed, check other messages, which should provide extra details

about the problem.

 Related concepts

 The ActivitySession service

The ActivitySession service provides an alternative unit-of-work (UOW) scope to that provided by global

transaction contexts. An ActivitySession context can be longer-lived than a global transaction context

and can encapsulate global transactions.

Application profiling

Application profiling exceptions

The following exceptions are thrown in response to various illegal actions related to application profiling:

com.ibm.ws.exception.RuntimeWarning

This exception is thrown when the application is started, if the application is configured incorrectly.

The startup is consequently terminated. Some examples of bad configurations include:

v A task configured on two different application profiles.

v A method configured with two different task run-as policies .
com.ibm.websphere.appprofile.IllegalTaskNameException

This exception is raised if an application attempts to programmatically set a task when that task

has not been configured as a task name reference.

Dynamic cache

Troubleshooting the dynamic cache service

Complete the steps below to resolve problems that you think are related to the dynamic cache service.

1. For distributed platforms, review the JVM logs for your application server. Messages in either of these

logs prefaced with DYNA result from dynamic cache service operations.

a. On distributed platforms, view the JVM logs for your application server. Each server has its own

JVM log file. For example, if your server is named Member_1, the JVM log is located in the

Chapter 6. Learn about WebSphere applications 265

subdirectory install_root/logs/Member_1. To use the administration console to review the JVM logs,

click Troubleshooting > Logs and trace > server_name > JVM logs > Runtime > View.

b. Find any messages prefaced with DYNA in the log you are viewing, and write down the message

IDs. A sample message having the message ID DYNA0030E follows:

DYNA0030E: "property" element is missing required attribute "name".

c. Find the message for each message ID in the information center for WebSphere Application

Server. In the information center navigation tree, click product_name > Reference >

Troubleshooter > Messages > DYNA to view dynamic cache service messages.

d. Read the message Explanation and User Action statements. A search for the message ID

DYNA0030E displays a page having the following message:

DYNA0030E: "property" element is missing required attribute "name".

 Explanation: A required attribute was missing in the cache configuration.

 User Action: Add the required attribute to your cache configuration file.

This explanation and user action suggests that you can fix the problem by adding or correcting a

required attribute in the cache configuration file.

e. Try the solutions stated under User Action in the DYNA messages.

2. Use the cache monitor to determine whether the dynamic cache service is functioning as expected.

The cache monitor is an installable Web application that displays simple cache statistics, cache

entries, and cache policy information.

3. If you have completed the preceding steps and still cannot resolve the problem, contact your IBM

software support representative. On distributed platforms, you can use the collector tool (collector.bat

or collector.sh located in the bin directory) to gather trace information and other configuration

information for the support team to diagnose the problem. The collector tool gathers dynamic cache

service files and packages them into a JAR file. The IBM representative can specify when and where

to send the JAR file. The IBM representative might ask you to complete a diagnostic trace. To enable

tracing in the administrative console, click Troubleshooting > Logs and trace >server_name >

Diagnostic trace and specify Enable trace with the following specification. The IBM representative

can tell you what trace specification to enter. Note that dynamic cache trace files can become large in

a short period of time; you can limit the size of the trace file by starting the trace, immediately

recreating the problem, and immediately stopping the trace.

For current information available from IBM Support on known problems and their resolution, see the

IBM Support page.

For technical support on dynamic cache service, see the IBM Support page.

Troubleshooting tips for the dynamic cache service:

The dynamic cache service works within an application server Java virtual machine (JVM), intercepting

calls to cacheable objects. This article describes some common runtime and configuration problems and

remedies.

 Servlets are not cached

 Recommended response Enable servlet caching. On the Web container page of the administrative

console, select the Enable servlet caching check box.

Cache entries are not written to disk

 Explanation Cache entries are written to disk when the cache is full

and new entries are added to the memory cache. Cache

entries also are written to disk when Flush to disk is

enabled in the administrative console and the server is

stopped.

266 IBM WebSphere Application Server-Network Deployment, Version 6: Troubleshooting and support

http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCVRZY
http://www-1.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCVRZY&q=mustgather

Recommended response Verify that Disk offload is enabled on the Dynamic cache

service settings page of the administrative console. Also

verify that cache entries written to disk are serializable

and do not have the PersistToDisk configuration set to

false.

Some servlets are not replicated or written to disk

 Recommended response Ensure that the attributes and response are serializable. If you do not want to

store the attributes, use the following property in your cache policy:

<property name="save-attributes">false</property>

Dynamic cache service does not cache fragments on the Edge

 Recommended response Set the EdgeCacheable property to true in the cache policy for those entries

that are to be cached on the Edge.

<property name="EdgeCacheable">true</property>

Dynamic cache invalidations are not sent to the IBM HTTP Server (IHS) plug-in

 Explanation The DynaCacheEsi.ear file is required to send invalidations to external caches.

Recommended response Install DynaCacheEsi.ear using the administrative console.

Cache entries are evicted often

 Problem The cache is full and new entries are added to the cache.

Explanation Cache entries are evicted when the cache is full and new entries are added

to the cache. A least recently used (LRU) eviction mechanism removes the

least recently used entry to make space for the new entries.

Recommended response Enable Disk offload on the Dynamic cache service settings page of the

administrative console so the entries are written to disk. You can also

increase the cache size to accommodate more entries in the cache.

Cache entries in disk with timeout set to 0 expire after one day

 Explanation The maximum lifetime of an entry in disk cache is 24 hours. A timeout of 0 in

the cache policy configures these entries to stay in disk cache for one whole

day, unless they are evicted earlier.

Recommended response Set the timeout for the cache policy to a number less than 0.

I cannot monitor cache entries on the Edge

 Explanation Use the Cache monitor for monitoring contents in memory cache, disk cache

and external caches (Edge cache). For the ESI processor’s cache to be

visible in the cache monitor, the DynaCacheEsi.ear application must be

installed and the esiInvalidationMonitor property must be set to true in the

plugin-cfg.xml file.

Recommended response See Displaying cache information and set the esiInvalidationMonitor

property to true in the plugin-cfg.xml file.

Chapter 6. Learn about WebSphere applications 267

I want to tune cache for my environment

 Recommended response Use the Tivoli Performance viewer to study the caching behavior for your

applications. Also consider performing the following actions:

v Increase the priority of cache entries that are expensive to regenerate.

v Modify timeout of entries so that they stay in memory as long as they are

valid.

v Enable disk offload to store LRU evicted entries.

v Increase the cache size.

Cleaning the disk cache files after installing the fix pack or a new release if you use the disk cache

function

 Symptom If the server is configured to use the disk cache, you must delete the disk

cache files because the disk cache files are not compatible to the previous

version.

Problem Failure to remove the old disk cache files results in a ClassCastException

error in the systemerr.log file when you access the cache from the disk.

Recommended response To delete the disk cache, perform the following steps:

1. Note your disk offload location. If you do not know the disk cache offload

location, perform the following steps:

a. Click Servers > Application servers >server_name > Container

services > Dynamic cache service in the administrative console

navigation tree.

b. The location is specified in the Disk offload field. If the location is not

specified, the default directory

WebSphere/AppServer/profiles/your_profile_name/temp/your_node/

server_name/_dynacache

is used.

2. Make sure that the you stop the server and delete all the files under the

offload location.

3. If you use the Network Deployment product, delete the disk cache files for

each server.

Setting the flush attribute to true on every <jsp:include> tag in the cacheable JavaServer Pages file

 Symptom When you obtain the JavaServer Pages (JSP) file from the dynamic cache, a

part of the page is not displayed.

Problem The flush attribute is set to false on the <jsp: include> tag in the JSP file.

Description When the cacheable JSP file includes another JSP file and if the flush

attribute is set to false on the <jsp: include> tag, any data written to the

parent output stream before the<jsp: include> tag are not cached.

Recommended response Set flush=true on every <jsp: include> tag in the cacheable JSP file.

Internationalization

Internationalization service errors

The internationalization service issues one exception: java.lang.IllegalStateException. This exception

indicates one of the following things:

v An application component attempted an operation that is not supported by the internationalization

programming model.

268 IBM WebSphere Application Server-Network Deployment, Version 6: Troubleshooting and support

The IllegalStateException exception is issued whenever a server application component whose

internationalization type is set to container-managed internationalization (CMI) attempts to set invocation

context. This behavior is a violation of the CMI policy, under which servlets and enterprise beans cannot

modify their invocation internationalization context.

v An anomaly occurred that disabled the service.

For instance, if the internationalization service is not properly initialized, the Java Naming and Directory

Interface (JNDI) lookup on the UserInternationalization URL attribute issues a

javax.naming.NameNotFoundException exception that contains an IllegalStateException instance.

The following conditions can occur while your internationalized application is running. These conditions

might cause the internationalization service not to start, to issue IllegalStateException exceptions, or to

exercise default behaviors:

v “The service is disabled ”

v “The service is not started”

v “Invalid context element” on page 270

v “Missing context element” on page 270

v “Invalid policy” on page 271

v “Missing policy” on page 271

If you encounter unexpected or exceptional behavior, the problem is likely related to one of these

conditions. You need to examine the trace log to investigate these conditions, which requires that you

configure the diagnostic trace service to generate messages about internationalization service function. To

get started with logging and tracing, see “Enabling tracing and logging” on page 132.

The trace strings for internationalization follow; use both:

com.ibm.ws.i18n.context.*=all=enabled:com.ibm.websphere.i18n.context.*=all=enabled

The service is disabled

The internationalization service is not initialized when the startup setting is cleared. The service generates

a message that indicates whether it is enabled or disabled. Applications cannot access the

internationalization API when the service is disabled. If an application attempts a JNDI lookup to obtain the

UserInternationalization reference, the lookup fails with a NamingException exception, indicating that the

reference cannot be found. In addition, the service does not scope (propagate) internationalization context

on incoming (outgoing) business method calls.

The service is not started

The internationalization service is operational whenever it is in the STARTED state. For example, if an

application attempts to access internationalization context and the service is not started, the API issues an

IllegalStateException exception. In addition, the service does not provide run-time support for servlets and

enterprise beans.

As an application server progresses through its life cycle, it initializes, starts, stops, and terminates

(destroys) the internationalization service. If an anomaly occurs during initialization, the service does not

start. After the service is started, its state can change to BLOCKED in the event that a serious error

occurs. The service generates a message for every state change.

If a trace message indicates that the service is not STARTED, examine previous messages to determine

the problem. For instance, the internationalization service does not start if the activity service is

unavailable and a message is displayed to that effect during initialization of the internationalization service.

During startup, the following messages indicate potential configuration or run-time problems:

No ORB support

The service cannot obtain an instance of the object request broker (ORB). This condition is a fatal

error. Examine the logs for information.

Chapter 6. Learn about WebSphere applications 269

No TCM support

The service cannot obtain an instance of its thread context manager (TCM). This condition is a

fatal error. Examine the logs for information.

No IIOP (activity service) support

The service cannot register with the activity service. This condition is a fatal error. The

internationalization service cannot propagate or receive context on Internet Inter-ORB Protocol

(IIOP) requests without activity service support. Review the logs for error conditions related to the

activity service.

No AsynchBeans support

The service cannot register into the asynchronous beans environment. This warning indicates that

the asynchronous beans environment cannot support internationalization context. If the application

server is supposed to support asynchronous beans, verify that the asynchbeans.jar and

asynchbeansimpl.jar files exist in the class path, and review the trace log for any error conditions

related to asynchronous beans.

No EJB container support

The service cannot register with the Enterprise JavaBeans (EJB) container. This warning indicates

that the internationalization service cannot support enterprise beans. Without EJB container

support, internationalization contexts do not scope properly to EJB business methods. Review the

trace log for any EJB container-related error conditions.

No Web container support

The service cannot register with the Web container. This warning indicates that the

internationalization service cannot support servlets and JavaServer Page (JSP) files. Without Web

container support, internationalization contexts do not scope properly to servlet service methods.

Review the trace log for any Web container-related error conditions.

No Meta-data support

The service cannot register with the meta-data service. This warning indicates that the

internationalization service cannot process the internationalization policies within application

deployment descriptors. Without meta-data support, the service associates the default

internationalization context management policy, [CMI, RunAsCaller], to every servlet lifecycle

method and enterprise bean business method invocation. Review the trace log for any meta-data

service-related error conditions.

No JNDI (Naming service) support

The service cannot bind the UserInternationalization object into the namespace. This condition is a

fatal error. Application components are unable to access internationalization context API

references, and are therefore unable to access internationalization context elements. Review the

trace log for any Naming (JNDI) service-related error conditions.

No API support

The service cannot obtain an instance of an internationalization context API object. This condition

is a fatal error. Application components are unable to access internationalization context API

references, and are therefore unable to access internationalization context elements.

Invalid context element

The service detected an invalid internationalization context element. For example, the internationalization

service does not support TimeZone instances of a type other than java.util.SimpleTimeZone. If the service

encounters an unusable element, it logs a message and substitutes the corresponding default element of

the JVM.

Missing context element

The service detected a missing internationalization context element. Incoming requests (for example, from

application servers that do not support the internationalization service) lack internationalization context.

When the service attempts to access a caller internationalization context element (which does not exist in

this case), the service logs a message and substitutes the corresponding default element of the Java

virtual machine (JVM).

270 IBM WebSphere Application Server-Network Deployment, Version 6: Troubleshooting and support

Whenever possible, enable the internationalization service within all clients and hosting application servers

that comprise an internationalized enterprise application. For more information see Administering the

internationalization service.

Invalid policy

The internationalization service detected a malformed internationalization policy in the application

deployment descriptor. The service replaces the malformed attribute with the appropriate default. For

instance, if the internationalization type for an entity bean is set to Application during the run of a servlet

or EJB business method call, the service logs the inconsistency and enforces the Container setting

instead.

Also, AMI application components do have an implicit container internationalization attribute. By default

they run as server. The service silently enforces the implicit policy, [AMI, RunAsServer], and logs

messages to this effect.

Invalid container internationalization attributes are likely to occur when specifying the Locales and Time

zone ID fields. When encountering invalid locales and time zone IDs within attributes, the service replaces

each value with the corresponding default element of the JVM. Be sure to follow the guidelines provided in

Assembling internationalized applications.

Missing policy

The service detected a missing internationalization policy. The service replaces the missing policy with the

appropriate default. For instance, if the internationalization type is missing for a servlet or enterprise bean,

the service sets the attribute to Container.

Container internationalization attributes are not mandatory for CMI application components. In the event

that a CMI servlet or EJB business method lacks a container internationalization attribute, the service

silently enforces the implicit policy [CMI, RunAsCaller].

When an application lacks internationalization policies in its deployment descriptor, or meta-data support is

unavailable, the service logs a message and applies the policy [CMI, RunAsCaller] on every servlet

service method and EJB business method invocation.

For more information, see the following topics:

v Assembling internationalized applications

v Container internationalization attributes

v Internationalization type

v Migrating internationalized applications

 Related concepts

 “Enabling tracing and logging” on page 132

Chapter 6. Learn about WebSphere applications 271

272 IBM WebSphere Application Server-Network Deployment, Version 6: Troubleshooting and support

Notices

References in this publication to IBM products, programs, or services do not imply that IBM intends to

make these available in all countries in which IBM operates. Any reference to an IBM product, program, or

service is not intended to state or imply that only IBM’s product, program, or service may be used. Any

functionally equivalent product, program, or service that does not infringe any of IBM’s intellectual property

rights may be used instead of the IBM product, program, or service. Evaluation and verification of

operation in conjunction with other products, except those expressly designated by IBM, is the user’s

responsibility.

IBM may have patents or pending patent applications covering subject matter in this document. The

furnishing of this document does not give you any license to these patents. You can send license inquiries,

in writing, to:

 IBM Director of Licensing

 IBM Corporation

 500 Columbus Avenue

 Thornwood, New York 10594 USA

© Copyright IBM Corp. 2004 273

274 IBM WebSphere Application Server-Network Deployment, Version 6: Troubleshooting and support

Trademarks and service marks

For trademark attribution, visit the IBM Terms of Use Web site (http://www.ibm.com/legal/us/).

© Copyright IBM Corp. 2004 275

http://www.ibm.com/legal/us/

	Contents
	How to send your comments
	Chapter 1. Overview and new features for troubleshooting
	Overview: Troubleshooting
	What is new for troubleshooters
	Troubleshooting by component
	Web module or application server dies or hangs
	Web Container troubleshooting tips
	JSP source code shown by the Web server
	JSP engine troubleshooting tips
	HTTP session manager troubleshooting tips
	Problems creating or using HTTP sessions
	Enterprise bean and EJB container troubleshooting tips
	Cannot access an enterprise bean from a servlet, a JSP file, a stand-alone program, or another client
	A client program does not work
	Universal Discovery, Description, and Integration, Web Service, and SOAP component troubleshooting tips
	Errors returned to a client sending a SOAP request
	JDBC and data source troubleshooting tips
	DB2 troubleshooting tips
	Cannot access a data source
	Problems accessing an Oracle data source
	Problems accessing a DB2 database
	Problems accessing a SQL server data source
	Problems accessing a Cloudscape database
	Problems accessing a Sybase data source

	Sybase troubleshooting tips
	Errors in messaging
	Errors connecting to WebSphere MQ and creating WebSphere MQ queue connection factory
	Naming services component troubleshooting tips
	Cannot look up an object hosted by WebSphere Application Server from a servlet, JSP file, or other client
	Object request broker component troubleshooting tips
	Messaging component troubleshooting tips

	Chapter 2. How do I troubleshoot?
	Chapter 3. Debugging applications
	Debugging with the Application Server Toolkit

	Chapter 4. Adding logging and tracing to your application
	Logging and tracing with Java logging
	Loggers
	Log handlers
	Log levels
	Log filters
	Log formatters
	Configuring logging properties using the administrative console
	Log level settings
	HTTP error and NCSA access log settings

	Configuring logging properties for an application
	Sample security
	Using loggers in an application
	Using a logger
	Understanding the logger hierarchy
	Creating log resource bundles and message files
	Creating a custom log handler
	Creating a custom filter
	Creating a custom formatter
	Using custom handlers, filters, and formatters

	The Common Base Event in WebSphere Application Server
	Types of problem determination events
	The structure of the Common Base Event
	Common Header Information
	Component Identification (Source and Reporter)
	Situation Information
	Message Data
	Extended Data

	Sample Common Base Event instance
	Sample Common Base Event template
	Component Identification for Problem Determination
	Logging Common Base Events in WebSphere Application Server
	Using the Common Base Event API with the Java Logging API to log Common Base Events
	Using the Java Logging API to Generate and Log Common Base Events
	Configuring Common Base Events for an application
	Common Base Event content generated when using the WebSphere Application Server default event factory
	Best Practices for Logging Common Base Events in WebSphere Application Server

	Programming with the JRas framework
	Understanding the JRas facility
	JRas Extensions
	JRas extension classes
	Extending the JRas framework
	Programming model summary

	JRas Messages and Trace event types
	Instrumenting an application with JRas extensions
	Creating JRas resource bundles and message files
	Creating JRas manager and logger instances
	Setting up for integrated JRas operation
	Setting up for combined JRas operation
	Setting up for stand-alone JRas operation

	Chapter 5. Diagnosing problems (using diagnosis tools)
	Message reference
	CORBA minor codes
	Working with message logs
	Viewing the JVM logs
	Interpreting the JVM logs
	Configuring the JVM logs
	Java virtual machine (JVM) log settings

	Process logs
	Viewing the service log
	Showlog Script
	Using the showlog command to view Common Base Events

	Configuring the service log
	IBM service log settings

	Detecting hung threads in J2EE applications
	Adjusting the hang detection policy of a running server
	Configuring the hang detection policy

	Working with trace
	Enabling tracing and logging
	Enabling trace at server startup
	Enabling trace on a running server
	Enabling trace on client and standalone applications

	Managing the application server trace service
	Interpreting trace output
	Diagnostic trace service settings
	Enable Log
	Trace Output
	Trace Output Format
	Runtime tab
	Trace Output

	Log and trace settings
	Name
	Node
	Version
	Status

	Working with troubleshooting tools
	Gathering information with the Collector tool
	Collector tool
	Analyzing collector tool output
	Collector summary

	First Failure Data Capture tool
	Log Analyzer
	Using the Log Analyzer

	IBM Support Assistant
	Obtaining help from IBM
	Diagnosing and fixing problems: Resources for learning
	Debugging Service details
	Enable service at server startup
	JVM debug port
	JVM debug arguments
	Debug class filters
	BSF debug port
	BSF logging level

	Configuration problem settings
	Configuration document validation
	Enable Cross validation
	Configuration Problems
	Scope
	Message
	Explanation
	User action
	Target Object
	Severity
	Local URI
	Full URI
	Validator classname

	Chapter 6. Learn about WebSphere applications
	Web applications
	Troubleshooting tips for Web application deployment

	EJB applications
	Access intent exceptions
	Frequently asked questions: Access intent
	Important file for message-driven beans

	Client applications
	Application client troubleshooting tips

	Web services
	Troubleshooting Web services
	Troubleshooting Web services command-line tools
	Troubleshooting Web services compiled bindings
	Troubleshooting the run time for a Web services client
	Troubleshooting serialization and deserialization in Web services
	Troubleshooting authentication and authorization for Web services security based on Web Services for J2EE
	Tracing Web services
	Tracing SOAP messages with tcpmon
	Frequently asked questions about Web services

	Troubleshooting the Web Services Invocation Framework
	Trace and logging for WSIF
	WSIF (Web Services Invocation Framework) messages
	WSIF - Known restrictions

	UDDI Registry troubleshooting
	Turning on UDDI Registry trace
	Common causes of errors in the UDDI Registry
	Reporting problems with the UDDI Registry

	Data access resources
	Connection and connection pool statistics
	Example: Connection factory lookup
	Database exceptions resulting from foreign key conflicts, or deadlock when entity beans are configured for optimistic concurrency control
	Example: Using the Java Management Extensions API to create a JDBC driver and data source for container-managed persistence
	Example: Using the Java Management Extensions API to create a JDBC driver and data source for bean-managed persistence, session beans, or servlets
	Vendor-specific data sources minimum required settings

	Messaging resources
	Troubleshooting WebSphere messaging
	Tips for troubleshooting WebSphere Messaging
	Troubleshooting message-driven beans

	Mail, URLs, and other J2EE resources
	Enabling debugger for a mail session

	Security
	Troubleshooting authorization providers
	Troubleshooting security configurations
	Errors when trying to configure or enable security
	Access problems after enabling security
	Errors after enabling security
	Errors trying to enable or configure Secure Socket Layer (SLL) encrypted access
	Errors after configuring or enabling Secure Sockets Layer
	Security components troubleshooting tips

	Naming and directory
	Troubleshooting name space problems
	dumpNameSpace tool
	Example: Invoking the name space dump tool
	Name space dump utility for java:, local: and server name spaces
	Example: Invoking the name space dump utility for java: and local: name spaces
	Name space dump sample output

	Object Request Broker
	Object Request Broker communications trace

	Transactions
	Troubleshooting transactions
	Transaction service exceptions
	Exceptions thrown for transactions involving both single- and two-phase commit resources

	Learn about WebSphere programming extensions
	ActivitySessions
	Troubleshooting ActivitySessions

	Application profiling
	Application profiling exceptions

	Dynamic cache
	Troubleshooting the dynamic cache service

	Internationalization
	Internationalization service errors

	Notices
	Trademarks and service marks

